
IBM XL C/C++ for AIX, V13.1.3

Compiler Reference
Version 13.1.3

SC27-4259-02

IBM

IBM XL C/C++ for AIX, V13.1.3

Compiler Reference
Version 13.1.3

SC27-4259-02

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 717.

First edition

This edition applies to IBM XL C/C++ for AIX, V13.1.3 (Program 5765-J07; 5725-C72) and to all subsequent releases
and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.

© Copyright IBM Corporation 1996, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document ix
Who should read this document ix
How to use this document ix
How this document is organized ix
Conventions x
Related information xiv

IBM XL C/C++ information xiv
Standards and specifications. xv
Other IBM information xvi
Other information xvi

Technical support xvi
How to send your comments xvi

Chapter 1. Compiling and linking
applications 1
Invoking the compiler 1

Command-line syntax 3
Types of input files 3
Types of output files 4
Specifying compiler options 5

Specifying compiler options on the command line 6
Specifying compiler options in a configuration file 8
Specifying compiler options in program source
files 8
Resolving conflicting compiler options. 9
Specifying compiler options for
architecture-specific compilation 10

Reusing GNU C/C++ compiler options with gxlc
and gxlc++ 11

gxlc or gxlc++ syntax 11
Preprocessing. 12

Directory search sequence for included files . . 13
Linking. 14

Order of linking 15
Redistributable libraries 15
Compatibility with earlier versions 17

Compiler messages and listings. 18
Compiler messages 18
Compiler return codes 20
Compiler listings 21
Message catalog errors. 23
Paging space errors during compilation 24

Chapter 2. Configuring compiler
defaults 25
Setting environment variables 25

Compile-time and link-time environment
variables 26
Runtime environment variables. 26
Environment variables for parallel processing . . 27

Using custom compiler configuration files 40
Creating custom configuration files 41

Configuring the gxlc or gxlc++ option mapping . . 44

Chapter 3. Tracking and reporting
compiler usage 47
Understanding utilization tracking and reporting . . 47

Overview 47
Four usage scenarios 48

Preparing to use this feature. 56
Time synchronization 56
License types and user information 56
Central configuration 57
Concurrent user considerations 57
Usage file considerations 58
Regular utilization checking 60

Testing utilization tracking 60
Configuring utilization tracking 62

Editing utilization tracking configuration file
entries 62

Understanding the utilization reporting tool . . . 66
Utilization reporting tool command-line options 66

Generating usage reports 70
Understanding usage reports 70

Pruning usage files 73
Diagnostic messages from utilization tracking and
reporting 74
Tracking compiler usage with Software License
Metric Tags logging 74

Chapter 4. Compiler options reference 77
Summary of compiler options by functional
category 77

Output control 77
Input control 78
Language element control 79
Template control (C++ only) 81
Floating-point and integer control 82
Object code control 83
Error checking and debugging 86
Listings, messages, and compiler information . . 88
Optimization and tuning 90
Linking. 94
Portability and migration 95
Compiler customization 95
Deprecated options 96

Individual option descriptions 97
-+ (plus sign) (C++ only) 98
-# (pound sign) 99
-q32, -q64. 100
-qaggrcopy 101
-qalias 101
-qalign 104
-qalignrulefor (C++ only) 106
-qalloca, -ma (C only) 107
-qaltivec 109
-qarch 109
-qasm 112
-qasm_as 114

© Copyright IBM Corp. 1996, 2015 iii

-qassert 115
-qattr 116
-b 117
-B 118
-qbitfields 119
-bmaxdata 119
-brtl 120
-c 121
-C, -C! 122
-qcache 123
-qchars 126
-qcheck 127
-qcinc (C++ only) 130
-qcompact 130
-qconcurrentupdate (C only) 131
-qcpluscmt (C only) 132
-qcrt 133
-qc_stdinc (C only) 134
-qcpp_stdinc (C++ only) 135
-D 136
-qdataimported, -qdatalocal, -qtocdata 137
-qdbgfmt 139
-qdbxextra (C only) 140
-qdfp 141
-qdigraph 142
-qdirectstorage 143
-qdollar 143
-qdpcl 144
-e 145
-E 146
-qeh (C++ only) 147
-qenum 148
-qexpfile 152
-qextchk 153
-f 153
-F 154
-qfdpr 155
-qflag 156
-qfloat 158
-qflttrap 163
-qformat 166
-qfullpath 168
-qfuncsect 169
-qfunctrace 170
-g 173
-G 176
-qgenproto (C only) 176
-qhalt 178
-qhaltonmsg 179
-qheapdebug 181
-qhelp 182
-qhot 182
-I 185
-qidirfirst 186
-qignerrno 187
-qignprag. 188
-qinclude 189
-qinfo 191
-qinitauto. 200
-qinlglue 203
-qinline 204

-qipa 208
-qisolated_call 214
-qkeepinlines (C++ only) 217
-qkeepparm 218
-qkeyword 219
-l 221
-L 223
-qlanglvl 224
-qlargepage 250
-qldbl128, -qlongdouble 251
-qlib 252
-qlibansi 253
-qlibmpi 254
-qlinedebug 255
-qlist 256
-qlistfmt 257
-qlistopt 260
-qlonglit 261
-qlonglong 262
-ma (C only). 263
-qmacpstr 263
-qmakedep, -M 265
-qmaxerr 267
-qmaxmem 268
-qmbcs, -qdbcs 269
-MF 271
-qminimaltoc 272
-qmkshrobj 272
-qnamemangling (C++ only) 274
-o 281
-O, -qoptimize 282
-qobjmodel (C++ only) 286
-qoldpassbyvalue (C++ only) 287
-qoptdebug 289
-qoptfile 290
-p, -pg, -qprofile 292
-P 293
-qpath 294
-qpdf1, -qpdf2 296
-qphsinfo 302
-qpic 304
-qppline 305
-qprefetch 306
-qprint 309
-qpriority (C++ only) 310
-qprocimported, -qproclocal, -qprocunknown 311
-qproto (C only) 313
-r 314
-qreport 315
-qreserved_reg 316
-qrestrict 317
-qro 319
-qroconst 320
-qroptr 321
-qrtti (C++ only) 322
-s 323
-S 324
-qsaveopt. 325
-qshowinc 327
-qshowmacros 329
-qshowpdf 330

iv XL C/C++: Compiler Reference

-qsimd 330
-qskipsrc 332
-qsmallstack 333
-qsmp 334
-qsource 339
-qsourcetype. 340
-qspeculateabsolutes 341
-qspill 342
-qsrcmsg (C only) 343
-qstackprotect 344
-qstaticinline (C++ only) 345
-qstatsym. 346
-qstdinc 346
-qstrict 348
-qstrict_induction 352
-qsuppress 353
-qsymtab (C only) 355
-qsyntaxonly 356
-t 356
-qtabsize 358
-qtbtable 359
-qtempinc (C++ only). 360
-qtemplatedepth (C++ only) 361
-qtemplaterecompile (C++ only) 362
-qtemplateregistry (C++ only) 363
-qtempmax (C++ only) 364
-qthreaded 365
-qtimestamps 366
-qtls 366
-qtmplinst (C++ only) 368
-qtmplparse (C++ only) 369
-qtocmerge 370
-qtrigraph 371
-qtune 371
-qtwolink (C++ only) 374
-U 376
-qunique 377
-qunroll 378
-qunwind. 381
-qupconv (C only) 382
-qutf 383
-v, -V 383
-qvecnvol. 384
-qversion 385
-qvisibility 387
-w 389
-W 390
-qwarn0x (C++11) 392
-qwarn64 393
-qweakexp 394
-qweaksymbol 395
-qxcall 396
-qxref 396
-y 398
-Z 399

Chapter 5. Compiler pragmas
reference 401
Pragma directive syntax 401
Scope of pragma directives 402

Summary of compiler pragmas by functional
category 402

Language element control 403
C++ template pragmas 403
Floating-point and integer control 403
Error checking and debugging. 403
Listings, messages and compiler information 404
Optimization and tuning 404
Object code control 405
Portability and migration 406
Deprecated directives. 406

Individual pragma descriptions 407
#pragma align 407
#pragma alloca (C only) 407
#pragma block_loop 407
#pragma chars 410
#pragma comment. 410
#pragma define, #pragma instantiate (C++ only) 412
#pragma disjoint 413
#pragma do_not_instantiate (C++ only). . . . 414
#pragma enum 415
#pragma execution_frequency 415
#pragma expected_value 416
#pragma fini (C only) 417
#pragma GCC visibility push, #pragma GCC
visibility pop 418
#pragma hashome (C++ only) 420
#pragma ibm independent_loop 421
#pragma ibm iterations 422
#pragma ibm max_iterations 423
#pragma ibm min_iterations 424
#pragma ibm snapshot 425
#pragma implementation (C++ only) 426
#pragma info 426
#pragma init (C only) 426
#pragma ishome (C++ only) 427
#pragma isolated_call 428
#pragma langlvl (C only) 428
#pragma leaves. 428
#pragma loopid 429
#pragma map 430
#pragma mc_func 432
#pragma namemangling (C++ only) 434
#pragma namemanglingrule (C++ only) . . . 434
#pragma nofunctrace 437
#pragma nosimd 438
#pragma novector 438
#pragma object_model (C++ only) 438
#pragma operator_new (C++ only) 438
#pragma options 439
#pragma option_override 441
#pragma pack 443
#pragma pass_by_value (C++ only) 447
#pragma priority (C++ only) 447
#pragma reachable 447
#pragma reg_killed_by 448
#pragma report (C++ only) 449
#pragma simd_level 451
#pragma STDC CX_LIMITED_RANGE 452
#pragma stream_unroll 453
#pragma strings 454

Contents v

#pragma unroll, #pragma nounroll 454
#pragma unrollandfuse 454
#pragma weak 456
Pragma directives for parallel processing . . . 459

Chapter 6. Compiler predefined
macros 483
General macros. 483
Macros indicating the XL C/C++ compiler . . . 484
Macros related to the platform 485
Macros related to compiler features 485

Macros related to compiler option settings. . . 486
Macros related to architecture settings 489
Macros related to language levels 490

Chapter 7. Compiler built-in functions 499
Fixed-point built-in functions 499

Absolute value functions 499
Assert functions 500
Bit permutation functions 500
Comparison functions 500
Count zero functions 501
Division functions 501
Load functions 503
Multiply functions. 503
Population count functions 504
Rotate functions 505
Store functions 506
Trap functions 507

Binary floating-point built-in functions 508
Absolute value functions 508
Add functions 508
Conversion functions 509
FPSCR functions 511
Multiply functions. 514
Multiply-add/subtract functions 514
Reciprocal estimate functions 515
Rounding functions 516
Select functions. 517
Square root functions 517
Software division functions. 518
Store functions 519

Binary-coded decimal built-in functions 519
BCD add and subtract 519
BCD test add and subtract for overflow . . . 520
BCD comparison 521
BCD load and store 522

Decimal floating-point built-in functions 523
Absolute value functions 523
Coefficient functions 524
Comparison functions 525
Conversion functions 526
Exponent functions 531
NaN functions 532
Register transfer functions 533
Rounding functions 534
Test functions 537
Miscellaneous functions 541

Synchronization and atomic built-in functions . . 542
Check lock functions 542

Clear lock functions 544
Compare and swap functions 545
Fetch functions 545
Load functions 547
Store functions 548
Synchronization functions 549

Cache-related built-in functions 550
Data cache functions 550
Prefetch built-in functions 552

Cryptography built-in functions 560
Advanced Encryption Standard functions . . . 560
Secure Hash Algorithm functions. 562
Miscellaneous functions 563

Block-related built-in functions 565
__bcopy 565
bzero 566

Vector built-in functions 566
vec_abs 567
vec_abss 567
vec_add 568
vec_addc 568
vec_adds 569
vec_add_u128 570
vec_addc_u128 570
vec_adde_u128 570
vec_addec_u128 571
vec_all_eq 571
vec_all_ge 572
vec_all_gt 574
vec_all_in 575
vec_all_le. 575
vec_all_lt 576
vec_all_nan 577
vec_all_ne 578
vec_all_nge 579
vec_all_ngt 580
vec_all_nle 580
vec_all_nlt 581
vec_all_numeric 581
vec_and 582
vec_andc 583
vec_any_eq 584
vec_any_ge 585
vec_any_gt 587
vec_any_le 588
vec_any_lt 589
vec_any_nan 590
vec_any_ne 591
vec_any_nge. 592
vec_any_ngt 593
vec_any_nle 593
vec_any_nlt 594
vec_any_numeric 594
vec_any_out 595
vec_avg 595
vec_bperm 596
vec_ceil 596
vec_cmpb 597
vec_cmpeq 597
vec_cmpge 598
vec_cmpgt 599

vi XL C/C++: Compiler Reference

vec_cmple 600
vec_cmplt 601
vec_cntlz 602
vec_cpsgn 602
vec_ctd 603
vec_ctf 603
vec_cts 604
vec_ctsl 604
vec_ctu 605
vec_ctul 605
vec_cvf 606
vec_div 606
vec_dss 607
vec_dssall 607
vec_dst 607
vec_dstst 608
vec_dststt 608
vec_dstt 609
vec_eqv 609
vec_expte. 611
vec_extract 611
vec_floor 612
vec_gbb 612
vec_insert 613
vec_ld 614
vec_lde 615
vec_ldl 616
vec_loge 617
vec_lvsl 618
vec_lvsr 618
vec_madd 619
vec_madds 620
vec_max 620
vec_mergee 621
vec_mergeh 622
vec_mergel 623
vec_mergeo 624
vec_mfvscr 625
vec_min 625
vec_mladd 626
vec_mradds 627
vec_msub 627
vec_msum 628
vec_msums 629
vec_mtvscr 629
vec_mul 630
vec_mule 630
vec_mulo. 631
vec_nabs 632
vec_nand 632
vec_neg 634
vec_nmadd 634
vec_nmsub 635
vec_nor 635
vec_or 636
vec_orc 638
vec_pack 639
vec_packpx 640
vec_packs 640
vec_packsu 641
vec_perm. 642

vec_permi 642
vec_popcnt 643
vec_promote. 644
vec_re 645
vec_revb 645
vec_reve 646
vec_rl 647
vec_round 647
vec_roundc 648
vec_roundm 648
vec_roundp 649
vec_roundz 649
vec_rsqrte 650
vec_sel 650
vec_sl 651
vec_sld 652
vec_sldw 653
vec_sll 654
vec_slo 655
vec_splat 656
vec_splats 656
vec_splat_s8 657
vec_splat_s16 657
vec_splat_s32 658
vec_splat_u8. 658
vec_splat_u16 659
vec_splat_u32 659
vec_sqrt 660
vec_sr 660
vec_sra 661
vec_srl 662
vec_sro 663
vec_st 663
vec_ste 665
vec_stl. 666
vec_sub 667
vec_sub_u128 668
vec_subc 669
vec_subc_u128 669
vec_sube_u128 669
vec_subec_u128 670
vec_subs 670
vec_sum2s 671
vec_sum4s 671
vec_sums. 672
vec_trunc. 672
vec_unpackh 672
vec_unpackl 673
vec_xl 674
vec_xl_be. 675
vec_xld2 676
vec_xlds 677
vec_xlw4 678
vec_xor 679
vec_xst 680
vec_xst_be 681
vec_xstd2. 682
vec_xstw4 683

GCC atomic memory access built-in functions (IBM
extension) 684

Atomic lock, release, and synchronize functions 685

Contents vii

Atomic fetch and operation functions 686
Atomic operation and fetch functions 689
Atomic compare and swap functions 692

Miscellaneous built-in functions 693
Optimization-related functions 693
Move to/from register functions 694
Memory-related functions 696

Built-in functions for parallel processing 698
IBM SMP built-in functions. 699
Transactional memory built-in functions . . . 699

Chapter 8. OpenMP runtime functions
for parallel processing 707
omp_get_max_active_levels 707
omp_set_max_active_levels 707
omp_get_schedule 708
omp_set_schedule 708
omp_get_thread_limit 709
omp_get_level 709
omp_get_ancestor_thread_num 709
omp_get_team_size 709
omp_get_active_level 710
omp_get_num_threads 710

omp_set_num_threads 710
omp_get_max_threads 711
omp_get_thread_num 711
omp_get_num_procs 711
omp_in_final 711
omp_in_parallel 711
omp_set_dynamic 712
omp_get_dynamic 712
omp_set_nested 712
omp_get_nested 713
omp_init_lock, omp_init_nest_lock 713
omp_destroy_lock, omp_destroy_nest_lock . . . 713
omp_set_lock, omp_set_nest_lock. 713
omp_unset_lock, omp_unset_nest_lock 714
omp_test_lock, omp_test_nest_lock 714
omp_get_wtime 714
omp_get_wtick 715

Notices 717
Trademarks 719

Index 721

viii XL C/C++: Compiler Reference

About this document

This document is a reference for the IBM® XL C/C++ for AIX®, V13.1.3 compiler.
Although it provides information about compiling and linking applications written
in C and C++, it is primarily intended as a reference for compiler command-line
options, pragma directives, predefined macros, built-in functions, environment
variables, error messages, and return codes.

Who should read this document
This document is for experienced C or C++ developers who have some familiarity
with the XL C/C++ compilers or other command-line compilers on AIX operating
systems. It assumes thorough knowledge of the C or C++ programming language
and basic knowledge of operating system commands. Although this information is
intended as a reference guide, programmers new to XL C/C++ can still find
information about the capabilities and features unique to the XL C/C++ compiler.

How to use this document
Unless indicated otherwise, all of the text in this reference pertains to both C and
C++ languages. Where there are differences between languages, these are indicated
through qualifying text and icons, as described in “Conventions” on page x.

Throughout this document, the xlc and xlc++ command invocations are used to
describe the behavior of the compiler. You can, however, substitute other forms of
the compiler invocation command if your particular environment requires it, and
compiler option usage remains the same unless otherwise specified.

While this document covers topics such as configuring the compiler environment,
and compiling and linking C or C++ applications using the XL C/C++ compiler, it
does not include the following topics:
v Compiler installation: see the XL C/C++ Installation Guide.
v The C or C++ programming language: see the XL C/C++ Language Reference for

information about the syntax, semantics, and IBM implementation of the C or
C++ programming language.

v Programming topics: see the XL C/C++ Optimization and Programming Guide for
detailed information about developing applications with XL C/C++, with a
focus on program portability and optimization.

How this document is organized
Chapter 1, “Compiling and linking applications,” on page 1 discusses topics related
to compilation tasks, including invoking the compiler, preprocessor, and linker;
types of input and output files; different methods for setting include file path
names and directory search sequences; different methods for specifying compiler
options and resolving conflicting compiler options; how to reuse GNU C/C++
compiler options through the use of the compiler utilities gxlc and gxlc++; and
compiler listings and messages.

© Copyright IBM Corp. 1996, 2015 ix

Chapter 2, “Configuring compiler defaults,” on page 25 discusses topics related to
setting up default compilation settings, including setting environment variables,
customizing the configuration file, and customizing the gxlc and gxlc++ option
mappings.

Chapter 3, “Tracking and reporting compiler usage,” on page 47 discusses topics
related to tracking compiler utilization. This chapter provides information that
helps you to detect whether compiler utilization exceeds your floating user license
entitlements.

Chapter 4, “Compiler options reference,” on page 77 provides a summary of
options according to their functional category, through which you can look up and
link to options by function. This chapter also includes individual descriptions of
each compiler option sorted alphabetically.

Chapter 5, “Compiler pragmas reference,” on page 401 provides a summary of
pragma directives according to their functional category, which allows you to look
up and link to pragmas by function. This chapter includes individual descriptions
of pragmas sorted alphabetically, including OpenMP and SMP directives.

Chapter 6, “Compiler predefined macros,” on page 483 provides a list of compiler
macros grouped according to their category.

Chapter 7, “Compiler built-in functions,” on page 499 contains individual
descriptions of XL C/C++ built-in functions for Power® architectures, categorized
by their functionality.

Chapter 8, “OpenMP runtime functions for parallel processing,” on page 707
contains individual descriptions of OpenMP runtime library functions for parallel
processing.

Conventions
Typographical conventions

The following table shows the typographical conventions used in the IBM XL
C/C++ for AIX, V13.1.3 information.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable
names, compiler options, and
directives.

The compiler provides basic
invocation commands, xlc and xlC
(xlc++), along with several other
compiler invocation commands to
support various C/C++ language
levels and compilation environments.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

x XL C/C++: Compiler Reference

Table 1. Typographical conventions (continued)

Typeface Indicates Example

monospace Programming keywords and
library functions, compiler builtins,
examples of program code,
command strings, or user-defined
names.

To compile and optimize
myprogram.c, enter: xlc myprogram.c
-O3.

Qualifying elements (icons)

Most features described in this information apply to both C and C++ languages. In
descriptions of language elements where a feature is exclusive to one language, or
where functionality differs between languages, this information uses icons to
delineate segments of text as follows:

Table 2. Qualifying elements

Qualifier/Icon Meaning

C only begins
C

C

C only ends

The text describes a feature that is supported in the C language
only; or describes behavior that is specific to the C language.

C++ only begins
C++

C++

C++ only ends

The text describes a feature that is supported in the C++
language only; or describes behavior that is specific to the C++
language.

IBM extension begins
IBM

IBM

IBM extension ends

The text describes a feature that is an IBM extension to the
standard language specifications.

C11 begins
C11

C11

C11 ends

The text describes a feature that is introduced into standard C
as part of C11.

C++11 begins
C++11

C++11

C++11 ends

The text describes a feature that is introduced into standard
C++ as part of C++11.

Syntax diagrams

Throughout this information, diagrams illustrate XL C/C++ syntax. This section
helps you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

About this document xi

The ►►─── symbol indicates the beginning of a command, directive, or statement.
The ───► symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The ►─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───►◄ symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

►► keyword required_argument ►◄

v Optional items are shown below the main path:

►► keyword
optional_argument

►◄

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

►► keyword required_argument1
required_argument2

►◄

If choosing one of the items is optional, the entire stack is shown below the
main path.

►► keyword
optional_argument1
optional_argument2

►◄

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

►► ▼

,

keyword repeatable_argument ►◄

v The item that is the default is shown above the main path.

►► keyword
default_argument
alternate_argument ►◄

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.
v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Sample syntax diagram

xii XL C/C++: Compiler Reference

The following syntax diagram example shows the syntax for the #pragma
comment directive.

►►
(1) (2) (3) (4) (5) (9) (10)

pragma comment (compiler)
date
timestamp

(6)
copyright
user (7) (8)

, " token_sequence "

►◄

Notes:

1 This is the start of the syntax diagram.

2 The symbol # must appear first.

3 The keyword pragma must appear following the # symbol.

4 The name of the pragma comment must appear following the keyword pragma.

5 An opening parenthesis must be present.

6 The comment type must be entered only as one of the types indicated:
compiler, date, timestamp, copyright, or user.

7 A comma must appear between the comment type copyright or user, and an
optional character string.

8 A character string must follow the comma. The character string must be
enclosed in double quotation marks.

9 A closing parenthesis is required.

10 This is the end of the syntax diagram.
The following examples of the #pragma comment directive are syntactically correct
according to the diagram shown above:

#pragma comment(date)
#pragma comment(user)
#pragma comment(copyright,"This text will appear in the module")

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:
v Enter the keyword EXAMPLE.
v Enter a value for char_constant.
v Enter a value for a or b, but not for both.
v Optionally, enter a value for c or d.
v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.
v Optionally, enter the value of at least one name for name_list. If you enter more

than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

About this document xiii

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

Related information
The following sections provide related information for XL C/C++:

IBM XL C/C++ information
XL C/C++ provides product information in the following formats:
v Quick Start Guide

The Quick Start Guide (quickstart.pdf) is intended to get you started with IBM
XL C/C++ for AIX, V13.1.3. It is located by default in the XL C/C++ directory
and in the \quickstart directory of the installation DVD.

v README files
README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL C/C++ directory and in the root directory of the installation DVD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL C/C++ for AIX, V13.1.3 Installation Guide.

v Online product documentation
The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at http://www.ibm.com/support/knowledgecenter/SSGH3R_13.1.3/
com.ibm.compilers.aix.doc/welcome.html.

v PDF documents
PDF documents are available on the web at http://www.ibm.com/support/
docview.wss?uid=swg27036618.
The following files comprise the full set of XL C/C++ product information:

Table 3. XL C/C++ PDF files

Document title
PDF file
name Description

IBM XL C/C++ for AIX,
V13.1.3 Installation Guide,
SC27-4258-02

install.pdf Contains information for installing XL C/C++
and configuring your environment for basic
compilation and program execution.

Getting Started with IBM
XL C/C++ for AIX,
V13.1.3, SC27-4257-02

getstart.pdf Contains an introduction to the XL C/C++
product, with information about setting up and
configuring your environment, compiling and
linking programs, and troubleshooting
compilation errors.

IBM XL C/C++ for AIX,
V13.1.3 Compiler Reference,
SC27-4259-02

compiler.pdf Contains information about the various
compiler options, pragmas, macros,
environment variables, and built-in functions,
including those used for parallel processing.

IBM XL C/C++ for AIX,
V13.1.3 Language Reference,
SC27-4260-02

langref.pdf Contains information about the C and C++
programming languages, as supported by IBM,
including language extensions for portability
and conformance to nonproprietary standards.

xiv XL C/C++: Compiler Reference

http://www.ibm.com/support/knowledgecenter/SSGH3R_13.1.3/com.ibm.compilers.aix.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGH3R_13.1.3/com.ibm.compilers.aix.doc/welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27036618
http://www.ibm.com/support/docview.wss?uid=swg27036618

Table 3. XL C/C++ PDF files (continued)

Document title
PDF file
name Description

IBM XL C/C++ for AIX,
V13.1.3 Optimization and
Programming Guide,
SC27-4261-02

proguide.pdf Contains information about advanced
programming topics, such as application
porting, interlanguage calls with Fortran code,
library development, application optimization
and parallelization, and the XL C/C++
high-performance libraries.

Standard C++ Library
Reference, SC27-4262-02

standlib.pdf Contains reference information about the
standard C++ runtime libraries and headers.

C/C++ Legacy Class
Libraries Reference,
SC09-7652-00

legacy.pdf Contains reference information about the USL
I/O Stream Library and the Complex
Mathematics Library.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL C/C++, including IBM Redbooks® publications,
white papers, and other articles, is available on the web at http://www.ibm.com/
support/docview.wss?uid=swg27036618.

For more information about C/C++, see the C/C++ café at https://
www.ibm.com/developerworks/community/groups/service/html/
communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3.

Standards and specifications
XL C/C++ is designed to support the following standards and specifications. You
can refer to these standards and specifications for precise definitions of some of the
features found in this information.
v Information Technology - Programming languages - C, ISO/IEC 9899:1990, also

known as C89.
v Information Technology - Programming languages - C, ISO/IEC 9899:1999, also

known as C99.
v Information Technology - Programming languages - C, ISO/IEC 9899:2011, also

known as C11. (Partial support)
v Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also

known as C++98.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2003, also

known as C++03.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2011, also

known as C++11 (Partial support).
v Draft Technical Report on C++ Library Extensions, ISO/IEC DTR 19768. This draft

technical report has been submitted to the C++ standards committee, and is
available at http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/
n1836.pdf.

v AltiVec Technology Programming Interface Manual, Motorola Inc. This specification
for vector data types, to support vector processing technology, is available at
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf.

v Information Technology - Programming Languages - Extension for the programming
language C to support decimal floating-point arithmetic, ISO/IEC WDTR 24732. This

About this document xv

http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27036618
http://www.ibm.com/support/docview.wss?uid=swg27036618
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

draft technical report has been submitted to the C standards committee, and is
available at http://www.open-std.org/JTC1/SC22/WG14/www/docs/
n1176.pdf.

v Decimal Types for C++: Draft 4 http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2006/n1977.html

v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.
v OpenMP Application Program Interface Version 3.1 (full support), and OpenMP

Application Program Interface Version 4.0 (partial support), available at
http://www.openmp.org

Other IBM information
v Parallel Environment for AIX: Operation and Use

v The IBM Systems Information Center, at http://publib.boulder.ibm.com/
infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm,
is a resource for AIX information.
You can find the following books for your specific AIX system:
– AIX Commands Reference, Volumes 1 - 6

– Technical Reference: Base Operating System and Extensions, Volumes 1 & 2

– AIX National Language Support Guide and Reference

– AIX General Programming Concepts: Writing and Debugging Programs

– AIX Assembler Language Reference

Other information
v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

Technical support
Additional technical support is available from the XL C/C++ Support page at
http://www.ibm.com/support/entry/portal/product/rational/xl_c/c++_for_aix.
This page provides a portal with search capabilities to a large selection of
Technotes and other support information.

If you cannot find what you need, you can send an email to
compinfo@ca.ibm.com.

For the latest information about XL C/C++, visit the product information site at
http://www.ibm.com/software/products/us/en/xlcpp-aix.

How to send your comments
Your feedback is important in helping us to provide accurate and high-quality
information. If you have any comments about this information or any other XL
C/C++ information, send your comments to compinfo@ca.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the
version of XL C/C++, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

xvi XL C/C++: Compiler Reference

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1176.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1176.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1977.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1977.html
http://www.openmp.org
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm
http://gcc.gnu.org/onlinedocs
http://www.ibm.com/support/entry/portal/product/rational/xl_c/c++_for_aix
http://www.ibm.com/software/products/us/en/xlcpp-aix

Chapter 1. Compiling and linking applications

By default, when you invoke the XL C/C++ compiler, all of the following phases
of translation are performed:
v Preprocessing of program source
v Compiling and assembling into object files
v Linking into an executable

These different translation phases are actually performed by separate executables,
which are referred to as compiler components. However, you can use compiler
options to perform only certain phases, such as preprocessing, or assembling. You
can then reinvoke the compiler to resume processing of the intermediate output to
a final executable.

The following sections describe how to invoke the XL C/C++ compiler to
preprocess, compile, and link source files and libraries:
v “Invoking the compiler”
v “Types of input files” on page 3
v “Types of output files” on page 4
v “Specifying compiler options” on page 5
v “Reusing GNU C/C++ compiler options with gxlc and gxlc++” on page 11
v “Preprocessing” on page 12
v “Linking” on page 14
v “Compiler messages and listings” on page 18

Invoking the compiler
Different forms of the XL C/C++ compiler invocation commands support various
levels of the C and C++ languages. In most cases, you should use the xlc
command to compile your C source files, and the xlc++ command to compile C++
source files. Use xlc++ to link if you have both C and C++ object files.

You can use other forms of the command if your particular environment requires
it. Table 4 lists the different basic commands, with the special versions of each
basic command. Special commands are described in Table 5 on page 2.

Note: For each invocation command, the compiler configuration file defines
default option settings and, in some cases, macros; for information about the
defaults implied by a particular invocation, see the /opt/IBM/xlc/13.1.3/etc/
xlc.cfg file for your system.

Table 4. Compiler invocations

Basic invocations Description
Equivalent special
invocations

xlc Invokes the compiler for C source files. This command
supports all of the ISO C99 standard features, and most
IBM language extensions. This invocation is recommended
for all applications.

xlc_r, xlc_r7, xlc128,
xlc128_r, xlc128_r4,
xlc128_r7

c99 Invokes the compiler for C source files. This command
supports all ISO C99 language features, but does not
support IBM language extensions. Use this invocation for
strict conformance to the C99 standard.

c99_r, c99_r4, c99_r7,
c99_128, c99_128_r,
c99_128_r4, c99_128_r7

© Copyright IBM Corp. 1996, 2015 1

Table 4. Compiler invocations (continued)

Basic invocations Description
Equivalent special
invocations

c89 Invokes the compiler for C source files. This command
supports all ANSI C89 language features, but does not
support IBM language extensions. Use this invocation for
strict conformance to the C89 standard.

c89_r, c89_r4, c89_r7,
c89_128, c89_128_r,
c89_128_r4, c89_128_r7

cc Invokes the compiler for C source files. This command
supports pre-ANSI C, and many common language
extensions. You can use this command to compile legacy
code that does not conform to standard C.

cc_r, cc_r4, cc_r7, cc128,
cc128_r, cc128_r4, cc128_r7

gxlc Invokes the compiler for C source files. This command
accepts many common GNU C options, maps them to their
XL C option equivalents, and then invokes xlc. For more
information, see “Reusing GNU C/C++ compiler options
with gxlc and gxlc++” on page 11.

xlc++, xlC Invokes the compiler for C++ source files. If any of your
source files are C++, you must use this invocation to link
with the correct runtime libraries.

Files with .c suffixes, assuming you have not used the -+
compiler option, are compiled as C language source code.

xlc++_r, xlc++_r4, xlc++_r7,
xlc++128, xlc++128_r,
xlc++128_r4, xlc++128_r7,
xlC_r, xlC_r4, xlC_r7,
xlC128, xlC128_r, xlC128_r4,
xlC128_r7

xlc++core, xlCcore Invokes the compiler as described above for xlc++ and xlC,
but links only to the core of the runtime library. Use this
invocation if you want to link your application to a runtime
library other than that supplied with XL C++.

xlc++core_r, xlc++core_r7,
xlc++core128,
xlc++core128_r,
xlc++core128_r7, xlCcore_r,
xlCcore_r7, xlC128core,
xlC128core_r, xlC128core_r7

gxlc++, gxlC Invokes the compiler for C++ files. This command accepts
many common GNU C/C++ options, maps them to their
XL C/C++ option equivalents, and then invokes xlc++. For
more information, see “Reusing GNU C/C++ compiler
options with gxlc and gxlc++” on page 11.

Table 5. Suffixes for special invocations

128-suffixed
invocations

All 128-suffixed invocation commands are functionally similar to their corresponding base
compiler invocations. They specify the -qldbl128 option, which increases the length of long
double types in your program from 64 to 128 bits. They also link with the 128-bit versions of
the C and C++ runtime libraries.

_r-suffixed
invocations

All _r-suffixed invocations allow for threadsafe compilation and you can use them to link
the programs that use multithreading. Use these commands if you want to create threaded
applications.

The _r7 invocations are provided to help migrate programs based on Posix Draft 7 to Posix
Draft 10. The _r4 invocations should be used for DCE threaded applications. For more
information about DCE, see What is DCE? in the CICS® Transaction Server for z/OS®

Information Center.

Related information
v “-qlanglvl” on page 224

2 XL C/C++: Compiler Reference

http://publib.boulder.ibm.com/infocenter/cicsts/v2r3/index.jsp?topic=/com.ibm.cics.ts23.doc/dfhtm/dfhtm0a.htm
http://publib.boulder.ibm.com/infocenter/cicsts/v2r3/index.jsp?topic=/com.ibm.cics.ts23.doc/prod/home.html
http://publib.boulder.ibm.com/infocenter/cicsts/v2r3/index.jsp?topic=/com.ibm.cics.ts23.doc/prod/home.html

Command-line syntax
You invoke the compiler using the following syntax, where invocation can be
replaced with any valid XL C/C++ invocation command listed in Table 4 on page
1:

►► invocation ▼ input_files
command_line_options

►◄

The parameters of the compiler invocation command can be the names of input
files, compiler options, and linker options.

Your program can consist of several input files. All of these source files can be
compiled at once using only one invocation of the compiler. Although more than
one source file can be compiled using a single invocation of the compiler, you can
specify only one set of compiler options on the command line per invocation. Each
distinct set of command-line compiler options that you want to specify requires a
separate invocation.

Compiler options perform a wide variety of functions, such as setting compiler
characteristics, describing the object code and compiler output to be produced, and
performing some preprocessor functions.

By default, the invocation command calls both the compiler and the linker. It passes
linker options to the linker. Consequently, the invocation commands also accept all
linker options. To compile without linking, use the -c compiler option. The -c
option stops the compiler after compilation is completed and produces as output,
an object file file_name.o for each file_name.nnn input source file, unless you use the
-o option to specify a different object file name. The linker is not invoked. You can
link the object files later using the same invocation command, specifying the object
files without the -c option.

Related information
v “Types of input files”

Types of input files
The compiler processes the source files in the order in which they are displayed. If
the compiler cannot find a specified source file, it produces an error message and
the compiler proceeds to the next specified file. However, the linker does not run
and temporary object files are removed.

By default, the compiler preprocesses and compiles all the specified source files.
Although you usually want to use this default, you can use the compiler to
preprocess the source file without compiling; see “Preprocessing” on page 12 for
details.

You can input the following types of files to the XL C/C++ compiler:

C and C++ source files
These are files containing C or C++ source code.

To use the C compiler to compile a C language source file, the source file
must have a .c (lowercase c) suffix, unless you compile with the
-qsourcetype=c option.

Chapter 1. Compiling and linking applications 3

To use the C++ compiler, the source file must have a .C (uppercase C), .cc,
.cp, .cpp, .cxx, or .c++ suffix, unless you compile with the -+ or
-qsourcetype=c++ option.

Preprocessed source files
Preprocessed source files have a .i suffix, for example, file_name.i. The
compiler sends the preprocessed source file, file_name.i, to the compiler
where it is preprocessed again in the same way as a .c or .C file.
Preprocessed files are useful for checking macros and preprocessor
directives.

Object files
Object files must have a .o suffix, for example, file_name.o. Object files,
library files, and unstripped executable files serve as input to the linker.
After compilation, the linker links all of the specified object files to create
an executable file.

Assembler files
Assembler files must have a .s suffix, for example, file_name.s, unless you
compile with the -qsourcetype=assembler option. Assembler files are
assembled to create an object file.

Unpreprocessed assembler files
Unpreprocessed assembler files must have a .S suffix, for example,
file_name.S, unless you compile with the -qsourcetype=assembler-with-
cpp option. The compiler compiles all source files with a .S extension as if
they are assembler language source files that need preprocessing.

Shared library files
Shared library files generally have a .a suffix, for example, file_name.a,
but they can also have a .so suffix, for example, file_name.so.

Unstripped executable files
Extended Common Object File Format (XCOFF) files that have not been
stripped with the operating system strip command can be used as input to
the compiler. See the strip command in the AIX Commands Reference and
the description of a.out file format in the AIX Files Reference for more
information.

Related information:
“Input control” on page 78

Types of output files
You can specify the following types of output files when invoking the XL C/C++
compiler:

Executable files
By default, executable files are named a.out. To name the executable file
something else, use the -o file_name option with the invocation command.
This option creates an executable file with the name you specify as
file_name. The name you specify can be a relative or absolute path name for
the executable file.

The format of the a.out file is described in the AIX Files Reference.

Object files
If you specify the -c option, an output object file, file_name.o, is produced
for each input file. The linker is not invoked, and the object files are placed
in your current directory. All processing stops at the completion of the

4 XL C/C++: Compiler Reference

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.files/doc/aixfiles/XCOFF.htm

compilation. The compiler gives object files a .o suffix, for example,
file_name.o, unless you specify the -o file_name option, giving a different
suffix or no suffix at all.

You can link the object files later into a single executable file by invoking
the compiler.

Shared library files
If you specify the -qmkshrobj option, the compiler generates a single
shared library file for all input files. The compiler names the output file
shr.o, unless you specify the -o file_name option, and give the file a .so
suffix.

Assembler files
If you specify the -S option, an assembler file, file_name.s, is produced for
each input file.

You can then assemble the assembler files into object files and link the
object files by reinvoking the compiler.

Preprocessed source files
If you specify the -P option, a preprocessed source file, file_name.i, is
produced for each input file.

You can then compile the preprocessed files into object files and link the
object files by reinvoking the compiler.

Listing files
If you specify any of the listing-related options, such as -qlist or -qsource,
a compiler listing file, file_name.lst, is produced for each input file. The
listing file is placed in your current directory.

Target files
If you specify the -qmakedep or -M option, a target file suitable for
inclusion in a makefile, file_name.u is produced for each input file. You can
use the -MF option to specify the name or location for the dependency
output files that are generated by the -qmakedep or -M option.

Related information:
“Output control” on page 77

Specifying compiler options
Compiler options perform a wide variety of functions, such as setting compiler
characteristics, describing the object code and compiler output to be produced, and
performing some preprocessor functions. You can specify compiler options in one
or more of the following ways:
v On the command line
v In a custom configuration file, which is a file with a .cfg extension
v In your source program
v As system environment variables
v In a makefile

The compiler assumes default settings for most compiler options not explicitly set
by you in the ways listed above.

When specifying compiler options, it is possible for option conflicts and
incompatibilities to occur. The XL C/C++ compiler resolves most of these conflicts
and incompatibilities in a consistent fashion, as follows:

Chapter 1. Compiling and linking applications 5

In most cases, the compiler uses the following order in resolving conflicting or
incompatible options:
1. Pragma statements in source code override compiler options specified on the

command line.
2. Compiler options specified on the command line override compiler options

specified as environment variables or in a configuration file. If conflicting or
incompatible compiler options are specified in the same command line
compiler invocation, the subsequent option in the invocation takes precedence.

3. Compiler options specified as environment variables override compiler options
specified in a configuration file.

4. Compiler options specified in a configuration file, command line or source
program override compiler default settings.

Option conflicts that do not follow this priority sequence are described in
“Resolving conflicting compiler options” on page 9.

Specifying compiler options on the command line
Most options specified on the command line override both the default settings of
the option and options set in the configuration file. Similarly, most options
specified on the command line are in turn overridden by pragma directives, which
provide you a means of setting compiler options right in the source file. Options
that do not follow this scheme are listed in “Resolving conflicting compiler
options” on page 9.

There are two kinds of command-line options:
v -qoption_keyword (compiler-specific)
v Flag options

-q options

►►

▼

-q option_keyword
:

= suboption

►◄

Command-line options in the -qoption_keyword format are similar to on and off
switches. For most -q options, if a given option is specified more than once, the last
appearance of that option on the command line is the one used by the compiler.
For example, -qsource turns on the source option to produce a compiler listing,
and -qnosource turns off the source option so no source listing is produced. For
example:
xlc -qnosource MyFirstProg.c -qsource MyNewProg.c

would produce a source listing for both MyNewProg.c and MyFirstProg.c because
the last source option specified (-qsource) takes precedence.

You can have multiple -qoption_keyword instances in the same command line, but
they must be separated by blanks. Option keywords can appear in either
uppercase or lowercase, but you must specify the -q in lowercase. You can specify
any -qoption_keyword before or after the file name. For example:
xlc -qLIST -qfloat=nomaf file.c
xlc file.c -qxref -qsource

6 XL C/C++: Compiler Reference

You can also abbreviate many compiler options. For example, specifying -qopt is
equivalent to specifying -qoptimize.

Some options have suboptions. You specify these with an equal sign following the
-qoption. If the option permits more than one suboption, a colon (:) must separate
each suboption from the next. For example:
xlc -qflag=w:e -qattr=full file.c

compiles the C source file file.c using the option -qflag to specify the severity
level of messages to be reported. The -qflag suboption w (warning) sets the
minimum level of severity to be reported on the listing, and suboption e (error)
sets the minimum level of severity to be reported on the terminal. The -qattr with
suboption full will produce an attribute listing of all identifiers in the program.

Flag options
XL C/C++ supports a number of common conventional flag options used on UNIX
systems. Lowercase flags are different from their corresponding uppercase flags.
For example, -c and -C are two different compiler options: -c specifies that the
compiler should only preprocess and compile and not invoke the linker, while -C
can be used with -P or -E to specify that user comments should be preserved.

XL C/C++ also supports flags directed to other programming tools and utilities
(for example, the ld command). The compiler passes on those flags directed to ld
at link time.

Some flag options have arguments that form part of the flag. For example:
xlc stem.c -F/home/tools/test3/new.cfg:xlc

where new.cfg is a custom configuration file.

You can specify flags that do not take arguments in one string. For example:
xlc -Ocv file.c

has the same effect as:
xlc -O -c -v file.c

and compiles the C source file file.c with optimization (-O), reports on compiler
progress (-v), and does not invoke the linker (-c).

A flag option that takes arguments can be specified as part of a single string, but
you can only use one flag that takes arguments, and it must be the last option
specified. For example, you can use the -o flag (to specify a name for the
executable file) together with other flags, only if the -o option and its argument are
specified last. For example:
xlc -Ovo test test.c

has the same effect as:
xlc -O -v -otest test.c

Most flag options are a single letter, but some are two letters. Note that specifying
-pg (extended profiling) is not the same as specifying -p -g (-p for profiling, and -g
for generating debug information). Take care not to specify two or more options in
a single string if there is another option that uses that letter combination.

Chapter 1. Compiling and linking applications 7

Specifying compiler options in a configuration file
The default configuration file (/opt/IBM/xlc/13.1.3/etc/xlc.cfg) defines values and
compiler options for the compiler. The compiler refers to this file when compiling
C or C++ programs.

The configuration file is a plain text file. You can edit this file, or create an
additional customized configuration file to support specific compilation
requirements. For more information, see “Using custom compiler configuration
files” on page 40.

Specifying compiler options in program source files
You can specify some compiler options within your program source by using
pragma directives. A pragma is an implementation-defined instruction to the
compiler. For those options that have equivalent pragma directives, you can have
several ways to specify the syntax of the pragmas:
v Using #pragma options option_name syntax

You can use command-line options with the #pragma options syntax, which
takes the same name as the option, and suboptions with a syntax identical to
that of the option. For example, if the command-line option is:
-qhalt=w

The pragma form is:
#pragma options halt=w

The descriptions for each individual option indicates whether this form of the
pragma is supported. For details, see “#pragma options” on page 439.

v Using #pragma name syntax
Some options also have corresponding pragma directives that use a
pragma-specific syntax, which may include additional or slightly different
suboptions. Throughout the section “Individual option descriptions” on page 97,
each option description indicates whether this form of the pragma is supported,
and the syntax is provided.

v Using the standard C99 _Pragma operator
For options that support either forms of the pragma directives listed above, you
can also use the C99 _Pragma operator syntax in both C and C++.

Complete details on pragma syntax are provided in “Pragma directive syntax” on
page 401.

Other pragmas do not have equivalent command-line options; these are described
in detail throughout Chapter 5, “Compiler pragmas reference,” on page 401.

Options specified with pragma directives in program source files override all other
option settings, except other pragma directives. The effect of specifying the same
pragma directive more than once varies. See the description for each pragma for
specific information.

Pragma settings can carry over into included files. To avoid potential unwanted
side effects from pragma settings, you should consider resetting pragma settings at
the point in your program source where the pragma-defined behavior is no longer
required. Some pragma options offer reset or pop suboptions to help you do this.
These suboptions are listed in the detailed descriptions of the pragmas to which
they apply.

8 XL C/C++: Compiler Reference

Resolving conflicting compiler options
In general, if more than one variation of the same option is specified (with the
exception of -qxref and -qattr), the compiler uses the setting of the last one
specified. Compiler options specified on the command line must appear in the
order you want the compiler to process them. However, some options have
cumulative effects when they are specified more than once; examples are the
-Idirectory and -Ldirectory options.

When options such as -qcheck, -qfloat, and -qstrict are specified with suboptions
for multiple times, each suboption overrides previous specifications of that
suboption, but different suboptions are cumulative.

In most cases, the compiler uses the following order in resolving conflicting or
incompatible options:
1. Pragma statements in source code override compiler options specified on the

command line.
2. Compiler options specified on the command line override compiler options

specified as environment variables or in a configuration file. If conflicting or
incompatible compiler options are specified on the command line, the option
appearing later on the command line takes precedence.

3. Compiler options specified as environment variables override compiler options
specified in a configuration file.

4. Compiler options specified in a configuration file override compiler default
settings.

Not all option conflicts are resolved using the preceding rules. The following table
summarizes exceptions and how the compiler handles conflicts between them.
Rules for resolving conflicts between compiler mode and architecture-specific
options are discussed in “Specifying compiler options for architecture-specific
compilation” on page 10.

Option Conflicting options Resolution

-qalias=allptrs -qalias=noansi -qalias=noansi

-qalias=typeptr -qalias=noansi -qalias=noansi

-qhalt Multiple severities specified by -qhalt Lowest severity specified

-qnoprint -qxref, -qattr, -qsource, -qlistopt, -qlist -qnoprint

-qfloat=rsqrt -qnoignerrno Last option specified

-qxref -qxref=full -qxref=full

-qattr -qattr=full -qattr=full

-qfloat=hsflt -qfloat=spnans -qfloat=hsflt

-qfloat=hssngl -qfloat=spnans -qfloat=hssngl

-E -P, -S -E

-P -c, -o, -S -P

-# -v -#

-F -B, -t, -W, -qpath -B, -t, -W, -qpath

-qpath -B, -t -qpath

-S -c -S

-qnostdinc -qc_stdinc, -qcpp_stdinc -qnostdinc

Chapter 1. Compiling and linking applications 9

Specifying compiler options for architecture-specific
compilation

You can use the -q32, -q64, -qarch, and -qtune compiler options to optimize the
output of the compiler to suit:
v The broadest possible selection of target processors
v A range of processors within a given processor architecture family
v A single specific processor

Generally speaking, the options do the following:
v -q32 selects 32-bit execution mode.
v -q64 selects 64-bit execution mode.
v -qarch selects the general family processor architecture for which instruction

code should be generated. Certain -qarch settings produce code that will run
only on systems that support all of the instructions generated by the compiler in
response to a chosen -qarch setting.

v -qtune selects the specific processor for which compiler output is optimized.
Some -qtune settings can also be specified as -qarch options, in which case they
do not also need to be specified as a -qtune option. The -qtune option influences
only the performance of the code when running on a particular system but does
not determine where the code will run.

The compiler evaluates compiler options in the following order, with the last
allowable one found determining the compiler mode:
1. Internal default (32-bit mode)
2. OBJECT_MODE environment variable setting
3. Configuration file settings
4. Command line compiler options (-q32, -q64, -qarch, and -qtune)
5. Source file statements (#pragma options tune=suboption)

The compilation mode actually used by the compiler depends on a combination of
the settings of the -q32, -q64, -qarch, and -qtune compiler options, subject to the
following conditions:
v Compiler mode is set according to the last-found instance of the -q32 or -q64

compiler options. If neither of these compiler options is set, the compiler mode
is set by the value of the OBJECT_MODE environment variable. If the
OBJECT_MODE environment variable is also not set, the compiler assumes
32-bit compilation mode.

v Architecture target is set according to the last-found instance of the -qarch
compiler option, provided that the specified -qarch setting is compatible with
the compiler mode setting. If the -qarch option is not set, the compiler sets -qarch
to the appropriate default based on the effective compiler mode setting.

v Tuning of the architecture target is set according to the last-found instance of the
-qtune compiler option, provided that the -qtune setting is compatible with the
architecture target and compiler mode settings. If the -qtune option is not set, the
compiler assumes a default -qtune setting according to the -qarch setting in use.
If -qarch is not specified, the compiler sets -qtune to the appropriate default
based on the effective -qarch as selected by default based on the effective
compiler mode setting.

Allowable combinations of these options are found in “-qtune” on page 371.

10 XL C/C++: Compiler Reference

The following list describes possible option conflicts and compiler resolution of
these conflicts:
v -q32 or -q64 setting is incompatible with user-selected -qarch option.

Resolution: -q32 or -q64 setting overrides the -qarch option; compiler issues a
warning message, sets -qarch to its default setting, and sets the -qtune option
accordingly to its default value.

v -qarch option is incompatible with user-selected -qtune option.

Resolution: Compiler issues a warning message, and sets -qtune to the -qarch
setting's default -qtune value.

v Selected -qarch or -qtune options are not known to the compiler.

Resolution: Compiler issues a warning message, sets -qarch and -qtune to their
default settings. The compiler mode (32-bit or 64-bit) is determined by the
OBJECT_MODE environment variable or -q32 or -q64 compiler settings.

Related information
v “-qarch” on page 109
v “-qtune” on page 371
v “-q32, -q64” on page 100

Reusing GNU C/C++ compiler options with gxlc and gxlc++
Each of the gxlc and gxlc++ utilities accepts GNU C or C++ compiler options and
translates them into comparable XL C/C++ options. Both utilities use the XL
C/C++ options to create an xlc or xlc++ invocation command, which they use to
invoke the compiler. These utilities are provided to facilitate the reuse of make files
created for applications previously developed with GNU C/C++. However, to fully
exploit the capabilities of XL C/C++, it is recommended that you use the XL
C/C++ invocation commands and their associated options.

The actions of gxlc and gxlc++ are controlled by the configuration file
/opt/IBM/xlc/13.1.3/etc/gxlc.cfg. The GNU C/C++ options that have an XL C or
XL C++ counterpart are shown in this file. Not every GNU option has a
corresponding XL C/C++ option. gxlc and gxlc++ return warnings for input
options that were not translated.

The gxlc and gxlc++ option mappings are modifiable. For information on adding
to or editing the gxlc or gxlc++ configuration file, see “Configuring the gxlc or
gxlc++ option mapping” on page 44.

gxlc or gxlc++ syntax
The following diagram shows the gxlc or gxlc++ syntax:

►► gxlc filename
gxlc++ -v -Wx, xlc_or_xlc++_options -gcc_or_g++_options
gxlC -vv

►◄

where:

filename
Is the name of the file to be compiled.

Chapter 1. Compiling and linking applications 11

-v Verifies the command that is used to invoke XL C/C++. The utility
displays the XL C/C++ invocation command that it has created, before
using it to invoke the compiler.

-vv Runs a simulation. The utility displays the XL C/C++ invocation command
that it has created, but does not invoke the compiler.

-Wx, xlc_or_xlc++_ options
Sends the given XL C/C++ options directly to the xlc or xlc++ invocation
command. The utility adds the given options to the XL C/C++ invocation
it is creating, without attempting to translate them. Use this option with
known XL C/C++ options to improve the performance of the utility.
Multiple xlc_or_xlc++_options are delimited by a comma.

-gcc_or_g++_options
The GNU C/C++ options that are translated to XL C/C++ options. The
utility emits a warning for any option it cannot translate. The GNU C/C++
options that are currently recognized by gxlc or gxlc++ are in the
configuration file gxlc.cfg. Multiple -gcc_or_g++_options are delimited by
the space character.

Examples

To use the GCC -fstrict-aliasing option to compile the C version of the Hello
World program, you can use:
gxlc -fstrict-aliasing hello.c

which translates into:
xlc -qalias=ansi hello.c

This command is then used to invoke the XL C compiler.

Related information
v “Configuring the gxlc or gxlc++ option mapping” on page 44

Preprocessing
Preprocessing manipulates the text of a source file, usually as a first phase of
translation that is initiated by a compiler invocation. Common tasks accomplished
by preprocessing are macro substitution, testing for conditional compilation
directives, and file inclusion.

You can invoke the preprocessor separately to process text without compiling. The
output is an intermediate file, which can be input for subsequent translation.
Preprocessing without compilation can be useful as a debugging aid because it
provides a way to see the result of include directives, conditional compilation
directives, and complex macro expansions.

The following table lists the options that direct the operation of the preprocessor.

Option Description

“-E” on page 146 Preprocesses the source files and writes the output to standard output.
By default, #line directives are generated.

“-P” on page 293 Preprocesses the source files and creates an intermediary file with a .i
file name suffix for each source file. By default, #line directives are
not generated.

12 XL C/C++: Compiler Reference

Option Description

“-qppline” on page
305

Toggles on and off the generation of #line directives for the -E and -P
options.

“-C, -C!” on page
122

Preserves comments in preprocessed output.

“-D” on page 136 Defines a macro name from the command line, as if in a #define
directive.

“-qmakedep, -M”
on page 265

Produces the dependency files that are used by the make tool for each
source file.

“-U” on page 376 Undefines a macro name defined by the compiler or by the -D option.

“-qshowmacros”
on page 329

Emits macro definitions to preprocessed output.

Note:

1. For details about the option, see the GNU Compiler Collection online documentation at
http://gcc.gnu.org/onlinedocs/.

Directory search sequence for included files
The XL C/C++ compiler supports the following types of included files:
v Header files supplied by the compiler (referred to throughout this document as

XL C/C++ headers)
v Header files mandated by the C and C++ standards (referred to throughout this

document as system headers)
v Header files supplied by the operating system (also referred to throughout this

document as system headers)
v User-defined header files

You can use any of the following methods to include any type of header file:
v Use the standard #include <file_name> preprocessor directive in the including

source file.
v Use the standard #include "file_name" preprocessor directive in the including

source file.
v Use the -qinclude compiler option.

If you specify the header file using a full (absolute) path name, you can use these
methods interchangeably, regardless of the type of header file you want to include.
However, if you specify the header file using a relative path name, the compiler
uses a different directory search order for locating the file depending on the
method used to include the file.

Furthermore, the -qidirfirst and -qstdinc compiler options can affect this search
order. The following summarizes the search order used by the compiler to locate
header files depending on the mechanism used to include the files and on the
compiler options that are in effect:
1. Header files included with -qinclude only: The compiler searches the current

(working) directory from which the compiler is invoked.1

2. Header files included with -qinclude or #include "file_name": The compiler
searches the directory in which the source file is located.1

3. All header files: The compiler searches each directory specified by the -I
compiler option, in the order that it displays on the command line.

Chapter 1. Compiling and linking applications 13

http://gcc.gnu.org/onlinedocs/

4. All header files: C The compiler searches the standard directory for the
XL C headers. The default directory for these headers is specified in the
compiler configuration file. This is normally /opt/IBM/xlc/13.1.3/include. But
the search path can be changed with -qc_stdinc compiler option. C

C++ The compiler searches the standard directory for the XL C++ headers.
The default directory for these headers is specified in the compiler
configuration file. This is normally /opt/IBM/xlC/13.1.3/include/. But the
search path can be changed with -qcpp_stdinc compiler option. C++

5. All header files: The compiler searches the standard directory for the system
headers. The default directory for these headers is specified in the compiler
configuration file. This is normally /usr/include/. But the search path can be
changed with C -qc_stdinc C or C++ -qcpp_stdinc C++ .

Note:

1. If the -qidirfirst compiler option is in effect, step 3 is performed before steps 1
and 2.

2. If the -qnostdinc compiler option is in effect, steps 4 and 5 are omitted.

Related information
v “-I” on page 185
v “-qc_stdinc (C only)” on page 134
v “-qcpp_stdinc (C++ only)” on page 135
v “-qidirfirst” on page 186
v “-qinclude” on page 189
v “-qstdinc” on page 346

Linking
The linker links specified object files to create one executable file. Invoking the
compiler with one of the invocation commands automatically calls the linker
unless you specify one of the following compiler options:
v -c

v -E

v -P

v -S

v -qsyntaxonly

v -#

v -qhelp

v -qversion

Input files
Object files, unstripped executable files, and library files serve as input to
the linker. Object files must have a .o suffix, for example, filename.o.
Library file names have a .a or .so suffix, for example, filename.a, or
filename.so..

Output files
The linker generates an executable file and places it in your current
directory. The default name for an executable file is a.out. To name the
executable file explicitly, use the -o file_name option with the compiler
invocation command, where file_name is the name you want to give to the
executable file. For example, to compile myfile.c and generate an
executable file called myfile, enter:
xlc myfile.c -o myfile

14 XL C/C++: Compiler Reference

If you use the -qmkshrobj option to create a shared library, the default
name of the shared object created is shr.o. You can use the -o option to
rename the file and give it a .so suffix.

You can invoke the linker explicitly with the ld command. However, the compiler
invocation commands set several linker options, and link some standard files into
the executable output by default. In most cases, it is better to use one of the
compiler invocation commands to link your object files. For a complete list of
options available for linking, see “Linking” on page 94.

Related information
v “-qmkshrobj” on page 272

Order of linking
The compiler links libraries in the following order:
1. System startup libraries
2. User .o files and libraries
3. XL C/C++ libraries
4. C++ standard libraries
5. C standard libraries

Related information
v “Linking” on page 94
v “Redistributable libraries”
v ld in the AIX Commands Reference, Volume 5: s through u

Redistributable libraries
If you build your application using XL C/C++, it might use one or more of the
following redistributable libraries. If you ship the application, ensure that the users
of your application have the filesets that contain the libraries. To make sure the
required libraries are available to the users of your application, take one of the
following actions:
v Ship the filesets that contain the redistributable libraries with your application.

The filesets are stored under the runtime/ directory on the installation CD.
v Direct the users of your application to download the appropriate runtime

libraries from the Latest updates for supported IBM C and C++ compilers link from
the XL C/C++ support website at http://www.ibm.com/support/entry/portal/
product/rational/xl_c/c++_for_aix.

For information about the licensing requirements related to the distribution of
these filesets, see the LicenseAgreement.pdf file in the installed compiler package.

Table 6. Redistributable libraries

Fileset Libraries (and default installation path) Description

xlC.rte /usr/lpp/xlC/lib/libibmcls.a
/usr/lpp/xlC/lib/libibmuis.a

XL C++ runtime libraries

xlC.aix61.rte /usr/lpp/xlC/lib/aix61/libC.a
/usr/lpp/xlC/lib/aix61/libC128.a
/usr/lpp/xlC/lib/profiled/aix61/libC.a
/usr/lpp/xlC/lib/profiled/aix61/libC128.a

XL C++ runtime environment for
AIX 6.1, AIX 7.1, and AIX 7.2
libraries

xlC.msg.en_US.rte /usr/lib/nls/msg/en_US/ibmcl.cat XL C++ runtime messages
(English)

Chapter 1. Compiling and linking applications 15

http://www.ibm.com/support/entry/portal/product/rational/xl_c/c++_for_aix
http://www.ibm.com/support/entry/portal/product/rational/xl_c/c++_for_aix

Table 6. Redistributable libraries (continued)

Fileset Libraries (and default installation path) Description

xlC.msg.ja_JP.rte /usr/lib/nls/msg/ja_JP/ibmcl.cat XL C++ runtime messages
(Japanese, IBM-eucJP)

xlC.msg.Ja_JP.rte /usr/lib/nls/msg/Ja_JP/ibmcl.cat XL C++ runtime messages
(Japanese, IBM-943)

xlsmp.rte /usr/include/omp.h
/usr/lpp/xlsmp/default_msg/smprt.cat

SMP runtime environment

xlsmp.aix61.rte /usr/lpp/xlsmp/aix61/libxlsmp.a
/usr/lpp/xlsmp/aix61/libxlomp_ser.a

SMP runtime libraries for AIX 6.1,
AIX 7.1, and AIX 7.2

xlsmp.msg.en_US.rte /usr/lib/nls/msg/en_US/smprt.cat SMP runtime messages (English,
ISO8859-1)

xlsmp.msg.EN_US.rte /usr/lib/nls/msg/EN_US/smprt.cat SMP runtime messages (English,
UTF-8)

xlsmp.msg.ja_JP.rte /usr/lib/nls/msg/ja_JP/smprt.cat SMP runtime messages (Japanese,
IBM-eucJP)

xlsmp.msg.Ja_JP.rte /usr/lib/nls/msg/Ja_JP/smprt.cat SMP runtime messages (Japanese,
IBM-943)

xlsmp.msg.JA_JP.rte /usr/lib/nls/msg/JA_JP/smprt.cat SMP runtime messages (Japanese,
UTF-8)

xlsmp.msg.zh_CN.rte /usr/lib/nls/msg/zh_CN/smprt.cat SMP runtime messages (Chinese,
IBM-eucCN)

xlsmp.msg.ZH_CN.rte /usr/lib/nls/msg/ZH_CN/smprt.cat SMP runtime messages (Chinese,
UTF-8)

xlsmp.msg.Zh_CN.rte /usr/lib/nls/msg/Zh_CN/smprt.cat SMP runtime messages (Chinese,
GBK)

xlccmp.13.1.3.lib /opt/IBM/xlc/13.1.3/lib/aix61/libxl.a
/opt/IBM/xlc/13.1.3/lib/aix61/libxlopt.a

XL C libraries for AIX 6.1, AIX 7.1,
and AIX 7.2

xlCcmp.13.1.3.lib /opt/IBM/xlC/13.1.3/lib/libC.a
/opt/IBM/xlC/13.1.3/lib/libC_r.a
/opt/IBM/xlC/13.1.3/lib/libC128.a
/opt/IBM/xlC/13.1.3/lib/libC128_r.a
/opt/IBM/xlC/13.1.3/lib/profiled/libC.a
/opt/IBM/xlC/13.1.3/lib/profiled/libC_r.a
/opt/IBM/xlC/13.1.3/lib/profiled/libC128.a
/opt/IBM/xlC/13.1.3/lib/profiled/libC128_r.a
/opt/IBM/xlC/13.1.3/lib/aix61/libhC.a
/opt/IBM/xlC/13.1.3/lib/aix61/libhC_r.a
/opt/IBM/xlC/13.1.3/lib/profiled/aix61/libhC.a
/opt/IBM/xlC/13.1.3/lib/profiled/aix61/libhC_r.a

XL C++ compiler application
runtime libraries

xlCcmp.13.1.3.tools /opt/IBM/xlC/13.1.3/bin/c++filt
/opt/IBM/xlC/13.1.3/bin/linkxlC
/opt/IBM/xlC/13.1.3/bin/makeC++SharedLib
/opt/IBM/xlC/13.1.3/exe/aix61/munch

XL C++ utilities

16 XL C/C++: Compiler Reference

Table 6. Redistributable libraries (continued)

Fileset Libraries (and default installation path) Description

memdbg.adt /usr/vac/lib/libhm.a
/usr/vac/lib/libhm_r.a
/usr/vac/lib/libhmd.a
/usr/vac/lib/libhmd_r.a
/usr/vac/lib/libhmu.a
/usr/vac/lib/libhmu_r.a
/usr/vac/lib/libhu.a
/usr/vac/lib/libhu_r.a
/usr/vac/lib/profiled/libhm.a
/usr/vac/lib/profiled/libhm_r.a
/usr/vac/lib/profiled/libhmd.a
/usr/vac/lib/profiled/libhmd_r.a
/usr/vac/lib/profiled/libhmu.a
/usr/vac/lib/profiled/libhmu_r.a
/usr/vac/lib/profiled/libhu.a
/usr/vac/lib/profiled/libhu_r.a

User heap/memory debug toolkit

Compatibility with earlier versions
This section describes issues about compatibility with earlier versions and their
workarounds.

Compiler option compatibility issues

In IBM XL C/C++ for AIX, V13.1.3, the implementation of the threadprivate data,
that is, OpenMP threadprivate variable, has been improved. The operating system
thread local storage is used instead of the runtime implementation. The new
implementation might improve performance on some applications.

If you plan to mix the object files .o that you have compiled with levels prior to
11.1 with the object files that you compiled with IBM XL C/C++ for AIX, V13.1.3,
and the same OpenMP threadprivate variables are referenced in both old and new
object files, different implementations might cause incompatibility issues. A link
error, a compile time error or other undefined behaviors might occur. To support
compatibility with earlier versions, you can use the -qsmp=noostls suboption to
switch back to the old implementation. You can recompile the entire program with
the default suboption -qsmp=ostls to get the benefit of the new implementation.

If you are not sure whether the object files you have compiled with levels prior to
11.1 contain any old implementation, you can use the nm command to determine
whether you need to use the -qsmp=noostls suboption. The following code is an
example that shows how to use the nm command:
> nm oldfiles.o
...
._xlGetThStorageBlock U -
._xlGetThValue U -
...

In the preceding example, if _xlGetThStorageBlock or _xlGetThValue is found, this
means the object files contain old implementation. In this case, you must use
-qsmp=noostls; otherwise, use the default suboption -qsmp=ostls.

Chapter 1. Compiling and linking applications 17

Compiler messages and listings
The following sections discuss the various information generated by the compiler
after compilation.
v “Compiler messages”
v “Compiler return codes” on page 20
v “Compiler listings” on page 21
v “Message catalog errors” on page 23
v “Paging space errors during compilation” on page 24

Compiler messages
When the compiler encounters a programming error while compiling a C or C++
source program, it issues a diagnostic message to the standard error device, or to a
listing file if you compile with the -qsource option. These diagnostic messages are
specific to the C or C++ language.

C

If you specify the compiler option -qsrcmsg and the error is applicable to

a particular line of code, the reconstructed source line or partial source line is
included with the error message. A reconstructed source line is a preprocessed
source line that has all the macros expanded. C

You can control the diagnostic messages issued, according to their severity, using
either the -qflag option or the -w option. To get additional informational messages
about potential problems in your program, use the -qinfo option.
Related reference:
“-qsource” on page 339
“-qsrcmsg (C only)” on page 343
“-qflag” on page 156
“-w” on page 389
“-qinfo” on page 191

Compiler message format
Diagnostic messages have the following format:
"file", line line_number.column_number: 15dd-number (severity) text.

where

file
Is the name of the C or C++ source file with the error.

line_number
Is the source code line number where the error was found.

column_number
Is the source code column number where the error was found.

15 Is the compiler product identifier.

dd Is a two-digit code indicating the compiler component that issued the message.
dd can have the following values:

00 - code generating or optimizing message

01 - compiler services message

05 - message specific to the C compiler

18 XL C/C++: Compiler Reference

06 - message specific to the C compiler

40 - message specific to the C++ compiler

47 - message specific to the C++ linkage helper

86 - message specific to interprocedural analysis (IPA)

number
Is the message number.

severity
Is a letter representing the severity of the error. See “Message severity levels
and compiler response” for a description of these.

text
Is a message describing the error.

C If you compile with -qsrcmsg, diagnostic messages have the following
format:
x - 15dd-nnn(severity) text.

where x is a letter referring to a finger in the finger line. C

Message severity levels and compiler response
The XL C/C++ compiler uses a multilevel classification scheme for diagnostic
messages. Each level of severity is associated with a compiler response. The table
below provides a key to the abbreviations for the severity levels and the associated
default compiler response.

You can adjust the default compiler response by using any of the following
options:
v -qhalt halts the compilation phase at a lower severity level than the default.
v -qmaxerr halts the compilation phase as soon as a specific number of errors at a

specific severity level is reached.
v -qhaltonmsg halts the compilation phase as soon as a specific error is

encountered.

Table 7. Compiler message severity levels

Letter Severity Compiler response

I Informational Compilation continues and object code is generated.
The message reports conditions found during
compilation.

W Warning Compilation continues and object code is generated.
The message reports valid but possibly unintended
conditions.

C

E

Error Compilation continues and object code is generated.
The compiler can correct the error conditions that are
found, but the program might not produce the
expected results.

Chapter 1. Compiling and linking applications 19

Table 7. Compiler message severity levels (continued)

Letter Severity Compiler response

S Severe error Compilation continues, but object code is not
generated. The compiler cannot correct the error
conditions that are found.

v If the message indicates a resource limit (for
example, file system full or paging space full),
provide additional resources and recompile.

v If the message indicates that different compiler
options are needed, recompile using those options.

v Check for and correct any other errors reported
prior to the severe error.

v If the message indicates an internal compile-time
error, the message should be reported to your IBM
service representative.

Related information
v “-qhalt” on page 178
v “-qmaxerr” on page 267
v “-qhaltonmsg” on page 179
v “Listings, messages, and compiler information” on page 88

Compiler return codes
At the end of compilation, the compiler sets the return code to zero under any of
the following conditions:
v No messages are issued.
v The highest severity level of all errors diagnosed is less than the setting of the

-qhalt compiler option, and the number of errors did not reach the limit set by
the -qmaxerr compiler option.

v No message specified by the -qhaltonmsg compiler option is issued.

Otherwise, the compiler sets the return code to one of the following values:

Return code Error type

1 Any error with a severity level higher than the setting of the -qhalt
compiler option has been detected.

40 An option error or an unrecoverable error has been detected.

41 A configuration file error has been detected.

249 A no-files-specified error has been detected.

250 An out-of-memory error has been detected. The compiler cannot
allocate any more memory for its use.

251 A signal-received error has been detected. That is, an unrecoverable
error or interrupt signal has occurred.

252 A file-not-found error has been detected.

253 An input/output error has been detected: files cannot be read or
written to.

254 A fork error has been detected. A new process cannot be created.

255 An error has been detected while the process was running.

20 XL C/C++: Compiler Reference

Note: Return codes can also be displayed for runtime errors. For example, a
runtime return code of 99 indicates that a static initialization has failed.

gxlc and gxlc++ return codes
Like other invocation commands, gxlc and gxlc++ return output, such as listings,
diagnostic messages related to the compilation, warnings related to unsuccessful
translation of GNU options, and return codes. If gxlc or gxlc++ cannot successfully
call the compiler, it sets the return code to one of the following values:
40 A gxlc or gxlc++ option error or unrecoverable error has been detected.
255 An error has been detected while the process was running.

Compiler listings
A listing is a compiler output file (with a .lst suffix) that contains information
about a particular compilation. As a debugging aid, a compiler listing is useful for
determining what has gone wrong in a compilation. For example, any diagnostic
messages emitted during compilation are written to the listing.

To produce a listing, you can compile with any of the following options, which
provide different types of information:
v -qsource
v -qlistopt
v -qattr
v -qxref
v -qlist
v -qreport

Listing information is organized in sections. A listing contains a header section and
a combination of other sections, depending on other options in effect. The contents
of these sections are described as follows.

Header section
Lists the compiler name, version, release, the source file name, and the
date and time of the compilation.

Source section
If you use the -qsource option, lists the input source code with line
numbers. If there is an error at a line, the associated error message is
displayed after the source line. Lines containing macros have additional
lines showing the macro expansion. By default, this section only lists the
main source file. Use the -qshowinc option to expand all header files as
well.

Options section
Lists the options that were in effect during the compilation. By default, it
lists the specified options. To get all options, specify the -qlistopt option.

Attribute and cross-reference listing section
If you use the -qattr or -qxref options, provides information about the
variables used in the compilation unit, such as type, storage duration,
scope, and where they are defined and referenced. Each of these options
provides different information about the identifiers used in the
compilation.

File table section
Lists the file name and number for each main source file and include file.
Each file is associated with a file number, starting with the main source
file, which is assigned file number 0. For each file, the listing shows from

Chapter 1. Compiling and linking applications 21

which file and line the file was included. If the -qshowinc option is also in
effect, each source line in the source section has a file number to indicate
which file the line came from.

PDF report section
The following information is included in this section when you use the
-qreport option with the -qpdf2 option:

Loop iteration count
The most frequent loop iteration count and the average iteration
count, for a given set of input data, are calculated for most loops in
a program. This information is only available when the program is
compiled at optimization level -O5.

Block and call count
This section covers the Call Structure of the program and the
respective execution count for each called function. It also includes
Block information for each function. For non-user defined functions,
only execution count is given. The Total Block and Call Coverage,
and a list of the user functions ordered by decreasing execution
count are printed in the end of this report section. In addition, the
Block count information is printed at the beginning of each block
of the pseudo-code in the listing files.

Cache miss
This section is printed in a single table. It reports the number of
Cache Misses for certain functions, with additional information
about the functions such as: Cache Level , Cache Miss Ratio, Line
Number, File Name, and Memory Reference.

Note: You must use the option -qpdf1=level=2 to get this report.
You can also select the level of cache to profile using the
environment variable PDF_PM_EVENT during run time.

Relevance of profiling data
This section shows the relevance of the profiling data to the source
code during the -qpdf1 phase. The relevance is indicated by a
number in the range of 0 - 100. The larger the number is, the more
relevant the profiling data is to the source code, and the more
performance gain can be achieved by using the profiling data.

Missing profiling data
This section might include a warning message about missing
profiling data. The warning message is issued for each function for
which the compiler does not find profiling data.

Outdated profiling data
This section might include a warning message about outdated
profiling data. The compiler issues this warning message for each
function that is modified after the -qpdf1 phase. The warning
message is also issued when the optimization level changes from
the -qpdf1 phase to the -qpdf2 phase.

Transformation report section
If the -qreport option is in effect, this section displays pseudo code that
corresponds to the original source code, so that you can see parallelization
and loop transformations that the -qhot or -qsmp option has generated.
This section of the report also shows additional loop transformation and
parallelization information about loop nests if you compile with -qsmp
and -qhot=level=2.

22 XL C/C++: Compiler Reference

This section also reports the number of streams created for a given loop
and the location of data prefetch instructions inserted by the compiler. To
generate information about data prefetch insertion locations, use the
optimization level of -qhot, -O3 -qhot, -O4 or -O5 together with -qreport.

Data reorganization section
Displays data reorganization messages for program variable data during
the IPA link pass when -qreport is used with -qipa=level=2 or -O5.
Reorganization information includes:
v array splitting
v array transposing
v memory allocation merging
v array interleaving
v array coalescing

Compilation epilogue section
Displays a summary of the diagnostic messages by severity level, the
number of source lines read, and whether the compilation was successful.

Object section
If you specify the -qlist option, the Object section lists the object code
generated by the compiler. This section is useful for diagnosing
execution-time problems, if you suspect the program is not performing as
expected due to code generation error.

Related information
v “Listings, messages, and compiler information” on page 88

Message catalog errors
Before the compiler can compile your program, the message catalogs must be
installed and the environment variables LANG and NLSPATH must be set to a
language for which the message catalog has been installed.

If you see the following message during compilation, the appropriate message
catalog cannot be opened:
Error occurred while initializing the message system in
file: message_file

where message_file is the name of the message catalog that the compiler cannot
open. This message is issued in English only.

You must then verify that the message catalogs and the environment variables are
in place and correct. If the message catalog or environment variables are not
correct, compilation can continue, but diagnostic messages are suppressed and the
following message is issued instead:
No message text for message_number

where message_number is the compiler internal message number. This message is
issued in English only.

To determine which message catalogs are installed on your system, assuming that
you have installed the compiler to the default location, you can list all of the file
names for the catalogs by the following command:
ls /opt/IBM/xlC/13.1.3/msg/$LANG/*.cat
ls /opt/IBM/xlc/13.1.3/msg/$LANG/*.cat

Chapter 1. Compiling and linking applications 23

where LANG is the environment variable on your system that specifies the system
locale.

The compiler calls the default message catalogs in /opt/IBM/xlC/13.1.3/exe/
default_msg/ and /opt/IBM/xlc/13.1.3/exe/default_msg/ when:
v The message catalogs for the locale specified by LANG cannot be found.
v The locale has never been changed from the default, C.

For more information about the NLSPATH and LANG environment variables, see
your operating system documentation.

Paging space errors during compilation
If the operating system runs low on paging space during a compilation, the
compiler issues one of the following messages:
1501-229 Compilation ended due to lack of space.
1501-224 fatal error in ../exe/xlCcode: signal 9 received.

If lack of paging space causes other compiler programs to fail, the following
message is displayed:
Killed.

To minimize paging-space problems, take any of the following actions and
recompile your program:
v Reduce the size of your program by splitting it into two or more source files
v Compile your program without optimization
v Reduce the number of processes competing for system paging space
v Increase the system paging space

To check the current paging-space settings enter the command: lsps -a or use the
AIX System Management Interface Tool (SMIT) command smit pgsp.

For more information about paging space and how to allocate it, see your
operating system documentation.

24 XL C/C++: Compiler Reference

Chapter 2. Configuring compiler defaults

When you compile an application with XL C/C++, the compiler uses default
settings that are determined in a number of ways:
v Internally defined settings. These settings are predefined by the compiler and

you cannot change them.
v Settings defined by system environment variables. Certain environment variables

are required by the compiler; others are optional. You might have already set
some of the basic environment variables during the installation process. For
more information, see the XL C/C++ Installation Guide. “Setting environment
variables” provides a complete list of the required and optional environment
variables you can set or reset after installing the compiler, including those used
for parallel processing.

v Settings defined in the compiler configuration file, xlc.cfg. The compiler
requires many settings that are determined by its configuration file. Normally,
the configuration file is automatically generated during the installation
procedure. For more information, see the XL C/C++ Installation Guide.
However, you can customize this file after installation, to specify additional
compiler options, default option settings, library search paths, and other settings.
Information on customizing the configuration file is provided in “Using custom
compiler configuration files” on page 40.

v Settings defined by the GCC options configuration file. If you are using the gxlc
or gxlc++ utility to map GCC options, the default option mappings are defined
in the /opt/IBM/xlc/13.1.3/etc/gxlc.cfg file. You can customize this file to suit
your requirements. For more information, see “Configuring the gxlc or gxlc++
option mapping” on page 44.

Setting environment variables
To set environment variables in Bourne, Korn, and BASH shells, use the following
commands:
variable=value
export variable

where variable is the name of the environment variable, and value is the value you
assign to the variable.

To set environment variables in the C shell, use the following command:
setenv variable value

where variable is the name of the environment variable, and value is the value you
assign to the variable.

To set the variables so that all users have access to them, in Bourne, Korn, and
BASH shells, add the commands to the file /etc/profile. To set them for a specific
user only, add the commands to the file .profile in the user's home directory. In C
shell, add the commands to the file /etc/csh.cshrc. To set them for a specific user
only, add the commands to the file .cshrc in the user's home directory. The
environment variables are set each time the user logs in.

The following sections discuss the environment variables you can set for XL
C/C++ and applications you have compiled with it:

© Copyright IBM Corp. 1996, 2015 25

v “Compile-time and link-time environment variables”
v “Runtime environment variables”

Compile-time and link-time environment variables
The following environment variables are used by the compiler when you are
compiling and linking your code. Many are built into the AIX operating system.
With the exception of LANG and NLSPATH, which must be set if you are using a
locale other than the default en_US, all of these variables are optional.

LANG
Specifies the locale for your operating system. The default locale used by
the compiler for messages and help files is United States English, en_US,
but the compiler supports other locales. For a list of these, see National
language support in the XL C/C++ Installation Guide. For more information
on setting the LANG environment variable to use an alternate locale, see
your operating system documentation.

NLSPATH
Specifies the directory search path for finding the compiler message and
help files. You only need to set this environment variable if the national
language to be used for the compiler message and help files is not English.
For information on setting the NLSPATH, see Enabling the XL C/C++ error
messages in the XL C/C++ Installation Guide.

OBJECT_MODE
Optionally specifies the bit mode for compilation to either 32 or 64 bits.
This is equivalent to the -q32 and -q64 compiler options. Set the
OBJECT_MODE environment variable to a value of 32 for 32-bit
compilation mode, or 64 for 64-bit compilation mode. If unspecified, the
default compilation mode is 32 bits. See also “-q32, -q64” on page 100 for
more information.

PATH Specifies the directory search path for the executable files of the compiler.
Executables are in /opt/IBM/xlc/13.1.3/bin/ and /opt/IBM/xlC/13.1.3/bin/ if
installed to the default location.

TMPDIR
Optionally specifies the directory in which temporary files are created
during compilation. The default location, /tmp/, may be inadequate at high
levels of optimization, where paging and temporary files can require
significant amounts of disk space, so you can use this environment variable
to specify an alternate directory.

XLC_USR_CONFIG
Specifies the location of a custom configuration file to be used by the
compiler. The file name must be given with its absolute path. The compiler
will first process the definitions in this file before processing those in the
default system configuration file, or those in a customized file specified by
the -F option; for more information, see “Using custom compiler
configuration files” on page 40.

Runtime environment variables
The following environment variables are used by the system loader or by your
application when it is executed. All of these variables are optional.

LIBPATH
Specifies an alternate directory search path for dynamically linked libraries
at application run time. If shared libraries required by your application

26 XL C/C++: Compiler Reference

have been moved to an alternate directory that was not specified at link
time, and you do not want to relink the executable, you can set this
environment variable to allow the dynamic linker to locate them at run
time. For more information about this environment variable, see your
operating system documentation.

MALLOCALIGN=16
Specifies that dynamic memory allocations return 16-byte aligned
addresses. See also “-qipa” on page 208.

PDFDIR
Optionally specifies the directory in which profiling information is saved
when you run an application that you have compiled with the -qpdf1
option. The default value is unset, and the compiler places the profile data
file in the current working directory. If the PDFDIR environment variable is
set but the specified directory does not exist, the compiler issues a warning
message. When you recompile or relink your program with the -qpdf2
option, the compiler uses the data saved in this directory to optimize the
application. It is recommended that you set this variable to an absolute
path if you use profile-directed feedback (PDF). See “-qpdf1, -qpdf2” on
page 296 for more information.

PDF_PM_EVENT
When you run an application compiled with -qpdf1=level=2 and want to
gather different levels of cache-miss profiling information, set the
PDF_PM_EVENT environment variable to L1MISS, L2MISS, or L3MISS (if
applicable) accordingly.

PDF_BIND_PROCESSOR
If you want to bind your process to a particular processor, you can specify
the PDF_BIND_PROCESSOR environment variable to bind the process tree
from the executable to a different processor. Processor 0 is set by default.

PDF_WL_ID

This environment variable is used to distinguish the sets of PDF counters
that are generated by multiple training runs of the user program. Each run
receives distinct input.

By default, PDF counters for training runs after the first training run are
added to the first and the only set of PDF counters. This behavior can be
changed by setting the PDF_WL_ID environment variable before each PDF
training run. You can set PDF_WL_ID to an integer value in the range 1 -
65535. The PDF runtime library then uses this number to tag the set of
PDF counters that are generated by this training run. After all the training
runs complete, the PDF profile file contains multiple sets of PDF counters,
each set with an ID number.

XL_AR
To use your own archive files when generating a nonexecutable package
with -r -qipa=relink, you can use the ar tool and set the XL_AR
environment variable to point to it. See -qipa for more information.

Environment variables for parallel processing
The XLSMPOPTS environment variable sets options for program run time using
loop parallelization. For more information about the suboptions for the
XLSMPOPTS environment variables, see “XLSMPOPTS” on page 28.

Chapter 2. Configuring compiler defaults 27

If you are using OpenMP constructs for parallelization, you can also specify
runtime options using the OMP environment variables, as discussed in
“Environment variables for OpenMP” on page 33.

When runtime options specified by OMP and XLSMPOPTS environment variables
conflict, OMP options will prevail.

Related information
v “Pragma directives for parallel processing” on page 459
v “Built-in functions for parallel processing” on page 698

XLSMPOPTS
You can specify runtime options that affect parallel processing by using the
XLSMPOPTS environment variable. This environment variable must be set before
you run an application. The syntax is as follows:

►► ▼

:

XLSMPOPTS = runtime_option_name = option_setting
" "

►◄

You can specify option names and settings in uppercase or lowercase. You can add
blanks before and after the colons and equal signs to improve readability.
However, if the XLSMPOPTS option string contains imbedded blanks, you must
enclose the entire option string in double quotation marks (").

For example, to have a program run time create 4 threads and use dynamic
scheduling with chunk size of 5, you can set the XLSMPOPTS environment
variable as shown below:
XLSMPOPTS=PARTHDS=4:SCHEDULE=DYNAMIC=5

The following are the available runtime option settings for the XLSMPOPTS
environment variable:

Scheduling options are as follows:

schedule
Specifies the type of scheduling algorithms and chunk size (n) that are used for
loops to which no other scheduling algorithm has been explicitly assigned in
the source code.

Work is assigned to threads in a different manner, depending on the
scheduling type and chunk size used. Choosing chunking granularity is a
tradeoff between overhead and load balancing. The syntax for this option is
schedule=suboption, where the suboptions are defined as follows:

affinity[=n]
The iterations of a loop are initially divided into n partitions, containing
ceiling(number_of_iterations/number_of_threads) iterations. Each partition is
initially assigned to a thread and is then further subdivided into chunks
that each contain n iterations. If n is not specified, then the chunks consist
of ceiling(number_of_iterations_left_in_partition / 2) loop iterations.

When a thread becomes free, it takes the next chunk from its initially
assigned partition. If there are no more chunks in that partition, then the
thread takes the next available chunk from a partition initially assigned to
another thread.

28 XL C/C++: Compiler Reference

The work in a partition initially assigned to a sleeping thread will be
completed by threads that are active.

The affinity scheduling type is not part of the OpenMP API standard.

Note: This suboption has been deprecated and might be removed in a
future release. Instead, you can use the guided suboption.

dynamic[=n]
The iterations of a loop are divided into chunks that contain n contiguous
iterations each. The final chunk might contain fewer than n iterations. If n
is not specified, the default chunk size is one.

Each thread is initially assigned one chunk. After threads complete their
assigned chunks, they are assigned remaining chunks on a "first-come,
first-do" basis.

guided[=n]
The iterations of a loop are divided into progressively smaller chunks until
a minimum chunk size of n loop iterations is reached. If n is not specified,
the default value for n is 1 iteration.

Active threads are assigned chunks on a "first-come, first-do" basis. The
first chunk contains ceiling(number_of_iterations/number_of_threads)
iterations. Subsequent chunks consist of ceiling(number_of_iterations_left /
number_of_threads) iterations. The final chunk might contain fewer than n
iterations.

static[=n]
The iterations of a loop are divided into chunks containing n iterations
each. Each thread is assigned chunks in a "round-robin" fashion. This is
known as block cyclic scheduling. If the value of n is 1, then the scheduling
type is specifically referred to as cyclic scheduling.

If n is not specified, the chunks will contain floor(number_of_iterations/
number_of_threads) iterations. The first remainder(number_of_iterations/
number_of_threads) chunks have one more iteration. Each thread is assigned
one of these chunks. This is known as block scheduling.

If a thread is asleep and it has been assigned work, it will be awakened so
that it may complete its work.

n Must be an integral assignment expression of value 1 or greater.

If you specify schedule with no suboption, the scheduling type is determined
at run time.

Parallel environment options are as follows:

parthds=num
Specifies the number of threads (num) requested, which is usually equivalent to
the number of processors available on the system.

Some applications cannot use more threads than the maximum number of
processors available. Other applications can experience significant performance
improvements if they use more threads than there are processors. This option
gives you full control over the number of user threads used to run your
program.

The default value for num is the number of processors available on the system.

Chapter 2. Configuring compiler defaults 29

usrthds=num
Specifies the maximum number of threads (num) that you expect your code
will explicitly create if the code does explicit thread creation. The default value
for num is 0.

stack=num
Specifies the largest amount of space in bytes (num) that a thread's stack needs.
The default value for num is 4194304.

Set num so it is within the acceptable upper limit. num can be up to 256 MB for
32-bit mode, or up to the limit imposed by system resources for 64-bit mode.
An application that exceeds the upper limit may cause a segmentation fault.

stackcheck[=num]
When the -qsmp=stackcheck is in effect, enables stack overflow checking for
slave threads at runtime. num is the size of the stack in bytes, and it must be a
nonzero positive number. When the remaining stack size is less than this value,
a runtime warning message is issued. If you do not specify a value for num,
the default value is 4096 bytes. Note that this option only has an effect when
the -qsmp=stackcheck has also been specified at compile time. For more
information, see “-qsmp” on page 334.

startproc=cpu_id
Enables thread binding and specifies the cpu_id to which the first thread binds.
If the value provided is outside the range of available processors, a warning
message is issued and no threads are bound.

procs=cpu_id[,cpu_id,...]
Enables thread binding and specifies a list of cpu_id to which the threads are
bound.

stride=num
Specifies the increment used to determine the cpu_id to which subsequent
threads bind. num must be greater than or equal to 1. If the value provided
causes a thread to bind to a CPU outside the range of available processors, a
warning message is issued and no threads are bound.

bind=SDL=n1,n2,n3
Specifies different system detail levels to bind threads by using the Resource
Set API. This suboption supports binding a thread to multiple logical
processors.

SDL stands for System Detail Level and can be MCM, L2CACHE,
PROC_CORE, or PROC. If the SDL value is not specified, or an incorrect SDL
value is specified, the SMP runtime issues an error message.

The list of three integers n1,n2,n3 determines how to divide threads among
resources (one of SDLs). n1 is the starting resource_id, n2 is the number of
requested resources, and n3 is the stride, which specifies the increment used to
determine the next resource_id to bind. n1,n2,n3 must all be specified;
otherwise, the SMP runtime issues an error message and default binding rules
apply.

When the number of resources specified in bind is greater than the number of
threads, the extra resources are ignored.

When the number of threads t is greater than the number of resources x, t
threads are divided among x resources according to the following formula:

The ceil(t/x) threads are bound to the first (t mod x) resources. The floor(t/x)
threads will be bound to the remaining resources.

30 XL C/C++: Compiler Reference

With the XLSMPOPTS environment variable being set as in the following
example, a program runs with 16 threads. It binds threads to PROC 0, 2, 4, 6,
8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30.
XLSMPOPTS="bind=PROC=0,16,2"

Notes:

v The bind suboption takes precedence over the startproc/stride and procs
suboptions. However, bindlist takes precedence over bind.

v Resource Set can only be used by a user account with the
CAP_NUMA_ATTACH and CAP_PROPAGATE capabilities. These
capabilities are set on a per-user basis by using the chuser command as
follows:
chuser "capabilities=CAP_PROPAGATE,CAP_NUMA_ATTACH" username

v If the resource_id specified in bind is outside the range of 0 to INT32_MAX,
where INT32_MAX is 2147483647 as defined in stdint.h, the SMP runtime
issues an error message and default binding rules apply.

v The SMP runtime verifies that the resource_id exists. If the resource_id does
not exist, a warning message is issued and the thread is left unbound.

v If you change the number of threads inside the program, for example,
through omp_set_num_threads() or num_threads clause, the following
situation occurs:
– If the number of threads in the application is increased, rebinding takes

place based on the environment variable settings.
– If the number of threads is reduced after binding, the original binding

remains.

bindlist=SDL=i1,i2,...ix
Specifies different system detail levels to bind threads by using the Resource
Set API. This suboption supports binding a thread to multiple logical
processors.

SDL stands for System Detail Level and can be MCM, L2CACHE,
PROC_CORE, or PROC. If the SDL value is not specified, or an incorrect SDL
value is specified, the SMP runtime issues an error message.

The list of x integers i1,i2...ix enumerates the resources (one of SDLs) to be
used during binding. When the number of integers in the list is greater than or
equal to the number of threads, the position in the list determines the thread
ID that will be bound to the resource.

When the number of resources specified in bindlist is greater than the
number of threads, the extra resources are ignored.

When the number of threads t is greater than the number of resources x, t
threads will be divided among x resources according to the following formula:

The ceil(t/x) threads are bound to the first (t mod x) resources. The floor(t/x)
threads will be bound to the remaining resources.

For example:
XLSMPOPTS="bindlist=MCM=0,1,2,3"

This example code shows that threads are bound to MCM 0,1,2,3. When the
program runs with four threads, thread 0 is bound to MCM 0, thread 1 is
bound to MCM 1, thread 2 is bound to MCM 2, and thread 3 is bound to

Chapter 2. Configuring compiler defaults 31

MCM 3. When the program runs with six threads, threads 0 and 1 are bound
to MCM 0, threads 2 and 3 are bound to MCM 1, thread 4 is bound to MCM 2,
and thread 5 is bound to MCM 3.

With the XLSMPOPTS environment variable being set as in the following
example, a program runs with eight (or fewer) threads. It binds all
even-numbered threads to L2CACHE 0 and all odd-numbered threads to
L2CACHE 1.
XLSMPOPTS="bindlist=L2CACHE=0,1,0,1,0,1,0,1"

Notes:

v The bindlist suboption takes precedence over the startproc/stride, procs,
and bind suboptions.

v Resource Set can only be used by a user account with the
CAP_NUMA_ATTACH and CAP_PROPAGATE capabilities. These
capabilities are set on a per-user basis by using the chuser command as
follows:
chuser "capabilities=CAP_PROPAGATE,CAP_NUMA_ATTACH" username

v The SMP runtime verifies that the thread ID specified for a resource is not
less than 0 nor greater than the available resources. Otherwise, the SMP
runtime issues a warning message and the thread is left unbound.

v If you change the number of threads inside the program, for example,
through omp_set_num_threads() or num_threads clause, the following
situation occurs:
– If the number of threads in the application is increased, rebinding takes

place based on the environment variable settings.
– If the number of threads is reduced after binding, the original binding

remains.

Performance tuning options are as follows:

spins=num
Specifies the number of loop spins, or iterations, before a yield occurs.

When a thread completes its work, the thread continues executing in a tight
loop looking for new work. One complete scan of the work queue is done
during each busy-wait state. An extended busy-wait state can make a
particular application highly responsive, but can also harm the overall
responsiveness of the system unless the thread is given instructions to
periodically scan for and yield to requests from other applications.

A complete busy-wait state for benchmarking purposes can be forced by
setting both spins and yields to 0.

The default value for num is 100.

yields=num
Specifies the number of yields before a sleep occurs.

When a thread sleeps, it completely suspends execution until another thread
signals that there is work to do. This provides better system utilization, but
also adds extra system overhead for the application.

The default value for num is 100.

delays=num
Specifies a period of do-nothing delay time between each scan of the work
queue. Each unit of delay is achieved by running a single no-memory-access
delay loop.

32 XL C/C++: Compiler Reference

The default value for num is 500.

Dynamic profiling options are as follows:

profilefreq=num
Specifies the frequency with which a loop should be revisited by the dynamic
profiler to determine its appropriateness for parallel or serial execution. The
runtime library uses dynamic profiling to dynamically tune the performance of
automatically parallelized loops. Dynamic profiling gathers information about
loop running times to determine if the loop should be run sequentially or in
parallel the next time through. Threshold running times are set by the
parthreshold and seqthreshold dynamic profiling options, which are
described below.

The valid values for this option are the numbers from 0 to 32. If num is 0, all
profiling is turned off, and overheads that occur because of profiling will not
occur. If num is greater than 0, running time of the loop is monitored once
every num times through the loop. The default for num is 16. Values of num
exceeding 32 are changed to 32.

Note: Dynamic profiling is not applicable to user-specified parallel loops.

parthreshold=num
Specifies the time, in milliseconds, below which each loop must execute
serially. If you set num to 0, every loop that has been parallelized by the
compiler will execute in parallel. The default setting is 0.2 milliseconds,
meaning that if a loop requires fewer than 0.2 milliseconds to execute in
parallel, it should be serialized.

Typically, num is set to be equal to the parallelization overhead. If the
computation in a parallelized loop is very small and the time taken to execute
these loops is spent primarily in the setting up of parallelization, these loops
should be executed sequentially for better performance.

seqthreshold=num
Specifies the time, in milliseconds, beyond which a loop that was previously
serialized by the dynamic profiler should revert to being a parallel loop. The
default setting is 5 milliseconds, meaning that if a loop requires more than 5
milliseconds to execute serially, it should be parallelized.

seqthreshold acts as the reverse of parthreshold.

Environment variables for OpenMP
OpenMP runtime options affecting parallel processing are set by OMP environment
variables. These environment variables use syntax of the form:

►► env_variable = option_and_args ►◄

If an OMP environment variable is not explicitly set, its default setting is used.

For information about the OpenMP specification, see http://www.openmp.org.

OMP_DISPLAY_ENV: When a program that uses the OpenMP runtime is
invoked and the OMP_DISPLAY_ENV environment variable is set, the OpenMP
runtime displays the values of the internal control variables (ICVs) associated with
the environment variables and the build-specific information about the runtime
library.

Chapter 2. Configuring compiler defaults 33

http://www.openmp.org

OMP_DISPLAY_ENV is useful in the following cases:
v When the runtime library is statically linked with an OpenMP program, you can

use OMP_DISPLAY_ENV to check the version of the library that is used during
link time.

v When the runtime library is dynamically linked with an OpenMP program, you
can use OMP_DISPLAY_ENV to check the library that is used at run time.

v You can use OMP_DISPLAY_ENV to check the current setting of the runtime
environment.

By default, no information is displayed.

The syntax of this environment variable is as follows:

►► OMP_DISPLAY_ENV = TRUE
FALSE
VERBOSE

►◄

Note: The values TRUE, FALSE, and VERBOSE are not case-sensitive.

TRUE
Displays the OpenMP version number defined by the _OPENMP macro and the
initial ICV values for the OpenMP environment variables.

FALSE
Instructs the runtime environment not to display any information.

VERBOSE
Displays build-specific information, ICV values associated with OpenMP
environment variables, and the setting of the XLSMPOPTS environment
variable.

Examples

Example 1

If you enter the export OMP_DISPLAY_ENV=TRUE command, you will get
output that is similar to the following example:
OPENMP DISPLAY ENVIRONMENT BEGIN

OMP_DISPLAY_ENV=’TRUE’

_OPENMP=’201107’
OMP_DYNAMIC=’FALSE’
OMP_MAX_ACTIVE_LEVELS=’5’
OMP_NESTED=’FALSE’
OMP_NUM_THREADS=’96’
OMP_PROC_BIND=’FALSE’
OMP_SCHEDULE=’STATIC,0’
OMP_STACKSIZE=’4194304’
OMP_THREAD_LIMIT=’96’
OMP_WAIT_POLICY=’PASSIVE’

OPENMP DISPLAY ENVIRONMENT END

Example 2

If you enter the export OMP_DISPLAY_ENV=VERBOSE command, you will get
output that is similar to the following example:

34 XL C/C++: Compiler Reference

OPENMP DISPLAY AFFINITY BEGIN
OMP_PLACES=’{0},{1},{2},{3},{4},{5},{6},{7},{8},{9},{10}’ cores
THREADS_PER_PLACE=’{1},{1},{1},{1},{1},{1},{1},{1},{1},{1},{1}’
OPENMP DISPLAY AFFINITY END

Related information:
“XLSMPOPTS” on page 28
“OMP_PROC_BIND” on page 37

OMP_DYNAMIC: The OMP_DYNAMIC environment variable controls dynamic
adjustment of the number of threads available for running parallel regions.

►►
TRUE

OMP_DYNAMIC = FALSE ►◄

If OMP_DYNAMIC is set to TRUE, dynamic adjustment is enabled. The number of
threads that are available for executing parallel regions can be adjusted at run time
to make the best use of system resources. For more information, see the description
for profilefreq=num in “XLSMPOPTS” on page 28.

If OMP_DYNAMIC is set to FALSE, dynamic adjustment is disabled.

The default setting is TRUE.

Related information

“OMP_PROC_BIND” on page 37

OMP_MAX_ACTIVE_LEVELS:
The OMP_MAX_ACTIVE_LEVELS environment variable sets the
max-active-levels-var internal control variable. This controls the maximum number of
active nested parallel regions.

►► OMP_MAX_ACTIVE_LEVELS=n ►◄

n is the maximum number of nested active parallel regions. It must be a positive
scalar integer. The maximum value that you can specify is 5.

In programs where nested parallelism is enabled, the initial value is greater than 1.
The function omp_get_max_active_levels can be used to retrieve the
max-active-levels-var internal control variable at run time.

OMP_NESTED: The OMP_NESTED environment variable enables or disables
nested parallelism. The syntax is as follows:

►►
FALSE

OMP_NESTED= TRUE ►◄

If you set this environment variable to TRUE, nested parallelism is enabled, which
means that the runtime environment might deploy extra threads to form the team
of threads for the nested parallel region. If you set this environment variable to
FALSE, nested parallelism is disabled, which means nested parallel regions are
serialized and run in the encountering thread.

Chapter 2. Configuring compiler defaults 35

The default value for OMP_NESTED is FALSE.

The setting of the omp_set_nested routine overrides the OMP_NESTED setting.
The OMP_NESTED setting overrides the setting of the -qsmp=nested_par |
nonested_par option.

Note: If the number of threads in a parallel region and its nested parallel regions
exceeds the number of available processors, your program might suffer
performance degradation.

OMP_NUM_THREADS: The OMP_NUM_THREADS environment variable
specifies the number of threads to use for parallel regions.

The syntax of the environment variable is as follows:

►► OMP_NUM_THREADS= num_list ►◄

num_list
A list of one or more positive integer values separated by commas.

If you do not set OMP_NUM_THREADS, the number of processors available is
the default value to form a new team for the first encountered parallel construct. If
nested parallelism is disabled, any nested parallel constructs are run by one thread.

If num_list contains a single value, dynamic adjustment of the number of threads is
enabled (OMP_DYNAMIC is set to TRUE), and a parallel construct without a
num_threads clause is encountered, the value is the maximum number of threads
that can be used to form a new team for the encountered parallel construct.

If num_list contains a single value, dynamic adjustment of the number of threads is
not enabled (OMP_DYNAMIC is set to FALSE), and a parallel construct without a
num_threads clause is encountered, the value is the exact number of threads that
can be used to form a new team for the encountered parallel construct.

If num_list contains multiple values, dynamic adjustment of the number of threads
is enabled (OMP_DYNAMIC is set to TRUE), and a parallel construct without a
num_threads clause is encountered, the first value is the maximum number of
threads that can be used to form a new team for the encountered parallel
construct. After the encountered construct is entered, the first value is removed
and the remaining values form a new num_list. The new num_list is in turn used in
the same way for any closely nested parallel constructs inside the encountered
parallel construct.

If num_list contains multiple values, dynamic adjustment of the number of threads
is not enabled (OMP_DYNAMIC is set to FALSE), and a parallel construct without
a num_threads clause is encountered, the first value is the exact number of threads
that can be used to form a new team for the encountered parallel construct. After
the encountered construct is entered, the first value is removed and the remaining
values form a new num_list. The new num_list is in turn used in the same way for
any closely nested parallel constructs inside the encountered parallel construct.

Note: If the number of parallel regions is equal to or greater than the number of
values in num_list, the omp_get_max_threads function returns the last value of
num_list in the parallel region.

36 XL C/C++: Compiler Reference

If the number of threads requested exceeds the system resources available, the
program stops.

The omp_set_num_threads function sets the first value of num_list. The
omp_get_max_threads function returns the first value of num_list.

If you specify the number of threads for a given parallel region more than once
with different settings, the compiler uses the following precedence order to
determine which setting takes effect:
1. The number of threads set using the num_threads clause takes precedence over

that set using the omp_set_num_threads function.
2. The number of threads set using the omp_set_num_threads function takes

precedence over that set using the OMP_NUM_THREADS environment
variable.

3. The number of threads set using the OMP_NUM_THREADS environment
variable takes precedence over that set using the parthds suboption of the
XLSMPOPTS environment variable.

Example
export OMP_NUM_THREADS=3,4,5
export OMP_DYNAMIC=false

// omp_get_max_threads() returns 3

#pragma omp parallel
{
// Three threads running the parallel region
// omp_get_max_threads() returns 4

#pragma omp parallel if(0)
{
// One thread running the parallel region
// omp_get_max_threads() returns 5

#pragma omp parallel
{
// Five threads running the parallel region
// omp_get_max_threads() returns 5
}

}
}

OMP_PROC_BIND: The OMP_PROC_BIND environment variable controls
whether OpenMP threads can be moved between places.

OMP_PROC_BIND syntax

►► OMP_PROC_BIND= TRUE
FALSE

►◄

TRUE
Binds the threads to places.

FALSE
Allows threads to be moved between places.

Chapter 2. Configuring compiler defaults 37

Usage

The OMP_PROC_BIND and XLSMPOPTS environment variables interact with
each other according to the following rules:

Table 8. Thread binding rule summary

OMP_PROC_BIND settings XLSMPOPTS settings Thread binding results

OMP_PROC_BIND is not set XLSMPOPTS is not set. Threads are not bound.

XLSMPOPTS is set to startproc/stride,
procs, bind, or bindlist.

Threads are bound according to
the settings in XLSMPOPTS.

XLSMPOPTS setting is invalid. Threads are not bound.

OMP_PROC_BIND=TRUE XLSMPOPTS is not set. Threads are bound.

XLSMPOPTS is set to startproc/stride,
procs, bind, or bindlist.

Threads are bound according to
the settings in XLSMPOPTS1.

XLSMPOPTS setting is invalid. Threads are bound.

OMP_PROC_BIND=FALSE XLSMPOPTS is not set. Threads are not bound.

XLSMPOPTS is set to startproc/stride,
procs, bind, or bindlist.

XLSMPOPTS setting is invalid.

Note:

1. If procs is set and the number of CPU IDs specified is smaller than the number of threads that are used by the
program, the remaining threads are also bound to the listed CPU IDs but not in any particular order. If
XLSMPOPTS=startproc is used, the value specified by startproc is smaller than the number of CPUs, and the
value that is specified by stride causes a thread to bind to a CPU outside the range of available places, some of
the threads are bound and some are not.

The OMP_PROC_BIND environment variable provides a portable way to control
whether OpenMP threads can be migrated. The startproc/stride, procs, bind, or
bindlist suboption of the XLSMPOPTS environment variable, which is an IBM
extension, provides a finer control to bind OpenMP threads to places. If portability
of your application is important, use only the OMP_PROC_BIND environment
variable to control thread binding.
Related information:
“XLSMPOPTS” on page 28

OMP_SCHEDULE: The OMP_SCHEDULE environment variable specifies the
schedule type used for loops that are explicitly assigned to runtime schedule type
with the OpenMP schedule clause.

For example:
OMP_SCHEDULE=“guided, 4”

Valid options for schedule type are:
v auto

v dynamic[, n]
v guided[, n]
v static[, n]

If specifying a chunk size with n, the value of n must be a positive integer.

The default schedule type is auto.

38 XL C/C++: Compiler Reference

Related reference:
“omp_set_schedule” on page 708
“omp_get_schedule” on page 708

OMP_STACKSIZE:
The OMP_STACKSIZE environment variable specifies the size of the stack for
threads created by the OpenMP run time. The syntax is as follows:

►► OMP_STACKSIZE= size
sizeB
sizeK
sizeM
sizeG

►◄

size
is a positive integer that specifies the size of the stack for threads that are
created by the OpenMP run time.

"B", "K", "M", "G"
are letters that specify whether the given size is in Bytes, Kilobytes, Megabytes,
or Gigabytes.

If only size is specified and none of "B", "K", "M", "G" is specified, size is in
Kilobytes by default. This environment variable does not control the size of the
stack for the initial thread.

The value assigned to the OMP_STACKSIZE environment variable is case
insensitive and might have leading and trailing white space. The following
examples show how you can set the OMP_STACKSIZE environment variable.
export OMP_STACKSIZE="10M"
export OMP_STACKSIZE=" 10 M "

If the value of OMP_STACKSIZE is not set, the initial value is set to the default
value. The default value is 4194304B. The maximum value for 32-bit mode is 256M.
For 64-bit mode, the maximum is up to the limit imposed by system resources.

If the compiler cannot deliver the stack size specified by the environment variable,
or if OMP_STACKSIZE does not conform to the valid format, the compiler sets
the environment variable to the default value.

The OMP_STACKSIZE environment variable takes precedence over the stack
suboption of the XLSMPOPTS environment variable.

OMP_THREAD_LIMIT:
The OMP_THREAD_LIMIT environment variable sets the number of OpenMP
threads to use for the whole program.

►► OMP_THREAD_LIMIT = n ►◄

n The number of OpenMP threads to use for the whole program. It must be a
positive scalar integer that is less than 65536.

Chapter 2. Configuring compiler defaults 39

Usage

When OMP_THREAD_LIMIT=1, the parallel regions are run sequentially rather
than in parallel. However, when OMP_THREAD_LIMIT is much smaller than the
number of threads that are required in the program, the parallel region might still
run in parallel but with fewer threads. When there are nested parallel regions,
some parallel regions might run in parallel, some might run sequentially, and some
might run in parallel but with threads that are recycled from other regions.

If the OMP_THREAD_LIMIT environment variable is not set and the
OMP_NUM_THREADS environment variable is set to a single value, the default
value for OMP_THREAD_LIMIT is the value of OMP_NUM_THREADS or the
number of available processors, whichever is greater.

If the OMP_THREAD_LIMIT environment variable is not set and the
OMP_NUM_THREADS environment variable is set to a list, the default value for
OMP_THREAD_LIMIT is the multiplication of all the numbers in the list or the
number of available processors, whichever is greater.

If neither the OMP_THREAD_LIMIT nor OMP_NUM_THREADS environment
variable is set, the default value for OMP_THREAD_LIMIT is the number of
available processors.
Related information:
“OMP_NUM_THREADS” on page 36

OMP_WAIT_POLICY:
The OMP_WAIT_POLICY environment variable provides hints about the preferred
behavior of waiting threads during program execution. The syntax is as follows:

►►
PASSIVE

OMP_WAIT_POLICY= ACTIVE ►◄

Use ACTIVE if you want waiting threads to mostly be active. That is, the threads
consume processor cycles while waiting. For example, waiting threads can spin
while waiting. The ACTIVE wait policy is recommended for maximum performance
on the dedicated machine.

Use PASSIVE if you want waiting threads to mostly be passive. That is, the threads
do not consume processor cycles while waiting. For example, waiting threads can
sleep or yield the processor to other threads.

The default value of OMP_WAIT_POLICY is PASSIVE.

Note: If you set the OMP_WAIT_POLICY environment variable and specify the
spins, yields, or delays suboptions of the XLSMPOPTS environment variable,
OMP_WAIT_POLICY takes precedence.

Using custom compiler configuration files
The XL C/C++ compiler generates a default configuration file
/opt/IBM/xlc/13.1.3/etc/xlc.cfg.nn , where nn indicates which OS version the
configuration file is for). The configuration file specifies information that the
compiler uses when you invoke it.

40 XL C/C++: Compiler Reference

If you are running on a single-user system, or if you already have a compilation
environment with compilation scripts or makefiles, you might want to leave the
default configuration file as it is.

If you want users to be able to choose among several sets of compiler options, you
might want to use custom configuration files for specific needs. For example, you
might want to enable -qlist by default for compilations using the xlc compiler
invocation command. This is to avoid forcing your users to specify this option on
the command line for every compilation, because -qnolist is automatically in effect
every time the compiler is called with the xlc command.

You have several options for customizing configuration files:
v You can directly edit the default configuration file. In this case, the customized

options will apply for all users for all compilations. The disadvantage of this
option is that you will need to reapply your customizations to the new default
configuration file that is provided every time you install a compiler update.

v You can use the default configuration file as the basis of customized copies that
you specify at compile time with the -F option. In this case, the custom file
overrides the default file on a per-compilation basis.

Note: This option requires you to reapply your customization after you apply
service to the compiler.

v You can create custom, or user-defined, configuration files that are specified at
compile time with the XLC_USR_CONFIG environment variable. In this case,
the custom user-defined files complement, rather than override, the default
configuration file, and they can be specified on a per-compilation or global basis.
The advantage of this option is that you do not need to modify your existing,
custom configuration files when a new system configuration file is installed
during an update installation. Procedures for creating custom, user-defined
configuration files are provided below.

Related reference:
“-F” on page 154
Related information:
“Compile-time and link-time environment variables” on page 26

Creating custom configuration files
If you use the XLC_USR_CONFIG environment variable to instruct the compiler to
use a custom user-defined configuration file, the compiler examines and processes
the settings in that user-defined configuration file before looking at the settings in
the default system configuration file.

To create a custom user-defined configuration file, you add stanzas which specify
multiple levels of the use attribute. The user-defined configuration file can
reference definitions specified elsewhere in the same file, as well as those specified
in the system configuration file. For a given compilation, when the compiler looks
for a given stanza, it searches from the beginning of the user-defined configuration
file and follows any other stanza named in the use attribute, including those
specified in the system configuration file.

If the stanza named in the use attribute has a name different from the stanza
currently being processed, the search for the use stanza starts from the beginning
of the user-defined configuration file. This is the case for stanzas A, C, and D
which you see in the following example. However, if the stanza in the use attribute

Chapter 2. Configuring compiler defaults 41

has the same name as the stanza currently being processed, as is the case of the
two B stanzas in the example, the search for the use stanza starts from the location
of the current stanza.

The following example shows how you can use multiple levels for the use
attribute. This example uses the options attribute to help show how the use
attribute works, but any other attributes, such as libraries can also be used.

In this example:
v stanza A uses option sets A and Z
v stanza B uses option sets B1, B2, D, A, and Z
v stanza C uses option sets C, A, and Z
v stanza D uses option sets D, A, and Z

Attributes are processed in the same order as the stanzas. The order in which the
options are specified is important for option resolution. Ordinarily, if an option is
specified more than once, the last specified instance of that option wins.

By default, values defined in a stanza in a configuration file are added to the list of
values specified in previously processed stanzas. For example, assume that the
XLC_USR_CONFIG environment variable is set to point to the user-defined
configuration file at ~/userconfig1. With the user-defined and default configuration
files shown in the following example, the compiler references the xlc stanza in the
user-defined configuration file and uses the option sets specified in the
configuration files in the following order: A1, A, D, and C.

xlc: use=xlc
options= <A1>

DEFLT: use=DEFLT
options=<D>

Figure 2. Custom user-defined configuration
file ~/userconfig1

xlc: use=DEFLT
options=<A>

DEFLT:
options=<C>

Figure 3. Default configuration file xlc.cfg

Overriding the default order of attribute values
You can override the default order of attribute values by changing the assignment
operator(=) for any attribute in the configuration file.

A: use =DEFLT
options=<set of options A>

B: use =B
options=<set of options B1>

B: use =D
options=<set of options B2>

C: use =A
options=<set of options C>

D: use =A
options=<set of options D>

DEFLT:
options=<set of options Z>

Figure 1. Sample configuration file

42 XL C/C++: Compiler Reference

Table 9. Assignment operators and attribute ordering

Assignment
Operator

Description

-= Prepend the following values before any values determined by the default
search order.

:= Replace any values determined by the default search order with the
following values.

+= Append the following values after any values determined by the default
search order.

For example, assume that the XLC_USR_CONFIG environment variable is set to
point to the custom user-defined configuration file at ~/userconfig2.

Custom user-defined configuration file
~/userconfig2 Default configuration file xlc.cfg

xlc_prepend: use=xlc
options-=<B1>

xlc_replace: use=xlc
options:=<B2>

xlc_append: use=xlc
options+=<B3>

DEFLT: use=DEFLT
options=<D>

xlc: use=DEFLT
options=

DEFLT:
options=<C>

The stanzas in the preceding configuration files use the following option sets, in
the following orders:
1. stanza xlc uses B, D, and C
2. stanza xlc_prepend uses B1, B, D, and C
3. stanza xlc_replace uses B2

4. stanza xlc_append uses B, D, C, and B3

You can also use assignment operators to specify an attribute more than once. For
example:

Examples of stanzas in custom configuration files

DEFLT: use=DEFLT
options = -g

This example specifies that the -g option is to
be used in all compilations.

xlc: use=xlc options+=-qlist

xlc_r: use=xlc_r
options+=-qlist

This example specifies that -qlist is to be used
for any compilation called by the xlc and xlc_r
commands. This -qlist specification overrides
the default setting of -qlist specified in the
system configuration file.

DEFLT: use=DEFLT
libraries=-L/home/user/lib,-lmylib

This example specifies that all compilations
should link with /home/user/lib/libmylib.a.

xlc:
use=xlc
options-=-Isome_include_path
options+=some options

Figure 4. Using additional assignment operations

Chapter 2. Configuring compiler defaults 43

Configuring the gxlc or gxlc++ option mapping
The gxlc and gxlc++ utilities use the configuration file /opt/IBM/xlc/13.1.3/etc/
gxlc.cfg to translate GNU C and C++ options to correspondingXL C/C++ options.
Each entry in gxlc.cfg describes how the utility should map a GNU C or C++
option to an XL C/C++ option and how to process it.

An entry consists of a string of flags for the processing instructions, a string for the
GNU C/C++ option, and a string for the XL C/C++ option. The three fields must
be separated by white space. If an entry contains only the first two fields and the
XL C/C++ option string is omitted, the GNU C option in the second field will be
recognized by gxlc or gxlc++ and silently ignored.

The # character is used to insert comments in the configuration file. A comment
can be placed on its own line, or at the end of an entry.

The following syntax is used for an entry in gxlc.cfg:
abcd "gcc_or_g++_option" "xlc_or_xlc++_option"

where:

a Lets you disable the option by adding no- as a prefix. The value is either y
for yes, or n for no. For example, if the flag is set to y, then finline can be
disabled as fno-inline, and the entry is:
ynn* "-finline" "-qinline"

If given -fno-inline, then the utility will translate it to -qnoinline.

b Informs the utility that the XL C/C++ option has an associated value. The
value is either y for yes, or n for no. For example, if option -fmyvalue=n
maps to -qmyvalue=n, then the flag is set to y, and the entry is:
nyn* "-fmyvalue" "-qmyvalue"

The utility will then expect a value for these options.

c Controls the processing of the options. The value can be any of the
following:

n Tells the utility to process the option listed in the gcc_or_g++_option
field.

i Tells the utility to ignore the option listed in the gcc_or_g++_option
field. The utility will generate a message that this has been done,
and continue processing the given options.

e Tells the utility to halt processing if the option listed in the
gcc_or_g++_option field is encountered. The utility will also
generate an error message.

For example, the GCC option -I- is not supported and must be ignored by
gxlc or gxlc++. In this case, the flag is set to i, and the entry is:
nni* "-I-"

If the utility encounters this option as input, it will not process it and will
generate a warning.

d Lets gxlc or gxlc++ include or ignore an option based on the type of
compiler. The value can be any of the following:

44 XL C/C++: Compiler Reference

c Tells the utility to translate the option only for C.

x Tells the utility to translate the option only for C++.

* Tells gxlc or gxlc++ to translate the option for C and C++.

For example, -fwritable-strings is supported by both compilers, and maps
to -qnoro. The entry is:
nnn* "-fwritable-strings" "-qnoro"

"gcc_or_g++_option"
Is a string representing a GNU C/C++ option. This field is required and
must appear in double quotation marks.

"xlc__or_xlc++_option"
Is a string representing an XL C/C++ option. This field is optional, and, if
present, must appear in double quotation marks. If left blank, the utility
ignores the gcc_or_g++_option in that entry.

It is possible to create an entry that will map a range of options. This is
accomplished by using the asterisk (*) as a wildcard. For example, the GCC -D
option requires a user-defined name and can take an optional value. It is possible
to have the following series of options:
-DCOUNT1=100
-DCOUNT2=200
-DCOUNT3=300
-DCOUNT4=400

Instead of creating an entry for each version of this option, the single entry is:
nnn* "-D*" "-D*"

where the asterisk will be replaced by any string following the -D option.

Conversely, you can use the asterisk to exclude a range of options. For example, if
you want gxlc or gxlc++ to ignore all the -std options, then the entry would be:
nni* "-std*"

When the asterisk is used in an option definition, option flags a and b are not
applicable to these entries.

The character % is used with a GNU C/C++ option to signify that the option has
associated parameters. This is used to insure that gxlc or gxlc++ will ignore the
parameters associated with an option that is ignored. For example, the -isystem
option is not supported and uses a parameter. Both must be ignored by the
application. In this case, the entry is:
nni* "-isystem %"

For a complete list of GNU C and C++ and XL C/C++ option mappings, see the
following web page: http://www.ibm.com/support/
docview.wss?uid=swg27039014

Related information
v The GNU Compiler Collection online documentation at http://gcc.gnu.org/

onlinedocs/

Chapter 2. Configuring compiler defaults 45

http://www.ibm.com/support/docview.wss?uid=swg27039014
http://www.ibm.com/support/docview.wss?uid=swg27039014
http://gcc.gnu.org/onlinedocs
http://gcc.gnu.org/onlinedocs

46 XL C/C++: Compiler Reference

Chapter 3. Tracking and reporting compiler usage

You can use the utilization tracking and reporting feature to record and analyze
which users in your organization are using the compiler and the number of users
using it concurrently. This information can help you determine whether your
organization's use of the compiler exceeds your compiler license entitlements.

To use this feature, follow these steps:
1. Understand how the feature works. See “Understanding utilization tracking

and reporting” for more information.
2. Investigate how the compiler is used in your organization, and decide how you

track the compiler usage accordingly. See “Preparing to use this feature” on
page 56 for more information.

3. Configure and enable utilization tracking. See “Configuring utilization
tracking” on page 62 for more information.

4. Use the utilization reporting tool to generate usage reports or prune usage files.
See “Generating usage reports” on page 70 or “Pruning usage files” on page 73
for more information.

Understanding utilization tracking and reporting
The utilization tracking and reporting feature provides a mechanism for you to
detect whether your organization's use of the compiler exceeds your compiler
license entitlements. This section introduces the feature, describes how it works,
and illustrates its typical usage scenarios.

Overview
When utilization tracking is enabled, all compiler invocations are recorded in a file.
This file is called a usage file and it has the .cuf suffix. You can then use the
utilization reporting tool to generate a report from one or more of these usage files,
and optionally prune the usage files.

You can use the utilization tracking and reporting feature in various ways based
on how the compiler is used in your organization. The “Four usage scenarios” on
page 48 section illustrates the typical usage scenarios of this feature.

The following sections introduce the configuration of the utilization tracking
functionality and the usage of the utilization reporting tool.

Utilization tracking

A utilization tracking configuration file urtxlc_cpp1302aix.cfg is included in the
default compiler installation. You can use this file to enable utilization tracking and
control different aspects of the tracking.

A symlink urt_client.cfg is also included in the default compiler installation. It
points to the location of the utilization tracking configuration file. If you want to
put the utilization tracking configuration file in a different location, you can
modify the symlink accordingly.

For more information, see “Configuring utilization tracking” on page 62.

© Copyright IBM Corp. 1996, 2015 47

Note: Utilization tracking is disabled by default.

Utilization reporting tool

The utilization reporting tool generates compiler usage reports based on the
information in the usage files. You can optionally prune the usage files with the
tool. For more information, see “Generating usage reports” on page 70 and
“Pruning usage files” on page 73.

Four usage scenarios
This section describes four possible scenarios for managing the compiler usage, for
recording the compiler usage information and for generating reports from this
information.

The following scenarios describe some typical ways that your organization might
be using the compiler and illustrate how you can use this feature to track compiler
usage in each case.

Note: Actual usage is not limited to these scenarios.

“Scenario: One machine, one shared .cuf file”

“Scenario: One machine, multiple .cuf files” on page 49

“Scenario: Multiple machines, one shared .cuf file” on page 52

“Scenario: Multiple machines, multiple .cuf files” on page 54

Scenario: One machine, one shared .cuf file
This scenario describes an environment where all the compilations are done on one
machine and all users share one .cuf file.

The advantage of using the approach in this scenario is that it simplifies report
generation and usage file pruning, because the utilization report tool only need to
access one .cuf file. The disadvantage is that all compiler users need to compete
for access to this file. Because the file might become large, it might have an impact
on performance. Some setup work is also required to create the shared .cuf file
and to give all compiler users write access. The “The number of usage files” on
page 59 section provides detailed information about using a single usage file for all
compiler users.

In this scenario, compiler users run the compiler on the same machine and their
utilization information is recorded in a shared .cuf file. The utilization tracking
configuration file for the compiler is modified to point to the location of the .cuf
file. When the compiler is invoked, it writes the utilization information to that file.
You can then use the utilization reporting tool to retrieve the utilization
information from the file and generate usage reports.

The following diagram illustrates this scenario.

48 XL C/C++: Compiler Reference

The diagram reflects the following points:
1. user1 and user2 use the same utilization tracking configuration file, which

manages the tracking functionality centrally. A common location /xyz is created
to keep a shared .cuf file.

2. When user1 and user2 invoke the compiler, the utilization information is
recorded in the .cuf file under the common directory /xyz.

3. user3 invokes urt with -qusagefileloc=/xyz to generate usage reports.

Note: Regular running of the utilization reporting tool can prevent these files from
growing too big, because you can prune the usage files with this tool.

Scenario: One machine, multiple .cuf files
This scenario describes an environment where all the compilations are done on one
machine and all users have their own .cuf files.

The approach in this scenario has the following advantages:

Utilization tracking

configuration file

urt configuration file

.cuf

Utilization tracking

User: user1

11

Utilization reporting

User: user3

22

Read
Generate

Read

Read

Write to file in /xyz

Write to file in /xyz

Invoke the compiler Read report

Invoke the compiler

User: user2

11

Report

urt

Compiler

Compiler

Read/write

33

Invoke urt with

-qusagefileloc=/xyz

1. Both user1 and user2 need write access to the .cuf file in /xyz.

2. user3 needs read access to the .cuf file in/xyz to generate the usage report, and write access to prune the .cuf
file.

3. A cron job can be created to run urt automatically on a regular basis.

Figure 5. Compiler users use a single machine, with a shared .cuf file

Chapter 3. Tracking and reporting compiler usage 49

v Compiler users do not have to compete for access to a single .cuf file, and this
might result in better performance.

v You do not need to set up write access to a single common location for all
compiler users. They already have write access to their own home directories.

However, using multiple .cuf files that are automatically created in each user's
home directory might have the following issues:
v Compiler users might not know that the file has been created or what it is when

they see the file. In this case, they might delete the file.
v Some users' home directories might be on file systems that are mounted from a

remote system. This causes utilization tracking to use a remote file, which might
affect performance.

v Compiler users might not want .cuf files to take up space in their home
directories.

Instead of using each user's home directory, the .cuf files for each user can be
created in a common location. The “Usage file location” on page 58 section
provides detailed information about how to create these files in a common
location.

In this scenario, two compiler users run the compiler on the same machine and
they have their own .cuf files. When the compiler is invoked, it automatically
creates a .cuf file for each user and writes the utilization information to that file.
You can then use the utilization reporting tool to retrieve the utilization
information from the .cuf files and generate usage reports.

The following diagram illustrates this scenario.

50 XL C/C++: Compiler Reference

This diagram reflects the following points:
1. user1 and user2 use the same utilization tracking configuration file, which

manages the tracking functionality centrally.
2. When user1 and user2 invoke the compiler, the utilization information is

recorded in the two .cuf files under their respective home directories,
/home/user1 and /home/user2.

3. user3 invokes urt with -qusagefileloc=/home/user1:/home/user2 to generate
usage reports.

Note: If you need to find out which home directories contain usage files, you
can invoke urt as follows:
urt -qusagefileloc=/home -qmaxsubdirs=1

In this case, urt looks for all the .cuf files under /home directory.

Utilization tracking

configuration file

.cuf

Utilization tracking

User: user1

Utilization reporting

User: user3

11

Read

Read

Write

to file in

/home/user1

.cufWrite

to file in

/home/user2

Invoke the compiler

Invoke the compiler

User: user2

Compiler

Compiler

Read

Read

22

Invoke urt with

-qusagefileloc=/home/user1:/home/user2

urt configuration file

Generate

Read

Read report

Report

urt

1. user3 needs read access to .cuf files in /home/user1 and /home/user2 to generate the usage report, and write
access to prune the usage files.

2. A cron job can be created to run urt automatically on a regular basis.

Figure 6. Compiler users use one machine, with separate .cuf files

Chapter 3. Tracking and reporting compiler usage 51

Scenario: Multiple machines, one shared .cuf file
This scenario describes an environment where the compilations are done on
multiple machines but all users share a single .cuf file.

The advantage of the approach in this scenario is that using one .cuf file can
simplify the report generation and the usage file pruning process. The section “The
number of usage files” on page 59 provides detailed information about using a
single usage file for all compiler users. The .cuf file is already on the machine
where the utilization reporting tool is installed. You do not need to copy the file to
that machine or install the tool on multiple machines to prune the .cuf files.

This approach has the following disadvantages:
v The compiler users must compete for access to one usage file. Because the file

might become large, it might have an impact on performance.
v Some setup work is required to create the shared .cuf file and to give all

compiler users write access on a network file system.
v The efficiency of the whole process depends on the speed and reliability of the

network file system, because the compilers and the .cuf file are on different
machines. For example, some file systems are better than others in supporting
file locking, which is required for concurrent access by multiple users.

In this scenario, two compiler users run the compilers on separate machines and
they use one shared .cuf file on a network file system, such as NFS, DFS, or AFS™.
When the compiler is invoked, it writes the utilization information to that file. You
can then use the utilization reporting tool to retrieve the utilization information
from the file and generate usage reports.

The following diagram illustrates this scenario.

52 XL C/C++: Compiler Reference

This diagram reflects the following points:
1. Utilization tracking is configured respectively on Machine A and Machine B.

Notes:

v Although each machine has its own configuration file, the contents of these
files must be the same.

v Centrally managing the utilization tracking functionality can reduce your
configuration effort and eliminate possible errors. The “Central

Report

Generate

Read report

Utilization reporting

Machine C

urt configuration file

Read

Invoke the urt

urt

User: user3

.cuf

Read

Utilization tracking

Machine A

Utilization tracking

configuration file

Read

Write to

file in /xyz

Write to

file in /xyz

Invoke the compiler

Compiler

User: user1

Machine B

Utilization tracking

configuration file

.cuf

Read

Invoke the compiler

Compiler

User: user2

.cuf

NFS

NFS

11

1. On Machine A and Machine B, mount point /xyz is created to Machine C. All compiler utilization is recorded in
the .cuf file, from which the usage report is generated.

Figure 7. Compiler users use multiple machines, with a shared .cuf file

Chapter 3. Tracking and reporting compiler usage 53

configuration” on page 57 section provides detailed information about how
you can use a common configuration file shared by compiler users using
different machines.

2. A network file system is set up for the central management of the .cuf files.
When user1 and user2 invoke the compilers from Machine A and Machine B,
the utilization information of both compilers is written to the .cuf file on
Machine C.

3. user3 invokes urt to generate usage reports from the .cuf file on Machine C.

Note: You can use the utilization reporting tool to prune the usage files regularly
to prevent them from growing too big.

Scenario: Multiple machines, multiple .cuf files
This scenario describes an environment where the compilations are done on
multiple machines and all users have their own usage files.

In this scenario, two compiler users run the compilers on separate machines and
they have their own .cuf files. When the compiler is invoked, it writes the
utilization information to that file. You can then use the utilization reporting tool to
retrieve the utilization information from the file and generate usage reports. This
tool can be run on either of the machines on which the compiler is installed or on
a different machine.

Note: The utilization reporting tool requires read access to all the .cuf files.
You can use either of the following methods to make the files accessible in this
example:
v Use a network file system, such as NFS, DFS, or AFS.
v Copy the files from their original locations to the machine where you plan to

run the utilization reporting tool. You can use ftp, rcp, rsync or any other
remote copy command to copy the files.

The following diagram illustrates this scenario.

54 XL C/C++: Compiler Reference

This diagram reflects the following points:
1. Utilization tracking is configured respectively on Machine A and Machine B.

Notes:

v Although each machine has its own configuration file, the contents of these
files must be the same.

v Centrally managing the utilization tracking functionality can reduce your
configuration effort and eliminate possible errors. The “Central

Report

Utilization reporting

Machine C

urt configuration file

Read

Generate

Invoke the urt

urt

User: user3

.cuf

Read

Utilization tracking

Machine A

Utilization tracking

configuration file

Read

Write

to file in

/home/user1

Invoke the compiler

Compiler

User: user1

Machine B

Utilization tracking

configuration file

.cuf

Read

Write

to file in

/home/user2

Invoke the compiler

Compiler

User: user2

.cuf

Copy

Copy

11

Read report

1. user3 copies the .cuf files to Machine C. A cron job can be created to copy the files automatically on a regular
basis.

Figure 8. Compiler users use multiple machines, with multiple .cuf files

Chapter 3. Tracking and reporting compiler usage 55

configuration” on page 57 section provides detailed information about how
you can use a common configuration file shared by compiler users using
different machines.

2. When user1 and user2 invoke the compilers, the utilization information is
recorded in the two .cuf files under their respective home directories,
/home/user1 and /home/user2.

Note: These .cuf files can also be created in another common location, for
example, /var/tmp. The “Usage file location” on page 58 section provides
detailed information about how to create these files in a common location.

3. user3 copies the two .cuf files from Machine A and Machine B to Machine C.
4. user3 invokes urt to generate usage reports from the .cuf files on Machine C.

Related information
v “Preparing to use this feature”
v “Configuring utilization tracking” on page 62
v “Generating usage reports” on page 70
v “Pruning usage files” on page 73

Preparing to use this feature
Before enabling utilization tracking within your organization, you must consider
certain factors related to how the compiler is used in your organization.

The following sections describe those considerations in detail:

Time synchronization
If you plan to track the utilization of the compiler on more than one machine, you
must consider synchronizing the time across the machines.

The usage report generated by the utilization reporting tool lists the time when the
compiler invocations start and end. The report also determines which invocations
are concurrent. The accuracy and validity of this information will be affected if
time is not synchronized across these machines.

If you are unable to synchronize time across different machines, you can use the
-qadjusttime option to instruct the utilization reporting tool to adjust the times
that have been recorded.

License types and user information
Before you start to use this feature, you need the number and type of license
entitlements for your organization.

The license and user information that you need are as follows:
v The number of Concurrent User licenses that you have for this compiler. This

information is required for the -qmaxconcurrentusers entry in the utilization
tracking configuration file.

v The users who have their own Authorized User license for this compiler. This
information is used for the -qexemptconcurrentusers entry in the utilization
tracking configuration file.

v The users who use the compiler with multiple accounts. This information is used
for the -qsameuser option for the utilization reporting tool.

56 XL C/C++: Compiler Reference

Note: It is not mandatory to specify the users who have their own Authorized
User license and the users who use the compiler with multiple accounts, but
specifying them improves the accuracy of the usage reports generated by the
utilization reporting tool. For detailed information, see “Concurrent user
considerations.”

Central configuration
Configuring utilization tracking the same for all compiler users is very important,
because it can ensure the accuracy of your utilization tracking, and minimize your
configuration and maintenance effort. You can achieve this by ensuring that all
users use the same utilization tracking configuration file.

If you have only one installation of the compiler, you can directly edit the
utilization tracking configuration file. Every compiler user can automatically use
that configuration file.

If you have multiple installations of the compiler, you need to maintain a single
utilization tracking config file and reference it from all installations. Any changes
you make to the utilization tracking configuration file, including enabling or
disabling utilization tracking, can automatically apply to all compiler installations
when users invoke the compiler. In each installation, there is a symlink named
urt_client.cfg, located in /opt/IBM/xlC/13.1.3/urt. Modify the symlink to point
to this shared instance of the configuration file.

If the compiler is installed on multiple machines, the utilization tracking
configuration file needs to be placed on a network file system, such as NFS, DFS,
or AFS, to be used by the compiler on each machine.

Note: If it is not possible for you to use a single utilization tracking configuration
file for all compiler users, you must ensure all utilization tracking configuration
files for each compiler installation are consistent. Using different configurations for
the same compiler is not supported.

Concurrent user considerations
Invocations of the compiler are considered concurrent when their start time and
end times overlap. This section provides the information about how the utilization
reporting tool counts concurrent users and the ways to increase the accuracy of the
usage reports.

When the utilization reporting tool counts concurrent users, it looks at the user
account information that has been captured in the usage files. The account
information consists of a user name, a user ID, and a host name. By default, each
unique combination of this account information is considered and counted as a
different user. However, invocations of the compiler by the following users must
not be included in the count of concurrent users:
v Users who have their own Authorized User license are considered exempt users,

because their use of the compiler does not consume any Concurrent User
licences.

v Users who have multiple accounts. Because the accounts belong to the same
user, invocations of the compiler while logged on using those accounts are
counted as usage by a single user.

Chapter 3. Tracking and reporting compiler usage 57

The utilization reporting tool can account for the above situations if you provide it
with information regarding exempt users and users with multiple accounts. Here is
how you can provide the information:
v Specify the -qexemptconcurrentusers entry in the utilization tracking

configuration file. This entry specifies users with Authorized User licenses.
v Specify the -qsameuser urt command-line option. This option specifies users

with multiple accounts.

Notes:

v When the number of concurrent users is adjusted with -qexemptconcurrentusers
or -qsameuser, the utilization reporting tool generates a message to indicate that
the concurrent usage information is adjusted.

v The number of concurrent users might be zero if all concurrent invocations are
invoked by exempt users. The tool also generates a message with this
information.

Usage file considerations
Usage (.cuf) files are used to store compiler usage information. This section
provides information that helps you decide how you want to generate and use
these files.

Usage file location
Usage files can be created in each user's home directory, or they can be created in a
central location for all users.

With utilization tracking enabled, when a compiler user compiles a program, a
.cuf file is automatically created in the user's home directory in case the file does
not exist. This is convenient for testing the utilization tracking feature because
users already have write access to their own home directories, which means no
additional setup is required. However, this might have the following issues:
v Compiler users might not know that the file has been created or what it is when

they see the file. In this case, they might delete the file.
v Some users' home directories might be on file systems that are mounted from a

remote system. This causes utilization tracking to use a remote file, which might
affect performance.

v Compiler users might not want usage files to take up space in their home
directory.

A good alternative is to set up a central location where the usage files can be
created, and provide appropriate access to that location for both the compiler users
and the utilization reporting tool users. This can be set up by using the
other/world permissions or by using group permissions.

For example, if the central location is a directory named /var/tmp/
track_compiler_use, you can modify the -qusagefileloc entry in the utilization
tracking configuration file as follows:
-qusagefileloc=/var/tmp/track_compiler_use/$LOGNAME.cuf

This creates a .cuf file for each user in the specified location, such as user1.cuf or
user2.cuf. It is easier to run the utilization reporting tool to generate the usage
report from the .cuf files in this central location. You only need to pass the path of
the location, /var/tmp/track_compiler_use to the utilization reporting tool , and
then the tool can read all the .cuf files in that location.

58 XL C/C++: Compiler Reference

If the compiler users are running the compiler on more than one machine, you
need to add $HOSTNAME to the -qusagefileloc entry to ensure that there are no
collisions in the file names. For example, you can specify the -qusagefileloc entry
as follows:
-qusagefileloc=/var/tmp/track_compiler_use/$HOSTNAME_$LOGNAME.cuf

This creates a .cuf file for each user, and the name of that .cuf file also contains
the name of the host on which the compiler is used, such as host1_user1.cuf.

The number of usage files
You can use one usage file or separate usage files for different compiler users.

Using separate usage files for different compiler users

The advantages of using separate usage files are as follows:
v It might provide better performance because compiler users access their own

usage files instead of competing for access to a shared one and separate usage
files are usually smaller.

v Usage file for a user can be automatically created when the user uses the
compiler to compile a program. There is no need to explicitly create a usage file
for each user beforehand. For more information, see “Usage file location” on
page 58.

v When generating utilization reports, you usually include all compiler users.
However, if there are circumstances in which you want to exclude some users,
you can simply omit their usage files when you invoke the utilization reporting
tool. For example, you might want to omit users who have their own
Authorized User license.

The disadvantage is that you might have to maintain separate usage files for
different users.

Using a single usage file for all compiler users

The advantage of using a shared usage file for all users is that you only need to
maintain a single file instead of multiple files. However, with a single usage file,
you lose the flexibility and possible performance benefits of using multiple usage
files, as described in the preceding subsection.

The compiler provides an empty usage file urtstub.cuf in the
opt/IBM/xlc/13.1.3/urt directory. You can create a usage file for all compiler users
by copying the empty usage file to a directory where they all have write access. In
this case, you need to change the -qusagefileloc entry in the utilization tracking
configuration file to point to the location of the usage file.

Usage files on multiple machines
If you use the compiler on multiple machines, you need to decide how to make the
usage files available for the utilization reporting tool.

You can use various methods to make the usage files available for the utilization
reporting tool to generate usage reports and prune the usage files. Choose one of
the following approaches to manage usage files on multiple machines:
v Copy the usage files from the machines where the compiler is used to the

machine where the utilization reporting tool is installed. You can use any remote
copy command, for example, ftp, rcp, scp, and rsync. In this case, the usage files

Chapter 3. Tracking and reporting compiler usage 59

are being accessed locally by both the compiler, for utilization tracking, and by
the utilization reporting tool, for generating the usage report. Accessing the files
locally yields the best performance.

v Use a distributed file system to export the file system from the machines where
the compiler is used, and mount those file systems on the machine where the
utilization reporting tool is installed. When you run the utilization reporting
tool, it can access the usage files remotely via the mounted file systems.

v You can also export the file system from the machine where the utilization
reporting tool is installed, and mount that file system on each machine where
the compiler is used, using it as the location of the usage files where the
compiler is recording its utilization. In this approach, the compiler records
utilization in a remote usage file, and the utilization reporting tool reads the
usage file locally.

Note: If you find this degrades the performance of the compiler, consider using
one of the first two approaches instead.

Usage file size
You need to consider the fact that the size of the usage files might grow quickly,
especially when you use a shared file for all compiler users. If the usage file gets
too large, it might affect utilization tracking performance.

To keep the usage files from growing quickly, you can optionally prune the usage
files when you generate usage reports. You can also prune the files regularly using
cron.

For more information about how to prune files, see “Pruning usage files” on page
73.

Regular utilization checking
You can run the utilization reporting tool on a regular basis to verify whether the
usage of the compiler is compliant with the Concurrent User licenses you have
purchased. You can create a cron job to do this automatically.

If the usage files need to be copied to the machine where the utilization reporting
tool is running, you can also automate the copying task with a cron job.

Another reason for running the tool regularly is to prune the usage files to control
the size of these files.

Note: To reduce contention for read and write access to the usage files, run the
utilization reporting tool or copy the usage files when the compiler is not being
used.

Testing utilization tracking
Before you begin to track the compiler usage for all users in your organization,
you can test the feature with a limited number of users or with a separate compiler
installation. During this testing, you can try different configurations so as to decide
the best setup for your organization.

Testing with a limited number of users

To enable compiler utilization tracking for a limited number of users, you can use
a separate utilization tracking configuration file and ask only these users to use the

60 XL C/C++: Compiler Reference

file. Other users of the same installation use the default utilization tracking
configuration file in which utilization tracking is disabled, and their use of the
compiler is therefore not recorded.

The default compiler configuration file, xlc.cfg.61 or xlc.cfg.71 contains two entries,
xlurt_cfg_path and xlurt_cfg_name, which specify the location of the utilization
tracking configuration file. You need to perform the following tasks to let the
specified users use the separate utilization tracking configuration file:
1. Create a separate compiler configuration file or stanza, in which the

xlurt_cfg_path and xlurt_cfg_name entries specify the location of the utilization
tracking configuration file you want to use.

2. Ask these users to use the following compiler option or environment variable
to instruct the compiler to use the separate compiler configuration file or
stanza, which in turn allows them to use the separate utilization tracking
configuration file.
v The -F option
v The XLC_USR_CONFIG environment variable

Example 1

When you use the default configuration file and a new stanza xlc_urt to compile
your program myprogram.c, follow two steps:
1. Create the stanza in corresponding xlc.cfg.61 or xlc.cfg.71 compiler

configuration file. For example:
xlc_urt: use = DEFLT

xlurt_cfg_path=$location_of_separate_utilization_conf_file
xlurt_cfg_name=$name_of_separate_utilization_conf_file
crt = /lib/crt0.o
mcrt = /lib/mcrt0.o
gcrt = /lib/gcrt0.o
libraries = -L/opt/IBM/xlc/13.1.3/lib,-lxlopt,-lxl,-lc
proflibs = -L/lib/profiled,-L/usr/lib/profiled
options = -qlanglvl=extc99,-qcpluscmt,-qkeyword=inline,-qalias=ansi

2. Use the following command to compile myprogram.c:
xlc myprogram.c -F:xlc_urt

Example 2

When you use the newly created compiler configuration file myconfig.cfg to
compile your program myprogram.c, follow two steps:
1. Set xlurt_cfg_path and xlurt_cfg_name entries to the location and name of

separate utilization tracking configuration file accordingly. For example:
DEFLT_C:

use =DEFLT
xlurt_cfg_path=$location_of_separate_utilization_conf_file
xlurt_cfg_name=$name_of_separate_utilization_conf_file

DEFLT_CPP:
use =DEFLT
xlurt_cfg_path=$location_of_separate_utilization_conf_file
xlurt_cfg_name=$name_of_separate_utilization_conf_file

2. Use either one of the following commands to compile myprogram.c:
export XLC_USR_CONFIG="$location_of_newly_created_configuration_file/myconfig.cfg"
xlc myprogram.c

or
xlc myprogram.c -F$location_of_newly_created_configuration_file/myconfig.cfg

Chapter 3. Tracking and reporting compiler usage 61

Note: This approach is only for testing the utilization tracking feature. Do not use
it for tracking all compiler utilization in your organization unless you can ensure
that all compiler invocations are done with the -F option or the
XLC_USR_CONFIG environment variable set.

Testing with a separate compiler installation

You can install a separate instance of the compiler for testing utilization tracking.
In this case, you can directly modify the utilization tracking configuration file in
that installation to enable and configure utilization tracking. The compiler users
involved in the testing do not need to perform any task for the tracking.

When you are satisfied that you have found the best utilization tracking
configuration for your organization, you can enable it for all compiler users in
your organization.

Related information
v “Configuring utilization tracking”
v -F

Configuring utilization tracking
You can use the utilization tracking configuration file to enable and configure the
utilization tracking functionality.

The default location of the configuration file is /opt/IBM/xlC/13.1.3/urt and its
file name is urtxlc_cpp1302aix.cfg.

The compiler uses a symlink to specify the location of the utilization tracking
configuration file. The symlink is also located in /opt/IBM/xlC/13.1.3/urt and its
name is urt_client.cfg. In the following situations, you might need to change the
symlink:
v If you want to use a utilization tracking configuration file in a different location,

change the symlink to point to that location.
v If you have multiple installations of the same compiler, and you plan to use a

single utilization tracking configuration file, change the symlink in each
installation to point to that file. For more information, see “Central
configuration” on page 57.

Note: Installing a PTF update does not overwrite the utilization tracking
configuration file.

You can use the entries in the utilization tracking configuration file to configure
how compiler usage is tracked. For details about the specific entries in that file and
how they can be modified, see “Editing utilization tracking configuration file
entries.”

Editing utilization tracking configuration file entries
You can configure different aspects of utilization tracking by editing the entries in
the utilization tracking configuration file.

The entries are divided into two categories.
1. The entries in the Product information category identify the compiler. Do not

modify these entries.

62 XL C/C++: Compiler Reference

2. The entries in the Tracking configuration category can be used to configure
utilization tracking for this product. Changes to these entries take effect in the
usage file upon the next compiler invocation. In this case, the compiler emits a
message to indicate that the new configuration values have been saved in the
usage file. When you generate a report from the usage file, the new values are
used.

The following rules apply when you modify the entries:
v The following entries are written to the usage files whenever you change them,

and they are used the next time the utilization reporting tool generates a report
from the usage files. These configuration entries must be the same for all
compiler users.
– -qmaxconcurrentusers

– -qexemptconcurrentusers

– -qqualhostname

v If -qqualhostname is changed, you must discard any existing usage files and
start tracking utilization again with new usage files. Otherwise some invocations
are recorded with qualified host names and some are recorded with unqualified
host names.

Notes:

v The entries are not compiler options. They can only be used in the utilization
tracking configuration file.

v If the -qexemptconcurrentusers entry is specified multiple times in the
utilization tracking configuration file, all the specified instances are used. If other
entries are specified multiple times, the value of the last one overrides previous
ones.

v The compiler generates a message if you specify the above entries with different
values for different users when using more than one utilization tracking
configuration file. You must modify the entries to keep them consistent, or make
sure all compiler users use a single utilization configuration file.

Product information

-qprodId=product_identifier_string
Indicates the unique product identifier string.

-qprodVer=product_version
Indicates the product version.

-qprodRel=product_release
Indicates the product release.

-qprodName=product_name
Indicates the product name.

-qconcurrentusagescope=prod | ver | rel
Specifies the level at which concurrent users are counted, and their numbers
are limited. The suboptions are as follows:
v prod indicates the product level.
v ver indicates the version level.
v rel indicates the release level.

Default: -qconcurrentusagescope=prod

Chapter 3. Tracking and reporting compiler usage 63

Tracking configuration

-qmaxconcurrentusers=number

Specifies the maximum number of concurrent users. It is the number of
Concurrent User licenses that you have purchased for the product. When the
utilization reporting tool generates a report from the usage file, it determines
whether your compiler usage in your organization has exceeded this maximum
number of concurrent users.

Note: You must update this entry to reflect the actual number of Concurrent
User licenses that you have purchased.

Default: 0

-qexemptconcurrentusers ="user_account_info_1 [| user_account_info_2 | ...
| user_account_info_n]"

Specify exempt users who have their own Authorized User license. Exempt
users can have as many concurrent invocations of the compiler as they want,
without affecting the number of Concurrent User licenses available in your
organization. When the utilization reporting tool generates a usage report, it
does not include such users in the count of concurrent users.

user_account_info can be any combination of the following items:
v name(user_name)
v uid(user_ID)
v host(host_name)

Users whose information matches the specified criteria are considered exempt
users. For example, to indicate that user1@host1 and user2@host1 are exempt
users, you can specify this entry in either of the following forms:
v -qexemptconcurrentusers="name(user1)host(host1)"

-qexemptconcurrentusers="name(user2)host(host1)"
v -qexemptconcurrentusers="name(user1)host(host1) | name(user2)host(host1)"

For user_name, user_ID, and host_name, you can also use a list of user names,
user IDs, or hostnames separated by a space within the parentheses. For
example:
-qexemptconcurrentusers="name(user1 user2)host(host1)"

This is equivalent to the previous examples.

Note: Specifying this entry does not exempt users from compiler utilization
tracking. It only exempts them from being counted as concurrent users. To
optimize utilization tracking performance, the format of the specified value is
not validated until the report is produced. For more information about
counting concurrent users, see “Concurrent user considerations” on page 57.

-qqualhostname | -qnoqualhostname

Specifies whether host names that are captured in usage files and then listed in
compiler usage reports are qualified with domain names.

If all compiler usage within your organization is on machines within a single
domain, you can reduce the size of the usage files by using -qnoqualhostname
to suppress domain name qualification.

Default: -qqualhostname, which means the host names are qualified with
domain names.

-qenabletracking | -qnoenabletracking

64 XL C/C++: Compiler Reference

Enables or disables utilization tracking.

Default: -qnoenabletracking, which means utilization tracking is disabled.

-qusagefileloc=directory_or_ file_name

Specifies the location of the usage file.

By default, a .cuf file is automatically created for each user in their home
directory. You can set up a central location where the files for each user can be
created. For more information, see “Usage file location” on page 58.

The following rules apply when you specify this entry:
v If a file name is specified, it must have the .cuf extension. If the file is a

symlink, it must point to a file with the.cuf extension. If the specified file
does not exist, a .cuf file is created, along with any parent directories that
do not already exist.

v If a directory is specified, there must be exactly one file with the .cuf
extension in the directory. A new file is not created in this case.

v The path of the specified directory can be a relative or an absolute path.
Relative paths are relative to the compiler user's current working directory.

Note: If a compiler user cannot access the file, for example, because of
insufficient permissions to use or create the file, the compiler generates a
message and the compilation continues.

You can use the following variables for this option:
v $HOME for the user's home directory. This allows each user to have a .cuf

file in their home directory or a subdirectory of their home directory.
v $USER or $LOGNAME for the user's login user name. You can use this

variable to create a .cuf file for each user and include the user's login name
in the name of the .cuf file or in the name of a parent directory.

v $HOSTNAME for the name of the host on which the compiler runs. This can
be useful when you track utilization across different hosts.

-qfileaccessmaxwait=number_of_milliseconds

Specifies the maximum number of milliseconds to wait for accessing the usage
file.

Note: This entry is used to account for unusual circumstances where the
system is under extreme heavy load and there is a delay in accessing the usage
file.

Default: 3000 milliseconds

Notes:

v These entries are not compiler options. They can only be used in the utilization
tracking configuration file.

v If the -qexemptconcurrentusers entry is specified multiple times in the
utilization tracking configuration file, all the specified instances are used. If other
entries are specified multiple times, the value of the last one overrides previous
ones.

Chapter 3. Tracking and reporting compiler usage 65

Understanding the utilization reporting tool
You can use the utilization reporting tool to generate compiler usage reports from
the information in one or more usage files, and optionally prune the usage files
when you generate the reports.

The tool is located in the /opt/ibmurt/1.2/bin directory. You can use the urt
command to invoke it. The syntax of the urt command is as follows:

►► urt ▼

command_line_options
►◄

The generated report is displayed on the standard output. You can direct the
output to a file if you want to keep the report.

Command-line options control how usage reports are generated. For more
information about the options, see “Utilization reporting tool command-line
options.”

A default configuration file ibmurt.cfg is provided in the /opt/ibmurt/1.2/config
directory. Entries in this file take the same form as the command-line options and
have the same effect. You can also create additional configuration files and use the
-qconfigfile option to specify their names.

You can specify the options in one or more of the following places:
v The default configuration file
v The additional configuration file specified with -qconfigfile

v The command line

The utilization reporting tool uses the options in the default configuration file
before it uses the options on the command line. When it encounters a -qconfigfile
option on the command line, it reads the options in the specified configuration file
and puts them on the command line at the place where the -qconfigfile option is
used.

If an option is specified multiple times, the last specification that the tool
encounters takes effect. Exceptions are -qconfigfile and -qsameuser. For these two
options, all specifications take effect.

Utilization reporting tool command-line options
The utilization reporting tool command-line options control the generation of the
compiler utilization report.

Use these command-line options to modify the details of your compiler utilization
report.

-qreporttype=detail | maxconcurrent

Specifies the type of the usage report to generate.
v detail specifies that all invocations of the compiler are listed in the usage

report. With this suboption, you can get a detailed report, in which the
invocations that have exceeded the allowed maximum number of concurrent
users are indicated.

66 XL C/C++: Compiler Reference

v maxconcurrent specifies that only the compiler invocations that have
exceeded the allowed maximum number of concurrent users are listed. With
this suboption, you can get a compact report, which does not list those
invocations within the maximum number of allowed concurrent users.

Note: The allowed maximum number of concurrent users is specified with the
-qmaxconcurrentusers entry in the utilization tracking configuration file.

Default: -qreporttype=maxconcurrent.

-qrptmaxrecords=num | nomax

Specifies the maximum number of records to list in the report for each product.
num must be a positive integer.

Default: -qrptmaxrecords=nomax, which means all the records are listed.

-qusagefileloc=directory_or_file_name

Specifies the location of the usage files for report generation or pruning. It can
be a list of directories or file names, or both, separated by colons.

The following rules apply when you specify this option:
v If one or more directories are specified, all files with the .cuf extension in

those directories are used. Subdirectories can also be searched by using the
-qmaxsubdirs option.

v The path of the specified directory can be relative or absolute. Relative paths
are relative to the compiler user's current working directory.

v A symlink does not require the .cuf extension but the file to which it points
must have that extension.

Note:

v The -qusagefileloc entry in the utilization tracking configuration file tells the
compiler which usage files to use for recording compiler utilization. This
-qusagefileloc option tells the utilization reporting tool where to find those
usage files.

Default: .:$HOME, which means the utilization reporting tool looks for usage
files in your current working directory and your home directory.

-qmaxsubdirs=num | nomax

Specifies whether to search subdirectories for usage files, and how many levels
of subdirectories to search. num must be a non-negative integer.

If nomax is specified, all the subdirectories are searched. If 0 is specified, no
subdirectories are searched.

Default: 0.

-qconfigfile=file_path

Specifies the user defined configuration file that you want to use.

For more information about how the utilization reporting tool uses the
configuration file, see “Understanding the utilization reporting tool” on page
66.

Note: If you specify this option multiple times, all specified instances are used.

-qsameuser=user_account_info

Chapter 3. Tracking and reporting compiler usage 67

Specifies different user accounts that belong to the same compiler user. Use
this option when a user accesses the compiler from more than one user ID or
machine to avoid having that user reported as multiple users. Invocations of
the compiler by these different accounts are counted as a single user instead of
multiple different users.

user_account_info can be any combination of the following items:
v name(user_name)
v uid(user_ID)
v host(host_name)

There are two ways to pass these rules to the utilization reporting tool. You
can supply specific lists of the user_names, user_IDs orhost_names that are
shared by the same user or you can use a more generic (=) syntax.

For example, to indicate that user1 and user2 are both user names belonging to
the same person who uses the compiler on the host1 machine, use the syntax in
which you specify these user names and the host name explicitly:
-qsameuser="name(user1)host(host1) | name(user2)host(host1)"

or
-qsameuser="name(user1 user2)host(host1)"

Both of these examples use specific user names and host names to indicate
accounts that belong to the same user, but they do so in slightly different ways.
The first example uses a vertical bar to separate the different user accounts that
belong to this user, while the second example uses a list of user names within
the parentheses instead of repeating the same host information twice. They
both convey the same account information, but the second example is more
concise.

As an example of the more generic (=) syntax, you can indicate that all user
accounts with the same user name and uid belong to the same user as follows:
-qsameuser="name(=)uid(=)"

With this option, you are not specifying specific user names or uids as you did
in the previous example. User accounts that have the same user name and uid
are considered as belonging to the same user, regardless of what the specific
user names and uids are, and regardless of what the host name is. This
establishes a general rule that applies to all accounts in your organization
instead of specific ones.

The following rules apply when you specify this option:
v Each instance of the -qsameuser option must use either the list or generic

(=) syntax. You cannot combine them in the same instance of the option but
you can use multiple instances of the -qsameuser option to refine the report.

v The utilization reporting tool matches the user information based on the
order that the -qsameuser option values are specified. Once it finds a match
it stops matching the same user information against any subsequent options.
The following examples illustrate the differences:
– If you specify the -qsameuser option as follows:

-qsameuser="name(user1)" -qsameuser="uid(=)"

Specifying the -qsameuser option in this order means that user accounts
with the user name user1 matches the first option and is not evaluated
against the second option. User accounts user1 and user2 are not
considered the same user even if they have the same uid.

68 XL C/C++: Compiler Reference

– If you specify the -qsameuser option as follows:
-qsameuser="uid(=)" -qsameuser="name(user1)"

Specifying the -qsameuser option in this order means that user accounts
with the same uid are always considered to be the same user, and in
addition, any user accounts with a user name of user1 should be
considered belonging to the same user even if they do not match by uid.

Note: Specifying this option does not prevent user information from being
listed in the usage report. For more information about concurrent users, see
“Concurrent user considerations” on page 57.

-qadjusttime=time_adjustments

Adjusts the time that have been recorded in the usage files for the specified
machines. time_adjustments is a list of entries with the format of machine name +
| - number of seconds, separated by colons.

The following rules apply when you use this option:
v An entry of the form machine name + number of seconds causes the specified

number of seconds to be added to the start and end times of any invocations
recorded for the specified machine.

v An entry of the form machine name - number of seconds causes the specified
number of seconds to be subtracted from the start and end times of any
invocations recorded for the specified machine.

For example:
-qadjusttime="hostA+5:hostB-3"

Five seconds are added to the start and end times of the invocations on hostA,
and three seconds are subtracted from the start and end times of the
invocations on hostB.

Only use this option if the usage files contain utilization information from two
or more machines, and time is not synchronized across those machines. The
adjustments specified by this option compensate for the lack of
synchronization

Notes:

v The specified adjustments are only used for the current run of the urt
command. Specifying this option does not change the invocation information
recorded in the usage files.

v Do not specify the same machine name more than once with this option.

-qusagefilemaxage=number_of_days | nomax

Prunes the usage files by removing all invocations older than the specified
number of days.

Every usage file specified by the -qusagefileloc option is pruned. The usage
report contains this information to indicate the number of records that have
been pruned.

Default: -qusagefilemaxage=nomax, which means no pruning is performed.

-qusagefilemaxsize=number_of_MB | nomax

Prunes the usage files to keep them under the specified size. It prunes the files
by removing the oldest invocations.

Chapter 3. Tracking and reporting compiler usage 69

Every usage file specified by the -qusagefileloc option is pruned. The usage
report contains this information to indicate the number of records that have
been pruned.

Default: -qusagefilemaxsize=nomax, which means no pruning is performed.

-qtimesort=ascend | descend

Specifies the chronological order in which the usage report information is
sorted.
v Specifying ascend means new information is listed after the older

information.
v Specifying descend means the newest information is at the top of the report.

Default: -qtimesort=ascend.

Generating usage reports
You can use the utilization reporting tool to generate compiler usage reports based
on the usage information stored in the usage files.

To generate a report, use the command-line options or the urt configuration file to
specify how you want a report to be generated. For more information about these
options, see “Utilization reporting tool command-line options” on page 66.

Notes:

v You can set up a cron service to run the utilization reporting tool on a regular
basis. If the usage files from which the tool generate reports need to be copied to
the machine where the tool is running, you can also automate this copying task
with cron.

v To reduce contention for read and write access to the usage files, do not run the
tool or copy the usage files when the compiler is being used.

The generated report is displayed on the standard output. You can direct the
output to a file if you want to keep the report.

After a usage report is generated, the utilization reporting tool uses the following
exit codes to indicate the compliance status of your compiler license:
v Exit code ="1".

The utilization reporting tool has detected that the number of Concurrent User
license entitlements specified in the -qmaxconcurrentusers entry in the
utilization tracking configuration file has been exceeded. See the generated
report for details and contact your IBM representative to purchase additional
Concurrent User licenses.

v Exit code ="0".
The compiler utilization is within the number of Concurrent User license
entitlements specified.

For more information about the urt command, see “Understanding the utilization
reporting tool” on page 66.

Understanding usage reports
You can use the report that the utilization report tool generates to analyze the
compiler usage in your organization.

70 XL C/C++: Compiler Reference

The report has a REPORT SUMMARY section that lists the following information:
1. The date and time when the report was generated.
2. The .cuf file or a list of all .cuf files used to generate the report.
3. The options that were passed to the urt command, with default values for any

unspecified options.
4. Possible messages categorized as ERROR, WARNING, or INFO. For detailed

information about possible messages, see “Diagnostic messages from utilization
tracking and reporting” on page 74.

After the summary section, there is a REPORT DETAILS section for each compiler
version. This section lists all of the compiler invocations recorded in the usage files.
The content of these sections varies depending on the report type that you have
specified. For detailed information about the report types, see -qreporttype.

Here are the sample reports generated with the two different report types:

Sample 1: A sample report generated with -qreporttype=detail
REPORT SUMMARY

DATE: 12/18/15 TIME: 01:30:24

OPTIONS USED (* indicates that a default value was used):

reporttype=detail
maxsubdirs=0
configfile="/opt/ibmurt/1.2/config/ibmurt.cfg"
rptmaxrecords=nomax
*adjusttime=
usagefileloc="/home/testrun/ibmxlcompiler.cuf"
*sameuser=
timesort=ascend
usagefilemaxsize=nomax
usagefilemaxage=nomax

FILES USED:

/home/testrun/ibmxlcompiler.cuf

REPORT DETAILS

USAGE INFORMATION FOR PRODUCT: IBM XL C for AIX 13.1.3

Max. Concurrent Users Exceeded? : *** YES ***

Max. Concurrent Users Allowed: 1 Max. Concurrent Users Recorded: 5
Exempt Users:

Product invocations:

Start Time End Time User Number of Concurrent Users
------------------ ------------------ ----------------- --------------------------
12/17/15 16:56:44 12/17/15 16:57:13 user1@host1.ibm.com 1
12/18/15 00:58:29 12/18/15 00:58:32 user2@host2.ibm.com 1
12/18/15 01:16:01 12/18/15 01:16:02 user3@host3.ibm.com 5 (exceeds max. allowed)
12/18/15 01:16:02 12/18/15 01:16:26 user2@host2.ibm.com 5 (exceeds max. allowed)
12/18/15 01:16:08 12/18/15 01:16:08 user3@host2.ibm.com 5 (exceeds max. allowed)
12/18/15 01:16:12 12/18/15 01:16:12 user2@host1.ibm.com 5 (exceeds max. allowed)
12/18/15 01:16:24 12/18/15 01:16:28 user1@host2.ibm.com 5 (exceeds max. allowed)
12/18/15 01:26:11 12/18/15 01:27:46 user3@host3.ibm.com 2 (exceeds max. allowed)
12/18/15 01:26:27 12/18/15 01:27:46 user1@host1.ibm.com 2 (exceeds max. allowed)

Chapter 3. Tracking and reporting compiler usage 71

12/18/15 01:29:59 12/18/15 01:30:00 user2@host1.ibm.com 1
12/18/15 01:30:00 12/18/15 01:30:00 user2@host2.ibm.com 3 (exceeds max. allowed)
12/18/15 01:30:14 12/18/15 01:30:15 user3@host1.ibm.com 3 (exceeds max. allowed)
12/18/15 01:30:14 12/18/15 01:30:14 user2@host2.ibm.com 3 (exceeds max. allowed)

Sample 2: A sample report generated with -qreporttype=maxconcurrent
REPORT SUMMARY

DATE: 12/18/15 TIME: 01:32:53

OPTIONS USED (* indicates that a default value was used):

reporttype=maxconcurrent
maxsubdirs=0
configfile="/opt/ibmurt/1.2/config/ibmurt.cfg"
rptmaxrecords=nomax
*adjusttime=
usagefileloc="/home/testrun/ibmxlcompiler.cuf"
*sameuser=
timesort=ascend
usagefilemaxsize=nomax
usagefilemaxage=nomax

FILES USED:

/home/testrun/ibmxlcompiler.cuf

REPORT DETAILS

USAGE INFORMATION FOR PRODUCT: IBM XL C for AIX 13.1.3

Max. Concurrent Users Exceeded? : *** YES ***

Max. Concurrent Users Allowed: 1 Max. Concurrent Users Recorded: 5

Exempt Users:

Dates and times where usage exceeded the maximum allowed:

Date Time Number of Concurrent Users Users
------------ ---- -------------------------- -----
12/18/15 01:16:01 5 user3@host3.ibm.com

user2@host2.ibm.com
user3@host2.ibm.com
user2@host1.ibm.com
user1@host2.ibm.com

12/18/15 01:16:02 5 user3@host3.ibm.com
user2@host2.ibm.com
user3@host2.ibm.com
user2@host1.ibm.com
user1@host2.ibm.com

12/18/15 01:16:08 5 user3@host3.ibm.com
user2@host2.ibm.com
user3@host2.ibm.com
user2@host1.ibm.com
user1@host2.ibm.com

12/18/15 01:16:12 5 user3@host3.ibm.com
user2@host2.ibm.com
user3@host2.ibm.com
user2@host1.ibm.com
user1@host2.ibm.com

12/18/15 01:16:24 5 user3@host3.ibm.com
user2@host2.ibm.com

72 XL C/C++: Compiler Reference

user3@host2.ibm.com
user2@host1.ibm.com
user1@host2.ibm.com

12/18/15 01:26:11 2 user3@host3.ibm.com
user1@host1.ibm.com

12/18/15 01:26:27 2 user3@host3.ibm.com
user1@host1.ibm.com

12/18/15 01:30:00 3 user2@host2.ibm.com
user2@host1.ibm.com
user3@host1.ibm.com

12/18/15 01:30:14 3 user2@host2.ibm.com
user2@host1.ibm.com
user3@host1.ibm.com

12/18/15 01:30:14 3 user2@host2.ibm.com
user2@host1.ibm.com
user3@host1.ibm.com

Note: There are circumstances under which an end time might not be recorded.
These might include:
v There was a major failure of the compiler, for example, power loss during a

compilation.
v The invocation had not ended at the time when the report was generated, or at

the time when the usage file was being copied.
v The permission to write to the usage file was revoked at some time before the

end time of the invocation was recorded.

An invocation with no end time recorded is not included in the count of
concurrent users.

Pruning usage files
Usage files grow with each compiler invocation. You can prune the usage files with
the utilization report tool.

When you generate a usage report, you can specify the following two options to
optionally prune the usage files:
v -qusagefilemaxage: Removes the invocations older than the specified number of

days. For example, to remove all entries in the usage files older than 30 days,
use the following command:
urt -qusagefilemaxage=30

v -qusagefilemaxsize: Removes the oldest invocations to keep the usage files
under the specified size. For example, to remove the oldest invocations to keep
the usage files under 30 MB, use the following command:
urt -qusagefilemaxsize=30

When usage files are pruned, the usage report includes an information message
that indicates the number of records that have been pruned. If you want to keep
the generated report after the files are pruned, you can redirect the output to a file.

To control the size of the usage files, you can prune the usage files on a regular
basis. You can create a cron job to do this automatically.

If you do not have the utilization reporting tool installed on each machine where
the usage files are located, you have the following options:
v Export the file system from each machine where the usage files exist and mount

it on the machine where the utilization reporting tool is installed. Then run the
tool to prune the usage files on the mounted network file system.

Chapter 3. Tracking and reporting compiler usage 73

v After copying the usage files to the machine where the utilization reporting tool
is installed, delete the files and use new usage files to capture any subsequent
compiler invocations. This approach might also speed up the report generation
because the utilization reporting tool is not accessing the usage files remotely
and it is not spending time pruning the usage files.

Pruning usage files might slow down the usage report generation process,
especially when the number or the size of the usage files is large. If you do not
want to prune the files every time you generate reports, you can set the values for
the -qusagefilemaxage and -qusagefilemaxsize options as follows:
v If you generate the report daily, you can specify these two options with very

high values so pruning does not occur. The default value nomax can be used in
this case.

v You can set appropriate values for these two options and use a separate cron job
to prune the usage files weekly.

Note: To reduce contention for read and write access to the usage files, do not run
the utilization report tool or copy the usage files when the compiler is being used.

Diagnostic messages from utilization tracking and reporting
The compiler generates diagnostic messages to indicate utilization tracking issues.
These messages can help you to fix the associated problems.

For example:
Utilization tracking configuration file could not be read due to
insufficient permissions.

This message indicates that you need read access for utilization tracking
configuration file.

When the utilization reporting tool is used to generate usage reports or prune
usage files, it also generates diagnostic messages. For example:
Unrecognized option -qmaxsubdir.

This message indicates that you have specified a wrong option.

Note: Possible error, warning, or information messages are also included in the
compiler usage report generated by the tool.

Tracking compiler usage with Software License Metric Tags logging
In addition to the utilization reporting tool, you can enable IBM Software License
Metric (SLM) Tags logging in the compiler so that IBM License Metric Tool (ILMT)
can track compiler license usage.

About this task

The compiler logs the usage of the following two types of compiler licenses:
v Authorized user licenses: Each compiler license is tied to a specific user ID,

designated by that user's uid.
v Concurrent user licenses: A certain number of concurrent users are authorized

to use the compiler license at any given time.

74 XL C/C++: Compiler Reference

In IBM XL C/C++ for AIX, V13.1.3, SLM Tags logging is provided for evaluation
purposes only, and logging is enabled only when the -qxflag=slmtags compiler
option is specified to invoke the license metric logging. When logging is enabled,
the compiler logs compiler license usage in the SLM Tags format, to a file in the
/user_home/xl-slmtags directory, where /user_home is the user's home directory.
The compiler logs each compiler invocation as either a concurrent user or an
authorized user invocation, depending on the presence of the invoking user's uid
in a file that lists the authorized users.

If your compiler license is an authorized user license, use the following steps to set
up XL compiler SLM Tags logging.

Procedure
1. Determine which user IDs are from authorized users.
2. Create a file with the name XLAuthorizedUsers in the /etc directory. The file

contains information for authorized users, one line for each user. Each line
should contain only the numeric uid of the authorized user followed by a
comma, and the Software ID (SWID) of the authorized product.
You can obtain the uid of a user ID by using the id -u username command,
where you replace username with the user ID you are looking up. Suppose that
you have three authorized users whose IDs are bsmith, rsingh, and jchen. For
these user IDs you enter the following commands and see the corresponding
output in a command shell:
$id -u bsmith
24461
$id -u rsingh
9204
$id -u jchen
7531

Then you create /etc/XLAuthorizedUsers with the following lines to authorize
these users to use the compiler:
24461,80bc33fc989d4df6a6cab5c741384a31
9204,80bc33fc989d4df6a6cab5c741384a31
7531,80bc33fc989d4df6a6cab5c741384a31

3. Set /etc/XLAuthorizedUsers to be readable by all users invoking the compiler:
chmod a+r /etc/XLAuthorizedUsers

What to do next

SLM Tags logging is enabled when you specify the -qxflag=slmtags option. You
can add this option to the compiler invocation command for a given invocation. If
you want all compiler invocations to have SLM Tags logging enabled, you can add
this option to the appropriate stanza in your compiler configuration file.

If a user's uid is listed in /etc/XLAuthorizedUsers, the compiler will log an
authorized user invocation along with the SWID of the compiler being used each
time the compiler is invoked with the -qxflag=slmtags option. Otherwise the
compiler will log a concurrent user invocation.

Note that XL compiler SLM Tags logging does not enforce license compliance. It
only logs compiler invocations so that you can use the collected data and IBM
License Metric Tool to determine whether your use of the compiler is within the
terms of your compiler license.
Related information:

Chapter 3. Tracking and reporting compiler usage 75

IBM License Metric Tool (ILMT)

76 XL C/C++: Compiler Reference

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/IBM+License+Metric+Tool

Chapter 4. Compiler options reference

This section contains a summary of the compiler options available in XL C/C++ by
functional category, followed by detailed descriptions of the individual options.

Related information
v “Specifying compiler options” on page 5
v “Reusing GNU C/C++ compiler options with gxlc and gxlc++” on page 11

Summary of compiler options by functional category
The XL C/C++ options available on the AIX platform are grouped into the
following categories. If the option supports an equivalent pragma directive, this is
indicated. To get detailed information on any option listed, see the full description
for that option.
v “Output control”
v “Input control” on page 78
v “Language element control” on page 79
v “Template control (C++ only)” on page 81
v “Floating-point and integer control” on page 82
v “Error checking and debugging” on page 86
v “Listings, messages, and compiler information” on page 88
v “Optimization and tuning” on page 90
v “Object code control” on page 83
v “Linking” on page 94
v “Portability and migration” on page 95
v “Compiler customization” on page 95
v “Deprecated options” on page 96

Output control
The options in this category control the type of output file the compiler produces,
as well as the locations of the output. These are the basic options that determine
the following aspects:
v The compiler components that will be invoked
v The preprocessing, compilation, and linking steps that will (or will not) be taken
v The kind of output to be generated

Table 10. Compiler output options

Option name Equivalent pragma name Description

“-c” on page 121 None.
Instructs the compiler to compile or
assemble the source files only but do
not link. With this option, the output
is a .o file for each source file.

“-C, -C!” on page 122 None.
When used in conjunction with the
-E or -P options, preserves or
removes comments in preprocessed
output.

© Copyright IBM Corp. 1996, 2015 77

Table 10. Compiler output options (continued)

Option name Equivalent pragma name Description

“-E” on page 146 None.
Preprocesses the source files named
in the compiler invocation, without
compiling, and writes the output to
the standard output.

“-G” on page 176 None.
Generates a shared object enabled
for runtime linking.

“-qmakedep, -M” on
page 265

None.
Produces the dependency files that
are used by the make tool for each
source file.

“-MF” on page 271 None.
Specifies the name or location for the
dependency output files that are
generated by the -qmakedep or -M
option.

“-qmkshrobj” on page
272

None.
Creates a shared object from
generated object files.

“-o” on page 281 None.
Specifies a name for the output
object, assembler, executable, or
preprocessed file.

“-P” on page 293 None.
Preprocesses the source files named
in the compiler invocation, without
compiling, and creates an output
preprocessed file for each input file.

“-S” on page 324 None.
Generates an assembler language file
for each source file.

“-qshowmacros” on
page 329

None.
Emits macro definitions to
preprocessed output.

“-qtimestamps” on
page 366

None.
Controls whether or not implicit
time stamps are inserted into an
object file.

Input control
The options in this category specify the type and location of your source files.

Table 11. Compiler input options

Option name Equivalent pragma name Description

“-+ (plus sign) (C++
only)” on page 98

None.
Compiles any file as a C++ language
file.

“-qcinc (C++ only)”
on page 130

None.
Places an extern "C" { } wrapper
around the contents of include files
located in a specified directory.

78 XL C/C++: Compiler Reference

Table 11. Compiler input options (continued)

Option name Equivalent pragma name Description

“-I” on page 185 None.
Adds a directory to the search path for
include files.

“-qidirfirst” on page
186

#pragma options idirfirst
Searches for user included files in
directories that are specified by the -I
option before searching any other
directories.

“-qinclude” on page
189

None.
Specifies additional header files to be
included in a compilation unit, as
though the files were named in an
#include statement in the source file.

“-qsourcetype” on
page 340

None.
Instructs the compiler to treat all
recognized source files as a specified
source type, regardless of the actual
file name suffix.

“-qstdinc” on page
346

#pragma options stdinc
Specifies whether the standard include
directories are included in the search
paths for system and user header files.

Language element control
The options in this category allow you to specify the characteristics of the source
code. You can also use these options to enforce or relax language restrictions and
enable or disable language extensions.

Table 12. Language element control options

Option name Equivalent pragma name Description

“-qaltivec” on page
109

None
Enables the compiler support for
vector data types and operators.

“-qasm” on page 112 None
Controls the interpretation and
subsequent generation of code for
assembler language extensions.

“-qcpluscmt (C only)”
on page 132

None.
Enables recognition of C++-style
comments in C source files.

“-D” on page 136 None.
Defines a macro as in a #define
preprocessor directive.

“-qdfp” on page 141 None.
Enables compiler support for decimal
floating-point types and literals.

Chapter 4. Compiler options reference 79

Table 12. Language element control options (continued)

Option name Equivalent pragma name Description

“-qdigraph” on page
142

#pragma options digraph
Enables recognition of digraph key

combinations C++ and operator

keywords C++

to represent

characters that are not found on some
keyboards. Digraph key combinations
include <:, <%, and so on.

C++ Operator keywords include

and, or, and so on. C++

“-qdollar” on page 143 #pragma options dollar
Allows the dollar-sign ($) symbol to
be used in the names of identifiers.

“-qignprag” on page
188

#pragma options ignprag
Instructs the compiler to ignore certain
pragma statements.

“-qkeyword” on page
219

None.
Controls whether the specified name
is treated as a keyword or as an
identifier whenever it appears in your
program source.

“-qlanglvl” on page
224

C

#pragma

options langlvl, #pragma
langlvl

Determines whether source code and
compiler options should be checked
for conformance to a specific language
standard, or subset or superset of a
standard.

“-qlonglong” on page
262

#pragma options long long
Allows IBM long long integer types in
your program.

“-qmacpstr” on page
263

#pragma options macpstr
Converts Pascal string literals
(prefixed by the \p escape sequence)
into null-terminated strings in which
the first byte contains the length of the
string.

“-qmbcs, -qdbcs” on
page 269

#pragma options mbcs,
#pragma options dbcs Enables support for multibyte

character sets (MBCS) and Unicode
characters in your source code.

“-qstaticinline (C++
only)” on page 345

None.
Controls whether inline functions are
treated as having static or extern
linkage.

“-qtabsize” on page
358

None.
Sets the default tab length, for the
purposes of reporting the column
number in error messages.

“-qtrigraph” on page
371

None.
Enables the recognition of trigraph
key combinations to represent
characters not found on some
keyboards.

80 XL C/C++: Compiler Reference

Table 12. Language element control options (continued)

Option name Equivalent pragma name Description

“-U” on page 376 None.
Undefines a macro defined by the
compiler or by the -D compiler option.

“-qutf” on page 383 None.
Enables recognition of UTF literal
syntax.

Template control (C++ only)
You can use these options to control how the C++ compiler handles templates.

Table 13. C++ template options

Option name Equivalent
pragma name

Description

“-qtempinc (C++ only)” on page 360 None.
Generates separate template
include files for template
functions and class declarations,
and places these files in a
directory which can be optionally
specified.

“-qtemplatedepth (C++ only)” on
page 361

None.
Specifies the maximum number
of recursively instantiated
template specializations that will
be processed by the compiler.

“-qtemplaterecompile (C++ only)” on
page 362

None.
Helps manage dependencies
between compilation units that
have been compiled using the
-qtemplateregistry compiler
option.

“-qtemplateregistry (C++ only)” on
page 363

None.
Maintains records of all
templates as they are
encountered in the source and
ensures that only one
instantiation of each template is
made.

“-qtempmax (C++ only)” on page
364

None.
Specifies the maximum number
of template include files to be
generated by the -qtempinc
option for each header file.

“-qtmplinst (C++ only)” on page 368 None.
Manages the implicit
instantiation of templates.

“-qtmplparse (C++ only)” on page
369

None.
Controls whether parsing and
semantic checking are applied to
template definitions.

C++11

-qlanglvl=[no]externtemplate

None. Suppresses the implicit
instantiation of a template
specialization or its members.

Chapter 4. Compiler options reference 81

Table 13. C++ template options (continued)

Option name Equivalent
pragma name

Description

-qlanglvl=[no]gnu_externtemplate None. Suppresses the implicit
instantiation of a template
specialization or its members.
This option is deprecated in XL
C/C++ V13.1.3; you can use the
option
-qlanglvl=[no]externtemplate
instead.

C++11

-qlanglvl=[no]variadic[templates]

None. Defines class or function
templates that can have any
number (including zero) of
parameters.

Floating-point and integer control
Specifying the details of how your applications perform calculations can allow you
to take better advantage of your system's floating-point performance and precision,
including how to direct rounding. However, keep in mind that strictly adhering to
IEEE floating-point specifications can impact the performance of your application.
Use the options in the following table to control trade-offs between floating-point
performance and adherence to IEEE standards.

Table 14. Floating-point and integer control options

Option name Equivalent pragma name Description

“-qbitfields” on page
119

None.
Specifies whether bit fields are signed
or unsigned.

“-qchars” on page 126 #pragma options chars,
#pragma chars Determines whether all variables of

type char is treated as signed or
unsigned.

“-qenum” on page 148 #pragma options enum,
#pragma enum Specifies the amount of storage

occupied by enumerations.

“-qfloat” on page 158 #pragma options float
Selects different strategies for
speeding up or improving the
accuracy of floating-point
calculations.

“-qldbl128,
-qlongdouble” on
page 251

#pragma options ldbl128
Increases the size of long double
types from 64 bits to 128 bits.

“-qlonglit” on page
261

None.
In 64-bit mode, when determining
the implicit types for integer literals,
the compiler behaves as if an l or L
suffix were added to integral literals
with no suffix or with a suffix
consisting only of u or U.

82 XL C/C++: Compiler Reference

Table 14. Floating-point and integer control options (continued)

Option name Equivalent pragma name Description

“-qstrict” on page 348 #pragma options [no]strict
#pragma option_override
(function_name,
"opt (suboption_list)")

Ensures that optimizations that are
done by default at the -O3 and
higher optimization levels, and,
optionally at -O2, do not alter the
semantics of a program.

“-y” on page 398 None.
Specifies the rounding mode for the
compiler to use when evaluating
constant floating-point expressions at
compile time.

Object code control
These options affect the characteristics of the object code, preprocessed code, or
other output generated by the compiler.

Table 15. Object code control options

Option name Equivalent pragma name Description

“-q32, -q64” on page
100

None.
Selects either 32-bit or 64-bit
compiler mode.

“-qalloca, -ma (C
only)” on page 107

#pragma alloca
Provides an inline definition of
system function alloca when it is
called from source code that does
not include the alloca.h header.

“-qconcurrentupdate
(C only)” on page 131

None. Supports updating the operating
system while the kernel is
running.

“-qeh (C++ only)” on
page 147

None.
Controls whether exception
handling is enabled in the module
being compiled.

“-qexpfile” on page
152

None.
When used together with the
-qmkshrobj or -G option, saves all
exported symbols in a designated
file.

“-qfuncsect” on page
169

#pragma options funcsect
Places instructions for each
function in a separate object file
control section or CSECT. Placing
each function in its own section or
CSECT might reduce the size of
your program because the linker
can collect garbage per function
rather than per object file.

“-qinlglue” on page
203

#pragma options inlglue
When used with -O2 or higher
optimization, inlines glue code
that optimizes external function
calls in your application.

Chapter 4. Compiler options reference 83

Table 15. Object code control options (continued)

Option name Equivalent pragma name Description

“-qkeepinlines (C++
only)” on page 217

None.
Keeps or discards definitions for
unreferenced extern inline
functions.

“-qpic” on page 304 None.
Generates position-independent
code suitable for use in shared
libraries.

“-qppline” on page 305 None.
When used in conjunction with
the -E or -P options, enables or
disables the generation of #line
directives.

“-qpriority (C++ only)”
on page 310

#pragma options priority,
#pragma priority Specifies the priority level for the

initialization of static objects.

“-qproto (C only)” on
page 313

#pragma options proto
Specifies the linkage conventions
for passing floating-point
arguments to functions that have
not been prototyped.

“-qreserved_reg” on
page 316

None.
Indicates that the given list of
registers cannot be used during
the compilation except as a stack
pointer, frame pointer or in some
other fixed role.

“-qro” on page 319 #pragma options ro, #pragma
strings Specifies the storage type for

string literals.

“-qroconst” on page
320

#pragma options roconst
Specifies the storage location for
constant values.

“-qroptr” on page 321 None.
Specifies the storage location for
constant pointers.

“-qrtti (C++ only)” on
page 322

None.
Generates runtime type
identification (RTTI) information
for exception handling and for use
by the typeid and dynamic_cast
operators.

“-s” on page 323 None.
Strips the symbol table, line
number information, and
relocation information from the
output file.

84 XL C/C++: Compiler Reference

Table 15. Object code control options (continued)

Option name Equivalent pragma name Description

“-qsaveopt” on page
325

None.
Saves the command-line options
used for compiling a source file,
the user's configuration file name
and the options specified in the
configuration files, the version and
level of each compiler component
invoked during compilation, and
other information to the
corresponding object file.

“-qstackprotect” on
page 344

None. Provides protection against
malicious input data or
programming errors that overwrite
or corrupt the stack.

“-qstatsym” on page
346

None.
Adds user-defined, nonexternal
names that have a persistent
storage class, such as initialized
and uninitialized static variables,
to the symbol table of the object
file.

“-qtbtable” on page
359

#pragma options tbtable
Controls the amount of debugging
traceback information that is
included in the object files.

“-qthreaded” on page
365

None.
Indicates to the compiler whether
it must generate threadsafe code.

“-qtls” on page 366 None.
Enables recognition of the
__thread storage class specifier,
which designates variables that are
to be allocated thread-local
storage; and specifies the
threadlocal storage model to be
used.

“-qunique” on page
377

None.
Generates unique names for static
constructor/destructor file
compilation units.

“-qweakexp” on page
394

None.
When used with the -qmkshrobj
or -G option, includes or excludes
global symbols marked as weak
from the export list generated
when you create a shared object.

“-qweaksymbol” on
page 395

None.
Enables the generation of weak
symbols.

“-qxcall” on page 396 None.
Generates code to treat static
functions within a compilation
unit as if they were external
functions.

Chapter 4. Compiler options reference 85

Error checking and debugging
The options in this category allow you to detect and correct problems in your
source code. In some cases, these options can alter your object code, increase your
compile time, or introduce runtime checking that can slow down the execution of
your application. The option descriptions indicate how extra checking can impact
performance.

To control the amount and type of information you receive regarding the behavior
and performance of your application, consult the options in “Listings, messages,
and compiler information” on page 88.

For information on debugging optimized code, see the XL C/C++ Optimization and
Programming Guide.

Table 16. Error checking and debugging options

Option name Equivalent pragma name Description

“-# (pound sign)” on
page 99

None.
Previews the compilation steps
specified on the command line,
without actually invoking any
compiler components.

“-qcheck” on page 127 #pragma options check
Generates code that performs certain
types of runtime checking.

“-qdbgfmt” on page
139

None Specifies the format for the
debugging information in object files.

“-qdbxextra (C only)”
on page 140

#pragma options dbxextra
When used with the -g option,
specifies that debugging information
is generated for unreferenced typedef
declarations, struct, union, and enum
type definitions.

“-qdpcl” on page 144 None.
Generates symbols that tools based
on the IBM Dynamic Probe Class
Library (DPCL) can use to see the
structure of an executable file.

“-qextchk” on page
153

#pragma options extchk
Generates link-time type checking
information and checks for
compile-time consistency.

“-qflttrap” on page
163

#pragma options flttrap
Determines what types of
floating-point exceptions to detect at
run time.

“-qformat” on page
166

None.
Warns of possible problems with
string input and output format
specifications.

86 XL C/C++: Compiler Reference

Table 16. Error checking and debugging options (continued)

Option name Equivalent pragma name Description

“-qfullpath” on page
168

#pragma options fullpath
When used with the -g or
-qlinedebug option, this option
records the full, or absolute, path
names of source and include files in
object files compiled with debugging
information, so that debugging tools
can correctly locate the source files.

“-qfunctrace” on page
170

None. Calls the tracing routines to trace the
entry and exit points of the specified
functions in a compilation unit.

“-g” on page 173 None.
Generates debugging information for
use by a symbolic debugger, and
makes the program state available to
the debugging session at selected
source locations.

“-qhalt” on page 178 #pragma options halt
Stops compilation before producing
any object, executable, or assembler
source files if the maximum severity
of compile-time messages equals or
exceeds the severity you specify.

“-qhaltonmsg” on
page 179

None.
Stops compilation before producing
any object files, executable files, or
assembler source files if a specified
error message is generated.

“-qheapdebug” on
page 181

None.
Enables debug versions of memory
management functions.

“-qinfo” on page 191 #pragma options info,
#pragma info Produces or suppresses groups of

informational messages.

“-qinitauto” on page
200

#pragma options initauto
Initializes uninitialized automatic
variables to a specific value, for
debugging purposes.

“-qkeepparm” on
page 218

None.
When used with -O2 or higher
optimization, specifies whether
procedure parameters are stored on
the stack.

“-qlinedebug” on
page 255

None.
Generates only line number and
source file name information for a
debugger.

“-qmaxerr” on page
267

None.
Stops compilation when the number
of error messages of a specified
severity level or higher reaches a
specified number.

Chapter 4. Compiler options reference 87

Table 16. Error checking and debugging options (continued)

Option name Equivalent pragma name Description

“-qoptdebug” on page
289

None.
When used with high levels of
optimization, produces files
containing optimized pseudocode
that can be read by a debugger.

“-qsymtab (C only)”
on page 355

None.
Determines the information that
appears in the symbol table.

“-qsyntaxonly” on
page 356

None.
Performs syntax checking without
generating an object file.

“-qwarn0x (C++11)”
on page 392

None. Controls whether to inform users
with messages about differences in
their programs caused by migration
from the C++98 standard to the
C++11 standard.

“-qwarn64” on page
393

None.
Enables checking for possible data
conversion problems between 32-bit
and 64-bit compiler modes.

Listings, messages, and compiler information
The options in this category allow your control over the listing file, as well as how
and when to display compiler messages. You can use these options in conjunction
with those described in “Error checking and debugging” on page 86 to provide a
more robust overview of your application when checking for errors and
unexpected behavior.

Table 17. Listings and messages options

Option name Equivalent pragma name Description

“-qattr” on page 116 #pragma options attr
Produces a compiler listing that
includes the attribute component
of the attribute and
cross-reference section of the
listing.

“-qflag” on page 156 #pragma options flag,
C++

“#pragma report

(C++ only)” on page 449

Limits the diagnostic messages to
those of a specified severity level
or higher.

“-qhelp” on page 182 None. Displays the man page of the
compiler.

“-qlist” on page 256 #pragma options list
Produces a compiler listing file
that includes object and constant
area sections.

“-qlistfmt” on page 257 None.
Creates a report in XML or
HTML format to help you find
optimization opportunities.

88 XL C/C++: Compiler Reference

Table 17. Listings and messages options (continued)

Option name Equivalent pragma name Description

“-qlistopt” on page 260 None.
Produces a compiler listing file
that includes all options in effect
at the time of compiler
invocation.

“-qphsinfo” on page 302 None.
Reports the time taken in each
compilation phase to standard
output.

“-qprint” on page 309 None.
Enables or suppresses listings.

“-qreport” on page 315 None.
Produces listing files that show
how sections of code have been
optimized.

“-qshowinc” on page 327 #pragma options showinc
When used with -qsource option
to generate a listing file,
selectively shows user or system
header files in the source section
of the listing file.

“-qskipsrc” on page 332 None. When a listing file is generated
using the -qsource option,
-qskipsrc can be used to
determine whether the source
statements skipped by the
compiler are shown in the source
section of the listing file.
Alternatively, the -qskipsrc=hide
option is used to hide the source
statements skipped by the
compiler.

“-qsource” on page 339 #pragma options source
Produces a compiler listing file
that includes the source section of
the listing and provides
additional source information
when printing error messages.

“-qsrcmsg (C only)” on
page 343

#pragma options srcmsg
Adds the corresponding source
code lines to diagnostic messages
generated by the compiler.

“-qsuppress” on page 353 None.
Prevents specific informational or
warning messages from being
displayed or added to the listing
file, if one is generated.

“-v, -V” on page 383 None.
Reports the progress of
compilation, by naming the
programs being invoked and the
options being specified to each
program.

Chapter 4. Compiler options reference 89

Table 17. Listings and messages options (continued)

Option name Equivalent pragma name Description

“-qversion” on page 385 None.
Displays the version and release
of the compiler being invoked.

“-w” on page 389 None.
Suppresses warning messages.

“-qxref” on page 396 #pragma options xref
Produces a compiler listing that
includes the cross-reference
component of the attribute and
cross-reference section of the
listing.

Optimization and tuning
The options in this category allow you to control the optimization and tuning
process, which can improve the performance of your application at run time.

Remember that not all options benefit all applications. Trade-offs sometimes occur
among an increase in compile time, a reduction in debugging capability, and the
improvements that optimization can provide.

You can also control some of these options, such as Optimize, -qcompact, or
-qstrict, with an option_override pragma.

In addition to the option descriptions in this section, consult the XL C/C++
Optimization and Programming Guide for details about the optimization and tuning
process as well as writing optimization-friendly source code.

Table 18. Optimization and tuning options

Option name Equivalent pragma name Description

“-qaggrcopy” on page
101

None.
Enables destructive copy operations
for structures and unions.

“-qalias” on page 101 None.
Indicates whether a program
contains certain categories of aliasing
or does not conform to C/C++
standard aliasing rules. The compiler
limits the scope of some
optimizations when there is a
possibility that different names are
aliases for the same storage location..

“-qarch” on page 109 None.
Specifies the processor architecture
for which the code (instructions)
should be generated.

“-qcache” on page 123 None.
Specifies the cache configuration for
a specific execution machine.

“-qcompact” on page
130

#pragma options compact
Avoids optimizations that increase
code size.

90 XL C/C++: Compiler Reference

Table 18. Optimization and tuning options (continued)

Option name Equivalent pragma name Description

“-qdataimported,
-qdatalocal, -qtocdata”
on page 137

None.
Marks data as local or imported.

“-qdirectstorage” on
page 143

None.
Informs the compiler that a given
compilation unit may reference
write-through-enabled or
cache-inhibited storage.

“-qfdpr” on page 155 None.
Provides object files with information
that the IBM Feedback Directed
Program Restructuring (FDPR®)
performance-tuning utility needs to
optimize the resulting executable file.

“-qhot” on page 182 #pragma nosimd, #pragma
novector Performs high-order loop analysis

and transformations (HOT) during
optimization.

“-qignerrno” on page
187

#pragma options ignerrno
Allows the compiler to perform
optimizations as if system calls
would not modify errno.

“-qipa” on page 208 None.
Enables or customizes a class of
optimizations known as
interprocedural analysis (IPA).

“-qisolated_call” on
page 214

#pragma options
isolated_call, #pragma
isolated_call

Specifies functions in the source file
that have no side effects other than
those implied by their parameters.

“-qlargepage” on page
250

None.
Takes advantage of large pages
provided on POWER4 and higher
systems, for applications designed to
execute in a large page memory
environment.

“-qlibansi” on page
253

#pragma options libansi
Assumes that all functions with the
name of an ANSI C library function
are in fact the system functions.

“-qlibmpi” on page
254

None. Asserts that all functions with
Message Passing Interface (MPI)
names are in fact MPI functions and
not a user function with different
semantics.

“-qmaxmem” on page
268

#pragma options maxmem
Limits the amount of memory that
the compiler allocates while
performing specific,
memory-intensive optimizations to
the specified number of kilobytes.

Chapter 4. Compiler options reference 91

Table 18. Optimization and tuning options (continued)

Option name Equivalent pragma name Description

“-qminimaltoc” on
page 272

None.
Controls the generation of the table
of contents (TOC), which the
compiler creates for an executable
file.

“-O, -qoptimize” on
page 282

#pragma options optimize
Specifies whether to optimize code
during compilation and, if so, at
which level.

“-p, -pg, -qprofile” on
page 292

None.
Prepares the object files produced by
the compiler for profiling.

“-qpdf1, -qpdf2” on
page 296

None.
Tunes optimizations through
profile-directed feedback (PDF), where
results from sample program
execution are used to improve
optimization near conditional
branches and in frequently executed
code sections.

“-qprefetch” on page
306

None.
Inserts prefetch instructions
automatically where there are
opportunities to improve code
performance.

“-qprocimported,
-qproclocal,
-qprocunknown” on
page 311

#pragma options
procimported, #pragma
options proclocal, #pragma
options procunkown

Marks functions as local, imported,
or unknown.

“-qinline” on page 204 None.
Attempts to inline functions instead
of generating calls to those functions,
for improved performance.

“-qrestrict” on page
317

None. Specifying this option is equivalent
to adding the restrict keyword to
the pointer parameters within the
specified functions, except that you
do not need to modify the source
file.

“-qshowpdf” on page
330

None.
When used with -qpdf1 and a
minimum optimization level of -O2
at compile and link steps, creates a
PDF map file that contains additional
profiling information for all
procedures in your application.

“-qsimd” on page 330 #pragma nosimd Controls whether the compiler can
automatically take advantage of
vector instructions for processors that
support them.

“-qsmallstack” on
page 333

None.
Minimizes stack usage where
possible. Disables optimizations that
increase the size of the stack frame.

92 XL C/C++: Compiler Reference

Table 18. Optimization and tuning options (continued)

Option name Equivalent pragma name Description

“-qsmp” on page 334 None.
Enables parallelization of program
code.

“-qspeculateabsolutes”
on page 341

None.
Works with the -qtocmerge -bl:file
for non-IPA links and with the
-bl:file for IPA links to disable
speculation at absolute addresses.

“-qstrict” on page 348 #pragma options strict
Ensures that optimizations that are
done by default at the -O3 and
higher optimization levels, and,
optionally at -O2, do not alter the
semantics of a program.

“-qstrict_induction”
on page 352

None.
Prevents the compiler from
performing induction (loop counter)
variable optimizations. These
optimizations may be unsafe (may
alter the semantics of your program)
when there are integer overflow
operations involving the induction
variables.

“-qtocmerge” on page
370

None.
Enables TOC merging to reduce TOC
pointer loads and improves the
scheduling of external loads.

-qtune #pragma options tune
Tunes instruction selection,
scheduling, and other
architecture-dependent performance
enhancements to run best on a
specific hardware architecture.
Allows specification of a target SMT
mode to direct optimizations for best
performance in that mode.

“-qunroll” on page
378

#pragma options unroll,
#pragma unroll Controls loop unrolling, for

improved performance.

“-qunwind” on page
381

None.
Specifies whether the call stack can
be unwound by code looking
through the saved registers on the
stack.

“-qvisibility” on page
387

#pragma GCC visibility
push, #pragma GCC
visibility pop

Specifies the visibility attribute for
external linkage entities in object
files. The external linkage entities
have the visibility attribute that is
specified by the -qvisibility option if
they do not get visibility attributes
from pragma directives, explicitly
specified attributes, or propagation
rules.

Chapter 4. Compiler options reference 93

Linking
Though linking occurs automatically, the options in this category allow you to
direct input and output to the linker, controlling how the linker processes your
object files.

Table 19. Linking options

Option name Equivalent pragma name Description

“-b” on page 117 None.
Sets special linker processing options.
This option can be repeated.

“-bmaxdata” on page
119

None.
Sets the maximum size of the area
shared by the static data (both
initialized and uninitialized) and the
heap.

“-brtl” on page 120 None.
Enables runtime linking for the
output file. When you use -brtl with
the -l option, the linker searches for a
library with the suffix of .so, as well
as of .a. Preference is given to .so over
.a when libraries with the same name
are present in the same directory.

“-qcrt” on page 133 None.
Specifies whether system startup files
are to be linked.

“-e” on page 145 None.
When used together with the
-qmkshrobj option or -G option,
specifies an entry point for a shared
object.

“-f” on page 153 None.
Names a file that stores a list of object
files for the compiler to pass to the
linker.

“-L” on page 223 None.
Searches the directory path for library
files specified by the -l option.

“-l” on page 221 None.
Searches for the specified library file.
For static and dynamic linking, the
linker searches for libkey.a. For
runtime linking with the -brtl option,
the linker searches for libkey.so, and
then libkey.a if libkey.so is not found.

“-qlib” on page 252 None.
Specifies whether standard system
libraries and XL C/C++ libraries are
to be linked.

“-qtwolink (C++
only)” on page 374

None.
Minimizes the number of static
constructors included from libraries
and object files.

“-Z” on page 399 None.
Specifies a prefix for the library search
path to be used by the linker.

94 XL C/C++: Compiler Reference

Portability and migration
The options in this category can help you maintain application behavior
compatibility on past, current, and future hardware, operating systems and
compilers, or help move your applications to an XL compiler with minimal change.

Table 20. Portability and migration options

Option name Equivalent pragma name Description

“-qalign” on page 104 #pragma options align,
#pragma align Specifies the alignment of data

objects in storage, which avoids
performance problems with
misaligned data.

“-qalignrulefor (C++
only)” on page 106

None.
When used with -qalign=power,
determines whether a 4-byte
alignment ceiling is applied to
non-first members of structures that
are of type typedef to array of
element type that exceeds the
alignment ceiling.

“-qgenproto (C only)”
on page 176

None.
Produces prototype declarations from
K&R function definitions or function
definitions with empty parentheses,
and displays them to standard
output.

“-qnamemangling
(C++ only)” on page
274

#pragma namemangling
Chooses the name mangling scheme
for external symbol names generated
from C++ source code.

“-qobjmodel (C++
only)” on page 286

#pragma object_model
Sets the object model to be used for
structures, unions, and classes.

“-qoldpassbyvalue
(C++ only)” on page
287

#pragma pass_by_value
Specifies how classes containing
const or reference members are
passed in function arguments.

“-qupconv (C only)”
on page 382

#pragma options upconv
Specifies whether the unsigned
specification is preserved when
integral promotions are performed.

“-qvecnvol” on page
384

None.
Specifies whether to use volatile or
nonvolatile vector registers.

Compiler customization
The options in this category allow you to specify alternative locations for compiler
components, configuration files, standard include directories, and internal compiler
operation. These options are useful for specialized installations, testing scenarios,
and the specification of additional command-line options.

Chapter 4. Compiler options reference 95

Table 21. Compiler customization options

Option name Equivalent pragma name Description

“-qasm_as” on page
114

None.
Specifies the path and flags used to
invoke the assembler in order to
handle assembler code in an asm
assembly statement.

“-B” on page 118 None.
Specifies substitute path names for XL
C/C++ components such as the
assembler, C preprocessor, and linker.

“-qc_stdinc (C only)”
on page 134

None.
Changes the standard search location
for the XL C and system header files.

“-qcpp_stdinc (C++
only)” on page 135

None.
Changes the standard search location
for the XL C++ and system header
files.

“-F” on page 154 None.
Names an alternative configuration
file or stanza for the compiler.

“-qpath” on page 294 None.
Specifies substitute path names for XL
C/C++ components such as the
compiler, assembler, linker, and
preprocessor.

“-qoptfile” on page
290

None. Specifies a file containing a list of
additional command line options to be
used for the compilation.

“-qspill” on page 342 #pragma options spill
Specifies the size (in bytes) of the
register spill space, the internal
program storage areas used by the
optimizer for register spills to storage.

“-t” on page 356 None.
Applies the prefix specified by the -B
option to the designated components.

“-W” on page 390 None.
Passes the listed options to a
component that is executed during
compilation.

Deprecated options
The compiler still accepts options that are listed in the following table. Options
without an asterisk have been replaced by other options or environment variables
that provide the same functionality. Options with an asterisk are obsolete, or can
produce unexpected results and are not guaranteed to perform as previously
documented. Use with discretion.

Table 22. Deprecated options

Option name Replacement option

-Q -qinline

-qansialias -qalias=ansi

96 XL C/C++: Compiler Reference

Table 22. Deprecated options (continued)

Option name Replacement option

-qarch = ppc | ppc64 | ppcgr | ppc64gr |
ppc64grsq

-qarch=pwr4

-qassert -qalias

-qenablevmx -qsimd

-qfloat=emulate*

-qfold -qfloat=fold

-qhsflt -qfloat=hsflt

-qhssngl -qfloat=hssngl

-qhot=simd | nosimd -qsimd

-qinfo=private -qreport

-qinfo=reduction -qreport

-qipa=clonearch | noclonearch -qtune

-qipa=cloneproc | nocloneproc -qtune

-qipa=inline | noinline -qipa -qinline | -qipa -qnoinline

-qipa=pdfname -qpdf1=pdfname, -qpdf2=pdfname

-qlanglvl=[no]gnu_externtemplate -qlanglvl=[no]externtemplate

-qmaf -qfloat=maf

-qrrm -qfloat=rrm

-qsmp= schedule=affinity -qsmp=schedule=guided

-qsmp= nested_par | nonested_par The “OMP_NESTED” on page 35
environment variable or “omp_set_nested”
on page 712 function

-qspnans -qfloat=spnans

Individual option descriptions
This section contains descriptions of the individual compiler options available in
XL C/C++.

For each option, the following information is provided:

Category
The functional category to which the option belongs is listed here.

Pragma equivalent
Many compiler options allow you to use an equivalent pragma directive to
apply the option's functionality within the source code, limiting the scope
of the option's application to a single source file, or even selected sections
of code.

When an option supports the #pragma options option_name and/or
#pragma name form of the directive, this is indicated.

Purpose
This section provides a brief description of the effect of the option (and
equivalent pragmas), and why you might want to use it.

Syntax
This section provides the syntax for the option, and where an equivalent

Chapter 4. Compiler options reference 97

#pragma name is supported, the specific syntax for the pragma. Syntax for
#pragma options option_name forms of the pragma is not provided, as this
is normally identical to that of the option.

Note that you can also use the C99-style _Pragma operator form of any
pragma; although this syntax is not provided in the option descriptions.
For complete details on pragma syntax, see “Pragma directive syntax” on
page 401

Defaults
In most cases, the default option setting is clearly indicated in the syntax
diagram. However, for many options, there are multiple default settings,
depending on other compiler options in effect. This section indicates the
different defaults that may apply.

Parameters
This section describes the suboptions that are available for the option and
pragma equivalents, where applicable. For suboptions that are specific to
the command-line option or to the pragma directive, this is indicated in the
descriptions.

Usage This section describes any rules or usage considerations you should be
aware of when using the option. These can include restrictions on the
option's applicability, valid placement of pragma directives, precedence
rules for multiple option specifications, and so on.

Predefined macros
Many compiler options set macros that are protected (that is, cannot be
undefined or redefined by the user). Where applicable, any macros that are
predefined by the option, and the values to which they are defined, are
listed in this section. A reference list of these macros (as well as others that
are defined independently of option setting) is provided in Chapter 6,
“Compiler predefined macros,” on page 483

Examples
Where appropriate, examples of the command-line syntax and pragma
directive use are provided in this section.

-+ (plus sign) (C++ only)
Category

Input control

Pragma equivalent

None.

Purpose

Compiles any file as a C++ language file.

This option is equivalent to the -qsourcetype=c++ option.

Syntax

►► -+ ►◄

98 XL C/C++: Compiler Reference

Usage

You can use -+ to compile a file with any suffix other than .a, .o, .so, .S or .s. If you
do not use the -+ option, files must have a suffix of .C (uppercase C), .cc, .cp, .cpp,
.cxx, or .c++ to be compiled as a C++ file. If you compile files with suffix .c
(lowercase c) without specifying -+, the files are compiled as a C language file.

You cannot use the -+ option with the -qsourcetype option.

Predefined macros

None.

Examples

To compile the file myprogram.cplspls as a C++ source file, enter:
xlc++ -+ myprogram.cplspls

Related information
v “-qsourcetype” on page 340

-# (pound sign)
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Previews the compilation steps specified on the command line, without actually
invoking any compiler components.

When this option is enabled, information is written to standard output, showing
the names of the programs within the preprocessor, compiler, and linker that
would be invoked, and the default options that would be specified for each
program. The preprocessor, compiler, and linker are not invoked.

Syntax

►► -# ►◄

Usage

You can use this command to determine the commands and files that will be
involved in a particular compilation. It avoids the overhead of compiling the
source code and overwriting any existing files, such as .lst files.

This option displays the same information as -v, but it does not invoke the
compiler. The -# option overrides the -v option.

Chapter 4. Compiler options reference 99

Predefined macros

None.

Examples

To preview the steps for the compilation of the source file myprogram.c, enter:
xlc myprogram.c -#

Related information
v “-v, -V” on page 383

-q32, -q64
Category

Object code control

Pragma equivalent

None.

Purpose

Selects either 32-bit or 64-bit compiler mode.

Use the -q32 and -q64 options, along with the -qarch and -qtune compiler options,
to optimize the output of the compiler to the architecture on which that output
will be used.

Syntax

►►
32

-q 64 ►◄

Defaults

-q32

Usage

The -q32 and -q64 options override the compiler mode set by the value of the
OBJECT_MODE environment variable, if it exists.

Predefined macros

When -q64 is in effect, __64BIT__ is defined to 1; otherwise, it is undefined.

Examples

To specify that the executable program testing compiled from myprogram.c is to
run on a computer with a 32-bit Power architecture, enter:
xlc -o testing myprogram.c -q31 -qarch=ppc

100 XL C/C++: Compiler Reference

Related information
v Specifying compiler options for architecture-specific compilation
v “-qarch” on page 109
v “-qtune” on page 371

-qaggrcopy
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Enables destructive copy operations for structures and unions.

Syntax

►►
nooverlap

-q aggrcopy = overlap ►◄

Defaults

-qaggrcopy=nooverlap

Parameters

overlap | nooverlap
nooverlap assumes that the source and destination for structure and union
assignments do not overlap, allowing the compiler to generate faster code.
overlap inhibits these optimizations.

Predefined macros

None.

-qalias
Category

Optimization and tuning

Pragma equivalent

None

Purpose

Indicates whether a program contains certain categories of aliasing or does not
conform to C/C++ standard aliasing rules. The compiler limits the scope of some
optimizations when there is a possibility that different names are aliases for the
same storage location.

Chapter 4. Compiler options reference 101

Syntax

►► ▼

:
notypeptr
restrict
global
noallptrs
ansi
noaddrtaken

-q alias = addrtaken
noansi
allptrs
noglobal
norestrict
typeptr

►◄

Defaults
v C++ -qalias=noaddrtaken:noallptrs:ansi:global:restrict:notypeptr

v C -qalias=noaddrtaken:noallptrs:ansi:global:restrict:notypeptr for all
invocation commands except cc.
-qalias=noaddrtaken:noallptrs:noansi:global:restrict:notypeptr for the cc
invocation command.

Parameters

addrtaken | noaddrtaken
When addrtaken is in effect, the reference of any variable whose address is
taken may alias to any pointer type. Any class of variable for which an address
has not been recorded in the compilation unit is considered disjoint from
indirect access through pointers.

When noaddrtaken is specified, the compiler generates aliasing based on the
aliasing rules that are in effect.

allptrs | noallptrs
When allptrs is in effect, pointers are never aliased (this also implies
-qalias=typeptr). Specifying allptrs is an assertion to the compiler that no two
pointers point to the same storage location. These suboptions are only valid if
ansi is also in effect.

ansi | noansi
When ansi is in effect, type-based aliasing is used during optimization, which
restricts the lvalues that can be safely used to access a data object. This
suboption has no effect unless you also specify an optimization option. You
can specify the may_alias attribute for a type that is not subject to type-based
aliasing rules.

When noansi is in effect, the optimizer makes worst case aliasing assumptions.
It assumes that a pointer of a given type can point to an external object or any
object whose address is already taken, regardless of type.

global | noglobal
When global is in effect, type-based aliasing rules are enabled during IPA
link-time optimization across compilation units. Both -qipa and -qalias=ansi
must be enabled for -qalias=global to take effect. Specifying noglobal disables
type-based aliasing rules.

-qalias=global produces better performance at higher optimization levels and
also better link-time performance. If you use -qalias=global, it is recommended

102 XL C/C++: Compiler Reference

that you compile as much as possible of the application with the same version
of the compiler to maximize the effect of the suboption on performance.

restrict | norestrict
When restrict is in effect, optimizations for pointers qualified with the
restrict keyword are enabled. Specifying norestrict disables optimizations for
restrict-qualified pointers.

-qalias=restrict is independent from other -qalias suboptions. Using the
-qalias=restrict option usually results in performance improvements for code
that uses restrict-qualified pointers. Note, however, that using
-qalias=restrict requires that restricted pointers be used correctly; if they are
not, compile-time and runtime failures may result. You can use norestrict to
preserve compatibility with code compiled with versions of the compiler
previous to V9.0.

typeptr | notypeptr
When typeptr is in effect, pointers to different types are never aliased. The
typeptr suboption is valid only when ansi is also in effect. typeptr is more
restrictive than ansi. When typeptr is in effect, pointers can only point to an
object of the same type or a compatible type, and a char* dereference cannot
alias any other types.

C++ If you specify -qalias=typeptr with programs that include the C++
Standard Library, you might get undefined results. C++

Usage

-qalias makes assertions to the compiler about the code that is being compiled. If
the assertions about the code are false, the code that is generated by the compiler
might result in unpredictable behavior when the application is run.

The following are not subject to type-based aliasing:
v Signed and unsigned types. For example, a pointer to a signed int can point to

an unsigned int.
v Character pointer types can point to any type.
v Types that are qualified as volatile or const. For example, a pointer to a const

int can point to an int.
v C++ Base type pointers can point to the derived types of that type. C++

The -qalias=[no]ansi option replaces the deprecated -q[no]ansialias option. Use
-qalias=[no]ansi in your new applications.

Predefined macros

None.

Examples

To specify worst-case aliasing assumptions when you compile myprogram.c, enter:
xlc myprogram.c -O -qalias=noansi

Related information
v “-qipa” on page 208
v -qinfo=als
v “#pragma disjoint” on page 413
v Type-based aliasing in the XL C/C++ Language Reference

Chapter 4. Compiler options reference 103

v The may_alias type attribute (IBM extension) in the XL C/C++ Language Reference
v The restrict type qualifier in the XL C/C++ Language Reference
v “-qrestrict” on page 317

-qalign
Category

Portability and migration

Pragma equivalent

#pragma options align, #pragma align

Purpose

Specifies the alignment of data objects in storage, which avoids performance
problems with misaligned data.

Syntax

►►

=power
=full

-q align =bit_packed
=mac68k
=natural
=packed
=twobyte

►◄

►►

power
full

pragma align (bit_packed)
mac68k
natural
packed
twobyte
reset

►◄

Defaults

-qalign=power

Parameters

bit_packed | packed
Bit field data is packed on a bitwise basis without respect to byte boundaries.

power
Uses the RISC System/6000 alignment rules. This is the default.

full
Uses the RISC System/6000 alignment rules.

Note: -qalign=full is equivalent to -qalign=power.

mac68k | twobyte
Uses the Macintosh alignment rules. Valid only for 32-bit compilations.

104 XL C/C++: Compiler Reference

natural
Structure members are mapped to their natural boundaries. This has the same
effect as the power suboption, except that it also applies alignment rules to
double and long double members that are not the first member of a structure
or union.

reset (pragma only)
Discards the current pragma setting and reverts to the setting specified by the
previous pragma directive. If no previous pragma was specified, reverts to the
command-line or default option setting.

Usage

If you use the -qalign option more than once on the command line, the last
alignment rule specified applies to the file.

The full suboption is the default to ensure compatibility with existing objects. If
compatibility with earlier versions is not necessary, you should consider using
natural alignment to improve potential application performance.

The pragma directives override the -qalign compiler option setting for a specified
section of program source code. The pragmas affect all aggregate definitions that
appear after a given pragma directive; if a pragma is placed inside a nested
aggregate, it applies only to the definitions that follow it, not to any containing
definitions. Any aggregate variables that are declared use the alignment rule that
applied at the point at which the aggregate was defined, regardless of pragmas that
precede the declaration of the variables. See below for examples.

Note: When using -qalign, all system headers are also compiled with -qalign. For
a complete explanation of the option and pragma parameters, as well as usage
considerations, see "Aligning data" in the XL C/C++ Optimization and Programming
Guide.

Predefined macros

None.

Examples

The following examples show the interaction of the option and pragmas. Assuming
compilation with the command xlc file2.c, the following example shows how
the pragma affects only an aggregate definition, not subsequent declarations of
variables of that aggregate type.
/* file2.c The default alignment rule is in effect */

typedef struct A A2;

#pragma options align=bit_packed /* bit_packed alignment rules are now in effect */
struct A {
int a;
char c;
}; #pragma options align=reset /* Default alignment rules are in effect again */

struct A A1; /* A1 and A3 are aligned using bit_packed alignment rules since */
A2 A3; /* this rule applied when struct A was defined */

Chapter 4. Compiler options reference 105

Assuming compilation with the command xlc file.c -qalign=bit_packed, the
following example shows how a pragma embedded in a nested aggregate
definition affects only the definitions that follow it.
/* file2.c The default alignment rule in effect is bit_packed */

struct A {
int a;
#pragma options align=power /* Applies to B; A is unaffected */

struct B {
char c;
double d;

} BB; /* BB uses power alignment rules */
} AA; /* AA uses bit_packed alignment rules /*

Related information
v “#pragma pack” on page 443
v "Aligning data" in the XL C/C++ Optimization and Programming Guide
v "The __align type qualifier" in the XL C/C++ Language Reference
v "The aligned variable attribute" in the XL C/C++ Language Reference
v "The packed variable attribute" in the XL C/C++ Language Reference

-qalignrulefor (C++ only)
Category

Portability and migration

Pragma equivalent

None

Purpose

When used with -qalign=power, determines whether a 4-byte alignment ceiling is
applied to non-first members of structures that are of type typedef to array of
element type that exceeds the alignment ceiling.

Syntax

►►
typedefrespectsrule

-q alignrulefor = power = notypedefrespectsrule ►◄

Defaults

-qalignrulefor=power=typedefrespectsrule

Parameters

typedefrespectsrule | notypedefrespectsrule
When typedefrespectsrule is in effect, the member follows the normal
alignment rules for -qalign=power. This suboption provides compatibility with
code compiled with -qalign=power with XL C++ V6.0 and earlier.

For XL C++ V9.0, the default is typedefrespectsrule.

106 XL C/C++: Compiler Reference

When notypedefrespectsrule is in effect, a member that exceeds the alignment
ceiling of 4 bytes is aligned on 4-byte boundaries. This suboption provides
compatibility with code compiled with -qalign=power with XL C++ V7.0 and
V8.0.

Predefined macros

None.

Examples

The following example uses a typedef declaration for an array of structures
containing a member of long long type, which is not normally subject to a 4-byte
alignment ceiling, and then uses the typedef as the non-first member of a structure
variable declaration. The table shows the differing alignment results depending on
the setting of the -qalignrulefor=power option.

Sample code

Alignment results

typedefrespectsrule notypedefrespectsrule

struct A {
long long a1;

} a;

typedef struct A ten_A[10];

struct B {
char dummy[116];
struct A ten_a[10];

} b;

struct C {
char dummy[116];
ten_A ten_a;
} c;

alignment of b.ten_a = 8
alignment of b = 8
alignment of c.ten_a = 8
alignment of c = 8

alignment of b.ten_a = 8
alignment of b = 8
alignment of c.ten_a = 4
alignment of c = 4

Related information
v “-qalign” on page 104

-qalloca, -ma (C only)
Category

Object code control

Pragma equivalent

#pragma alloca

Purpose

Provides an inline definition of system function alloca when it is called from
source code that does not include the alloca.h header.

Chapter 4. Compiler options reference 107

The function void* alloca(size_t size) dynamically allocates memory, similarly
to the standard library function malloc. The compiler automatically substitutes
calls to the system alloca function with an inline built-in function __alloca in any
of the following cases:
v You include the header file alloca.h
v You compile with -Dalloca=__alloca

v You directly call the built-in function using the form __alloca

The -qalloca and -ma options and #pragma alloca directive provide the same
functionality in C only, if any of the above methods are not used.

Syntax

Option syntax

►► -q alloca
-ma

►◄

Pragma syntax

►► # pragma alloca ►◄

Defaults

Not applicable.

Usage

If you do not use any of the above-mentioned methods to ensure that calls to
alloca are replaced with __alloca, alloca is treated as a user-defined identifier
rather than as a built-in function.

Once specified, #pragma alloca applies to the rest of the file and cannot be
disabled. If a source file contains any functions that you want compiled without
#pragma alloca, place these functions in a different file.

You may want to consider using a C99 variable length array in place of alloca.

Predefined macros

None.

Examples

To compile myprogram.c so that calls to the function alloca are treated as inline,
enter:
xlc myprogram.c -qalloca

Related information
v “-D” on page 136
v “__alignx” on page 693

108 XL C/C++: Compiler Reference

-qaltivec

Category

Language element control

Pragma equivalent

None.

Purpose

Enables the compiler support for vector data types and operators.

Syntax

►►
noaltivec

-q altivec ►◄

Defaults

-qnoaltivec

Usage

The -qaltivec option has effect only when you set or imply -qarch to be an
architecture that supports vector instructions. Otherwise, the compiler ignores
-qaltivec and issues a warning message.

Predefined macros

__ALTIVEC__ is defined to 1 and __VEC__ is defined to 10206 when -qaltivec is
in effect; otherwise, they are undefined.

Related information
v “-qarch”
v “-qsimd” on page 330
v “-qvecnvol” on page 384
v AltiVec Technology Programming Interface Manual, available at

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

-qarch
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Specifies the processor architecture for which the code (instructions) should be
generated.

Chapter 4. Compiler options reference 109

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

Syntax

►►
pwr4

-q arch = auto
pwr5
pwr5x
pwr6
pwr6e
pwr7
pwr8
ppc
ppc64v
ppc64
ppcgr
ppc64gr
ppc64grsq
ppc970

►◄

Defaults
v -qarch=pwr4

v -qarch=auto when -O4 or -O5 is in effect

Parameters

auto
Automatically detects the specific architecture of the compilation machine. It
assumes that the execution environment will be the same as the compilation
environment. This option is implied if the -O4 or -O5 option is set or implied.

pwr4
Produces object code containing instructions that will run on the POWER4,
POWER5, POWER5+, POWER6®, POWER7®, POWER7+™, POWER8®, or
PowerPC® 970 hardware platforms.

pwr5
Produces object code containing instructions that will run on the POWER5,
POWER5+, POWER6, POWER7, POWER7+, or POWER8 hardware platforms.

pwr5x
Produces object code containing instructions that will run on the POWER5+,
POWER6, POWER7, POWER7+, or POWER8 hardware platforms.

pwr6
Produces object code containing instructions that will run on the POWER6,
POWER7, POWER7+, or POWER8 hardware platforms running in POWER6,
POWER7, POWER7+, or POWER8 architected mode. If you would like support
for decimal floating-point instructions, be sure to specify this suboption during
compilation.

pwr6e
Produces object code containing instructions that will run on the POWER6
hardware platforms running in POWER6 enhanced mode.

pwr7
Produces object code containing instructions that will run on the POWER7,
POWER7+, or POWER8 hardware platforms.

pwr8
Produces object code containing instructions that will run on the POWER8
hardware platforms.

110 XL C/C++: Compiler Reference

ppc
This suboption is deprecated. Even though it is still accepted, it is silently
upgraded to -qarch=pwr4.

ppc64
This suboption is deprecated. Even though it is still accepted, it is silently
upgraded to -qarch=pwr4.

ppcgr
This suboption is deprecated. Even though it is still accepted, it is silently
upgraded to -qarch=pwr4.

ppc64gr
This suboption is deprecated. Even though it is still accepted, it is silently
upgraded to -qarch=pwr4.

ppc64grsq
This suboption is deprecated. Even though it is still accepted, it is silently
upgraded to -qarch=pwr4.

ppc64v
Generates instructions for generic PowerPC chips with vector processors, such
as the PowerPC 970. Valid in 32-bit or 64-bit mode.

ppc970
Generates instructions specific to the PowerPC 970 architecture.

Usage

All PowerPC machines share a common set of instructions, but may also include
additional instructions unique to a given processor or processor family. Using the
-qarch option to target a specific architecture for the compilation results in code
that may not run on other architectures, but provides the best performance for the
selected architecture. If you want maximum performance on a specific architecture
and will not be using the program on other architectures, use the appropriate
architecture option. If you want to generate code that can run on more than one
architecture, specify a -qarch suboption that supports a group of architectures.
Table 23 shows the features supported by the different processor architectures and
their representative -qarch suboptions:

Table 23. Feature support in processor architectures
Architecture Graphics

support
Square root
support

64-bit support Vector
processing
support

Large page
support

pwr4 yes yes yes no yes
pwr5 yes yes yes no yes
pwr5x yes yes yes no yes
ppc yes yes yes no yes
ppc64 yes yes yes no yes
ppc64gr yes yes yes no yes
ppc64grsq yes yes yes no yes
ppc64v yes yes yes VMX yes
ppc970 yes yes yes VMX yes
pwr6 yes yes yes VMX yes
pwr6e yes yes yes VMX yes
pwr7 yes yes yes VMX, VSX yes
pwr8 yes yes yes VMX, VSX yes

Chapter 4. Compiler options reference 111

Note: Vector Multimedia Extension (VMX) and Vector Scalar Extension (VSX) are
processor instructions for vector processing.

For any given -qarch setting, the compiler defaults to a specific, matching -qtune
setting, which can provide additional performance improvements. Alternatively, if
you specify -qarch with a group argument, you can specify -qtune as either auto
or provide a specific architecture in the group. For detailed information on using
-qarch and -qtune together, see “-qtune” on page 371.

For a given application program, make sure that you specify the same -qarch
setting when you compile each of its source files. Although the linker and loader
may detect object files that are compiled with incompatible -qarch settings, you
should not rely on it.

Predefined macros

See “Macros related to architecture settings” on page 489 for a list of macros that
are predefined by -qarch suboptions.

Examples

To specify that the executable program testing compiled from myprogram.c is to
run on a computer with VSX instruction support, enter:
xlc -o testing myprogram.c -qarch=pwr8

Related information
v -qprefetch
v -qfloat
v “-qtune” on page 371
v “Specifying compiler options for architecture-specific compilation” on page 10
v “-q32, -q64” on page 100
v “Macros related to architecture settings” on page 489
v "Optimizing your applications" in the XL C/C++ Optimization and Programming

Guide

-qasm
Category

Language element control

Pragma equivalent

None.

Purpose

Controls the interpretation and subsequent generation of code for assembler
language extensions.

When -qasm is in effect, the compiler generates code for assembly statements in
the source code. Suboptions specify the syntax used to interpret the content of the
assembly statement.

112 XL C/C++: Compiler Reference

Note: The system assembler program must be available for this command to take
effect.

Syntax

-qasm syntax (for C)

►►

asm
gcc

=
-q noasm ►◄

-qasm syntax (for C++)

►►

asm
gcc

= stdcpp
-q noasm ►◄

Defaults

v C -qasm=gcc
v C++ -qasm=gcc at all language levels except compat366 or strict98.

-qnoasm=stdcpp when -qlanglvl=compat366 or -qlanglvl=strict98 is in effect.

Parameters

gcc
Instructs the compiler to recognize the extended GCC syntax and semantics for
assembly statements.

C++ stdcpp
Reserved for possible future use.

Specifying -qasm without a suboption is equivalent to specifying the default.

Usage

C The token asm is not a C language keyword. Therefore, at language levels
stdc89 and stdc99, which enforce strict compliance to the C89 and C99 standards,
respectively, the option -qkeyword=asm must also be specified to compile source
that generates assembly code. At all other language levels, token asm is treated as a
keyword unless the option -qnokeyword=asm is in effect. C

C++

The tokens asm, __asm, and __asm__ are keywords at all language levels.

Suboptions of -qnokeyword=token can be used to disable each of these reserved
words individually. C++

For detailed information about the syntax and semantics of inline asm statements,
see "Inline assembly statements" in the XL C/C++ Language Reference.

Predefined macros

v C __IBM_GCC_ASM is predefined to 1 when asm is recognized as a
keyword and assembler code is generated; that is, at all language levels except
stdc89 | stdc99, or when -qkeyword=asm is in effect, and when -qasm[=gcc] is

Chapter 4. Compiler options reference 113

in effect. It is predefined to 0 when asm is recognized as a keyword but
assembler code is not generated; that is, at all language levels except stdc89 |
stdc99, or when -qkeyword=asm is in effect, and when -qnoasm is in effect. It is
undefined when the stdc89 | stdc99 language level or -qnokeyword=asm is in
effect.

v C++ __IBM_GCC_ASM is predefined to 1 when asm is recognized as a
keyword and assembler code is generated; that is, at all language levels except
compat366 | strict98, and when -qasm[=gcc] is in effect. It is predefined to 0
when asm is recognized as a keyword but assembler code is not generated; that
is, at all language levels except compat366|strict98, and when -qnoasm is in
effect. It is undefined when -qlanglvl=compat366 | strict98 or -qnoasm=stdcpp
is in effect. __IBM_STDCPP_ASM is predefined to 0 when -qlanglvl=compat366
| strict98 or -qnoasm=stdcpp is in effect; otherwise it is undefined.

Examples

The following code snippet shows an example of the GCC conventions for asm
syntax in inline statements:
int a, b, c;
int main() {

asm("add %0, %1, %2" : "=r"(a) : "r"(b), "r"(c));
}

Related information
v “-qasm_as”
v “-qkeyword” on page 219
v “-qlanglvl” on page 224
v "Inline assembly statements" in the XL C/C++ Language Reference

-qasm_as
Category

Compiler customization

Pragma equivalent

None.

Purpose

Specifies the path and flags used to invoke the assembler in order to handle
assembler code in an asm assembly statement.

Normally the compiler reads the location of the assembler from the configuration
file; you can use this option to specify an alternate assembler program and flags to
pass to that assembler.

Syntax

►► -q asm_as = path
" path "

flags

►◄

114 XL C/C++: Compiler Reference

Defaults

By default, the compiler invokes the assembler program defined for the as
command in the compiler configuration file.

Parameters

path
The full path name of the assembler to be used.

flags
A space-separated list of options to be passed to the assembler for assembly
statements. Quotation marks must be used if spaces are present.

Predefined macros

None.

Examples

To instruct the compiler to use the assembler program at /bin/as when it
encounters inline assembler code in myprogram.c, enter the following command:
xlc myprogram.c -qasm_as=/bin/as

To instruct the compiler to pass some additional options to the assembler at
/bin/as for processing inline assembler code in myprogram.c, enter the following
command:
xlc myprogram.c -qasm_as="/bin/as -a64 -l a.lst"

Related information
v “-qasm” on page 112

-qassert
Category

Optimization and tuning

Pragma equivalent

None

Purpose

Provides information about the characteristics of the files that can help to fine-tune
optimizations.

Syntax

►►

▼

:
norefalign

= refalign
-q assert ►◄

Chapter 4. Compiler options reference 115

Defaults

-qassert=norefalign

Parameters

refalign | norefalign
Specifies that all pointers inside the compilation unit only point to data
that is naturally aligned according to the length of the pointer types. With
this assertion, the compiler might generate more efficient code. This
assertion is particularly useful when you target a SIMD architecture with
-qhot=level=0 or -qhot=level=1 with -qsimd=auto.

-qattr
Category

Listings, messages, and compiler information

Pragma equivalent

C #pragma options [no]attr C

Purpose

Produces a compiler listing that includes the attribute component of the attribute
and cross-reference section of the listing.

Syntax

►►
noattr

-q attr
= full

►◄

Defaults

-qnoattr

Parameters

full
Reports all identifiers in the program. If you specify attr without this
suboption, only those identifiers that are used are reported.

Usage

If -qattr is specified after -qattr=full, it has no effect; the full listing is produced.

This option does not produce a cross-reference listing unless you also specify
-qxref.

The -qnoprint option overrides this option.

Note: Specifying -qattr does not list the #define directives. You can use
“-qshowmacros” on page 329 instead.

116 XL C/C++: Compiler Reference

Predefined macros

None.

Examples

To compile the program myprogram.c and produce a compiler listing of all
identifiers, enter:
xlc myprogram.c -qxref -qattr=full

Related information
v “-qshowmacros” on page 329
v “-qprint” on page 309
v “-qxref” on page 396

-b
Category

Linking

Pragma equivalent

None.

Purpose

Sets special linker processing options. This option can be repeated.

Syntax

►►
dynamic

-b shared
static

►◄

Defaults

-bdynamic

Parameters

dynamic | shared
Causes the linker to process subsequent shared objects in dynamic mode. In
dynamic mode, shared objects are not statically included in the output file.
Instead, the shared objects are listed in the loader section of the output file.

static
Causes the linker to process subsequent shared objects in static mode. In static
mode, shared objects are statically linked in the output file.

Usage

The default option, -bdynamic, ensures that the C library (libc) links dynamically.
To avoid possible problems with unresolved linker errors when linking the C
library, you must add the -bdynamic option to the end of any compilation sections
that use the -bstatic option.

Chapter 4. Compiler options reference 117

Predefined macros

Not applicable.

Related information
v “-brtl” on page 120

-B
Category

Compiler customization

Pragma equivalent

None.

Purpose

Specifies substitute path names for XL C/C++ components such as the assembler,
C preprocessor, and linker.

You can use this option if you want to keep multiple levels of some or all of the
XL C/C++ executables and have the option of specifying which one you want to
use. However, it is preferred that you use the -qpath option to accomplish this
instead.

Syntax

►► -B
prefix

►◄

Defaults

The default paths for the compiler executables are defined in the compiler
configuration file.

Parameters

prefix
Defines part of a path name for programs you can name with the -t option.
You must add a slash (/). If you specify the -B option without the prefix, the
default prefix is /lib/o.

Usage

The -t option specifies the programs to which the -B prefix name is to be
appended; see “-t” on page 356 for a list of these. If you use the -B option without
-tprograms, the prefix you specify applies to all of the compiler executables.

The -B and -t options override the -F option.

Predefined macros

None.

118 XL C/C++: Compiler Reference

Examples

In this example, an earlier level of the compiler components is installed in the
default installation directory. To test the upgraded product before making it
available to everyone, the system administrator restores the latest installation
image under the directory /home/jim and then tries it out with commands similar
to:
xlc -tcbI -B/home/jim/opt/IBM/xlC/13.1.3/bin/ test_suite.c

Once the upgrade meets the acceptance criteria, the system administrator installs it
in the default installation directory.

Related information
v “-qpath” on page 294
v “-t” on page 356
v “Invoking the compiler” on page 1

-qbitfields
Category

Floating-point and integer control

Pragma equivalent

None.

Purpose

Specifies whether bit fields are signed or unsigned.

Syntax

►►
unsigned

-q bitfields = signed ►◄

Defaults

-qbitfields=unsigned

Parameters

signed
Bit fields are signed.

unsigned
Bit fields are unsigned.

Predefined macros

None.

-bmaxdata
Category

Linking

Chapter 4. Compiler options reference 119

Pragma equivalent

None

Purpose

Sets the maximum size of the area shared by the static data (both initialized and
uninitialized) and the heap.

Syntax

►► -bmaxdata : number ►◄

Defaults

-bmaxdata:0

Parameters

number
The number of bytes used representing the soft ulimit set by the system
loader.
v For 32-bit programs, the maximum value allowed by the system is

0x80000000 for programs that are running under large program support and
0xD0000000 for programs that are running under very large program
support. For details, see Large program support in the documentation of
AIX operating systems.

v For 64-bit programs, the -bmaxdata option provides a guaranteed maximum
size for the programs data heap. You can specify any value, but the data
area cannot extend past 0x06FFFFFFFFFFFFF8 regardless of the value that
you specified.

Predefined macros

None.

-brtl
Category

Linking

Pragma equivalent

None.

Purpose

Enables runtime linking for the output file. When you use -brtl with the -l option,
the linker searches for a library with the suffix of .so, as well as of .a. Preference is
given to .so over .a when libraries with the same name are present in the same
directory.

Runtime linking is the ability to resolve undefined and non-deferred symbols in
shared modules after the program execution has already begun. It is a mechanism

120 XL C/C++: Compiler Reference

http://publib.boulder.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.genprogc/doc/genprogc/lrg_prg_support.htm

for providing runtime definitions (these function definitions are not available at
link-time) and symbol rebinding capabilities. Compiling with -brtl adds a reference
to the runtime linker to your program, which will be called by your program's
startup code (/lib/crt0.o) when program execution begins. Shared object input files
are listed as dependents in the program loader section in the same order as they
are specified on the command line. When the program execution begins, the
system loader loads these shared objects so their definitions are available to the
runtime linker.

Syntax

►► -brtl ►◄

Usage

The main application must be built to enable runtime linking. The system loader
must be able to load and resolve all symbols referenced in the main program and
called modules, or the program will not execute. For how to link a library to an
application with runtime linking enabled, see "Linking a library to an application"
in the XL C/C++ Optimization and Programming Guide.

DCE thread libraries and heap debug libraries are not compatible with runtime
linking. Do not specify the -brtl compiler option if you are invoking the compiler
with xlC_r4 or xlc++_r4, or if the -qheapdebug compiler option is specified.

Predefined macros

None.

Related information
v “-b” on page 117
v “-G” on page 176

-c
Category

Output control

Pragma equivalent

None.

Purpose

Instructs the compiler to compile or assemble the source files only but do not link.
With this option, the output is a .o file for each source file.

Syntax

►► -c ►◄

Chapter 4. Compiler options reference 121

Defaults

By default, the compiler invokes the linker to link object files into a final
executable.

Usage

When this option is in effect, the compiler creates an output object file, file_name.o,
for each valid source file, such as file_name.c, file_name.i, file_name.C, file_name.cpp,
or file_name.s. You can use the -o option to provide an explicit name for the object
file.

The -c option is overridden if the -E, -P, or -qsyntaxonly option is specified.

Predefined macros

None.

Examples

To compile myprogram.c to produce an object file myprogram.o, but no executable
file, enter the command:
xlc myprogram.c -c

To compile myprogram.c to produce the object file new.o and no executable file,
enter the command:
xlc myprogram.c -c -o new.o

Related information
v “-E” on page 146
v “-o” on page 281
v “-P” on page 293
v “-qsyntaxonly” on page 356

-C, -C!
Category

Output control

Pragma equivalent

None.

Purpose

When used in conjunction with the -E or -P options, preserves or removes
comments in preprocessed output.

When -C is in effect, comments are preserved. When -C! is in effect, comments are
removed.

122 XL C/C++: Compiler Reference

Syntax

►►
-C
-C! ►◄

Defaults

-C

Usage

The -C option has no effect without either the -E or the -P option. If -E is specified,
continuation sequences are preserved in the output. If -P is specified, continuation
sequences are stripped from the output, forming concatenated output lines.

You can use the -C! option to override the -C option specified in a default makefile
or configuration file.

Predefined macros

None.

Examples

To compile myprogram.c to produce a file myprogram.i that contains the
preprocessed program text including comments, enter:
xlc myprogram.c -P -C

Related information
v “-E” on page 146
v “-P” on page 293

-qcache
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Specifies the cache configuration for a specific execution machine.

If you know the type of execution system for a program, and that system has its
instruction or data cache configured differently from the default case, use this
option to specify the exact cache characteristics. The compiler uses this information
to calculate the benefits of cache-related optimizations.

Syntax

Chapter 4. Compiler options reference 123

►► ▼ ▼

: :

-q cache = level = 1
2 assoc = number
3 auto

type = c cost = cycles
d line = bytes
i size = Kbytes

►◄

Defaults

Automatically determined by the setting of the -qtune option.

Parameters

assoc
Specifies the set associativity of the cache.

number
Is one of:

0 Direct-mapped cache

1 Fully associative cache

N>1 n-way set associative cache

auto
Automatically detects the specific cache configuration of the compiling
machine. This assumes that the execution environment will be the same as the
compilation environment.

cost
Specifies the performance penalty resulting from a cache miss.

cycles

level
Specifies the level of cache affected. If a machine has more than one level of
cache, use a separate -qcache option.

level
Is one of:

1 Basic cache

2 Level-2 cache or, if there is no level-2 cache, the table lookaside buffer
(TLB)

3 TLB

line
Specifies the line size of the cache.

bytes
An integer representing the number of bytes of the cache line.

size
Specifies the total size of the cache.

Kbytes
An integer representing the number of kilobytes of the total cache.

type
Specifies that the settings apply to the specified cache_type.

124 XL C/C++: Compiler Reference

cache_type
Is one of:

c Combined data and instruction cache

d Data cache

i Instruction cache

Usage

The -qtune setting determines the optimal default -qcache settings for most typical
compilations. You can use the -qcache to override these default settings. However,
if you specify the wrong values for the cache configuration, or run the program on
a machine with a different configuration, the program will work correctly but may
be slightly slower.

Use the following guidelines when specifying -qcache suboptions:
v Specify information for as many configuration parameters as possible.
v If the target execution system has more than one level of cache, use a separate

-qcache option to describe each cache level.
v If you are unsure of the exact size of the cache(s) on the target execution

machine, specify an estimated cache size on the small side. It is better to leave
some cache memory unused than it is to experience cache misses or page faults
from specifying a cache size larger than actually present.

v The data cache has a greater effect on program performance than the instruction
cache. If you have limited time available to experiment with different cache
configurations, determine the optimal configuration specifications for the data
cache first.

v If you specify the wrong values for the cache configuration, or run the program
on a machine with a different configuration, program performance may degrade
but program output will still be as expected.

v The -O4 and -O5 optimization options automatically select the cache
characteristics of the compiling machine. If you specify the -qcache option
together with the -O4 or -O5 options, the option specified last takes precedence.

v Unless -qcache=auto is specified, you must specify both the type and level
suboptions when you use the -qcache option. Otherwise, a warning message is
issued.

Predefined macros

None.

Examples

To tune performance for a system with a combined instruction and data level-1
cache, where cache is 2-way associative, 8 KB in size and has 64-byte cache lines,
enter:
xlc -O4 -qcache=type=c:level=1:size=8:line=64:assoc=2 file.c

Related information
v “-qcache” on page 123
v “-O, -qoptimize” on page 282
v “-qtune” on page 371
v “-qipa” on page 208

Chapter 4. Compiler options reference 125

v "Optimizing your applications" in the XL C/C++ Optimization and Programming
Guide

-qchars
Category

Floating-point and integer control

Pragma equivalent

#pragma options chars, #pragma chars

None.

Purpose

Determines whether all variables of type char is treated as signed or unsigned.

Syntax

►►
unsigned

-q chars = signed ►◄

Pragma syntax

►►
unsigned

pragma chars (signed) ►◄

Defaults

-qchars=unsigned

Parameters

unsigned
Variables of type char are treated as unsigned char.

signed
Variables of type char are treated as signed char.

Usage

Regardless of the setting of this option or pragma, the type of char is still
considered to be distinct from the types unsigned char and signed char for
purposes of type-compatibility checking or C++ overloading.

The pragma must appear before any source statements. If the pragma is specified
more than once in the source file, the first one will take precedence. Once
specified, the pragma applies to the entire file and cannot be disabled; if a source
file contains any functions that you want to compile without #pragma chars, place
these functions in a different file.

126 XL C/C++: Compiler Reference

Predefined macros
v _CHAR_SIGNED and __CHAR_SIGNED__ are defined to 1 when signed is in

effect; otherwise, it is undefined.
v _CHAR_UNSIGNED and __CHAR_UNSIGNED__ are defined to 1 when

unsigned is in effect; otherwise, they are undefined.

Examples

To treat all char types as signed when compiling myprogram.c, enter:
xlc myprogram.c -qchars=signed

-qcheck
Category

Error checking and debugging

Pragma equivalent

#pragma options [no]check

Purpose

Generates code that performs certain types of runtime checking.

If a violation is encountered, a runtime error is raised by sending a SIGTRAP
signal to the process. Note that the runtime checks might result in slower
application execution.

Syntax

►►

▼

nocheck
-q check

:
all

= bounds
nobounds
divzero
nodivzero
nullptr
nonullptr
stackclobber
nostackclobber
unset
nounset

►◄

Defaults

-qnocheck

Parameters

all
Enables all suboptions.

bounds | nobounds
Performs runtime checking of addresses for subscripting within an object of

Chapter 4. Compiler options reference 127

known size. The index is checked to ensure that it will result in an address that
lies within the bounds of the object's storage. A trap will occur if the address
does not lie within the bounds of the object.

This suboption has no effect on accesses to a variable length array.

divzero | nodivzero
Performs runtime checking of integer division. A trap will occur if an attempt
is made to divide by zero.

nullptr | nonullptr
Performs runtime checking of addresses contained in pointer variables used to
reference storage. The address is checked at the point of use; a trap will occur
if the value is less than 512.

stackclobber | nostackclobber
Detects stack corruption of nonvolatile registers in the save area in user
programs. This type of corruption happens only if any of the nonvolatile
registers in the save area of the stack is modified.

If the -qstackprotect option and this suboption are both on, this suboption
detects the stack corruption first.

unset | nounset
Checks for automatic variables that are used before they are set. A trap will
occur at run time if an automatic variable is not set before it is used.

The -qinitauto option initializes automatic variables. As a result, the -qinitauto
option hides uninitialized variables from the -qcheck=unset option.

Specifying the -qcheck option with no suboptions is equivalent to specifying
-qcheck=all.

Usage

You can specify the -qcheck option more than once. The suboption settings are
accumulated, but the later suboptions override the earlier ones.

You can use the all suboption along with the no... form of one or more of the other
options as a filter. For example, using:
xlc myprogram.c -qcheck=all:nonullptr

provides checking for everything except for addresses contained in pointer
variables used to reference storage. If you use all with the no... form of the
suboptions, all should be the first suboption.

Predefined macros

None.

Examples

The following code example shows the effect of -qcheck=nullptr:bounds:
void func1(int* p) {

p = 42; / Traps if p is a null pointer */
}

128 XL C/C++: Compiler Reference

void func2(int i) {
int array[10];
array[i] = 42; /* Traps if i is outside range 0 - 9 */

}

The following code example shows the effect of -qcheck=divzero:
void func3(int a, int b) {

a / b; /* Traps if b=0 */
}

The following code example shows the effect of -qcheck=stackclobber:
void func4(char *p, int off, int value) {

*(p+off)=value;
}

int foo() {
int i;
char boo[9];
i=24;
func4(boo, i, 66);
/* Traps here */
return 0;

}

int main() {
foo();

}

Note: The offset is subject to change at different optimization level. When -O2 or
lower optimization level is in effect, func4 will clobber the save area of foo because
*(p+off) is in the save area.

In function factorial, result is not initialized when n<=1. To detect an
uninitialized variable in factorial.c, enter the following command:
xlc -g -O -qcheck=unset factorial.c

factorial.c contains the following code:
int factorial(int n) {

int result;

if (n > 1) {
result = n * factorial(n - 1);

}

return result; /* line 8 */
}

int main() {
int x = factorial(1);
return x;

}

The compiler issues the following informational message during compile time and
a trap occurs at line 8 during run time:
1500-099: (I) "factorial.c", line 8: "result" might be used before it is set.

Note: If you set -qcheck=unset at noopt, the compiler does not issue informational
messages at compile time.

Chapter 4. Compiler options reference 129

-qcinc (C++ only)
Category

Input control

Pragma equivalent

None.

Purpose

Places an extern "C" { } wrapper around the contents of include files located in a
specified directory.

Syntax

►►
nocinc

-q cinc = directory_path ►◄

Defaults

-qnocinc

Parameters

directory_path
The directory where the include files to be wrapped with an extern "C"
linkage specifier are located.

Predefined macros

None.

Examples

Assume your application myprogram.C includes header file foo.h, which is located
in directory /usr/tmp and contains the following code:
int foo();

Compiling your application with:
xlc++ myprogram.C -qcinc=/usr/tmp

will include header file foo.h into your application as:
extern "C" {
int foo();
}

-qcompact
Category

Optimization and tuning

130 XL C/C++: Compiler Reference

Pragma equivalent

#pragma options [no]compact

Purpose

Avoids optimizations that increase code size.

Syntax

►►
nocompact

-q compact ►◄

Defaults

-qnocompact

Usage

Code size is typically reduced by inhibiting optimizations that replicate or expand
code inline, such as inlining or loop unrolling. Execution time might increase.

This option takes effect only when it is specified at the -O2 optimization level, or
higher.

Predefined macros

__OPTIMIZE_SIZE__ is predefined to 1 when -qcompact and an optimization level
are in effect. Otherwise, it is undefined.

Examples

To compile myprogram.c, instructing the compiler to reduce code size whenever
possible, enter the following command:
xlc myprogram.c -O -qcompact

-qconcurrentupdate (C only)
Category

Object code control

Pragma equivalent

None.

Purpose

Supports updating the operating system while the kernel is running.

Syntax

►►
noconcurrentupdate

-q concurrentupdate ►◄

Chapter 4. Compiler options reference 131

Defaults

-qnoconcurrentupdate

Usage

If you want to use AIX Concurrent Update (hot-patch), you must use
-qconcurrentupdate to compile your code. For details about Concurrent Update,
see the AIX Concurrent Update documentation.

Note: This is a C-only option. If you compile your code with -qconcurrentupdate
using a C++ compiler, the compiler issues a message: The option
"-qconcurrentupdate" is not supported.

Predefined macros

None.

Examples
xlc myprogram.c -qconcurrentupdate

-qcpluscmt (C only)
Category

Language element control

Pragma equivalent

None.

Purpose

Enables recognition of C++-style comments in C source files.

Syntax

►►
cpluscmt

-q nocpluscmt ►◄

Defaults
v -qcpluscmt when the xlc or c99 and related invocations are used, or when the

stdc99 | extc99 language level is in effect.
v -qnocpluscmt for all other invocation commands and language levels.

Predefined macros

__C99_CPLUSCMT is predefined to 1 when -qcpluscmt is in effect; otherwise, it is
undefined.

Examples

To compile myprogram.c so that C++ comments are recognized as comments, enter:
xlc myprogram.c -qcpluscmt

132 XL C/C++: Compiler Reference

http://www.ibm.com/developerworks/aix/library/au-aix_cu_devguide/?S_TACT=105AGY06&S_CMP=HP

Note that // comments are not part of C89. The result of the following valid C89
program will be incorrect:
main() {

int i = 2;
printf("%i\n", i //* 2 */

+ 1);
}

The correct answer is 2 (2 divided by 1). When -qcpluscmt is in effect (as it is by
default), the result is 3 (2 plus 1).

Related information
v “-C, -C!” on page 122
v “-qlanglvl” on page 224
v "Comments" in the XL C/C++ Language Reference

-qcrt
Category

Linking

Pragma equivalent

None.

Purpose

Specifies whether system startup files are to be linked.

When -qcrt is in effect, the system startup routines are automatically linked. When
-qnocrt is in effect, the system startup files are not used at link time; only the files
specified on the command line with the -l flag are linked.

This option can be used in system programming to disable the automatic linking of
the startup routines provided by the operating system.

Syntax

►►
crt

-q nocrt ►◄

Defaults

-qcrt

Predefined macros

None.

Related information
v “-qlib” on page 252

Chapter 4. Compiler options reference 133

-qc_stdinc (C only)
Category

Compiler customization

Pragma equivalent

None.

Purpose

Changes the standard search location for the XL C and system header files.

Syntax

►► ▼

:

-q c_stdinc = directory_path
" "

►◄

Defaults

By default, the compiler searches the directories specified in the configuration file
for the XL C header files (this is normally /opt/IBM/xlc/13.1.3/include/) and for
the system header files (this is normally /usr/include/).

Parameters

directory_path
The path for the directory where the compiler should search for the XL C and
system header files. The directory_path can be a relative or absolute path. You
can surround the path with quotation marks to ensure it is not split up by the
command line.

Usage

This option allows you to change the search paths for specific compilations. To
permanently change the default search paths for the XL C and system headers, you
use a configuration file to do so; see “Directory search sequence for included files”
on page 13 for more information.

If this option is specified more than once, only the last instance of the option is
used by the compiler.

This option is ignored if the -qnostdinc option is in effect.

Predefined macros

None.

Examples

To override the default search path for the XL C headers with mypath/headers1
and mypath/headers2, enter:
xlc myprogram.c -qc_stdinc=mypath/headers1:mypath/headers2

134 XL C/C++: Compiler Reference

Related information
v “-qstdinc” on page 346
v “-qinclude” on page 189
v “Directory search sequence for included files” on page 13
v “Specifying compiler options in a configuration file” on page 8

-qcpp_stdinc (C++ only)
Category

Compiler customization

Pragma equivalent

None.

Purpose

Changes the standard search location for the XL C++ and system header files.

Syntax

►► ▼

:

-q cpp_stdinc = directory_path
" "

►◄

Defaults

By default, the compiler searches the directories specified in the configuration file
for the XL C++ header files (this is normally /opt/IBM/xlC/13.1.3/include/) and
for the system header files (this is normally /usr/include/).

Parameters

directory_path
The path for the directory where the compiler should search for the XL C++
and system header files. The directory_path can be a relative or absolute path.
You can surround the path with quotation marks to ensure it is not split up by
the command line.

Usage

This option allows you to change the search paths for specific compilations. To
permanently change the default search paths for the XL C++ and system headers,
you use a configuration file to do so; see “Directory search sequence for included
files” on page 13 for more information.

If this option is specified more than once, only the last instance of the option is
used by the compiler.

This option is ignored if the -qnostdinc option is in effect.

Predefined macros

None.

Chapter 4. Compiler options reference 135

Examples

To override the default search path for the XL C++ headers with mypath/headers1
and mypath/headers2, enter:
xlc++ myprogram.C -qcpp_stdinc=mypath/headers1:mypath/headers2

Related information
v “-qstdinc” on page 346
v “-qinclude” on page 189
v “Directory search sequence for included files” on page 13
v “Specifying compiler options in a configuration file” on page 8

-D
Category

Language element control

Pragma equivalent

None.

Purpose

Defines a macro as in a #define preprocessor directive.

Syntax

►► -D name
= definition

►◄

Defaults

Not applicable.

Parameters

name
The macro you want to define. -Dname is equivalent to #define name. For
example, -DCOUNT is equivalent to #define COUNT.

definition
The value to be assigned to name. -Dname=definition is equivalent to #define
name definition. For example, -DCOUNT=100 is equivalent to #define COUNT
100.

Usage

Using the #define directive to define a macro name already defined by the -D
option will result in an error condition.

To aid in program portability and standards compliance, the operating system
provides several header files that refer to macro names you can set with the -D
option. You can find most of these header files either in the /usr/include directory
or in the /usr/include/sys directory. To ensure that the correct macros for your
source file are defined, use the -D option with the appropriate macro name. For

136 XL C/C++: Compiler Reference

example, if your source file includes the /usr/include/sys/stat.h header file, you
must compile with the option -D_POSIX_SOURCE to pick up the correct
definitions for that file.

The -Uname option, which is used to undefine macros defined by the -D option,
has a higher precedence than the -Dname option.

Predefined macros

The compiler configuration file uses the -D option to predefine several macro
names for specific invocation commands. For details, see the configuration file for
your system.

Examples

AIX 4.2 and later provides support for files greater than 2 gigabytes in size so you
can store large quantities of data in a single file. To allow large file manipulation in
your application, compile with the -D_LARGE_FILES and -qlonglong compiler
options. For example:
xlc myprogram.c -D_LARGE_FILES -qlonglong

To specify that all instances of the name COUNT be replaced by 100 in myprogram.c,
enter:
xlc myprogram.c -DCOUNT=100

Related information
v “-U” on page 376
v Chapter 6, “Compiler predefined macros,” on page 483
v "Header files" in the AIX Files Reference

-qdataimported, -qdatalocal, -qtocdata
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Marks data as local or imported.

Local variables are statically bound with the functions that use them. You can use
the -qdatalocal option to name variables that the compiler can assume to be local.
Alternatively, you can use the -qtocdata option to instruct the compiler to assume
all variables to be local.

Imported variables are dynamically bound with a shared portion of a library. You
can use the -qdataimported option to name variables that the compiler can assume
to be imported. Alternatively, you can use the -qnotocdata option to instruct the
compiler to assume all variables to be imported.

Chapter 4. Compiler options reference 137

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.files/doc/aixfiles/XCOFF.htm

Syntax

►►

▼

▼

notocdata
dataimported

-q
:

= variable_name
tocdata
datalocal

:

= variable_name

►◄

Defaults

-qdataimported or -qnotocdata: The compiler assumes all variables are imported.

Parameters

variable_name
The name of a variable that the compiler should assume to be local or
imported (depending on the option specified).

C++

Names must be specified using their mangled names. To obtain C++

mangled names, compile your source to object files only, using the -c compiler
option, and use the nm operating system command on the resulting object file.
You can also use the c++filt utility provided by the compiler for a side-by-side
listing of source names and mangled names; see "Demangling compiled C++
names" in the XL C/C++ Optimization and Programming Guide for details. (See
also "Name mangling" in the XL C/C++ Language Reference for details on using
the extern "C" linkage specifier on declarations to prevent name mangling.)

Specifying -qdataimported without any variable_name is equivalent to
-qnotocdata: all variables are assumed to be imported. Specifying -qdatalocal
without any variable_name is equivalent to -qtocdata: all variables are assumed
to be local.

Usage

If any variables that are marked as local are actually imported, performance may
decrease.

If you specify any of these options with no variables, the last option specified is
used. If you specify the same variable name on more than one option specification,
the last one is used.

Predefined macros

None.

Related information
v “-qprocimported, -qproclocal, -qprocunknown” on page 311

138 XL C/C++: Compiler Reference

-qdbgfmt
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Specifies the format for the debugging information in object files.

DWARF is a standard that defines the format of debugging information in
programs. It is used on a wide variety of operating systems and is extensible and
compact.

Syntax

►►
stabstring

-q dbgfmt = dwarf
dwarf4

►◄

Defaults

-qdbgfmt=stabstring

Parameters

stabstring
Generates debugging information in stabstring format.

C++11 C11 Note: This suboption does not generate debugging
information for C++11 or C11 features. Use the dwarf or dwarf4 suboption
instead for these features. C11 C++11

dwarf
Generates debugging information in DWARF 3 format.

dwarf4
Generates debugging information in DWARF 4 format.

Notes:

v To use -qdbgfmt=dwarf or -qdbgfmt=dwarf4, the program must be compiled
and linked on AIX V7.1 or above.

v To debug programs built with -qdbgfmt=dwarf or -qdbgfmt=dwarf4, a
DWARF-enabled debugger such as dbx is required.

Usage

-qdbgfmt does not imply any of the debugging options, such as “-g” on page 173.
To generate debugging information, you must specify a debugging option, for
example:
v To generate debugging information in stabstring format, use -g

-qdbgfmt=stabstring.

Chapter 4. Compiler options reference 139

v To generate debugging information in DWARF 3 format, use -g
-qdbgfmt=dwarf.

v To generate debugging information in DWARF 4 format, use -g
-qdbgfmt=dwarf4.

-qdbgfmt also applies to “-qlinedebug” on page 255, which generates a subset of
“-g” on page 173 information. For example, you can use -qlinedebug
-qdbgfmt=dwarf to generate line number information in DWARF 3 format.

Related information
v “-g” on page 173
v “-qlinedebug” on page 255

-qdbxextra (C only)
Category

Error checking and debugging

Pragma equivalent

#pragma options dbxextra

Purpose

When used with the -g option, specifies that debugging information is generated
for unreferenced typedef declarations, struct, union, and enum type definitions.

To minimize the size of object and executable files, the compiler only includes
information for typedef declarations, struct, union, and enum type definitions that
are referenced by the program. When you specify the -qdbxextra option,
debugging information is included in the symbol table of the object file. This
option is equivalent to the -qsymtab=unref option.

Syntax

►►
nodbxextra

-q dbxextra ►◄

Defaults

-qnodbxextra: Unreferenced typedef declarations, struct, union, and enum type
definitions are not included in the symbol table of the object file.

Usage

Using -qdbxextra may make your object and executable files larger.

Predefined macros

None.

140 XL C/C++: Compiler Reference

Examples

To compile myprogram.c so that unreferenced typedef, structure, union, and
enumeration declarations are included in the symbol table for use with a debugger,
enter:
xlc myprogram.c -g -qdbxextra

Related information
v “-qfullpath” on page 168
v “-qlinedebug” on page 255
v “-g” on page 173
v “#pragma options” on page 439
v “-qsymtab (C only)” on page 355

-qdfp
Category

Language element control

Pragma equivalent

None.

Purpose

Enables compiler support for decimal floating-point types and literals.

Syntax

►► -q
nodfp
dfp ►◄

Defaults

-qnodfp

Usage

If you enable -qdfp for a -qarch value that does not support decimal floating-point
instructions, -qfloat=dfpemulate is automatically enabled, and the decimal
floating-point operations are performed by software. This may cause a slowdown
in the application's runtime performance.

Note: To use decimal floating-point types and literals, you must also enable
specific code in header files by defining the __STDC_WANT_DEC_FP__ macro at
compile time. See “Examples” on page 142.

Predefined macros

When -qdfp is in effect, __IBM_DFP__ is predefined to a value of 1; otherwise it is
undefined.

Chapter 4. Compiler options reference 141

Examples

To compile myprogram.c that contains decimal floating-point type and literal, enter:
xlc myprogram.c -qarch=pwr7 -qdfp -D__STDC_WANT_DEC_FP__

Related information
v Compiling a decimal floating-point program
v “-qarch” on page 109
v “-qfloat” on page 158
v “-D” on page 136

-qdigraph
Category

Language element control

Pragma equivalent

#pragma options [no]digraph

Purpose

Enables recognition of digraph key combinations C++ and operator keywords
C++

to represent characters that are not found on some keyboards. Digraph

key combinations include <:, <%, and so on. C++ Operator keywords include
and, or, and so on. C++

Syntax

►►
digraph

-q nodigraph ►◄

Defaults

v C -qdigraph when the extc89 | extended | extc99 | stdc99 language
level is in effect. -qnodigraph for all other language levels.

v C++ -qdigraph

Usage

A digraph is a keyword or combination of keys that lets you produce a character
that is not available on some keyboards. For details on digraphs, see "Digraph
characters" in the XL C/C++ Language Reference.

Predefined macros

__DIGRAPHS__ is predefined to 1 when -qdigraph is in effect; otherwise, it is not
defined.

Examples

To disable digraph character sequences when compiling your program, enter the
command:

142 XL C/C++: Compiler Reference

xlc myprogram.c -qnodigraph

Related information
v “-qlanglvl” on page 224
v “-qtrigraph” on page 371

-qdirectstorage
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Informs the compiler that a given compilation unit may reference
write-through-enabled or cache-inhibited storage.

Syntax

►►
nodirectstorage

-q directstorage ►◄

Defaults

-qnodirectstorage

Usage

Use this option with discretion. It is intended for programmers who know how the
memory and cache blocks work, and how to tune their applications for optimal
performance. To ensure that your application will execute correctly on all
implementations, you should assume that separate instruction and data caches
exist and program your application accordingly.

-qdollar
Category

Language element control

Pragma equivalent

#pragma options [no]dollar

Purpose

Allows the dollar-sign ($) symbol to be used in the names of identifiers.

When -qdollar is in effect, the dollar symbol $ in an identifier is treated as a base
character.

Chapter 4. Compiler options reference 143

Syntax

►►
dollar

-q nodollar ►◄

Defaults

-qdollar

Usage

If -qnodollar and the ucs language level are both in effect, the dollar symbol is
treated as an extended character and translated into \u0024.

Predefined macros

None.

Examples

To compile myprogram.c so that $ is allowed in identifiers in the program, enter:
xlc myprogram.c -qdollar

Related information
v “-qlanglvl” on page 224

-qdpcl
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Generates symbols that tools based on the IBM Dynamic Probe Class Library
(DPCL) can use to see the structure of an executable file.

DPCL is an open-source set of libraries used by application performance analysis
tools (for more information, visit http://dpcl.sourceforge.net). When -qdpcl is in
effect, the compiler emits symbols to define blocks of code in a program; you can
then use tools that use the DPCL interface to examine performance information
such as memory usage for object files compiled with this option.

Syntax

►►
nodpcl

-q dpcl ►◄

144 XL C/C++: Compiler Reference

http://dpcl.sourceforge.net

Defaults

-qnodpcl

Usage

You must specify -qdpcl together with the -g option to ensure that the compiler
generates debugging information required by debugging and program analysis
tools.

-qdpcl is not supported for any optimization level except zero. If a non-zero
optimization level is specified or implied by other options, -qdpcl will be disabled.

You cannot specify the -qipa or -qsmp options together with -qdpcl.

Predefined macros

None.

Related information
v “-g” on page 173
v “-qipa” on page 208
v “-qsmp” on page 334

-e
Category

Linking

Pragma equivalent

None.

Purpose

When used together with the -qmkshrobj option or -G option, specifies an entry
point for a shared object.

Syntax

►► -e entry_name ►◄

Defaults

Not applicable.

Parameters

name
The name of the entry point for the shared executable.

Usage

Specify the -e option only with the -qmkshrobj or -G option.

Chapter 4. Compiler options reference 145

Note: When you link object files, do not use the -e option. The default entry point
of the executable output is __start. Changing this label with the -e flag can
produce errors.

Predefined macros

None.

Related information
v “-qmkshrobj” on page 272
v “-G” on page 176

-E
Category

Output control

Pragma equivalent

None.

Purpose

Preprocesses the source files named in the compiler invocation, without compiling,
and writes the output to the standard output.

Syntax

►► -E ►◄

Defaults

By default, source files are preprocessed, compiled, and linked to produce an
executable file.

Usage

Source files with unrecognized file name suffixes are treated and preprocessed as C
files.

Unless -qnoppline is specified, #line directives are generated to preserve the
source coordinates of the tokens. Continuation sequences are preserved.

Unless -C is specified, comments are replaced in the preprocessed output by a
single space character. New lines and #line directives are issued for comments that
span multiple source lines.

The -E option overrides the -P, -o, and -qsyntaxonly options.

Predefined macros

None.

146 XL C/C++: Compiler Reference

Examples

To compile myprogram.c and send the preprocessed source to standard output,
enter:
xlc myprogram.c -E

If myprogram.c has a code fragment such as:
#define SUM(x,y) (x + y)
int a ;
#define mm 1 /* This is a comment in a

preprocessor directive */
int b ; /* This is another comment across

two lines */
int c ;

/* Another comment */
c = SUM(a,b) ; /* Comment in a macro function argument*/

the output will be:
#line 2 "myprogram.c"
int a ;
#line 5
int b ;

int c ;

c = a + b ;

Related information
v “-qppline” on page 305
v “-C, -C!” on page 122
v “-P” on page 293
v “-qsyntaxonly” on page 356

-qeh (C++ only)
Category

Object code control

Pragma equivalent

None.

Purpose

Controls whether exception handling is enabled in the module being compiled.

Syntax

►►

eh
v6

= v5
-q noeh ►◄

Defaults

-qeh=v6

Chapter 4. Compiler options reference 147

Parameters

v6 Generates exception handling code, compatible with VisualAge® C++ V6.0, that
correctly handles try-catch blocks nested within other catch blocks.

v5 Generate exception handling code that is compatible with VisualAge C++ V5.0.

Specifying -qeh with no suboption is equivalent to -qeh=v6.

Usage

When -qeh is in effect, exception handling is enabled. If your program does not
use C++ structured exception handling, you can compile with -qnoeh to prevent
generation of code that is not needed by your application.

Predefined macros

__EXCEPTIONS is predefined to 1 when -qeh is in effect; otherwise, it is
undefined.

Related information
v “-qrtti (C++ only)” on page 322

-qenum
Category

Floating-point and integer control

Pragma equivalent

#pragma options enum, #pragma enum

Purpose

Specifies the amount of storage occupied by enumerations.

C++11 The -qenum option affects only unscoped enumerations that have no
fixed underlying type. For enumerations with a fixed underlying type, the -qenum
option is ignored. C++11

Syntax

Option syntax

►►
intlong

-q enum = int
small
1
2
4
8

►◄

Pragma syntax

148 XL C/C++: Compiler Reference

►►
intlong

pragma enum (int)
small
1
2
4
8
pop
reset

►◄

Defaults

-qenum=intlong

Parameters

1 Specifies that enumerations occupy 1 byte of storage, are of type signed char if
the range of enumeration values falls within the limits of signed char, and
unsigned char otherwise.

2 Specifies that enumerations occupy 2 bytes of storage, are of type short if the
range of enumeration values falls within the limits of signed short, and
unsigned short otherwise. C

Values cannot exceed the range of signed

int.

4 Specifies that enumerations occupy 4 bytes of storage, are of type int if the
range of enumeration values falls within the limits of signed int, and
unsigned int otherwise.

8 Specifies that enumerations occupy 8 bytes of storage. In 32-bit compilation
mode, the enumeration is of type long long if the range of enumeration values
falls within the limits of signed long long, and unsigned long long otherwise.
In 64-bit compilation mode, the enumeration is of type long if the range of
enumeration values falls within the limits of signed long, and unsigned long
otherwise.

int

C Specifies that enumerations occupy 4 bytes of storage and are of type
int.

C++

Specifies that enumerations occupy 4 bytes of storage, are of type int

if the range of enumeration values falls within the limits of signed int, and
unsigned int otherwise.

intlong
Specifies that enumerations occupy 8 bytes of storage, as with the 8 suboption,
if the range of values in the enumeration cannot be represented by one of int
or unsigned int. Otherwise, the enumerations occupy 4 bytes of storage as
with the 4 suboption.

small
Specifies that enumerations occupy the smallest amount of space (1, 2, 4, or 8
bytes of storage) that can accurately represent the range of values in the
enumeration. Signedness is unsigned, unless the range of values includes
negative values. If an 8-byte enum results, the actual enumeration type used is
dependent on compilation mode.

Chapter 4. Compiler options reference 149

pop | reset (pragma only)
Discards the current pragma setting and reverts to the setting specified by the
previous pragma directive. If no previous pragma was specified, reverts to the
command-line or default option setting.

Usage

The tables that follow show the priority for selecting a predefined type. The table
also shows the predefined type, the maximum range of enum constants for the
corresponding predefined type, and the amount of storage that is required for that
predefined type, that is, the value that the sizeof operator would yield when
applied to the minimum-sized enum. All types are signed unless otherwise noted.

Table 24. Enumeration sizes and types

enum=1 enum=2 enum=4
enum=8

32-bit compilation
mode

64-bit compilation
mode

Range var const var const var const var const var const

0..127 signed
char

int short int int int long long long long long long

-128..127 signed
char

int short int int int long long long long long long

0..255 unsigned
char

int short int int int long long long long long long

0..32767 ERROR1 int short int int int long long long long long long

-32768..32767 ERROR1 int short int int int long long long long long long

0..65535 ERROR1 int unsigned
short

int int int long long long long long long

0..2147483647 ERROR1 int ERROR1 int int int long long long long long long

-(2147483647+1)
..2147483647

ERROR1 int ERROR1 int int int long long long long long long

0..4294967295 ERROR1 unsigned
int2

ERROR1 unsigned
int2

unsigned
int2

unsigned
int2

long long long long long long

0..(263-1) ERROR1 long2 ERROR1 long2 ERROR1 long2 long
long2

long
long2

long2 long2

-263..(263-1) ERROR1 long2 ERROR1 long2 ERROR1 long2 long
long2

long
long2

long2 long2

0..264 ERROR1 unsigned
long2

ERROR1 unsigned
long2

ERROR1 unsigned
long2

unsigned
long
long2

unsigned
long
long2

unsigned
long2

unsigned
long2

enum=int
enum=intlong enum=small

32-bit compilation
mode

64-bit compilation
mode

32-bit compilation
mode

64-bit compilation
mode

Range var const var const var const var const var const

0..127 int int int int int int unsigned
char

int unsigned
char

int

-128..127 int int int int int int signed
char

int signed
char

int

0..255 int int int int int int unsigned
char

int unsigned
char

int

0..32767 int int int int int int unsigned
short

int unsigned
short

int

-32768..32767 int int int int int int short int short int

150 XL C/C++: Compiler Reference

0..65535 int int int int int int unsigned
short

int unsigned
short

int

0..2147483647 int int int int int int unsigned
int

unsigned
int

unsigned
int

unsigned
int

-(2147483647+1)
..2147483647

int int int int int int int int int int

0..4294967295 unsigned
int1

unsigned
int2

unsigned
int2

unsigned
int2

unsigned
int2

unsigned
int2

unsigned
int2

unsigned
int2

unsigned
int2

unsigned
int2

0..(263-1) ERR2 ERR2 long
long2

long
long2

long2 long2 unsigned
long
long2

unsigned
long
long2

unsigned
long2

unsigned
long2

-263..(263-1) ERR2 ERR2 long
long2

long
long2

long2 long2 long
long2

long
long2

long2 long2

0..264 ERR2 ERR2 unsigned
long
long2

unsigned
long
long2

unsigned
long2

unsigned
long2

unsigned
long
long2

unsigned
long
long2

unsigned
long2

unsigned
long2

Notes:

v These enumerations are too large for the -qenum=1|2|4| C int C

setting. A Severe error is issued and compilation stops. To correct this condition,
you should reduce the range of the enumerations, choose a larger -qenum
setting, or choose a dynamic -qenum setting, such as small or intlong.

v C Enumeration types must not exceed the range of int when compiling
C applications to ISO C 1989 and ISO C 1999 Standards. With the stdc89 |
stdc99 language level in effect, the compiler will behave as follows if the value
of an enumeration exceeds the range of int and the -qenum option in effect
supports this value:
– If -qenum=int is in effect, a severe error message is issued and compilation

stops.
– For all other settings of -qenum, an informational message is issued and

compilation continues.
v When -qenum=8, for all ranges of enumerator values up to 232-1, the table

identifies the underlying type to be long long for 32-bit compilation mode and
long for 64-bit compilation mode. This violates the rule in the standard: The
underlying type should not be larger than int if enumerator values fit in int or
unsigned int.

v When -qenum=small, for enumerators in the range of 0-2147483647 with at least
one enumerator having a value bigger than 65535, the table identifies the
underlying type to be unsigned int, which cannot be promoted to int. This
violates the rule in the standard: Promotion could be to int, because it can hold
the enumeration values in the range of 0-2147483647.

The #pragma enum directive must precede the declaration of enum variables that
follow; any directives that occur within a declaration are ignored and diagnosed
with a warning.

For each #pragma enum directive that you put in a source file, it is good practice
to have a corresponding #pragma enum=reset before the end of that file. This
should prevent one file from potentially changing the setting of another file that
includes it.

Chapter 4. Compiler options reference 151

Examples

If the following fragment is compiled with the enum=small option:
enum e_tag {a, b, c} e_var;

the range of enumeration constants is 0 through 2. This range falls within all of the
ranges described in the table above. Based on priority, the compiler uses
predefined type unsigned char.

If the following fragment is compiled with the enum=small option:
enum e_tag {a=-129, b, c} e_var;

the range of enumeration constants is -129 through -127. This range only falls
within the ranges of short (signed short) and int (signed int). Because short
(signed short) is smaller, it will be used to represent the enum.

The following code segment generates a warning and the second occurrence of the
enum pragma is ignored:
#pragma enum(small)
enum e_tag {

a,
b,
#pragma enum(int) /* error: cannot be within a declaration */
c

} e_var;
#pragma enum(reset)
#pragma enum(reset) /* second reset isn’t required */

Predefined macros

None.

-qexpfile
Category

Object code control

Pragma equivalent

None.

Purpose

When used together with the -qmkshrobj or -G option, saves all exported symbols
in a designated file.

Syntax

►► -q expfile = filename ►◄

Parameters

filename
The name of the file to which exported symbols are written.

152 XL C/C++: Compiler Reference

Usage

This option is valid only when used with the -qmkshrobj or -G option.

Predefined macros

None.

Related information
v “-qmkshrobj” on page 272
v “-G” on page 176

-qextchk
Category

Error checking and debugging

Pragma equivalent

#pragma options [no]extchk

Purpose

Generates link-time type checking information and checks for compile-time
consistency.

Syntax

►►
noextchk

-q extchk ►◄

Defaults

-qnoextchk

Usage

This option does not perform type checking on functions or objects that contain
references to incomplete types.

Predefined macros

None.

Examples

To compile myprogram.c so that link-time checking information is produced, enter:
xlc myprogram.c -qextchk

-f
Category

Linking

Chapter 4. Compiler options reference 153

Pragma equivalent

None.

Purpose

Names a file that stores a list of object files for the compiler to pass to the linker.

Syntax

►► -f filelistname ►◄

Usage

The filelistname file should contain only the names of object files. There should be
one object file per line.

This option is the same as the -f option for the ld command.

Predefined macros

None.

Examples

To pass the list of files contained in myobjlistfile to the linker, enter:
xlc -f/usr/tmp/myobjlistfile

-F
Category

Compiler customization

Pragma equivalent

None.

Purpose

Names an alternative configuration file or stanza for the compiler.

Syntax

►► -F file_path
: stanza

: stanza

►◄

Defaults

By default, the compiler uses the configuration file that is supplied at installation
time, and uses the stanza defined in that file for the invocation command currently
being used.

154 XL C/C++: Compiler Reference

Parameters

file_path
The full path name of the alternate compiler configuration file to use.

stanza
The name of the configuration file stanza to use for compilation. This directs
the compiler to use the entries under that stanza regardless of the invocation
command being used. For example, if you are compiling with xlc, but you
specify the c99 stanza, the compiler will use all the settings specified in the c99
stanza.

Usage

Note that any file names or stanzas that you specify with the -F option override
the defaults specified in the system configuration file. If you have specified a
custom configuration file with the XLC_USR_CONFIG environment variable, that
file is processed before the one specified by the -F option.

The -B, -t, and -W options override the -F option.

Predefined macros

None.

Examples

To compile myprogram.c using a stanza called debug that you have added to the
default configuration file, enter:
xlc myprogram.c -F:debug

To compile myprogram.c using a configuration file called /usr/tmp/myconfig.cfg,
enter:
xlc myprogram.c -F/usr/tmp/myconfig.cfg

To compile myprogram.c using the stanza c99 you have created in a configuration
file called /usr/tmp/myconfig.cfg, enter:
xlc myprogram.c -F/usr/tmp/myconfig.cfg:c99

Related information
v “Using custom compiler configuration files” on page 40
v “-B” on page 118
v “-t” on page 356
v “-W” on page 390
v “Specifying compiler options in a configuration file” on page 8
v “Compile-time and link-time environment variables” on page 26

-qfdpr
Category

Optimization and tuning

Pragma equivalent

None.

Chapter 4. Compiler options reference 155

Purpose

Provides object files with information that the IBM Feedback Directed Program
Restructuring (FDPR) performance-tuning utility needs to optimize the resulting
executable file.

When -qfdpr is in effect, optimization data is stored in the object file.

Syntax

►►
nofdpr

-q fdpr ►◄

Defaults

-qnofdpr

Usage

For best results, use -qfdpr for all object files in a program; FDPR will perform
optimizations only on the files compiled with -qfdpr, and not library code, even if
it is statically linked.

The optimizations that the FDPR utility performs are similar to those that the
-qpdf option performs.

The FDPR performance-tuning utility has its own set of restrictions, and it is not
guaranteed to speed up all programs or produce executables that produce exactly
the same results as the original programs.

Predefined macros

None.

Examples

To compile myprogram.c so it includes data required by the FDPR utility, enter:
xlc myprogram.c -qfdpr

Related information
v “-qpdf1, -qpdf2” on page 296

-qflag
Category

Listings, messages, and compiler information

Pragma equivalent

#pragma options flag, “#pragma report (C++ only)” on page 449

Purpose

Limits the diagnostic messages to those of a specified severity level or higher.

156 XL C/C++: Compiler Reference

The messages are written to standard output and, optionally, to the listing file if
one is generated.

Syntax

-qflag syntax – C

►►

(1) (2)
i i

-qflag = w : w
e e
s s

►◄

Notes:

1 Minimum severity level of messages reported in listing

2 Minimum severity level of messages reported on terminal

-qflag syntax – C++

►►

(1)
i

-qflag = w
s (2)

i
: w

s

►◄

Notes:

1 Minimum severity level of messages reported in listing

2 Minimum severity level of messages reported on terminal

Defaults

-qflag=i : i, which shows all compiler messages

Parameters

i Specifies that all diagnostic messages are to display: warning, error and
informational messages. Informational messages (I) are of the lowest severity.

w Specifies that warning (W) and all types of error messages are to display.

C e
Specifies that only error (E), severe error (S), and unrecoverable error (U)
messages are to display.

s C Specifies that only severe error (S) and unrecoverable error (U)
messages are to display. C++

Specifies that only severe error (S) messages

are to display.

Usage

C You must specify a minimum message severity level for both listing and
terminal reporting.

Chapter 4. Compiler options reference 157

C++ You must specify a minimum message severity level for the listing. If you
do not specify a suboption for the terminal, the compiler assumes the same
severity as for the listing.

Note that using -qflag does not enable the classes of informational message
controlled by the -qinfo option; see -qinfo for more information.

The -qhaltonmsg option has precedence over the -qflag option. If both
-qhaltonmsg and -qflag are specified, messages that are not selected by -qflag are
also printed.

Predefined macros

None.

Examples

To compile myprogram.c so that the listing shows all messages that were generated
and your workstation displays only error and higher messages (with their
associated information messages to aid in fixing the errors), enter:
xlc myprogram.c -qflag=i:e

Related information
v “-qinfo” on page 191
v “-qhaltonmsg” on page 179
v “-w” on page 389
v “Compiler messages” on page 18

-qfloat
Category

Floating-point and integer control

Pragma equivalent

#pragma options float

Purpose

Selects different strategies for speeding up or improving the accuracy of
floating-point calculations.

Syntax

158 XL C/C++: Compiler Reference

►► ▼

:
nosubnormals
nospnans
single
norsqrt
norrm
rngchk
rndsngl
norelax
nonans
maf
nohssngl
nohsflt
nohscmplx
fold
nofltint
nofenv
dfpemulate

-q float = nodfpemulate
fenv
fltint
nofold
hscmplx
hsflt
hssngl
nomaf
nans
relax
norndsngl
norngchk
rrm
rsqrt
nosingle
spnans
subnormals

►◄

Defaults
v -qfloat=dfpemulate:nofenv:nofltint:fold:nohscmplx:nohsflt:nohssngl:maf:

nonans:norelax:rndsngl:rngchk:norrm:norsqrt:single:nospnans:nosubnormals
v -qfloat=fltint:rsqrt:norngchk:nosubnormals when -qnostrict,

-qstrict=nooperationprecision:noexceptions, or the -O3 or higher optimization
level is in effect.

Parameters

dfpemulate | nodfpemulate
Specifies whether decimal floating-point computations are implemented in
hardware instructions or emulated in software by calls to library functions.
nodfpemulate is only valid on a system that supports decimal floating-point
instructions; that is, a system with -qarch=pwr6 or above in effect.
nodfpemulate is the recommended setting for those systems, and results in
improved performance of decimal floating-point operations and overall
program runtime performance. dfpemulate is required for all other -qarch
values.

Note that -qdfp must also be enabled for either suboption to have any effect.
Otherwise, nodfpemulate is set.

Chapter 4. Compiler options reference 159

fenv | nofenv
Specifies whether the code depends on the hardware environment and whether
to suppress optimizations that could cause unexpected results due to this
dependency.

Certain floating-point operations rely on the status of Floating-Point Status and
Control Register (FPSCR), for example, to control the rounding mode or to
detect underflow. In particular, many compiler built-in functions read values
directly from the FPSCR.

When nofenv is in effect, the compiler assumes that the program does not
depend on the hardware environment, and that aggressive compiler
optimizations that change the sequence of floating-point operations are
allowed. When fenv is in effect, such optimizations are suppressed.

You should use fenv for any code containing statements that read or set the
hardware floating-point environment, to guard against optimizations that could
cause unexpected behavior.

Any directives specified in the source code (such as the standard C
FENV_ACCESS pragma) take precedence over the option setting.

fltint | nofltint
Speeds up floating-point-to-integer conversions by using an inline sequence of
code instead of a call to a library function. The library function, which is called
when nofltint is in effect, checks for floating-point values outside the
representable range of integers and returns the minimum or maximum
representable integer if passed an out-of-range floating-point value.

If -qarch is set to a processor that has an instruction to convert from floating
point to integer, that instruction will be used regardless of the [no]fltint
setting. This conversion also applies to all Power processors in 64-bit mode.

If you compile with the -O3 or higher optimization level, fltint is enabled
automatically. To disable it, also specify -qstrict, -qstrict=operationprecision, or
-qstrict=exceptions.

fold | nofold
Evaluates constant floating-point expressions at compile time, which may yield
slightly different results from evaluating them at run time. The compiler
always evaluates constant expressions in specification statements, even if you
specify nofold.

The -qfloat=[no]fold option replaces the deprecated -q[no]fold option. Use
-qfloat=[no]fold in your new applications.

hscmplx | nohscmplx
Speeds up operations involving complex division and complex absolute value.
This suboption, which provides a subset of the optimizations of the hsflt
suboption, is preferred for complex calculations.

hsflt | nohsflt
Speeds up calculations by preventing rounding for single-precision expressions
and by replacing floating-point division by multiplication with the reciprocal of
the divisor. It also uses the same technique as the fltint suboption for
floating-point-to-integer conversions. hsflt implies hscmplx.

The hsflt suboption overrides the nans and spnans suboptions.

Note: Use -qfloat=hsflt on applications that perform complex division and
floating-point conversions where floating-point calculations have known
characteristics. In particular, all floating-point results must be within the

160 XL C/C++: Compiler Reference

defined range of representation of single precision. Use with discretion, as this
option may produce unexpected results without warning. For complex
computations, it is recommended that you use the hscmplx suboption
(described above), which provides equivalent speed-up without the
undesirable results of hsflt.

hssngl | nohssngl

Specifies that single-precision expressions are rounded only when the results
are stored into memory locations, but not after expression evaluation. Using
hssngl can improve runtime performance and is safer than using hsflt.

This option only affects double-precision (double) expressions cast to
single-precision (float) and used in an assignment operator for which a store
instruction is generated, when -qfloat=nosingle is in effect. Do not use this
option if you are compiling with the default -qfloat=single.

maf | nomaf
Makes floating-point calculations faster and more accurate by using
floating-point multiply-add instructions where appropriate. The results may
not be exactly equivalent to those from similar calculations performed at
compile time or on other types of computers. Negative zero results may be
produced. Rounding towards negative infinity or positive infinity will be
reversed for these operations. This suboption may affect the precision of
floating-point intermediate results. If -qfloat=nomaf is specified, no
multiply-add instructions will be generated unless they are required for
correctness.

The -qfloat=[no]maf option replaces the deprecated -q[no]maf option. Use
-qfloat=[no]maf in your new applications.

nans | nonans
Allows you to use the -qflttrap=invalid:enable option to detect and deal with
exception conditions that involve signaling NaN (not-a-number) values. Use
this suboption only if your program explicitly creates signaling NaN values,
because these values never result from other floating-point operations.

The hsflt option overrides the nans option.

The -qfloat=[no]nans option replaces the deprecated -qfloat=[no]spnans
option and the -q[no]spnans option. Use -qfloat=[no]nans in your new
applications.

relax | norelax
Relaxes strict IEEE conformance slightly for greater speed, typically by
removing some trivial floating-point arithmetic operations, such as adds and
subtracts involving a zero on the right. These changes are allowed if either
-qstrict=noieeefp or -qfloat=relax is specified.

norndsngl | rndsngl
Rounds the result of each single-precision operation to single-precision, rather
than waiting until the full expression is evaluated. It sacrifices speed for
consistency with results from similar calculations on other types of computers.

This option only affects double-precision expressions cast to single-precision.
You can only specify norndsngl when -qfloat=nosingle is in effect.

The hsflt suboption overrides the rndsngl option.

rngchk | norngchk
At optimization level -O3 and above, and without -qstrict, controls whether
range checking is performed for input arguments for software divide and

Chapter 4. Compiler options reference 161

inlined square root operations. Specifying norngchk instructs the compiler to
skip range checking, allowing for increased performance where division and
square root operations are performed repeatedly within a loop.

Note that with norngchk in effect the following restrictions apply:
v The dividend of a division operation must not be +/-INF.
v The divisor of a division operation must not be 0.0, +/- INF, or

denormalized values.
v The quotient of dividend and divisor must not be +/-INF.
v The input for a square root operation must not be INF.

If any of these conditions are not met, incorrect results may be produced. For
example, if the divisor for a division operation is 0.0 or a denormalized
number (absolute value < 2-1022 for double precision, and absolute value < 2-126

for single precision), NaN, instead of INF, may result; when the divisor is +/-
INF, NaN instead of 0.0 may result. If the input is +INF for a sqrt operation,
NaN, rather than INF, may result.

norngchk is only allowed when -qnostrict is in effect. If -qstrict,
-qstrict=infinities, -qstrict=operationprecision, or -qstrict=exceptions is in
effect, norngchk is ignored.

rrm | norrm
Prevents floating-point optimizations that require the rounding mode to be the
default, round-to-nearest, at run time, by informing the compiler that the
floating-point rounding mode may change or is not round-to-nearest at run
time. You should use rrm if your program changes the runtime rounding mode
by any means; otherwise, the program may compute incorrect results.

The -qfloat=[no]rrm option replaces the deprecated -q[no]rrm option. Use
-qfloat=[no]rrm in your new applications.

rsqrt | norsqrt
Speeds up some calculations by replacing division by the result of a square
root with multiplication by the reciprocal of the square root.

rsqrt has no effect unless -qignerrno is also specified; errno will not be set for
any sqrt function calls.

If you compile with the -O3 or higher optimization level, rsqrt is enabled
automatically. To disable it, also specify -qstrict, -qstrict=nans,
-qstrict=infinities, -qstrict=zerosigns, or -qstrict=exceptions.

single | nosingle
Allows single-precision arithmetic instructions to be generated for
single-precision floating-point values. All Power processors support
single-precision instructions; however, if you want to preserve the behavior of
applications compiled for earlier architectures, in which all floating-point
arithmetic was performed in double-precision and then truncated to
single-precision, you can use -qfloat=nosingle:norndsngl. This suboption
provides computation precision results compatible with those provided by the
deprecated options -qarch=com|pwr|pwrx|pwr2|p2sc|601|602|603.
-qfloat=nosingle can be specified in 32-bit mode only.

spnans | nospnans
Generates extra instructions to detect signalling NaN on conversion from
single-precision to double-precision.

The hsflt suboption overrides the spnans suboption.

162 XL C/C++: Compiler Reference

subnormals | nosubnormals
Specifies whether the code uses subnormal floating point values, also known
as denormalized floating point values. Whether or not you specify this
suboption, the behavior of your program will not change, but the compiler
uses this information to gain possible performance improvements.

Note: This suboption takes effect only on POWER8 processors. To use this
suboption, you must also specify the -qarch=pwr8 and -qtune=pwr8 options.

Note: For details about the relationship between -qfloat suboptions and their
-qstrict counterparts, see “-qstrict” on page 348.

Usage

Using -qfloat suboptions other than the default settings might produce incorrect
results in floating-point computations if the system does not meet all required
conditions for a given suboption. Therefore, use this option only if the
floating-point calculations involving IEEE floating-point values are manipulated
and can properly assess the possibility of introducing errors in the program.

If the -qstrict | -qnostrict and float suboptions conflict, the last setting specified is
used.

Predefined macros

__IBM_DFP_SW_EMULATION__ is predefined to a value of 1 when
-qfloat=dfpemulate is in effect; otherwise it is undefined.

Examples

To compile myprogram.c so that the constant floating-point expressions are
evaluated at compile time and multiply-add instructions are not generated, enter:
xlc myprogram.c -qfloat=fold:nomaf

Related information
v “-qarch” on page 109
v “-qflttrap”
v “-qldbl128, -qlongdouble” on page 251
v “-qstrict” on page 348
v "Handling floating-point operations" in the XL C/C++ Optimization and

Programming Guide

-qflttrap
Category

Error checking and debugging

Pragma equivalent

#pragma options [no]flttrap

Purpose

Determines what types of floating-point exceptions to detect at run time.

Chapter 4. Compiler options reference 163

The program receives a SIGTRAP signal when the corresponding exception
occurs.

Syntax

►►

▼

noflttrap
-q flttrap

:
zero
zerodivide
und
underflow
ov
overflow
inv
invalid
inex
inexact

= enable
en
imprecise
imp
nanq

►◄

Defaults

-qnoflttrap

Specifying -qflttrap option with no suboptions is equivalent to
-qflttrap=overflow:underflow:zerodivide:invalid:inexact

Parameters

enable, en
Inserts a trap when the specified exceptions (overflow, underflow, zerodivide,
invalid, or inexact) occur. You must specify this suboption if you want to turn
on exception trapping without modifying your source code. If any of the
specified exceptions occur, a SIGTRAP or SIGFPE signal is sent to the process
with the precise location of the exception. If imprecise is in effect, traps will
not report exactly where the exception occurred.

imprecise, imp
Enables imprecise detection of the specified exceptions. The compiler generates
instructions after a block of code and just before the main program returns, to
check if any of the specified exceptions (overflow, underflow, zerodivide,
invalid, or inexact) have occurred. If an exception has occurred, an exception
status flag is set in the Floating-Point Status and Control Register, but the exact
location of the exception is not determined. Because instructions are not
generated after each floating-point operation and function call to check for
exceptions, this suboption can result in a slight performance improvement.

inexact, inex
Enables the detection of floating-point inexact operations. If imprecise is not
also specified, the compiler generates instructions after each floating-point
operation and function call to check if an inexact operation exception has
occurred. If a floating-point inexact operation occurs, an inexact operation
exception status flag is set in the Floating-Point Status and Control Register
(FPSCR).

164 XL C/C++: Compiler Reference

invalid, inv
Enables the detection of floating-point invalid operations. If imprecise is not
also specified, the compiler generates instructions after each floating-point
operation and function call to check if an invalid operation exception has
occurred. If a floating-point invalid operation occurs, an invalid operation
exception status flag is set in the FPSCR.

nanq
Generates code to detect Not a Number Quiet (NaNQ) and Not a Number
Signalling (NaNS) exceptions before and after each floating-point operation,
including assignment, and after each call to a function returning a
floating-point result to trap if the value is a NaN. Trapping code is generated
regardless of whether the enable suboption is specified.

overflow, ov
Enables the detection of floating-point overflow.If imprecise is not also
specified, the compiler generates instructions after each floating-point
operation and function call to check if an overflow exception has occurred. If a
floating-point overflow occurs, an overflow exception status flag is set in the
FPSCR.

underflow, und
Enables the detection of floating-point underflow. If imprecise is not also
specified, the compiler generates instructions after each floating-point
operation and function call to check if an underflow exception has occurred. If
a floating-point underflow occurs, an underflow exception status flag is set in
the FPSCR.

zerodivide, zero
Enables the detection of floating-point division by zero. If imprecise is not also
specified, the compiler generates instructions after each floating-point
operation and function call to check if a zero-divide exception has occurred. If
a floating-point zero-divide occurs, a zero-divide exception status flag is set in
the FPSCR.

Usage

Exceptions will be detected by the hardware, but trapping is not enabled.

It is recommended that you use the enable suboption whenever compiling the
main program with -qflttrap. This ensures that the compiler will generate the code
to automatically enable floating-point exception trapping, without requiring that
you include calls to the appropriate floating-point exception library functions in
your code.

If you specify -qflttrap more than once, both with and without suboptions, the
-qflttrap without suboptions is ignored.

The -qflttrap option is recognized during linking with IPA. Specifying the option
at the link step overrides the compile-time setting.

If your program contains signalling NaNs, you should use the -qfloat=nans option
along with -qflttrap to trap any exceptions.

The compiler exhibits behavior as illustrated in the following examples when the
-qflttrap option is specified together with an optimization option:
v with -O2:

Chapter 4. Compiler options reference 165

– 1/0 generates a div0 exception and has a result of infinity
– 0/0 generates an invalid operation

v with -O3 or greater:
– 1/0 generates a div0 exception and has a result of infinity
– 0/0 returns zero multiplied by the result of the previous division.

If you use -qflttrap=inv:en to compile a program containing an IEEE invalid SQRT
operation and you specify a -qarch target that does not implement the sqrt
instruction set, the expected SIGTRAP signal will not occur when you run the
program. You can fix this problem by specifying the following command before
running the program:
export SQRT_EXCEPTION=3.1

Note: Due to the transformations performed and the exception handling support
of some vector instructions, use of -qsimd=auto may change the location where an
exception is caught or even cause the compiler to miss catching an exception.

Predefined macros

None.

Example
#include <stdio.h>

int main()
{

float x, y, z;
x = 5.0;
y = 0.0;
z = x / y;
printf("%f", z);

}

When you compile this program with the following command, the program stops
when the division is performed.
xlc -qflttrap=zerodivide:enable divide_by_zero.c

The zerodivide suboption identifies the type of exception to guard against. The
enable suboption causes a SIGTRAP signal to be generated when the exception
occurs.

Related information
v “-qfloat” on page 158
v “-qarch” on page 109

-qformat
Category

Error checking and debugging

Pragma equivalent

None.

166 XL C/C++: Compiler Reference

Purpose

Warns of possible problems with string input and output format specifications.

Functions diagnosed are printf, scanf, strftime, strfmon family functions and
functions marked with format attributes.

Syntax

►►

▼

noformat
-q format

:
all

= noall
exarg
noexarg
nlt
nonlt
sec
nosec
y2k
noy2k
zln
nozln

►◄

Defaults

-qnoformat

Parameters

all | noall
Enables or disables all format diagnostic messages.

exarg | noexarg
Warns if excess arguments appear in printf and scanf style function calls.

nlt | nonlt
Warns if a format string is not a string literal, unless the format function takes
its format arguments as a va_list.

sec | nosec
Warns of possible security problems in use of format functions.

y2k | noy2k
Warns of strftime formats that produce a 2-digit year.

zln | nozln
Warns of zero-length formats.

Specifying -qformat with no suboptions is equivalent to -qformat=all.

-qnoformat is equivalent to -qformat=noall.

Predefined macros

None.

Chapter 4. Compiler options reference 167

Examples

To enable all format string diagnostics, enter either of the following:
xlc myprogram.c -qformat=all

xlc myprogram.c -qformat

To enable all format diagnostic checking except that for y2k date diagnostics, enter:
xlc myprogram.c -qformat=all:noy2k

-qfullpath
Category

Error checking and debugging

Pragma equivalent

#pragma options [no]fullpath

Purpose

When used with the -g or -qlinedebug option, this option records the full, or
absolute, path names of source and include files in object files compiled with
debugging information, so that debugging tools can correctly locate the source
files.

When fullpath is in effect, the absolute (full) path names of source files are
preserved. When nofullpath is in effect, the relative path names of source files are
preserved.

Syntax

►►
nofullpath

-q fullpath ►◄

Defaults

-qnofullpath

Usage

If your executable file was moved to another directory, the debugger would be
unable to find the file unless you provide a search path in the debugger. You can
use fullpath to ensure that the debugger locates the file successfully.

Predefined macros

None.

Related information
v “-qlinedebug” on page 255
v “-g” on page 173

168 XL C/C++: Compiler Reference

-qfuncsect
Category

Object code control

Pragma equivalent

#pragma options [no]funcsect

Purpose

Places instructions for each function in a separate object file control section or
CSECT. Placing each function in its own section or CSECT might reduce the size of
your program because the linker can collect garbage per function rather than per
object file.

When -qfuncsect is specified, the compiler generates references from each function
to the static data area, if one exists, in order to ensure that if any function from
that object file is included in the final executable, the static data area also is
included. This is done to ensure that any static strings or strings from a pragma
comment, possible containing copyright information, are also included in the
executable. This can, in some cases, cause code bloat or unresolved symbols at link
time.

When -qnofuncsect is in effect, each object file consists of a single control section
combining all functions defined in the corresponding source file. You can use
-qfuncsect to place each function in a separate control section.

In prior releases, -qfuncsect had minimal size reductions for C++ programs. You
should see an improvement in the current release.

Syntax

►►
nofuncsect

-q funcsect
implicitstaticref

= noimplicitstaticref

►◄

Defaults

-qnofuncsect

Parameters

implicitstaticref | noimplicitstaticref
Specifies whether references to the static data section of the object file by
functions that are contained in static variables, virtual function tables, or
exception handling tables, are maintained.

In releases before XL C/C++ for AIX V11.1, all exception handling tables were
placed in one static data section. Including one exception handling table meant
all the other tables were also included. Therefore, references to functions in the
unused exception handling tables prevented linker garbage collection of those
functions, which would otherwise have been cleaned up. Starting from XL

Chapter 4. Compiler options reference 169

C/C++ for AIX, V11.1, this problem is solved by allocating each exception
handling table its own TOC entry. As a result, the size of the final executable
might be reduced.

Note: The XL C/C++ for AIX, V11.1 enhancement enables large TOC access,
which sets no limit on the number of TOC entries.

When your code contains a #pragma comment directive or a static string for
copyright information purposes, the compiler automatically places these strings
in the static data area and generates references to these static data areas in the
object code.

When -qfuncsect=implicitstaticref is in effect, a reference to the static area is
generated even if not otherwise referenced.

When -qfuncsect=noimplicitstaticref is in effect, a reference to the static area is
only generated if referenced by the program.

Specifying -qfuncsect with no suboption implies -qfuncsect=implicitstaticref.

Usage

Using multiple control sections increases the size of the object file, but it can
reduce the size of the final executable by allowing the linker to remove functions
that are not called or that have been inlined by the optimizer at all places they are
called.

The pragma directive must be specified before the first statement in the
compilation unit.

Predefined macros

None.

Related information
v “#pragma comment” on page 410
v “-qkeepinlines (C++ only)” on page 217
v “-qtwolink (C++ only)” on page 374

-qfunctrace
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Calls the tracing routines to trace the entry and exit points of the specified
functions in a compilation unit.

Syntax

170 XL C/C++: Compiler Reference

►►

▼

-qnofunctrace
-qfunctrace

:

+ function_name
- classname

namespace

►◄

Pragma syntax

►► ▼

,

pragma nofunctrace (function_name) ►◄

Defaults

-qnofunctrace

Note: When -qfunctrace is specified for a C++ program, the functions in the std
namespace are not traced by default.

Parameters

+ Instructs the compiler to trace function_name, classes, or namespace, and all its
internal functions.

- Instructs the compiler not to trace function_name, classes, or namespace, or any of
its internal functions.

function_name
Indicates the named functions to be traced.

classname
Indicates the named class to be traced.

namespace
Indicates the namespace to be traced.

Usage

-qfunctrace enables tracing for all functions in your program. -qnofunctrace
disables tracing that was enabled by -qfunctrace.

The -qfunctrace+ and -qfunctrace- suboptions enable tracing for a specific list of
functions and are not affected by -qnofunctrace. The list of functions is cumulative.

This option inserts calls to the tracing functions that you have defined. These
functions must be provided at the link step. For details about the interface of
tracing functions, as well as when they are called, see the Tracing functions in your
code section in the XL C/C++ Optimization and Programming Guide.

Use + or - to indicate the function , classname, or namespace to be traced by the
compiler. For example, if you want to trace function x, use -qfunctrace+x. To trace
a list of functions, you must use a colon : to separate them.

Chapter 4. Compiler options reference 171

Two colons in a row :: is a scope qualifier, you can use it to indicate C++ qualified
names. For example, use -qfunctrace+A::B:C traces functions that begin with
qualifiers A::B or C.

If you want to trace functions in your code, you can write tracing functions in
your code by using the following C function prototypes:
v Use void __func_trace_enter(const char *const function_name, const char

*const file_name, int line_number, void **const user_data); to define the
entry point tracing routine.

v Use void __func_trace_exit(const char *const function_name, const char
*const file_name, int line_number, void **const user_data); to define the
exit point tracing routine.

v Use void __func_trace_catch(const char *const function_name, const char
*const file_name, int line_number, void **const user_data); to define the
catch tracing routine.

You must define your functions when you write the preceding function prototypes
in your code.

For details about the these function prototypes as well as when they are called, see
the Tracing functions in your code section in the XL C/C++ Optimization and
Programming Guide.

Note:

v You can only use + and - one at a time. Do not use both of them together in the
same -qfunctrace invocation.

v Definition of an inline function is traced. It is only the calls that have been
inlined are not traced.

Predefined macros

None.

Examples

To trace functions x, y, and z, use -qfunctrace+x:y:z.

To trace all functions except for x, use -qfunctrace -qfunctrace-x.

The -qfunctrace+ and -qfunctrace- suboptions only enable or disable tracing on the
given list of cumulative functions. When functions, classes, and namespaces are
used, the most completely specified option is in effect. The following is a list of
examples:
v -qfunctrace+x -qfunctrace+y or -qfunctrace+x -qnofunctrace -qfunctrace+y

enables tracing for only x and y.
v -qfunctrace-x -qfunctrace or -qfunctrace -qfunctrace-x traces all functions in

the compilation unit except for x.
v -qfunctrace -qfunctrace+x traces all functions.
v -qfunctrace+y -qnofunctrace traces y only.
v If functionX is a member function of classX, then -qfunctrace-

classX::functionX -qfunctrace+classX or -qfunctrace+classX
-qfunctrace-classX::functionX traces all member functions of classX but not
functionX. This is because classX::functionX is more completely specified than
classX. The more completely specified option has precedence over the less
completely specified option.

172 XL C/C++: Compiler Reference

v -qfunctrace+MyClass traces all member functions in MyClass.
v -qfunctrace+std::vector traces all instantiations of std::vector.
v -qfunctrace+ABC -qfunctrace-ABC::foo traces all functions defined in

namespace ABC except for foo.

Related information
v For details about #pragma nofunctrace, see “#pragma nofunctrace” on page 437.
v For detailed information about how to implement function tracing routines in

your code, as well as detailed examples and a list of rules for using them, see
Tracing functions in your code in the XL C/C++ Optimization and Programming
Guide.

-g
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Generates debugging information for use by a symbolic debugger, and makes the
program state available to the debugging session at selected source locations.

Program state refers to the values of user variables at certain points during the
execution of a program.

You can use different -g levels to balance between debug capability and compiler
optimization. Higher -g levels provide a more complete debug support, at the cost
of runtime or possible compile-time performance, while lower -g levels provide
higher runtime performance, at the cost of some capability in the debugging
session.

When the -O2 optimization level is in effect, the debug capability is completely
supported.

Note: When an optimization level higher than -O2 is in effect, the debug capability
is limited.

Syntax

►► -g
0

1
2
3
4
5
6
7
8
9

►◄

Chapter 4. Compiler options reference 173

Defaults

-g0

Parameters

-g

v When no optimization is enabled (-qnoopt), -g is equivalent to -g9.
v When the -O2 optimization level is in effect, -g is equivalent to -g2.

-g0 Generates no debugging information. No program state is preserved.

-g1 Generates minimal read-only debugging information about line numbers
and source file names. No program state is preserved. This option is
equivalent to -qlinedebug.

-g2 Generates read-only debugging information about line numbers, source file
names, and variables.

When the -O2 optimization level is in effect, no program state is preserved.

-g3, -g4
Generates read-only debugging information about line numbers, source file
names, and variables.

When the -O2 optimization level is in effect:
v No program state is preserved.
v Function parameter values are available to the debugger at the

beginning of each function.

-g5, -g6, -g7
Generates read-only debugging information about line numbers, source file
names, and variables.

When the -O2 optimization level is in effect:
v Program state is available to the debugger at if constructs, loop

constructs, function definitions, and function calls. For details, see
“Usage” on page 175.

v Function parameter values are available to the debugger at the
beginning of each function.

-g8 Generates read-only debugging information about line numbers, source file
names, and variables.

When the -O2 optimization level is in effect:
v Program state is available to the debugger at the beginning of every

executable statement.
v Function parameter values are available to the debugger at the

beginning of each function.

-g9 Generates debugging information about line numbers, source file names,
and variables. You can modify the value of the variables in the debugger.

When the -O2 optimization level is in effect:
v Program state is available to the debugger at the beginning of every

executable statement.
v Function parameter values are available to the debugger at the

beginning of each function.

174 XL C/C++: Compiler Reference

Usage

When no optimization is enabled, the debugging information is always available if
you specify -g2 or a higher level. When the -O2 optimization level is in effect, the
debugging information is available at selected source locations if you specify -g5 or
a higher level.

When you specify -g8 or -g9 with -O2, the debugging information is available at
every source line with an executable statement.

When you specify -g5, -g6, or -g7 with -O2, the debugging information is available
for the following language constructs:
v if constructs

The debugging information is available at the beginning of every if statement,
namely at the line where the if keyword is specified. It is also available at the
beginning of the next executable statement right after the if construct.

v Loop constructs
The debugging information is available at the beginning of every do, for, or
while statement, namely at the line where the do, for, or while keyword is
specified. It is also available at the beginning of the next executable statement
right after the do, for, or while construct.

v Function definitions
The debugging information is available at the first executable statement in the
body of the function.

v Function calls
The debugging information is available at the beginning of every statement
where a user-defined function is called. It is also available at the beginning of
the next executable statement right after the statement that contains the function
call.

Examples

Use the following command to compile myprogram.c and generate an executable
program called testing for debugging:
xlc myprogram.c -o testing -g

The following command uses a specific -g level with -O2 to compile myprogram.c
and generate debugging information:
xlc myprogram.c -O2 -g8

Related information
v “-qdbxextra (C only)” on page 140
v “-qsymtab (C only)” on page 355
v “#pragma ibm snapshot” on page 425
v “-qlinedebug” on page 255
v “-qfullpath” on page 168
v “-O, -qoptimize” on page 282
v “-qkeepparm” on page 218

Chapter 4. Compiler options reference 175

-G
Category

Output control

Pragma equivalent

None.

Purpose

Generates a shared object enabled for runtime linking.

Syntax

►► -G ►◄

Usage

The compiler automatically exports all global symbols from the shared object
unless you specify which symbols to export by using with the -bE:, -bexport:, or
-bnoexpall option. You can also prevent weak symbols from being exported by
using the -qnoweakexp option. IBM Symbols that have the hidden or internal
visibility attribute are not exported. IBM

To save the export list to a file, use the -qexpfile option.

Predefined macros

None.

Related information
v “-b” on page 117
v “-brtl” on page 120
v “-qexpfile” on page 152
v “-qmkshrobj” on page 272
v “-qweakexp” on page 394
v “-qvisibility” on page 387
v “#pragma GCC visibility push, #pragma GCC visibility pop” on page 418
v Summary of compiler options by functional category: Linking
v "Shared Objects and Runtime Linking" in AIX General Programming Concepts:

Writing and Debugging Programs
v ld in AIX Commands Reference, Volume 3: i through m

-qgenproto (C only)
Category

Portability and migration

Pragma equivalent

None.

176 XL C/C++: Compiler Reference

Purpose

Produces prototype declarations from K&R function definitions or function
definitions with empty parentheses, and displays them to standard output.

The compiler accepts and compiles K&R function definitions or definitions with a
function declarator with empty parentheses; however, these function definitions are
considered by the C standard to be obsolete (the compiler will diagnose them if
you enable the -qinfo=obs option). When -qgenproto is in effect, the compiler
generates the corresponding prototype declarations and displays them to standard
output. You can use this option to help you identify obsolete function definitions
and automatically obtain equivalent prototypes.

Syntax

►►
nogenproto

-q genproto
= parmnames

►◄

Defaults

-qnogenproto

Parameters

parmnames
Parameter names are included in the prototype. If you do not specify this
suboption, parameter names will not be included in the prototype.

Predefined macros

None.

Examples

Compiling with - qgenproto for the following function definitions:
int foo(a, b) // K&R function

int a, b;
{
}

int faa(int i) { } // prototyped function

main() { // missing void parameter
}

produces the following output on the display:
int foo(int, int);
int main(void);

Specifying -qgenproto=parmnames produces:
int foo(int a, int b);
int main(void);

Chapter 4. Compiler options reference 177

-qhalt
Category

Error checking and debugging

Pragma equivalent

#pragma options halt

Purpose

Stops compilation before producing any object, executable, or assembler source
files if the maximum severity of compile-time messages equals or exceeds the
severity you specify.

Syntax

-qhalt syntax (for C)

►►
s

-qhalt = i
w
e

►◄

-qhalt syntax (for C++)

►►
s

-qhalt = i
w

►◄

Defaults

-qhalt=s

Parameters

i Specifies that compilation is to stop for all types of errors: warning, error and
informational. Informational diagnostics (I) are of the lowest severity.

w Specifies that compilation is to stop for warnings (W) and all types of errors.

C e
Specifies that compilation is to stop for errors (E), severe errors (S), and
unrecoverable errors (U).

s C Specifies that compilation is to stop for severe errors (S) and
unrecoverable errors (U). C++

Specifies that compilation is to stop for

severe errors (S).

Usage

When the compiler stops as a result of the halt option, the compiler return code is
nonzero. For a list of return codes, see “Compiler return codes” on page 20.

When -qhalt is specified more than once, the lowest severity level is used.

178 XL C/C++: Compiler Reference

Diagnostic messages may be controlled by the -qflag option.

You can also instruct the compiler to stop compilation based on the number of
errors of a type of severity by using the -qmaxerr option, which overrides -qhalt.

You can also use the -qhaltonmsg option to stop compilation according to error
message number.

Predefined macros

None.

Examples

To compile myprogram.c so that compilation stops if a warning or higher level
message occurs, enter:
xlc myprogram.c -qhalt=w

Related information
v “-qhaltonmsg”
v “-qflag” on page 156
v “-qmaxerr” on page 267

-qhaltonmsg
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Stops compilation before producing any object files, executable files, or assembler
source files if a specified error message is generated.

Syntax

-qhaltonmsg syntax - C

►► ▼

nohaltonmsg
:

-q haltonmsg = message_identifier ►◄

Chapter 4. Compiler options reference 179

-qhaltonmsg syntax - C++

►►

▼

▼

nohaltonmsg
:

= message_identifier
:

-q haltonmsg = message_identifier ►◄

Defaults

-qnohaltonmsg

Parameters

message_identifier
Represents a message identifier. The message identifier must be in the
following format:
15dd-number

where:

15 Is the compiler product identifier.

dd Is the two-digit code representing the compiler component that
produces the message. See “Compiler message format” on page 18 for
descriptions of these codes.

number
Is the message number.

Usage

When the compiler stops as a result of the -qhaltonmsg option, the compiler return
code is nonzero. The severity level of a message that is specified by -qhaltonmsg is
changed to S if its original severity level is lower than S.

You cannot specify -qnohaltonmsg to resume compilation if a message whose
severity level is S has been issued.

C The -qnohaltonmsg compiler option cancels previous settings of
-qhaltonmsg. C

C++

When you specify -qnohaltonmsg with message identifiers, the previous

-qhaltonmsg instances with the same message identifiers lose effect. When you
specify -qnohaltonmsg without specific message identifiers, all previous
-qhaltonmsg instances lose effect.

If you specify two or three of the following options, the last option specified has
precedence:

-qhaltonmsg=message_identifier

-qnohaltonmsg=message_identifier

-qnohaltonmsg

C++

180 XL C/C++: Compiler Reference

-qhaltonmsg has precedence over -qsuppress and -qflag.

Predefined macros

None.

Related information
v “-qflag” on page 156
v “-qhalt” on page 178
v “Compiler messages” on page 18
v “-qsuppress” on page 353

-qheapdebug
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Enables debug versions of memory management functions.

The compiler ships a set of "debug" versions of the standard memory management
functions defined in stdlib.h (such as _debug_calloc and _debug_malloc); the
header files for these functions are found in the product include directory
(/opt/IBM/xlC/13.1.3/include). By default, the compiler uses the regular memory
management functions (such as calloc and malloc) and does not preinitialize their
local storage. When -qheapdebug is in effect, the compiler searches for header files
first in the product include directory, where the debug versions of memory
management functions are stored, and then in the system include directory.

Syntax

►►
noheapdebug

-q heapdebug ►◄

Defaults

-qnoheapdebug

Usage

For complete information about the debug memory management functions, see
"Memory debug library functions" in the XL C/C++ Optimization and Programming
Guide.

Note: The compiler supports the memory allocation debug functions, but IBM has
no plans to change or enhance these functions, and these functions will be
removed in a future release. If you use these functions to debug memory problems
in your programs, you can migrate to the AIX debug malloc tool to achieve
equivalent functionality.

Chapter 4. Compiler options reference 181

Predefined macros

__DEBUG_ALLOC__ is defined to 1 when -qheapdebug is in effect; otherwise, it is
undefined.

Examples

To compile myprogram.c with the debug versions of memory management
functions, enter the following command:
xlc -qheapdebug myprogram.c -o testing

Related information
v "Debugging memory heaps" in the XL C/C++ Optimization and Programming

Guide

-qhelp
Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Displays the man page of the compiler.

Syntax

►► -q help ►◄

Usage

If you specify the -qhelp option, regardless of whether you provide input files, the
compiler man page is displayed and the compilation stops.

Predefined macros

None.

Related information
v “-qversion” on page 385

-qhot
Category

Optimization and tuning

182 XL C/C++: Compiler Reference

Pragma equivalent

#pragma novector

#pragma nosimd

Purpose

Performs high-order loop analysis and transformations (HOT) during optimization.

The -qhot compiler option is a powerful alternative to hand tuning that provides
opportunities to optimize loops and array language. This compiler option will
always attempt to optimize loops, regardless of the suboptions you specify.

You can use the pragma directives to disable these transformations for selected
sections of code.

Syntax

►►

▼

nohot
-q hot

:

= noarraypad
arraypad

= number
1

level = 0
2

vector
novector
fastmath
nofastmath

►◄

Pragma syntax

►► # pragma novector
nosimd

►◄

Defaults
v -qnohot

v -qhot=noarraypad:level=0:novector:fastmath when -O3 is in effect.
v -qhot=noarraypad:level=1:vector:fastmath when -qsmp, -O4 or -O5 is in effect.
v Specifying -qhot without suboptions is equivalent to

-qhot=noarraypad:level=1:vector:fastmath.

Parameters

arraypad (option only) | noarraypad (option only)
Permits the compiler to increase the dimensions of arrays where doing so
might improve the efficiency of array-processing loops. (Because of the
implementation of the cache architecture, array dimensions that are powers of
two can lead to decreased cache utilization.) Specifying -qhot=arraypad when
your source includes large arrays with dimensions that are powers of 2 can
reduce cache misses and page faults that slow your array processing programs.

Chapter 4. Compiler options reference 183

This can be particularly effective when the first dimension is a power of 2. If
you use this suboption with no number, the compiler will pad any arrays
where it infers there may be a benefit and will pad by whatever amount it
chooses. Not all arrays will necessarily be padded, and different arrays may be
padded by different amounts. If you specify a number, the compiler will pad
every array in the code.

Note: Using arraypad can be unsafe, as it does not perform any checking for
reshaping or equivalences that may cause the code to break if padding takes
place.

number (option only)
A positive integer value representing the number of elements by which each
array will be padded in the source. The pad amount must be a positive integer
value. To achieve more efficient cache utilization, it is recommended that pad
values be multiples of the largest array element size, typically 4, 8, or 16.

level=0 (option only)
Performs a subset of the high-order transformations and sets the default to
novector:noarraypad:fastmath.

level=1 (option only)
Performs the default set of high-order transformations.

level=2 (option only)
Performs the default set of high-order transformations and some more
aggressive loop transformations. This option performs aggressive loop analysis
and transformations to improve cache reuse and exploit loop parallelization
opportunities.

vector (option only) | novector
When specified with -qnostrict and -qignerrno, or an optimization level of -O3
or higher, vector causes the compiler to convert certain operations that are
performed in a loop on successive elements of an array (for example, square
root, reciprocal square root) into a call to a routine in the Mathematical
Acceleration Subsystem (MASS) library in libxlopt.

The vector suboption supports single-precision and double-precision
floating-point mathematics, and is useful for applications with significant
mathematical processing demands.

novector disables the conversion of loop array operations into calls to MASS
library routines.

Because vectorization can affect the precision of your program results, if you
are using -O3 or higher, you should specify -qhot=novector if the change in
precision is unacceptable to you.

fastmath (option only) | nofastmath (option only)
You can use this suboption to tune your application to either use fast scalar
versions of math functions or use the default versions.

For C/C++, you must use this suboption together with -qignerrno, unless
-qignerrno is already enabled by other options.

-qhot=fastmath enables the replacement of math routines with available math
routines from the XLOPT library only if -qstrict=nolibrary is enabled.

-qhot=nofastmath disables the replacement of math routines by the XLOPT
library. -qhot=fastmath is enabled by default if -qhot is specified regardless of
the hot level.

184 XL C/C++: Compiler Reference

Usage

If you do not also specify an optimization level when specifying -qhot on the
command line, the compiler assumes -O2.

If you want to override the default level setting of 1 when using -qsmp, -O4 or
-O5, be sure to specify -qhot=level=0 or -qhot=level=2 after the other options.

The pragma directives apply only to while, do while, and for loops that
immediately follow the placement of the directives. They have no effect on other
loops that may be nested within the specified loop.

You can use the -qreport option in conjunction with -qhot or any optimization
option that implies -qhot to produce a pseudo-C report showing how the loops
were transformed. The loop transformations are included in the listing report if
either the -qreport or -qlistfmt option is also specified. This LOOP TRANSFORMATION
SECTION of the listing file also contains information about data prefetch insertion
locations. In addition, when you use -qprefetch=assistthread to generate
prefetching assist threads, a message Assist thread for data prefetching was
generated also appears in the LOOP TRANSFORMATION SECTION of the listing file.
Specifying -qprefetch=assistthread guides the compiler to generate aggressive data
prefetching at optimization level -O3 -qhot or higher. For more information, see
“-qreport” on page 315.

Predefined macros

None.

Related information
v “-qarch” on page 109
v “-qsimd” on page 330
v “-qprefetch” on page 306
v “-qreport” on page 315
v “-qlistfmt” on page 257
v “-O, -qoptimize” on page 282
v “-qstrict” on page 348
v “-qsmp” on page 334
v Using the Mathematical Acceleration Subsystem (MASS) in the XL C/C++

Optimization and Programming Guide

-I
Category

Input control

Pragma equivalent

None.

Purpose

Adds a directory to the search path for include files.

Chapter 4. Compiler options reference 185

Syntax

►► -I directory_path ►◄

Defaults

See “Directory search sequence for included files” on page 13 for a description of
the default search paths.

Parameters

directory_path
The path for the directory where the compiler should search for the header
files.

Usage

If -qnostdinc is in effect, the compiler searches only the paths specified by the -I
option for header files, and not the standard search paths as well. If -qidirfirst is in
effect, the directories specified by the -I option are searched before any other
directories.

If the -I directory option is specified both in the configuration file and on the
command line, the paths specified in the configuration file are searched first. The -I
directory option can be specified more than once on the command line. If you
specify more than one -I option, directories are searched in the order that they
appear on the command line.

The -I option has no effect on files that are included using an absolute path name.

Predefined macros

None.

Examples

To compile myprogram.c and search /usr/tmp and then /oldstuff/history for
included files, enter:
xlc myprogram.c -I/usr/tmp -I/oldstuff/history

Related information
v “-qstdinc” on page 346
v “-qinclude” on page 189
v “Directory search sequence for included files” on page 13
v “Specifying compiler options in a configuration file” on page 8

-qidirfirst
Category

Input control

Pragma equivalent

#pragma options [no]idirfirst

186 XL C/C++: Compiler Reference

Purpose

Searches for user included files in directories that are specified by the -I option
before searching any other directories.

Syntax

►►
noidirfirst

-q idirfirst ►◄

Defaults

-qnoidirfirst

Usage

This option only affects files that are included by the #include "file_name"
directive or the -qinclude option. This option has no effect on the search order for
XL C/C++ or system header files. This option also has no effect on files that are
included by absolute paths.

-qidirfirst is independent of the -qnostdinc option.

The last valid pragma directive remains in effect until replaced by a subsequent
pragma.

Predefined macros

None.

Examples

To compile myprogram.c and instruct the compiler to search for included files in
/usr/tmp/myinclude first and then the directory in which the source file is located,
use the following command:
xlc myprogram.c -I/usr/tmp/myinclude -qidirfirst

Related information
v “-I” on page 185
v “-qinclude” on page 189
v “-qstdinc” on page 346
v “-qc_stdinc (C only)” on page 134
v “-qcpp_stdinc (C++ only)” on page 135
v “Directory search sequence for included files” on page 13

-qignerrno
Category

Optimization and tuning

Pragma equivalent

#pragma options [no]ignerrno

Chapter 4. Compiler options reference 187

Purpose

Allows the compiler to perform optimizations as if system calls would not modify
errno.

Some system library functions set errno when an exception occurs. When ignerrno
is in effect, the setting and subsequent side effects of errno are ignored. This option
allows the compiler to perform optimizations without regard to what happens to
errno.

Syntax

►►
noignerrno

-q ignerrno ►◄

Defaults
v -qnoignerrno
v -qignerrno when the -O3 or higher optimization level is in effect.

Usage

If you require both -O3 or higher and the ability to set errno, you should specify
-qnoignerrno after the optimization option on the command line.

Predefined macros

C++ __IGNERRNO__ is defined to 1 when -qignerrno is in effect; otherwise,
it is undefined.

Related information
v “-O, -qoptimize” on page 282

-qignprag
Category

Language element control

Pragma equivalent

#pragma options ignprag

Purpose

Instructs the compiler to ignore certain pragma statements.

This option is useful for detecting aliasing pragma errors. Incorrect aliasing gives
runtime errors that are hard to diagnose. When a runtime error occurs, but the
error disappears when you use ignprag with the -O option, the information
specified in the aliasing pragmas is likely incorrect.

Syntax

188 XL C/C++: Compiler Reference

►► ▼

:

-qignprag =
all
disjoint
isolated_call

ibm
omp

►◄

Defaults

Not applicable.

Parameters

all
Ignores all #pragma isolated_call and #pragma disjoint directives in the source
file.

disjoint
Ignores all #pragma disjoint directives in the source file.

ibm

C Ignores all #pragma ibm snapshot directives and all IBM SMP
directives (such as #pragma ibm schedule) in the source file.

isolated_call
Ignores all #pragma isolated_call directives in the source file.

omp
Ignores all OpenMP parallel processing directives in the source file, such as
#pragma omp parallel, #pragma omp critical.

Predefined macros

None.

Examples

To compile myprogram.c and ignore any #pragma isolated_call directives, enter the
following command:
xlc myprogram.c -qignprag=isolated_call

Related information
v “#pragma disjoint” on page 413
v “-qisolated_call” on page 214
v “#pragma ibm snapshot” on page 425
v “Pragma directives for parallel processing” on page 459

-qinclude
Category

Input control

Pragma equivalent

None.

Chapter 4. Compiler options reference 189

Purpose

Specifies additional header files to be included in a compilation unit, as though the
files were named in an #include statement in the source file.

The headers are inserted before all code statements and any headers specified by
an #include preprocessor directive in the source file. This option is provided for
portability among supported platforms.

Syntax

►►
noinclude

-q include = file ►◄

Defaults

-qnoinclude

Parameters

file
The absolute or relative path and name of the header file to be included in the
compilation units being compiled. If file is specified with a relative path, the
search for it follows the sequence described in “Directory search sequence for
included files” on page 13.

Usage

The usage of the -qinclude option is similar to that of the #include directive. This
section describes the differences between using -qinclude and #include.

The -qinclude option applies only to the files specified in the same compilation in
which the option is specified. It is not passed to any compilations that occur
during the link step, nor to any implicit compilations, such as those invoked by the
option -qtemplateregistry, or to the files generated by -qtempinc.

When the option is specified multiple times in an invocation, the header files are
included in order of appearance on the command line. If the same header file is
specified multiple times with this option, the header is treated as if included
multiple times by #include directives in the source file, in order of appearance on
the command line.

Specifying -qnoinclude ignores any previous specification of -qinclude. Only the
specifications of -qinclude after-qnoinclude are effective.

Any pragma directives that must appear before noncommentary statements in a
source file will be affected; you cannot use -qinclude to include files if you need to
preserve the placement of these pragmas.

The following rules apply when you use -qinclude with other options:
v C++ When used with -qtemplateregistry, -qinclude is recorded in the

template registry file, along with the source files affected by it. When these file
dependencies initiate recompilation of the template registry, the -qinclude option
is passed to the dependent files only if it had been specified for them when they
were added to the template registry.

190 XL C/C++: Compiler Reference

v If you generate a listing file with -qsource, the header files included by
-qinclude do not appear in the source section of the listing. Use -qshowinc=usr
or -qshowinc=all in conjunction with -qsource if you want these header files to
appear in the listing.

v After searching the directory from which the compiler was invoked, -qinclude
searches additional search paths added to the search chain by the -I option. You
can specify the -I option before or after the -qinclude option.

v Files specified with -qinclude are included as dependencies in the -qmakedep
output. However, the paths are different in the dependency file for the -qinclude
option and the #include directive, because the files specified with the -qinclude
option are searched in the invocation path first, whereas files included by the
#include directive are not.
When a dependency file is created as a result of a first build with the -qinclude
option, a subsequent build without the -qinclude option will trigger recompile if
the header file on the -qinclude option was touched between the two builds.

v In the compiler listing file generated by the -qlistopt option, each use of the
-qinclude option has a separate entry in the OPTION SECTION.

v If both the -qsource option and the -qinclude option are used, header files
specified with -qinclude are not included in the program source listing as
#include directives. However, the files specified on #include directives in source
programs are included.

Predefined macros

None.

Examples

To include the files test1.h and test2.h in the source file test.c, enter the
following command:
xlc -qinclude=test1.h test.c -qinclude=test2.h

Related information
v “Directory search sequence for included files” on page 13

-qinfo
Category

Error checking and debugging

Pragma equivalent

#pragma options [no]info, #pragma info

Purpose

Produces or suppresses groups of informational messages.

The messages are written to standard output and, optionally, to the listing file if
one is generated. The compiler does not issue messages for the following files:
v Files in the standard search paths for compiler and system header files. The

standard search paths are affected by the following compiler options:
– “-qstdinc” on page 346

Chapter 4. Compiler options reference 191

– “-qc_stdinc (C only)” on page 134
– “-qcpp_stdinc (C++ only)” on page 135

v Files that are ultimately included by the files in the standard search paths for
compiler and system header files.

Syntax

Option syntax

►►

▼

-q noinfo
info

:

= all
noall
als
noals
group
nogroup
mt
nomt
private
reduction
stp
nostp

►◄

Pragma syntax

►► ▼

,

pragma info (all)
none
als
noals
group
nogroup
mt
nomt
private
reduction
restore

►◄

Defaults

-qnoinfo

v C -qnoinfo
v C++ -qinfo=lan:trx

Parameters

all
Enables diagnostic messages for all groups except als, mt, and ppt.

noall (option only)
Disables all diagnostic messages for all groups.

192 XL C/C++: Compiler Reference

none (pragma only)
Disables all diagnostic messages for all groups.

als
Enables reporting possible violations of the ANSI aliasing rule in effect.

noals
Disables reporting possible aliasing-rule violations.

group | nogroup
Enables or disables specific groups of messages, where group can be one or
more of:

group
Type of informational messages returned or suppressed.

C++ cls | nocls
C++ classes.

cmp | nocmp
Possible redundancies in unsigned comparisons.

cnd | nocnd
Possible redundancies or problems in conditional expressions.

cns | nocns
Operations involving constants.

cnv | nocnv
Conversions.

dcl | nodcl
Consistency of declarations.

eff | noeff
Statements and pragmas with no effect.

enu | noenu
Consistency of enum variables.

ext | noext
Unused external definitions.

gen | nogen
General diagnostic messages.

gnr | nognr
Generation of temporary variables.

got | nogot
Use of goto statements.

C ini | noini
Reports array initializers that partially initialize their arrays. If an array is
partially initialized, elements that are not initialized receive the value 0 of
the appropriate type.

lan | nolan
Language level effects.

obs | noobs
Obsolete features.

ord | noord
Unspecified order of evaluation.

Chapter 4. Compiler options reference 193

par | nopar
Unused parameters.

por | nopor
Nonportable language constructs.

ppc | noppc
Possible problems with using the preprocessor.

ppt | noppt
Trace of preprocessor actions.

pro | nopro
Missing function prototypes.

rea | norea
Code that cannot be reached.

ret | noret
Consistency of return statements.

trd | notrd
Possible truncation or loss of data or precision.

tru | notru
Variable names truncated by the compiler.

trx | notrx
Hexadecimal-floating point constants rounding.

uni | nouni
Uninitialized variables. The -qinfo=uni option enforces the coding style
that a variable must be initialized in its declaration.

upg | noupg
Generates messages describing new behaviors of the current compiler
release as compared to the previous release.

use | nouse
Unused auto and static variables.

C++ vft | novft
Generation of virtual function tables.

zea | nozea
Zero-extent arrays.

mt | nomt

Reports potential synchronization issues in parallel code. This suboption
detects the Global Thread Flag pattern where one thread uses a shared volatile
flag variable to notify other threads that it has completed a computation and
stored its result to memory. Other threads check the flag variable in a loop that
does not change the flag variable. When the value of the flag variable changes,
the waiting threads access the computation result from memory. The PowerPC
storage model requires synchronization before the flag variable is set in the
first thread, and after the flag variable is checked in the waiting threads.
Synchronization can be done by a synchronization built-in function.

The type of synchronization directives you need to use depends on your code.
Usually, it is enough to use the __lwsync function, as it preserves the storage
access order to system memory. However, if the loops in the waiting threads
are written in such a way that might cause instruction prefetching to start

194 XL C/C++: Compiler Reference

executing code that accesses the computation result before the flag variable is
updated, a call to a function like __isync is needed to preserve order. Such
patterns are typically as follows:
gotosleep: sleep(value);

if (!flag) goto gotosleep;
// A call to the __isync function is needed here.
x = shared_computation_result;

Some patterns that do not require synchronization are similar to the patterns
described above. The messages generated by this suboption are only
suggestions about potential synchronization issues.

To use the -qinfo=mt suboption, you must enable the -qthreaded option and
specify at least one of the following options:
v -O3

v -O4

v -O5

v -qipa

v -qhot

v -qsmp

The default option is -qinfo=nomt.

private
This suboption is deprecated. -qreport replaces it. For details, see “-qreport” on
page 315 and the “Deprecated options” on page 96 section in the XL C/C++
Compiler Reference.

reduction
This suboption is deprecated. -qreport replaces it. For details, see “-qreport” on
page 315 and the “Deprecated options” on page 96 section in the XL C/C++
Compiler Reference.

stp | nostp
Issues warnings for procedures that are not protected against stack corruption.
-qinfo=stp has no effects unless the -qstackprotect option is also enabled. Like
other -qinfo options, -qinfo=stp is enabled or disabled through -qinfo=all /
noall. -qinfo=nostp is the default option.

restore (pragma only)
Discards the current pragma setting and reverts to the setting specified by the
previous pragma directive. If no previous pragma was specified, reverts to the
command-line or default option setting.

Usage

Specifying -qinfo with no suboptions is equivalent to -qinfo=all.

Specifying -qnoinfo is equivalent to -qinfo=noall.

Consider the following when enabling the reporting of aliasing-rule violations:
v -qalias=ansi must be set before reporting of aliasing-rule violations (-qinfo=als)

can occur.
v Any level of optimization or inlining implies -qinfo=noals and a warning will

be issued when -qinfo=als is explicitly specified.
v Diagnostics are heuristic and may emit false positives. Points-to analysis cannot

be evaluated deterministically in static compilation. The points-to analysis used
for diagnostics is evaluated in a context-and-flow, insensitive manner. The

Chapter 4. Compiler options reference 195

sequence of traceback messages in diagnostics is such that if executed in the
order specified, the indirect expression will point to the offending object. If that
execution sequence cannot occur in the application, the diagnostic is a false
positive. (See the Examples section for the types of diagnostics that can occur.)

Predefined macros

None.

Examples

To compile myprogram.c to produce informational messages about all items except
conversions and unreached statements, enter the following command:
xlc myprogram.c -qinfo=all -qinfo=nocnv:norea

C The following example shows code constructs that the compiler detects
when the code is compiled with -qinfo=cnd:eff:got:obs:par:pro:rea:ret:uni in effect:
#define COND 0

void faa() // Obsolete prototype (-qinfo=obs)
{

printf("In faa\n"); // Unprototyped function call (-qinfo=pro)
}

int foo(int i, int k)
{

int j; // Uninitialized variable (-qinfo=uni)

switch(i) {
case 0:
i++;
if (COND) // Condition is always false (-qinfo=cnd)

i--; // Unreachable statement (-qinfo=rea)
break;

case 1:
break;
i++; // Unreachable statement (-qinfo=rea)

default:
k = (i) ? (j) ? j : i : 0;

}

goto L; // Use of goto statement (-qinfo=got)
return 3; // Unreachable statement (-qinfo=rea)

L:
faa(); // faa() does not have a prototype (-qinfo=pro)

// End of the function may be reached without returning a value
// because of there may be a jump to label L (-qinfo=ret)

} //Parameter k is never referenced (-qinfo=ref)

int main(void) {
({ int i = 0; i = i + 1; i; }); // Statement does not have side effects (-qinfo=eff)

return foo(1,2);
}

C++ The following example shows code constructs that the compiler detects,
with this code is compiled with -qinfo=cls:cnd:eff:use in effect:
#pragma abc // pragma not supported (-qinfo=eff or -qinfo=gen)

int bar() __attribute__((xyz)); // attribute not supported (-qinfo=eff)
int j();

class A {
public:

A(): x(0), y(0), z(0) { }; // this constructor is in the correct order
// hence, no info message.

A(int m): y(0), z(0)

196 XL C/C++: Compiler Reference

{ x=m; }; // suggest using member initialization list
for x (-qinfo=cls)

A(int m, int n):
x(0), z(0) { }; // not all data members are initialized

// namely, y is not initialized (-qinfo=cls)

A(int m, int n, int* l):
x(m), z(l), y(n) { }; // order of class initialization (-qinfo=cls)

private:
int x;
int y;
int *z; // suggest having user-defined copy constructor/

// assignment operator to handle the pointer data member
// (-qinfo=cls)

};

int foo() {
int j=5;
j; // null statement (-qinfo=eff)

// The user may mean to call j().

return j;

}

void boo() {
int x;
int *i = &x;
float *f; // f is not used (-qinfo=use)
f = (float *) i; // incompatible type (-qinfo=eff)

// With ansi aliasing mode, a float pointer
// is not supposed to point to an int

}

void cond(int y) {
const int i=0;
int j;
int k=0;

if (i) { // condition is always false (-qinfo=cnd)
j=3;

}

if (1) { // condition is always true (-qinfo=cnd)
j=4;

}

j=0;
if (j==0) { // cond. is always true (-qinfo=cnd)

j=5;
}

if (y) {
k+=5
}

if (k==5) { // This case cannot be determined, because k+=5
// is in a conditional block.

j=6;
}

}

In the following example, the #pragma info(eff, nouni) directive preceding
MyFunction1 instructs the compiler to generate messages identifying statements or
pragmas with no effect, and to suppress messages identifying uninitialized
variables. The #pragma info(restore) directive preceding MyFunction2 instructs the
compiler to restore the message options that were in effect before the #pragma
info(eff, nouni) directive was specified.
#pragma info(eff, nouni)
int MyFunction1()
{
.
.
.

Chapter 4. Compiler options reference 197

}

#pragma info(restore)
int MyFunction2()
{
.
.
.

}

The following example shows a valid diagnostic for an aliasing violation:
t1.c:
int main() {
short s = 42;
int *pi = (int*) &s;
*pi = 63;
return 0;

}
xlC -qinfo=als t1.c
"t1.c", line 4.3: 1540-0590 (I) Dereference may not conform to the current

aliasing rules.
"t1.c", line 4.3: 1540-0591 (I) The dereferenced expression has type "int".

"pi" may point to "s" which has incompatible
type "short".

"t1.c", line 4.3: 1540-0592 (I) Check assignment at line 3 column 11 of t1.c.

In the following example, the analysis is context insensitive in that the two calls to
floatToInt are not distinguished. There is no aliasing violation in this example, but
a diagnostic is still issued.
t2.c:
int* floatToInt(float *pf) { return (int*)pf; }

int main() {
int i;
float f;
int* pi = floatToInt((float*)*&i));
floatToInt(&f;)
return *pi;

}

xlC -qinfo=als t2.c
"t2.c", line 8.10: 1540-0590 (I) Dereference may not conform to the current

aliasing rules.
"t2.c", line 8.10: 1540-0591 (I) The dereferenced expression has type "int".

"pi" may point to "f"
which has incompatible type "float".

"t2.c", line 8.10: 1540-0592 (I) Check assignment at line 7 column 14 of t2.c.
"t2.c", line 8.10: 1540-0592 (I) Check assignment at line 1 column 37 of t2.c.
"t2.c", line 8.10: 1540-0592 (I) Check assignment at line 6 column 11 of t2.c.

t3.c:
int main() {
float f;
int i = 42;
int *p = (int*) &f;
p = &i;
return *p;

}

xlC -qinfo=als t3.c
"t3.c", line 6.10: 1540-0590 (I) Dereference may not conform to

the current aliasing rules.
"t3.c", line 6.10: 1540-0591 (I) The dereferenced expression has

type "int". "p" may point to "f", which has incompatible
type "float".

"t3.c", line 6.10: 1540-0592 (I) Check assignment at line 4 column
10 of t3.c.

198 XL C/C++: Compiler Reference

To compile sync.c to produce informational messages about potential
synchronization issues in parallel code, enter the following command:
xlc_r -O3 -qinfo=mt sync.c

Suppose that sync.c contains the following code:
#include <unistd.h>
#include <stdio.h>
#include <pthread.h>

volatile int done; /* shared flag */
volatile int result; /* shared result */

void *setter(void *id)
{
sleep(5);
result = 7;
/* Need __lwsync(); */
done = 1; /* line 13 */

}

void *waiter(void *id)
{
while (!done) /* line 18 */
{
sleep(1);

}
/* need __lwsync(); */
printf("%d\n", result);

}

int main()
{
pthread_t threads[2];
pthread_attr_t attr;
int result;

result = pthread_create(&threads[0], NULL, waiter, NULL);
if (result != 0) exit(2);
result = pthread_create(&threads[1], NULL, setter, NULL);
if (result != 0) exit(3);

pthread_join(threads[0], NULL);
pthread_join(threads[1], NULL);

return 0;
}

The compiler issues the following informational messages:
1586-669 (I) "sync.c", line 18: If this loop is used as a synchronization
point, additional synchronization via a directive or built-in function might
be needed.

1586-670 (I) "sync.c", line 13: If this statement is used as a synchronization
point, additional synchronization via a directive or built-in function might
be needed.

C The following function ini.c partially initialized array a[3]. To compile
ini.c to produce an informational message about this issue, enter the following
command:
xlc -qinfo=ini ini.c -c

Suppose that ini.c contains the following code:
int a[3] = {1};

The compiler issues the following informational message:

Chapter 4. Compiler options reference 199

"ini.c", line 1.10: 1506-446 (I) Array element(s) [1] ...
[2] will be initialized with a default value of 0.

C

The following function factorial.c does not initialize result when n<1. With
-qinfo=unset at -qnoopt, this issue is not detected. To compile factorial.c to
produce informational messages about the uninitialized variable result, enter the
following command:
xlc -qinfo=unset -O factorial.c

factorial.c contains the following code:
int factorial(int n) {

int result;

if (n > 1) {
result = n * factorial(n - 1);

}

return result; /* line 8 */
}

int main() {
int x = factorial(1);
return x;

}

The compiler issues the following informational message:
1500-099: (I) "factorial.c", line 8: "result" might be used before it is set.

Related information
v “-qflag” on page 156
v “-qreport” on page 315
v “-qstackprotect” on page 344
v “Synchronization functions” on page 549
v For a list of deprecated options, see the “Deprecated options” on page 96 section

in the XL C/C++ Compiler Reference.
v For more information about synchronization and the PowerPC storage model,

see the article at http://www.ibm.com/developerworks/systems/articles/
powerpc.html.

-qinitauto
Category

Error checking and debugging

Pragma equivalent

#pragma options [no]initauto

Purpose

Initializes uninitialized automatic variables to a specific value, for debugging
purposes.

200 XL C/C++: Compiler Reference

http://www.ibm.com/developerworks/systems/articles/powerpc.html
http://www.ibm.com/developerworks/systems/articles/powerpc.html

Syntax

►►
noinitauto

-q initauto = hex_value ►◄

Defaults

-qnoinitauto

Parameters

hex_value
A one- to eight-digit hexadecimal number.

v To initialize each byte of storage to a specific value, specify one or two digits for
the hex_value.

v To initialize each word of storage to a specific value, specify three to eight digits
for the hex_value.

v In the case where less than the maximum number of digits are specified for the
size of the initializer requested, leading zeros are assumed.

v In the case of word initialization, if an automatic variable is smaller than a
multiple of 4 bytes in length, the hex_value is truncated on the left to fit. For
example, if an automatic variable is only 1 byte and you specify five digits for
the hex_value, the compiler truncates the three digits on the left and assigns the
other two digits on the right to the variable. See Example 1.

v If an automatic variable is larger than the hex_value in length, the compiler
repeats the hex_value and assigns it to the variable. See Example 1.

v If the automatic variable is an array, the hex_value is copied into the memory
location of the array in a repeating pattern, beginning at the first memory
location of the array. See Example 2.

v You can specify alphabetic digits as either uppercase or lowercase.
v The hex_value can be optionally prefixed with 0x, in which x is case-insensitive.

Usage

The -qinitauto option provides the following benefits:
v Setting hex_value to zero ensures that all automatic variables that are not

explicitly initialized when declared are cleared before they are used.
v You can use this option to initialize variables of real or complex type to a

signaling or quiet NaN, which helps locate uninitialized variables in your
program.

This option generates extra code to initialize the value of automatic variables. It
reduces the runtime performance of the program and is to be used for debugging
purposes only.

Restrictions:

v Objects that are equivalenced, structure components, and array elements are not
initialized individually. Instead, the entire storage sequence is initialized
collectively.

v The -qinitauto=hex_value option does not initialize variable length arrays or
memory allocated through the __alloca function.

Chapter 4. Compiler options reference 201

Predefined macros
v __INITAUTO__ is defined to the least significant byte of the hex_value that is

specified on the -qinitauto option or pragma; otherwise, it is undefined.
v __INITAUTO_W__ is defined to the byte hex_value, repeated four times, or to the

word hex_value, which is specified on the -qinitauto option or pragma;
otherwise, it is undefined.

For example:
v For option -qinitauto=0xABCD, the value of __INITAUTO__ is 0xCDu, and the

value of __INITAUTO_W__ is 0x0000ABCDu.
v For option -qinitauto=0xCD, the value of __INITAUTO__ is 0xCDu, and the

value of __INITAUTO_W__ is 0xCDCDCDCDu.

Examples

Example 1: Use the -qinitauto option to initialize automatic variables of scalar
types.
#include <stdio.h>

int main()
{

char a;
short b;
int c;
long long int d;

printf("char a = 0x%X\n",(char)a);
printf("short b = 0x%X\n",(short)b);
printf("int c = 0x%X\n",c);
printf("long long int d = 0x%llX\n",d);

}

If you compile the program with -qinitauto=AABBCCDD, for example, the result is as
follows:
char a = 0xDD
short b = 0xFFFFCCDD
int c = 0xAABBCCDD
long long int d = 0xAABBCCDDAABBCCDD

Example 2: Use the -qinitauto option to initialize automatic array variables.
#include <stdio.h>
#define ARRAY_SIZE 5

int main()
{

char a[5];
short b[5];
int c[5];
long long int d[5];

printf("array of char: ");
for (int i = 0; i<ARRAY_SIZE; i++)
printf("0x%1X ",(unsigned)a[i]);

printf("\n");

printf("array of short: ");
for (int i = 0; i<ARRAY_SIZE; i++)
printf("0x%1X ",(unsigned)b[i]);

printf("\n");

202 XL C/C++: Compiler Reference

printf("array of int: ");
for (int i = 0; i<ARRAY_SIZE; i++)
printf("0x%1X ",(unsigned)c[i]);

printf("\n");

printf("array of long long int: ");
for (int i = 0; i<ARRAY_SIZE; i++)
printf("0x%1X ",(unsigned)d[i]);

printf("\n");
}

If you compile the program with -qinitauto=AABBCCDD, for example, the result is as
follows:
array of char: OxAA OxBB OxCC OxDD OxAA
array of short: OxAABB OxCCDD OxAABB OxCCDD OxAABB
array of int: OxAABBCCDD OxAABBCCDD OxAABBCCDD OxAABBCCDD OxAABBCCDD
array of long long int: 0xAABBCCDDAABBCCDD 0xAABBCCDDAABBCCDD 0xAABBCCDDAABBCCDD
0xAABBCCDDAABBCCDD 0xAABBCCDDAABBCCDD

-qinlglue
Category

Object code control

Pragma equivalent

#pragma options [no]inlglue

Purpose

When used with -O2 or higher optimization, inlines glue code that optimizes
external function calls in your application.

Glue code or , generated by the linker, is used for passing control between two
external functions. When -qinlglue is in effect, the optimizer inlines glue code for
better performance. When -qnoinlglue is in effect, inlining of glue code is
prevented.

Syntax

►►
noinlglue

-q inlglue ►◄

Defaults
v -qnoinlglue when -q32 is in effect
v -qinlglue when -q64 is in effect
v -qinlglue when -qtune=pwr4 and above, -qtune=ppc970, -qtune=auto, or

-qtune=balanced is in effect.

Usage

If you use the -qtune option with any of the suboptions that imply -qinlglue and
you want to disable inlining of glue code, make sure to specify -qnoinlglue as
well.

Chapter 4. Compiler options reference 203

Inlining glue code can cause the code size to grow. Specifying -qcompact overrides
the -qinlglue setting to prevent code growth. If you want -qinlglue to be enabled,
do not specify -qcompact.

Specifying -qnoinlglue or -qcompact can degrade performance; use these options
with discretion.

The -qinlglue option only affects function calls through pointers or calls to an
external compilation unit. For calls to an external function, you should specify that
the function is imported by using, for example, the -qprocimported option.

Predefined macros

None.

Related information
v “-qcompact” on page 130
v “-qprocimported, -qproclocal, -qprocunknown” on page 311
v “-qtune” on page 371

-qinline
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Attempts to inline functions instead of generating calls to those functions, for
improved performance.

Syntax

►►

▼

▼

-qnoinline
-qinline

:

= auto
noauto
level = number

(1)
autothreshold

:

+ function_name
-

►◄

Notes:

1 This suboption is available only in the XL C compiler.

204 XL C/C++: Compiler Reference

Defaults

If -qinline is not specified, the default option is -qnoinline at the -O0 or -qnoopt
optimization level, or -qinline=noauto:level=5 at the -O2 or higher optimization
level.

If -qinline is specified without any suboptions, the default option is
-qinline=auto:level=5.

Parameters

auto | noauto
Enables or disables automatic inlining. When option -qinline=auto is in effect,
all functions are considered for inlining by the compiler. When option
-qinline=noauto is in effect, only the following types of functions are
considered for inlining:
v Functions that are defined with the inline specifier
v Small functions that are identified by the compiler

The compiler determines whether a function is appropriate for inlining, and
enabling automatic inlining does not guarantee that a function is inlined.

level=number
Indicates the relative degree of inlining. The values for number must be integers
in the range 0 - 10 inclusive. The default value for number is 5. The greater the
value of number, the more aggressive inlining the compiler conducts.

C autothreshold
Represents the largest number of executable statements that a function can
include when the function is to be inlined. The value for autothreshold must be
a positive integer. The default value for autothreshold is 20. If you specify a
value of 0, only functions that are specified with IBM the always_inline or
__always_inline__ attribute IBM

or specified after -qinline+ are inlined. In

the following example, three executable statements are included in the
increment function.
int increment(){

int a, b, i;
for (i=0; i<10; i++){ // statement 1
a=i; // statement 2
b=i; // statement 3

}
}

C

function_name
If function_name is specified after the -qinline+ option, the named function
must be inlined. If function_name is specified after the -qinline- option, the
named function must not be inlined. C++ The function_name must be the
mangled name of the function. You can find the mangled function name in the
listing file. C++

Usage

You can specify C++ -qinline C++ or specify -qinline with any
optimization level of C++ -O C++ , -O2, -O3, -O4, or -O5 to enable inlining
of functions, including those functions that are declared with the inline specifier

C++ or that are defined within a class declaration C++ .

Chapter 4. Compiler options reference 205

When -qinline is in effect, the compiler determines whether inlining a specific
function can improve performance. That is, whether a function is appropriate for
inlining is subject to two factors: limits on the number of inlined calls and the
amount of code size increase as a result. Therefore, enabling inlining a function
does not guarantee that function will be inlined.

Because inlining does not always improve runtime performance, you need to test
the effects of this option on your code. Do not attempt to inline recursive or
mutually recursive functions.

You can use the -qinline+<function_name> or -qinline-<function_name> option to
specify the functions that must be inlined or must not be inlined.

IBM The -qinline-<function_name> option takes higher precedence than the
always_inline or __always_inline__ attribute. When you specify both the
always_inline or __always_inline__ attribute and the -qinline-<function_name>
option to a function, that function is not inlined. IBM

Specifying -qnoinline disables all inlining, including that achieved by the
high-level optimizer with the -qipa option, and functions declared explicitly as
inline. However, the -qnoinline option does not affect the inlining of the following
functions:
v IBM Functions that are specified with the always_inline or

__always_inline__ attribute IBM

v Functions that are specified with the -qinline+<function_name> option

If you specify the -g option to generate debugging information, the inlining effect
of -qinline might be suppressed.

If you specify the -qcompact option to avoid optimizations that increase code size,
the inlining effect of -qinline might be suppressed.

Note:
v -qinline replaces -Q and its suboptions.
v -Q, -Q!, -Q=threshold, -Q+name, and -Q-name are all deprecated options and

suboptions.
v -qipa=inline and all of its associated suboptions are deprecated. -qinline

replaces them all.

Predefined macros

None.

Examples

Example 1

To compile myprogram.c so that no functions are inlined, use the following
command:
xlc myprogram.c -O2 -qnoinline

However, if some functions in myprogram.c are specified with IBM the
always_inline or __always_inline__ attribute IBM , the -qnoinline option has
no effect on these functions and they are still inlined.

206 XL C/C++: Compiler Reference

If you want to enable automatic inlining, you use the auto suboption:
-O2 -qinline=auto

You can specify an inlining level 6 - 10 to achieve more aggressive automatic
inlining. For example:
-O2 -qinline=auto:level=7

If automatic inlining is already enabled by default and you want to specify an
inlining level of 7, you enter:
-O2 -qinline=level=7

Example 2

C

Assuming myprogram.c contains the salary, taxes, expenses, and benefits
functions, you can use the following command to compile myprogram.c to inline
these functions:
xlc myprogram.c -O2 -qinline+salary:taxes:expenses:benefits

If you do not want the functions salary, taxes, expenses, and benefits to be
inlined, use the following command to compile myprogram.c:
xlc myprogram.c -O2 -qinline-salary:taxes:expenses:benefits

You can also disable automatic inlining and specify certain functions to be inlined
with the -qinline+ option. Consider the following example:
-O2 -qinline=noauto -qinline+salary:taxes:benefits

In this case, the functions salary, taxes, and benefits are inlined. Functions that
are specified with IBM the always_inline or __always_inline__ attribute

IBM

or declared with the inline specifier are also inlined. No other functions

are inlined.

You cannot mix the + and - suboptions with each other or with other -qinline
suboptions. For example, the following options are invalid suboption combinations:
-qinline+increase-decrease // Invalid
-qinline=level=5+increase // Invalid

However, you can use multiple -qinline options separately. See the following
example:
-qinline+increase -qinline-decrease -qinline=noauto:level=5

C

C++ In C++, you can use the -qinline+ and -qinline- options in the same way
as in example 2; however, you must specify the mangled function names instead of
the actual function names after these options. C++

Related information
v “-g” on page 173
v “-qipa” on page 208
v “-O, -qoptimize” on page 282
v “Compiler listings” on page 21
v "The inline function specifier" in the XL C/C++ Language Reference
v "Name mangling (C++ only)" in the XL C/C++ Language Reference

Chapter 4. Compiler options reference 207

v "always_inline (IBM extension)" in the XL C/C++ Language Reference
v For a list of deprecated compiler options, see Deprecated options

-qipa
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Enables or customizes a class of optimizations known as interprocedural analysis
(IPA).

IPA is a two-step process: the first step, which takes place during compilation,
consists of performing an initial analysis and storing interprocedural analysis
information in the object file. The second step, which takes place during linking,
and causes a complete recompilation of the entire application, applies the
optimizations to the entire program.

You can use -qipa during the compilation step, the link step, or both. If you
compile and link in a single compiler invocation, only the link-time suboptions are
relevant. If you compile and link in separate compiler invocations, only the
compile-time suboptions are relevant during the compile step, and only the
link-time suboptions are relevant during the link step.

You can generate relinkable objects while preserving IPA information by specifying
-r -qipa=relink. This creates a nonexecutable package that contains all object files.
By using this suboption, you can postpone linking until the very last stage.

If you want to use your own archive files, you can use the ar tool and set the
XL_AR environment variable to point to its location. If you do not specify a
location, the compiler sets the environment variable according to the information
contained in the configuration file.

Note:
v This suboption does not link the objects; instead, it only aggregates them. As a

result, the compiler does not report any error or warning messages; furthermore,
the compiler ignores linker or binder options when you use this suboption.

v You must use the -r suboption with -qipa=relink. Without -r, -qipa=relink is
ignored.

v The -Wm option cannot be used with -qipa.

Syntax

-qipa compile-time syntax

►►
noipa

-q ipa
object

= noobject

►◄

208 XL C/C++: Compiler Reference

-qipa link-time syntax

►►

▼ ▼

▼

▼

▼

noipa
-q ipa

:
,

= exits = function_name
,

infrequentlabel = label_name
1

level = 0
2

list
= file_name

long
short
,

lowfreq = function_name
malloc16
nomalloc16

unknown
missing = safe

isolated
pure

medium
partition = small

large
relink
threads

auto
= number

noauto
nothreads

,

isolated = function_name
pure
safe
unknown

file_name

►◄

Defaults
v -qnoipa

Parameters

You can specify the following parameters during a separate compile step only:

object | noobject
Specifies whether to include standard object code in the output object files.

Specifying noobject can substantially reduce overall compile time by not
generating object code during the first IPA phase. Note that if you specify -S
with noobject, noobject will be ignored.

Chapter 4. Compiler options reference 209

If compiling and linking are performed in the same step and you do not
specify the -S or any listing option, -qipa=noobject is implied.

Specifying -qipa with no suboptions on the compile step is equivalent to
-qipa=object.

You can specify the following parameters during a combined compilation and link
stepin the same compiler invocation, or during a separate link step only:

clonearch | noclonearch
This suboption is no longer supported. Consider using -qtune=balanced.

cloneproc | nocloneproc
This suboption is no longer supported. Consider using -qtune=balanced.

exits
Specifies names of functions which represent program exits. Program exits are
calls which can never return and can never call any function which has been
compiled with IPA pass 1. The compiler can optimize calls to these functions
(for example, by eliminating save/restore sequences), because the calls never
return to the program. These functions must not call any other parts of the
program that are compiled with -qipa.

infrequentlabel
Specifies user-defined labels that are likely to be called infrequently during a
program run.

label_name
The name of a label, or a comma-separated list of labels.

isolated
Specifies a comma-separated list of functions that are not compiled with -qipa.
Functions that you specify as isolated or functions within their call chains
cannot refer directly to any global variable.

level
Specifies the optimization level for interprocedural analysis. Valid suboptions
are as follows:

0 Performs only minimal interprocedural analysis and optimization.

1 Enables inlining, limited alias analysis, and limited call-site tailoring.

2 Performs full interprocedural data flow and alias analysis.

If you do not specify a level, the default is 1.

To generate data reorganization information, specify the optimization level
-qipa=level=2 or -O5 together with -qreport. During the IPA link phase, the
data reorganization messages for program variable data are produced in the
data reorganization section of the listing file. Reorganizations include array
splitting, array transposing, memory allocation merging, array interleaving,
and array coalescing.

list
Specifies that a listing file be generated during the link phase. The listing file
contains information about transformations and analyses performed by IPA, as
well as an optional object listing for each partition.

If you do not specify a list_file_name, the listing file name defaults to a.lst. If
you specify -qipa=list together with any other option that generates a listing
file, IPA generates an a.lst file that overwrites any existing a.lst file. If you have

210 XL C/C++: Compiler Reference

a source file named a.c, the IPA listing will overwrite the regular compiler
listing a.lst. You can use the -qipa=list=list_file_name suboption to specify an
alternative listing file name.

Additional suboptions are one of the following suboptions:

short Requests less information in the listing file. Generates the Object File
Map, Source File Map and Global Symbols Map sections of the listing.

long Requests more information in the listing file. Generates all of the
sections generated by the short suboption, plus the Object Resolution
Warnings, Object Reference Map, Inliner Report and Partition Map
sections.

lowfreq
Specifies functions that are likely to be called infrequently. These are typically
error handling, trace, or initialization functions. The compiler may be able to
make other parts of the program run faster by doing less optimization for calls
to these functions.

malloc16 | nomalloc16
Informs the compiler that the dynamic memory allocation routines will return
16-byte aligned memory addresses. The compiler can then optimize the code
based on that assertion.

In 64-bit mode, AIX always returns 16-byte aligned addresses and therefore by
default -qipa=malloc16 is in effect. You can use -qipa=nomalloc16 to override
the default setting.

Note: You must make sure that the executables generated with -qipa=malloc16
run in an environment in which dynamic memory allocations return 16-byte
aligned addresses, otherwise, wrong results can be generated. For example, in
32-bit mode, addresses are not 16-byte aligned. In this case, you must set the
MALLOCALIGN=16 runtime environment variable.

missing
Specifies the interprocedural behavior of functions that are not compiled with
-qipa and are not explicitly named in an unknown, safe, isolated, or pure
suboption.

Valid suboptions are one of the following suboptions:

safe Specifies that the missing functions do not indirectly call a visible (not
missing) function either through direct call or through a function
pointer.

isolated
Specifies that the missing functions do not directly reference global
variables accessible to visible function. Functions bound from shared
libraries are assumed to be isolated.

pure Specifies that the missing functions are safe and isolated and do not
indirectly alter storage accessible to visible functions. pure functions
also have no observable internal state.

unknown
Specifies that the missing functions are not known to be safe, isolated, or
pure. This suboption greatly restricts the amount of interprocedural
optimization for calls to missing functions.

The default is to assume unknown.

Chapter 4. Compiler options reference 211

partition
Specifies the size of each program partition created by IPA during pass 2. Valid
suboptions are one of the following suboptions:
v small

v medium

v large

Larger partitions contain more functions, which result in better interprocedural
analysis but require more storage to optimize. Reduce the partition size if
compilation takes too long because of paging.

pure
Specifies pure functions that are not compiled with -qipa. Any function
specified as pure must be isolated and safe, and must not alter the internal state
nor have side-effects, defined as potentially altering any data visible to the
caller.

relink
Creates relinkable objects by packaging them into a nonexecutable file. When
using this suboption, you must also use the -r option along with it. Otherwise,
the compiler ignores -qipa=relink.

Note:
v If you use-qipa=noobject (either directly or indirectly) and use the relink

suboption, you must link the resulting object files with -qipa. Otherwise,
unresolved references to your object files can occur.

v You might indirectly use -qipa=noobject if you link and compile your object
files in one step. In addition, you cannot use the shared objects with
-qipa=relink, they must be used at the last link step together with the
prelink output.

safe
Specifies safe functions that are not compiled with -qipa and do not call any
other part of the program. Safe functions can modify global variables, but may
not call functions compiled with -qipa.

threads | nothreads
Runs portions of the IPA optimization process during pass 2 in parallel
threads, which can speed up the compilation process on multi-processor
systems. Valid suboptions for the threads suboption are one of the following
suboptions:

auto | noauto
When auto is in effect, the compiler selects a number of threads
heuristically based on machine load. When noauto is in effect, the compiler
creates one thread per machine processor.

number
Instructs the compiler to use a specific number of threads. number can be
any integer value in the range of 1 to 32 767. However, number is
effectively limited to the number of processors available on your system.

Specifying threads with no suboptions implies -qipa=threads=auto.

unknown
Specifies unknown functions that are not compiled with -qipa. Any function
specified as unknown can make calls to other parts of the program compiled
with -qipa, and modify global variables.

212 XL C/C++: Compiler Reference

file_name
Gives the name of a file which contains suboption information in a special
format.

The file format is shown as follows:
... comment
attribute{, attribute} = name{, name}
missing = attribute{, attribute}
exits = name{, name}
lowfreq = name{, name}
list [= file-name | short | long]
level = 0 | 1 | 2
partition = small | medium | large

where attribute is one of:
v exits
v lowfreq
v unknown
v safe
v isolated
v pure

Note:
v -qipa=inline and all of its associated suboptions are deprecated. -qinline

replaces them all. For details, see “-qinline” on page 204 and “Deprecated
options” on page 96.

v As of the V9.0 release of the compiler, the pdfname suboption is deprecated;
you should use -qpdf1=pdfname or -qpdf2=pdfname in your new
applications. See “-qpdf1, -qpdf2” on page 296 for details.

Usage

Specifying -qipa automatically sets the optimization level to -O2. For additional
performance benefits, you can also specify the -qinline option. The -qipa option
extends the area that is examined during optimization and inlining from a single
function to multiple functions (possibly in different source files) and the linkage
between them.

If any object file used in linking with -qipa was created with the -qipa=noobject
option, any file containing an entry point (the main program for an executable
program, or an exported function for a library) must be compiled with -qipa.

You can link objects created with different releases of the compiler, but you must
ensure that you use a linker that is at least at the same release level as the newer
of the compilers used to create the objects being linked.

You can use -r -qipa=relink to create a relinkable package that contains all object
files without generating an executable program. If you want to use your archive
files, set the path to your ar tool using the XL_AR environment variable.

Some symbols which are clearly referenced or set in the source code may be
optimized away by IPA, and may be lost to debug, dump, or nm outputs. Using
IPA together with the -g compiler will usually result in non-steppable output.

Note that if you specify -qipa with -#, the compiler does not display linker
information subsequent to the IPA link step.

Chapter 4. Compiler options reference 213

For recommended procedures for using -qipa, see "Optimizing your applications"
in the XL C/C++ Optimization and Programming Guide.

Predefined macros

None.

Examples

The following example shows how you might compile a set of files with
interprocedural analysis:
xlc -c *.c -qipa
xlc -o product *.o -qipa

Here is how you might compile the same set of files, improving the optimization
of the second compilation, and the speed of the first compile step. Assume that
there exist a set of routines, user_trace1, user_trace2, and user_trace3, which are
rarely executed, and the routine user_abort that exits the program:
xlc -c *.c -qipa=noobject
xlc -c *.o -qipa=lowfreq=user_trace[123]:exit=user_abort

The following example demonstrates how you can create a relinkable package that
includes your object files:
xlc -O5 -o -r -qipa=relink result obj1.o obj2.o obj3.o

ls -l result

-rw-r--r-- result

xlc -O5 -o res result obj4.o obj5.o

Here is how you can generate a relinkable package using your own archive files:
ar -X64 -r arch1.a object11.o object12.o

ar -X64 -r arch2.a object21.o object22.o

xlc -O5 -o -r -qipa=relink -q64 result obj1.o obj2.o obj3.o arch1.a arch2.a
xlc -O5 -o res result obj4.o obj5.o

Related information
v “-qinline” on page 204
v “-qisolated_call”
v “-qlibmpi” on page 254
v “#pragma execution_frequency” on page 415
v -qpdf1, -qpdf2
v -r
v “-S” on page 324
v Deprecated options
v "Optimizing your applications" in the XL C/C++ Optimization and Programming

Guide
v Runtime environment variables

-qisolated_call
Category

Optimization and tuning

214 XL C/C++: Compiler Reference

Pragma equivalent

#pragma options isolated_call, #pragma isolated_call

Purpose

Specifies functions in the source file that have no side effects other than those
implied by their parameters.

Essentially, any change in the state of the runtime environment is considered a side
effect, including:
v Accessing a volatile object
v Modifying an external object
v Modifying a static object
v Modifying a file
v Accessing a file that is modified by another process or thread
v Allocating a dynamic object, unless it is released before returning
v Releasing a dynamic object, unless it was allocated during the same invocation
v Changing system state, such as rounding mode or exception handling
v Calling a function that does any of the above

Marking a function as isolated indicates to the optimizer that external and static
variables cannot be changed by the called function and that pessimistic references
to storage can be deleted from the calling function where appropriate. Instructions
can be reordered with more freedom, resulting in fewer pipeline delays and faster
execution in the processor. Multiple calls to the same function with identical
parameters can be combined, calls can be deleted if their results are not needed,
and the order of calls can be changed.

Syntax

Option syntax

►► ▼

:

-q isolated_call = function ►◄

Pragma syntax

►► # pragma isolated_call (function) ►◄

Defaults

Not applicable.

Parameters

function
The name of a function that does not have side effects or does not rely on
functions or processes that have side effects. function is a primary expression
that can be an identifier, operator function, conversion function, or qualified

Chapter 4. Compiler options reference 215

name. An identifier must be of type function or a typedef of function. C++

If the name refers to an overloaded function, all variants of that function are
marked as isolated calls. C++

Usage

The only side effect that is allowed for a function named in the option or pragma
is modifying the storage pointed to by any pointer arguments passed to the
function, that is, calls by reference. The function is also permitted to examine
nonvolatile external objects and return a result that depends on the nonvolatile
state of the runtime environment. Do not specify a function that causes any other
side effects; that calls itself; or that relies on local static storage. If a function is
incorrectly identified as having no side effects, the program behavior might be
unexpected or produce incorrect results.

The #pragma options isolated_call directive must be placed at the top of a source
file, before any statements. The #pragma isolated_call directive can be placed at
any point in the source file, before or after calls to the function named in the
pragma.

The -qignprag compiler option causes aliasing pragmas to be ignored; you can use
-qignprag to debug applications containing the #pragma isolated_call directive.

Predefined macros

None.

Examples

To compile myprogram.c, specifying that the functions myfunction(int) and
classfunction(double) do not have side effects, enter:
xlc myprogram.c -qisolated_call=myfunction:classfunction

The following example shows you when to use the #pragma isolated_call directive
(on the addmult function). It also shows you when not to use it (on the same and
check functions):
#include <stdio.h>
#include <math.h>

int addmult(int op1, int op2);
#pragma isolated_call(addmult)

/* This function is a good candidate to be flagged as isolated as its */
/* result is constant with constant input and it has no side effects. */
int addmult(int op1, int op2) {

int rslt;

rslt = op1*op2 + op2;
return rslt;

}

/* The function ’same’ should not be flagged as isolated as its state */
/* (the static variable delta) can change when it is called. */
int same(double op1, double op2) {

static double delta = 1.0;
double temp;

temp = (op1-op2)/op1;
if (fabs(temp) < delta)

216 XL C/C++: Compiler Reference

return 1;
else {
delta = delta / 2;
return 0;

}
}

/* The function ’check’ should not be flagged as isolated as it has a */
/* side effect of possibly emitting output. */
int check(int op1, int op2) {

if (op1 < op2)
return -1;

if (op1 > op2)
return 1;

printf("Operands are the same.\n");
return 0;

}

Related information
v “-qignprag” on page 188

-qkeepinlines (C++ only)
Category

Object code control

Pragma equivalent

None.

Purpose

Keeps or discards definitions for unreferenced extern inline functions.

When -qnokeepinlines is in effect, the compiler discards the definitions of
unreferenced external inline functions. When -qkeepinlines is in effect, the
compiler keeps the definitions of unreferenced external inline functions.

Syntax

►►
nokeepinlines

-q keepinlines
= exports

►◄

Defaults

-qnokeepinlines

Parameters

exports
Ensures that the compiler does not discard the inline functions that are in the
export lists.

Chapter 4. Compiler options reference 217

Usage

-qnokeepinlines reduces the size of the object files. -qkeepinlines provides the
same behavior as VisualAge C++ compilers previous to the v5.0.2.1 update level,
allowing compatibility with shared libraries and object files built with the earlier
releases of the compiler.

If you want the compiler to keep the list of symbols and their definitions that were
built by using an earlier version of the compiler, you can use
-qkeepinlines=exports to make sure that the compiler does not discard these
symbols and their definitions while inlining program functions. However, if you
do not specify an export file, or the export file does not contain any symbols, the
compiler generates the same object file as -qnokeepinlines.

When you use -qkeepinlines=exports to compile a program, you must use either
the -bE or the -bexport option to specify a file that contains the symbols to export
as shown in the following examples:
xlC -qmkshrobj -qkeepinlines=exports -bE:file_name source_file

xlC -qmkshrobj -qkeepinlines=exports -bexport:file_name source_file

Predefined macros

None.

Related information
v “-qmkshrobj” on page 272
v For information about creating a shared library, see the Compiling a shared

library section in the XL C/C++ Optimization and Programming Guide

-qkeepparm
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

When used with -O2 or higher optimization, specifies whether procedure
parameters are stored on the stack.

A function usually stores its incoming parameters on the stack at the entry point.
However, when you compile code with optimization options enabled, the compiler
may remove these parameters from the stack if it sees an optimizing advantage in
doing so. When -qkeepparm is in effect, parameters are stored on the stack even
when optimization is enabled. When -qnokeepparm is in effect, parameters are
removed from the stack if this provides an optimization advantage.

Syntax

►►
nokeepparm

-q keepparm ►◄

218 XL C/C++: Compiler Reference

Defaults

-qnokeepparm

Usage

Specifying -qkeepparm that the values of incoming parameters are available to
tools, such as debuggers, by preserving those values on the stack. However, this
may negatively affect application performance.

Predefined macros

None.

Related information
v “-O, -qoptimize” on page 282

-qkeyword
Category

Language element control

Pragma equivalent

None

Purpose

Controls whether the specified name is treated as a keyword or as an identifier
whenever it appears in your program source.

Syntax

►►
keyword

-q nokeyword = keyword_name ►◄

Defaults

By default, all the built-in keywords defined in the C and C++ language standards
are reserved as keywords.

Usage

You cannot add keywords to the language with this option. However, you can use
-qnokeyword=keyword_name to disable built-in keywords, and use
-qkeyword=keyword_name to reinstate those keywords.

C++ This option can be used with all C++ built-in keywords. C++

C++11 This option can be used with the following keywords introduced by the
C++11 standard:

Chapter 4. Compiler options reference 219

Table 25. Keywords introduced by the C++11 standard

Keyword Feature -qlanglvl suboption

constexpr "Generalized constant
expressions (C++11)"

-qlanglvl=[no]constexpr

decltype "The
decltype(expression)
type specifier
(C++11)"

-qlanglvl=[no]decltype

nullptr nullptr (C++11) -qlanglvl=nullptr

static_assert "static_assert
declaration (C++11)"

-qlanglvl=[no]static_assert

These keywords are reserved at all C++ language levels by default. The -qlanglvl
suboption of each feature or the -qlanglvl=[no]extended0x group option can only
enable or disable the feature, but cannot enable or disable the associated keyword.
If you specify the -qkeyword=keyword_name option, the compiler reserves the
keyword_name (constexpr, decltype, nullptr or static_assert) as a keyword, but
the associated feature is not enabled automatically.

The following table demonstrates how the compiler behaves when different option
settings are in effect.

Table 26. Compiler behaviour under different option settings

-qkeyword=keyword_name
enabled

-qnokeyword=keyword_name
enabled

The -qlanglvl suboption or
group option is enabled

The feature is enabled.
keyword_name is reserved as a
keyword.

The feature is enabled.
keyword_name is reserved as a
keyword.

A warning message is issued
to indicate that the
-qnokeyword=keyword_name
option is ignored.

Neither the -qlanglvl
suboption nor group option
is enabled

The feature is disabled.
keyword_name is reserved as a
keyword.

An error message is issued
in contexts where
keyword_name should not be
used while the keyword is
reserved but the feature is
disabled. You can either
enable the feature by using
the -qlanglvl suboption or
group option or disable the
keyword by using the
-qnokeyword=keyword_name
option.

The feature is disabled.
keyword_name is treated as an
identifier token.

When the -qwarn0x option is
enabled, a warning message
is issued when it is expected
that turning on the feature
will modify the validity or
semantics of the program.

C++11

C

This option can also be used with the following C keywords:

v asm

220 XL C/C++: Compiler Reference

v inline
v restrict
v typeof

Note: asm is not reserved as a keyword at the stdc89 or stdc99 language level.

C

Predefined macros
v C++ __BOOL__ is defined to 1 by default; however, it is undefined when

-qnokeyword=bool is in effect.

v C __C99_INLINE is defined to 1 when -qkeyword=inline is in effect.
v __C99_RESTRICT is defined to 1 when -qkeyword=restrict is in effect.

v C __IBM_GCC_ASM is defined to 1 when -qkeyword=asm is in effect. (In
C++ it is defined by default.)

v __IBM__TYPEOF__ is defined to 1 when -qkeyword=typeof is in effect.

Examples

C++ You can reinstate bool with the following invocation:
xlc++ -qkeyword=bool

C++

C You can reinstate typeof with the following invocation:
xlc -qkeyword=typeof

C

Related information
v “-qwarn0x (C++11)” on page 392

-l
Category

Linking

Pragma equivalent

None.

Purpose

Searches for the specified library file. For static and dynamic linking, the linker
searches for libkey.a. For runtime linking with the -brtl option, the linker searches
for libkey.so, and then libkey.a if libkey.so is not found.

Syntax

►► -l key ►◄

Chapter 4. Compiler options reference 221

Defaults

The compiler default is to search only some of the compiler runtime libraries. The
default configuration file specifies the default library names to search for with the
-l compiler option, and the default search path for libraries with the -L compiler
option.

The C and C++ runtime libraries are automatically added.

Parameters

key
The name of the library minus the lib and .a or .so characters.

Usage

You must also provide additional search path information for libraries not located
in the default search path. The search path can be modified with the -L or -Z
option. See “-B” on page 118, “-brtl” on page 120, and “-b” on page 117 for
information about specifying the types of libraries that are searched (for static or
dynamic linking).

The -l option is cumulative. Subsequent appearances of the -l option on the
command line do not replace, but add to, the list of libraries specified by earlier
occurrences of -l. Libraries are searched in the order in which they appear on the
command line, so the order in which you specify libraries can affect symbol
resolution in your application.

For more information, refer to the ld documentation for your operating system.

Predefined macros

None.

Examples

To compile myprogram.c and link it with library libmylibrary.a that is found in
the /usr/mylibdir directory, enter the following command:
xlc myprogram.c -lmylibrary -L/usr/mylibdir

Assume that the libmyrtlibrary.so library has been compiled for runtime linking
via the -G option and is located in the /usr/mylibdir directory. To compile
myrtprogram.c and link it with library libmyrtlibrary.so, enter the following
command:
xlc -brtl myrtprogram.c -lmyrtlibrary -L/usr/mylibdir

Related information
v “-L” on page 223
v “-b” on page 117
v “-brtl” on page 120
v “-Z” on page 399
v “Specifying compiler options in a configuration file” on page 8

222 XL C/C++: Compiler Reference

-L
Category

Linking

Pragma equivalent

None.

Purpose

Searches the directory path for library files specified by the -l option.

Syntax

►► -L directory_path ►◄

Defaults

The default is to search only the standard directories. See the compiler
configuration file for the directories that are set by default.

Parameters

directory_path
The path for the directory which should be searched for library files.

Usage

When you link shared libraries into an executable, specifying the paths to the
libraries with the -L option during the link also embeds the path information in the
executable, so the shared libraries can be correctly located at run time. If you do
not specify any paths with -L during this link and you additionally prevent the
compiler from automatically passing -L arguments to the linker by using the
-bnolibpath linker option, only paths that are specified by the LIBPATH
environment variable are embedded in the executable file.

If the -Ldirectory option is specified both in the configuration file and on the
command line, search paths specified in the configuration file are the first to be
searched.

The -L compiler option is cumulative. Subsequent occurrences of -L on the
command line do not replace, but add to, any directory paths specified by earlier
occurrences of -L.

For more information, refer to the ld documentation for your operating system.

Predefined macros

None.

Examples

To compile myprogram.c so that the directory /usr/tmp/old is searched for the
library libspfiles.a, enter:

Chapter 4. Compiler options reference 223

xlc myprogram.c -lspfiles -L/usr/tmp/old

Related information
v “-l” on page 221

-qlanglvl
This topic includes the following information:
v “Category”
v “Pragma equivalent”
v “Purpose”
v “Syntax”
v “Defaults” on page 225
v “ Parameters for C language programs” on page 228
v “ Parameters for C++ language programs” on page 229
v “Usage” on page 244
v “Predefined macros” on page 244

Category

Language element control

Pragma equivalent

C #pragma options langlvl, #pragma langlvl

C++

See also #pragma operator_new

Purpose

Determines whether source code and compiler options should be checked for
conformance to a specific language standard, or subset or superset of a standard.

Syntax

-qlanglvl syntax (C only)

►► ▼

:
extc99

-q langlvl = classic
extc1x
extc89
extended
saa
saal2
stdc89
stdc99
feature_suboption

►◄

#pragma langlvl syntax (C only)

224 XL C/C++: Compiler Reference

►►
extc99

pragma langlvl (classic)
extc1x
extc89
extended
saa
saal2
stdc89
stdc99

►◄

-qlanglvl syntax (C++ only)

►► ▼

:
extended

-q langlvl = compat366
extended0x
strict98
feature_suboption

►◄

Defaults

v C The default is set according to the command used to invoke the
compiler:
– -qlanglvl=extc99:ucs for the xlc and related invocation commands
– -qlanglvl=extended:noucs for the cc and related invocation commands
– -qlanglvl=stdc89:noucs for the c89 and related invocation commands
– -qlanglvl=stdc99:ucs for the c99 and related invocation commands

v C++ The default is set according to the command used to invoke the
compiler:
– -qlanglvl=extended for the xlC or xlc++ and related invocation commands
– The feature related suboptions and their default settings for different

language levels (compat366, strict98, extended (C++), and extended0x) are
listed in Table 27. The default setting On means that the suboption is enabled;
otherwise, the default setting Off means that the suboption is disabled.

Table 27. Default settings of suboptions for different language levels

Options Language levels

compat366 strict98 extended
(C++) extended0x

-qlanglvl=anonstruct | noanonstruct Off Off On On

-qlanglvl=anonunion | noanonunion On Off On On

-qlanglvl=ansifor | noansifor Off On On On

-qlanglvl=ansisinit | noansisinit On On On On

C++11

-qlanglvl=autotypededuction|

noautotypededuction Off Off Off On

-qlanglvl=c1xnoreturn | noc1xnoreturn Off Off On On

-qlanglvl=c99__func__ | noc99__func__ Off Off On On

-qlanglvl=c99complex | noc99complex Off Off Off Off

-qlanglvl=c99complexheader | noc99complexheader Off Off Off Off

-qlanglvl=c99compoundliteral | noc99compoundliteral Off Off On On

Chapter 4. Compiler options reference 225

Table 27. Default settings of suboptions for different language levels (continued)

Options Language levels

compat366 strict98 extended
(C++) extended0x

-qlanglvl=c99hexfloat | noc99hexfloat Off Off On On

C++11

-qlanglvl=c99longlong | noc99longlong Off Off Off On

C++11

-qlanglvl=c99preprocessor |

noc99preprocessor Off Off Off On

-qlanglvl=c99vla | noc99vla Off Off On On

IBM

-qlanglvl=compatrvaluebinding |

nocompatrvaluebinding Off Off Off Off

-qlanglvl=compatzea | nocompatzea Off Off Off Off

-qlanglvl=complexinit | nocomplexinit Off Off On On

C++11

-qlanglvl=constexpr | noconstexpr Off Off Off On

C++11

-qlanglvl=decltype | nodecltype Off Off Off On

C++11

-qlanglvl=defaultanddelete |

nodefaultanddelete Off Off Off On

C++11 -qlanglvl=delegatingctors |
nodelegatingctors Off Off Off On

-qlanglvl=dependentbaselookup |
nodependentbaselookup On On On Off

-qlanglvl=emptystruct | noemptystruct On On On On

C++11

-qlanglvl=explicitconversionoperators |

noexplicitconversionoperators Off Off Off On

C++11

-qlanglvl=extendedfriend |

noextendedfriend Off Off Off On

C++11 IBM

-qlanglvl=extendedintegersafe |

noextendedintegersafe Off Off Off Off

C++11

-qlanglvl=externtemplate |

noexterntemplate Off Off On On

-qlanglvl=FileScopeConstExternLinkage |
noFileScopeConstExternLinkage Off Off Off Off

C++11

-qlanglvl=inlinenamespace |

noinlinenamespace Off Off Off On

-qlanglvl=gnu_assert | nognu_assert Off Off On On

-qlanglvl=gnu_complex | nognu_complex Off Off Off Off

-qlanglvl=gnu_computedgoto | nognu_computedgoto Off Off On On

-qlanglvl=gnu_explicitregvar | nognu_explicitregvar Off Off On On

-qlanglvl=gnu_externtemplate | nognu_externtemplate Off Off On On

-qlanglvl=gnu_labelvalue | nognu_labelvalue Off Off On On

-qlanglvl=gnu_locallabel | nognu_locallabel Off Off On On

-qlanglvl=gnu_include_next | nognu_include_next On On On On

226 XL C/C++: Compiler Reference

Table 27. Default settings of suboptions for different language levels (continued)

Options Language levels

compat366 strict98 extended
(C++) extended0x

-qlanglvl=gnu_membernamereuse |
nognu_membernamereuse Off Off On On

-qlanglvl=gnu_suffixij | nognu_suffixij Off Off On On

-qlanglvl=gnu_varargmacros | nognu_varargmacros Off Off On On

-qlanglvl=gnu_warning | nognu_warning Off Off On On

-qlanglvl=illptom | noillptom On Off On On

-qlanglvl=implicitint | noimplicitint On Off On On

-qlanglvl=newexcp | nonewexcp Off Off Off Off

C++11

-qlanglvl=nullptr | nonullptr Off Off Off On

-qlanglvl=offsetnonpod | nooffsetnonpod On Off On Off

-qlanglvl=olddigraph | noolddigraph Off On Off Off

-qlanglvl=oldfriend | nooldfriend On Off On Off

-qlanglvl=oldmath | nooldmath On Off Off Off

-qlanglvl=oldtempacc | nooldtempacc On Off On On

-qlanglvl=oldtmplalign | nooldtmplalign On Off Off Off

-qlanglvl=oldtmplspec | nooldtmplspec On Off On On

-qlanglvl=redefmac | noredefmac Off Off Off Off

C++11

-qlanglvl=referencecollapsing |

noreferencecollapsing Off Off Off On

C++11

-qlanglvl=rightanglebracket |

norightanglebracket Off Off Off On

C++11

-qlanglvl=rvaluereferences |

norvaluereferences Off Off Off On

C++11

-qlanglvl=scopedenum | noscopedenum Off Off Off On

C++11

-qlanglvl=static_assert | nostatic_assert Off Off Off On

C++ IBM

-qlanglvl=tempsaslocals |

notempsaslocals Off Off Off Off

IBM -qlanglvl=textafterendif | notextafterendif Off Off Off Off

-qlanglvl=trailenum | notrailenum On Off On On

-qlanglvl=typedefclass | notypedefclass On Off On On

-qlanglvl=noucs | nonoucs Off Off Off Off

-qlanglvl=varargmacros | novarargmacros Off Off On On

C++11

-qlanglvl=variadic[templates] |

novariadic[templates] Off Off Off On

-qlanglvl=zeroextarray | nozeroextarray Off Off On On

Chapter 4. Compiler options reference 227

Parameters for C language programs

C The following are the -qlanglvl/#pragma langlvl parameters for C
language programs:

classic
Allows the compilation of nonstandard programs, and conforms closely to the
K&R level preprocessor. This language level is not supported by the AIX V5.1
and higher system header files, such as math.h. If you use the AIX V5.1 or
higher system header files, consider compiling your program to the stdc89 or
extended language levels.

For details, see “Differences between the classic language level and all other
standard-based language levels” on page 244.

C11 extc1x

Compilation is based on the C11 standard, invoking all the currently supported
C11 features and other implementation-specific language extensions.

For more information about these C11 features, see Extensions for C11
compatibility in the XL C/C++ Language Reference.

Note: IBM supports selected features of C11, known as C1X before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C11
features is complete, including the support of a new C11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler
interfaces, with earlier releases of IBM's implementation of the C11 features.

C11

extc89
Compilation conforms to the ANSI C89 standard, and accepts
implementation-specific language extensions.

extc99
Compilation conforms to the ISO C99 standard, and accepts
implementation-specific language extensions.

extended
Provides compatibility with the RT compiler and classic. This language level is
based on C89.

saa
Compilation conforms to the current SAA C CPI language definition. This is
currently SAA C Level 2.

saal2
Compilation conforms to the SAA C Level 2 CPI language definition, with
some exceptions.

stdc89
Compilation conforms strictly to the ANSI C89 standard, also known as ISO
C90.

stdc99
Compilation conforms strictly to the ISO C99 standard.

Note: Not all operating system releases support the header files and runtime
library required by C99.

228 XL C/C++: Compiler Reference

The -qlanglvl suboption parameters for individual C features are listed as follows:

feature_suboption
feature_suboption in the syntax diagram represents a colon-separated list of the
C options. They can be any of the following options:

Note: When multiple -qlanglvl group options and suboptions are specified for one
individual C feature, the last one takes effect.

IBM textafterendif | notextafterendif
Specifies whether to suppress the warning message that is emitted when you
are porting code from a compiler that allows extra text after #endif or #else to
the IBM XL C/C++ compiler. The default option is -qlanglvl=notextafterendif,
indicating that a message is emitted if #else or #endif is followed by any
extraneous text. However, when the language level is classic, the default
option is -qlanglvl=textafterendif, because this language level already allows
extra text after #else or #endif without generating a message. IBM

ucs | noucs (option only)
Controls whether Unicode characters are allowed in identifiers, string literals
and character literals in program source code. This suboption is enabled by
default when stdc99 or extc99 is in effect. For details on the Unicode character
set, see "The Unicode standard" in the XL C/C++ Language Reference.

The following -qlanglvl suboptions are accepted but ignored by the C compiler.
Use extended | extc99 | extc89 to enable the functions that these suboptions
imply. For other language levels, the functions implied by these suboptions are
disabled.

[no]gnu_assert
GNU C portability option.

[no]gnu_explicitregvar
GNU C portability option.

[no]gnu_include_next
GNU C portability option.

[no]gnu_locallabel
GNU C portability option.

[no]gnu_warning
GNU C portability option.

Parameters for C++ language programs

C++ The following are the -qlanglvl group option parameters for
corresponding C++ language levels:

compat366
Compilation conforms to some, but not all, IBM C++ Compiler V3.6 features.

strict98
Compilation conforms strictly to the ISO C++ standard.

extended
Compilation is based on the ISO C++ standard, with some differences to
accommodate extended language features.

C++11 extended0x
Compilation is based on the C++11 standard, invoking most of the C++
features and all the currently-supported C++11 features. Table 27 on page 225

Chapter 4. Compiler options reference 229

provides details about the supported features. For more information about
C++11 features, see "Extensions for C++11 compatibility" in the XL C/C++
Language Reference.

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11
features is complete, including the support of a new C++11 standard library,
the implementation might change from release to release. IBM makes no
attempt to maintain compatibility, in source, binary, or listings and other
compiler interfaces, with earlier releases of IBM's implementation of the new
C++11 features.

C++11

The following are the -qlanglvl suboption parameters for individual C++ features.

feature_suboption
feature_suboption in the syntax diagram represents a colon-separated list of the
remaining C++ options. They can be any of the following:

Note: When multiple -qlanglvl group options and suboptions are specified for one
individual C++ feature, the last one takes effect.

anonstruct | noanonstruct
Enables or disables support for anonymous structures and classes. Anonymous
structures are typically used in unions, as in the following code fragment:
union U {

struct {
int i:16;
int j:16;

};
int k;

} u;
// ...
u.j=3;

When the default, -qlanglvl=anonstruct, is in effect, anonymous structures are
supported.

This is an extension to the C++ standard and gives behavior that is designed to
be compatible with Microsoft Visual C++. Specify -qlanglvl=noanonstruct for
compliance with standard C++.

anonunion | noanonunion
Controls the members that are allowed in anonymous unions. When the
default, -qlanglvl=anonunion, is in effect, anonymous unions can have
members of all types that standard C++ allows in non-anonymous unions. For
example, non-data members, such as structures, typedefs, and enumerations
are allowed. Member functions, virtual functions, or objects of classes that have
non-trivial default constructors, copy constructors, or destructors cannot be
members of a union, regardless of the setting of this option.

This is an extension to standard C++ and gives behavior that is designed to be
compatible with previous versions of VisualAge C++ and predecessor
products, and Microsoft Visual C++. Specify -qlanglvl=noanonunion for
compliance with standard C++.

ansifor | noansifor
Controls whether scope rules defined in the C++ standard apply to names

230 XL C/C++: Compiler Reference

declared in for loop initialization statements. When the default,
-qlanglvl=ansifor, is in effect, standard C++ rules are used, and the following
code causes a name lookup error:
{

//...
for (int i=1; i<5; i++) {

cout << i * 2 << endl;
}
i = 10; // error

}

The reason for the error is that i, or any name declared within a for loop
initialization statement, is visible only within the for statement. To correct the
error, either declare i outside the loop or set noansifor.

When -qlanglvl=noansifor is in effect, the old language behavior is used;
specify -qlanglvl=noansifor for compatibility with earlier versions of
VisualAge C++ and predecessor products, and Microsoft Visual C++.

ansisinit | noansisinit
Controls whether standard C++ rules apply for handling static destructors for
global and static objects. When the default, -qlanglvl=ansisinit, is in effect, the
standard rules are used.

When -qlanglvl=noansisinit is in effect, the old language behavior is used;
specify -qlanglvl=noansisinit for compatibility with earlier versions of
VisualAge C++ and predecessor products.

C++11 autotypededuction| noautotypededuction
Controls whether the auto type deduction feature is enabled. When you specify
the -qlanglvl=autotypededuction option, the auto type deduction feature is
enabled, with which you no longer need to specify a type while declaring a
variable. Instead, the compiler deduces the type of an auto variable from the
type of its initializer expression.

You can also use the -qlanglvl=autotypededuction option to control the
trailing return type feature. This feature is useful when declaring the following
types of templates and functions:
v Function templates or member functions of class templates with return types

that depend on the types of the function arguments
v Functions or member functions of classes with complicated return types
v Perfect forwarding functions

The -qlanglvl=autotypededuction option is included in the group option
-qlanglvl=extended0x, so you can also use this group option to enable the auto
type deduction feature.

The default option is -qlanglvl=noautotypededuction.

c1xnoreturn | noc1xnoreturn

Enables or disables support of the _Noreturn function specifier.

The -qlanglvl=c1xnoreturn option is included in group options
-qlanglvl=extended and -qlanglvl=extended0x, so you can also use these
group options to enable the _Noreturn function specifier.

The default option is -qlanglvl=noc1xnoreturn.

c99__func__ | noc99__func__
Enables or disables support for the C99 __func__ identifier. For details of this
feature, see "func_predefined identifier" in the XL C/C++ Language Reference.

Chapter 4. Compiler options reference 231

c99complex | noc99complex
Enables or disables C99 complex data types and related keywords.

c99complexheader | noc99complexheader
Enables or disables use of the C99 complex.h header file.

c99compoundliteral | noc99compoundliteral
Enables or disables support for C99 compound literals.

c99hexfloat | noc99hexfloat
Enables or disables support for C99-style hexadecimal floating constants.

C++11 c99longlong | noc99longlong
Controls whether the C99 long long feature is enabled. When you specify the
-qlanglvl=c99longlong option, the C++ compiler provides the C99 long long
feature, which improves source compatibility between the C and C++
languages.

The -qlanglvl=c99longlong option conflicts with the -qlonglong option. If you
specify both these two options, the -qlonglong option is ignored. For more
information about the -qlonglong option, see “-qlonglong” on page 262.

The -qlanglvl=c99longlong option is included in the group option
-qlanglvl=extended0x, so you can also use this group option to enable the C99
long long feature.

The default option is -qlanglvl=noc99longlong.

C++11 c99preprocessor | noc99preprocessor
Controls whether the C99 preprocessor features adopted in C++11 are enabled.
When -qlanglvl=c99preprocessor is in effect, the C99 and C++11 compilers
provide a more common preprocessor interface, which can ease porting C
source files to the C++ compiler and avoid preprocessor compatibility issues.

The default option is -qlanglvl=noc99preprocessor.

Note: Specifying -qlanglvl=c99preprocessor implicitly sets
-qlanglvl=varargmacros. Also, specifying -qlanglvl=noc99preprocessor
implicitly sets -qlanglvl=novarargmacros.

The -qlanglvl=c99preprocessor option is included in the group option
-qlanglvl=extended0x, so you can also use this group option to enable the C99
preprocessor feature.

c99vla | noc99vla
Enables or disables support for C99-type variable length arrays.

IBM compatrvaluebinding | nocompatrvaluebinding
The C++ Standard (2003) indicates that an rvalue can only be bound to a const
nonvolatile lvalue reference. Non-compliant compilers might allow a non-const
or volatile lvalue reference to be bound to an rvalue. When you are porting
code to IBM XL C/C++ compiler, you can specify this option to instruct the
compiler to allow a non-const or volatile lvalue reference to bind to an rvalue
of a user-defined type where an initializer is not required. IBM

C++11

If both the -qlanglvl=compatrvaluebinding and

-qlanglvl=rvaluereferences options are in effect, the compiler issues an error
message. C++11

compatzea | nocompatzea
Controls whether zero extent arrays have an underlying dimension of 1 or 0.
When the default, -qlanglvl=nocompatzea, is in effect, zero extent arrays have
a dimension of 0. Use -qlanglvl=compatzea to specify that zero extent arrays

232 XL C/C++: Compiler Reference

have a dimension of 1, for compatibility with code compiled with VisualAge
C++ V6.0 and predecessor products. Specifying -qlanglvl=compatzea has effect
only if -qlanglvl=zeroextarray is also in effect.

C++ complexinit | nocomplexinit
Controls whether the C++ compiler uses the C11 style initialization of the C99
complex types.

The -qlanglvl=complexinit option is included in the group options
-qlanglvl=extended and -qlanglvl=extended0x, so you can also use these
group options to enable the initialization of complex types. In this case, specify
-qlanglvl=c99complexheader so that correct header files can be used by the
compiler.

The default option is -qlanglvl=complexinit. C++

C++11 constexpr | noconstexpr
Controls whether the generalized constant expressions feature is enabled.
When you specify the -qlanglvl=constexpr option, the compiler extends the
expressions permitted within constant expressions. A constant expression is an
expression that can be evaluated at compile time.

The -qlanglvl=constexpr option is included in the group option
-qlanglvl=extended0x, so you can also use this group option to enable the
generalized constant expressions feature.

The default option is -qlanglvl=noconstexpr.

C++11 decltype | nodecltype
Controls whether the decltype feature is enabled. With this feature, you can
get a type that is based on the resultant type of a possibly type-dependent
expression. To enable this feature, you can specify the -qlanglvl=decltype
option.

The -qlanglvl=decltype option is included in the group option
-qlanglvl=extended0x, so you can also use this group option to enable the
decltype feature.

The default option is -qlanglvl=nodecltype.

C++11 defaultanddelete | nodefaultanddelete
Controls whether the defaulted and deleted functions feature is enabled. With
this feature, you can define explicitly defaulted functions whose
implementations are generated by the compiler to achieve higher efficiency.
You can also define deleted functions whose usages are disabled by the
compiler to avoid calling unwanted functions. To enable this feature, you can
specify the -qlanglvl=defaultanddelete option.

The -qlanglvl=defaultanddelete option is included in the group option
-qlanglvl=extended0x, so you can also use this group option to enable this
feature.

The default option is -qlanglvl=nodefaultanddelete.

C++11 delegatingctors | nodelegatingctors
Controls whether the delegating constructors feature is enabled. With this
feature, you can concentrate on common initializations and post initializations
in one constructor, which can make programs more readable and maintainable.
To enable this feature, you can specify the -qlanglvl=delegatingctors option.

The -qlanglvl=delegatingctors option is included in the group option
-qlanglvl=extended0x, so you can also use this group option to enable the
delegating constructors feature.

Chapter 4. Compiler options reference 233

The default option is -qlanglvl=nodelegatingctors.

DependentBaseLookup | noDependentBaseLookup
Controls whether the name lookup rules for a template base class of dependent
type defined in the Technical Corrigendum 1 (TC1) of the C++ Standard apply.
Specify -qlanglvl=noDependentBaseLookup for compliance with TC1. When
-qlanglvl=noDependentBaseLookup is in effect, unqualified names in a
template class will not be resolved in a base class if that base class is
dependent on a template parameter. These names must be qualified with the
base class name in order to be found by name lookup. When the default,
-qlanglvl=DependentBaseLookup, is in effect, the behavior of previous XL
C++ compilers remains.

Note: The default option is -qlanglvl=noDependentBaseLookup at the C++11
language level.

The following example shows code that does not compile with
-qlanglvl=noDependentBaseLookup:
struct base
{

int baseName;
};

template <class B> struct derived : public B
{

void func()
{
int i = baseName; // this name will not be found in the base class
};

};

int main(void)
{

derived<base> x;
x.func();
return 0;

}

The following example shows code that compiles with or without
-qlanglvl=nodependentbaselookup:
struct base
{

int baseName;
};

template <class B> struct derived : public B
{

void func()
{
int i = B::baseName; // qualified name will be found in the base class
};

};

int main(void)
{

derived<base> x;
x.func();
return 0;

}

empty_struct | noempty_struct
This option instructs the compiler to tolerate empty member declarations in

234 XL C/C++: Compiler Reference

structs. Empty member declaration in structs is not allowed. For example,
when -qlanglvl=noemptystruct is in effect, the following example will be
rejected by the compiler:
struct S {

; // this line is ill-formed
};

The default is -qlanglvl=noemptystruct.

C++11 explicitconversionoperators | noexplicitconversionoperators
Controls whether the explicit conversion operators feature is enabled. When
you specify the -qlanglvl=explicitconversionoperators option, you can apply
the explicit function specifier to the definition of a user-defined conversion
function, and thus inhibit unintended implicit conversions through the
user-defined conversion function.

The -qlanglvl=explicitconversionoperators option is included in the group
option -qlanglvl=extended0x, so you can also use this group option to enable
the explicit conversion operators feature.

The default option is -qlanglvl=noexplicitconversionoperators.

C++11 extendedfriend | noextendedfriend
Controls whether the extended friend declarations feature is enabled. When
you specify the -qlanglvl=extendedfriend option, rules governing friend
declarations are relaxed as follows:
v Template parameters, typedef names, and basic types can be declared as

friends.
v The class-key in the context for friend declarations is no longer necessary in

C++11.

The -qlanglvl=extendedfriend option is included in the group option
-qlanglvl=extended0x, so you can also use this group option to enable the
extended friend declarations feature.

The default option is -qlanglvl=noextendedfriend.

Note: -qlanglvl=extendedfriend is incompatible with the -qlanglvl=oldfriend
option. When -qlanglvl=extendedfriend is in effect, the -qlanglvl=oldfriend
option is ignored and the setting of -qlanglvl=[no]oldfriend is
-qlanglvl=nooldfriend.

C++11 IBM extendedintegersafe | noextendedintegersafe
With this option, if a decimal integer literal that does not have a suffix
containing u or U cannot be represented by the long long int type, you can
decide whether to use the unsigned long long int type to represent the literal
or not.

This option takes effect only when the -qlanglvl=c99longlong option is
specified, otherwise, the compiler issues a warning message to indicate that the
option is ignored. When you specify both the -qlanglvl=c99longlong and
-qlanglvl=extendedintegersafe options, if a decimal integer literal that does
not have a suffix containing u or U cannot be represented by the long long int
type, the compiler issues an error message stating that the value of the literal is
out of range.

The default option is -qlanglvl=noextendedintegersafe in all the language
levels.

C++11 externtemplate | noexterntemplate
Controls whether the explicit instantiation declarations feature is enabled. With

Chapter 4. Compiler options reference 235

this feature, you can suppress the implicit instantiations of a template
specialization or its members. To enable this feature, you can specify the
-qlanglvl=externtemplate option, which is the default option.

The -qlanglvl=externtemplate option is included in the group options of
-qlanglvl=extended and -qlanglvl=extended0x, so you can use these two
group options to enable this feature.

The following table lists options that interact with the
-qlanglvl=externtemplate option:

Table 28. Options that interact with -qlanglvl=externtemplate

Option Description

-qtemplateregistry, -qtempinc Explicit instantiation declarations remain effective.
Referenced specializations that are the subjects of explicit
instantiation declarations, but not the subjects of explicit
instantiation definitions in a translation unit are not
instantiated from or because of that translation unit.

The following table lists IBM language extensions that interact with the
-qlanglvl=externtemplate option:

Table 29. IBM language extensions that interact with -qlanglvl=externtemplate

IBM language extension Description

#pragma instantiate This pragma is semantically the same as an explicit
instantiation definition.

#pragma do_not_instantiate This pragma provides a subset of the functionality of the
explicit instantiation declarations which is introduced in the
C++11 standard. It is provided for backwards compatibility
purposes only. New applications can use explicit
instantiation declarations.

#pragma hashome, #pragma
ishome

This pragma causes the generation of the virtual function
table (VFT) for a class template specialization irrespective of
explicit instantiation declarations of the specialization.

The -qlanglvl=[no]externtemplate option replaces the deprecated
-qlanglvl=[no]gnu_externtemplate option. Use the
-qlanglvl=[no]externtemplate option in your applications.

FileScopeConstExternLinkage | noFileScopeConstExternLinkage
Controls whether the file scope of constant variables has internal or external
linkage when the static or extern keyword is not specified.

When -qlanglvl=FileScopeConstExternLinkage is in effect, all file scope
constant variables are marked as externally visible. Otherwise, all file scope
constant variables are marked as static.

The default is -qlanglvl=noFileScopeConstExternLinkage.

gnu_assert | nognu_assert
Enables or disables support for the following GNU C system identification
assertions:
v #assert
v #unassert
v #cpu
v #machine
v #system

236 XL C/C++: Compiler Reference

gnu_complex | nognu_complex
Enables or disables GNU complex data types and related keywords.

gnu_computedgoto | nognu_computedgoto
Enables or disables support for computed goto statements.

gnu_externtemplate | nognu_externtemplate
Enables or disables extern template instantiations. For details of this feature,
see "Explicit instantiation" in the XL C/C++ Language Reference.

Note: The option -qlanglvl=[no]gnu_externtemplate is deprecated in XL
C/C++ V13.1.3; you can use the option -qlanglvl=[no]externtemplate instead.

gnu_include_next | nognu_include_next
Enables or disables support for the GNU C #include_next preprocessor
directive.

gnu_labelvalue | nognu_labelvalue
Enables or disables support for labels as values.

gnu_locallabel | nognu_locallabel
Enables or disables support for locally-declared labels.

gnu_membernamereuse | nognu_membernamereuse
Enables or disables reusing a template name in a member list as a typedef.

gnu_suffixij | nognu_suffixij
Enables or disables support for GNU-style complex numbers. When
-qlanglvl=gnu_suffixij is in effect, a complex number can be ended with suffix
i/I or j/J.

gnu_varargmacros | nognu_varargmacros
Enables or disables support for GNU-style macros with variable arguments.

For details of this feature, see "Variadic macro extensions" in the XL C/C++
Language Reference.

gnu_warning | nognu_warning
Enables or disables support for the GNU C #warning preprocessor directive.

illptom | noillptom
Controls the expressions that can be used to form pointers to members. When
the default, -qlanglvl=illptom, is in effect, the XL C++ compiler accepts some
forms that are in common use but do not conform to the C++ Standard. For
example, the following code defines a pointer to a function member, p, and
initializes it to the address of C::func, in the old style:
struct C {
void func(int);
};

void (C::*p) (int) = C::func;

This is an extension to standard C++ and gives behavior that is designed to be
compatible with earlier versions of VisualAge C++ and its predecessor
products, and Microsoft Visual C++.

Specify -qlanglvl=noillptom for compliance with the C++ standard. The
example code above must be modified to use the & operator.
struct C {
void func(int);
};

void (C::*p) (int) = &C::func;

Chapter 4. Compiler options reference 237

implicitint | noimplicitint
Controls whether the compiler accepts missing or partially specified types as
implicitly specifying int. When the default, -qlanglvl=implicitint, is in effect, a
function declaration at namespace scope or in a member list will implicitly be
declared to return int. Also, any declaration specifier sequence that does not
completely specify a type will implicitly specify an integer type. The effect is as
if the int specifier were present.

The following specifiers do not completely specify a type:
v auto
v const
v extern
v extern "literal"
v inline
v mutable
v friend
v register
v static
v typedef
v virtual
v volatile
v platform-specific types

C++11

C++11 has removed the use of auto as a storage class specifier. In

C++11, the keyword auto is used as a type specifier. The compiler deduces the
type of an auto variable from the type of its initializer expression. For more
information, see "The auto type specifier (C++11)" in the XL C/C++ Language
Reference. C++11

For example, the return type of function MyFunction is int because it was
omitted in the following code:
MyFunction()
{

return 0;
}

Note that any situation where a type is specified is affected by this suboption.
This includes, for example, template and parameter types, exception
specifications, types in expressions (eg, casts, dynamic_cast, new), and types
for conversion functions.

This is an extension to the C++ standard and gives behavior that is designed to
be compatible with earlier versions of VisualAge C++ and predecessor
products, and Microsoft Visual C++.

Specify -qlanglvl=noimplicitint for compliance with standard C++. For
example, the function declaration above must be modified to:
int MyFunction()
{

return 0;
}

C++11 inlinenamespace | noinlinenamespace
Controls whether inline namespace definitions are enabled, which are
namespace definitions preceded by an initial inline keyword. A namespace so
defined is an inline namespace. When you specify the
-qlanglvl=inlinenamespace option, members of the inline namespace can be
defined and specialized as if they were also members of the enclosing
namespace.

238 XL C/C++: Compiler Reference

The -qlanglvl=inlinenamespace option is included in the group option
-qlanglvl=extended0x, so you can also use this group option to enable the
inline namespace definitions feature.

The default option is -qlanglvl=noinlinenamespace.

newexcp | nonewexcp
Controls whether the new operator throws an exception when the requested
memory fails. When the default, -qlanglvl=nonewexcp, is in effect, the null
pointer 0 is returned. When -qlanglvl=newexcp is in effect, the standard
exception std::bad_alloc is thrown. For compatibility with earlier versions of
VisualAge C++ and predecessor products, specify -qlanglvl=nonewexcp. For
conformance to the C++ standard, which fully supports new exceptions, specify
-qlanglvl=newexcp.

This suboption does not apply to the nothrow versions of the new operator, new
operators with empty throw specifications, class-specific new operators, and new
operators with placement arguments.

Note: You can also use the equivalent #pragma operator_new directive to
specify this suboption for selected portions of code. See “#pragma
operator_new (C++ only)” on page 438 for details.

C++11 nullptr | nonullptr
Controls whether the nullptr feature is enabled. A null pointer with the
nullptr value can be converted to any pointer type, pointer-to-member type,
or bool type. The nullptr constant can be distinguished from the integer 0 for
overloaded functions.

The -qlanglvl=nullptr option is included in the group option
-qlanglvl=extended0x; you can also use this group option to enable the
nullptr keyword feature.

The default option is -qlanglvl=nonullptr.

offsetnonpod | nooffsetnonpod
Controls whether the offsetof macro can be applied to classes that are not
data-only. C++ programmers often casually call data-only classes "Plain Old
Data" (POD) classes. When the default, -qlanglvl=offsetnonpod, is in effect,
you can apply offsetof to a class that contains one of the following:
v Implicitly declared or C++11 explicitly defaulted C++11

constructors or

destructors
v Iimplicitly declared or C++11 explicitly defaulted C++11

assignment

operators
v private or protected non-static data members
v base classes
v virtual functions
v non-static data members of type pointer to member
v a struct or union that has non-data members
v references

This is an extension to the C++ standard, and gives behavior that is designed
to be compatible with VisualAge C++ for OS/2 3.0, VisualAge for C++ for
Windows, V3.5, and Microsoft Visual C++. Specify -qlanglvl=nooffsetnonpod
for compliance with standard C++.

olddigraph | noolddigraph
Enables or disables support for old-style digraphs. When the default,
-qlanglvl=olddigraph, is in effect, old-style digraphs are not supported. When
-qlanglvl=olddigraph is in effect, the following digraphs are supported:

Chapter 4. Compiler options reference 239

Digraph
Resulting character

%% # (pound sign)

%%%%
(double pound sign, used as the preprocessor macro concatenation
operator)

Specify -qlanglvl=noolddigraph for compatibility with standard C++ and the
extended C++ language level supported by previous versions of VisualAge
C++ and predecessor products.

This suboption only has effect when -qdigraphs is in effect.

oldfriend | nooldfriend
Controls whether friend declarations that name classes without elaborated class
names are treated as C++ errors. When the default, -qlanglvl=oldfriend, is in
effect, you can declare a friend class without elaborating the name of the class
with the keyword class. For example, the statement below declares the class
IFont to be a friend class:
friend IFont;

This is an extension to the C++ standard and gives behavior that is designed to
be compatible with earlier versions of VisualAge C++ and predecessor
products, and Microsoft Visual C++.

Specify the -qlanglvl=nooldfriend for compliance with standard C++. The
example declaration above must be modified to the following:
friend class IFont;

Note: -qlanglvl=oldfriend is incompatible with the -qlanglvl=extendedfriend
option. When -qlanglvl=extendedfriend is in effect, the -qlanglvl=oldfriend
option is ignored and the setting of -qlanglvl=[no]oldfriend is
-qlanglvl=nooldfriend.

oldmath | nooldmath
Controls the versions of math function declarations in math.h that are included
when you specify math.h as an included or primary source file.

Specify -qlanglvl=nooldmath for strict compliance with the C++ standard.
Specify -qlanglvl=oldmath for compatibility with earlier versions of VisualAge
C++ and predecessor products.

oldtempacc | nooldtempacc
Controls whether access to a copy constructor to create a temporary object is
always checked, even if creation of the temporary object is avoided. When the
default, -qlanglvl=oldtempacc, is in effect, access checking is suppressed.

This is an extension to the C++ standard and gives behavior that is designed to
be compatible with VisualAge C++ for OS/2 3.0, VisualAge for C++ for
Windows, V3.5, and Microsoft Visual C++. Specify -qlanglvl=nooldtempacc for
compliance with standard C++. For example, the throw statement in the
following code causes an error because the copy constructor is a protected
member of class C:
class C {
public:

C(char *);
protected:

C(const C&);

240 XL C/C++: Compiler Reference

};

C func() {return C("test");} // return copy of C object

void f()
{
// catch and throw both make implicit copies of
// the throw object

throw C("error"); // throw a copy of a C object
const C& r = func(); // use the copy of a C object

// created by func()
}

The example code above contains three ill formed uses of the copy constructor
C(const C&).

oldtmplalign | nooldtmplalign
Controls whether alignment rules specified for nested templates are ignored.
When the default, -qlanglvl=nooldtmplalign, is in effect, these alignment rules
are not ignored. For example, given the following template the size of
A<char>::B will be 5 with -qlanglvl=nooldtmplalign, and 8 with
-qlanglvl=oldtmplalign:
template <class T>
struct A {
#pragma options align=packed
struct B {
T m;
int m2;
};

#pragma options align=reset
};

Specify -qlanglvl=oldtmplalign for compatibility with VisualAge for C++ V4.0
and predecessor products.

oldtmplspec | nooldtmplspec
Controls whether template specializations that do not conform to the C++
standard are allowed. When the default, -qlanglvl=oldtmplspec, is in effect,
you can explicitly specialize a template class as in the following example,
which specializes the template class ribbon for type char:
template<class T> class ribbon { /*...*/};
class ribbon<char> { /*...*/};

This is an extension to standard C++ and gives behavior that is designed to be
compatible with VisualAge C++ for OS/2 3.0, VisualAge for C++ for Windows,
V3.5, and Microsoft Visual C++.

Specify -qlanglvl=nooldtmplspec for compliance with standard C++. In the
example above, the template specialization must be modified to:
template<class T> class ribbon { /*...*/};
template<> class ribbon<char> { /*...*/};

redefmac | noredefmac
Controls whether a macro can be redefined without a prior #undef or
undefine() statement.

C++11 referencecollapsing | noreferencecollapsing
Controls whether the reference collapsing feature is enabled. To enable this
feature, specify the -qlanglvl=referencecollapsing option.

Chapter 4. Compiler options reference 241

The -qlanglvl=referencecollapsing option is included in the group option
-qlanglvl=extended0x, so you can also use this group option to enable the
reference collapsing feature.

When the -qlanglvl=rvaluereferences option is in effect, but the
-qlanglvl=referencecollapsing option is not in effect, the compiler behaves as
if the -qlanglvl=referencecollapsing option were specified.

The default option is -qlanglvl=noreferencecollapsing.

C++11 rightanglebracket | norightanglebracket
Controls whether the right angle bracket feature is enabled. To enable this
feature, you can specify the -qlanglvl=rightanglebracket option.

The -qlanglvl=rightanglebracket option is included in the group option
-qlanglvl=extended0x, so you can also use this group option to enable the
right angle bracket feature.

The default option is -qlanglvl=norightanglebracket.

C++11 rvaluereferences | norvaluereferences
Controls whether the rvalue references feature is enabled. To enable this
feature, specify the -qlanglvl=rvaluereferences option.

The -qlanglvl=rvaluereferences option is included in the group option
-qlanglvl=extended0x, so you can also use this group option to enable the
rvalue references feature.

If both the -qlanglvl=compatrvaluebinding and -qlanglvl=rvaluereferences
options are in effect, the compiler issues an error message.

The default option is -qlanglvl=norvaluereferences.

C++11 scopedenum | noscopedenum
Controls whether the scoped enumeration feature is enabled. To enable this
feature, you can specify the -qlanglvl=scopedenum option.

The -qlanglvl=scopedenum option is included in the group option
-qlanglvl=extended0x, so you can also use this group option to enable the
scoped enumeration feature.

The default option is -qlanglvl=noscopedenum.

C++11 static_assert | nostatic_assert
Controls whether the static assertions feature is enabled. When
-qlanglvl=static_assert is in effect, this feature can be used to produce
compile-time assertions for which a severe error message is issued on failure.

-qlanglvl=static_assert is included in the group option -qlanglvl=extended0x,
so you can also use this group option to enable the static assertions feature.

The default is -qlanglvl=nostatic_assert.

C++ IBM tempsaslocals | notempsaslocals
The C++ Language Standard describes the lifetime of temporaries in section
Temporary Object [class.temporary]. When you are porting an application from
a compiler that implements late temporary destruction, you might need to
extend the lifetime of C++ temporaries beyond which is specified in the C++
Language Standard. This option extends the lifetime of temporaries to reduce
migration difficulty.

For details, see “Use the -qlanglvl=tempsaslocals option to extend the lifetime
of C++ temporaries” on page 246.

242 XL C/C++: Compiler Reference

IBM textafterendif | notextafterendif
Specifies whether to suppress the warning message that is emitted when you
are porting code from a compiler that allows extra text after #endif or #else to
IBM XL C/C++ compiler. The default option is -qlanglvl=notextafterendif,
indicating that a message is emitted if #else or #endif is followed by any
extraneous text.

trailenum | notrailenum
Controls whether a trailing comma is allowed in an enum declaration. When the
default, -qlanglvl=trailenum, is in effect, a trailing comma is allowed at the
end of the enumerator list. This is a C99 feature. It is also adopted by the
C++11 standard. The following example is valid when -qlanglvl=trailenum is
in effect:
enum grain {wheat, barley, rye,};

typedefclass | notypedefclass
Controls whether a typedef name can be specified where a class name is
expected. When the default, -qlanglvl=typedefclass, is in effect, the standard
C++ rule applies, and a typedef name cannot be specified where a class name
is expected. Specify -qlanglvl=typedefclass to allow the use of typedef names
in base specifiers and constructor initializer lists, for compatibility with earlier
versions of VisualAge for C++ and predecessor products.

ucs | noucs
Controls whether Unicode characters are allowed in identifiers, string literals
and character literals in program source code. For details on the Unicode
character set, see "The Unicode standard" in the XL C/C++ Language Reference.

varargmacros | novarargmacros
Enables or disables support for C99-style variable argument lists in
function-like macros.

Note: Specifying -qlanglvl=c99preprocessor implicitly set
-qlanglvl=varargmacros. Vice versa, specifying -qlanglvl=noc99preprocessor
implicitly set -qlanglvl=novarargmacros.
For details of this feature, see "Function-like macros" in the XL C/C++ Language
Reference.

C++11 variadic[templates] | novariadic[templates]
Controls whether the variadic templates feature is enabled. With this feature,
you can define class and function templates that have any number (including
zero) of parameters. To enable this feature, you can specify the
-qlanglvl=variadic[templates] option. The word templates included in the
brackets is optional. If you specify only the -qlanglvl=variadic option, the
compiler assumes that the -qlanglvl=variadictemplates option is specified.

The -qlanglvl=variadic[templates] option is included in the group option
-qlanglvl=extended0x, so you can also use this group option to enable the
variadic templates feature.

The default option is -qlanglvl=novariadic[templates].

zeroextarray | nozeroextarray
Controls whether you can use zero-extent arrays as the last nonstatic data
member in a structure definition. When the default, -qlanglvl=zeroextarray, is
in effect, you can use arrays with zero elements. The following statement
declares a zero-extent array a.
struct S1 { char a[0]; };

Chapter 4. Compiler options reference 243

This is an extension to the C++ standard, and is intended to provide
compatibility with Microsoft Visual C++.

Specify -qlanglvl=nozeroextarray for compliance with standard C++ or with
the ANSI language level supported by previous versions of VisualAge C++
and predecessor products.

Usage

C++ In general, if you specify a suboption with the no form of the option, the
compiler will diagnose any uses of the feature in your code with a warning, unless
you disable the warning with the -qsuppress option. Additionally, you can use the
-qinfo=por option to generate informational messages along with the following
suboptions:
v [no]c99complex
v [no]gnu_complex

Note: C++11 In the C++11 language level, if you use the no form of a suboption
to disable the C++11 meaning of decltype or static_assert, the compiler emits
syntax errors but no diagnostic message if the user happens to use the C++11
syntax of decltype or static_assert.

C++11

C

Since the pragma directive makes your code non-portable, it is

recommended that you use the option rather than the pragma. If you do use the
pragma, it must appear before any noncommentary lines in the source code. Also,
because the directive can dynamically alter preprocessor behavior, compiling with
the preprocessing-only options may produce results different from those produced
during regular compilation. C

Predefined macros

See “Macros related to language levels” on page 490 for a list of macros that are
predefined by -qlanglvl suboptions.

Related information
v “-qsuppress” on page 353

Differences between the classic language level and all other
standard-based language levels
This topic outlines the differences between the classic language level and all other
standard-based language levels.

Tokenization

Tokens introduced by macro expansion may be combined with adjacent tokens in
some cases. Historically, this was an artifact of the text-based implementations of
older preprocessors, and because, in older implementations, the preprocessor was a
separate program whose output was passed on to the compiler.

For similar reasons, tokens separated only by a comment may also be combined to
form a single token. Here is a summary of how tokenization of a program
compiled in classic mode is performed:
1. At a given point in the source file, the next token is the longest sequence of

characters that can possibly form a token. For example, i+++++j is tokenized as
i ++ ++ + j even though i ++ + ++ j may have resulted in a correct program.

244 XL C/C++: Compiler Reference

2. If the token formed is an identifier and a macro name, the macro is replaced by
the text of the tokens specified on its #define directive. Each parameter is
replaced by the text of the corresponding argument. Comments are removed
from both the arguments and the macro text.

3. Scanning is resumed at the first step from the point at which the macro was
replaced, as if it were part of the original program.

4. When the entire program has been preprocessed, the result is scanned again by
the compiler as in the first step. The second and third steps do not apply here
since there will be no macros to replace. Constructs generated by the first three
steps that resemble preprocessing directives are not processed as such.

It is in the third and fourth steps that the text of adjacent but previously separate
tokens may be combined to form new tokens.

The \ character for line continuation is accepted only in string and character
literals and on preprocessing directives.

Constructs such as:
#if 0

“unterminated
#endif
#define US ”Unterminating string
char *s = US terminated now“

will not generate diagnostic messages, since the first is an unterminated literal in a
FALSE block, and the second is completed after macro expansion. However:
char *s = US;

will generate a diagnostic message since the string literal in US is not completed
before the end of the line.

Empty character literals are allowed. The value of the literal is zero.

Preprocessing directives

The # token must appear in the first column of the line. The token immediately
following # is available for macro expansion. The line can be continued with \ only
if the name of the directive and, in the following example, the (has been seen:
#define f(a,b) a+b
f\
(1,2) /* accepted */

#define f(a,b) a+b
f(\
1,2) /* not accepted */

The rules concerning \ apply whether or not the directive is valid. For example,
#\
define M 1 /* not allowed */

#def\
ine M 1 /* not allowed */

#define\
M 1 /* allowed */

#dfine\
M 1 /* equivalent to #dfine M 1, even

though #dfine is not valid */

Chapter 4. Compiler options reference 245

Following are the preprocessor directive differences.

#ifdef/#ifndef
When the first token is not an identifier, no diagnostic message is
generated, and the condition is FALSE.

#else When there are extra tokens, no diagnostic message is generated.

#endif
When there are extra tokens, no diagnostic message is generated.

#include
The < and > are separate tokens. The header is formed by combining the
spelling of the < and > with the tokens between them. Therefore /* and //
are recognized as comments (and are always stripped), and the ” and ’ do
begin literals within the < and >. (Remember that in C programs, C++-style
comments // are recognized when -qcpluscmt is specified.)

#line The spelling of all tokens which are not part of the line number form the
new file name. These tokens need not be string literals.

#error
Not recognized.

#define
A valid macro parameter list consists of zero or more identifiers each
separated by commas. The commas are ignored and the parameter list is
constructed as if they were not specified. The parameter names need not
be unique. If there is a conflict, the last name specified is recognized.

For an invalid parameter list, a warning is issued. If a macro name is
redefined with a new definition, a warning will be issued and the new
definition used.

#undef
When there are extra tokens, no diagnostic message is generated.

Macro expansion
v When the number of arguments on a macro invocation does not match the

number of parameters, a warning is issued.
v If the (token is present after the macro name of a function-like macro, it is

treated as too few arguments (as above) and a warning is issued.
v Parameters are replaced in string literals and character literals.
v Examples:

#define M() 1
#define N(a) (a)
#define O(a,b) ((a) + (b))

M(); /* no error */
N(); /* empty argument */
O(); /* empty first argument

and too few arguments */

Text output

No text is generated to replace comments.

Use the -qlanglvl=tempsaslocals option to extend the lifetime of
C++ temporaries
The C++ Language Standard describes the lifetime of temporaries in section
Temporary Object [class.temporary]. When you are porting an application from a

246 XL C/C++: Compiler Reference

compiler that implements late temporary destruction, you might need to extend
the lifetime of C++ temporaries beyond which is specified in the C++ Language
Standard. In this way, you can closely replicate the nonstandard compliant
behavior of your previous compiler.

It is possible that a program incorrectly depends on resources, which might have
been previously released during destruction of a temporary. See “Example 1” on
page 248. In such cases, a compiler that incorrectly destroys a temporary later than
it should be, might execute the resulting program in the wanted way. Such
problems might surface during porting, when correct insertion of temporary
destructors yields invalid access to a released resource.

With IBM XL C/C++ compilers, you can extend the lifetime of temporaries to
reduce migration difficulty. This is enabled by specifying option
-qlanglvl=tempsaslocals. When enabled, the lifetime of temporaries is extended as
though such temporaries are treated as local variables declared in the inner-most
containing lexical scope. Most temporaries will be destroyed when their enclosing
scope is exited, rather than when the enclosing full-expression is completed. See
“Example 2” on page 249.

Default

-qlanglvl=notempsaslocals

The compiler listing emits -qlanglvl=tempsaslocals when the feature is enabled,
and -qlanglvl=notempsaslocals when the feature is disabled.

Usage
v Temporaries constructed in the condition statement of an if-statement should be

destroyed at the end of execution of the if-statement. Temporary destruction is
delayed until after any else-if or else blocks, as would a variable declared in the
condition statement.

v Temporaries constructed in the condition of a switch statement should be
destroyed at the end of execution of the switch statement.

v Temporaries for which the inner-most enclosing lexical scope is the lexical scope
of a switch statement should be handled in the standard compliant way.

v Temporaries constructed in the condition or increment expressions of a loop
must be destroyed in the standard compliant way.

v When -qlanglvl=ansifor is in effect, temporaries constructed in the for-init
statement must be destroyed at the end of execution of the for-loop. When
-qlanglvl=noansifor is in effect, temporaries constructed in the for-init statement
must be destroyed at the end of execution of the inner-most lexical block
containing the for-loop.

v Temporaries constructed at namespace scope must be handled in the standard
compliant way. See “Example 3” on page 250.

v When -qinfo=por is in effect, and the lifetime of a temporary would otherwise
be extended by this feature, and the inner-most containing lexical scope of the
temporary contains a label definition that follows the construction of a
temporary, that temporary shall be handled in the standard compliant way. See
“Example 4” on page 250.

v When -qinfo=por is in effect, and the lifetime of a temporary would otherwise
be extended by this feature, and the inner-most containing lexical scope of the

Chapter 4. Compiler options reference 247

temporary contains a computed goto that follows the construction of a
temporary, that temporary shall be handled in the standard compliant way. See
“Example 5” on page 250.

Example 1
>cat myString.h
#include <string>
#define MY_SL_STD(MY_NAME) ::std::MY_NAME

class MYString
{
public:

// common constructors
MYString() {}
MYString(const MY_SL_STD(string&) data) : data_(data) {}
MYString(const MYString& str) : data_(str.data_) {}
MYString(char c, size_t N) : data_(N, c) {}
MYString(const char* s) : data_(s) {}
MYString(const char* s, size_t N) : data_(s,N) {}

// constructor explicitly from char
MYString(char c) : data_(1,c) {}

~MYString() {}
const char* data() const { return data_.c_str(); }

// Type conversion:
operator const char*() const { return data_.c_str(); }

protected:
MY_SL_STD(string) data_;

};

>cat myString.C
#include <iostream.h>
#include "mystring.h"

class A
{
public:

A(const char * str_)
{
strcpy(str, str_);

}
MYString getStr()
{

return str;
}
void print()
{
cout<<"object A "<< str <<endl;

}

private:
char str[2000];

};

void foo(const char* s)
{

cout<<"foo: "<< s <<endl;
}

int main()
{

A a("This is a test");
a.print();

248 XL C/C++: Compiler Reference

const char * p = (const char*) a.getStr();
cout <<"p= " << p <<endl;
return (0);

}
>xlC myString.C
>a.out
object A This is a test
p= e@

In this example, the char array in the object is converted to a MYString to pass it
out of getStr. The method A::getStr would change to A::MYString object. Whenever
the getStr is used, the program will generate incorrect results, thus indicating a
problem.

When the call to a getStr() is made, the method takes the str buffer and constructs
a MYString object. It is a MYString object that is returned, and the code calls a
MYString method to convert to a const char *. This method returns a pointer to a
temporary copy of the string, "This is a test." Once the pointer has been received
and stored into the p variable, the destructor for the temporary object is called.
This is where the memory referenced by p now no longer contains "This is a test."
Since the character string is a temporary copy, the string doesn't exist anywhere
except in the original location inside the object. Any use of the p will access
garbage.

Because the creation of these temporary objects uses dynamic memory, you cannot
really depend upon the object still being valid and containing the same contents
any longer than the statement in which it is used.

Example 2
#include<cstdio>
struct S {

S() { printf("S::S() ctor at 0x%lx.\n", this); }
S(const S& from) { printf("S::S(const S&) copy ctor at 0x%lx.\n", this); }
~S() { printf("S::~S() dtor at 0x%lx.\n", this); }

} s1;
void foo(S s) { }
int main() {

foo(s1);
printf("hello world.\n");
return 0;

}

The C++ Standard compliant output of this program is:
S::S() ctor at 0x20000d7c.
S::S(const S&) copy ctor at 0x2ff221e0.
S::~S() dtor at 0x2ff221e0.
hello world.
S::~S() dtor at 0x20000d7c.

Note that the temporary copy constructed for the call to foo is destroyed upon
return from foo. When the lifetime of the temporary is extended, the output of this
program shall be:
S::S() ctor at 0x20000d7c.
S::S(const S&) copy ctor at 0x2ff221e0.
hello world.
S::~S() dtor at 0x2ff221e0.
S::~S() dtor at 0x20000d7c.

The temporary copy constructed for the call to foo is now destroyed when the
enclosing scope is exited. It is therefore destroyed after the print of "hello world."

Chapter 4. Compiler options reference 249

Example 3
struct S {

S(int);
~S();
int i;

} s1(42);

int bar(S s);

int gi = bar(s1); //the temporary for argument s of bar is not affected
//because it is constructed during static initialization.

This example lists hardcoded addresses, which vary with the system the program
is running on.

Example 4
struct S {

S(int);
~S();
int i;

};

void bar(S s);

int main() {
S s1(42);
bar(s1); // the temporary for argument s of bar is not affected

// because of the label definition that follows.
bypass:

s1.i = 42; // s1 should be referenced after call to bar or a temporary may not
// be constructed.

return 0; // the temporary would otherwise be destroyed here.
}

Example 5
struct S {

~S();
} s1;

void bar(S s);

void foo(void *p) {
bar(s1); // the temporary for argument s of bar is not affected

// because of the computed goto that follows.
goto *p;

}

-qlargepage
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Takes advantage of large pages provided on POWER4 and higher systems, for
applications designed to execute in a large page memory environment.

250 XL C/C++: Compiler Reference

When -qlargepage is in effect to compile a program designed for a large page
environment, an increase in performance can occur.

Syntax

►►
nolargepage

-q largepage ►◄

Defaults

-qnolargepage

Usage

Note that this option is only useful in the following conditions:
v Large pages must be available and configured on the system.
v You must compile with an option that enables loop optimization, such as -O3 or

-qhot.
v You must link with the -blpdata option.

See your AIX operating system documentation for more information on using large
page support.

Predefined macros

None.

Examples

To compile myprogram.c to use large page heaps, enter:
xlc myprogram.c -qlargepage -blpdata

-qldbl128, -qlongdouble
Category

Floating-point and integer control

Pragma equivalent

#pragma options [no]ldbl128

Purpose

Increases the size of long double types from 64 bits to 128 bits.

Syntax

►►

nolongdouble
noldbl128

-q ldbl128
longdouble

►◄

Chapter 4. Compiler options reference 251

Defaults

-qnoldbl128

Usage

Separate libraries are provided that support 128-bit long double types. These
libraries will be automatically linked if you use any of the invocation commands
with the 128 suffix (xlc++128, xlc128, cc128, xlc++128_r, xlc128_r, or cc128_r). You
can also manually link to the 128-bit versions of the libraries using the -lkey option,
as shown in the following table:

Default (64-bit) long double 128-bit long double

Library
Form of the -lkey
option

Library
Form of the -lkey
option

libC.a -lC libC128.a -lC128

libC_r.a -lC_r libC128_r.a -lC128_r

Linking without the 128-bit versions of the libraries when your program uses
128-bit long doubles (for example, if you specify -qldbl128 alone) may produce
unpredictable results.

The #pragma options directive must appear before the first C or C++ statement in
the source file, and the option applies to the entire file.

Predefined macros
v __LONGDOUBLE128 is defined to 1 when -qldbl128 is in effect; otherwise, it is

undefined.
v __LONGDOUBLE64 is defined to 1 when -qnoldbl128 is in effect; it is

undefined when -qldbl128 is in effect.

Examples

To compile myprogram.c so that long double types are 128 bits, enter:
xlc myprogram.c -qldbl128 -lC128

Related information
v “-l” on page 221

-qlib
Category

Linking

Pragma equivalent

None.

Purpose

Specifies whether standard system libraries and XL C/C++ libraries are to be
linked.

252 XL C/C++: Compiler Reference

When -qlib is in effect, the standard system libraries and compiler libraries are
automatically linked. When -qnolib is in effect, the standard system libraries and
compiler libraries are not used at link time; only the libraries specified on the
command line with the -l flag will be linked.

This option can be used in system programming to disable the automatic linking of
unneeded libraries.

Syntax

►►
lib

-q nolib ►◄

Defaults

-qlib

Usage

Using -qnolib specifies that no libraries, including the system libraries as well as
the XL C/C++ libraries (these are found in the lib/aix61 subdirectories of the
compiler installation directory), are to be linked. The system startup files are still
linked, unless -qnocrt is also specified.

Note: If your program references any symbols that are defined in the standard
libraries or compiler-specific libraries, link errors will occur. To avoid these
unresolved references when compiling with -qnolib, be sure to explicitly link the
required libraries by using the command flag -l and the library name.

Predefined macros

None.

Examples

To compile myprogram.c without linking to any libraries except the compiler library
libxlopt.a, enter:
xlc myprogram.c -qnolib -lxlopt

Related information
v “-qcrt” on page 133

-qlibansi
Category

Optimization and tuning

Pragma equivalent

#pragma options [no]libansi

Chapter 4. Compiler options reference 253

Purpose

Assumes that all functions with the name of an ANSI C library function are in fact
the system functions.

When libansi is in effect, the optimizer can generate better code because it will
know about the behavior of a given function, such as whether or not it has any
side effects.

Syntax

►►
nolibansi

-q libansi ►◄

Defaults

-qnolibansi

Predefined macros

C++ __LIBANSI__ is defined to 1 when libansi is in effect; otherwise, it is not
defined.

-qlibmpi
Category

“Optimization and tuning” on page 90

Pragma equivalent

None

Purpose

Asserts that all functions with Message Passing Interface (MPI) names are in fact
MPI functions and not a user function with different semantics.

Syntax

►►
nolibmpi

-q libmpi ►◄

Defaults

-qnolibmpi

Usage

MPI is a library interface specification for message passing. It addresses the
message-passing parallel programming model in which data is moved from the
address space of one process to another through cooperative operations. For details
about MPI, see the Message Passing Interface Forum.

254 XL C/C++: Compiler Reference

http://www.mpi-forum.org

-qlibmpi allows the compiler to generate better code because it knows about the
behavior of a given function, such as whether or not it has any side effects.

When you use -qlibmpi, the compiler assumes that all functions with the name of
an MPI library function are in fact MPI functions. -qnolibmpi makes no such
assumptions.

Note: You cannot use this option if your application contains your own version of
the library function that is incompatible with the standard one.

Predefined macros

None.

Examples

To compile myprogram.c, enter the following command:
xlc -O5 myprogram.c -qlibmpi

Related information
v Message Passing Interface Forum
v “-qipa” on page 208

-qlinedebug
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Generates only line number and source file name information for a debugger.

When -qlinedebug is in effect, the compiler produces minimal debugging
information, so the resulting object size is smaller than that produced by the -g
debugging option. You can use the debugger to step through the source code, but
you will not be able to see or query variable information. The traceback table, if
generated, will include line numbers.

-qlinedebug is equivalent to -g1.

Syntax

►►
nolinedebug

-q linedebug ►◄

Defaults

-qnolinedebug

Chapter 4. Compiler options reference 255

http://www.mpi-forum.org

Usage

When -qlinedebug is in effect, function inlining is disabled.

Avoid using -qlinedebug with -O (optimization) option. The information produced
may be incomplete or misleading.

The -g option overrides the -qlinedebug option. If you specify -g with
-qnolinedebug on the command line, -qnolinedebug is ignored and a warning is
issued.

Predefined macros

None.

Examples

To compile myprogram.c to produce an executable program testing so you can step
through it with a debugger, enter:
xlc myprogram.c -o testing -qlinedebug

Related information
v “-g” on page 173
v “-O, -qoptimize” on page 282

-qlist
Category

Listings, messages, and compiler information

Pragma equivalent

#pragma options [no]list

Purpose

Produces a compiler listing file that includes object and constant area sections.

Syntax

►►
nolist

-q list
nooffset

= offset

►◄

Defaults

-qnolist

Parameters

offset | nooffset
Changes the offset of the PDEF header from 00000 to the offset of the start of
the text area. Specifying the option allows any program reading the .lst file to
add the value of the PDEF and the line in question, and come up with the

256 XL C/C++: Compiler Reference

same value whether offset or nooffset is specified. The offset suboption is
only relevant if there are multiple procedures in a compilation unit.

Specifying list without the suboption is equivalent to list=nooffset.

Usage

When list is in effect, a listing file is generated with a .lst suffix for each source file
named on the command line. For details of the contents of the listing file, see
“Compiler listings” on page 21.

You can use the object or assembly listing to help understand the performance
characteristics of the generated code and to diagnose execution problems.

The -qnoprint compiler option overrides this option.

Predefined macros

None.

Examples

To compile myprogram.c and to produce a listing (.lst) file that includes object ,
enter:
xlc myprogram.c -qlist

Related information
v “-qlistopt” on page 260
v “-qprint” on page 309
v “-qsource” on page 339

-qlistfmt
Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Creates a report in XML or HTML format to help you find optimization
opportunities.

Syntax

►►

▼

xml
-q listfmt= html

:

= contentSelectionList
filename= filename
version= version number
stylesheet= filename

►◄

Chapter 4. Compiler options reference 257

Defaults

This option is off by default. If none of the contentSelectionList suboptions is
specified, all available report information is produced. For example, specifying
-qlistfmt=xml is equivalent to -qlistfmt=xml=all.

Parameters

The following list describes -qlistfmt parameters:

xml | html
Instructs the compiler to generate the report in XML or HTML format. If an
XML report has been generated before, you can convert the report to the
HTML format using the genhtml command. For more information about this
command, see “genhtml command” on page 260.

contentSelectionList
The following suboptions provide a filter to limit the type and quantity of
information in the report:

data | nodata
Produces data reorganization information.

inlines | noinlines
Produces inlining information.

pdf | nopdf
Produces profile-directed feedback information.

transforms | notransforms
Produces loop transformation information.

all
Produces all available report information.

none
Does not produce a report.

filename
Specifies the name of the report file. One file is produced during the compile
phase, and one file is produced during the IPA link phase. If no filename is
specified, a file with the suffix .xml or .html is generated in a way that is
consistent with the rules of name generation for the given platform. For
example, if the foo.c file is compiled, the generated XML files are foo.xml
from the compile step and a.xml from the link step.

Note: If you compile and link in one step and use this suboption to specify a
file name for the report, the information from the IPA link step will overwrite
the information generated during the compile step.

The same will be true if you compile multiple files using the filename
suboption. The compiler creates an report for each file so the report of the last
file compiled will overwrite the previous reports. For example,
xlc -qlistfmt=xml=all:filename=abc.xml -O3 myfile1.c myfile2.c myfile3.c

will result in only one report, abc.xml based on the compilation of the last file
myfile3.c.

stylesheet
Specifies the name of an existing XML stylesheet for which an xml-stylesheet
directive is embedded in the resulting report. The default behavior is to not

258 XL C/C++: Compiler Reference

include a stylesheet. The stylesheet supplied with XL C/C++ is xlstyle.xsl.
This stylesheet renders the XML report to an easily read format when the
report is viewed through a browser that supports XSLT.

To view the XML report created with the stylesheet suboption, you must place
the actual stylesheet (xlstyle.xsl) and the XML message catalog
(XMLMessages-locale.xml where locale refers to the locale set on the compilation
machine) in the path specified by the stylesheet suboption. The stylesheet and
message catalog are installed in the /opt/IBM/xlC/13.1.3/listings/ directory.

For example, if a.xml is generated with stylesheet=xlstyle.xsl, both
xlstyle.xsl and XMLMessages-locale.xml must be in the same directory as
a.xml, before you can properly view a.xml with a browser.

version
Specifies the major version of the content that will be generated. If you have
written a tool that requires a certain version of this report, you must specify
the version.

For example, IBM XL C/C++ for AIX, V13.1.3 creates reports at XML v1.1. If
you have written a tool to consume these reports, specify version=v1.

Usage

The information produced in the report by the -qlistfmt option depends on which
optimization options are used to compiler the program.
v When you specify both -qlistfmt and an option that enables inlining such as

-qinline, the report shows which functions were inlined and why others were
not inlined.

v When you specify both -qlistfmt and an option that enables loop unrolling, the
report contains a summary of how program loops are optimized. The report also
includes diagnostic information about why specific loops cannot be vectorized.
To make -qlistfmt generate information about loop transformations, you must
also specify at least one of the following options:
– -qhot

– -qsmp

– -O3 or higher
v When you specify both -qlistfmt and an option that enables parallel

transformations, the report contains information about parallel transformations.
For -qlistfmt to generate information about parallel transformations or parallel
performance messages, you must also specify at least one of the following
options:
– -qsmp

– -O5

– -qipa=level=2

v When you specify both -qlistfmt and -qpdf, which enables profiling, the report
contains information about call and block counts and cache misses.

v When you specify both -qlistfmt and an option that produces data
reorganizations such as -qipa=level=2, the report contains information about
those reorganizations.

Predefined macros

None.

Chapter 4. Compiler options reference 259

Examples

If you want to compile myprogram.c to produce an XML report that shows how
loops are optimized, enter:
xlc -qhot -O3 -qlistfmt=xml=transforms myprogram.c

If you want to compile myprogram.c to produce an XML report that shows which
functions are inlined, enter:
xlc -qinline -qlistfmt=xml=inlines myprogram.c

genhtml command

To view the HTML version of an XML report that has already been generated, you
can use the genhtml tool.

Use the following command to view the existing XML report in HTML format.
This command generates the HTML content to standard output.
genhtml xml_file

Use the following command to generate the HTML content into a defined HTML
file. You can use a web browser to view the generated HTML file.
genhtml xml_file > target_html_file

Note: The suffix of the HTML file name must be compliant with the static HTML
page standard, for example, .html or .htm. Otherwise, the web browser might not
be able to open the file.

Related information
v “-qreport” on page 315
v "Using compiler reports to diagnose optimization opportunities" in the XL C/C++

Optimization and Programming Guide

-qlistopt
Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Produces a compiler listing file that includes all options in effect at the time of
compiler invocation.

When listopt is in effect, a listing file is generated with a .lst suffix for each source
file named on the command line. The listing shows options in effect as set by the
compiler defaults, the configuration file, and command line settings. For details of
the contents of the listing file, see “Compiler listings” on page 21.

Syntax

260 XL C/C++: Compiler Reference

►►
nolistopt

-q listopt ►◄

Defaults

-qnolistopt

Usage

Option settings caused by pragma statements in the program source are not shown
in the compiler listing.

The -qnoprint compiler option overrides this option.

Predefined macros

None.

Examples

To compile myprogram.c to produce a listing (.lst) file that shows all options in
effect, enter:
xlc myprogram.c -qlistopt

Related information
v “-qlist” on page 256
v “-qprint” on page 309
v “-qsource” on page 339

-qlonglit
Category

Floating-point and integer control

Pragma equivalent

None.

Purpose

In 64-bit mode, when determining the implicit types for integer literals, the
compiler behaves as if an l or L suffix were added to integral literals with no suffix
or with a suffix consisting only of u or U.

Syntax

►►
nolonglit

-q longlit ►◄

Defaults

-qnolonglit

Chapter 4. Compiler options reference 261

Usage

After you specify the -qlonglit option, if the int or unsigned int type is contained
in the implicit type list of a integer literal, the int or unsigned int type is replaced
with the long int or unsigned long int type, respectively. For more information
about the integer literals, see "Integer literals".

Predefined macros

None.

Examples

After you specify the -qlonglit option, the integer literal 0x80000000 has the long
int type in 64-bit mode. Otherwise, if this option is not specified, the integer literal
has the unsigned int type in both 32-bit and 64-bit modes.

-qlonglong
Category

Language element control

Pragma equivalent

#pragma options [no]longlong

Purpose

Allows IBM long long integer types in your program.

Syntax

►► -q longlong
nolonglong

►◄

Defaults

v C -qlonglong for the xlc, xlc++, xlC, cc and c99 invocation commands;
-qnolonglong for the c89 invocation command.

v C++ -qlonglong for the -qlanglvl= compat366 | extended option;
-qnolonglong for the -qlanglvl=strict98 | extended0x option. When multiple
-qlanglvl options that imply -q[no]longlong or actual -q[no]longlong options
are specified, the last specified option determines whether -qlonglong is in
effect.

Usage

C This option takes effect when the -qlanglvl=extended | stdc89 | extc89
option is in effect. It is not valid when the -qlanglvl=stdc99 | extc99 option is in
effect, because the long long support provided by this option is incompatible with
the semantics of the long long types mandated by the C99 standard.

C++

This option does not take effect when the -qlanglvl=c99longlong option

is in effect, because the long long support provided by this option is incompatible

262 XL C/C++: Compiler Reference

with the semantics of the long long types mandated by the C99 standard as
adopted in C++11.

Predefined macros

_LONG_LONG is defined to 1 when long long data types are available; otherwise,
it is undefined.

Examples

To compile myprogram.c with support for IBM long long integers, enter the
following command:
cc myprogram.c -qlonglong

AIX v4.2 and later provides support for files greater than 2 gigabytes in size so
you can store large quantities of data in a single file. To allow large file
manipulation in your application, compile with the -D_LARGE_FILES and
-qlonglong compiler options. See the following example:
xlc myprogram.c -D_LARGE_FILES -qlonglong

Related information
v "Integral types" in the IBM XL C/C++ for AIX, V13.1.3 Language Reference

-ma (C only)
See “-qalloca, -ma (C only)” on page 107.

-qmacpstr
Category

Language element control

Pragma equivalent

#pragma options [no]macpstr

Purpose

Converts Pascal string literals (prefixed by the \p escape sequence) into
null-terminated strings in which the first byte contains the length of the string.

For example, when the -qmacpstr option is in effect, the compiler converts:
“\pABC”

to:
’\03’ , ’A’ , ’B’ , ’C’ , ’\0’

Syntax

►►
nomacpstr

-q macpstr ►◄

Chapter 4. Compiler options reference 263

Defaults

-qnomacpstr

Usage

A Pascal string literal always contains the characters "\p. The characters \p in the
middle of a string do not form a Pascal string literal, and must be immediately
preceded by the " (double quote) character.

Entering the characters:
’\p’ , ’A’ , ’B’ , ’C’ , ’\0’

into a character array does not form a Pascal string literal.

The compiler ignores the -qmacpstr option when the -qmbcs or -qdbcs option is
active because Pascal-string-literal processing is only valid for one-byte characters.

The #pragma options keyword macpstr is only valid at the top of a source file
before any C or C++ source statements. If you attempt to use it in the middle of a
source file, it is ignored and the compiler issues an error message.

The following describes how Pascal string literals are processed.
v Because there is no Pascal-string-literal processing of wide strings, using the

escape sequence \p in a wide string literal with the -qmacpstr option, generates
a warning message and the escape sequence is ignored.

v Concatenating a Pascal string literal to a normal string gives a non-Pascal string.
For example, concatenating the strings:
“ABC” “\pDEF”

gives:
“ABCpDEF”

v Concatenating two Pascal string literals, for example, strcat, does not result in a
Pascal string literal. However, as described above, two adjacent Pascal string
literals can be concatenated to form one Pascal string literal in which the first
byte is the length of the new string literal. For example, concatenating the
strings:
“\p ABC” “\p DEF”

or
“\p ABC” “DEF”

results in:
“\06ABCDEF”

v A Pascal string literal cannot be concatenated with a wide string literal.
v The compiler truncates a Pascal string literal that is longer than 255 bytes

(excluding the length byte and the terminating NULL) to 255 characters.
v The Pascal string literal is not a basic type different from other C or C++ string

literals. After the processing of the Pascal string literal is complete, the resulting
string is treated the same as all other strings. If the program passes a C string to
a function that expects a Pascal string, or vice versa, the behavior is undefined.

v Modifying any byte of the Pascal string literal after the processing has been
completed does not alter the original length value in the first byte. For example,
in the string “\06ABCDEF”, substituting a null character for one of the existing

264 XL C/C++: Compiler Reference

characters in the middle of the string does not change the value of the first byte
of the string, which contains the length of the string.

v No errors or warnings are issued when the bytes of the processed Pascal string
literal are modified.

Predefined macros

None.

Examples

To compile mypascal.c and convert string literals into Pascal-style strings, enter:
xlc mypascal.c -qmacpstr

Related information
v “-qmbcs, -qdbcs” on page 269

-qmakedep, -M
Category

Output control

Pragma equivalent

None.

Purpose

Produces the dependency files that are used by the make tool for each source file.

The dependency output file is named with a .u suffix.

Syntax

►► -M
-q makedep

= gcc

►◄

Defaults

Not applicable.

Parameters

gcc (-qmakedep option only)
The format of the generated make rule to match the GCC format: the
dependency output file includes a single target that lists all of the main source
file's dependencies.

If you specify -qmakedep with no suboption, or -M, the dependency output file
specifies a separate rule for each of the main source file's dependencies.

Chapter 4. Compiler options reference 265

Usage

For each source file with a .c, .C, .cpp, or .i suffix that is named on the command
line, a dependency output file is generated with the same name as the object file
but with a .u suffix. Dependency output files are not created for any other types of
input files. If you use the -o option to rename the object file, the name of the
dependency output file is based on the name specified in the -o option. For more
information, see the Examples section.

The dependency output files generated by these options are not make description
files; they must be linked before they can be used with the make command. For
more information about this command, see your operating system documentation.

The output file contains a line for the input file and an entry for each include file.
It has the general form:
file_name.o:include_file_name
file_name.o:file_name.suffix

You can also use -qmakedep and -M with the following option:

-MF file_path
Sets the name of the dependency output file, where file_path is the full or
partial path or file name for the dependency output file. For more information,
see “-MF” on page 271.

Include files are listed according to the search order rules for the #include
preprocessor directive, described in “Directory search sequence for included files”
on page 13. If the include file is not found, it is not added to the .u file.

Files with no include statements produce dependency output files that contain one
line listing only the input file name.

Predefined macros

None.

Examples

Example 1: To compile mysource.c and create a dependency output file named
mysource.u, enter:
xlc -c -qmakedep mysource.c

Example 2: To compile foo_src.c and create a dependency output file named
mysource.u, enter:
xlc -c -qmakedep foo_src.c -MF mysource.u

Example 3: To compile foo_src.c and create a dependency output file named
mysource.u in the deps/ directory, enter:
xlc -c -qmakedep foo_src.c -MF deps/mysource.u

Example 4: To compile foo_src.c and create an object file named foo_obj.o and a
dependency output file named foo_obj.u, enter:
xlc -c -qmakedep foo_src.c -o foo_obj.o

Example 5: To compile foo_src.c and create an object file named foo_obj.o and a
dependency output file named mysource.u, enter:

266 XL C/C++: Compiler Reference

xlc -c -qmakedep foo_src.c -o foo_obj.o -MF mysource.u

Example 6: To compile foo_src1.c and foo_src2.c to create two dependency
output files, named foo_src1.u and foo_src2.u respectively, in the /tmp/ directory,
enter:
xlc -c -qmakedep foo_src1.c foo_src2.c -MF /tmp/

Related information
v “-MF” on page 271
v “-o” on page 281
v “Directory search sequence for included files” on page 13

-qmaxerr
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Stops compilation when the number of error messages of a specified severity level
or higher reaches a specified number.

Syntax

-qmaxerr syntax — C

►►
nomaxerr

-q maxerr = number
s

: i
w
e

►◄

-qmaxerr syntax — C++

►►
nomaxerr

-q maxerr = number
s

: i
w

►◄

Defaults

-qnomaxerr

Parameters

number
It specifies the maximum number of messages the compiler generates before it
stops. number must be an integer with a value of 1 or greater.

Chapter 4. Compiler options reference 267

i Specifies that the severity level is Informational (I) or higher.

w Specifies that the severity level is Warning (W) or higher.

C e
Specifies that the severity level is Error (E) or higher.

s Specifies that the severity level is Severe (S).

Usage

If the -qmaxerr option does not specify the severity level, it uses the severity that
is in effect by the -qhalt option; otherwise, the severity level is specified by either
-qmaxerr or -qhalt that appears last.

Diagnostic messages can be controlled by the -qflag option.

Predefined macros

None.

Examples

To stop compilation of myprogram.c when 10 warnings are encountered, enter the
command:
xlc myprogram.c -qmaxerr=10:w

To stop compilation of myprogram.c when 5 severe errors are encountered,
assuming that the current -qhalt option value is s (severe), enter the command:
xlc myprogram.c -qmaxerr=5

To stop compilation of myprogram.c when 3 informational messages are
encountered, enter the command:
xlc myprogram.c -qmaxerr=3:i

or:
xlc myprogram.c -qmaxerr=3 -qhalt=i

Related information
v “-qflag” on page 156
v “-qhalt” on page 178
v “Message severity levels and compiler response” on page 19

-qmaxmem
Category

Optimization and tuning

Pragma equivalent

#pragma options maxmem

Purpose

Limits the amount of memory that the compiler allocates while performing
specific, memory-intensive optimizations to the specified number of kilobytes.

268 XL C/C++: Compiler Reference

Syntax

►► -q maxmem = size_limit ►◄

Defaults
v -qmaxmem=8192 when -O2 is in effect.
v -qmaxmem=-1 when the -O3 or higher optimization level is in effect.

Parameters

size_limit
The number of kilobytes worth of memory to be used by optimizations. The
limit is the amount of memory for specific optimizations, and not for the
compiler as a whole. Tables required during the entire compilation process are
not affected by or included in this limit.

A value of -1 permits each optimization to take as much memory as it needs
without checking for limits.

Usage

A smaller limit does not necessarily mean that the resulting program will be
slower, only that the compiler may finish before finding all opportunities to
increase performance. Increasing the limit does not necessarily mean that the
resulting program will be faster, only that the compiler is better able to find
opportunities to increase performance if they exist.

Setting a large limit has no negative effect on the compilation of source files when
the compiler needs less memory. However, depending on the source file being
compiled, the size of subprograms in the source, the machine configuration, and
the workload on the system, setting the limit too high, or to -1, might exceed
available system resources.

Predefined macros

None.

Examples

To compile myprogram.c so that the memory specified for local table is 16384
kilobytes, enter:
xlc myprogram.c -qmaxmem=16384

-qmbcs, -qdbcs
Category

Language element control

Pragma equivalent

#pragma options [no]mbcs, #pragma options [no]dbcs

Chapter 4. Compiler options reference 269

Purpose

Enables support for multibyte character sets (MBCS) and Unicode characters in
your source code.

When mbcs or dbcs is in effect, multibyte character literals and comments are
recognized by the compiler. When nombcs or nodbcs is in effect, the compiler
treats all literals as single-byte literals.

Syntax

►►

nodbcs
nombcs

-q mbcs
dbcs

►◄

Defaults

-qnombcs, -qnodbcs

Usage

For rules on using multibyte characters in your source code, see "Multibyte
characters" in the XL C/C++ Language Reference.

In addition, you can use multibyte characters in the following contexts:
v In file names passed as arguments to compiler invocations on the command line;

for example:
xlc /u/myhome/c_programs/kanji_files/multibyte_char.c -omultibyte_char

v In file names, as suboptions to compiler options that take file names as
arguments

v In the definition of a macro name using the -D option; for example:
-DMYMACRO=“kpsmultibyte_chardcs”
-DMYMACRO=’multibyte_char’

Listing files display the date and time for the appropriate international language,
and multibyte characters in the source file name also appear in the name of the
corresponding list file. For example, a C source file called:
multibyte_char.c

gives a list file called
multibyte_char.lst

Predefined macros

None.

Examples

To compile myprogram.c if it contains multibyte characters, enter:
xlc myprogram.c -qmbcs

Related information
v “-D” on page 136

270 XL C/C++: Compiler Reference

-MF
Category

Output control

Pragma equivalent

None.

Purpose

Specifies the name or location for the dependency output files that are generated
by the -qmakedep or -M option.

For more information about the -qmakedep and -M options, see “-qmakedep, -M”
on page 265.

Syntax

►► -MF file_path ►◄

Defaults

If -MF is not specified, the dependency output file is generated with the same
name as the object file but with a .u suffix in the current working directory.

Parameters

file_path
The target output path. file_path can be a full directory path or file name. If
file_path is the name of a directory, the dependency file generated by the
compiler is placed into the specified directory. If you do not specify a directory,
the dependency file is stored in the current working directory.

Usage

If the file specified by -MF option already exists, it will be overwritten.

If you specify a single file name for the -MF option when you compile multiple
source files, only a single dependency file will be generated. The dependency file
contains the make rule for the last file specified on the command line.

Predefined macros

None.

Related information
v “-qmakedep, -M” on page 265
v “-o” on page 281
v “Directory search sequence for included files” on page 13

Chapter 4. Compiler options reference 271

-qminimaltoc
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Controls the generation of the table of contents (TOC), which the compiler creates
for an executable file.

Programs compiled in 64-bit mode have a limit of 8192 TOC entries. As a result,
you may encounter "relocation truncation" error messages when linking large
programs in 64-bit mode; these error messages are caused by TOC overflow
conditions. When -qminimaltoc is in effect, the compiler avoids these overflow
conditions by placing TOC entries into a separate data section for each object file.

Specifying -qminimaltoc ensures that the compiler creates only one TOC entry for
each compilation unit. Specifying this option can minimize the use of available
TOC entries, but its use impacts performance. Use the -qminimaltoc option with
discretion, particularly with files that contain frequently executed code.

Syntax

►►
nominimaltoc

-q minimaltoc ►◄

Defaults

-qnominimaltoc

Usage

Compiling with -qminimaltoc may create slightly slower and larger code for your
program. However, these effects may be minimized by specifying optimizing
options when compiling your program.

Predefined macros

None.

-qmkshrobj
Category

Output control

Pragma equivalent

None.

272 XL C/C++: Compiler Reference

Purpose

Creates a shared object from generated object files.

Use this option, together with the related options described later in this topic,
instead of calling the linker directly (or using the makeC++SharedLib utility, in C++)
to create a shared object. The advantages of using this option are the automatic
handling of link-time C++ template instantiation (using either the template include
directory or the template registry), and compatibility with -qipa link-time
optimizations (such as those performed at -O5).

Syntax

►► -q mkshrobj ►◄

►► -q mkshrobj
= priority

►◄

Defaults

By default, the output object is linked with the runtime libraries and startup
routines to create an executable file.

Parameters

C++ priority
Specifies the priority level for the initialization order of static C++ objects
declared in the shared object (relative to static objects declared in other shared
objects). The priority may be any number from -214 782 624 (highest priority -
initialized first) to 214 783 647 (lowest priority - initialized last). Numbers from
-214 783 648 to -214 782 623 are reserved for system use. If no priority is
specified a default priority of 0 is used. The priority has no effect if you link
shared objects written in C, if you link with the C compiler (xlc), or if the
shared object has no static initialization.

Usage

When the -qmkshrobj option is specified, the driver program starts the
CreateExportList utility to create an export list from the input list of object files.

The compiler automatically exports all global symbols from the shared object
unless you specify which symbols to export by using -bE:, -bexport:, or
-bnoexpall. You can also prevent weak symbols from being exported by using the
-qnoweakexp option. IBM Symbols that have the hidden or internal visibility
attribute are not exported. IBM

Specifying -qmkshrobj implies -qpic.

You can also use the following related options with -qmkshrobj:

-o shared_file
The name of the file that holds the shared file information. The default is shr.o.

-qexpfile=filename
Saves all exported symbols in filename.

Chapter 4. Compiler options reference 273

-e name
Sets the entry name for the shared executable to name.

-q[no]weakexp
Specifies whether symbols marked as weak (with the #pragma weak directive)
are to be included in the export list. If you do not explicitly set this option, the
default is -qweakexp (global weak symbols are exported).

For detailed information about using -qmkshrobj to create shared libraries, as well
as examples of using -qmkshrobj with priority values, see "Constructing a library"
in the XL C/C++ Optimization and Programming Guide.

Predefined macros

None.

Examples

To construct the shared library big_lib.so from three smaller object files, enter the
following command:
xlc -qmkshrobj -o big_lib.so lib_a.o lib_b.o lib_c.o

Related information
v “-b” on page 117
v “-e” on page 145
v “-G” on page 176
v “-qexpfile” on page 152
v “-qipa” on page 208
v “-o” on page 281
v “-qpic” on page 304
v “-qpriority (C++ only)” on page 310
v “-qweakexp” on page 394
v “-qvisibility” on page 387
v “#pragma GCC visibility push, #pragma GCC visibility pop” on page 418

-qnamemangling (C++ only)
Category

Portability and migration

Pragma equivalent

#pragma namemangling

Purpose

Chooses the name mangling scheme for external symbol names generated from
C++ source code.

The option and pragma are provided to ensure binary compatibility with link
modules created with previous versions of the compiler. If you do not need to
ensure compatibility with earlier versions, do not change the default setting of this
option.

274 XL C/C++: Compiler Reference

Syntax

Option syntax

►►
v13

-q namemangling = v12
v11
v10
v9
v8
v7
v6
v5
v4
v3
ansi
compat

►◄

Pragma syntax

►►
v13

pragma namemangling (v12)
v11
v10
v9
v8
v7
v6
v5
v4
v3
ansi
compat

pop

►◄

Defaults

-qnamemangling(v13)

Parameters

ansi
The name mangling scheme supports the most recent standard C++ language
features. This suboption is equivalent to v13.

v13
The name mangling scheme is compatible with IBM XL C/C++ V13.1.

Several changes to the name mangling scheme are introduced in IBM XL
C/C++ V13.1. Firstly, before V13.1, suppose there are two functions whose
only difference is that one has cv-qualified parameters while the other's
parameters are not cv-qualified. When you use the typeid operator to retrieve
the types of these two functions, the mangled names for the function types
were inconsistent. See the following example.
#include <typeinfo>
#include <stdio.h>

int main(){

Chapter 4. Compiler options reference 275

if(typeid(void (*)(int)) == typeid(void (*)(const int)))
printf("success\n");

else
printf("failure\n");

return 0;
}

Before V13.1, the mangled names of the two functions typeid(void (*)(int))
and typeid(void (*)(const int)) were not identical; in V13.1, the mangled
names are identical as shown in the following table.

Function type Mangled name before v13 Mangled name in v13

typeid(void (*)(int)) __type_infoXTPFi_v_ __type_infoXTPFi_v_

typeid(void (*)(const
int))

__type_infoXTPFCi_v_ __type_infoXTPFi_v_

Secondly, before V13.1, mangled names for unnamed namespaces distinguish
themselves from other functions or namespaces only by their file names. When
multiple unnamed namespaces are in separate files that have the same file
name but different directories, the mangled names of these namespaces are the
same. The V13.1 release fixes this problem by encoding the file directory with
file name in the mangled function name. For example, the following code is
included in two files with the same file name test.cpp under directory dir1
and directory dir2:
namespace{

struct C{
C(){ printf("%s\n", "C() of c1"); }

}c1;
}

Before V13.1, the two constructors C() under directory dir1 and directory dir2
had identical mangled names. When static initialization occurs and the object
files are linked or loaded to a main program, only the first constructor that is
identified by the linker is called or initialized. In V13.1, the mangled names for
the two constructors are different as shown in the following table.

Function Mangled name before v13 Mangled name in v13

test.cpp under directory
dir1: C()

__ct__Q2_10test.cpp-01CFv __ct__Q2_101_test_cpp1CFv

test.cpp under directory
dir2: C()

__ct__Q2_10test.cpp-01CFv __ct__Q2_102_test_cpp1CFv

v12
The name mangling scheme is compatible with IBM XL C/C++ V12.1.

Before this release, the name mangling scheme did not distinguish function
parameters of template types that were cv-qualified and not cv-qualified,
because the cv-qualifiers of the template type parameters were ignored. The
v12 fix preserves the cv-qualifiers, so the function parameters that are
cv-qualified and not cv-qualified are handled differently. For example:
template<typename Element> struct Iterator
{

Iterator() {}
Iterator<Element>& operator+=(long d);
friend Iterator<Element> operator+(Iterator<Element> it, long d)
{

it += d;
return it;

}
};

276 XL C/C++: Compiler Reference

int main()
{

Iterator<int> iter;
Iterator<const int> c_iter;
iter = iter+10;
c_iter=c_iter+10;

}

In the preceding example, before the v12 fix, Iterator<const int>
operator+(Iterator<const int>, long)() and Iterator<int>
operator+(Iterator<int>, long)() had an identical name mangling
__pl__F8IteratorXTi_l. The fix distinguishes the name mangling of these two
functions as shown in the following table:

Source name Mangled name before v12 Mangled name in v12 and later

Iterator<const int>
operator+(Iterator<const int>, long)

__pl__F8IteratorXTi_l __pl__F8IteratorXTCi_l

Iterator<int>
operator+(Iterator<int>, long)()

__pl__F8IteratorXTi_l __pl__F8IteratorXTi_l

v11
The name mangling scheme is compatible with IBM XL C/C++ V11.1. This
suboption has the same effect as v10.

v10
The name mangling scheme is compatible with IBM XL C/C++ V10.1. This
suboption has the same effect as the v9 suboption.

v9 The name mangling scheme is compatible with IBM XL C/C++ V9.0.

Before this release, the name mangling scheme did not different between
different pointer-to-member template arguments in template instantiations, and
the following test case would fail to compile:
struct pair
{

int x, y;
pair(int x_, int y_) : x(x_), y(y_) {}

};

template <int pair::*PtrToPairMember>

struct str
{

int f(pair& p)
{

return p.*PtrToPairMember;
}

};

template <int pair::*PtrToPairMember> g(pair& p)
{

return p.*PtrToPairMember;
}

int main()
{

pair p(0, 1);
str<&pair::x> fx;
str<&pair::y> fy;

if (fx.f(p) != 0 || fy.f(p) != 1) { return 1; }

if (g<&pair::x>(p) != 0 || g<&pair::y>(p) != 1) { return 2; }

return 0;
}

Chapter 4. Compiler options reference 277

From V9.0 on, the compiler treats different pointer-to-member template
arguments as distinct. The following examples illustrate this behavior:

Source name Mangled name before v9 Mangled name in v9 and later

int str<&pair::y>::f(pair &) f_3strXA0_FR4pair f_3strXAM1y_FR4pair

int str<&pair::x>::f(pair &) f_3strXA0_FR4pair f_3strXAM1x_FR4pair

int g<&pair::y>(pair &) g_HxM4pairiA0x_R4pair_i g_HxM4pairiA0yx_R4pair_i

int g<&pair::x>(pair &) g_HxM4pairiA0x_R4pair_i g_HxM4pairiA0xx_R4pair_i

v8 The name mangling scheme is compatible with IBM XL C/C++ V8.0.

Several changes to the mangling scheme went into effect in IBM XL C/C++
V8.0. First of all, before V8.0, intermediate-level cv-qualifiers were not used to
distinguish between types in repeated parameters in a function's signature.
From V8.0 on, intermediate-level cv-qualifiers are used for determining the
equivalence between function parameters. Parameters that are differentiated by
the presence of an intermediate-level cv-qualifier are not considered to be
equivalent, and are mangled as separate parameters. The following examples
illustrate this behavior:

Source name Mangled name before v8
Mangled name in v8 and
later

void f (int**, int* const
*)

f__FPPiT1 f__FPPiPCPi

Note: This behavior can also be controlled with the use of the
nameManglingRule(fnparmscmp) pragma directive. For more information, as
well as details of the compressed mangling scheme, see “#pragma
namemanglingrule (C++ only)” on page 434.

Secondly, before V8.0, only the underlying type in a typedef definition was
used to distinguish between types in repeated parameters in a function's
signature. From V8.0 on, the name defined in a typedef declaration in a
template parameter is encoded as a separate parameter in the mangled name
of a template function that uses the typedef as a parameter. The following
examples illustrate this behavior:

Source name
Mangled function name
before v8

Mangled function name in v8 and
later

template <typename T> struct A {
typedef int INT;

};

template <typename V>
int f (A <V>, int, typename A<V>::INT) {}

A<int> a;
int x = f (a, 1, 10);

f__Hi_1AXTi_iT2_i f__Hi_1AXTi_iQ2_1AXTi_9INT_i

278 XL C/C++: Compiler Reference

Source name
Mangled function name
before v8

Mangled function name in v8 and
later

template <typename T> struct A {
typedef A INT;

};

template <typename Y>
int f (A <int>::INT, const A<Y>) {}

A<int> a;
int x = f (10, a);

f__Hi_1AXTi_T1_i f__Hi_Q2_1AXTi_INT1AXTi__i

v7 The name mangling scheme is compatible with IBM XL C/C++ V7.0.

Several changes to the mangling scheme went into effect in IBM XL C/C++
V7.0. First of all, before V7.0, top-level cv-qualifiers were used to distinguish
between types in repeated parameters in a function's signature. From V7.0 on,
in accordance with the C++ Standard, top-level cv-qualifiers are ignored for
determining the equivalence between function parameters. Parameters that are
only differentiated by the presence of a top-level cv-qualifier are considered to
be equivalent, and are represented in the compressed encoding scheme used
for repeated parameters of the same type. The following examples illustrate
this behavior:

Source name Mangled name before v7
Mangled name in v7 and
later

void f (int, const int)
f__FiCi (pre-v6)
f__Fii (v6)

f__FiT1

void f (int* const, int*
const) f__FCPiCCPi (pre-v6)

f__FPiPi (v6)

f__FPiT1

Note: This behavior can also be controlled with the use of the
nameManglingRule(fnparmtype) pragma directive. For more information, as
well as details of the compressed mangling scheme, see “#pragma
namemanglingrule (C++ only)” on page 434.

Secondly, before V7.0, non-type integral template arguments were mangled as
32-bit unsigned decimal numbers prefixed by SP. Due to ambiguities
introduced by this in mangling 64-bit values, this scheme has been changed to
the following:
non-type template argument -> SM #single repeat of a previous parameter

-> SP number #positive internal argument
-> SN number #negative internal argument

When a non-type integral template argument is positive, the number is
prefixed with SP. When a non-type integral template argument is negative, the
number is prefixed with SN, and the decimal number is written without the
minus sign. There is no limit in the range of decimal numbers which can be
represented. The following examples illustrate this behavior:

Chapter 4. Compiler options reference 279

Source name
Mangled template name
before v7

Mangled template name in
v7 and later

template <int n> int f(){
return N;

}

int main(){
return f<-3>();

}

f__HxiSP429 f__HxiSN3x_v

v6 The name mangling scheme is compatible with VisualAge C++ V6.0. Before
this release, top-level cv-qualifiers in function arguments were encoded in
mangled names. From V6.0 on, in accordance with the C++ Standard, top-level
cv-qualifiers are not considered part of the underlying type of a function
argument, and the cv-qualifiers are not encoded in the mangled names. The
following examples illustrate this behavior:

Source name Mangled name before v6
Mangled name in v6 and
later

void f (const int) f__FCi f__Fi

void f (int* const) f__FCPi f__FPi

Note: This behavior can also be controlled with the use of the
nameManglingRule(fnparmtype) pragma directive. For more information, see
“#pragma namemanglingrule (C++ only)” on page 434.

v5 The name mangling scheme is compatible with VisualAge C++ V5.0. Same as
the v4 suboption.

v4 The name mangling scheme is compatible with VisualAge C++ V4.0. Before
this release, a function and a function template specialization with the same
name and parameter list were considered to have the same signature, and the
following test case would fail to compile:
int f(int) {

return 42;
}

template < class T > int f(T) {
return 43;

}

int main() {
f < int > (3); // instantiate int f < int > (int)
return f(4);

}

From V4.0 on, the compiler treats a function and a function template
specialization with the same name and parameter list as distinct functions. The
following examples illustrate this behavior:

Source name Mangled name before v4
Mangled name in v4 and
later

int f (int) f__Fi f__Fi

int f <int> (int) f__Fi f__Hi_i_i

280 XL C/C++: Compiler Reference

v3 | compat
The name mangling scheme is compatible with VisualAge C++ V3.0 in 32-bit
mode only.

pop
Discards the current pragma setting and reverts to the setting specified by the
previous pragma directive. If no previous pragma was specified, reverts to the
command-line or default option setting.

Predefined macros

None.

Related information
v “#pragma namemanglingrule (C++ only)” on page 434

-o
Category

Output control

Pragma equivalent

None.

Purpose

Specifies a name for the output object, assembler, executable, or preprocessed file.

Syntax

►► -o path ►◄

Defaults

See “Types of output files” on page 4 for the default file names and suffixes
produced by different phases of compilation.

Parameters

path
When you are using the option to compile from source files, path can be the
name of a file or directory. path can be a relative or absolute path name. When
you are using the option to link from object files, path must be a file name.

If path is the name of an existing directory, files created by the compiler are
placed into that directory. If path is not an existing directory, it specifies the
name of the file produced by the compiler. See below for examples.

You cannot specify a file name with a C or C++ source file suffix (.C, .c, or
.cpp), such as myprog.c; this results in an error and neither the compiler nor
the linker is invoked.

Chapter 4. Compiler options reference 281

Usage

If you use the -c option with -o and path is not an existing directory, you can
compile only one source file at a time. In this case, if more than one source file
name is specified, the compiler issues a warning message and ignores -o.

The -E, -P, and -qsyntaxonly options override the -o option.

Predefined macros

None.

Examples

To compile myprogram.c so that the resulting executable is called myaccount,
assuming that no directory with name myaccount exists, enter:
xlc myprogram.c -o myaccount

To compile test.c to an object file only and name the object file new.o, enter:
xlc test.c -c -o new.o

Related information
v “-c” on page 121
v “-E” on page 146
v “-P” on page 293
v “-qsyntaxonly” on page 356

-O, -qoptimize
Category

Optimization and tuning

Pragma equivalent

#pragma options [no]optimize

Purpose

Specifies whether to optimize code during compilation and, if so, at which level.

282 XL C/C++: Compiler Reference

Syntax

►►

noopt
nooptimize

-q optimize
opt = 0

2
3
4
5

-O0
-O
-O2
-O3
-O4
-O5

►◄

Defaults

-qnooptimize or -O0 or -qoptimize=0

Parameters

-O0 | nooptimize | noopt | optimize|opt=0
Performs only quick local optimizations such as constant folding and
elimination of local common subexpressions.

This setting implies -qstrict_induction unless -qnostrict_induction is explicitly
specified.

-O | -O2 | optimize | opt | optimize|opt=2
Performs optimizations that the compiler developers considered the best
combination for compilation speed and runtime performance. The
optimizations may change from product release to release. If you need a
specific level of optimization, specify the appropriate numeric value.

This setting implies -qstrict and -qnostrict_induction, unless explicitly negated
by -qstrict_induction or -qnostrict.

-O3 | optimize|opt=3
Performs additional optimizations that are memory intensive, compile-time
intensive, or both. They are recommended when the desire for runtime
improvement outweighs the concern for minimizing compilation resources.

-O3 applies the -O2 level of optimization, but with unbounded time and
memory limits. -O3 also performs higher and more aggressive optimizations
that have the potential to slightly alter the semantics of your program. The
compiler guards against these optimizations at -O2. The aggressive
optimizations performed when you specify -O3 are:
1. Aggressive code motion, and scheduling on computations that have the

potential to raise an exception, are allowed.
Loads and floating-point computations fall into this category. This
optimization is aggressive because it may place such instructions onto
execution paths where they will be executed when they may not have been
according to the actual semantics of the program.
For example, a loop-invariant floating-point computation that is found on
some, but not all, paths through a loop will not be moved at -O2 because
the computation may cause an exception. At -O3, the compiler will move it

Chapter 4. Compiler options reference 283

because it is not certain to cause an exception. The same is true for motion
of loads. Although a load through a pointer is never moved, loads off the
static or stack base register are considered movable at -O3. Loads in general
are not considered to be absolutely safe at -O2 because a program can
contain a declaration of a static array a of 10 elements and load
a[60000000003], which could cause a segmentation violation.
The same concepts apply to scheduling.
Example:

In the following example, at -O2, the computation of b+c is not moved out
of the loop for two reasons:
v It is considered dangerous because it is a floating-point operation
v It does not occur on every path through the loop
At -O3, the code is moved.

...
int i ;
float a[100], b, c ;
for (i = 0 ; i < 100 ; i++)
{
if (a[i] < a[i+1])
a[i] = b + c ;
}
...

2. Both -O2 and -O3 conform to the following IEEE rules.
With -O2 certain optimizations are not performed because they may
produce an incorrect sign in cases with a zero result, and because they
remove an arithmetic operation that may cause some type of floating-point
exception.
For example, X + 0.0 is not folded to X because, under IEEE rules, -0.0 + 0.0
= 0.0, which is -X. In some other cases, some optimizations may perform
optimizations that yield a zero result with the wrong sign. For example, X -
Y * Z may result in a -0.0 where the original computation would produce
0.0.
In most cases the difference in the results is not important to an application
and -O3 allows these optimizations.

3. Floating-point expressions may be rewritten.
Computations such as a*b*c may be rewritten as a*c*b if, for example, an
opportunity exists to get a common subexpression by such rearrangement.
Replacing a divide with a multiply by the reciprocal is another example of
reassociating floating-point computations.

4. Specifying -O3 implies -qhot=level=0, unless you explicitly specify -qhot or
-qhot=level=1 option.

-qfloat=fltint:rsqrt is set by default with -O3.

-qmaxmem=-1 is set by default with -O3, allowing the compiler to use as
much memory as necessary when performing optimizations.

Built-in functions do not change errno at -O3.

Aggressive optimizations do not include the following floating-point
suboptions: -qfloat=hsflt | hssngl, or anything else that affects the precision
mode of a program.

Integer divide instructions are considered too dangerous to optimize even at
-O3.

284 XL C/C++: Compiler Reference

Refer to “-qflttrap” on page 163 to see the behavior of the compiler when you
specify optimize options with the -qflttrap option.

You can use the -qstrict and -qstrict_induction compiler options to turn off
effects of -O3 that might change the semantics of a program. Specifying -qstrict
together with -O3 invokes all the optimizations performed at -O2 as well as
further loop optimizations. Reference to the -qstrict compiler option can appear
before or after the -O3 option.

The -O3 compiler option followed by the -O option leaves -qignerrno on.

When -O3 and -qhot=level=1 are in effect, the compiler replaces any calls in
the source code to standard math library functions with calls to the equivalent
MASS library functions, and if possible, the vector versions.

-O4 | optimize|opt=4
This option is the same as -O3, except that it also:
v Sets the -qarch and -qtune options to the architecture of the compiling

machine
v Sets the -qcache option most appropriate to the characteristics of the

compiling machine
v Sets the -qhot option
v Sets the -qipa option

Note: Later settings of -O, -qcache, -qhot, -qipa, -qarch, and -qtune options
will override the settings implied by the -O4 option.

This option follows the "last option wins" conflict resolution rule, so any of the
options that are modified by -O4 can be subsequently changed. For example,
specifying -O4 -qarch=ppc allows aggressive intraprocedural optimization
while maintaining code portability.

-O5 | optimize|opt=5
This option is the same as -O4, except that it:
v Sets the -qipa=level=2 option to perform full interprocedural data flow and

alias analysis.

Note: Later settings of -O, -qcache, -qipa, -qarch, and -qtune options will
override the settings implied by the -O5 option.

Usage

Increasing the level of optimization may or may not result in additional
performance improvements, depending on whether additional analysis detects
further opportunities for optimization.

Compilations with optimizations may require more time and machine resources
than other compilations.

Optimization can cause statements to be moved or deleted, and generally should
not be specified along with the -g flag for debugging programs. The debugging
information produced may not be accurate.

When using -O or higher optimization, -qtbtable=small is implied. The traceback
table generated has no function name or parameter information.

If optimization level -O3 or higher is specified on the command line, the -qhot and
-qipa options that are set by the optimization level cannot be overridden by

Chapter 4. Compiler options reference 285

#pragma option_override(identifier, "opt(level, 0)") or #pragma
option_override(identifier, "opt(level, 2)").

Predefined macros
v __OPTIMIZE__ is predefined to 2 when -O | O2 is in effect; it is predefined to 3

when -O3 | O4 | O5 is in effect. Otherwise, it is undefined.
v __OPTIMIZE_SIZE__ is predefined to 1 when -O | -O2 | -O3 | -O4 | -O5 and

-qcompact are in effect. Otherwise, it is undefined.

Examples

To compile and optimize myprogram.c, enter:
xlc myprogram.c -O3

Related information
v “-qhot” on page 182
v “-qipa” on page 208
v “-qpdf1, -qpdf2” on page 296
v “-qstrict” on page 348
v “-qtbtable” on page 359
v "Optimizing your applications" in the XL C/C++ Optimization and Programming

Guide.
v “#pragma option_override” on page 441

-qobjmodel (C++ only)
Category

Portability and migration

Pragma equivalent

#pragma object_model

Purpose

Sets the object model to be used for structures, unions, and classes.

The object models differ in the following areas:
v Layout for the virtual function table
v Virtual base class support
v Name mangling scheme

Syntax

Option syntax

►►
classic

-q objmodel = ibm ►◄

286 XL C/C++: Compiler Reference

Pragma syntax

►►
classic

#pragma object_model (ibm)
pop

►◄

Defaults

-qobjmodel=classic

Parameters

classic
Uses the object model compatible with V3.6 of the IBM C++ Compiler. This
suboption can also be specified using the legacy suboption name of
-qobjmodel=compat, but support for this legacy suboption name may be
removed in future releases of the compiler.

ibm
Uses the object model introduced with VisualAge C++ V5.0. Objects compiled
with this object model will use less memory and have better performance for
deep inheritance with virtual bases.

pop (pragma only)
Discards the current pragma setting and reverts to the setting specified by the
previous pragma directive. If no previous pragma was specified, reverts to the
command-line or default option setting.

Usage

All classes in the same inheritance hierarchy must have the same object model.

Predefined macros
v __OBJECT_MODEL_CLASSIC__ is predefined to 1 when -qobjmodel=classic or

#pragma object_model(classic) is in effect (the default); otherwise, it is
undefined.

v __OBJECT_MODEL_IBM__ is predefined to 1 when -qobjmodel=ibm or
#pragma object_model(ibm) is in effect; otherwise, it is undefined.

Examples

To compile myprogram.C with the ibm object model, enter the following command:
xlc++ myprogram.C -qobjmodel=ibm

-qoldpassbyvalue (C++ only)
Category

Portability and migration

Pragma equivalent

#pragma pass_by_value

Chapter 4. Compiler options reference 287

Purpose

Specifies how classes containing const or reference members are passed in function
arguments.

The IBM C++ Compiler V3.6 uses pass by value only if the class has no const or
reference data members, and the copy constructor is trivial and the destructor is
trivial. VisualAge C++ V5.0 and later compilers use pass by value if the copy
constructor is trivial and the destructor is trivial, regardless of const or reference
data members. When -qoldpassbyvalue is in effect, the compiler uses the 3.6
behavior so that when a class containing a const or reference member is passed as
a function argument, it is not passed by value. When -qnooldpassbyvalue is in
effect, the compiler uses the new behavior so that when a class containing a const
or reference member is passed as a function argument, it is passed by value.

The #pragma pass_by_value directive allows you greater control over this option
for specific files or sections of source code.

Syntax

Option syntax

►►
nooldpassbyvalue

-q oldpassbyvalue ►◄

►► Pragma syntax ►◄

Pragma syntax

pragma pass_by_value (compat)
ansi
default
source
pop
reset

Defaults

-qnooldpassbyvalue

Parameters

compat (pragma only)
Sets -qoldpassbyvalue for the code that follows it. This instructs the compiler
to use the earlier behavior: when a class containing a const or reference
member is passed as a function argument, it is not passed by value.

ansi | default (pragma only)
Sets -qnooldpassbyvalue for the code that follows it. This instructs the
compiler to use the new behavior: when a class containing a const or reference
member is passed as a function argument, it is passed by value.

source (pragma only)
Reverts to the setting specified by the command-line option; if no option has
been specified, reverts to the default setting (-qnooldpassbyvalue).

288 XL C/C++: Compiler Reference

pop | reset (pragma only)
Discards the current pragma setting and reverts to the setting specified by the
previous pragma directive. If no previous pragma was specified, reverts to the
command-line or default option setting.

Usage

Use this option if you are linking to libraries compiled with IBM C++ Compiler
V3.6 or earlier. Otherwise, functions that have const or reference class parameter
types will give incorrect behavior when they are called from modules compiled
with a later version of the compiler. Library headers compiled with IBM C++
Compiler V3.6 or earlier should be protected with the #pragma pass_by_value
directive so that users of these libraries will get the correct calling convention for
functions in those libraries that use class parameters.

Predefined macros

None.

-qoptdebug
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

When used with high levels of optimization, produces files containing optimized
pseudocode that can be read by a debugger.

An output file with a .optdbg extension is created for each source file compiled
with -qoptdebug. You can use the information contained in this file to help you
understand how your code actually behaves under optimization.

Syntax

►► -q
nooptdebug
optdebug ►◄

Defaults

-qnooptdebug

Usage

-qoptdebug only has an effect when used with an option that enables the
high-level optimizer, namely -O3 or higher optimization level, or -qhot, -qsmp,
-qpdf, or -qipa. You can use the option on both compilation and link steps. If you
specify it on the compile step, one output file is generated for each source file. If
you specify it on the -qipa link step, a single output file is generated.

Chapter 4. Compiler options reference 289

The naming rules of a .optdbg file are as follows:
v If a .optdbg file is generated at the compile step, its name is based on the output

file name of the compile step.
v If a .optdbg file is generated at the link step, its name is based on the output file

name of the link step.

If you compile and link in the same step using the -qoptdebug option with -qipa,
the .optdbg file is generated only at the link step.

You must still use the -g or -qlinedebug option to include debugging information
that can be used by a debugger.

For more information and examples of using this option, see "Using -qoptdebug to
help debug optimized programs" in the XL C/C++ Optimization and Programming
GuideXL C/C++ Optimization and Programming Guide.

Related information
v “-O, -qoptimize” on page 282
v “-qhot” on page 182
v “-qipa” on page 208
v “-qpdf1, -qpdf2” on page 296
v “-qsmp” on page 334
v “-g” on page 173
v “-qlinedebug” on page 255

-qoptfile
Category

Compiler customization

Pragma equivalent

None.

Purpose

Specifies a file containing a list of additional command line options to be used for
the compilation.

Syntax

►► -q optfile = filename ►◄

Defaults

None.

Parameters

filename
Specifies the name of the file that contains a list of additional command line
options. filename can contain a relative path or absolute path, or it can contain
no path. It is a plain text file with one or more command line options per line.

290 XL C/C++: Compiler Reference

Usage

The format of the option file follows these rules:
v Specify the options you want to include in the file with the same syntax as on

the command line. The option file is a whitespace-separated list of options. The
following special characters indicate whitespace: \n, \v, \t. (All of these
characters have the same effect.)

v A character string between a pair of single or double quotation marks are passed
to the compiler as one option.

v You can include comments in the options file. Comment lines start with the #
character and continue to the end of the line. The compiler ignores comments
and empty lines.

When processed, the compiler removes the -qoptfile option from the command
line, and sequentially inserts the options included in the file before the other
subsequent options that you specify.

The -qoptfile option is also valid within an option file. The files that contain
another option file are processed in a depth-first manner. The compiler avoids
infinite loops by detecting and ignoring cycles in option file inclusion.

If -qoptfile and -qsaveopt are specified on the same command line, the original
command line is used for -qsaveopt. A new line for each option file is included
representing the contents of each option file. The options contained in the file are
saved to the compiled object file.

Predefined macros

None.

Example 1

This is an example of specifying an option file.
$ cat options.file
To perform optimization at -O3 level, and high-order
loop analysis and transformations during optimization
-O3 -qhot
To generate position-independent code
-qpic

$ xlC -qlist -qoptfile=options.file -qipa test.c

The preceding example is equivalent to the following invocation:
$ xlC -qlist -O3 -qhot -qpic -qipa test.c

Example 2

This is an example of specifying an option file that contains -qoptfile with a cycle.
$ cat options.file2
To perform optimization at -O3 level, and high-order
loop analysis and transformations during optimization
-O3 -qhot
To include the -qoptfile option in the same option file
-qoptfile=options.file2
To generate position-independent code
-qpic
To produce a compiler listing file

Chapter 4. Compiler options reference 291

-qlist

$ xlC -qlist -qoptfile=options.file2 -qipa test.c

The preceding example is equivalent to the following invocation:
$ xlC -qlist -O3 -qhot -qpic -qlist -qipa test.c

Example 3

This is an example of specifying an option file that contains -qoptfile without a
cycle.
$ cat options.file1
-O3 -qhot
-qoptfile=options.file2
-qalias=ansi

$ cat options.file2
-qchars=signed

$ xlC -qoptfile=options.file1 test.c

The preceding example is equivalent to the following invocation:
$ xlC -O3 -qhot -qchars=signed test.c

Example 4

This is an example of specifying -qsaveopt and -qoptfile on the same command
line.
$ cat options.file3
-O3
-qhot

$ xlC -qsaveopt -qipa -qoptfile=options.file3 test.c -c

$ what test.o
test.o:
opt f xlC -qsaveopt -qipa -qoptfile=options.file3 test.c -c
optfile options.file3 -O3 -qhot

Related information
v “-qsaveopt” on page 325

-p, -pg, -qprofile
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Prepares the object files produced by the compiler for profiling.

When you compile with a profiling option, the compiler produces monitoring code
that counts the number of times each routine is called. The compiler replaces the
startup routine of each subprogram with one that calls the monitor subroutine at

292 XL C/C++: Compiler Reference

the start. When you execute a program compiled with -p, and it ends normally, it
writes the recorded information to a mon.out file; a program compiled with -pg
writes a gmon.out file. You can then use the prof or gprof command to generate a
runtime profile.

Syntax

►► -p
-pg
-q profile = p

pg

►◄

Defaults

Not applicable.

Usage

When you are compiling and linking in separate steps, you must specify the
profiling option in both steps.

If the -qtbtable option is not set, the profiling options will generate full traceback
tables.

Predefined macros

None.

Examples

To compile myprogram.c to include profiling data, enter:
xlc myprogram.c -p

Remember to compile and link with one of the profiling options. For example:
xlc myprogram.c -p -c
xlc myprogram.o -p -o program

Related information
v “-qtbtable” on page 359
v See your operating system documentation for more information on the prof and

gprof command.

-P
Category

Output control

Pragma equivalent

None.

Chapter 4. Compiler options reference 293

Purpose

Preprocesses the source files named in the compiler invocation, without compiling,
and creates an output preprocessed file for each input file.

The preprocessed output file has the same name as the input file but with a .i
suffix.

Syntax

►► -P ►◄

Defaults

By default, source files are preprocessed, compiled, and linked to produce an
executable file.

Usage

Source files with unrecognized file name suffixes are preprocessed as C files except
those with a .i suffix.

Unless -qppline is specified, #line directives are not generated.

Line continuation sequences are removed and the source lines are concatenated.

The -P option retains all white space including line-feed characters, with the
following exceptions:
v All comments are reduced to a single space (unless -C is specified).
v Line feeds at the end of preprocessing directives are not retained.
v White space surrounding arguments to function-style macros is not retained.

The -P option is overridden by the -E option. The -P option overrides the -c, -o,
and -qsyntaxonly option.

Predefined macros

None.

Related information
v “-C, -C!” on page 122
v “-E” on page 146
v “-qppline” on page 305
v “-qsyntaxonly” on page 356

-qpath
Category

Compiler customization

Pragma equivalent

None.

294 XL C/C++: Compiler Reference

Purpose

Specifies substitute path names for XL C/C++ components such as the compiler,
assembler, linker, and preprocessor.

You can use this option if you want to keep multiple levels of some or all of the
XL C/C++ components and have the option of specifying which one you want to
use. This option is preferred over the -B and -t options.

Syntax

►► ▼-q path = a : directory_path
b
c
C
d
E
f
I
L
l
m
p

►◄

Defaults

By default, the compiler uses the paths for compiler components defined in the
configuration file.

Parameters

directory_path
The path to the directory where the alternate programs are located.

The following table shows the correspondence between -qpath parameters and the
component names:

Parameter Description Component name

a The assembler as

b The low-level optimizer xlCcode

c The compiler front end xlcentry, xlCentry

C++

C The C++ compiler front end xlCentry

d The disassembler dis

E The CreateExportList utility CreateExportList

C++

f The c++filt utility c++filt

I (uppercase i) The high-level optimizer,
compile step

ipa

L The high-level optimizer, link
step

ipa

l (lowercase L) The linker ld

Chapter 4. Compiler options reference 295

Parameter Description Component name

C++ m The linkage helper munch

p The preprocessor xlCentry

Usage

The -qpath option overrides the -F, -t, and -B options.

Note that using the p suboption causes the source code to be preprocessed
separately before compilation, which can change the way a program is compiled.

Predefined macros

None.

Examples

To compile myprogram.c using a substitute xlc compiler in /lib/tmp/mine/, enter
the command:
xlc myprogram.c -qpath=c:/lib/tmp/mine/

To compile myprogram.c using a substitute linker in /lib/tmp/mine/, enter the
command:
xlc myprogram.c -qpath=l:/lib/tmp/mine/

Related information
v “-B” on page 118
v “-F” on page 154
v “-t” on page 356

-qpdf1, -qpdf2
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Tunes optimizations through profile-directed feedback (PDF), where results from
sample program execution are used to improve optimization near conditional
branches and in frequently executed code sections.

Optimizes an application for a typical usage scenario based on an analysis of how
often branches are taken and blocks of code are run.

Syntax

296 XL C/C++: Compiler Reference

►►

nopdf2
nopdf1

-q pdf1
= pdfname = file_path
= unique
= nounique
= exename
= defname
= level = 0

1
2

pdf2
= pdfname = file_path
= exename
= defname

►◄

Defaults

-qnopdf1, -qnopdf2

Parameters

defname
Reverts a PDF file to its default file name if the -qpdf1=exename option is also
specified.

exename
Specifies the name of the generated PDF file according to the output file name
specified by the -o option. For example, you can use -qpdf1=exename -o func
func.c to generate a PDF file called .func_pdf.

level=0 | 1 | 2
Specifies different levels of profiling information to be generated by the
resulting application. The following table shows the type of profiling
information supported on each level. The plus sign (+) indicates that the
profiling type is supported.

Table 30. Profiling type supported on each -qpdf1 level

Profiling type

Level

0 1 2

Block-counter profiling + + +

Call-counter profiling + + +

Value profiling + +

Cache-miss profiling +

-qpdf1=level=1 is the default level. It is equivalent to -qpdf1. Higher PDF
levels profile more optimization opportunities but have a larger overhead.

Notes:
v Only one application compiled with the -qpdf1=level=2 option can be run at

a time on a particular processor.
v Cache-miss profiling is enabled on pSeries system, and is only available on

POWER5 processors or higher.
v Cache-miss profiling information has several levels. If you want to gather

different levels of cache-miss profiling information, set the PDF_PM_EVENT
environment variable to L1MISS, L2MISS, or L3MISS (if applicable)

Chapter 4. Compiler options reference 297

accordingly. Only one level of cache-miss profiling information can be
instrumented at a time. L2 cache-miss profiling is the default level.

v If you want to bind your application to a specified processor for cache-miss
profiling, set the PDF_BIND_PROCESSOR environment variable equal to the
processor number.

pdfname= file_path
Specifies the directories and names for the PDF files and any existing PDF map
files. By default, if the PDFDIR environment variable is set, the compiler places
the PDF and PDF map files in the directory specified by PDFDIR. Otherwise, if
the PDFDIR environment variable is not set, the compiler places these files in
the current working directory. If the PDFDIR environment variable is set but
the specified directory does not exist, the compiler issues a warning message.
The name of the PDF map file follows the name of the PDF file if the
-qpdf1=unique option is not specified. For example, if you specify the
-qpdf1=pdfname=/home/joe/func option, the generated PDF file is called func,
and the PDF map file is called func_map. Both of the files are placed in the
/home/joe directory. You can use the pdfname suboption to do simultaneous
runs of multiple executable applications using the same directory. This is
especially useful when you are tuning dynamic libraries with PDF.

unique | nounique
You can use the -qpdf1=unique option to avoid locking a single PDF file when
multiple processes are writing to the same PDF file in the PDF training step.
This option specifies whether a unique PDF file is created for each process
during run time. The PDF file name is <pdf_file_name>.<pid>.
<pdf_file_name> is ._pdf by default or specified by other -qpdf1 suboptions,
which include pdfname, exename, and defname. <pid> is the ID of the
running process in the PDF training step. For example, if you specify the
-qpdf1=unique:pdfname=abc option, and there are two processes for PDF
training with the IDs 12345678 and 87654321, two PDF files abc.12345678 and
abc.87654321 are generated.

Note: When -qpdf1=unique is specified, multiple PDF files with process IDs
as suffixes are generated. You must use the mergepdf program to merge all
these PDF files into one after the PDF training step.

Usage

The PDF process consists of the following three steps:
1. Compile your program with the -qpdf1 option and a minimum optimization

level of -O2. By default, a PDF map file named ._pdf_map and a resulting
application are generated.

2. Run the resulting application with a typical data set. Profiling information is
written to a PDF file named ._pdf by default. This step is called the PDF
training step.

3. Recompile and link or just relink the program with the -qpdf2 option and the
optimization level used with the -qpdf1 option. The -qpdf2 process fine-tunes
the optimizations according to the profiling information collected when the
resulting application is run.

Notes:

v The showpdf utility uses the PDF map file to display part of the profiling
information in text or XML format. For details, see "Viewing profiling
information with showpdf" in the XL C/C++ Optimization and Programming Guide.
If you do not need to view the profiling information, specify the -qnoshowpdf

298 XL C/C++: Compiler Reference

option during the -qpdf1 phase so that the PDF map file is not generated. For
details of -qnoshowpdf, see -qshowpdf in the XL C/C++ Compiler Reference.

v When option -O4, -O5, or any level of option -qipa is in effect, and you specify
the -qpdf1 or -qpdf2 option at the link step but not at the compile step, the
compiler issues a warning message. The message indicates that you must
recompile your program to get all the profiling information.

v When the -qpdf1=pdfname option is used during the -qpdf1 phase, you must
use the -qpdf2=pdfname option during the -qpdf2 phase for the compiler to
recognize the correct PDF file. This rule also applies to the -qpdf[1|2]=exename
option.

The compiler issues an information message with a number in the range of 0 - 100
during the -qpdf2 phase. If you have not changed your program between the
-qpdf1 and -qpdf2 phases, the number is 100, which means that all the profiling
information can be used to optimize the program. If the number is 0, it means that
the profiling information is completely outdated, and the compiler cannot take
advantage of any information. When the number is less than 100, you can choose
to recompile your program with the -qpdf1 option and regenerate the profiling
information.

If you recompile your program by using the -qpdf1 option with any suboption, the
compiler removes the existing PDF file or files whose names and locations are the
same as the file or files that will be created in the training step before generating a
new application.

Other related options

You can use the following option with the -qpdf1 option:

-qprefetch
When you run the -qprefetch=assistthread option to generate data prefetching
assist threads, the compiler uses the delinquent load information to perform
analysis and generate them. The delinquent load information can be gathered
from dynamic profiling using the -qpdf1=level=2 option. For more
information, see -qprefetch.

-qshowpdf
Uses the showpdf utility to view the PDF data that were collected. See
“-qshowpdf” on page 330 for more information.

For recommended procedures of using PDF, see "Using profile-directed feedback"
in the XL C/C++ Optimization and Programming Guide.

The following utility programs, found in /opt/IBM/xlC/13.1.3/bin/, are available
for managing the files to which profiling information is written:

cleanpdf

►► cleanpdf
pdfdir -u -f pdfname

►◄

Removes all PDF files or the specified PDF files, including PDF files with
process ID suffixes. Removing profiling information reduces runtime
overhead if you change the program and then go through the PDF process
again.

pdfdir Specifies the directory that contains the PDF files to be removed. If

Chapter 4. Compiler options reference 299

pdfdir is not specified, the directory is set by the PDFDIR
environment variable; if PDFDIR is not set, the directory is the
current directory.

-f pdfname
Specifies the name of the PDF file to be removed. If -f pdfname is
not specified, ._pdf is removed.

-u If -f pdfname is specified, in addition to the file removed by -f,
files with the naming convention pdfname.<pid>, if applicable, are
also removed.

If -f pdfname is not specified, removes ._pdf. Files with the
naming convention ._pdf.<pid>, if applicable, are also removed.

<pid> is the ID of the running process in the PDF training step.

Run cleanpdf only when you finish the PDF process for a particular
application. Otherwise, if you want to resume by using PDF process with
that application, you must compile all of the files again with -qpdf1.

mergepdf

►► ▼mergepdf input -o output
-r scaling -n -v

►◄

Merges two or more PDF files into a single PDF file.

-r scaling
Specifies the scaling ratio for the PDF file. This value must be
greater than zero and can be either an integer or a floating-point
value. If not specified, a ratio of 1.0 is assumed.

input Specifies the name of a PDF input file, or a directory that contains
PDF files.

-o output
Specifies the name of the PDF output file, or a directory to which
the merged output is written.

-n Specifies that PDF files do not get normalized. By default,
mergepdf normalizes the files in such a way that every profile has
the same overall weighting, and individual counters are scaled
accordingly. This is done before applying the user-specified ratio
(with -r). When -n is specified, no normalization occurs. If neither
-n nor -r is specified, the PDF files are not scaled at all.

-v Specifies verbose mode, and causes internal and user-specified
scaling ratios to be displayed to standard output.

showpdf

Displays part of the profiling information written to PDF and PDF map
files. To use this command, you must first compile your program with the
-qpdf1 option. See "Viewing profiling information with showpdf" in the XL
C/C++ Optimization and Programming Guide for more information.

Predefined macros

None.

300 XL C/C++: Compiler Reference

Examples

The following example uses the -qpdf1=level=0 option to reduce possible runtime
instrumentation overhead:
#Compile all the files with -qpdf1=level=0
xlc -qpdf1=level=0 -O3 file1.c file2.c file3.c

#Run with one set of input data
./a.out < sample.data

#Recompile all the files with -qpdf2
xlc -qpdf2 -O3 file1.c file2.c file3.c

#If the sample data is typical, the program
#can now run faster than without the PDF process

The following example uses the -qpdf1=level=1 option:
#Compile all the files with -qpdf1
xlc -qpdf1 -O3 file1.c file2.c file3.c

#Run with one set of input data
./a.out < sample.data

#Recompile all the files with -qpdf2
xlc -qpdf2 -O3 file1.c file2.c file3.c

#If the sample data is typical, the program
#can now run faster than without the PDF process

The following example uses the -qpdf1=level=2 option to gather cache-miss
profiling information:
#Compile all the files with -qpdf1=level=2
xlc -qpdf1=level=2 -O3 file1.c file2.c file3.c

#Set PM_EVENT=L2MISS to gather L2 cache-miss profiling
#information
export PDF_PM_EVENT=L2MISS

#Run with one set of input data
./a.out < sample.data

#Recompile all the files with -qpdf2
xlc -qpdf2 -O3 file1.c file2.c file3.c

#If the sample data is typical, the program
#can now run faster than without the PDF process

The following example demonstrates the use of the PDF_BIND_PROCESSOR
environment variable:
#Compile all the files with -qpdf1=level=1
xlc -qpdf1=level=1 -O3 file1.c file2.c file3.c

#Set PDF_BIND_PROCESSOR environment variable so that
#all processes for this executable are run on Processor 1
export PDF_BIND_PROCESSOR=1

#Run executable with sample input data
./a.out < sample.data

#Recompile all the files with -qpdf2
xlc -qpdf2 -O3 file1.c file2.c file3.c

Chapter 4. Compiler options reference 301

#If the sample data is typical, the program
#can now run faster than without the PDF process

The following example demonstrates the use of the -qpdf[1|2]=exename option:
#Compile all the files with -qpdf1=exename
xlc -qpdf1=exename -O3 -o final file1.c file2.c file3.c

#Run executable with sample input data
./final < typical.data

#List the content of the directory
>ls -lrta

-rw-r--r-- 1 user staff 50 Dec 05 13:18 file1.c
-rw-r--r-- 1 user staff 50 Dec 05 13:18 file2.c
-rw-r--r-- 1 user staff 50 Dec 05 13:18 file3.c
-rwxr-xr-x 1 user staff 12243 Dec 05 17:00 final
-rwxr-Sr-- 1 user staff 762 Dec 05 17:03 .final_pdf

#Recompile all the files with -qpdf2=exename
xlc -qpdf2=exename -O3 -o final file1.c file2.c file3.c

#The program is now optimized using PDF information

The following example demonstrates the use of the -qpdf[1|2]=pdfname option:
#Compile all the files with -qpdf1=pdfname. The static profiling
#information is recorded in a file named final_map
xlc -qpdf1=pdfname=final -O3 file1.c file2.c file3.c

#Run executable with sample input data. The profiling
#information is recorded in a file named final
./a.out < typical.data

#List the content of the directory
>ls -lrta

-rw-r--r-- 1 user staff 50 Dec 05 13:18 file1.c
-rw-r--r-- 1 user staff 50 Dec 05 13:18 file2.c
-rw-r--r-- 1 user staff 50 Dec 05 13:18 file3.c
-rwxr-xr-x 1 user staff 12243 Dec 05 18:30 a.out
-rwxr-Sr-- 1 user staff 762 Dec 05 18:32 final

#Recompile all the files with -qpdf2=pdfname
xlc -qpdf2=pdfname=final -O3 file1.c file2.c file3.c

#The program is now optimized using PDF information

Related information
v “-qshowpdf” on page 330
v “-qipa” on page 208
v -qprefetch
v “-qreport” on page 315
v "Optimizing your applications" in the XL C/C++ Optimization and Programming

Guide
v “Runtime environment variables” on page 26
v "Profile-directed feedback" in the XL C/C++ Optimization and Programming Guide

-qphsinfo
Category

Listings, messages, and compiler information

302 XL C/C++: Compiler Reference

Pragma equivalent

None.

Purpose

Reports the time taken in each compilation phase to standard output.

Syntax

►►
nophsinfo

-q phsinfo ►◄

Defaults

-qnophsinfo

Usage

The output takes the form number1/number2 for each phase where number1
represents the CPU time used by the compiler and number2 represents real time
(wall clock time).

The time reported by -qphsinfo is in seconds.

Predefined macros

None.

Examples

C To compile myprogram.c and report the time taken for each phase of the
compilation, enter the following command:
xlc myprogram.c -qphsinfo

The output will look similar to:
C Init - Phase Ends; 0.010/ 0.040
IL Gen - Phase Ends; 0.040/ 0.070
W-TRANS - Phase Ends; 0.000/ 0.010
OPTIMIZ - Phase Ends; 0.000/ 0.000
REGALLO - Phase Ends; 0.000/ 0.000
AS - Phase Ends; 0.000/ 0.000

Compiling the same program with -O4 gives:
C Init - Phase Ends; 0.010/ 0.040
IL Gen - Phase Ends; 0.060/ 0.070
IPA - Phase Ends; 0.060/ 0.070
IPA - Phase Ends; 0.070/ 0.110
W-TRANS - Phase Ends; 0.060/ 0.180
OPTIMIZ - Phase Ends; 0.010/ 0.010
REGALLO - Phase Ends; 0.010/ 0.020
AS - Phase Ends; 0.000/ 0.000

C++ To compile myprogram.C and report the time taken for each phase of the
compilation, enter the following command:
xlc++ myprogram.C -qphsinfo

Chapter 4. Compiler options reference 303

The output will look similar to:
Front End - Phase Ends; 0.004/ 0.005
W-TRANS - Phase Ends; 0.010/ 0.010
OPTIMIZ - Phase Ends; 0.000/ 0.000
REGALLO - Phase Ends; 0.000/ 0.000
AS - Phase Ends; 0.000/ 0.000

Compiling the same program with -O4 gives:
Front End - Phase Ends; 0.004/ 0.006
IPA - Phase Ends; 0.040/ 0.040
IPA - Phase Ends; 0.220/ 0.280
W-TRANS - Phase Ends; 0.030/ 0.110
OPTIMIZ - Phase Ends; 0.030/ 0.030
REGALLO - Phase Ends; 0.010/ 0.050
AS - Phase Ends; 0.000/ 0.000

-qpic
Category

Object code control

Pragma equivalent

None.

Purpose

Generates position-independent code suitable for use in shared libraries.

Syntax

►► -q pic
small

= large

►◄

Defaults
v -qpic=small

Specifying -qpic without any suboptions is equivalent to -qpic=small.

Parameters

small
Instructs the compiler to assume that the size of the Table of Contents (TOC) is
no larger than 64 Kb. When -qpic=small is in effect, the compiler generates
one instruction for each TOC access.

large
Instructs the compiler to assume that the size of the TOC is larger than 64 Kb.
When -qpic=large is in effect, the compiler generates two instructions for each
TOC access to enlarge the accessing range. This helps avoid TOC overflow
conditions when the Table of Contents is larger than 64 Kb.

304 XL C/C++: Compiler Reference

Usage

You must specify -qpic or -qpic=large when you build shared libraries.

Specifying -qpic=large has the same effect as passing -bbigtoc to ld.

You can use different TOC access options for different compilation units in an
application.

Note: For applications whose TOC size is larger than 64K, using -qpic=large can
improve performance. However, for applications whose TOC is smaller than 64K,
using -qpic=large slows down the program. To decide whether to use -qpic=large,
compile the program with -qpic=small first. If an overflow error message is
generated, use -qpic=large instead.

Note: If your operating system is lower than AIX 6.1 TL 6, ensure that you have
installed the latest fix pack from https://www.ibm.com/support/
docview.wss?uid=isg1fixinfo118013; otherwise, an error message might be
generated during the link step.

Predefined macros

None.

Examples

To compile a shared library libmylib.so, use the following commands:
xlc mylib.c -qpic=small -c -o mylib.o
xlc -qmkshrobj mylib -o libmylib.so.1

Related information
v “-q32, -q64” on page 100
v “-G” on page 176
v “-qmkshrobj” on page 272

-qppline
Category

Object code control

Pragma equivalent

None.

Purpose

When used in conjunction with the -E or -P options, enables or disables the
generation of #line directives.

Syntax

►► -q ppline
noppline

►◄

Chapter 4. Compiler options reference 305

https://www.ibm.com/support/docview.wss?uid=isg1fixinfo118013
https://www.ibm.com/support/docview.wss?uid=isg1fixinfo118013

Defaults
v -qnoppline when -P is in effect
v -qppline when -E is in effect

Usage

The -C option has no effect without either the -E or the -P option. With the -E
option, line directives are written to standard output. With the -P option, line
directives are written to an output file.

Predefined macros

None.

Examples

To preprocess myprogram.c to write the output to myprogram.i, and generate #line
directives:
xlc myprogram.c -P -qppline

Related information
v “-E” on page 146
v “-P” on page 293

-qprefetch
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Inserts prefetch instructions automatically where there are opportunities to
improve code performance.

When -qprefetch is in effect, the compiler may insert prefetch instructions in
compiled code. When -qnoprefetch is in effect, prefetch instructions are not
inserted in compiled code.

Syntax

►►

▼

:

prefetch
noassistthread

= assistthread = SMT
CMP

noaggressive
= aggressive
= dscr = value

-q noprefetch ►◄

306 XL C/C++: Compiler Reference

Defaults

-qprefetch=noassistthread:noaggressive:dscr=0

Parameters

assistthread | noassistthread
When you work with applications that generate a high cache-miss rate, you
can use -qprefetch=assistthread to exploit assist threads for data prefetching.
This suboption guides the compiler to exploit assist threads at optimization
level -O3 -qhot or higher. If you do not specify -qprefetch=assistthread,
-qprefetch=noassistthread is implied.

CMP
For systems based on the chip multi-processor architecture (CMP), you can
use -qprefetch=assistthread=cmp.

SMT
For systems based on the simultaneous multi-threading architecture (SMT),
you can use -qprefetch=assistthread=smt.

Note: If you do not specify either CMP or SMT, the compiler uses the
default setting based on your system architecture.

aggressive | noaggressive
This suboption guides the compiler to generate aggressive data prefetching at
optimization level -O3 or higher. If you do not specify aggressive,
-qprefetch=noaggressive is implied.

dscr
You can specify a value for the dscr suboption to improve the runtime
performance of your applications. The compiler sets the Data Stream Control
Register (DSCR) to the specified value to control the hardware prefetch engine.
For POWER8 processors, the value is valid only when the optimization level is
-O2 or greater; for POWER5, POWER6, and POWER7 processors, the value is
valid only when the optimization level is -O3 or greater and the high-order
transformation (HOT) is in effect. The default value of dscr is 0.

value

The value that you specify for dscr must be 0 or greater, and representable
as a 64-bit unsigned integer. Otherwise, the compiler issues a warning
message and sets dscr to 0. The compiler accepts both decimal and
hexadecimal numbers, and a hexadecimal number requires the prefix of 0x.
The value range depends on your system architecture. See the product
information about the POWER® Architecture for details. If you specify
multiple values, the last one takes effect.

Usage

The -qnoprefetch option does not prevent built-in functions such as
__prefetch_by_stream from generating prefetch instructions.

When you run -qprefetch=assistthread, the compiler uses the delinquent load
information to perform analysis and generates prefetching assist threads. The
delinquent load information can either be provided through the built-in
__mem_delay function (const void *delinquent_load_address, const unsigned int
delay_cycles), or gathered from dynamic profiling using -qpdf1=level=2.

Chapter 4. Compiler options reference 307

When you use -qpdf to call -qprefetch=assistthread, you must use the traditional
two-step PDF invocation:
1. Run -qpdf1=level=2

2. Run -qpdf2 -qprefetch=assistthread

Examples

Here is how you generate code using assist threads with __MEM_DELAY:

Initial code:
int y[64], x[1089], w[1024];

void foo(void){
int i, j;
for (i = 0; i &l; 64; i++) {

for (j = 0; j < 1024; j++) {

/* what to prefetch? y[i]; inserted by the user */
__mem_delay(&y[i], 10);
y[i] = y[i] + x[i + j] * w[j];
x[i + j + 1] = y[i] * 2;

}
}

}

Assist thread generated code:
void foo@clone(unsigned thread_id, unsigned version)

{ if (!1) goto lab_1;

/* version control to synchronize assist and main thread */
if (version == @2version0) goto lab_5;

goto lab_1;

lab_5:

@CIV1 = 0;

do { /* id=1 guarded */ /* ~2 */

if (!1) goto lab_3;

@CIV0 = 0;

do { /* id=2 guarded */ /* ~4 */

/* region = 0 */

/* __dcbt call generated to prefetch y[i] access */
__dcbt(((char *)&y + (4)*(@CIV1)))
@CIV0 = @CIV0 + 1;
} while ((unsigned) @CIV0 < 1024u); /* ~4 */

lab_3:
@CIV1 = @CIV1 + 1;
} while ((unsigned) @CIV1 < 64u); /* ~2 */

lab_1:

return;
}

308 XL C/C++: Compiler Reference

Related information
v -qarch
v “-qhot” on page 182
v “-qpdf1, -qpdf2” on page 296
v “-qreport” on page 315
v “__mem_delay” on page 697

-qprint
Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Enables or suppresses listings.

When -qprint is in effect, listings are enabled if they are requested by other
compiler options that produce listings. When -qnoprint is in effect, all listings are
suppressed, regardless of whether listing-producing options are specified.

Syntax

►►
print

-q noprint ►◄

Defaults

-qprint

Usage

You can use -qnoprint to override all listing-producing options and equivalent
pragmas, regardless of where they are specified. These options are:
v -qattr
v -qlist
v -qlistopt
v -qsource
v -qxref

Predefined macros

None.

Examples

To compile myprogram.c and suppress all listings, even if some files have #pragma
options source and similar directives, enter:
xlc myprogram.c -qnoprint

Chapter 4. Compiler options reference 309

-qpriority (C++ only)
Category

Object code control

Pragma equivalent

#pragma options priority, #pragma priority

Purpose

Specifies the priority level for the initialization of static objects.

The C++ standard requires that all global objects within the same translation unit
be constructed from top to bottom, but it does not impose an ordering for objects
declared in different translation units. You can use the -qpriority option to impose
a construction order for all static objects declared within the same load module.
Destructors for these objects are run in reverse order during termination.

Syntax

Option syntax

►► -q priority = number ►◄

Defaults

The default priority level is 0.

Parameters

number
An integer literal in the range of -2147482624 to 2147483647. A lower value
indicates a higher priority; a higher value indicates a lower priority. Numbers
from -2147483648 to -2147482623 are reserved for system use. If you do not
specify a number, the compiler assumes 0.

Usage

More than one #pragma priority can be specified within a translation unit. The
priority value specified in one pragma applies to the constructions of all global
objects declared after this pragma and before the next one. However, in order to be
consistent with the Standard, priority values specified within the same translation
unit must be strictly increasing. Objects with the same priority value are
constructed in declaration order.

The effect of a #pragma priority exists only within one load module. Therefore,
#pragma priority cannot be used to control the construction order of objects in
different load modules. Refer to "Initializing static objects in libraries" in the XL
C/C++ Optimization and Programming Guide for further discussions on techniques
used in handling static object initialization across modules.

310 XL C/C++: Compiler Reference

Examples

To compile the file myprogram.C to produce an object file myprogram.o so that
objects within that file have an initialization priority of 2000, enter the following
command:
xlc++ myprogram.C -c -qpriority=2000

Related information
v “-qmkshrobj” on page 272
v "Initializing static objects in libraries" in the XL C/C++ Optimization and

Programming Guide

-qprocimported, -qproclocal, -qprocunknown
Category

Optimization and tuning

Pragma equivalent

#pragma options proclocal, #pragma options procimported, #pragma options
procunknown

Purpose

Marks functions as local, imported, or unknown.

Local functions are statically bound with the functions that call them; smaller,
faster code is generated for calls to such functions. You can use the -qproclocal
option or pragma to name functions that the compiler can assume to be local.

Imported functions are dynamically bound with a shared portion of a library. Code
generated for calls to functions marked as imported may be larger, but is faster
than the default code sequence generated for functions marked as unknown. You
can use the -qprocimported option or pragma to name functions that the compiler
can assume to be imported.

Unknown functions are resolved to either statically or dynamically bound objects
during linking. You can use the -qprocunkown option or pragma to name
functions that the compiler can assume to be unknown.

Syntax

►►

▼

procunknown
-q proclocal

procimported :

= function_name

►◄

Defaults

-qprocunkown: The compiler assumes that all functions' definitions are unknown.

Chapter 4. Compiler options reference 311

Parameters

function_name
The name of a function that the compiler should assume to be local, imported,
or unknown (depending on the option specified). If you do not specify any
function_name, the compiler assumes that all functions are local, imported, or
unknown.

C++

Names must be specified using their mangled names. To obtain C++

mangled names, compile your source to object files only, using the -c compiler
option, and use the nm operating system command on the resulting object file.
You can also use the c++filt utility provided by the compiler for a side-by-side
listing of source names and mangled names; see "Demangling compiled C++
names" in the XL C/C++ Optimization and Programming Guide for details. (See
also "Name mangling" in the XL C/C++ Language Reference for details on using
the extern "C" linkage specifier on declarations to prevent name mangling.)

Usage

If any functions that are marked as local resolve to shared library functions, the
linker will detect the error and issue warnings. If any of the functions that are
marked as imported resolve to statically bound objects, the generated code may be
larger and run more slowly than the default code sequence generated for unknown
functions.

If a function satisfies all of the following conditions, the compiler issues a warning
message to indicate that the final executable file might have a performance loss:
v Has a local definition.
v Is marked as imported or unknown.
v IBM Has the protected, hidden, or internal visibility attribute. IBM

If you specify more than one of these options with no function names, the last
option specified is used. If you specify the same function name on more than one
option specification, the last one is used.

Predefined macros

None.

Examples

To compile myprogram.c along with the archive library oldprogs.a so that:
v Functions fun and sun are specified as local
v Functions moon and stars are specified as imported
v Function venus is specified as unknown

use the following command:
xlc myprogram.c oldprogs.a -qprolocal=fun(int):sun()

-qprocimported=moon():stars(float) -qprocunknown=venus()

If the following example, in which a function marked as local instead resolves to a
shared library function, is compiled with -qproclocal:

312 XL C/C++: Compiler Reference

int main(void)
{

printf("Just in function foo1()\n");
printf("Just in function foo1()\n");

}

a linker error will result. To correct this problem, you should explicitly mark the
called routine as being imported from a shared object. In this case, you would
recompile the source file and explicitly mark printf as imported by compiling
with -qproclocal -qprocimported=printf.

Related information
v “-qdataimported, -qdatalocal, -qtocdata” on page 137
v “-qvisibility” on page 387
v “#pragma GCC visibility push, #pragma GCC visibility pop” on page 418

-qproto (C only)
Category

Object code control

Pragma equivalent

#pragma options [no]proto

Purpose

Specifies the linkage conventions for passing floating-point arguments to functions
that have not been prototyped.

When proto is in effect, the compiler assumes that the arguments in function calls
are the same types as the corresponding parameters of the function definition, even
if the function has not been prototyped. By asserting that an unprototyped function
actually expects a floating-point argument if it is called with one, you allow the
compiler to pass floating-point arguments in floating-point registers exclusively.
When noproto is in effect, the compiler does not make this assumption, and must
pass floating-point parameters in floating-point and general purpose registers.

Syntax

►►
noproto

-q proto ►◄

Defaults

-qnoproto

Usage

This option is only valid when the compiler allows unprototyped functions; that is,
with the cc or xlc invocation command, or with the -qlanglvl option set to classic
| extended | extc89 | extc99.

Chapter 4. Compiler options reference 313

Predefined macros

None.

Examples

To compile my_c_program.c to allow the compiler to use the standard linkage
conventions for floating-point parameters, even when functions are not prototyped,
enter:
xlc my_c_program.c -qproto

-r
Category

Object code control

Pragma equivalent

None.

Purpose

Produces a nonexecutable output file to use as an input file in another ld
command call. This file may also contain unresolved symbols.

Syntax

►► -r ►◄

Defaults

Not applicable.

Usage

A file produced with this flag is expected to be used as an input file in another
compiler invocation or ld command call.

Predefined macros

None.

Examples

To compile myprogram.c and myprog2.c into a single object file mytest.o, enter:
xlc myprogram.c myprog2.c -r -o mytest.o

Related information
v -qipa

314 XL C/C++: Compiler Reference

-qreport
Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Produces listing files that show how sections of code have been optimized.

A listing file is generated with a .lst suffix for each source file that is listed on the
command line. When you specify -qreport with an option that enables automatic
parallelization or vectorization, the listing file shows a pseudo-C code listing and a
summary of how program loops are parallelized or optimized. The report also
includes diagnostic information about why specific loops cannot be parallelized or
vectorized. For example, when -qreport is specified with -qsimd, messages are
provided to identify non-stride-one references that prevent loop vectorization.

The compiler also reports the number of streams created for a given loop, which
include both load and store streams. This information is included in the Loop
Transformation section of the listing file. You can use this information to
understand your application code and to tune your code for better performance.
For example, you can distribute a loop which has more streams than the number
supported by the underlying architecture. POWER4 and POWER5 processors
support load stream prefetch and POWER6 or higher processors support both load
and store stream prefetch.

Syntax

►►
noreport

-q report ►◄

Defaults

-qnoreport

Usage

To generate a loop transformation listing, you must specify -qreport with one of
the following options:
v -qhot

v -qsmp

v -O3 or higher

To generate PDF information in the listing, you must specify both -qreport and
-qpdf2.

To generate a parallel transformation listing or parallel performance messages, you
must specify -qreport with one of the following options:
v -qsmp

Chapter 4. Compiler options reference 315

v -O5

v -qipa=level=2

To generate data reorganization information, specify -qreport with the optimization
level -qipa=level=2 or -O5. Reorganizations include array splitting, array
transposing, memory allocation merging, array interleaving, and array coalescing.

To generate information about data prefetch insertion locations, specify -qreport
with the optimization level of -qhot or any other option that implies -qhot. This
information appears in the LOOP TRANSFORMATION SECTION of the listing file. In
addition, when you use -qprefetch=assistthread to generate prefetching assist
threads, the message: Assist thread for data prefetching was generated also
appears in the LOOP TRANSFORMATION SECTION of the listing file.

To generate a list of aggressive loop transformations and parallelization performed
on loop nests in the LOOP TRANSFORMATION SECTION of the listing file, use the
optimization level of -qhot=level=2 and -qsmp together with -qreport.

The pseudo-C code listing is not intended to be compilable. Do not include any of
the pseudo-C code in your program, and do not explicitly call any of the internal
routines whose names may appear in the pseudo-C code listing.

Predefined macros

None.

Examples

To compile myprogram.c so the compiler listing includes a report showing how
loops are optimized, enter:
xlc -qhot -O3 -qreport myprogram.c

To compile myprogram.c so the compiler listing also includes a report showing how
parallelized loops are transformed, enter:
xlc_r -qhot -qsmp -qreport myprogram.c

Related information
v “-qhot” on page 182
v “-qsimd” on page 330
v “-qipa” on page 208
v “-qsmp” on page 334
v “-qoptdebug” on page 289
v “-qprefetch” on page 306
v "Using -qoptdebug to help debug optimized programs" in the XL C/C++

Optimization and Programming Guide

-qreserved_reg
Category

Object code control

Pragma equivalent

None.

316 XL C/C++: Compiler Reference

Purpose

Indicates that the given list of registers cannot be used during the compilation
except as a stack pointer, frame pointer or in some other fixed role.

You should use this option in modules that are required to work with other
modules that use global register variables or hand-written assembler code.

Syntax

►► ▼

:

-q reserved_reg = register_name ►◄

Defaults

Not applicable.

Parameters

register_name
A valid register name on the target platform. Valid registers are:

r0 to r31
General purpose registers

f0 to f31
Floating-point registers

v0 to v31
Vector registers (on selected processors only)

Usage

-qreserved_reg is cumulative, for example, specifying -qreserved_reg=r14 and
-qreserved_reg=r15 is equivalent to specifying -qreserved_reg=r14:r15.

Duplicate register names are ignored.

Predefined macros

None.

Examples

To specify that myprogram.c reserves the general purpose registers r3 and r4, enter:
xlc myprogram.c -qreserved_reg=r3:r4

-qrestrict
Category

Optimization and tuning

Pragma equivalent

None.

Chapter 4. Compiler options reference 317

Purpose

Specifying this option is equivalent to adding the restrict keyword to the pointer
parameters within the specified functions, except that you do not need to modify
the source file.

Syntax

►►

▼

norestrict
-q restrict

:

= function_name

►◄

Defaults

-qnorestrict. It means no function pointer parameters are restricted, unless you
specify the restrict attribute in the source file.

Usage

If you do not specify the function_name, pointer parameters in all functions are
treated as restrict. Otherwise, only those pointer parameters in the listed
functions are treated as restrict.

function_name is a colon-separated list.

Using this option can improve the performance of your application, but incorrectly
asserting this pointer restriction might cause the compiler to generate incorrect
code based on the false assumption. If the application works correctly when
recompiled without -qrestrict, the assertion might be false. In this case, this option
should not be used.

Notes:

v Using -qnokeyword=restrict has no impact on the -qrestrict option.
v If you specify both the -qalias=norestrict and -qrestrict options,

-qalias=norestrict takes effect.

Predefined macros

None.

Examples

To compile myprogram.c, instructing the compiler to restrict the pointer access,
enter:
xlc -qrestrict myprogram.c

Related information
v The restrict type qualifier in the XL C/C++ Language Reference.
v Keywords in the XL C/C++ Language Reference.
v “-qkeyword” on page 219
v “-qalias” on page 101

318 XL C/C++: Compiler Reference

-qro
Category

Object code control

Pragma equivalent

#pragma options ro, #pragma strings

Purpose

Specifies the storage type for string literals.

When ro or strings=readonly is in effect, strings are placed in read-only storage.
When noro or strings=writeable is in effect, strings are placed in read/write
storage.

Syntax

Option syntax

►►
ro

-q noro ►◄

Pragma syntax

►►
readonly

pragma strings (writeable) ►◄

Defaults

C Strings are read-only for all invocation commands except cc. If the cc
invocation command is used, strings are writeable.

C++

Strings are read-only.

Parameters

readonly (pragma only)
String literals are to be placed in read-only memory.

writeable (pragma only)
String literals are to be placed in read-write memory.

Usage

Placing string literals in read-only memory can improve runtime performance and
save storage. However, code that attempts to modify a read-only string literal may
generate a memory error.

The pragmas must appear before any source statements in a file.

Predefined macros

None.

Chapter 4. Compiler options reference 319

Examples

To compile myprogram.c so that the storage type is writable, enter:
xlc myprogram.c -qnoro

Related information
v “-qro” on page 319
v “-qroconst”

-qroconst
Category

Object code control

Pragma equivalent

#pragma options [no]roconst

Purpose

Specifies the storage location for constant values.

When roconst is in effect, constants are placed in read-only storage. When
noroconst is in effect, constants are placed in read/write storage.

Syntax

►►
roconst

-q noroconst ►◄

Defaults

v C -qroconst for all compiler invocations except cc and its derivatives.
-qnoroconst for the cc invocation and its derivatives.

v C++ -qroconst

Usage

Placing constant values in read-only memory can improve runtime performance,
save storage, and provide shared access. However, code that attempts to modify a
read-only constant value generates a memory error.

"Constant" in the context of the -qroconst option refers to variables that are
qualified by const, including const-qualified characters, integers, floats,
enumerations, structures, unions, and arrays. The following constructs are not
affected by this option:
v Variables qualified with volatile and aggregates (such as a structure or a union)

that contain volatile variables
v Pointers and complex aggregates containing pointer members
v Automatic and static types with block scope
v Uninitialized types
v Regular structures with all members qualified by const
v Initializers that are addresses, or initializers that are cast to non-address values

320 XL C/C++: Compiler Reference

The -qroconst option does not imply the -qro option. Both options must be
specified if you want to specify storage characteristics of both string literals (-qro)
and constant values (-qroconst).

Predefined macros

None.

Related information
v “-qro” on page 319
v “-qroptr”

-qroptr
Category

Object code control

Pragma equivalent

None.

Purpose

Specifies the storage location for constant pointers.

When -qroptr is in effect, constant pointers, virtual function tables, and virtual
type tables are placed in read-only storage. When -qnoroptr is in effect, pointers,
virtual function tables, and virtual type tables are placed are placed in read/write
storage.

Syntax

►►
noroptr

-q roptr ►◄

Defaults

-qnoroptr

Usage

A constant pointer is equivalent to an address constant. For example:
int* const p = &n;

When -qnoroptr is in effect, you can change the values of constant pointers, virtual
function tables, and virtual type tables without generating errors.

The -qroptr can improve runtime performance, save storage, and provide shared
access, but code that attempts to modify a read-only constant value generates a
memory error. For example, assume the following code, which attempts to change
the address that c1_ptr points to:
char c1 = 10;
char c2 = 20;
char* const c1_ptr = &c1;

Chapter 4. Compiler options reference 321

int main() {
*(char**)&c1_ptr = &c2;

}

Compiling this code with the -qroptr option specified will result in a segmentation
fault at run time.

You should not use -qroptr for compiled code that will become part of a shared
library.

Predefined macros

None.

Related information
v “-qro” on page 319
v “-qroconst” on page 320

-qrtti (C++ only)
Category

Object code control

Pragma equivalent

#pragma options rtti

Purpose

Generates runtime type identification (RTTI) information for exception handling
and for use by the typeid and dynamic_cast operators.

Syntax

►►
nortti

-q rtti = all
type
typeinfo
dyna
dynamiccast

►◄

Defaults

-qnortti

Parameters

all
The compiler generates the information needed for the RTTI typeid and
dynamic_cast operators.

type | typeinfo
The compiler generates the information needed for the RTTI typeid operator,
but the information needed for dynamic_cast operator is not generated.

322 XL C/C++: Compiler Reference

dyna | dynamiccast
The compiler generates the information needed for the RTTI dynamic_cast
operator, but the information needed for typeid operator is not generated.

Specifying -qrtti with no suboptions is equivalent to -qrtti=all.

Usage

For improved runtime performance, suppress RTTI information generation with
the -qnortti setting.

You should be aware of the following effects when specifying the -qrtti compiler
option:
v Contents of the virtual function table will be different when -qrtti is specified.
v When linking objects together, all corresponding source files must be compiled

with the correct -qrtti option specified.
v If you compile a library with mixed objects (-qrtti specified for some objects,

-qnortti specified for others), you may get an undefined symbol error.

Predefined macros
v __GXX_RTTI is predefined to a value of 1 when -qrtti is in effect; otherwise, it

is undefined.
v __NO_RTTI__ is defined to 1 when -qnortti is in effect; otherwise, it is

undefined.
v __RTTI_ALL__ is defined to 1 when -qrtti or -qrtti=all is in effect; otherwise, it

is undefined.
v __RTTI_DYNAMIC_CAST__ is defined to 1 when -qrtti or -qrtti=all |

dynamiccast is in effect; otherwise, it is undefined.
v __RTTI_TYPE_INFO__ is defined to 1 when -qrtti or -qrtti=all | typeinfo is in

effect; otherwise, it is undefined.

Related information
v “-qeh (C++ only)” on page 147

-s
Category

Object code control

Pragma equivalent

None.

Purpose

Strips the symbol table, line number information, and relocation information from
the output file.

This command is equivalent to the operating system strip command.

Syntax

Chapter 4. Compiler options reference 323

►► -s ►◄

Defaults

The symbol table, line number information, and relocation information are
included in the output file.

Usage

Specifying -s saves space, but limits the usefulness of traditional debug programs
when you are generating debugging information using options such as -g.

Predefined macros

None.

Related information
v “-g” on page 173

-S
Category

Output control

Pragma equivalent

None.

Purpose

Generates an assembler language file for each source file.

The resulting file has a .s suffix and can be assembled to produce object .o files or
an executable file (a.out).

Syntax

►► -S ►◄

Defaults

Not applicable.

Usage

You can invoke the assembler with any compiler invocation command. For
example,
xlc myprogram.s

will invoke the assembler, and if successful, the linker to create an executable file,
a.out.

324 XL C/C++: Compiler Reference

If you specify -S with -E or -P, -E or -P takes precedence. Order of precedence
holds regardless of the order in which they were specified on the command line.

You can use the -o option to specify the name of the file produced only if no more
than one source file is supplied. For example, the following is not valid:
xlc myprogram1.c myprogram2.c -o -S

Predefined macros

None.

Examples

To compile myprogram.c to produce an assembler language file myprogram.s, enter:
xlc myprogram.c -S

To assemble this program to produce an object file myprogram.o, enter:
xlc myprogram.s -c

To compile myprogram.c to produce an assembler language file asmprogram.s, enter:
xlc myprogram.c -S -o asmprogram.s

Related information
v “-E” on page 146
v “-P” on page 293

-qsaveopt
Category

Object code control

Pragma equivalent

None.

Purpose

Saves the command-line options used for compiling a source file, the user's
configuration file name and the options specified in the configuration files, the
version and level of each compiler component invoked during compilation, and
other information to the corresponding object file.

Syntax

►►
nosaveopt

-q saveopt ►◄

Defaults

-qnosaveopt

Chapter 4. Compiler options reference 325

Usage

This option has effect only when compiling to an object (.o) file (that is, using the
-c option). Though each object might contain multiple compilation units, only one
copy of the command-line options is saved. Compiler options specified with
pragma directives are ignored.

Command-line compiler options information is copied as a string into the object
file, using the following format:

►► @(#) opt f invocation options
c
C

►◄

►► @(#) cfg config_file_options_list ►◄

►► @(#) env env_var_definition ►◄

where:
f Signifies a Fortran language compilation.
c Signifies a C language compilation.
C Signifies a C++ language compilation.
invocation

Shows the command used for the compilation, for example, xlc.
options The list of command line options specified on the command line, with

individual options separated by space.
config_file_options_list

The list of options specified by the options attribute in all configuration
files that take effect in the compilation, separated by space.

env_var_definition
The environment variables that are used by the compiler. Currently only
XLC_USR_CONFIG is listed.

Note: You can always use this option, but the corresponding information
is only generated when the environment variable XLC_USR_CONFIG is set.

For more information about the environment variable XLC_USR_CONFIG, see
Compile-time and link-time environment variables.

Note: The string of the command-line options is truncated after 64,000 bytes.

Compiler version and release information, as well as the version and level of each
component invoked during compilation, are also saved to the object file in the
format:

►► @(#) ▼ version Version : VV.RR.MMMM.LLLL
component_name Version : VV.RR (product_name) Level : YYMMDD : component_level_ID

►◄

where:
V Represents the version.
R Represents the release.
M Represents the modification.
L Represents the level.

326 XL C/C++: Compiler Reference

component_name
Specifies the components that were invoked for this compilation, such as
the low-level optimizer.

product_name
Indicates the product to which the component belongs (for example, C/C++
or Fortran).

YYMMDD
Represents the year, month, and date of the installed update (PTF). If the
update installed is at the base level, the level is displayed as BASE.

component_level_ID
Represents the ID associated with the level of the installed component.

If you want to simply output this information to standard output without writing
it to the object file, use the -qversion option.

Predefined macros

None.

Examples

Compile t.c with the following command:
xlc t.c -c -qsaveopt -qhot

Issuing the what command on the resulting t.o object file produces information
similar to the following:
opt c /opt/IBM/xlc/13.1.3/bin/xlc t.f -c -qsaveopt -qhot
cfg -qlanglvl=extc99 -qcpluscmt -qkeyword=inline -qalias=ansi -D_AIX -D_AIX32
-D_AIX41 -D_AIX43 -D_AIX50 -D_AIX51 -D_AIX52 -D_AIX53 -D_IBMR2 -D_POWER
version IBM XL C/C++ for AIX, V13.1.3
version Version: 13.01.0003.0000
version Driver Version: 13.1.3(C/C++) Level: YYMMDD
version Front End Version: 13.1.3(C/C++) Level: YYMMDD
version C Front End Version : 13.1.3(C/C++) Level: YYMMDD
version High-Level Optimizer Version: 13.1.3(C) and 15.1.3(Fortran) Level: YYMMDD
version Low-Level Optimizer Version: 13.1.3(C) and 15.1.3(Fortran) Level: YYMMDD

In the first line, c identifies the source used as C, /opt/IBM/xlc/13.1.3/bin/xlc
shows the invocation command used, and -qhot -qsaveopt shows the compilation
options.

The remaining lines list each compiler component invoked during compilation, and
its version and level. Components that are shared by multiple products may show
more than one version number. Level numbers shown may change depending on
the updates (PTFs) you have installed on your system.

Related information
v “-qversion” on page 385

-qshowinc
Category

Listings, messages, and compiler information

Pragma equivalent

#pragma options [no]showinc

Chapter 4. Compiler options reference 327

Purpose

When used with -qsource option to generate a listing file, selectively shows user or
system header files in the source section of the listing file.

Syntax

►►

▼

noshowinc
-q showinc

:
all

= sys
nosys
usr
nousr

►◄

Defaults

-qnoshowinc: Header files included in source files are not shown in the source
listing.

Parameters

all
Shows both user and system include files in the program source listing.

sys
Shows system include files (that is, files included with the #include
<filename> preprocessor directive) in the program source listing.

usr
Shows user include files (that is, files included with the #include "filename"
preprocessor directive or with -qinclude) in the program source listing.

Specifying showinc with no suboptions is equivalent to -qshowinc=sys : usr and
-qshowinc=all. Specifying noshowinc is equivalent to -qshowinc=nosys : nousr.

Usage

This option has effect only when the -qlist or -qsource compiler options is in
effect.

Predefined macros

None.

Examples

To compile myprogram.c so that all included files appear in the source listing, enter:
xlc myprogram.c -qsource -qshowinc

Related information
v “-qsource” on page 339

328 XL C/C++: Compiler Reference

-qshowmacros
Category

“Output control” on page 77

Pragma equivalent

None

Purpose

Emits macro definitions to preprocessed output.

Emitting macros to preprocessed output can help determine functionality available
in the compiler. The macro listing may prove useful for debugging complex macro
expansions, as well.

Syntax

►►

▼

noshowmacros
-q showmacros

:

= all
nopre
pre

►◄

Defaults

-qnoshowmacros

Parameters

all
Emits all macro definitions to preprocessed output. This is the same as
specifying -qshowmacros.

pre | nopre
pre emits only predefined macro definitions to preprocessed output. nopre
suppresses appending these definitions.

Usage

Note the following when using this option:
v This option has no effect unless preprocessed output is generated; for example,

by using the -E or -P options.
v If a macro is defined and subsequently undefined before compilation ends, this

macro will not be included in the preprocessed output.
v Only macros defined internally by the preprocessor are considered predefined;

all other macros are considered as user-defined.

Related information
v “-E” on page 146
v “-P” on page 293

Chapter 4. Compiler options reference 329

-qshowpdf
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

When used with -qpdf1 and a minimum optimization level of -O2 at compile and
link steps, creates a PDF map file that contains additional profiling information for
all procedures in your application.

Syntax

►►
showpdf

-q noshowpdf ►◄

Defaults

-qshowpdf

Usage

After you run your application with typical data, the profiling information is
recorded into a profile-directed feedback (PDF) file (by default, the file is named
._pdf).

In addition to the PDF file, the compiler also generates a PDF map file that
contains static information during the -qpdf1 phase. With these two files, you can
use the showpdf utility to view part of the profiling information of your
application in text or XML format. For details of the showpdf utility, see "Viewing
profiling information with showpdf" in the XL C/C++ Optimization and Programming
Guide.

If you do not need to view the profiling information, specify the -qnoshowpdf
option during the -qpdf1 phase so that the PDF map file is not generated. This can
reduce your compile time.

Predefined macros

None.

Related information
v “-qpdf1, -qpdf2” on page 296
v "Optimizing your applications" in the XL C/C++ Optimization and Programming

Guide

-qsimd
Category

Optimization and tuning

330 XL C/C++: Compiler Reference

Pragma equivalent

#pragma nosimd

Purpose

Controls whether the compiler can automatically take advantage of vector
instructions for processors that support them.

These instructions can offer higher performance when used with
algorithmic-intensive tasks such as multimedia applications.

Syntax

►►
auto

-q simd = noauto ►◄

Defaults

Whether -qsimd is specified or not, -qsimd=auto is implied when both of the
following conditions are satisfied; otherwise, -qsimd=noauto is implied.
v The optimization level is -O3 or higher.
v -qarch is set to pwr7 or higher.

Usage

The -qsimd=auto option enables automatic generation of vector instructions for
processors that support them. When -qsimd=auto is in effect, the compiler
converts certain operations that are performed in a loop on successive elements of
an array into vector instructions. These instructions calculate several results at one
time, which is faster than calculating each result sequentially. These options are
useful for applications with significant image processing demands.

The -qsimd=noauto option disables the conversion of loop array operations into
vector instructions. To achieve finer control, use -qstrict=ieeefp,
-qstrict=operationprecision, and -qstrict=vectorprecision. For details, see “-qstrict”
on page 348.

The -qsimd=auto option controls the autosimdization, which was performed by
the deprecated -qhot=simd option. If you specify -qhot=simd, the compiler ignores
it and does not issue any warning message.

Specifying the deprecated -qenablevmx option has the same effect as specifying
-qsimd=auto. The compiler does not issue any warning for this.

Notes:

v Specifying -qsimd without any suboption is equivalent to -qsimd=auto.
v Specifying -qsimd=auto does not guarantee that autosimdization will occur.
v Using vector instructions to calculate several results at one time might delay or

even miss detection of floating-point exceptions on some architectures. If
detecting exceptions is important, do not use -qsimd=auto.

Chapter 4. Compiler options reference 331

Rules

If you enable IPA and specify -qsimd=auto at the IPA compile step, but specify
-qsimd=noauto at the IPA link step, the compiler automatically sets -qsimd=auto
at the IPA link step. It also sets an appropriate value for -qarch to match the
architecture that is specified at the compile time. Similarly, if you enable IPA and
specify -qsimd=noauto at the IPA compile step, but specify -qsimd=auto at the IPA
link step, the compiler automatically sets -qsimd=auto at the compile step.

Predefined macros

None.

Examples

Any of the following command combinations can enable autosimdization:
v xlc -O3 -qsimd

v xlc -O2 -qhot=level=0 -qsimd=auto

The following command combination does not enable autosimdization because
neither -O3 nor -qhot is specified:
v xlc -O2 -qsimd=auto

In the following example, #pragma nosimd is used to disable -qsimd=auto for a
specific for loop:
...
#pragma nosimd
for (i=1; i<1000; i++) {

/* program code */
}

Related information
v “#pragma nosimd” on page 438
v “-qarch” on page 109
v “-qreport” on page 315
v “-qstrict” on page 348
v Using interprocedural analysis in the XL C/C++ Optimization and Programming

Guide.

-qskipsrc
Category

“Listings, messages, and compiler information” on page 88

Pragma equivalent

None.

Purpose

When a listing file is generated using the -qsource option, -qskipsrc can be used to
determine whether the source statements skipped by the compiler are shown in the
source section of the listing file. Alternatively, the -qskipsrc=hide option is used to
hide the source statements skipped by the compiler.

332 XL C/C++: Compiler Reference

Syntax

►►
show

-q skipsrc = hide ►◄

Defaults
v -qskipsrc=show

Parameters

show | hide
When show is in effect, the compiler will display all source statements in the
listing. This will result in both true and false paths of the preprocessing
directives to be shown.

On the contrary, when hide is enabled, all source statements that the compiler
skipped will be omitted.

Usage

In general, the -qskipsrc option does not control whether the source section is
included in the listing file, it only does so when the -qsource option is in effect.

To display all source statements in the listing (default option):
xlc myprogram.c -qsource -qskipsrc=show

To omit source statements skipped by the compiler:
xlc myprogram.c -qsource -qskipsrc=hide

Predefined macros

None.

Related information
v “-qsource” on page 339
v “-qshowinc” on page 327
v “-qsrcmsg (C only)” on page 343

-qsmallstack
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Minimizes stack usage where possible. Disables optimizations that increase the size
of the stack frame.

Chapter 4. Compiler options reference 333

Syntax

►►
nosmallstack

-q smallstack ►◄

Defaults

-qnosmallstack

Usage

AIX limits the stack size to 256 MB. Programs that allocate large amounts of data
to the stack, such as threaded programs, might result in stack overflows. The
-qsmallstack option helps avoid stack overflows by disabling optimizations that
increase the size of the stack frame.

This option takes effect only when used together with IPA (the -qipa, -O4, or -O5
compiler options).

Specifying this option might adversely affect program performance.

Predefined macros

None.

Examples

To compile myprogram.c to use a small stack frame, enter the command:
xlc myprogram.c -qipa -qsmallstack

Related information
v “-g” on page 173
v “-qipa” on page 208
v “-O, -qoptimize” on page 282

-qsmp
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Enables parallelization of program code.

Syntax

334 XL C/C++: Compiler Reference

►►

▼

nosmp
-q smp

:
nostackcheck
ostls
opt
norec_locks
noomp
nonested_par
explicit
auto

= omp
noostls
nested_par
noauto
noexplicit
noopt
rec_locks

auto
schedule = runtime

affinity
dynamic = n
guided
static

stackcheck
threshold

= n

►◄

Defaults

-qnosmp. Code is produced for a uniprocessor machine.

Parameters

auto | noauto
Enables or disables automatic parallelization and optimization of program
code. When noauto is in effect, only program code explicitly parallelized with
SMP or OpenMP directives is optimized. noauto is implied if you specify
-qsmp=omp or -qsmp=noopt.

explicit | noexplicit
Enables or disables directives controlling explicit parallelization of loops.

nested_par | nonested_par
By default, the compiler serializes a nested parallel construct. When nested_par
is in effect, the compiler parallelizes prescriptive nested parallel constructs.
This includes not only the loop constructs that are nested within a scoping unit
but also parallel constructs in subprograms that are referenced (directly or
indirectly) from within other parallel constructs. Note that this suboption has
no effect on loops that are automatically parallelized. In this case, at most one
loop in a loop nest (in a scoping unit) will be parallelized.

The setting of the omp_set_nested function or of the OMP_NESTED
environment variable overrides the setting of the -qsmp = nested_par |
nonested_par option.

This suboption should be used with caution. Depending on the number of
threads available and the amount of work in an outer loop, inner loops could
be executed sequentially even if this option is in effect. Parallelization overhead
may not necessarily be offset by program performance gains.

Chapter 4. Compiler options reference 335

Note: The -qsmp=nested_par | nonested_par option has been deprecated and
might be removed in a future release. Use the OMP_NESTED environment
variable or the omp_set_nested function instead.

omp | noomp
Enforces or relaxes strict compliance with the OpenMP standard. When noomp
is in effect, auto is implied. When omp is in effect, noauto is implied and only
OpenMP parallelization directives are recognized. The compiler issues warning
messages if your code contains any language constructs that do not conform to
the OpenMP API.

Note: The -qsmp=omp option must be used to enable OpenMP parallelization.

opt | noopt
Enables or disables optimization of parallelized program code. When noopt is
in effect, the compiler will do the smallest amount of optimization that is
required to parallelize the code. This is useful for debugging because -qsmp
enables the -O2 and -qhot options by default, which may result in the
movement of some variables into registers that are inaccessible to the
debugger. However, if the -qsmp=noopt and -g options are specified, these
variables will remain visible to the debugger.

ostls| noostls
Enables thread-local storage (TLS) provided by the operating system to be used
for threadprivate data. You can use the noostls suboption to enable non-TLS
for threadprivate. The noostls suboption is provided for compatibility with
earlier versions of the compiler.

Note: If you use this suboption, your operating system must support TLS to
implement OpenMP threadprivate data. Use noostls to disable OS level TLS if
your operating system does not support it.

rec_locks | norec_locks
Determines whether recursive locks are used. When rec_locks is in effect,
nested critical sections will not cause a deadlock. Note that the rec_locks
suboption specifies behavior for critical constructs that is inconsistent with the
OpenMP API.

schedule
Specifies the type of scheduling algorithms and, except in the case of auto,
chunk size (n) that are used for loops to which no other scheduling algorithm
has been explicitly assigned in the source code. Suboptions of the schedule
suboption are as follows:

affinity[=n]
The iterations of a loop are initially divided into n partitions, containing
ceiling(number_of_iterations/number_of_threads) iterations. Each partition is
initially assigned to a thread and is then further subdivided into chunks
that each contain n iterations. If n is not specified, then the chunks consist
of ceiling(number_of_iterations_left_in_partition / 2) loop iterations.

When a thread becomes free, it takes the next chunk from its initially
assigned partition. If there are no more chunks in that partition, then the
thread takes the next available chunk from a partition initially assigned to
another thread.

The work in a partition initially assigned to a sleeping thread will be
completed by threads that are active.

The affinity scheduling type is not part of the OpenMP API specification.

336 XL C/C++: Compiler Reference

Note: This suboption has been deprecated. You can use the
OMP_SCHEDULE environment variable with the dynamic clause for a
similar functionality.

auto
Scheduling of the loop iterations is delegated to the compiler and runtime
systems. The compiler and runtime system can choose any possible
mapping of iterations to threads (including all possible valid schedule
types) and these might be different in different loops. Do not specify chunk
size (n).

dynamic[=n]
The iterations of a loop are divided into chunks that contain n iterations
each. If n is not specified, each chunk contains one iteration.

Active threads are assigned these chunks on a "first-come, first-do" basis.
Chunks of the remaining work are assigned to available threads until all
work has been assigned.

guided[=n]
The iterations of a loop are divided into progressively smaller chunks until
a minimum chunk size of n loop iterations is reached. If n is not specified,
the default value for n is 1 iteration.

Active threads are assigned chunks on a "first-come, first-do" basis. The
first chunk contains ceiling(number_of_iterations/number_of_threads)
iterations. Subsequent chunks consist of ceiling(number_of_iterations_left /
number_of_threads) iterations.

runtime
Specifies that the chunking algorithm will be determined at run time.

static[=n]
The iterations of a loop are divided into chunks containing n iterations
each. Each thread is assigned chunks in a "round-robin" fashion. This is
known as block cyclic scheduling. If the value of n is 1, then the scheduling
type is specifically referred to as cyclic scheduling.

If n is not specified, the chunks will contain floor(number_of_iterations/
number_of_threads) iterations. The first remainder (number_of_iterations/
number_of_threads) chunks have one more iteration. Each thread is assigned
a separate chunk. This is known as block scheduling.

If a thread is asleep and it has been assigned work, it will be awakened so
that it may complete its work.

n Must be an integer of value 1 or greater.

Specifying schedule with no suboption is equivalent to schedule=auto.

stackcheck | nostackcheck
Causes the compiler to check for stack overflow by slave threads at run time,
and issue a warning if the remaining stack size is less than the number of
bytes specified by the stackcheck option of the XLSMPOPTS environment
variable. This suboption is intended for debugging purposes, and only takes
effect when XLSMPOPTS=stackcheck is also set; see “XLSMPOPTS” on page
28.

threshold[=n]
When -qsmp=auto is in effect, controls the amount of automatic loop
parallelization that occurs. The value of n represents the minimum amount of
work required in a loop in order for it to be parallelized. Currently, the

Chapter 4. Compiler options reference 337

calculation of "work" is weighted heavily by the number of iterations in the
loop. In general, the higher the value specified for n, the fewer loops are
parallelized. Specifying a value of 0 instructs the compiler to parallelize all
auto-parallelizable loops, whether or not it is profitable to do so. Specifying a
value of 100 instructs the compiler to parallelize only those auto-parallelizable
loops that it deems profitable. Specifying a value of greater than 100 will result
in more loops being serialized.

n Must be a positive integer of 0 or greater.

If you specify threshold with no suboption, the program uses a default value
of 100.

Specifying -qsmp without suboptions is equivalent to:
-qsmp=auto:explicit:opt:noomp:norec_locks:nonested_par:schedule=auto:
nostackcheck:threshold=100:ostls

Usage
v Specifying the omp suboption always implies noauto. Specify -qsmp=omp:auto

to apply automatic parallelization on OpenMP-compliant applications, as well.
v You should only use -qsmp with the _r-suffixed invocation commands, to

automatically link in all of the threadsafe components. You can use the -qsmp
option with the non-_r-suffixed invocation commands, but you are responsible
for linking in the appropriate components. If you use the -qsmp option to
compile any source file in a program, then you must specify the -qsmp option at
link time as well, unless you link by using the ld command.

v Object files generated with the -qsmp=opt option can be linked with object files
generated with -qsmp=noopt. The visibility within the debugger of the variables
in each object file will not be affected by linking.

v The -qnosmp default option setting specifies that no code should be generated
for parallelization directives, though syntax checking will still be performed. Use
-qignprag=omp:ibm to completely ignore parallelization directives.

v Specifying -qsmp implicitly sets -O2. The -qsmp option overrides -qnooptimize,
but does not override -O3, -O4, or -O5. When debugging parallelized program
code, you can disable optimization in parallelized program code by specifying
-qsmp=noopt.

v The -qsmp=noopt suboption overrides performance optimization options
anywhere on the command line unless -qsmp appears after -qsmp=noopt. For
example, -qsmp=noopt -O3 is equivalent to -qsmp=noopt, while -qsmp=noopt
-O3 -qsmp is equivalent to -qsmp -O3.

Predefined macros

C When -qsmp is in effect, _IBMSMP is predefined to a value of 1, which
indicates that IBM SMP directives are recognized; otherwise, it is not defined.

Related information
v “-O, -qoptimize” on page 282
v “-qthreaded” on page 365
v “Environment variables for parallel processing” on page 27
v “Pragma directives for parallel processing” on page 459
v “Built-in functions for parallel processing” on page 698

338 XL C/C++: Compiler Reference

-qsource
Category

Listings, messages, and compiler information

Pragma equivalent

#pragma options [no]source

Purpose

Produces a compiler listing file that includes the source section of the listing and
provides additional source information when printing error messages.

Syntax

►►
nosource

-q source ►◄

Defaults

-qnosource

Usage

When -qsource or #pragma options source is in effect, a listing file with the .lst
suffix is generated for each source file specified on the command line. For details
about the contents of the listing file, see “Compiler listings” on page 21.

You can selectively print parts of the source by using pairs of #pragma options
source and #pragma options nosource preprocessor directives throughout your
source program. The source following #pragma options source and preceding
#pragma options nosource is printed.

The -qnoprint option overrides this option.

Predefined macros

None.

Examples

The myprogram.c file contains the following code:
#include <stdio.h>
int main()
{

printf("Hello World");
}

To compile the myprogram.c file to produce a compiler listing that includes the
source code, enter:
xlc myprogram.c -qsource

The myprogram.lst file contains a source section with the code in the myprogram.c
file:

Chapter 4. Compiler options reference 339

>>>>> SOURCE SECTION <<<<<

1 | # include <stdio.h>
2 |
3 | int main ()
4 | {
5 | printf("Hello World");
6 | }

Related information
v “-qlist” on page 256
v “-qlistopt” on page 260
v “-qprint” on page 309

-qsourcetype
Category

Input control

Pragma equivalent

None.

Purpose

Instructs the compiler to treat all recognized source files as a specified source type,
regardless of the actual file name suffix.

Ordinarily, the compiler uses the file name suffix of source files specified on the
command line to determine the type of the source file. For example, a .c suffix
normally implies C source code, and a .C suffix normally implies C++ source code.
The -qsourcetype option instructs the compiler to not rely on the file name suffix,
and to instead assume a source type as specified by the option.

Syntax

►►
default

-q sourcetype = assembler
assembler-with-cpp
c
c++

►◄

Defaults

-qsourcetype=default

Parameters

assembler
All source files following the option are compiled as if they are assembler
language source files.

assembler-with-cpp
All source files following the option are compiled as if they are assembler
language source files that need preprocessing.

340 XL C/C++: Compiler Reference

c All source files following the option are compiled as if they are C language
source files.

c++
All source files following the option are compiled as if they are C++ language
source files. This suboption is equivalent to the -+ option.

default
The programming language of a source file is implied by its file name suffix.

Usage

If you do not use this option, files must have a suffix of .c to be compiled as C
files, and .C (uppercase C), .cc, .cp, .cpp, .cxx, or .c++ to be compiled as C++ files.

This option applies whether the file system is case-sensitive or not. That is, even in
a case-insensitive file system, where file.c and file.C refer to the same physical
file, the compiler still recognizes the case difference of the file name argument on
the command line and determines the source type accordingly.

Note that the option only affects files that are specified on the command line
following the option, but not those that precede the option. Therefore, in the
following example:
xlc goodbye.C -qsourcetype=c hello.C

hello.C is compiled as a C source file, but goodbye.C is compiled as a C++ file.

The -qsourcetype option should not be used together with the -+ option.

Predefined macros

None.

Examples

To treat the source file hello.C as being a C language source file, enter:
xlc -qsourcetype=c hello.C

Related information
v “-+ (plus sign) (C++ only)” on page 98

-qspeculateabsolutes
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Works with the -qtocmerge -bl:file for non-IPA links and with the -bl:file for IPA
links to disable speculation at absolute addresses.

The bl:file is necessary for the compiler to know which addresses are absolutes.

Chapter 4. Compiler options reference 341

Syntax

►►
speculateabsolutes

-q nospeculateabsolutes ►◄

Defaults

-qspeculateabsolutes

Predefined macros

None.

Related information
v “-qtocmerge” on page 370

-qspill
Category

Compiler customization

Pragma equivalent

#pragma options [no]spill

Purpose

Specifies the size (in bytes) of the register spill space, the internal program storage
areas used by the optimizer for register spills to storage.

Syntax

►► -q spill = size ►◄

Defaults

-qspill=512

Parameters

size
An integer representing the number of bytes for the register allocation spill
area.

Usage

If your program is very complex, or if there are too many computations to hold in
registers at one time and your program needs temporary storage, you might need
to increase this area. Do not enlarge the spill area unless the compiler issues a
message requesting a larger spill area. In case of a conflict, the largest spill area
specified is used.

342 XL C/C++: Compiler Reference

Predefined macros

None.

Examples

If you received a warning message when compiling myprogram.c and want to
compile it specifying a spill area of 900 entries, enter:
xlc myprogram.c -qspill=900

-qsrcmsg (C only)
Category

Listings, messages, and compiler information

Pragma equivalent

#pragma options [no]srcmsg

Purpose

Adds the corresponding source code lines to diagnostic messages generated by the
compiler.

When nosrcmsg is in effect, the error message simply shows the file, line and
column where the error occurred. When srcmsg is in effect, the compiler
reconstructs the source line or partial source line to which the diagnostic message
refers and displays it before the diagnostic message. A pointer to the column
position of the error may also be displayed.

Syntax

►►
nosrcmsg

-q srcmsg ►◄

Defaults

-qnosrcmsg

Usage

When srcmsg is in effect, the reconstructed source line represents the line as it
appears after macro expansion. At times, the line may be only partially
reconstructed. The characters “....” at the start or end of the displayed line
indicate that some of the source line has not been displayed.

Use -qnosrcmsg to display concise messages that can be parsed.

Predefined macros

None.

Chapter 4. Compiler options reference 343

-qstackprotect
Category

“Object code control” on page 83

Pragma equivalent

None.

Purpose

Provides protection against malicious input data or programming errors that
overwrite or corrupt the stack.

Syntax

►►
nostackprotect

-q stackprotect = all
size = N

►◄

Defaults

-qnostackprotect

Parameters

all
Protects all functions whether or not functions have vulnerable objects. This
option is not set by default.

size=N
Protects all functions containing automatic objects with size greater than or
equal to N bytes. The default size is 8 byteswhen -qstackprotect is enabled.

Usage

-qstackprotect generates extra code to protect functions with vulnerable objects
against stack corruption. The option is disabled by default because it can degrade
runtime performance.

To generate code to protect all functions with vulnerable objects, enter the
following command:
xlc myprogram.c -qstackprotect=all

To generate code to protect functions with objects of certain size, enter the
following command with the size= parameter set to the object size indicated in
bytes:
xlc myprogram.c -qstackprotect=size=8

Notes:

v Because of the dependency on libc.a in AIX, this option requires AIX 6.1/TL4 or
higher.

v If the link step fails with a message that indicates __ssp_canary_word is
undefined, you have probably used an unsupported level of AIX.

344 XL C/C++: Compiler Reference

Predefined macros

None.

Related information
v “-qinfo” on page 191

-qstaticinline (C++ only)
Category

Language element control

Pragma equivalent

None.

Purpose

Controls whether inline functions are treated as having static or extern linkage.

When -qnostaticinline is in effect, the compiler treats inline functions as extern:
only one function body is generated for a function marked with the inline
function specifier, regardless of how many definitions of the same function appear
in different source files. When -qstaticinline is in effect, the compiler treats inline
functions as having static linkage: a separate function body is generated for each
definition in a different source file of the same function marked with the inline
function specifier.

Syntax

►►
nostaticinline

-q staticinline ►◄

Defaults

-qnostaticinline

Usage

When -qnostaticinline is in effect, any redundant functions definitions for which
no bodies are generated are discarded by default; you can use the -qkeepinlines
option to change this behavior.

Predefined macros

None.

Examples

Using the -qstaticinline option causes function f in the following declaration to be
treated as static, even though it is not explicitly declared as such. A separate
function body is created for each definition of the function. Note that this can lead
to a substantial increase in code size.
inline void f() {/*...*/};

Chapter 4. Compiler options reference 345

Related information
v “-qkeepinlines (C++ only)” on page 217

-qstatsym
Category

Object code control

Pragma equivalent

None.

Purpose

Adds user-defined, nonexternal names that have a persistent storage class, such as
initialized and uninitialized static variables, to the symbol table of the object file.

Syntax

►►
nostatsym

-q statsym ►◄

Defaults

-qnostatsym

Usage

When -qnostatsym is specified, static variables are not added to the symbol table.
However, static functions are added to the symbol table.

Predefined macros

None.

-qstdinc
Category

Input control

Pragma equivalent

#pragma options [no]stdinc

Purpose

Specifies whether the standard include directories are included in the search paths
for system and user header files.

When -qstdinc is in effect, the compiler searches the following directories for
header files:

346 XL C/C++: Compiler Reference

v C The directory specified in the configuration file for the XL C header
files (this is normally /opt/IBM/xlc/13.1.3/include/) or by the -qc_stdinc
option

v C++ The directory specified in the configuration file for the XL C and C++
header files (this is normally /opt/IBM/xlC/13.1.3/include/) or by the
-qcpp_stdinc option

v The directory specified in the configuration file for the system header files (this
is normally /usr/include/), or by the -qc_stdinc and -qcpp_stdinc options

When -qnostdinc is in effect, these directories are excluded from the search paths.
The following directories are searched:
v Directories in which source files containing #include "filename" directives are

located
v Directories specified by the -I option
v Directories specified by the -qinclude option

Syntax

►►
stdinc

-q nostdinc ►◄

Defaults

-qstdinc

Usage

The search order of header files is described in “Directory search sequence for
included files” on page 13.

This option only affects search paths for header files included with a relative name;
if a full (absolute) path name is specified, this option has no effect on that path
name.

The last valid pragma directive remains in effect until replaced by a subsequent
pragma.

Predefined macros

None.

Examples

To compile myprogram.c so that only the directory /tmp/myfiles (in addition to the
directory containing myprogram.c) is searched for the file included with the
#include "myinc.h" directive, enter:
xlc myprogram.c -qnostdinc -I/tmp/myfiles

Related information
v “-qc_stdinc (C only)” on page 134
v “-qcpp_stdinc (C++ only)” on page 135
v “-I” on page 185
v “Directory search sequence for included files” on page 13

Chapter 4. Compiler options reference 347

-qstrict
Category

Optimization and tuning

Pragma equivalent

#pragma options [no]strict

#pragma option_override (function_name, "opt (suboption_list)")

Purpose

Ensures that optimizations that are done by default at the -O3 and higher
optimization levels, and, optionally at -O2, do not alter the semantics of a
program.

This option is intended for situations where the changes in program execution in
optimized programs produce different results from unoptimized programs.

Syntax

►►

▼

-q nostrict
strict

:

= all
none
precision
noprecision
exceptions
noexceptions
ieeefp
noieeefp
nans
nonans
infinities
noinfinities
subnormals
nosubnormals
zerosigns
nozerosigns
operationprecision
nooperationprecision
vectorprecision
novectorprecision
order
noorder
association
noassociation
reductionorder
noreductionorder
guards
noguards
library
nolibrary

►◄

348 XL C/C++: Compiler Reference

Defaults
v -qstrict or -qstrict=all is always in effect when the -qnoopt or -O0 optimization

level is in effect
v -qstrict or -qstrict=all is the default when the -O2 or -O optimization level is in

effect
v -qnostrict or -qstrict=none is the default when the -O3 or higher optimization

level is in effect

Parameters

The -qstrict suboptions include the following:

all | none
all disables all semantics-changing transformations, including those controlled
by the ieeefp, order, library, precision, and exceptions suboptions. none
enables these transformations.

precision | noprecision
precision disables all transformations that are likely to affect floating-point
precision, including those controlled by the subnormals, operationprecision,
vectorprecision, association, reductionorder, and library suboptions.
noprecision enables these transformations.

exceptions | noexceptions
exceptions disables all transformations likely to affect exceptions or be affected
by them, including those controlled by the nans, infinities, subnormals,
guards, and library suboptions. noexceptions enables these transformations.

ieeefp | noieeefp
ieeefp disables transformations that affect IEEE floating-point compliance,
including those controlled by the nans, infinities, subnormals, zerosigns,
vectorprecision, and operationprecision suboptions. noieeefp enables these
transformations.

nans | nonans
nans disables transformations that may produce incorrect results in the
presence of, or that may incorrectly produce IEEE floating-point NaN
(not-a-number) values. nonans enables these transformations.

infinities | noinfinities
infinities disables transformations that may produce incorrect results in the
presence of, or that may incorrectly produce floating-point infinities.
noinfinities enables these transformations.

subnormals | nosubnormals
subnormals disables transformations that may produce incorrect results in the
presence of, or that may incorrectly produce IEEE floating-point subnormals
(formerly known as denorms). nosubnormals enables these transformations.

zerosigns | nozerosigns
zerosigns disables transformations that may affect or be affected by whether
the sign of a floating-point zero is correct. nozerosigns enables these
transformations.

operationprecision | nooperationprecision
operationprecision disables transformations that produce approximate results
for individual floating-point operations. nooperationprecision enables these
transformations.

Chapter 4. Compiler options reference 349

vectorprecision | novectorprecision
vectorprecision disables vectorization in loops where it might produce
different results in vectorized iterations than in nonvectorized residue
iterations. vectorprecision ensures that every loop iteration of identical
floating-point operations on identical data produces identical results.

novectorprecision enables vectorization even when different iterations might
produce different results from the same inputs.

order | noorder
order disables all code reordering between multiple operations that may affect
results or exceptions, including those controlled by the association,
reductionorder, and guards suboptions. noorder enables code reordering.

association | noassociation
association disables reordering operations within an expression. noassociation
enables reordering operations.

reductionorder | noreductionorder
reductionorder disables parallelizing floating-point reductions.
noreductionorder enables parallelizing these reductions.

guards | noguards
Specifying -qstrict=guards has the following effects:
v The compiler does not move operations past guards, which control whether

the operations are executed. That is, the compiler does not move operations
past guards of the if statements, out of loops, or past guards of function
calls that might end the program or throw an exception.

v When the compiler encounters if expressions that contain pointer
wraparound checks that can be resolved at compile time, the compiler does
not remove the checks or the enclosed operations. The pointer wraparound
check compares two pointers that have the same base but have constant
offsets applied to them.

Specifying -qstrict=noguards has the following effects:
v The compiler moves operations past guards.
v The compiler evaluates if expressions according to language standards, in

which pointer wraparounds are undefined. The compiler removes the
enclosed operations of the if statements when the evaluation results of the
if expressions are false.

library | nolibrary
library disables transformations that affect floating-point library functions; for
example, transformations that replace floating-point library functions with
other library functions or with constants. nolibrary enables these
transformations.

Usage

The all, precision, exceptions, ieeefp, and order suboptions and their negative
forms are group suboptions that affect multiple, individual suboptions. For many
situations, the group suboptions will give sufficient granular control over
transformations. Group suboptions act as if either the positive or the no form of
every suboption of the group is specified. Where necessary, individual suboptions
within a group (like subnormals or operationprecision within the precision
group) provide control of specific transformations within that group.

350 XL C/C++: Compiler Reference

With -qnostrict or -qstrict=none in effect, the following optimizations are turned
on:
v Code that may cause an exception may be rearranged. The corresponding

exception might happen at a different point in execution or might not occur at
all. (The compiler still tries to minimize such situations.)

v Floating-point operations may not preserve the sign of a zero value. (To make
certain that this sign is preserved, you also need to specify -qfloat=rrm,
-qfloat=nomaf, or -qfloat=strictnmaf.)

v Floating-point expressions may be reassociated. For example, (2.0*3.1)*4.2 might
become 2.0*(3.1*4.2) if that is faster, even though the result might not be
identical.

v The optimization functions enabled by -qfloat=fltint:rsqrt. You can turn off the
optimization functions by using the -qstrict option or -qfloat=nofltint:norsqrt.
With lower-level or no optimization specified, these optimization functions are
turned off by default.

Specifying various suboptions of -qstrict[=suboptions] or -qnostrict combinations
sets the following suboptions:
v -qstrict or -qstrict=all sets -qfloat=nofltint:norsqrt:rngchk. -qnostrict or

-qstrict=none sets -qfloat=fltint:rsqrt:norngchk.
v -qstrict=operationprecision or -qstrict=exceptions sets -qfloat=nofltint.

Specifying both -qstrict=nooperationprecision and -qstrict=noexceptions sets
-qfloat=fltint.

v -qstrict=infinities, -qstrict=operationprecision, or -qstrict=exceptions sets
-qfloat=norsqrt.

v -qstrict=noinfinities:nooperationprecision:noexceptions sets -qfloat=rsqrt.
v -qstrict=nans, -qstrict=infinities, -qstrict=zerosigns, or -qstrict=exceptions sets

-qfloat=rngchk. Specifying all of -qstrict=nonans:nozerosigns:noexceptions or
-qstrict=noinfinities:nozerosigns:noexceptions, or any group suboptions that
imply all of them, sets -qfloat=norngchk.

Note: For details about the relationship between -qstrict suboptions and their
-qfloat counterparts, see “-qfloat” on page 158.

To override any of these settings, specify the appropriate -qfloat suboptions after
the -qstrict option on the command line.

Predefined macros

None.

Examples

To compile myprogram.c so that the aggressive optimization of -O3 are turned off,
range checking is turned off (-qfloat=fltint), and division by the result of a square
root is replaced by multiplying by the reciprocal (-qfloat=rsqrt), enter:
xlc myprogram.c -O3 -qstrict -qfloat=fltint:rsqrt

To enable all transformations except those affecting precision, specify:
xlc myprogram.c -qstrict=none:precision

To disable all transformations except those involving NaNs and infinities, specify:
xlc myprogram.c -qstrict=all:nonans:noinfinities

Chapter 4. Compiler options reference 351

In the following code example, the if expression contains a pointer wraparound
check. If you compile the code with the -qstrict=guards option in effect, the
compiler keeps the enclosed foo() function; otherwise, the compiler removes the
enclosed foo() function.
void foo()
{

// You can add some operations here.
}

int main()
{

char *p = "a";
int k = 100;
if(p + k < p) // This if expression contains a pointer wraparound check.
{
foo(); // foo() is the enclosed operation of the if statement.

}
return 0;

}

Related information
v “-qsimd” on page 330
v “-qfloat” on page 158
v “-qhot” on page 182
v “-O, -qoptimize” on page 282

-qstrict_induction
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Prevents the compiler from performing induction (loop counter) variable
optimizations. These optimizations may be unsafe (may alter the semantics of your
program) when there are integer overflow operations involving the induction
variables.

Syntax

►►
strict_induction

-q nostrict_induction ►◄

Defaults
v -qstrict_induction

v -qnostrict_induction when -O2 or higher optimization level is in effect

Usage

When using -O2 or higher optimization, you can specify -qstrict_induction to
prevent optimizations that change the result of a program if truncation or sign
extension of a loop induction variable should occur as a result of variable overflow

352 XL C/C++: Compiler Reference

or wrap-around. However, use of -qstrict_induction is generally not recommended
because it can cause considerable performance degradation.

Predefined macros

None.

Related information
v “-O, -qoptimize” on page 282

-qsuppress
Category

Listings, messages, and compiler information

Pragma equivalent

“#pragma report (C++ only)” on page 449

Purpose

Prevents specific informational or warning messages from being displayed or
added to the listing file, if one is generated.

Syntax

-qsuppress syntax (C only)

►► ▼

nosuppress
:

-q suppress = message_identifier ►◄

-qsuppress syntax (C++ only)

►►

▼

▼

nosuppress
:

= message_identifier
:

-q suppress = message_identifier ►◄

Defaults

-qnosuppress: All informational and warning messages are reported, unless set
otherwise with the -qflag option.

Parameters

message_identifier
Represents a message identifier. The message identifier must be in the
following format:
15dd-number

Chapter 4. Compiler options reference 353

where:

15 Is the compiler product identifier.

dd Is the two-digit code representing the compiler component that
produces the message. See “Compiler message format” on page 18 for
descriptions of these codes.

number
Is the message number.

Usage

You can only suppress information (I) and warning (W) messages. You cannot
suppress other types of messages, such as (S) and (U) level messages. Note that
informational and warning messages that supply additional information to a severe
error cannot be disabled by this option.

To suppress all informational and warning messages, you can use the -w option.

To suppress IPA messages, enter -qsuppress before -qipa on the command line.

The -qhaltonmsg compiler option has precedence over -qsuppress. If both
-qhaltonmsg and -qsuppress are specified, messages that are suppressed by
-qsuppress are also printed.

C The -qnosuppress compiler option cancels previous settings of
-qsuppress. C

C++

When you specify -qnosuppress with specific message identifiers, the

previous -qsuppress instances with the same message identifiers lose effect. When
you specify -qnosuppress without specific message identifiers, all previous
-qsuppress instances lose effect.

If you specify two or three of the following options, the last option specified has
precedence:

-qsuppress=message_identifier

-qnosuppress=message_identifier

-qnosuppress

C++

Predefined macros

None.

Examples

If your program normally results in the following output:
"myprogram.c", line 1.1:1506-224 (I) Incorrect #pragma ignored

you can suppress the message by compiling with:
xlc myprogram.c -qsuppress=1506-224

Related information
v “-qflag” on page 156
v “-qhaltonmsg” on page 179

354 XL C/C++: Compiler Reference

-qsymtab (C only)
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Determines the information that appears in the symbol table.

Syntax

►► -q symtab = unref
static

►◄

Defaults

Static variables and unreferenced typedef, structure, union, and enumeration
declarations are not included in the symbol table of the object file.

Parameters

unref
When used with the -g option, specifies that debugging information is
included for unreferenced typedef declarations, struct, union, and enum type
definitions in the symbol table of the object file. This suboption is equivalent to
-qdbxextra.

Using -qsymtab=unref may make your object and executable files larger.

static
Adds user-defined, nonexternal names that have a persistent storage class,
such as initialized and uninitialized static variables, to the symbol table of the
object file. This suboption is equivalent to -qstatsym.

Predefined macros

None.

Examples

To compile myprogram.c so that static symbols are added to the symbol table, enter:
xlc myprogram.c -qsymtab=static

To compile myprogram.c so that unreferenced typedef, structure, union, and
enumeration declarations are included in the symbol table for use with a debugger,
enter:
xlc myprogram.c -g -qsymtab=unref

Related information
v “-g” on page 173
v “-qdbxextra (C only)” on page 140
v “-qstatsym” on page 346

Chapter 4. Compiler options reference 355

-qsyntaxonly
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Performs syntax checking without generating an object file.

Syntax

►► -q syntaxonly ►◄

Defaults

By default, source files are compiled and linked to generate an executable file.

Usage

The -P, -E, and -C options override the -qsyntaxonly option, which in turn
overrides the -c and -o options.

The -qsyntaxonly option suppresses only the generation of an object file. All other
files, such as listing files, are still produced if their corresponding options are set.

Predefined macros

None.

Examples

To check the syntax of myprogram.c without generating an object file, enter:
xlc myprogram.c -qsyntaxonly

Related information
v “-C, -C!” on page 122
v “-c” on page 121
v “-E” on page 146
v “-o” on page 281
v “-P” on page 293

-t
Category

Compiler customization

Pragma equivalent

None.

356 XL C/C++: Compiler Reference

Purpose

Applies the prefix specified by the -B option to the designated components.

Syntax

►► ▼-t a
b
c
C
d
E
f
I
L
l
m
p

►◄

Defaults

The default paths for all of the compiler components are defined in the compiler
configuration file.

Parameters

The following table shows the correspondence between -t parameters and the
component names:

Parameter Description Component name

a The assembler as

b The low-level optimizer xlCcode

c The compiler front end xlcentry, xlCentry

C++

C The C++ compiler front end xlCentry

d The disassembler dis

E The CreateExportList utility CreateExportList

C++

f The c++filt utility c++filt

I (uppercase i) The high-level optimizer,
compile step

ipa

L The high-level optimizer, link
step

ipa

l (lowercase L) The linker ld

C++

m The linkage helper munch

p The preprocessor xlCentry

Chapter 4. Compiler options reference 357

Usage

Use this option with the -Bprefix option. If -B is specified without the prefix, the
default prefix is /lib/o. If -B is not specified at all, the prefix of the standard
program names is /lib/n.

Note: If you use the p suboption, it can cause the source code to be preprocessed
separately before compilation, which can change the way a program is compiled.

Predefined macros

None.

Examples

To compile myprogram.c so that the name /u/newones/compilers/ is prefixed to the
compiler and assembler program names, enter:
xlc myprogram.c -B/u/newones/compilers/ -tca

Related information
v “-B” on page 118

-qtabsize
Category

Language element control

Pragma equivalent

#pragma options tabsize

Purpose

Sets the default tab length, for the purposes of reporting the column number in
error messages.

Syntax

►► -q tabsize = number ►◄

Defaults

-qtabsize=8

Parameters

number
The number of character spaces representing a tab in your source program.

Usage

This option only affects error messages that specify the column number at which
an error occurred.

358 XL C/C++: Compiler Reference

Predefined macros

None.

Examples

To compile myprogram.c so the compiler considers tabs as having a width of one
character, enter:
xlc myprogram.c -qtabsize=1

In this case, you can consider one character position (where each character and
each tab equals one position, regardless of tab length) as being equivalent to one
character column.

-qtbtable
Category

Object code control

Pragma equivalent

#pragma options tbtable

Purpose

Controls the amount of debugging traceback information that is included in the
object files.

Many performance measurement tools require a full traceback table to properly
analyze optimized code. If a traceback table is generated, it is placed in the text
segment at the end of the object code, and contains information about each
function, including the type of function, as well as stack frame and register
information.

Syntax

►►
full

-q tbtable = none
small

►◄

Defaults
v -qtbtable=full

v -qtbtable=small when -O or higher optimization is in effect

Parameters

full
A full traceback table is generated, complete with name and parameter
information.

none
No traceback table is generated. The stack frame cannot be unwound so
exception handling is disabled.

Chapter 4. Compiler options reference 359

small
The traceback table generated has no name or parameter information, but
otherwise has full traceback capability. This suboption reduces the size of the
program code.

Usage

The #pragma options directive must be specified before the first statement in the
compilation unit.

Predefined macros

None.

Related information
v “-g” on page 173

-qtempinc (C++ only)
Category

Template control

Pragma equivalent

None.

Purpose

Generates separate template include files for template functions and class
declarations, and places these files in a directory which can be optionally specified.

Syntax

►►
notempinc

-q tempinc
= directory_path

►◄

Defaults

-qnotempinc

Parameters

directory_path
The directory in which the generated template include files are to be placed.

Usage

The -qtempinc and -qtemplateregistry compiler options are mutually exclusive.
Specifying -qtempinc implies -qnotemplateregistry. Similarly, specifying
-qtemplateregistry implies -qnotempinc. However, specifying -qnotempinc does
not imply -qtemplateregistry.

Specifying either -qtempinc or -qtemplateregistry implies -qtmplinst=auto.

360 XL C/C++: Compiler Reference

Predefined macros

__TEMPINC__ is predefined to 1 when -qtempinc is in effect; otherwise, it is not
defined.

Examples

To compile the file myprogram.C and place the generated include files for the
template functions in the /tmp/mytemplates directory, enter:
xlc++ myprogram.C -qtempinc=/tmp/mytemplates

Related information
v “#pragma implementation (C++ only)” on page 426
v “-qtmplinst (C++ only)” on page 368
v “-qtemplateregistry (C++ only)” on page 363
v “-qtemplaterecompile (C++ only)” on page 362
v "Using C++ templates" in the XL C/C++ Optimization and Programming Guide.

-qtemplatedepth (C++ only)
Category

Template control

Pragma equivalent

None.

Purpose

Specifies the maximum number of recursively instantiated template specializations
that will be processed by the compiler.

Syntax

►► -q templatedepth = number ►◄

Defaults

-qtemplatedepth=300

Parameters

number
The maximum number of recursive template instantiations. The number can be
a value in the range of 1 to INT_MAX. If your code attempts to recursively
instantiate more templates than number, compilation halts and an error
message is issued. If you specify an invalid value, the default value of 300 is
used.

Usage

Note that setting this option to a high value can potentially cause an
out-of-memory error due to the complexity and amount of code generated.

Chapter 4. Compiler options reference 361

Predefined macros

None.

Examples

To allow the following code in myprogram.cpp to be compiled successfully:
template <int n> void foo() {

foo<n-1>();
}

template <> void foo<0>() {}

int main() {
foo<400>();

}

Enter:
xlc++ myprogram.cpp -qtemplatedepth=400

Related information
v "Using C++ templates" in the XL C/C++ Optimization and Programming Guide.

-qtemplaterecompile (C++ only)
Category

Template control

Pragma equivalent

None.

Purpose

Helps manage dependencies between compilation units that have been compiled
using the -qtemplateregistry compiler option.

Syntax

►►
templaterecompile

-q notemplaterecompile ►◄

Defaults

-qtemplaterecompile

Usage

If a source file that has been compiled previously is compiled again, the
-qtemplaterecompile option consults the template registry to determine whether
changes to this source file require the recompile of other compilation units. This
can occur when the source file has changed in such a way that it no longer
references a given instantiation and the corresponding object file previously
contained the instantiation. If so, affected compilation units will be recompiled
automatically.

362 XL C/C++: Compiler Reference

The -qtemplaterecompile option requires that object files generated by the
compiler remain in the subdirectory to which they were originally written. If your
automated build process moves object files from their original subdirectory, use the
-qnotemplaterecompile option whenever -qtemplateregistry is enabled.

Predefined macros

None.

Related information
v “-qtmplinst (C++ only)” on page 368
v “-qtempinc (C++ only)” on page 360
v “-qtemplateregistry (C++ only)”
v "Using C++ templates" in the XL C/C++ Optimization and Programming Guide.

-qtemplateregistry (C++ only)
Category

Template control

Pragma equivalent

None.

Purpose

Maintains records of all templates as they are encountered in the source and
ensures that only one instantiation of each template is made.

The first time that the compiler encounters a reference to a template instantiation,
that instantiation is generated and the related object code is placed in the current
object file. Any further references to identical instantiations of the same template in
different compilation units are recorded but the redundant instantiations are not
generated. No special file organization is required to use the -qtemplateregistry
option.

Syntax

►►
notemplateregistry

-q templateregistry
= file_path

►◄

Defaults

-qnotemplateregistry

Parameters

file_path
The path for the file that will contain the template instantiation information. If
you do not specify a location the compiler saves all template registry
information to the file templateregistry stored in the current working
directory.

Chapter 4. Compiler options reference 363

Usage

Template registry files must not be shared between different programs. If there are
two or more programs whose source is in the same directory, relying on the
default template registry file stored in the current working directory may lead to
incorrect results.

The -qtempinc and -qtemplateregistry compiler options are mutually exclusive.
Specifying -qtempinc implies -qnotemplateregistry. Similarly, specifying
-qtemplateregistry implies -qnotempinc. However, specifying
-qnotemplateregistry does not imply -qtempinc.

Specifying either -qtempinc or -qtemplateregistry implies -qtmplinst=auto.

Predefined macros

None.

Examples

To compile the file myprogram.C and place the template registry information into
the /tmp/mytemplateregistry file, enter the command:
xlc++ myprogram.C -qtemplateregistry=/tmp/mytemplateregistry

Related information
v “-qtmplinst (C++ only)” on page 368
v “-qtempinc (C++ only)” on page 360
v “-qtemplaterecompile (C++ only)” on page 362
v "Using C++ templates" in the XL C/C++ Optimization and Programming Guide.

-qtempmax (C++ only)
Category

Template control

Pragma equivalent

None.

Purpose

Specifies the maximum number of template include files to be generated by the
-qtempinc option for each header file.

Syntax

►► -q tempmax = number ►◄

Defaults

-qtempmax=1

364 XL C/C++: Compiler Reference

Parameters

number
The maximum number of template include files. The number can be a value
between 1 and 99 999.

Usage

This option should be used when the size of files generated by the -qtempinc
option become very large and take a significant amount of time to recompile when
a new instance is created.

Instantiations are spread among the template include files.

Predefined macros

None.

Related information
v “-qtempinc (C++ only)” on page 360
v "Using C++ templates" in the XL C/C++ Optimization and Programming Guide.

-qthreaded
Category

Object code control

Pragma equivalent

None.

Purpose

Indicates to the compiler whether it must generate threadsafe code.

Always use this option when compiling or linking multithreaded applications. This
option does not make code threadsafe, but it will ensure that code already
threadsafe will remain so after compilation and linking. It also ensures that all
optimizations are threadsafe.

Syntax

►►
nothreaded

-q threaded ►◄

Defaults
v -qnothreaded for all invocation commands except those with the _r suffix
v -qthreaded for all _r-suffixed invocation commands

Usage

This option applies to both compile and linker operations.

Chapter 4. Compiler options reference 365

To maintain thread safety, a file compiled with the -qthreaded option, whether
explicitly by option selection or implicitly by choice of _r compiler invocation
mode, must also be linked with the -qthreaded option.

Predefined macros

None.

Related information
v “-qsmp” on page 334

-qtimestamps
Category

“Output control” on page 77

Pragma equivalent

None.

Purpose

Controls whether or not implicit time stamps are inserted into an object file.

Syntax

►►
timestamps

-q notimestamps ►◄

Defaults

-qtimestamps

Usage

By default, the compiler inserts an implicit time stamp in an object file when it is
created. In some cases, comparison tools may not process the information in such
binaries properly. Controlling time stamp generation provides a way of avoiding
such problems. To omit the time stamp, use the option -qnotimestamps.

This option does not affect time stamps inserted by pragmas and other explicit
mechanisms.

-qtls
Category

Object code control

Pragma equivalent

None.

366 XL C/C++: Compiler Reference

Purpose

Enables recognition of the __thread storage class specifier, which designates
variables that are to be allocated thread-local storage; and specifies the threadlocal
storage model to be used.

When this option is in effect, any variables marked with the __thread storage class
specifier are treated as local to each thread in a multithreaded application. At run
time, a copy of the variable is created for each thread that accesses it, and
destroyed when the thread terminates. Like other high-level constructs that you
can use to parallelize your applications, thread-local storage prevents race
conditions to global data, without the need for low-level synchronization of
threads.

Suboptions allow you to specify thread-local storage models, which provide better
performance but are more restrictive in their applicability.

Syntax

►► -q tls
unsupported

= default
global-dynamic
initial-exec
local-exec
local-dynamic

notls

►◄

Defaults

-qtls=unsupported

Specifying -qtls with no suboption is equivalent to specifying -qtls=default.

Parameters

unsupported
The __thread keyword is not recognized and thread-local storage is not
enabled. This suboption is equivalent to -qnotls.

default
Uses the appropriate model depending on the setting of the -qpic option,
which determines whether position-independent code is generated or not.
When -qpic is in effect, this suboption results in -qtls=global-dynamic. When
-qnopic is in effect, this suboption results in -qtls=initial-exec (-qpic is in effect
by default).

global-dynamic
This model is the most general, and can be used for all thread-local variables.

initial-exec
This model provides better performance than the global-dynamic or
local-dynamic models, and can be used for thread-local variables defined in
dynamically-loaded modules, provided that those modules are loaded at the
same time as the executable. That is, it can only be used when all thread-local
variables are defined in modules that are not loaded through dlopen.

Chapter 4. Compiler options reference 367

local-dynamic
This model provides better performance than the global-dynamic model, and
can be used for thread-local variables defined in dynamically-loaded modules.
However, it can only be used when all references to thread-local variables are
contained in the same module in which the variables are defined.

local-exec
This model provides the best performance of all of the models, but can only be
used when all thread-local variables are defined and referenced by the main
executable.

Predefined macros

None.

Related information
v “-qpic” on page 304
v "The __thread storage class specifier" in the XL C/C++ Language Reference

-qtmplinst (C++ only)
Category

Template control

Pragma equivalent

None.

Purpose

Manages the implicit instantiation of templates.

Syntax

►►
auto

-q tmplinst = always
noinline
none

►◄

Defaults

-qtmplinst=auto

Parameters

always
Instructs the compiler to always perform implicit instantiation. If specified,
-qtempinc and -qtemplateregistry compiler options are ignored.

auto
Manages the implicit instantiations according to the -qtempinc and
-qtemplateregistry options. If both -qtempinc and -qtemplateregistry are
disabled, implicit instantiation will always be performed; otherwise if one of
the options is enabled, the compiler manages the implicit instantiation
according to that option.

368 XL C/C++: Compiler Reference

noinline
Instructs the compiler to not perform any implicit instantiations. If specified,
the -qtempinc and -qtemplateregistry compiler options are ignored.

none
Instructs the compiler to instantiate only inline functions. No other implicit
instantiation is performed. If specified, -qtempinc and -qtemplateregistry
compiler options are ignored.

Usage

You can also use #pragma do_not_instantiate to suppress implicit instantiation of
selected template classes. See “#pragma do_not_instantiate (C++ only)” on page
414.

Predefined macros

None.

Related information
v “-qtemplateregistry (C++ only)” on page 363
v “-qtempinc (C++ only)” on page 360
v “#pragma do_not_instantiate (C++ only)” on page 414
v "Explicit instantiation" in the XL C/C++ Language Reference

-qtmplparse (C++ only)
Category

Template control

Pragma equivalent

None.

Purpose

Controls whether parsing and semantic checking are applied to template
definitions.

Syntax

►►
no

-q tmplparse = error
warn

►◄

Defaults

-qtmplparse=no

Parameters

error
Treats problems in template definitions as errors, even if the template is not
instantiated.

Chapter 4. Compiler options reference 369

no Do not parse template definitions. This reduces the number of errors issued in
code written for previous versions of VisualAge C++ and predecessor
products.

warn
Parses template definitions and issues warning messages for semantic errors.

Usage

This option applies to template definitions, not their instantiations. Regardless of
the setting of this option, error messages are produced for problems that appear
outside definitions. For example, messages are always produced for errors found
during the parsing or semantic checking of constructs such as the following:
v return type of a function template
v parameter list of a function template

Predefined macros

None.

Related information
v "Using C++ templates" in the XL C/C++ Optimization and Programming Guide.

-qtocmerge
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Enables TOC merging to reduce TOC pointer loads and improves the scheduling of
external loads.

Syntax

►►
notocmerge

-q tocmerge ►◄

Defaults

-qnotocmerge

Usage

To use -qtocmerge, you must also use the -bImportfile linker option to specify the
name of the file from which the compiler reads.

Predefined macros

None.

370 XL C/C++: Compiler Reference

-qtrigraph
Category

Language element control

Pragma equivalent

None.

Purpose

Enables the recognition of trigraph key combinations to represent characters not
found on some keyboards.

Syntax

►►
trigraph

-q notrigraph ►◄

Defaults

-qtrigraph

Usage

A trigraph is a three-key character combination that let you produce a character
that is not available on all keyboards. For details, see "Trigraph sequences" in the
XL C/C++ Language Reference.

C++

To override the default -qtrigraph setting, you must specify -qnotrigraph

after the -qlanglvl option on the command line.

Predefined macros

None.

Related information
v "Trigraph sequences" in the XL C/C++ Language Reference
v “-qdigraph” on page 142
v “-qlanglvl” on page 224

-qtune
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Tunes instruction selection, scheduling, and other architecture-dependent
performance enhancements to run best on a specific hardware architecture. Allows

Chapter 4. Compiler options reference 371

specification of a target SMT mode to direct optimizations for best performance in
that mode.

Syntax

►►
balanced

-q tune = auto
ppc970 st
pwr4 : balanced
pwr5 smt2
pwr6 smt4
pwr7 smt8
pwr8

►◄

Defaults

-qtune=balanced:balanced when no valid -qarch setting is in effect. Otherwise, the
default depends on the effective -qarch setting. For details, see Table 31 on page
373.

Parameters for CPU suboptions

The following CPU suboptions allow you to specify a particular architecture for
the compiler to target for best performance:

auto
Optimizations are tuned for the platform on which the application is compiled.

balanced
Optimizations are tuned across a selected range of recent hardware.

ppc970
Optimizations are tuned for the PowerPC 970 processor.

pwr4
Optimizations are tuned for the POWER4 hardware platforms.

pwr5
Optimizations are tuned for the POWER5 hardware platforms.

pwr6
Optimizations are tuned for the POWER6 hardware platforms.

pwr7
Optimizations are tuned for the POWER7 or POWER7+ hardware platforms.

pwr8
Optimizations are tuned for the POWER8 hardware platforms.

Parameters for SMT suboptions

The following simultaneous multithreading (SMT) suboptions allow you to
optionally specify an execution mode for the compiler to target for best
performance.

balanced
Optimizations are tuned for performance across various SMT modes for a
selected range of recent hardware.

st Optimizations are tuned for single-threaded execution.

372 XL C/C++: Compiler Reference

smt2
Optimizations are tuned for SMT2 execution mode (two threads).

smt4
Optimizations are tuned for SMT4 execution mode (four threads).

smt8
Optimizations are tuned for SMT8 execution mode (eight threads).

Usage

If you want your program to run on more than one architecture, but to be tuned to
a particular architecture, you can use a combination of the -qarch and -qtune
options. These options are primarily of benefit for floating-point intensive
programs.

By arranging (scheduling) the generated machine instructions to take maximum
advantage of hardware features such as cache size and pipelining, -qtune can
improve performance. It only has an effect when used in combination with options
that enable optimization.

A particular SMT suboption is valid if the effective -qarch option supports the
specified SMT mode. The acceptable combinations of the -qarch and SMT tune
options are listed in Table 31. The compiler ignores any invalid -qarch/-qtune
SMT combination.

Although changing the -qtune setting may affect the performance of the resulting
executable, it has no effect on whether the executable can be executed correctly on
a particular hardware platform.

Acceptable combinations of -qarch and -qtune are shown in the following table.

Table 31. Acceptable -qarch/-qtune combinations

-qarch
option Default -qtune setting

Available -qtune CPU
settings

Available -qtune
SMT settings

ppc balanced:balanced auto | pwr4 | pwr5 | pwr6 |
pwr7 | pwr8 | ppc970 |
balanced

balanced | st

ppcgr balanced:balanced auto | pwr4 | pwr5 | pwr6 |
pwr7 | pwr8 | ppc970 |
balanced

balanced | st

ppc64 balanced:balanced auto | pwr4 | pwr5 | pwr6 |
pwr7 | pwr8 | ppc970 |
balanced

balanced | st

ppc64gr balanced:balanced auto | pwr4 | pwr5 | pwr6 |
pwr7 | pwr8 | ppc970 |
balanced

balanced | st

ppc64grsq balanced:balanced auto | pwr4 | pwr5 | pwr6 |
pwr7 | pwr8 | ppc970 |
balanced

balanced | st

ppc64v balanced:balanced auto | ppc970 | pwr6 | pwr7
| pwr8 | balanced

balanced | st

ppc970 ppc970:st auto | ppc970 | balanced balanced | st

Chapter 4. Compiler options reference 373

Table 31. Acceptable -qarch/-qtune combinations (continued)

-qarch
option Default -qtune setting

Available -qtune CPU
settings

Available -qtune
SMT settings

pwr4 pwr4:st auto | pwr4 | pwr5 | pwr6 |
pwr7 | pwr8 | ppc970 |
balanced

balanced | st

pwr5 pwr5:st auto | pwr5 | pwr6 | pwr7 |
pwr8 | balanced

balanced | st

pwr5x pwr5:st auto | pwr5 | pwr6 | pwr7 |
pwr8 | balanced

balanced | st | smt2

pwr6 pwr6:st auto | pwr6 | pwr7 | pwr8 |
balanced

balanced | st | smt2

pwr6e pwr6:st auto | pwr6 | balanced balanced | st

pwr7 pwr7:st auto | pwr7 | pwr8 |
balanced

balanced | st | smt2
| smt4

pwr8 pwr8:st auto | pwr8 | balanced balanced | st | smt2
| smt4 | smt8

Predefined macros

None.

Examples

To specify that the executable program testing compiled from myprogram.c is to be
optimized for a POWER7 hardware platform, enter:
xlc -o testing myprogram.c -qtune=pwr7

To specify that the executable program testing compiled from myprogram.c is to be
optimized for a POWER8 hardware platform configured for the SMT4 mode, enter:
xlc -o testing myprogram.c -qtune=pwr8:smt4

Related information
v “-qarch” on page 109
v “-q32, -q64” on page 100
v “Specifying compiler options for architecture-specific compilation” on page 10
v "Optimizing your applications" in the XL C/C++ Optimization and Programming

Guide

-qtwolink (C++ only)
Category

Linking

Pragma equivalent

None.

374 XL C/C++: Compiler Reference

Purpose

Minimizes the number of static constructors included from libraries and object
files.

When -qnotwolinkis in effect, all static constructors in .o files and object files are
invoked. This generates larger executable files, but ensures that placing a .o file in
a library does not change the behavior of a program.

Normally, the compiler links in all static constructors defined anywhere in the
object (.o) files and library (.a) files. The -qtwolink option makes link time longer,
but linking is compatible with older versions of C or C++ compilers.

Syntax

►►
notwolink

-q twolink ►◄

Defaults

-qnotwolink

Usage

Before using -qtwolink, make sure that any .o files placed in an archive do not
change the behavior of the program.

Predefined macros

None.

Examples

Given the include file foo.h:
#include <stdio.h>
struct foo {

foo() {printf (“in foo\n”);}
~foo() {printf (“in ~foo\n”);}

};

and the C++ program t.C:
#include “foo.h”
foo bar;

and the program t2.C:
#include “foo.h”
main() { }

Compile t.C and t2.C in two steps, first invoking the compiler to produce object
files:
xlc++ -c t.C t2.C

and then link them to produce the executable file a.out:
xlc++ t.o t2.o

Chapter 4. Compiler options reference 375

Invoking a.out produces:
in foo
in ~foo

If you use the AIX ar command with the t.o file to produce an archive file t.a:
ar rv t.a t.o

and then use the default compiler command:
xlc++ t2.o t.a

the output from the executable file is the same as above:
in foo
in ~foo

However, if you use the -qtwolink option:
xlc++ -qtwolink t2.o t.a

there is no output from the executable file a.out because the static constructor
foo() in t.C is not found.

-U
Category

Language element control

Pragma equivalent

None.

Purpose

Undefines a macro defined by the compiler or by the -D compiler option.

Syntax

►► -U name ►◄

Defaults

Many macros are predefined by the compiler; see Chapter 6, “Compiler predefined
macros,” on page 483 for those that can be undefined (that is, are not protected).
The compiler configuration file also uses the -D option to predefine several macro
names for specific invocation commands; for details, see the configuration file for
your system.

Parameters

name
The macro you want to undefine.

376 XL C/C++: Compiler Reference

Usage

The -U option is not equivalent to the #undef preprocessor directive. It cannot
undefine names defined in the source by the #define preprocessor directive. It can
only undefine names defined by the compiler or by the -D option.

The -Uname option has a higher precedence than the -Dname option.

Predefined macros

None.

Examples

Assume that your operating system defines the name __unix, but you do not want
your compilation to enter code segments conditional on that name being defined,
compile myprogram.c so that the definition of the name __unix is nullified by
entering:
xlc myprogram.c -U__unix

Related information
v “-D” on page 136

-qunique
Category

Object code control

Pragma equivalent

None.

Purpose

Generates unique names for static constructor/destructor file compilation units.

Syntax

►►
nounique

-q unique ►◄

Defaults

-qnounique

Usage

Unique names are generated with -qunique by encoding random numbers into the
name of the static constructor and destructor functions. Default behavior is
encoding the absolute path name of the source file in the constructor and
destructor functions. If the absolute path name will be identical for multiple
compilations (for example, if a make script is used), the -qunique option is
necessary.

Chapter 4. Compiler options reference 377

If you use -qunique, you must always link with all .o and .a files. Do not include
an executable file on the link step.

Predefined macros

None.

Examples

Suppose you want to compile several files using the same path name, ensuring
that static construction works correctly. A makefile may generate the following
steps:
sqlpreprocess file1.sql > t.C

xlc++ -qunique t.C -o file1.o
rm -f t.C
sqlpreprocess file2.sql > t.C

xlc++ -qunique t.C -o file2.o
rm -f t.C

xlc++ file1.o file2.o

The following code is a sample makefile for the above example:
rule to get from file.sql to file.o
.SUFFIXES: .sql
.sql.o:

sqlpreprocess $< > t.C
$(CCC) t.C -c $(CCFLAGS) -o $@
rm -f t.C

Related information
v “#pragma fini (C only)” on page 417
v “#pragma init (C only)” on page 426

-qunroll
Category

Optimization and tuning

Pragma equivalent

#pragma options [no]unroll[= yes|no|auto|n]

#pragma unroll

Purpose

Controls loop unrolling, for improved performance.

When unroll is in effect, the optimizer determines and applies the best unrolling
factor for each loop; in some cases, the loop control might be modified to avoid
unnecessary branching. The compiler remains the final arbiter of whether the loop
is unrolled.

378 XL C/C++: Compiler Reference

Syntax

Option syntax

►►

auto
unroll = yes

no
n

-q nounroll ►◄

Pragma syntax

►► # pragma nounroll
unroll

(n)

►◄

Defaults

-qunroll=auto

Parameters

The following suboptions are for -qunroll only:

auto (option only)
Instructs the compiler to perform basic loop unrolling.

yes (option only)
Instructs the compiler to search for more opportunities for loop unrolling than
that performed with auto. In general, this suboption has more chances to
increase compile time or program size than auto processing, but it might also
improve your application's performance.

no (option only)
Instructs the compiler to not unroll loops.

n Instructs the compiler to unroll loops by a factor of n. In other words, the body
of a loop is replicated to create n copies and the number of iterations is
reduced by a factor of 1/n. The -qunroll=n option specifies a global unroll
factor that affects all loops that do not already have an unroll pragma. The
value of n must be a positive integer.

Specifying #pragma unroll(1) or -qunroll=1 disables loop unrolling, and is
equivalent to specifying #pragma nounroll or -qnounroll. If n is not specified
and if -qhot, -qsmp, -O4, or -O5 is specified, the optimizer determines an
appropriate unrolling factor for each nested loop.

The compiler might limit unrolling to a number smaller than the value you
specify for n. This is because the option form affects all loops in source files to
which it applies and large unrolling factors might significantly increase
compile time without necessarily improving runtime performance. To specify
an unrolling factor for particular loops, use the #pragma form in those loops.

Specifying -qunroll without any suboptions is equivalent to -qunroll=yes.

-qnounroll is equivalent to -qunroll=no.

Chapter 4. Compiler options reference 379

Usage

The pragma overrides the option setting for a designated loop. However, even if
#pragma unroll is specified for a given loop, the compiler remains the final arbiter
of whether the loop is unrolled.

Only one pragma can be specified on a loop. The pragma must appear
immediately before the loop or the #pragma block_loop directive to take effect.

The pragma affects only the loop that follows it. An inner nested loop requires a
#pragma unroll directive to precede it if the wanted loop unrolling strategy is
different from that of the prevailing option.

The #pragma unroll and #pragma nounroll directives can only be used on for
loops or #pragma block_loop directives. They cannot be applied to do while and
while loops.

The loop structure must meet the following conditions:
v There must be only one loop counter variable, one increment point for that

variable, and one termination variable. These cannot be altered at any point in
the loop nest.

v Loops cannot have multiple entry and exit points. The loop termination must be
the only means to exit the loop.

v Dependencies in the loop must not be "backwards-looking". For example, a
statement such as A[i][j] = A[i -1][j + 1] + 4 must not appear within the
loop.

Predefined macros

None.

Examples

In the following example, the #pragma unroll(3) directive on the first for loop
requires the compiler to replicate the body of the loop three times. The #pragma
unroll on the second for loop allows the compiler to decide whether to perform
unrolling.
#pragma unroll(3)
for(i=0;i < n; i++)
{

a[i] = b[i] * c[i];
}

#pragma unroll
for(j=0;j < n; j++)
{

a[j] = b[j] * c[j];

}

In this example, the first #pragma unroll(3) directive results in:
i=0;
if (i>n-2) goto remainder;
for (; i<n-2; i+=3) {

a[i]=b[i] * c[i];
a[i+1]=b[i+1] * c[i+1];
a[i+2]=b[i+2] * c[i+2];

}

380 XL C/C++: Compiler Reference

if (i<n) {
remainder:
for (; i<n; i++) {
a[i]=b[i] * c[i];

}
}

Related information
v “#pragma block_loop” on page 407
v “#pragma loopid” on page 429
v “#pragma stream_unroll” on page 453
v “#pragma unrollandfuse” on page 454

-qunwind
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Specifies whether the call stack can be unwound by code looking through the
saved registers on the stack.

Specifying -qnounwind asserts to the compiler that the stack will not be unwound,
and can improve optimization of nonvolatile register saves and restores.

Syntax

►►
unwind

-q nounwind ►◄

Defaults

-qunwind

Usage

The setjmp and longjmp families of library functions are safe to use with
-qnounwind.

C++

Specifying -qnounwind also implies -qnoeh.

Predefined macros

None.

Related information
v “-qeh (C++ only)” on page 147

Chapter 4. Compiler options reference 381

-qupconv (C only)
Category

Portability and migration

Pragma equivalent

#pragma options [no]upconv

Purpose

Specifies whether the unsigned specification is preserved when integral promotions
are performed.

When noupconv is in effect, any unsigned type smaller than an int is converted to
int during integral promotions. When upconv is in effect, these types are
converted to unsigned int during integral promotions. The promotion rule does
not apply to types that are larger than int.

Syntax

►►
noupconv

-q upconv ►◄

Defaults
v -qnoupconv for all language levels except classic or extended

v -qupconv when the classic or extended language levels are in effect

Usage

Sign preservation is provided for compatibility with older dialects of C. The ANSI
C standard requires value preservation as opposed to sign preservation.

Predefined macros

None.

Examples

To compile myprogram.c so that all unsigned types smaller than int are converted
to unsigned int, enter:
xlc myprogram.c -qupconv

The following short listing demonstrates the effect of -qupconv:
#include <stdio.h>
int main(void) {

unsigned char zero = 0;
if (-1 <zero)
printf(“Value-preserving rules in effect\n”);

else
printf(“Unsignedness-preserving rules in effect\n”);

return 0;
}

382 XL C/C++: Compiler Reference

Related information
v "Usual arithmetic conversions" in the XL C/C++ Language Reference
v “-qlanglvl” on page 224

-qutf
Category

Language element control

Pragma equivalent

None.

Purpose

Enables recognition of UTF literal syntax.

Syntax

►► -q noutf
utf

►◄

Defaults

v C -qnoutf
v C++ -qutf for all language levels except -qlanglvl=strict98. -qnoutf when

-qlanglvl=strict98 is in effect.

Usage

The compiler uses iconv library routine to convert the source file to Unicode. If the
source file cannot be converted, the compiler will ignore the -qutf option and issue
a warning.

Predefined macros

None.

Related information
v "UTF literals" in the XL C/C++ Language Reference

-v, -V
Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Reports the progress of compilation, by naming the programs being invoked and
the options being specified to each program.

Chapter 4. Compiler options reference 383

When the -v option is in effect, information is displayed in a comma-separated list.
When the -V option is in effect, information is displayed in a space-separated list.

Syntax

►► -v
-V

►◄

Defaults

The compiler does not display the progress of the compilation.

Usage

The -v and -V options are overridden by the -# option.

Predefined macros

None.

Examples

To compile myprogram.c so you can watch the progress of the compilation and see
messages that describe the progress of the compilation, the programs being
invoked, and the options being specified, enter:
xlc myprogram.c -v

Related information
v “-# (pound sign)” on page 99

-qvecnvol
Category

Portability and migration

Pragma equivalent

None.

Purpose

Specifies whether to use volatile or nonvolatile vector registers.

Syntax

►►
novecnvol

-q vecnvol ►◄

Defaults

-qnovecnvol

384 XL C/C++: Compiler Reference

Usage

Volatile vector registers are those whose value is not preserved across function calls
or across save context, jump or switch context system library functions. When
-qvecnvol is in effect, the compiler uses both volatile and nonvolatile vector
registers. When -qnovecnvol is in effect, the compiler uses only volatile vector
registers.

This option is required for programs where there is risk of interaction between
modules built with AIX libraries before AIX 5.3TL3 and vector register use.
Restricting the compiler to use only volatile registers will make your vector
programs safe but it potentially forces the compiler to store vector data to memory
more often and therefore results in reducing performance.

Notes:

v This option requires platforms that support vector instructions.
v The -qnovecnvol option performs independently from -qsimd=auto | noauto,

-qaltivec | -qnoaltivec and pragma=nosimd.
v Before AIX 5.3TL3, by default only 20 volatile registers (vr0-vr19) are used, and

12 nonvolatile vector registers (vr20 - vr31) are not used. You can use these
registers only when -qvecnvol is in effect.

v -qvecnvol should be enabled only when no legacy code that saves and restores
nonvolatile registers is involved. Using -qvecnvol and linking with legacy code,
may result runtime failure.

Predefined macros

None.

Related information
v “-qaltivec” on page 109
v “-qsimd” on page 330

-qversion
Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Displays the version and release of the compiler being invoked.

Syntax

►►
noversion

-q version
= verbose

►◄

Chapter 4. Compiler options reference 385

Defaults

-qnoversion

Parameters

verbose
Displays information about the version, release, and level of each compiler
component installed.

Usage

When you specify -qversion, the compiler displays the version information and
exits; compilation is stopped. If you want to save this information to the output
object file, you can do so with the -qsaveopt -c options.

-qversion specified without the verbose suboption shows compiler information in
the format:
product_nameVersion: VV.RR.MMMM.LLLL

where:
V Represents the version.
R Represents the release.
M Represents the modification.
L Represents the level.

For more details, see Example 1.

-qversion=verbose shows component information in the following format:
component_name Version: VV.RR(product_name) Level: component_build_date ID:
component_level_ID

where:
component_name

Specifies an installed component, such as the low-level optimizer.
component_build_date

Represents the build date of the installed component.
component_level_ID

Represents the ID associated with the level of the installed component.

For more details, see Example 2.

Predefined macros

None.

Example 1

The output of specifying the -qversion option:
IBM XL C/C++ for AIX, V13.1.3 (5765-J07; 5725-C72)
Version: 13.01.0002.0000

Example 2

The output of specifying the -qversion=verbose option:

386 XL C/C++: Compiler Reference

IBM XL C/C++ for AIX, V13.1.3 (5765-J07; 5725-C72)
Version: 13.01.0003.0000
Driver Version: 13.1.3(C/C++) Level: 150508
ID: _dRic8vWfEeSjz7qEhQiYJQ
C Front End Version: 13.1.3(C/C++) Level: 150506
ID: _GyiUoOiLEeSbzZ-i2Itj4A
C++ Front End Version: 13.1.3(C/C++) Level: 150511
ID: _XxrPQPhCEeSjz7qEhQiYJQ
High-Level Optimizer Version: 13.1.3(C/C++) and 15.1.3(Fortran)
Level: 150512 ID: _nAVYcvkLEeSjz7qEhQiYJQ
Low-Level Optimizer Version: 13.1.3(C/C++) and 15.1.3(Fortran)
Level: 150511 ID: _X1GWsPhCEeSjz7qEhQiYJQ

Related information
v “-qsaveopt” on page 325

-qvisibility
Category

Optimization and tuning

Pragma equivalent

#pragma GCC visibility push (default | protected | hidden | internal)

#pragma GCC visibility pop

Purpose

Specifies the visibility attribute for external linkage entities in object files. The
external linkage entities have the visibility attribute that is specified by the
-qvisibility option if they do not get visibility attributes from pragma directives,
explicitly specified attributes, or propagation rules.

Syntax

►►
unspecified

-q visibility = default
hidden
protected
internal

►◄

Defaults

-qvisibility=unspecified

Parameters

unspecified
Indicates that the affected external linkage entities do not have visibility
attributes. Whether these entities are exported in shared libraries depends on
the specified export list or the one that is generated by the compiler.

default
Indicates that the affected external linkage entities have the default visibility
attribute. These entities are exported in shared libraries, and they can be
preempted.

Chapter 4. Compiler options reference 387

protected
Indicates that the affected external linkage entities have the protected visibility
attribute. These entities are exported in shared libraries, but they cannot be
preempted.

hidden
Indicates that the affected external linkage entities have the hidden visibility
attribute. These entities are not exported in shared libraries, but their addresses
can be referenced indirectly through pointers.

internal
Indicates that the affected external linkage entities have the internal visibility
attribute. These entities are not exported in shared libraries, and their
addresses are not available to other modules in shared libraries.

Restriction: In this release, the hidden and internal visibility attributes are the
same. The addresses of the entities that are specified with either of these visibility
attributes can be referenced indirectly through pointers.

Usage

The -qvisibility option globally sets visibility attributes for external linkage entities
to describe whether and how an entity defined in one module can be referenced or
used in other modules. Entity visibility attributes affect entities with external
linkage only, and cannot increase the visibility of other entities. Entity preemption
occurs when an entity definition is resolved at link time, but is replaced with
another entity definition at run time.

Note: On the AIX platform, entity preemption occurs only when runtime linking is
used. For details, see "Linking a library to an application" in the XL C/C++
Optimization and Programming Guide. Visibility attributes are supported on AIX 6.1
TL8, AIX 7.1 TL2, AIX 7.2, and higher.

Predefined macros

None.

Examples

To set external linkage entities with the protected visibility attribute in compilation
unit myprogram.c, compile myprogram.c with the -qvisibility=protected option.
xlc myprogram.c -qvisibility=protected -c

All the external linkage entities in the myprogram.c file have the protected visibility
attribute if they do not get visibility attributes from pragma directives, explicitly
specified attributes, or propagation rules.

Related information
v “-qmkshrobj” on page 272
v “-G” on page 176
v “#pragma GCC visibility push, #pragma GCC visibility pop” on page 418
v "Using visibility attributes (IBM extension)" in the XL C/C++ Optimization and

Programming Guide

v "External linkage", "The visibility variable attribute (IBM extension)", "The
visibility function attribute (IBM extension)", "The visibility type attribute (C++

388 XL C/C++: Compiler Reference

only) (IBM extension)", and "The visibility namespace attribute (C++ only) (IBM
extension)" in the XL C/C++ Language Reference

-w
Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Suppresses warning messages.

C

This option is equivalent to specifying -qflag=e : e. C++

This option

is equivalent to specifying -qflag=s : s.

Syntax

►► -w ►◄

Defaults

All informational and warning messages are reported.

Usage

Informational and warning messages that supply additional information to a
severe error are not disabled by this option.

Predefined macros

None.

Examples

Consider the file myprogram.c.
#include <stdio.h>
int main()
{ char* greeting = "hello world";
printf("%d \n", greeting);
return 0;

}

v If you compile myprogram.c without the -w option, the compiler issues a warning
message.
xlC myprogram.c

Output:
"5:18: warning: format specifies type ’int’ but the argument has type ’char *’ [-Wformat]
printf("%d \n", greeting);
~~ ^~~~~
%s
1 warning generated."

Chapter 4. Compiler options reference 389

v If you compile myprogram.c with the -w option, the warning message is
suppressed.
xlC myprogram.c -w

Related information
v “-qflag” on page 156
v “-qsuppress” on page 353

-W
Category

Compiler customization

Pragma equivalent

None.

Purpose

Passes the listed options to a component that is executed during compilation.

Syntax

►► ▼ ▼-W a , option
b
c
C
d
E
f
I
L
l
m
p

►◄

Parameters

option
Any option that is valid for the component to which it is being passed.

The following table shows the correspondence between -W parameters and the
component names:

Parameter Description Component name

a The assembler as

b The low-level optimizer xlCcode

c The compiler front end xlcentry, xlCentry

C++

C The C++ compiler front end xlCentry

d The disassembler dis

E The CreateExportList utility CreateExportList

390 XL C/C++: Compiler Reference

Parameter Description Component name

C++ f The c++filt utility c++filt

I (uppercase i) The high-level optimizer,
compile step

ipa

L The high-level optimizer, link
step

ipa

l (lowercase L) The linker ld

C++

m The linkage helper munch

p The preprocessor xlCentry

Usage

In the string following the -W option, use a comma as the separator for each
option, and do not include any spaces. If you need to include a character that is
special to the shell in the option string, precede the character with a backslash. For
example, if you use the -W option in the configuration file, you can use the escape
sequence backslash comma (\,) to represent a comma in the parameter string.

You do not need the -W option to pass most options to the linker ld; unrecognized
command-line options, except -q options, are passed to it automatically. Only
linker options with the same letters as compiler options, such as -v or -S, strictly
require -W.

By default, static objects are initialized in the order of priority specified by
#pragma priority or the “-qpriority (C++ only)” on page 310 option. You can use
-Wm option to control the initialization order of the objects with the same
priorities. Specifying -Wm -c instructs the compiler to initialize object files with the
same priority in the order in which the files were given on the command line
during linking into the library and the static objects within the files are initialized
according to their declaration order.-Wm -r option, however, specifies that the
object files with the same priority are to be initialized in the opposite order in
which they were encountered during the linking phase.

Note: The -Wm option cannot be used with the -qipa option.

Predefined macros

None.

Examples

To compile the file file.c and pass the linker option -berok to the linker, enter the
following command:
xlc -Wl,-berok file.c

To compile the file uses_many_symbols.c and the assembly file
produces_warnings.s so that produces_warnings.s is assembled with the assembler
option -x (issue warnings and produce cross-reference), and the object files are
linked with the option -s (write list of object files and strip final executable file),
issue the following command:
xlc -Wa,-x -Wl,-s produces_warnings.s uses_many_symbols.c

Chapter 4. Compiler options reference 391

Related information
v “Invoking the compiler” on page 1

-qwarn0x (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation might change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Controls whether to inform users with messages about differences in their
programs caused by migration from the C++98 standard to the C++11 standard.

For example, when -qlanglvl=noc99preprocessor and -qwarn0x are specified, the
C++11 preprocessor evaluates the controlling expressions in the #if and #elif
conditional inclusion directives, and compare the evaluation results against that of
the non-C++11 preprocessor. If they are different, the compiler issues the following
warning message:
The preprocessor controlling expression evaluates differently between C++11
and non-C++11 langlvls.

For another example, when you specify both the -qlanglvl=noc99longlong and
-qwarn0x options, the compiler might display messages to indicate that the types
of an integer literal are different between the non-C++11 and C++11 language
levels. In 32-bit mode, when you use the integer literal 2147483648 to initialize a
variable, the compiler issues the following message:
Integral constant "2147483648" has implied type unsigned long int under
the non-C++11 language levels. It has implied type long long int under C++11.

The compiler issues a similar message for the literal 10000000000000000000 with
the same option setting:
Integral constant "10000000000000000000" has implied type unsigned long
long or is not allowed with "-qlanglvl=extendedintegersafe" under C++11.
Its implied type is not unsigned long long under non-C++11 language levels.

When the -qwarn0x option is enabled, for each occurrence of the following
keywords, the compiler issues a warning message if the corresponding C++11
features and keywords are disabled.
v constexpr

v decltype

v static_assert

392 XL C/C++: Compiler Reference

For example, when the -qwarn0x option is enabled, if you specify both the
-qlanglvl=nostatic_assert and -qnokeyword=static_assert options, the compiler
treats static_assert as an identifier token and issues the following message for
each static_assert identifier it encounters:
C++0x will reserve "static_assert" as a keyword whose C++0x feature can
be enabled by -qlanglvl=static_assert.

Syntax

►►
nowarn0x

-q warn0x ►◄

Defaults

-qnowarn0x

Usage

This option is in effect when -qwarn0x is set.

Predefined macros

None.

Related information
v “-qlanglvl” on page 224
v “-qkeyword” on page 219

-qwarn64
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Enables checking for possible data conversion problems between 32-bit and 64-bit
compiler modes.

When -qwarn64 is in effect, informational messages are displayed where data
conversion may cause problems in 64-bit compilation mode, such as:
v Truncation due to explicit or implicit conversion of long types into int types
v Unexpected results due to explicit or implicit conversion of int types into long

types
v Invalid memory references due to explicit conversion by cast operations of

pointer types into int types
v Invalid memory references due to explicit conversion by cast operations of int

types into pointer types
v Problems due to explicit or implicit conversion of constants into long types

Chapter 4. Compiler options reference 393

v Problems due to explicit or implicit conversion by cast operations of constants
into pointer types

Syntax

►►
nowarn64

-q warn64 ►◄

Defaults

-qnowarn64

Usage

This option functions in either 32-bit or 64-bit compiler modes. In 32-bit mode, it
functions as a preview aid to discover possible 32-bit to 64-bit migration problems.

Predefined macros

None.

Related information
v “-q32, -q64” on page 100
v “Compiler messages” on page 18

-qweakexp
Category

Object code control

Pragma equivalent

None.

Purpose

When used with the -qmkshrobj or -G option, includes or excludes global symbols
marked as weak from the export list generated when you create a shared object.

Syntax

►►
weakexp

-q noweakexp ►◄

Defaults

-qweakexp: weak symbols are exported.

Usage

See “-qweaksymbol” on page 395 for a description of weak symbols.

394 XL C/C++: Compiler Reference

Use the -qweakexp option with the -qmkshrobj or -G option. See the description
of “-qmkshrobj” on page 272 or “-G” on page 176 for more information.

Predefined macros

None.

Examples

To compile myprogram.c into a shared object and prevent weak symbols from being
exported, enter the following command:
xlc myprogram.c -qmkshrobj -qnoweakexp

Related information
v “-qweaksymbol”
v “#pragma weak” on page 456
v “-qmkshrobj” on page 272
v “-G” on page 176

-qweaksymbol
Category

Object code control

Pragma equivalent

None.

Purpose

Enables the generation of weak symbols.

When the -qweaksymbol option is in effect, the compiler generates weak symbols
for the following cases:
v Inline functions with external linkage
v Identifiers specified as weak with #pragma weak or __attribute__((weak))

Syntax

►►
weaksymbol

-q noweaksymbol ►◄

Defaults

-qweaksymbol

Usage

C++ When compiling C++ programs that contain extern inline functions, you
can use -qweaksymbol to suppress linker messages warning of duplicate symbols.

Predefined macros

None.

Chapter 4. Compiler options reference 395

Related information
v “#pragma weak” on page 456
v “-qweakexp” on page 394
v "The weak variable attribute" and "The weak function attribute" in the XL C/C++

Language Reference

-qxcall
Category

Object code control

Pragma equivalent

None.

Purpose

Generates code to treat static functions within a compilation unit as if they were
external functions.

Syntax

►►
noxcall

-q xcall ►◄

Defaults

-qnoxcall

Usage

-qxcall generates slower code than -qnoxcall.

Predefined macros

None.

Examples

To compile myprogram.c so that all static functions are compiled as external
functions, enter:
xlc myprogram.c -qxcall

-qxref
Category

Listings, messages, and compiler information

Pragma equivalent

#pragma options [no]xref

396 XL C/C++: Compiler Reference

Purpose

Produces a compiler listing that includes the cross-reference component of the
attribute and cross-reference section of the listing.

When xref is in effect, a listing file is generated with a .lst suffix for each source
file named on the command line. For details of the contents of the listing file, see
“Compiler listings” on page 21.

Syntax

►►
noxref

-q xref
= full

►◄

Defaults

-qnoxref

Parameters

full
Reports all identifiers in the program. If you specify xref without this
suboption, only those identifiers that are used are reported.

Usage

A typical cross-reference listing has the form:

The listing uses the following character codes:

Table 32. Cross-reference listing codes

Character Meaning

X Function is declared.

Y Function is defined.

Z Function is called.

$ Type is defined, variable is declared/defined.

Variable is assigned to.

& Variable is defined and initialized.

[blank] Identifier is referenced.

{ and } Coordinates of the { and } symbols in a structure definition.

The -qnoprint option overrides this option.

Chapter 4. Compiler options reference 397

Any function defined with the #pragma mc_func directive is listed as being
defined on the line of the pragma directive.

Predefined macros

None.

Examples

To compile myprogram.c and produce a cross-reference listing of all identifiers,
whether they are used or not, enter:
xlc myprogram.c -qxref=full

Related information
v “-qattr” on page 116
v “#pragma mc_func” on page 432

-y
Category

Floating-point and integer control

Pragma equivalent

None.

Purpose

Specifies the rounding mode for the compiler to use when evaluating constant
floating-point expressions at compile time.

Syntax

►►

dn
n

-y m
p
z
di
dm
dna
dnz
dp
dz

►◄

Defaults
v -yn

v -ydn

Parameters

The following suboptions are valid for binary floating-point types only:

m Round toward minus infinity.

n Round to the nearest representable number, ties to even.

398 XL C/C++: Compiler Reference

p Round toward plus infinity.

z Round toward zero.

The following suboptions are valid for decimal floating-point types only:

di Round toward infinities (away from zero).

dm Round toward minus infinity.

dn Round to the nearest representable number, ties to even.

dna
Round to the nearest representable number, ties away from zero.

dnz
Round to the nearest representable number, ties toward zero.

dp Round toward plus infinity.

dz Round toward zero.

Usage

If your program contains operations involving long doubles, the rounding mode
must be set to -yn (round-to-nearest representable number, ties to even).

Predefined macros

None.

Examples

To compile myprogram.c so that constant floating-point expressions are rounded
toward zero at compile time, enter:
xlc myprogram.c -yz -ydz

-Z
Category

Linking

Pragma equivalent

None.

Purpose

Specifies a prefix for the library search path to be used by the linker.

Syntax

►► -Z string ►◄

Defaults

By default, the linker searches the /usr/lib/ directory for library files.

Chapter 4. Compiler options reference 399

Parameters

string
Represents the prefix to be added to the directory search path for library files.

Predefined macros

None.

400 XL C/C++: Compiler Reference

Chapter 5. Compiler pragmas reference

The following sections describe the available pragmas:
v “Pragma directive syntax”
v “Scope of pragma directives” on page 402
v “Summary of compiler pragmas by functional category” on page 402
v “Individual pragma descriptions” on page 407

Pragma directive syntax
XL C/C++ supports the following forms of pragma directives:

#pragma options option_name
These pragmas use exactly the same syntax as their command-line option
equivalent. The exact syntax and list of supported pragmas of this type are
provided in “#pragma options” on page 439.

#pragma name
This form uses the following syntax:

►► ▼# pragma name (suboptions) ►◄

The name is the pragma directive name, and the suboptions are any required
or optional suboptions that can be specified for the pragma, where
applicable.

_Pragma ("name")
This form uses the following syntax:

►► ▼_Pragma (" name (suboptions) ") ►◄

For example, the statement:
_Pragma ("pack(1)")

is equivalent to:
#pragma pack(1)

For all forms of pragma statements, you can specify more than one name and
suboptions in a single #pragma statement.

The name on a pragma is subject to macro substitutions, unless otherwise stated.
The compiler ignores unrecognized pragmas, issuing an informational message
indicating this.

If you have any pragmas that are not common to both C and C++ in code that will
be compiled by both compilers, you may add conditional compilation directives
around the pragmas. (This is not strictly necessary since unrecognized pragmas are

© Copyright IBM Corp. 1996, 2015 401

ignored.) For example, #pragma object_model is only recognized by the C++
compiler, so you may decide to add conditional compilation directives around the
pragma.
#ifdef __cplusplus
#pragma execution_frequency(very_low)
#endif

Scope of pragma directives
Many pragma directives can be specified at any point within the source code in a
compilation unit; others must be specified before any other directives or source
code statements. In the individual descriptions for each pragma, the "Usage"
section describes any constraints on the pragma's placement.

In general, if you specify a pragma directive before any code in your source
program, it applies to the entire compilation unit, including any header files that
are included. For a directive that can appear anywhere in your source code, it
applies from the point at which it is specified, until the end of the compilation
unit.

You can further restrict the scope of a pragma's application by using
complementary pairs of pragma directives around a selected section of code.

For example, using #pragma options source and #pragma options nosource
directives as follows requests that only the selected parts of your source code be
included in your compiler listing:
#pragma options source

/* Source code between the source and nosource pragma
options is included in the compiler listing */

#pragma options nosource

Many pragmas provide "pop" or "reset" suboptions that allow you to enable and
disable pragma settings in a stack-based fashion; examples of these are provided in
the relevant pragma descriptions.

Summary of compiler pragmas by functional category
The XL C/C++ pragmas available are grouped into the following categories:
v “Language element control” on page 403
v “C++ template pragmas” on page 403
v “Floating-point and integer control” on page 403
v “Error checking and debugging” on page 403
v “Listings, messages and compiler information” on page 404
v “Optimization and tuning” on page 404
v “Object code control” on page 405
v “Portability and migration” on page 406
v “Deprecated directives” on page 406

For descriptions of these categories, see “Summary of compiler options by
functional category” on page 77.

402 XL C/C++: Compiler Reference

Language element control
Table 33. Language element control pragmas

Pragma Description

#pragma langlvl (C only)
Determines whether source code and compiler options
should be checked for conformance to a specific language
standard, or subset or superset of a standard.

“#pragma mc_func” on page
432 Allows you to embed a short sequence of machine

instructions "inline" within your program source code.

“#pragma options” on page
439 Specifies compiler options in your source program.

C++ template pragmas
Table 34. C++ template pragmas

Pragma Description

“#pragma define, #pragma
instantiate (C++ only)” on
page 412

Provides an alternative method for explicitly instantiating a
template class.

“#pragma
do_not_instantiate (C++
only)” on page 414

Prevents the specified template declaration from being
instantiated.

“#pragma implementation
(C++ only)” on page 426

For use with the -qtempinc compiler option, supplies the
name of the file containing the template definitions
corresponding to the template declarations contained in a
header file.

Floating-point and integer control
Table 35. Floating-point and integer control pragmas

Pragma Description

#pragma chars Determines whether all variables of type char is treated as
signed or unsigned.

#pragma enum Specifies the amount of storage occupied by enumerations.

Error checking and debugging
Table 36. Error checking and debugging pragmas

Pragma Description

“#pragma ibm snapshot” on
page 425

Specifies a location at which a breakpoint can be set and
defines a list of variables that can be examined when
program execution reaches that location.

#pragma info Produces or suppresses groups of informational messages.

“#pragma operator_new
(C++ only)” on page 438

Determines whether the new and new[] operators throw an
exception if the requested memory cannot be allocated.

Chapter 5. Compiler pragmas reference 403

Listings, messages and compiler information
Table 37. Listings, messages and compiler information pragmas

Pragma Description

“#pragma report (C++
only)” on page 449 Controls the generation of diagnostic messages.

Optimization and tuning
Table 38. Optimization and tuning pragmas

Pragma Description

“#pragma block_loop” on
page 407 Marks a block with a scope-unique identifier.

“#pragma STDC
CX_LIMITED_RANGE” on
page 452

Informs the compiler that complex division and absolute
value are only invoked with values such that intermediate
calculation will not overflow or lose significance.

“#pragma disjoint” on page
413 Lists identifiers that are not aliased to each other within the

scope of their use.

“#pragma
execution_frequency” on
page 415

Marks program source code that you expect will be either
very frequently or very infrequently executed.

“#pragma expected_value”
on page 416

Specifies the value that a parameter passed in a function call
is most likely to take at run time. The compiler can use this
information to perform certain optimizations, such as
function cloning and inlining.

“#pragma GCC visibility
push, #pragma GCC
visibility pop” on page 418

Specifies the visibility attribute for external linkage entities in
object files.

“#pragma ibm iterations” on
page 422

Specifies the approximate average number of loop iterations
for the chosen loop.

“#pragma ibm
max_iterations” on page 423

Specifies the approximate maximum number of loop
iterations for the chosen loop.

“#pragma ibm
min_iterations” on page 424

Specifies the approximate minimum number of loop
iterations for the chosen loop.

#pragma isolated_call
Specifies functions in the source file that have no side effects
other than those implied by their parameters.

“#pragma leaves” on page
428 Informs the compiler that a named function never returns to

the instruction following a call to that function.

“#pragma loopid” on page
429 Marks a block with a scope-unique identifier.

#pragma nosimd When used with -qsimd=auto, disables the generation of
SIMD instructions for the next loop.

#pragma novector When used with -qhot=vector, disables auto-vectorization of
the next loop.

“#pragma option_override”
on page 441 Allows you to specify optimization options at the

subprogram level that override optimization options given
on the command line.

404 XL C/C++: Compiler Reference

Table 38. Optimization and tuning pragmas (continued)

Pragma Description

“#pragma reachable” on
page 447 Informs the compiler that the point in the program after a

named function can be the target of a branch from some
unknown location.

“#pragma reg_killed_by” on
page 448 Specifies registers that may be altered by functions specified

by #pragma mc_func.

“#pragma simd_level” on
page 451

Controls the compiler code generation of vector instructions
for individual loops.

“#pragma stream_unroll” on
page 453 When optimization is enabled, breaks a stream contained in

a for loop into multiple streams.

#pragma unroll
Controls loop unrolling, for improved performance.

“#pragma unrollandfuse” on
page 454 Instructs the compiler to attempt an unroll and fuse

operation on nested for loops.

Object code control
Table 39. Object code control pragmas

Pragma Description

#pragma alloca (C only)
Provides an inline definition of system function alloca when
it is called from source code that does not include the
alloca.h header.

“#pragma comment” on
page 410 Places a comment into the object module.

C “#pragma fini (C
only)” on page 417

Specifies the order in which the runtime library calls a list of
functions after main() completes or exit() is called.

“#pragma hashome (C++
only)” on page 420 Informs the compiler that the specified class has a home

module that will be specified by #pragma ishome.

“#pragma ishome (C++
only)” on page 427 Informs the compiler that the home module of the specified

class is the current compilation unit.

C “#pragma init (C
only)” on page 426

Specifies the order in which the runtime library calls a list of
functions before main() is called.

“#pragma map” on page
430 Converts all references to an identifier to another, externally

defined identifier.

“#pragma pack” on page
443 Sets the alignment of all aggregate members to a specified

byte boundary.

#pragma priority (C++ only)
Specifies the priority level for the initialization of static
objects.

“#pragma reg_killed_by” on
page 448 Specifies registers that may be altered by functions specified

by #pragma mc_func.

Chapter 5. Compiler pragmas reference 405

Table 39. Object code control pragmas (continued)

Pragma Description

#pragma strings
Specifies the storage type for string literals.

“#pragma weak” on page
456 Prevents the linker from issuing error messages if it

encounters a symbol multiply-defined during linking, or if it
does not find a definition for a symbol.

Portability and migration
Table 40. Portability and migration pragmas

Pragma Description

#pragma align
Specifies the alignment of data objects in storage, which
avoids performance problems with misaligned data.

#pragma namemangling
(C++ only) Chooses the name mangling scheme for external symbol

names generated from C++ source code.

“#pragma
namemanglingrule (C++
only)” on page 434

Provides fined-grained control over the name mangling
scheme in effect for selected portions of source code,
specifically with respect to the mangling of cv-qualifiers in
function parameters.

#pragma object_model (C++
only)

Sets the object model to be used for structures, unions, and
classes.

#pragma pass_by_value
(C++ only) Specifies how classes containing const or reference members

are passed in function arguments.

Deprecated directives
The SMP directive listed in the following table has been deprecated and might be
removed in a future release. Use the corresponding OpenMP directive to obtain the
same behavior.

Table 41. Deprecated SMP directives

SMP directive name OpenMP directive/clause name

#pragma ibm schedule The “#pragma omp parallel for” on page 472
pragma with theschedule clause.

You can replace the deprecated SMP directive with the corresponding OpenMP
one. For example:
#pragma omp parallel for schedule(static, 5)
for (i=0; i<N; i++)
{

// ...
}

406 XL C/C++: Compiler Reference

Individual pragma descriptions
This section contains descriptions of individual pragmas available in XL C/C++.

For each pragma, the following information is given:

Category
The functional category to which the pragma belongs is listed here.

Purpose
This section provides a brief description of the effect of the pragma, and
why you might want to use it.

Syntax
This section provides the syntax for the pragma. For convenience, the
#pragma name form of the directive is used in each case. However, it is
perfectly valid to use the alternate C99-style _Pragma operator syntax; see
“Pragma directive syntax” on page 401 for details.

Parameters
This section describes the suboptions that are available for the pragma,
where applicable.

Usage This section describes any rules or usage considerations you should be
aware of when using the pragma. These can include restrictions on the
pragma's applicability, valid placement of the pragma, and so on.

Examples
Where appropriate, examples of pragma directive use are provided in this
section.

#pragma align
See “-qalign” on page 104.

#pragma alloca (C only)
See “-qalloca, -ma (C only)” on page 107.

#pragma block_loop
Category

Optimization and tuning

Purpose

Marks a block with a scope-unique identifier.

Syntax

►► ▼

,

pragma block_loop (expression , name) ►◄

Parameters

expression
An integer expression representing the size of the iteration group.

Chapter 5. Compiler pragmas reference 407

name
An identifier that is unique within the scoping unit. If you do not specify a
name, blocking occurs on the first for loop or loop following the #pragma
block_loop directive.

Usage

For loop blocking to occur, a #pragma block_loop directive must precede a for
loop.

If you specify #pragma unroll, #pragma unrollandfuse or #pragma stream_unroll
for a blocking loop, the blocking loop is unrolled, unrolled and fused or stream
unrolled respectively, if the blocking loop is actually created. Otherwise, this
directive has no effect.

If you specify #pragma unrollandfuse, #pragma unroll or #pragma stream_unroll
directive for a blocked loop, the directive is applied to the blocked loop after the
blocking loop is created. If the blocking loop is not created, this directive is applied
to the loop intended for blocking, as if the corresponding #pragma block_loop
directive was not specified.

You must not specify #pragma block_loop more than once, or combine the
directive with #pragma nounroll, #pragma unroll, #pragma nounrollandfuse,
#pragma unrollandfuse, or #pragma stream_unroll directives for the same for
loop. Also, you should not apply more than one #pragma unroll directive to a
single block loop directive.

Processing of all #pragma block_loop directives is always completed before
performing any unrolling indicated by any of the unroll directives

Examples

The following two examples show the use of #pragma block_loop and #pragma
loop_id for loop tiling:
#pragma block_loop(50, mymainloop)
#pragma block_loop(20, myfirstloop, mysecondloop)
#pragma loopid(mymainloop)

for (i=0; i < n; i++)
{

#pragma loopid(myfirstloop)
for (j=0; j < m; j++)
{

#pragma loopid(mysecondloop)
for (k=0; k < m; k++)
{

...
}

}
}

#pragma block_loop(50, mymainloop)
#pragma block_loop(20, myfirstloop, mysecondloop)
#pragma loopid(mymainloop)

for (i=0; i < n; n++)
{

#pragma loopid(myfirstloop)
for (j=0; j < m; j++)
{

#pragma loopid(mysecondloop)
for (k=0; k < m; k++)
{

408 XL C/C++: Compiler Reference

...
}

}
}

The following example shows the use #pragma block_loop and #pragma loop_id
for loop interchange.

for (i=0; i < n; i++)
{

for (j=0; j < n; j++)
{

#pragma block_loop(1,myloop1)
for (k=0; k < m; k++)
{

#pragma loopid(myloop1)
for (l=0; l < m; l++)
{

...
}

}
}

}

The following example shows the use of #pragma block_loop and #pragma
loop_id for loop tiling for multi-level memory hierarchy:
#pragma block_loop(l3factor, first_level_blocking)
for (i=0; i < n; i++)
{

#pragma loopid(first_level_blocking)
#pragma block_loop(l2factor, inner_space)

for (j=0; j < n; j++)
{

#pragma loopid(inner_space)
for (k=0; k < m; k++)
{

for (l=0; l < m; l++)
{
...

}
}

}
}

The following example uses #pragma unrollandfuse and #pragma block_loop to
unroll and fuse a blocking loop.
#pragma unrollandfuse
#pragma block_loop(10)

for (i = 0; i < N; ++i) {
}

In this case, if the block loop directive is ignored, the unroll directives have no
effect.

The following example shows the use of #pragma unroll and #pragma block_loop
to unroll a blocked loop.
#pragma block_loop(10)
#pragma unroll(2)
for (i = 0; i < N; ++i) {
}

Chapter 5. Compiler pragmas reference 409

In this case, if the block loop directive is ignored, the unblocked loop is still
subjected to unrolling. If blocking does happen, the unroll directive is applied to
the blocked loop.

The following examples show invalid uses of the directive. The first example
shows #pragma block_loop used on an undefined loop identifier:
#pragma block_loop(50, myloop)
for (i=0; i < n; i++)
{
}

Referencing myloop is not allowed, since it is not in the nest and may not be
defined.

In the following example, referencing myloop is not allowed, since it is not in the
same loop nest:

for (i=0; i < n; i++)
{

#pragma loopid(myLoop)
for (j=0; j < i; j++)
{

...
}

}
#pragma block_loop(myLoop)
for (i=0; i < n; i++)
{

...
}

The following examples are invalid since the unroll directives conflict with each
other:
#pragma unrollandfuse(5)
#pragma unroll(2)
#pragma block_loop(10)

for (i = 0; i < N; ++i) {
}

#pragma block_loop(10)
#pragma unroll(5)
#pragma unroll(10)
for (i = 0; i < N; ++i) {
}

Related information
v “#pragma loopid” on page 429
v “-qunroll” on page 378
v “#pragma unrollandfuse” on page 454
v “#pragma stream_unroll” on page 453

#pragma chars
See “-qchars” on page 126.

#pragma comment
Category

Object code control

410 XL C/C++: Compiler Reference

Purpose

Places a comment into the object module.

Syntax

►► # pragma comment (compiler)
date
timestamp

copyright
user , " token_sequence "

►◄

Parameters

compiler
Appends the name and version of the compiler at the end of the generated
object module.

date
The date and time of the compilation are appended at the end of the generated
object module.

timestamp
Appends the date and time of the last modification of the source at the end of
the generated object module.

copyright
Places the text specified by the token_sequence, if any, into the generated object
module. The token_sequence is included in the generated executable and loaded
into memory when the program is run.

user
Places the text specified by the token_sequence, if any, into the generated object
module. The token_sequence is included in the generated executable but is not
loaded into memory when the program is run.

token_sequence
The characters in this field, if specified, must be enclosed in double quotation
marks ("). If the string literal specified in the token_sequence exceeds 32 767
bytes, an information message is emitted and the pragma is ignored.

Usage

More than one comment directive can appear in a translation unit, and each type
of comment directive can appear more than once, with the exception of copyright,
which can appear only once.

You can display the object-file comments by using the operating system strings
command.

Examples

Assume that the code of tt.c is as follows:
#pragma comment(date)
#pragma comment(compiler)
#pragma comment(timestamp)
#pragma comment(copyright,"My copyright")
int main() { return 0; }

Chapter 5. Compiler pragmas reference 411

To display the comment information embedded in tt.o, along with any other
strings that can be found in the code, issue the command:
xlc -c tt.c
strings -a tt.o

The preceding code might produce the following results:
@.text
.data
@.bss
.comment
Thu Dec 24 16:44:25 EDT 2015IBM XL C for AIX ---- Version 13.1.3.0
Thu Dec 24 16:44:09 EDT 2015
main
My copyright
.file
tt.c
.text
.data
.bss
.main
_$STATIC
_$STATIC
main
main
Thu Dec 24 16:44:25 2015
IBM XL C for AIX, Version 13.1.3.0 ---

#pragma define, #pragma instantiate (C++ only)
Category

Template control

Purpose

Provides an alternative method for explicitly instantiating a template class.

Syntax

►► # pragma define
instantiate

(template_class_name) ►◄

Parameters

template_class_name
The name of the template class to be instantiated.

Usage

This pragma provides the equivalent functionality to C++ explicit instantiation
definitions. It is provided for compatibility with earlier releases only. New
applications should use C++ explicit instantiation definitions.

This pragma can appear anywhere an explicit instantiation definition can appear.

Examples

The directive #pragma define(Array<char>) is equivalent to the following explicit
instantiation:

412 XL C/C++: Compiler Reference

template class Array<char>;

Related information
v "Explicit instantiation" in the XL C/C++ Language Reference
v “#pragma do_not_instantiate (C++ only)” on page 414

#pragma disjoint
Category

Optimization and tuning

Purpose

Lists identifiers that are not aliased to each other within the scope of their use.

By informing the compiler that none of the identifiers listed in the pragma shares
the same physical storage, the pragma provides more opportunity for
optimizations.

Syntax

►► #pragma disjoint ►

► ▼

▼ ▼

(variable_name , variable_name)

* *

►◄

Parameters

variable_name
The name of a variable. It must not refer to any of the following:
v A member of a structure, class, or union
v A structure, union, or enumeration tag
v An enumeration constant
v A typedef name
v A label

Usage

The #pragma disjoint directive asserts that none of the identifiers listed in the
pragma share physical storage; if any the identifiers do actually share physical
storage, the pragma may give incorrect results.

The pragma can appear anywhere in the source program that a declaration is
allowed. An identifier in the directive must be visible at the point in the program
where the pragma appears.

Chapter 5. Compiler pragmas reference 413

You must declare the identifiers before using them in the pragma. Your program
must not dereference a pointer in the identifier list nor use it as a function
argument before it appears in the directive.

This pragma can be disabled with the -qignprag compiler option.

Examples

The following example shows the use of #pragma disjoint.
int a, b, *ptr_a, *ptr_b;

one_function()
{

#pragma disjoint(*ptr_a, b) /* *ptr_a never points to b */
#pragma disjoint(*ptr_b, a) /* *ptr_b never points to a */

b = 6;
ptr_a = 7; / Assignment will not change the value of b */

another_function(b); /* Argument "b" has the value 6 */
}

External pointer ptr_a does not share storage with and never points to the external
variable b. Consequently, assigning 7 to the object to which ptr_a points will not
change the value of b. Likewise, external pointer ptr_b does not share storage with
and never points to the external variable a. The compiler can assume that the
argument to another_function has the value 6 and will not reload the variable
from memory.

#pragma do_not_instantiate (C++ only)
Category

Template control

Purpose

Prevents the specified template declaration from being instantiated.

You can use this pragma to suppress the implicit instantiation of a template for
which a definition is supplied.

Syntax

►► # pragma do_not_instantiate template_class_name ►◄

Parameters

template_class_name
The name of the template class that should not be instantiated.

Usage

If you are handling template instantiations manually (that is, -qnotempinc and
-qnotemplateregistry are specified), and the specified template instantiation
already exists in another compilation unit, using #pragma do_not_instantiate
ensures that you do not get multiple symbol definitions during the link step.

414 XL C/C++: Compiler Reference

C++11

#pragma do_not_instantiate on a class template specialization is treated as an
explicit instantiation declaration of the template. This pragma provides a subset of
the functionality of the explicit instantiation declarations feature, which is
introduced by the C++11 standard. It is provided for compatibility purposes only
and is not recommended. New applications should use explicit instantiation
declarations instead.

C++11

You can also use the -qtmplinst option to suppress implicit instantiation of
template declarations for multiple compilation units. See “-qtmplinst (C++ only)”
on page 368.

Examples

The following shows the usage of the pragma:
#pragma do_not_instantiate Stack < int >

Related information
v “#pragma define, #pragma instantiate (C++ only)” on page 412
v “-qtmplinst (C++ only)” on page 368
v "Explicit instantiation" in the XL C/C++ Language Reference
v “-qtempinc (C++ only)” on page 360
v “-qtemplateregistry (C++ only)” on page 363

#pragma enum
See “-qenum” on page 148.

#pragma execution_frequency
Category

Optimization and tuning

Purpose

Marks program source code that you expect will be either very frequently or very
infrequently executed.

When optimization is enabled, the pragma is used as a hint to the optimizer.

Syntax

►► # pragma execution_frequency (very_low)
very_high

►◄

Parameters

very_low
Marks source code that you expect will be executed very infrequently.

Chapter 5. Compiler pragmas reference 415

very_high
Marks source code that you expect will be executed very frequently.

Usage

Use this pragma in conjunction with an optimization option; if optimization is not
enabled, the pragma has no effect.

The pragma must be placed within block scope, and acts on the closest preceding
point of branching.

Examples

In the following example, the pragma is used in an if statement block to mark
code that is executed infrequently.
int *array = (int *) malloc(10000);

if (array == NULL) {
/* Block A */
#pragma execution_frequency(very_low)
error();

}

In the next example, the code block Block B is marked as infrequently executed
and Block C is likely to be chosen during branching.
if (Foo > 0) {

#pragma execution_frequency(very_low)
/* Block B */
doSomething();

} else {
/* Block C */
doAnotherThing();

}

In this example, the pragma is used in a switch statement block to mark code that
is executed frequently.
while (counter > 0) {

#pragma execution_frequency(very_high)
doSomething();

} /* This loop is very likely to be executed. */

switch (a) {
case 1:

doOneThing();
break;

case 2:
#pragma execution_frequency(very_high)
doTwoThings();
break;

default:
doNothing();

} /* The second case is frequently chosen. */

#pragma expected_value
Category

Optimization and tuning

416 XL C/C++: Compiler Reference

Purpose

Specifies the value that a parameter passed in a function call is most likely to take
at run time. The compiler can use this information to perform certain
optimizations, such as function cloning and inlining.

Syntax

►► #pragma expected_value (argument , value) ►◄

Parameters

argument
The name of the parameter for which you want to provide the expected value.
The parameter must be of a simple built-in integral, Boolean, character, or
floating-point type.

value
A constant literal representing the value that you expect will most likely be
taken by the parameter at run time. value can be an expression as long as it is a
compile time constant expression.

Usage

The directive must appear inside the body of a function definition, before the first
statement (including declaration statements). It is not supported within nested
functions.

If you specify an expected value of a type different from that of the declared type
of the parameter variable, the value will be implicitly converted only if allowed.
Otherwise, a warning is issued.

For each parameter that will be provided the expected value there is a limit of one
directive. Parameters that will not be provided the expected value do not require a
directive.

Examples

The following example tells the compiler that the most likely values for parameters
a and b are 1 and 0, respectively:
int func(int a,int b)
{
#pragma expected_value(a,1)
#pragma expected_value(b,0)
...
...
}

Related information
v “#pragma execution_frequency” on page 415

#pragma fini (C only)
Category

“Object code control” on page 405

Chapter 5. Compiler pragmas reference 417

Purpose

Specifies the order in which the runtime library calls a list of functions after main()
completes or exit() is called.

For shared libraries, the fini functions are called when the shared library is loaded
from memory. For example, when using dynamic loading, this happens at the
point when dlclose() is called.

Syntax

►► ▼

,

pragma fini (function_name) ►◄

Usage

Any function that is specified in the pragma should have return type void (for
example, void fA();) and take no parameters. Functions that have a non-void
return type are accepted but the return value is discarded.

Functions that take parameters are ignored with a warning since the parameters
would contain garbage values.

Within the same compilation unit, the list of functions in pragma fini are called in
the order specified. Similarly, within the same compilation unit, functions specified
in more than one pragma fini are called in the order in which the pragmas are
encountered in the source.

In general, the order of static termination across files and across libraries is
nonstandard and therefore, a non-portable behavior. It is not advisable to build any
dependency on this behavior. The order of functions across files is undefined, even
when using the -Wm option.

When mixing C and C++ files, the relative order of init or fini functions in C files
with respect to the static constructors/destructors in C++ files is undefined. The
-qunique option can interact with pragma fini.

Note: A C++ invocation, such as xlC or the redistributable tools linkxlC or
makeC++SharedLib must be used at link time.

Related information
v “#pragma init (C only)” on page 426
v “-qunique” on page 377

#pragma GCC visibility push, #pragma GCC visibility pop
Category

Optimization and tuning

Purpose

Specifies the visibility attribute for external linkage entities in object files.

418 XL C/C++: Compiler Reference

Syntax

►► # pragma GCC visibility push (default)
protected
hidden
internal

►◄

►► # pragma GCC visibility pop ►◄

Parameters

default
Indicates that the affected external linkage entities have the default visibility
attribute. These entities are exported in shared libraries, and they can be
preempted.

protected
Indicates that the affected external linkage entities have the protected visibility
attribute. These entities are exported in shared libraries, but they cannot be
preempted.

hidden
Indicates that the affected external linkage entities have the hidden visibility
attribute. These entities are not exported in shared libraries, but their addresses
can be referenced indirectly through pointers.

internal
Indicates that the affected external linkage entities have the internal visibility
attribute. These entities are not exported in shared libraries, and their
addresses are not available to other modules.

Restriction: In this release, the hidden and internal visibility attributes are the
same. The addresses of the entities that are specified with either of these visibility
attributes can be referenced indirectly through pointers.

Usage

You can selectively set visibility attributes for entities by using pairs of the #pragma
GCC visibility push and #pragma GCC visibility pop compiler directives
throughout your source program. If you specify the #pragma GCC visibility pop
directive without the corresponding #pragma GCC visibility push directive, the
compiler issues a warning message. Entity visibility attributes describe whether
and how an entity defined in one module can be referenced or used in other
modules. Visibility attributes affect entities with external linkage only, and cannot
increase the visibility of other entities. Entity preemption occurs when an entity
definition is resolved at link time, but is replaced with another entity definition at
run time.

Note: On the AIX platform, entity preemption occurs only when runtime linking is
used. For details, see "Linking a library to an application" in the XL C/C++
Optimization and Programming Guide. Visibility attributes are supported on AIX 6.1
TL8, AIX 7.1 TL2, AIX 7.2, and higher.

Related information
v “-qvisibility” on page 387
v “-qmkshrobj” on page 272

Chapter 5. Compiler pragmas reference 419

v “-G” on page 176
v "Using visibility attributes (IBM extension)" in the XL C/C++ Optimization and

Programming Guide

v "External linkage", "The visibility variable attribute (IBM extension)", "The
visibility function attribute (IBM extension)", "The visibility type attribute (C++
only) (IBM extension)", and "The visibility namespace attribute (C++ only) (IBM
extension)" in the XL C/C++ Language Reference

#pragma hashome (C++ only)
Category

Object code control

Purpose

Informs the compiler that the specified class has a home module that will be
specified by #pragma ishome.

This class's virtual function table, along with certain inline functions, will not be
generated as static. Instead, they will be referenced as externals in the compilation
unit of the class in which #pragma ishome is specified.

Syntax

►► # pragma hashome (class_name)
allinlines

►◄

Parameters

class_name
The name of a class to be referenced externally. class_name must be a class and
it must be defined.

allinlines
Specifies that all inline functions from within class_name should be referenced
as being external.

Usage

A warning will be produced if there is a #pragma ishome without a matching
#pragma hashome.

Examples

In the following example, compiling the code samples will generate virtual
function tables and the definition of S::foo() only for compilation unit a.o, but
not for b.o. This reduces the amount of code generated for the application.
// a.h
struct S
{

virtual void foo() {}

virtual void bar();
};

420 XL C/C++: Compiler Reference

// a.C
#pragma ishome(S)
#pragma hashome (S)

#include "a.h"

int main()
{

S s;
s.foo();
s.bar();

}

// b.C
#pragma hashome(S)
#include "a.h"

void S::bar() {}

Related information
v “#pragma ishome (C++ only)” on page 427

#pragma ibm independent_loop
Purpose

The independent_loop pragma explicitly states that the iterations of the chosen
loop are independent, and that the iterations can be executed in parallel.

Syntax

►► # pragma ibm independent_loop
if exp

►◄

where exp represents a scalar expression.

Usage

If the iterations of a loop are independent, you can put the pragma before the loop
block. Then the compiler executes these iterations in parallel. When the exp
argument is specified, the loop iterations are considered independent only if exp
evaluates to TRUE at run time.

Notes:

v If the iterations of the chosen loop are dependent, the compiler executes the loop
iterations sequentially no matter whether you specify the independent_loop
pragma.

v To have an effect on a loop, you must put the independent_loop pragma
immediately before this loop. Otherwise, the pragma is ignored.

v If several independent_loop pragmas are specified before a loop, only the last
one takes effect.

v This pragma only takes effect if you specify the -qsmp or -qhot compiler option.

Chapter 5. Compiler pragmas reference 421

This pragma can be combined with the omp parallel for pragma to select a
specific parallel process scheduling algorithm. For more information, see “#pragma
omp parallel for” on page 472.

Examples

In the following example, the loop iterations are executed in parallel if the value of
the argument k is larger than 2.
int a[1000], b[1000], c[1000];
int main(int k){

if(k>0){
#pragma ibm independent_loop if (k>2)
for(int i=0; i<900; i++){

a[i]=b[i]*c[i];
}

}
}

#pragma ibm iterations
Category

Optimization and tuning

Purpose

The iterations pragma specifies the approximate average number of loop iterations
for the chosen loop.

Syntax

►► # pragma ibm iterations (iteration_count) ►◄

Parameters

iteration_count
Specifies the approximate number of loop iterations using a positive integral
constant expression.

Usage

The compiler uses the information in iteration_count for loop optimization. You can
specify multiple #pragma ibm iterations(iteration_count).

iteration_count specified in #pragma ibm iterations cannot be smaller than
iteration_count specified in #pragma ibm min_iterations. In addition, it cannot be
bigger than iteration_count specified in #pragma ibm max_iterations. Otherwise, the
inconsistent value is ignored with a message.

Example
#pragma ibm iterations(100) // Accepted
#pragma ibm min_iterations(150) // Ignored (150 > 100)
#pragma ibm min_iterations(30) // Accepted(30 < 100)
#pragma ibm max_iterations(60) // Ignored (60 < 100)
#pragma ibm iterations(20) // Ignored (20 < 30)
#pragma ibm max_iterations(500) // Accepted(500 > 100 > 30)
#pragma ibm max_iterations(620) // Ignored (Multiple occurrences)
#pragma ibm iterations(200) // Accepted(30 < 200 < 500)

422 XL C/C++: Compiler Reference

#pragma ibm min_iterations(15) // Ignored (Multiple occurrences)

for (int i=0; i < n; ++i)
{

#pragma ibm max_iterations(130) // Accepted
#pragma ibm min_iterations(90) // Accepted(90 < 130)
#pragma ibm iterations(60) // Ignored (60 < 90)
#pragma ibm iterations(100) // Accepted(90 < 100 < 130)

for (int j=0; j < m; ++j) b[j] += a[i];
}

Related reference:
“#pragma ibm max_iterations”
“#pragma ibm min_iterations” on page 424

#pragma ibm max_iterations
Category

Optimization and tuning

Purpose

The max_iterations pragma specifies the approximate maximum number of loop
iterations for the chosen loop.

Syntax

►► # pragma ibm max_iterations (iteration_count) ►◄

Parameters

iteration_count
Specifies the approximate number of maximum loop iterations using a positive
integral constant expression.

Usage

The compiler uses the information in iteration_count for loop optimization. You can
specify #pragma ibm max_iterations(iteration_count) only once. If you specify
#pragma ibm max_iterations(iteration_count) more than once, the first specified
pragma is accepted, and the subsequent pragmas are ignored with a message.

iteration_count specified in #pragma ibm max_iterations cannot be smaller than
iteration_count specified in #pragma ibm iterations or #pragma ibm min_iterations.
Otherwise, the inconsistent value is ignored with a message.

Example
#pragma ibm iterations(100) // Accepted
#pragma ibm min_iterations(150) // Ignored (150 > 100)
#pragma ibm min_iterations(30) // Accepted(30 < 100)
#pragma ibm max_iterations(60) // Ignored (60 < 100)
#pragma ibm iterations(20) // Ignored (20 < 30)
#pragma ibm max_iterations(500) // Accepted(500 > 100 > 30)
#pragma ibm max_iterations(620) // Ignored (Multiple occurrences)
#pragma ibm iterations(200) // Accepted(30 < 200 < 500)
#pragma ibm min_iterations(15) // Ignored (Multiple occurrences)

Chapter 5. Compiler pragmas reference 423

for (int i=0; i < n; ++i)
{

#pragma ibm max_iterations(130) // Accepted
#pragma ibm min_iterations(90) // Accepted(90 < 130)
#pragma ibm iterations(60) // Ignored (60 < 90)
#pragma ibm iterations(100) // Accepted(90 < 100 < 130)

for (int j=0; j < m; ++j) b[j] += a[i];
}

Related reference:
“#pragma ibm iterations” on page 422
“#pragma ibm min_iterations”

#pragma ibm min_iterations
Category

Optimization and tuning

Purpose

The min_iterations pragma specifies the approximate minimum number of loop
iterations for the chosen loop.

Syntax

►► # pragma ibm min_iterations (iteration_count) ►◄

Parameters

iteration_count
Specifies the approximate minimum number of loop iterations using a positive
integral constant expression.

Usage

The compiler uses the information in iteration_count for loop optimization. You can
specify #pragma ibm min_iterations(iteration_count) only once. If you specify
#pragma ibm min_iterations(iteration_count) more than once, the first specified
pragma is accepted, and the subsequent pragmas are ignored with a message.

iteration_count specified in #pragma ibm min_iterations cannot be bigger than
iteration_count specified in #pragma ibm iterations or #pragma ibm max_iterations.
Otherwise, the inconsistent value is ignored with a message.

Example
#pragma ibm iterations(100) // Accepted
#pragma ibm min_iterations(150) // Ignored (150 > 100)
#pragma ibm min_iterations(30) // Accepted(30 < 100)
#pragma ibm max_iterations(60) // Ignored (60 < 100)
#pragma ibm iterations(20) // Ignored (20 < 30)
#pragma ibm max_iterations(500) // Accepted(500 > 100 > 30)
#pragma ibm max_iterations(620) // Ignored (Multiple occurrences)
#pragma ibm iterations(200) // Accepted(30 < 200 < 500)
#pragma ibm min_iterations(15) // Ignored (Multiple occurrences)

for (int i=0; i < n; ++i)
{

424 XL C/C++: Compiler Reference

#pragma ibm max_iterations(130) // Accepted
#pragma ibm min_iterations(90) // Accepted(90 < 130)
#pragma ibm iterations(60) // Ignored (60 < 90)
#pragma ibm iterations(100) // Accepted(90 < 100 < 130)

for (int j=0; j < m; ++j) b[j] += a[i];
}

Related reference:
“#pragma ibm iterations” on page 422
“#pragma ibm max_iterations” on page 423

#pragma ibm snapshot
Category

Error checking and debugging

Purpose

Specifies a location at which a breakpoint can be set and defines a list of variables
that can be examined when program execution reaches that location.

You can use this pragma to facilitate debugging optimized code produced by the
compiler.

Syntax

►► ▼

,

pragma ibm snapshot (variable_name) ►◄

Parameters

variable_name
A variable name. It must not refer to structure, class, or union members.

Usage

During a debugging session, you can place a breakpoint on the line at which the
directive appears, to view the values of the named variables. When you compile
with optimization and the -g option, the named variables are guaranteed to be
visible to the debugger.

This pragma does not consistently preserve the contents of variables with a static
storage class at high optimization levels. Variables specified in the directive should
be considered read-only while being observed in the debugger, and should not be
modified. Modifying these variables in the debugger may result in unpredictable
behavior.

Examples
#pragma ibm snapshot(a, b, c)

Related information
v “-g” on page 173
v “-O, -qoptimize” on page 282

Chapter 5. Compiler pragmas reference 425

#pragma implementation (C++ only)
Category

Template control

Purpose

For use with the -qtempinc compiler option, supplies the name of the file
containing the template definitions corresponding to the template declarations
contained in a header file.

Syntax

►► # pragma implementation (" file_name ") ►◄

Parameters

file_name
The name of the file containing the definitions for members of template classes
declared in the header file.

Usage

This pragma is not normally required if your template implementation file has the
same name as the header file containing the template declarations, and a .c
extension. You only need to use the pragma if the template implementation file
does not conform to this file-naming convention. For more information about using
template implementation files, see "Using C++ templates".

#pragma implementation is only effective if the -qtempinc option is in effect.
Otherwise, the pragma has no meaning and is ignored.

The pragma can appear in the header file containing the template declarations, or
in a source file that includes the header file. It can appear anywhere that a
declaration is allowed.

Related information
v “-qtempinc (C++ only)” on page 360
v "Using C++ templates"

#pragma info
See “-qinfo” on page 191.

#pragma init (C only)
Category

“Object code control” on page 405

Purpose

Specifies the order in which the runtime library calls a list of functions before
main() is called.

426 XL C/C++: Compiler Reference

For shared libraries, the init functions are called when the shared library is loaded
to memory. For example, when using dynamic loading, this happens at the point
when dlopen() is called.

Syntax

►► ▼

,

pragma init (function_name) ►◄

Usage

Any function that is specified in the pragma should have return type void (for
example, void fA();) and take no parameters. Functions that have a non-void
return type are accepted but the return value is discarded.

Functions that take parameters are ignored with a warning since the parameters
would contain garbage values.

Within the same compilation unit, the list of functions in pragma init are called in
the order specified. Similarly, within the same compilation unit, functions specified
in more than one pragma init are called in the order in which the pragmas are
encountered in the source.

In general, the order of static initialization across files and across libraries is
nonstandard and therefore, a non-portable behavior. It is not advisable to build any
dependency on this behavior. The order of functions across files is undefined, even
when using the -Wm option).

When mixing C and C++ files, the relative order of init functions in C files with
respect to the static constructors/destructors in C++ files is undefined. The
-qunique option can interact with pragma init.

Note: A C++ invocation, such as xlC or the redistributable tools linkxlC or
makeC++SharedLib must be used at link time.

Related information
v “#pragma fini (C only)” on page 417
v “-qunique” on page 377

#pragma ishome (C++ only)
Category

Object code control

Purpose

Informs the compiler that the home module of the specified class is the current
compilation unit.

The home module is where items, such as the virtual function table, are stored. If
an item is referenced from outside of the compilation unit, it will not be generated
outside its home. This can reduce the amount of code generated for the
application.

Chapter 5. Compiler pragmas reference 427

Syntax

►► # pragma ishome (class_name) ►◄

Parameters

class_name
The name of the class whose home will be the current compilation unit.

Usage

A warning will be produced if there is a #pragma ishome without a matching
#pragma hashome.

Examples

See “#pragma hashome (C++ only)” on page 420

Related information
v “#pragma hashome (C++ only)” on page 420

#pragma isolated_call
See “-qisolated_call” on page 214.

#pragma langlvl (C only)
See “-qlanglvl” on page 224.

#pragma leaves
Category

Optimization and tuning

Purpose

Informs the compiler that a named function never returns to the instruction
following a call to that function.

By informing the compiler that it can ignore any code after the function, the
directive allows for additional opportunities for optimization.

This pragma is commonly used for custom error-handling functions, in which
programs can be terminated if a certain error is encountered.

Note: The compiler automatically inserts #pragma leaves directives for calls to the
longjmp family of functions (longjmp, _longjmp, siglongjmp, and _siglongjmp)
when you include the setjmp.h header.

Syntax

►► ▼

,

pragma leaves (function_name) ►◄

428 XL C/C++: Compiler Reference

Parameters

function_name
The name of the function that does not return to the instruction following the
call to it.

Defaults

Not applicable.

Examples
#pragma leaves(handle_error_and_quit)
void test_value(int value)
{
if (value == ERROR_VALUE)
{
handle_error_and_quit(value);
TryAgain(); // optimizer ignores this because
// never returns to execute it

}
}

Related information
v “#pragma reachable” on page 447.

#pragma loopid
Category

Optimization and tuning

Purpose

Marks a block with a scope-unique identifier.

Syntax

►► # pragma loopid (name) ►◄

Parameters

name
An identifier that is unique within the scoping unit.

Usage

The #pragma loopid directive must immediately precede a #pragma block_loop
directive or for loop. The specified name can be used by #pragma block_loop to
control transformations on that loop. It can also be used to provide information on
loop transformations through the use of the -qreport compiler option.

You must not specify #pragma loopid more than once for a given loop.

Examples

For examples of #pragma loopid usage, see “#pragma block_loop” on page 407.

Chapter 5. Compiler pragmas reference 429

Related information
v “-qunroll” on page 378
v “#pragma block_loop” on page 407
v “#pragma unrollandfuse” on page 454

#pragma map
Category

Object code control

Purpose

Converts all references to an identifier to another, externally defined identifier.

Syntax

#pragma map syntax (C only)

►► # pragma map (name1 , " name2 ") ►◄

#pragma map syntax (C++ only)

►► # pragma map (name1 (argument_list) , " name2 ") ►◄

Parameters

name1

The name used in the source code. C

name1 can represent a data object

or function with external linkage. C

C++

name1 can represent a

data object, a non-overloaded or overloaded function, or overloaded operator,
with external linkage. C++

If the name to be mapped is not in the global

namespace, it must be fully qualified.

name1 should be declared in the same compilation unit in which it is
referenced, but should not be defined in any other compilation unit. name1
must not be used in another #pragma map directive or any assembly label
declaration anywhere in the program.

C++ argument_list
The list of arguments for the overloaded function or operator function
designated by name1. If name1 designates an overloaded function, the function
must be parenthesized and must include its argument list if it exists. If name1
designates a non-overloaded function, only name1 is required, and the
parentheses and argument list are optional. C++

name2

The name that will appear in the object code. C

name2 can represent a

data object or function with external linkage.

C++

name2 can represent a data object, a non-overloaded or overloaded

function, or overloaded operator, with external linkage. name2 must be
specified using its mangled name. To obtain C++ mangled names, compile
your source to object files only, using the -c compiler option, and use the nm
operating system command on the resulting object file. You can also use can
the c++filt utility provided by the compiler for a side-by-side listing of source
names and mangled names; see "Demangling compiled C++ names" in the XL

430 XL C/C++: Compiler Reference

C/C++ Optimization and Programming Guide for details. (See also "Name
mangling" in the XL C/C++ Language Reference for details on using the extern
"C" linkage specifier on declarations to prevent name mangling.) C++

If the name exceeds 65535 bytes, an informational message is emitted and the
pragma is ignored.

name2 may or may not be declared in the same compilation unit in which
name1 is referenced, but must not be defined in the same compilation unit.
Also, name2 should not be referenced anywhere in the compilation unit where
name1 is referenced. name2 must not be the same as that used in another
#pragma map directive or any assembly label declaration in the same
compilation unit.

Usage

The #pragma map directive can appear anywhere in the program. Note that in
order for a function to be actually mapped, the map target function (name2) must
have a definition available at link time (from another compilation unit), and the
map source function (name1) must be called in your program.

You cannot use #pragma map with compiler built-in functions.

Examples

The following is an example of #pragma map used to map a function name (using
the mangled name for the map name in C++):
/* Compilation unit 1: */

#include <stdio.h>

void foo();
extern void bar(); /* optional */

#if __cplusplus
#pragma map (foo, "bar__Fv")
#else
#pragma map (foo, "bar")
#endif
int main()
{
foo();
}

/* Compilation unit 2: */

#include <stdio.h>

void bar()
{
printf("Hello from foo bar!\n");
}

The call to foo in compilation unit 1 resolves to a call to bar:
Hello from foo bar!

C++ The following is an example of #pragma map used to map an overloaded
function name (using C linkage, to avoid using the mangled name for the map
name):

Chapter 5. Compiler pragmas reference 431

// Compilation unit 1:

#include <iostream>
#include <string>

using namespace std;

void foo();
void foo(const string&);
extern "C" void bar(const string&); // optional

#pragma map (foo(const string&), "bar")

int main()
{
foo("Have a nice day!");
}

// Compilation unit 2:

#include <iostream>
#include <string>

using namespace std;

extern "C" void bar(const string& s)
{
cout << "Hello from foo bar!" << endl;
cout << s << endl;
}

The call to foo(const string&) in compilation unit 1 resolves to a call to bar(const
string&):
Hello from foo bar!
Have a nice day!

Related information
v "Assembly labels" in the XL C/C++ Language Reference

#pragma mc_func
Category

Language element control

Purpose

Allows you to embed a short sequence of machine instructions "inline" within your
program source code.

The pragma instructs the compiler to generate specified instructions in place rather
than the usual linkage code. Using this pragma avoids performance penalties
associated with making a call to an assembler-coded external function. This
pragma is similar in function to inline asm statements supported in this and other
compilers; see "Inline assembly statements" in the XL C/C++ Language Reference for
more information.

432 XL C/C++: Compiler Reference

Syntax

►► ▼# pragma mc_func function_name { instruction_sequence } ►◄

Parameters

function_name
The name of a previously-defined function containing machine instructions. If
the function is not previously-defined, the compiler will treat the pragma as a
function definition.

instruction_sequence
A string containing a sequence of zero or more hexadecimal digits. The
number of digits must comprise an integral multiple of 32 bits. If the string
exceeds 16384 bytes, a warning message is emitted and the pragma is ignored.

Usage

This pragma defines a function and should appear in your program source only
where functions are ordinarily defined.

The compiler passes parameters to the function in the same way as to any other
function. For example, in functions taking integer-type arguments, the first
parameter is passed to GPR3, the second to GPR4, and so on. Values returned by
the function will be in GPR3 for integer values, and FPR1 for float or double
values.

Code generated from instruction_sequence may use any and all volatile registers
available on your system unless you use #pragma reg_killed_by to list a specific
register set for use by the function. See “#pragma reg_killed_by” on page 448 for a
list of volatile registers available on your system.

Inlining options do not affect functions defined by #pragma mc_func. However,
you might improve runtime performance of such functions with #pragma
isolated_call.

Examples

In the following example, #pragma mc_func is used to define a function called
add_logical. The function consists of machine instructions to add 2 integers with
so-called end-around carry; that is, if a carry out results from the add then add the
carry to the sum. This formula is frequently used in checksum computations.
int add_logical(int, int);
#pragma mc_func add_logical {"7c632014" "7c630194"}

/* addc r3 <- r3, r4 */
/* addze r3 <- r3, carry bit */

main() {

int i,j,k;

i = 4;

Chapter 5. Compiler pragmas reference 433

k = -4;
j = add_logical(i,k);
printf("\n\nresult = %d\n\n",j);

}

The result of running the program is as follows:
result = 1

Related information
v “-qisolated_call” on page 214
v “#pragma reg_killed_by” on page 448
v "Inline assembly statements" in the XL C/C++ Language Reference

#pragma namemangling (C++ only)
See “-qnamemangling (C++ only)” on page 274.

#pragma namemanglingrule (C++ only)
Category

Portability and migration

Purpose

Provides fined-grained control over the name mangling scheme in effect for
selected portions of source code, specifically with respect to the mangling of
cv-qualifiers in function parameters.

When a function name is mangled, repeated function arguments of the same type
are encoded according to the following compression scheme:
parameter → T param number [_] #single repeat of a previous parameter

→ N repetition digit param number [_] #2 to 9 repetitions

where:

param number
Indicates the number of the previous parameter which is repeated. It is
followed by an underscore (_) if param number contains multiple digits.

repetition digit
Must be greater than 1 and less than 10. If an argument is repeated more than
9 times, this rule is applied multiple times. For example, a sequence of 38
parameters that are the same as parameter 1 mangles to N91N91N91N91N21.

The #pragma namemanglingrule directive allows you to control whether top-level
cv-qualifiers are mangled in function parameters or whether intermediate-level
cv-qualifiers are to be considered when the compiler compares repeated function
parameters for equivalence.

Syntax

434 XL C/C++: Compiler Reference

►►
on

pragma namemanglingrule (fnparmtype , off)
pop
on

fnparmscmp , off
pop

on
fnparmstypedefscmp , off

pop

►◄

Defaults
v fnparmtype, on when -qnamemangling=ansi|v6 or higher or #pragma

namemangling (ansi|v6) or higher is in effect. Otherwise, the default is
fnparmtype, off.

v fnparmscmp, on when -qnamemangling=ansi|v8 or higher or #pragma
namemangling (ansi|v8) or higher is in effect. Otherwise, the default is
fnparmscmp, off.

v fnparmstypedefscmp, on when -qnamemangling=compat or #pragma
namemangling (compat) or higher is in effect. Otherwise, the default is
fnparmstypedefscmp, off.

Parameters

fnparmtype, on
Top-level cv-qualifiers are not encoded in the mangled name of a function
parameter. Also, top-level cv-qualifiers are ignored when repeated function
parameters are compared for equivalence; function parameters that differ only
by the use of a top-level cv-qualifier are considered equivalent and are
mangled according to the compressed encoding scheme. This setting is
compatible with VisualAge C++ V6.0 and higher.

fnparmtype, off
Top-level cv-qualifiers are encoded in the mangled name of a function
parameter. Also, repeated function parameters that differ by the use of
cv-qualifiers are not considered equivalent and are mangled as separate
parameters. This setting is compatible with VisualAge C++ V5.0 and earlier.

fnparmtype, pop
Reverts to the previous fnparmtype setting in effect. If no previous settings are
in effect, the default fnparmtype setting is used.

Note: This pragma fixes function signature ambiguities in 32-bit mode, but it is
not needed in 64-bit mode since those ambiguities do not exist in 64-bit mode.

fnparmscmp, on
Intermediate-level cv-qualifiers are considered when repeated function
parameters are compared for equivalence; repeated function parameters that
differ by the use of intermediate-level cv-qualifiers are mangled as separate
parameters. This setting is compatible with XL C++ V8.0 and higher.

fnparmscmp, off
Intermediate-level cv-qualifiers are ignored when repeated function parameters
are compared for equivalence; function parameters that differ only by the use
of an intermediate-level cv-qualifier are considered equivalent and are mangled
according to the compressed encoding scheme. This setting is compatible with
XL C++ V7.0 and earlier.

Chapter 5. Compiler pragmas reference 435

fnparmscmp, pop
Reverts to the previous fnparmscmp setting in effect. If no previous settings
are in effect, the default fnparmscmp setting is used.

fnparmstypedefscmp, on
The compression algorithm is applied for typedef parameters. Only the
parameters that are CV-qualified pointers are affected by this pragma. This is
the default behavior in the compat name mangling mode,
-qnamemangling=compat or #pragma namemangling(compat).

fnparmstypedefscmp, off
The compression algorithm is not applied for typedef parameters. Only the
parameters that are CV-qualified pointers are affected by this pragma. It is the
default behavior in any name mangling mode except for the compat mode.
You can use this setting to alter the behavior in compat name mangling mode
to provide binary compatibility with previously compiled objects. Use it with
-qnamemangling=compat. Otherwise, it has no effect.

fnparmstypedefscmp, pop
Discards the current pragma setting for the typedef function parameter
compression, and reverts to the setting specified by the previous pragma
directive. If no previous pragma was specified, reverts to the command-line or
default option setting.

Usage

#pragma namemanglingrule is allowed in global, class, and function scopes. It has
no effect on a block scope function declaration with external linkage.

Different pragma settings can be specified in front of function declarations and
definitions. If #pragma namemanglingrule settings in subsequent declarations and
definitions conflict, the compiler ignores those settings and issues a warning
message.

Examples

The following tables show the effects of this pragma applied to different function
signatures.

Table 42. Mangling of function parameters with top-level cv-qualifiers

Source name

Mangled name

fnparmtype, off fnparmtype, on

void foo (const int) foo__FCi foo__Fi

void foo (int* const) foo__FCPi foo__FPi

void foo (int** const) foo__FCPPi foo__FPPi

void foo (int, const int) foo__FiCi foo__FiT1

Table 43. Mangling of function parameters with intermediate level cv-qualifiers

Source name

Mangled name

fnparmscmp, on fnparmscmp, off

void foo (int** a, int* const *
b)

foo__FPPiPCPi foo__FPPiT1

436 XL C/C++: Compiler Reference

Table 43. Mangling of function parameters with intermediate level cv-qualifiers (continued)

Source name

Mangled name

fnparmscmp, on fnparmscmp, off

void bar (int* const* a, int**
b)

bar__FPCPiPPi bar__FPCPiT1

Table 44. Mangling of function parameters with top-level and intermediate-level cv-qualifiers

Source name

Mangled name

fnparmscmp, on
fnparmtype, on

fnparmscmp, off
fnparmtype, on

fnparmscmp, on
fnparmtype, off

fnparmscmp, off
fnparmtype, off

void foo (int** const,
int* const *)

foo__FPPiPCPi foo__FPPiT1 foo__FCPPiPCPi foo__FPPiT1

Related information
v “-qnamemangling (C++ only)” on page 274

#pragma nofunctrace
Category

Error checking and debugging

Purpose

Disables tracing for a given function or a list of specified functions.

Syntax

►► ▼

,

pragma nofunctrace (function_name) ►◄

Parameters

function_name
The name of the function for which you want to disable tracing.

Usage

When you use #pragma nofunctrace to specify a list of functions for which you
want to disable tracing, use parenthesis () and encapsulate the functions in it. For a
list of functions, use a comma , to separate them. For example, to disable tracing
for function a, use #pragma nofunctrace(a). To disable tracing for functions a, b,
and c, use #pragma nofunctrace(a,b,c).

If you have two functions: foo(int) and foo(double), use #pragma
nofunctrace(foo(int)) disables tracing for foo(int) but not foo(double).

Two colons in a row :: are considered scope qualifiers. For example, when you
call -qfunctrace+A::B:C, the compiler traces functions that begin with the
qualifiers A::B or C.

Chapter 5. Compiler pragmas reference 437

Note: If you want to use the compiler option -qfunctrace to disable tracing for a
given function or a list of functions, you must use its suboption - followed by the
names of the functions. For details about how to use -qfunctrace and its related
suboptions, see “-qfunctrace” on page 170.

Examples
#pragma nofunctrace(a,b,c)

Related information
v “-qfunctrace” on page 170

#pragma nosimd
See “-qsimd” on page 330.

Example

In the following example, #pragma nosimd is used to disable -qsimd=auto for a
specific for loop.
...
#pragma nosimd
for (i=1; i<1000; i++)
{

/* program code */
}

#pragma novector
See “-qhot” on page 182.

#pragma object_model (C++ only)
See “-qobjmodel (C++ only)” on page 286.

#pragma operator_new (C++ only)
Category

Error checking and debugging

Purpose

Determines whether the new and new[] operators throw an exception if the
requested memory cannot be allocated.

This pragma is equivalent to the -qlanglvl=newexcp option.

Syntax

►►
returnsnull

pragma operator_new (throwsexception) ►◄

Defaults

returnsnull

438 XL C/C++: Compiler Reference

Parameters

returnsnull
If the memory requested by the new operator cannot be allocated, the compiler
returns 0, the null pointer. Use this option for compatibility with versions of
the XL C++ compiler previous to Visual C++ V6.0.

throwsexception
If the memory requested by the new operator cannot be allocated, the compiler
throws a standard exception of type std::bad_alloc. Use this option in new
applications, for conformance with the C++ standard.

Usage

The pragma can be specified only once in a source file. It must appear before any
statements in the source file. This pragma takes precedence over the
-qlanglvl=newexcp compiler option.

Restrictions

This pragma applies only to versions of the new operator that throw exceptions; it
does not apply to the nothrow or empty throw versions of the new operator (for the
prototypes of all the new operator versions, see the description of the <new>
header in the Standard C++ Library Reference). It also does not apply to class-specific
new operators, user-defined new operators, and new operators with placement
arguments.

Related information
v "Allocation and deallocation functions" in the XL C/C++ Language Reference

v "The new operator" in the XL C/C++ Language Reference

v “-qlanglvl” on page 224
v The <new> header in the Standard C++ Library Reference

#pragma options
Category

Language element control

Purpose

Specifies compiler options in your source program.

Syntax

►► ▼

▼ ▼

pragma option option_keyword
options ;

,

option_keyword = value

►◄

Chapter 5. Compiler pragmas reference 439

Parameters

The settings in the table below are valid options for #pragma options. For more
information, see the pages of the equivalent compiler option.

Valid settings for #pragma options
option_keyword

Compiler option equivalent

align=option “-qalign” on page 104

[no]attr

attr=full

“-qattr” on page 116

chars=option “-qchars” on page 126

[no]check “-qcheck” on page 127

[no]compact “-qcompact” on page 130

[no]dbcs “-qmbcs, -qdbcs” on page 269

C [no]dbxextra “-qdbxextra (C only)” on page 140

[no]digraph “-qdigraph” on page 142

[no]dollar “-qdollar” on page 143

enum=option “-qenum” on page 148

[no]extchk “-qextchk” on page 153

flag=option “-qflag” on page 156

float=[no]option “-qfloat” on page 158

[no]flttrap “-qflttrap” on page 163

[no]fullpath “-qfullpath” on page 168

C++ [no]funcsect “-qfuncsect” on page 169

halt “-qhalt” on page 178

[no]idirfirst “-qidirfirst” on page 186

[no]ignerrno “-qignerrno” on page 187

ignprag=option “-qignprag” on page 188

[no]info=option “-qinfo” on page 191

initauto=value “-qinitauto” on page 200

[no]inlglue “-qinlglue” on page 203

isolated_call=names “-qisolated_call” on page 214

C langlvl “-qlanglvl” on page 224

[no]ldbl128 “-qldbl128, -qlongdouble” on page 251

[no]libansi “-qlibansi” on page 253

[no]list “-qlist” on page 256

[no]longlong “-qlonglong” on page 262

C [no]macpstr “-qmacpstr” on page 263

[no]maxmem=number “-qmaxmem” on page 268

[no]mbcs “-qmbcs, -qdbcs” on page 269

[no]optimize=number “-O, -qoptimize” on page 282

C++ priority=number “-qpriority (C++ only)” on page 310

440 XL C/C++: Compiler Reference

Valid settings for #pragma options
option_keyword

Compiler option equivalent

proclocal, procimported, procunknown “-qprocimported, -qproclocal,
-qprocunknown” on page 311

C [no]proto “-qproto (C only)” on page 313

[no]ro “-qro” on page 319

[no]roconst “-qroconst” on page 320

[no]showinc “-qshowinc” on page 327

[no]source “-qsource” on page 339

spill=number “-qspill” on page 342

C [no]srcmsg “-qsrcmsg (C only)” on page 343

[no]stdinc “-qstdinc” on page 346

[no]strict “-qstrict” on page 348

tbtable=option “-qtbtable” on page 359

tune=option “-qtune” on page 371

C [no]unroll=[yes/no/auto/n] “-qunroll” on page 378

C [no]upconv “-qupconv (C only)” on page 382

[no]xref “-qxref” on page 396

Usage

Most #pragma options directives must come before any statements in your source
program; only comments, blank lines, and other pragma specifications can precede
them. For example, the first few lines of your program can be a comment followed
by the #pragma options directive:
/* The following is an example of a #pragma options directive: */

#pragma options langlvl=stdc89 halt=s spill=1024 source

/* The rest of the source follows ... */

To specify more than one compiler option with the #pragma options directive,
separate the options using a blank space. For example:
#pragma options langlvl=stdc89 halt=s spill=1024 source

#pragma option_override
Category

Optimization and tuning

Purpose

Allows you to specify optimization options at the subprogram level that override
optimization options given on the command line.

This enables finer control of program optimization, and can help debug errors that
occur only under optimization.

Chapter 5. Compiler pragmas reference 441

Syntax

►► # pragma option_override ►

► ▼

▼

(identifier , " opt (size) ")
, yes
, no

level , 0
2
3

registerspillsize , size
,

strict
yes
no
suboption_list

►◄

Parameters

identifier
The name of a function for which optimization options are to be overridden.

The following table shows the equivalent command line option for each pragma
suboption.

#pragma option_override value Equivalent compiler option

level, 0 -O1

level, 2 -O21

level, 3 -O32

registerspillsize, size -qspill=size

size -qcompact

size, yes

size, no -qnocompact

strict -qstrict, -qstrict=all

strict, yes

strict, no -qnostrict

strict, suboption_list -qstrict=suboption_list

Notes:

1. If optimization level -O3 or higher is specified on the command line, #pragma
option_override(identifier, "opt(level, 0)") or #pragma
option_override(identifier, "opt(level, 2)") does not turn off the
implication of the -qhot and -qipa options.

2. Specifying -O3 implies -qhot=level=0. However, specifying #pragma
option_override(identifier, "opt(level, 3)") in source code does not imply
-qhot=level=0.

Defaults

See the descriptions for the options listed in the table above for default settings.

442 XL C/C++: Compiler Reference

Usage

The pragma takes effect only if optimization is already enabled by a command-line
option. You can only specify an optimization level in the pragma lower than the
level applied to the rest of the program being compiled.

The #pragma option_override directive only affects functions that are defined in
the same compilation unit. The pragma directive can appear anywhere in the
translation unit. That is, it can appear before or after the function definition, before
or after the function declaration, before or after the function has been referenced,
and inside or outside the function definition.

C++

This pragma cannot be used with overloaded member functions.

Examples

Suppose you compile the following code fragment containing the functions foo
and faa using -O2. Since it contains the #pragma option_override(faa,
"opt(level, 0)"), function faa will not be optimized.
foo(){

.

.

.
}

#pragma option_override(faa, "opt(level, 0)")

faa(){
.
.
.
}

Related information
v “-O, -qoptimize” on page 282
v “-qcompact” on page 130
v “-qspill” on page 342
v “-qstrict” on page 348

#pragma pack
Category

Object code control

Purpose

Sets the alignment of all aggregate members to a specified byte boundary.

If the byte boundary number is smaller than the natural alignment of a member,
padding bytes are removed, thereby reducing the overall structure or union size.

Chapter 5. Compiler pragmas reference 443

Syntax

►► # pragma pack ()
nopack
number
pop

►◄

Defaults

Members of aggregates (structures, unions, and classes) are aligned on their natural
boundaries and a structure ends on its natural boundary. The alignment of an
aggregate is that of its strictest member (the member with the largest alignment
requirement).

Parameters

nopack
Disables packing. A warning message is issued and the pragma is ignored.

number
is one of the following:

1 Aligns structure members on 1-byte boundaries, or on their natural
alignment boundary, whichever is less.

2 Aligns structure members on 2-byte boundaries, or on their natural
alignment boundary, whichever is less.

4 Aligns structure members on 4-byte boundaries, or on their natural
alignment boundary, whichever is less.

8 Aligns structure members on 8-byte boundaries, or on their natural
alignment boundary, whichever is less.

16 Aligns structure members on 16-byte boundaries, or on their natural
alignment boundary, whichever is less.

pop
Removes the previous value added with #pragma pack. Specifying #pragma
pack() with no parameters is equivalent to #pragma pack(pop).

Usage

The #pragma pack directive applies to the definition of an aggregate type, rather
than to the declaration of an instance of that type; it therefore automatically applies
to all variables declared of the specified type.

The #pragma pack directive modifies the current alignment rule for only the
members of structures whose declarations follow the directive. It does not affect
the alignment of the structure directly, but by affecting the alignment of the
members of the structure, it may affect the alignment of the overall structure.

The #pragma pack directive cannot increase the alignment of a member, but rather
can decrease the alignment. For example, for a member with data type of short, a
#pragma pack(1) directive would cause that member to be packed in the structure
on a 1-byte boundary, while a #pragma pack(4) directive would have no effect.

The #pragma pack directive aligns all bit fields in a structure/union on 1-bit
boundaries. Example:

444 XL C/C++: Compiler Reference

#pragma pack(2)
struct A{

int a:31;
int b:2;

}x;

int main(){
printf("size of struct A = %lu\n", sizeof(x));

}

When the program is compiled and run, the output is:
size of struct A = 6

But if you remove the #pragma pack directive, you get this output:
size of struct A = 8

The #pragma pack directive applies only to complete declarations of structures or
unions; this excludes forward declarations, in which member lists are not specified.
For example, in the following code fragment, the alignment for struct S is 4, since
this is the rule in effect when the member list is declared:
#pragma pack(1)
struct S;
#pragma pack(4)
struct S { int i, j, k; };

A nested structure has the alignment that precedes its declaration, not the
alignment of the structure in which it is contained, as shown in the following
example:
#pragma pack (4) // 4-byte alignment

struct nested {
int x;
char y;
int z;

};

#pragma pack(1) // 1-byte alignment
struct packedcxx{

char a;
short b;
struct nested s1; // 4-byte alignment

};

If more than one #pragma pack directive appears in a structure defined in an
inlined function, the #pragma pack directive in effect at the beginning of the
structure takes precedence.

Examples

The following example shows how the #pragma pack directive can be used to set
the alignment of a structure definition:
// header file file.h

#pragma pack(1)

struct jeff{ // this structure is packed
short bill; // along 1-byte boundaries
int *chris;

};
#pragma pack(pop) // reset to previous alignment rule

Chapter 5. Compiler pragmas reference 445

// source file anyfile.c

#include "file.h"

struct jeff j; // uses the alignment specified
// by the pragma pack directive
// in the header file and is
// packed along 1-byte boundaries

This example shows how a #pragma pack directive can affect the size and
mapping of a structure:
struct s_t {
char a;
int b;
short c;
int d;
}S;

Default mapping: With #pragma pack(1):

size of s_t = 16 size of s_t = 11

offset of a = 0 offset of a = 0

offset of b = 4 offset of b = 1

offset of c = 8 offset of c = 5

offset of d = 12 offset of d = 7

alignment of a = 1 alignment of a = 1

alignment of b = 4 alignment of b = 1

alignment of c = 2 alignment of c = 1

alignment of d = 4 alignment of d = 1

The following example defines a union uu containing a structure as one of its
members, and declares an array of 2 unions of type uu:

union uu {
short a;
struct {
char x;
char y;
char z;

} b;
};

union uu nonpacked[2];

Since the largest alignment requirement among the union members is that of short
a, namely, 2 bytes, one byte of padding is added at the end of each union in the
array to enforce this requirement:

┌───── nonpacked[0] ─────────── nonpacked[1] ───┐
│ │ │
│ a │ │ a │ │
│ x │ y │ z │ │ x │ y │ z │ │
|─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘
0 1 2 3 4 5 6 7 8

The next example uses #pragma pack(1) to set the alignment of unions of type uu
to 1 byte:

446 XL C/C++: Compiler Reference

#pragma pack(1)

union uu {
short a;
struct {
char x;
char y;
char z;

} b;
};

union uu pack_array[2];

Now, each union in the array packed has a length of only 3 bytes, as opposed to
the 4 bytes of the previous case:

┌─── packed[0] ───┬─── packed[1] ───┐
│ │ │
│ a │ │ a │ │
│ x │ y │ z │ x │ y │ z │
|─────┴─────┴─────┴─────┴─────┴─────┘
0 1 2 3 4 5 6

Related information
v “-qalign” on page 104
v "Using alignment modifiers" in the XL C/C++ Optimization and Programming

Guide

#pragma pass_by_value (C++ only)
See “-qoldpassbyvalue (C++ only)” on page 287.

#pragma priority (C++ only)
See “-qpriority (C++ only)” on page 310.

#pragma reachable
Category

Optimization and tuning

Purpose

Informs the compiler that the point in the program after a named function can be
the target of a branch from some unknown location.

By informing the compiler that the instruction after the specified function can be
reached from a point in your program other than the return statement in the
named function, the pragma allows for additional opportunities for optimization.

Note: The compiler automatically inserts #pragma reachable directives for the
setjmp family of functions (setjmp, _setjmp, sigsetjmp, and _sigsetjmp) when you
include the setjmp.h header file.

Syntax

►► # pragma reachable ▼

,

(function_name) ►◄

Chapter 5. Compiler pragmas reference 447

Parameters

function_name
The name of a function preceding the instruction which is reachable from a
point in the program other than the function's return statement.

Defaults

Not applicable.

Related information
v “#pragma leaves” on page 428

#pragma reg_killed_by
Category

Optimization and tuning

Purpose

Specifies registers that may be altered by functions specified by #pragma mc_func.

Ordinarily, code generated for functions specified by #pragma mc_func may alter
any or all volatile registers available on your system. You can use #pragma
reg_killed_by to explicitly list a specific set of volatile registers to be altered by
such functions. Registers not in this list will not be altered.

Syntax

►► ▼

,

pragma reg_killed_by function
register

- register

►◄

Parameters

function
The name of a function previously defined using the #pragma mc_func
directive.

register
The symbolic name(s) of either a single register or a range of registers to be
altered by the named function. The symbolic name must be a valid register
name on the target platform. Valid registers are:

cr0, cr1, and cr5 to cr7
Condition registers

ctr Count register

gr0 and gr3 to gr12
General purpose registers

fp0 to fp13
Floating-point registers

fsr Floating-point and status control register

448 XL C/C++: Compiler Reference

lr Link register

vr0 to vr31
Vector registers (on selected processors only)

xer Fixed-point exception register

You can identify a range of registers by providing the symbolic names of both
starting and ending registers, separated by a dash.

If no register is specified, no volatile registers will be killed by the named
function.

Examples

The following example shows how to use #pragma reg_killed_by to list a specific
set of volatile registers to be used by the function defined by #pragma mc_func.
int add_logical(int, int);
#pragma mc_func add_logical {"7c632014" "7c630194"}

/* addc r3 <- r3, r4 */
/* addze r3 <- r3, carry bit */

#pragma reg_killed_by add_logical gr3, xer
/* only gpr3 and the xer are altered by this function */

main() {

int i,j,k;

i = 4;
k = -4;
j = add_logical(i,k);
printf("\n\nresult = %d\n\n",j);

}

Related information
v “#pragma mc_func” on page 432

#pragma report (C++ only)
Category

Listings, messages and compiler information

Purpose

Controls the generation of diagnostic messages.

The pragma allows you to specify a minimum severity level for a message for it to
display, or allows you to enable or disable a specific message regardless of the
prevailing report level.

Chapter 5. Compiler pragmas reference 449

Syntax

►►
I

pragma report (level , E)
W

enable , "message_number"
disable

pop

►◄

Defaults

The default report level is Informational (I), which displays messages of all types.

Parameters

level
Indicates that the pragma is set according to the minimum severity level of
diagnostic messages to display.

E Indicates that only error messages will display. Error messages are of the
highest severity. This is equivalent to the -qflag=e:e compiler option.

W Indicates that warning and error messages will display. This is equivalent to
the -qflag=w:w compiler option.

I Indicates that all diagnostic messages will display: warning, error and
informational messages. Informational messages are of the lowest severity. This
is equivalent to the -qflag=i:i compiler option.

enable
Enables the specified "message_number".

disable
Disables the specified "message_number".

"message_number"
Represents a message identifier, which consists of a prefix followed by the
message number in quotation marks; for example, "CCN1004".

Note: You must use quotation marks with message_number as in the preceding
example "CCN1004".

pop
Reverts the report level to that which was previously in effect. If no previous
report level has been specified, a warning is issued, and the report level
remains unchanged.

Usage

The pragma takes precedence over #pragma info and most compiler options. For
example, if you use #pragma report to disable a compiler message, that message
will not be displayed with any -qflag compiler option setting.

Related information
v “-qflag” on page 156

450 XL C/C++: Compiler Reference

#pragma simd_level
Category

Optimization and tuning

Purpose

Controls the compiler code generation of vector instructions for individual loops.

Vector instructions can offer high performance when used with
algorithmic-intensive tasks such as multimedia applications. You have the
flexibility to control the aggressiveness of autosimdization on a loop-by-loop basis,
and might be able to achieve further performance gain with this fine grain control.

The supported levels are from 0 to 10. level(0) indicates performing no
autosimdization on the loop that follows the pragma directive. level(10) indicates
performing the most aggressive form of autosimdization on the loop. With this
pragma directive, you can control the autosimdization behavior on a loop-by-loop
basis.

Syntax

►► # pragma simd_level (n) ►◄

Parameters

n A scalar integer initialization expression, from 0 to 10, specifying the
aggressiveness of autosimdization on the loop that follows the pragma
directive.

Usage

A loop with no simd_level pragma is set to simd level 5 by default, if -qsimd=auto
is in effect.

#pragma simd_level(0) is equivalent to #pragma nosimd, where autosimdization is
not performed on the loop that follows the pragma directive.

#pragma simd_level(10) instructs the compiler to perform autosimdization on the
loop that follows the pragma directive most aggressively, including bypassing cost
analysis.

Rules

The rules of #pragma simd_level directive are listed as follows:
v The #pragma simd_level directive has effect only for architectures that support

vector instructions and when used with -qsimd=auto.
v The #pragma simd_level directive applies to while, do while, and for loops.
v The #pragma simd_level directive applies only to the loop immediately

following it. The directive has no effect on other loops that are nested within the
specified loop. It is possible to set different simd levels for the inner and outer
loops by specifying separate #pragma simd_level directives.

v The #pragma simd_level directive can be mixed with loop optimization (-qhot)
and OpenMP directives without requiring any specific optimization level. For

Chapter 5. Compiler pragmas reference 451

more information about -qhot and OpenMP directives, see “-qhot” on page 182
in this document and "Using OpenMP directives" in the IBM XL C/C++
Optimization and Programming Guide.

Examples
...
#pragma simd_level(10)
for (i=1; i<1000; i++) {
/* program code */

} ...

#pragma STDC CX_LIMITED_RANGE
Category

Optimization and tuning

Purpose

Informs the compiler that complex division and absolute value are only invoked
with values such that intermediate calculation will not overflow or lose
significance.

Syntax

►►
off

pragma STDC cx_limited_range on
default

►◄

Usage

Using values outside the limited range may generate wrong results, where the
limited range is defined such that the "obvious symbolic definition" will not
overflow or run out of precision.

The pragma is effective from its first occurrence until another cx_limited_range
pragma is encountered, or until the end of the translation unit. When the pragma
occurs inside a compound statement (including within a nested compound
statement), it is effective from its first occurrence until another cx_limited_range
pragma is encountered, or until the end of the compound statement.

Examples

The following example shows the use of the pragma for complex division:
#include <complex.h>

_Complex double a, b, c, d;
void p() {

d = b/c;

{

#pragma STDC CX_LIMITED_RANGE ON

452 XL C/C++: Compiler Reference

a = b / c;

}
}

The following example shows the use of the pragma for complex absolute value:
#include <complex.h>

_Complex double cd = 10.10 + 10.10*I;
int p() {

#pragma STDC CX_LIMITED_RANGE ON

double d = cabs(cd);
}

Related information
v "Standard pragmas" in the XL C/C++ Language Reference

#pragma stream_unroll
Category

Optimization and tuning

Purpose

When optimization is enabled, breaks a stream contained in a for loop into
multiple streams.

Syntax

►► # pragma stream_unroll
(number)

►◄

Parameters

number

A loop unrolling factor. C

The value of number is a positive integral

constant expression. C++

The value of number is a positive scalar integer

or compile-time constant initialization expression.

An unroll factor of 1 disables unrolling.

If number is not specified, the optimizer determines an appropriate unrolling factor
for each nested loop.

Usage

To enable stream unrolling, you must specify -qhot and -qstrict, or -qsmp, or use
optimization level -O4 or higher. If -qstrict is in effect, no stream unrolling takes
place.

For stream unrolling to occur, the #pragma stream_unroll directive must be the
last pragma specified preceding a for loop. C

Specifying #pragma

stream_unroll more than once for the same for loop or combining it with other
loop unrolling pragmas (#pragma unroll, #pragma nounroll, #pragma
unrollandfuse, #pragma nounrollandfuse) results in a warning. C++

The

Chapter 5. Compiler pragmas reference 453

compiler silently ignores all but the last of multiple loop unrolling pragmas
specified on the same for loop.

Examples

The following example shows how #pragma stream_unroll can increase
performance.
int i, m, n;
int a[1000];
int b[1000];
int c[1000];

....

#pragma stream_unroll(4)
for (i=0; i<n; i++) {

a[i] = b[i] * c[i];
}

The unroll factor of 4 reduces the number of iterations from n to n/4, as follows:
m = n/4;

for (i=0; i<n/4; i++){
a[i] = b[i] + c[i];
a[i+m] = b[i+m] + c[i+m];
a[i+2*m] = b[i+2*m] + c[i+2*m];
a[i+3*m] = b[i+3*m] + c[i+3*m];

}

The increased number of read and store operations are distributed among a
number of streams determined by the compiler, which reduces computation time
and increase performance.

Related information
v “-qunroll” on page 378
v “#pragma unrollandfuse”

#pragma strings
See “-qro” on page 319.

#pragma unroll, #pragma nounroll
See “-qunroll” on page 378

#pragma unrollandfuse
Category

Optimization and tuning

Purpose

Instructs the compiler to attempt an unroll and fuse operation on nested for loops.

454 XL C/C++: Compiler Reference

Syntax

►► # pragma nounrollandfuse
unrollandfuse

(number)

►◄

Parameters

number

A loop unrolling factor. C

The value of number is a positive integral

constant expression. C++

The value of number is a positive scalar integer

or compile-time constant initialization expression.

If number is not specified, the optimizer determines an appropriate unrolling factor
for each nested loop.

Usage

The #pragma unrollandfuse directive applies only to the outer loops of nested for
loops that meet the following conditions:
v There must be only one loop counter variable, one increment point for that

variable, and one termination variable. These cannot be altered at any point in
the loop nest.

v Loops cannot have multiple entry and exit points. The loop termination must be
the only means to exit the loop.

v Dependencies in the loop must not be "backwards-looking". For example, a
statement such as A[i][j] = A[i -1][j + 1] + 4) must not appear within the
loop.

For loop unrolling to occur, the #pragma unrollandfuse directive must precede a
for loop. You must not specify #pragma unrollandfuse for the innermost for loop.

You must not specify #pragma unrollandfuse more than once, or combine the
directive with #pragma nounrollandfuse, #pragma nounroll, #pragma unroll, or
#pragma stream_unroll directives for the same for loop.

Predefined macros

None.

Examples

In the following example, a #pragma unrollandfuse directive replicates and fuses
the body of the loop. This reduces the number of cache misses for array b.
int i, j;
int a[1000][1000];
int b[1000][1000];
int c[1000][1000];

....

#pragma unrollandfuse(2)
for (i=1; i<1000; i++) {

Chapter 5. Compiler pragmas reference 455

for (j=1; j<1000; j++) {
a[j][i] = b[i][j] * c[j][i];

}
}

The for loop below shows a possible result of applying the #pragma
unrollandfuse(2) directive to the loop shown above:
for (i=1; i<1000; i=i+2) {

for (j=1; j<1000; j++) {
a[j][i] = b[i][j] * c[j][i];
a[j][i+1] = b[i+1][j] * c[j][i+1];

}
}

You can also specify multiple #pragma unrollandfuse directives in a nested loop
structure.
int i, j, k;
int a[1000][1000];
int b[1000][1000];
int c[1000][1000];
int d[1000][1000];
int e[1000][1000];

....

#pragma unrollandfuse(4)
for (i=1; i<1000; i++) {
#pragma unrollandfuse(2)

for (j=1; j<1000; j++) {
for (k=1; k<1000; k++) {

a[j][i] = b[i][j] * c[j][i] + d[j][k] * e[i][k];
}

}
}

Related information
v “-qunroll” on page 378
v “#pragma stream_unroll” on page 453

#pragma weak
Category

Object code control

Purpose

Prevents the linker from issuing error messages if it encounters a symbol
multiply-defined during linking, or if it does not find a definition for a symbol.

The pragma can be used to allow a program to call a user-defined function that
has the same name as a library function. By marking the library function definition
as "weak", the programmer can reference a "strong" version of the function and
cause the linker to accept multiple definitions of a global symbol in the object
code. While this pragma is intended for use primarily with functions, it will also
work for most data objects.

456 XL C/C++: Compiler Reference

Syntax

►► # pragma weak name1
= name2

►◄

Parameters

name1
A name of a data object or function with external linkage.

name2
A name of a data object or function with external linkage.

C++

name2 must not be a member function. If name2 is a template

function, you must explicitly instantiate the template function.

C++

Names must be specified using their mangled names. To obtain C++

mangled names, compile your source to object files only, using the -c compiler
option, and use the nm operating system command on the resulting object file. You
can also use the c++filt utility provided by the compiler for a side-by-side listing
of source names and mangled names; see "Demangling compiled C++ names" in
the XL C/C++ Optimization and Programming Guide for details. (See also "Name
mangling" in the XL C/C++ Language Reference for details on using the extern "C"
linkage specifier on declarations to prevent name mangling.)

Usage

There are two forms of the weak pragma:

#pragma weak name1
This form of the pragma marks the definition of the name1 as "weak" in a
given compilation unit. If name1 is referenced from anywhere in the
program, the linker will use the "strong" version of the definition (that is,
the definition not marked with #pragma weak), if there is one. If there is
no strong definition, the linker will use the weak definition; if there are
multiple weak definitions, it is unspecified which weak definition the
linker will select (typically, it uses the definition found in the first object
file specified on the command line during the link step). name1 must be
defined in the same compilation unit as #pragma weak.

#pragma weak name1=name2
This form of the pragma creates a weak definition of the name1 for a given
compilation unit, and an alias for name2. If name1 is referenced from
anywhere in the program, the linker will use the "strong" version of the
definition (that is, the definition not marked with #pragma weak), if there
is one. If there is no strong definition, the linker will use the weak
definition, which resolves to the definition of name2. If there are multiple
weak definitions, it is unspecified which weak definition the linker will
select (typically, it uses the definition found in the first object file specified
on the command line during the link step).

name2 must be defined in the same compilation unit as #pragma weak.
name1 may or may not be declared in the same compilation unit as the
#pragma weak, but must never be defined in the compilation unit. If
name1 is declared in the compilation unit, name1's declaration must be
compatible to that of name2. For example, if name2 is a function, name1
must have the same return and argument types as name2.

Chapter 5. Compiler pragmas reference 457

This pragma should not be used with uninitialized global data, or with shared
library data objects that are exported to executables.

Examples

The following is an example of the #pragma weak name1 form:
// Compilation unit 1:

#include <stdio.h>

void foo();

int main()
{

foo();
}

// Compilation unit 2:

#include <stdio.h>

#if __cplusplus
#pragma weak foo__Fv
#else
#pragma weak foo
#endif
void foo()
{

printf("Foo called from compilation unit 2\n");
}

// Compilation unit 3:

#include <stdio.h>

void foo()
{

printf("Foo called from compilation unit 3\n");
}

If all three compilation units are compiled and linked together, the linker will use
the strong definition of foo in compilation unit 3 for the call to foo in compilation
unit 1, and the output will be:
Foo called from compilation unit 3

If only compilation unit 1 and 2 are compiled and linked together, the linker will
use the weak definition of foo in compilation unit 2, and the output will be:
Foo called from compilation unit 2

The following is an example of the #pragma weak name1=name2 form:
// Compilation unit 1:

#include <stdio.h>

void foo();

int main()
{
foo();
}

// Compilation unit 2:

458 XL C/C++: Compiler Reference

#include <stdio.h>

void foo(); // optional

#if __cplusplus
#pragma weak foo__Fv = foo2__Fv
#else
#pragma weak foo = foo2
#endif
void foo2()
{
printf("Hello from foo2!\n");
}

// Compilation unit 3:

#include <stdio.h>

void foo()
{
printf("Hello from foo!\n");
}

If all three compilation units are compiled and linked together, the linker will use
the strong definition of foo in compilation unit 3 for the call to foo from
compilation unit 1, and the output will be:
Hello from foo!

If only compilation unit 1 and 2 are compiled and linked together, the linker will
use the weak definition of foo in compilation unit 2, which is an alias for foo2, and
the output will be:
Hello from foo2!

Related information
v "The weak variable attribute" in the XL C/C++ Language Reference

v "The weak function attribute" in the XL C/C++ Language Reference

v “#pragma map” on page 430
v “-qweaksymbol” on page 395
v “-qweakexp” on page 394

Pragma directives for parallel processing
Parallel processing operations are controlled by pragma directives in your program
source. The pragmas have effect only when parallelization is enabled with the
-qsmp compiler option.

You can use IBM SMP or OpenMP directives in C programs, and OpenMP
directives in C++ programs. Each has its own usage characteristics.

#pragma ibm independent_calls (C only)
Description

The independent_calls pragma asserts that specified function calls within the
chosen loop have no loop-carried dependencies. This information helps the
compiler perform dependency analysis.

Chapter 5. Compiler pragmas reference 459

Syntax

►► ▼

,

pragma ibm independent_calls
(identifier)

►◄

Where identifier is a comma-separated list that represents the name of the functions.

Usage

identifier cannot be the name of a pointer to a function.

If no function identifiers are specified, the compiler assumes that all functions
inside the loop are free of carried dependencies.

#pragma ibm permutation (C only)
Purpose

The permutation pragma asserts that on the following loop, different elements of
the named arrays are guaranteed to have different values (that is, a[i] == a[j]
iff i == j).

Syntax

►► ▼

,

pragma ibm permutation (identifier) ►◄

where identifier represents the name of an array. The identifier cannot be a function
parameter or the name of a pointer.

Usage

Pragma must appear immediately before the loop or loop block directive to be
affected.

This assertion may enable loop transformations if elements are used to index other
arrays. This pragma is useful for programs that deal with sparse data structures.

#pragma ibm schedule (C only)
Purpose

Note: #pragma ibm schedule has been deprecated and might be removed in a
future release. Use “#pragma omp parallel for” on page 472 with the schedule
clause. For more information about SMP directives, see “Deprecated directives” on
page 406.

The schedule pragma specifies the scheduling algorithms used for parallel
processing.

460 XL C/C++: Compiler Reference

Syntax

►► # pragma ibm schedule (sched-type) ►◄

Parameters

sched-type represents one of the following options:

affinity
Iterations of a loop are initially divided into local partitions of size
ceiling(number_of_iterations/number_of_threads) contiguous iterations. Each local
partition is then further subdivided into chunks of size
ceiling(number_of_iterations_remaining_in_partition/2).

When a thread becomes available, it takes the next chunk from its local
partition. If there are no more chunks in the local partition, the thread takes an
available chunk from the partition of another thread.

affinity,n
As above, except that each local partition is subdivided into chunks of size n
contiguous iterations. n must be an integral assignment expression of value 1
or greater.

dynamic
Iterations of a loop are divided into chunks, each of which contains one
iteration

Chunks are assigned to threads on a first-come, first-do basis as threads
become available. This continues until all work is completed.

dynamic,n
Iterations of a loop are divided into chunks that contain n contiguous iterations
each. The final chunk might contain fewer than n iterations.

Each thread is initially assigned one chunk. After threads complete their
assigned chunks, they are assigned remaining chunks on a "first-come, first-do"
basis.n must be an integral assignment expression of value 1 or greater.

guided
Chunks are made progressively smaller until a chunk size of one is reached.
The first chunk is of size ceiling(number_of_iterations/number_of_threads)
contiguous iterations. Remaining chunks are of size
ceiling(number_of_iterations_remaining/number_of_threads).

Chunks are assigned to threads on a first-come, first-serve basis as threads
become available. This continues until all work is completed.

guided,n
As above, except the minimum chunk size for all the chunks but the last chunk
is set to n contiguous iterations. n must be an integral assignment expression of
value 1 or greater.

runtime
Scheduling policy is determined at run time.

static
Iterations of a loop are divided into chunks of size of at least
floor(number_of_iterations/number_of_threads) contiguous iterations. The first
remainder(number_of_iterations/number_of_threads) chunks have one more
iteration. Each thread is assigned a separate chunk.

Chapter 5. Compiler pragmas reference 461

This scheduling policy is also known as block scheduling.

static,n
Iterations of a loop are divided into chunks of size n contiguous iterations
except for the last iteration. Each chunk is assigned to a thread in round-robin
fashion.

n must be an integral assignment expression of value 1 or greater.

Note: If n=1, iterations of a loop are divided into chunks of size 1 and each
chunk is assigned to a thread in round-robin fashion. This scheduling policy is
also known as block cyclic scheduling

Usage

Pragma must appear immediately before the loop or loop block directive to be
affected.

Scheduling algorithms for parallel processing can be specified using any of the
methods shown below. If used, methods higher in the list override entries lower in
the list.
v pragma statements
v compiler command line options
v runtime command line options
v runtime default options

Scheduling algorithms can also be specified using the schedule argument of the
independent_loop pragma statement. If different scheduling types are specified for
a given loop, the last one specified is applied.

#pragma ibm sequential_loop (C only)
Purpose

The sequential_loop pragma explicitly instructs the compiler to execute the chosen
loop sequentially.

Syntax

►► # pragma ibm sequential_loop ►◄

Usage

Pragma must appear immediately before the loop or loop block directive to be
affected.

This pragma disables automatic parallelization of the chosen loop, and is always
respected by the compiler.

#pragma omp atomic
Purpose

The omp atomic directive allows access of a specific memory location atomically. It
ensures that race conditions are avoided through direct control of concurrent
threads that might read or write to or from the particular memory location. With

462 XL C/C++: Compiler Reference

the omp atomic directive, you can write more efficient concurrent algorithms with
fewer locks.

Syntax

Syntax form 1

►►
update

pragma omp atomic
read
write
capture

►◄

►► expression_statement ►◄

Syntax form 2

►► # pragma omp atomic capture ►◄

►► structured_block ►◄

where expression_statement is an expression statement of scalar type, and
structured_block is a structured block of two expression statements.

Clauses

update
Updates the value of a variable atomically. Guarantees that only one thread at
a time updates the shared variable, avoiding errors from simultaneous writes
to the same variable. An omp atomic directive without a clause is equivalent to
an omp atomic update.

Note: Atomic updates cannot write arbitrary data to the memory location, but
depend on the previous data at the memory location.

read
Reads the value of a variable atomically. The value of a shared variable can be
read safely, avoiding the danger of reading an intermediate value of the
variable when it is accessed simultaneously by a concurrent thread.

write
Writes the value of a variable atomically. The value of a shared variable can be
written exclusively to avoid errors from simultaneous writes.

capture
Updates the value of a variable while capturing the original or final value of
the variable atomically.

The expression_statement or structured_block takes one of the following forms,
depending on the atomic directive clause:

Chapter 5. Compiler pragmas reference 463

Directive clause expression_statement structured_block

update
(equivalent to no clause)

x++;

x--;

++x;

--x;

x binop = expr;

x = x binop expr;

x = expr binop x;

read v = x;

write x = expr;

capture v = x++;

v = x--;

v = ++x;

v = --x;

v = x binop = expr;

v = x = x binop expr;

v = x = expr binop x;

{v = x; x binop = expr;}

{v = x; xOP;}

{v = x; OPx;}

{x binop = expr; v = x;}

{xOP; v = x;}

{OPx; v = x;}

{v = x; x = x binop expr;}

{x = x binop expr; v = x;}

{v = x; x = expr binop x;}

{x = expr binop x; v = x;}

{v = x; x = expr;}1

Note:

1. This expression is to support atomic swap operations.

where:

x, v are both lvalue expressions with scalar type.

expr is an expression of scalar type that does not reference x.

binop is one of the following binary operators:
+ * - / & ^ | << >>

OP is one of ++ or --.

Note: binop, binop=, and OP are not overloaded operators.

Usage

Objects that can be updated in parallel and that might be subject to race conditions
should be protected with the omp atomic directive.

All atomic accesses to the storage locations designated by x throughout the
program should have a compatible type.

464 XL C/C++: Compiler Reference

Within an atomic region, multiple syntactic occurrences of x must designate the
same storage location.

All accesses to a certain storage location throughout a concurrent program must be
atomic. A non-atomic access to a memory location might break the expected atomic
behavior of all atomic accesses to that storage location.

Neither v nor expr can access the storage location that is designated by x.

Neither x nor expr can access the storage location that is designated by v.

All accesses to the storage location designated by x are atomic. Evaluations of the
expression expr, v, x are not atomic.

For atomic capture access, the operation of writing the captured value to the
storage location represented by v is not atomic.

Examples

Example 1: Atomic update
extern float x[], *p = x, y;

//Protect against race conditions among multiple updates.
#pragma omp atomic
x[index[i]] += y;

//Protect against race conditions with updates through x.
#pragma omp atomic
p[i] -= 1.0f;

Example 2: Atomic read, write, and update
extern int x[10];
extern int f(int);
int temp[10], i;

for(i = 0; i < 10; i++)
{

#pragma omp atomic read
temp[i] = x[f(i)];

#pragma omp atomic write
x[i] = temp[i]*2;

#pragma omp atomic update
x[i] *= 2;

}

Example 3: Atomic capture
extern int x[10];
extern int f(int);
int temp[10], i;

for(i = 0; i < 10; i++)
{

#pragma omp atomic capture
temp[i] = x[f(i)]++;

#pragma omp atomic capture
{

Chapter 5. Compiler pragmas reference 465

temp[i] = x[f(i)]; //The two occurences of x[f(i)] must evaluate to the
x[f(i)] -= 3; //same memory location, otherwise behavior is undefined.

}
}

#pragma omp parallel
Purpose

The omp parallel directive explicitly instructs the compiler to parallelize the
chosen block of code.

Syntax

►► ▼

,

pragma omp parallel clause ►◄

Parameters

clause is any of the following clauses:

if (exp)
When the if argument is specified, the program code executes in parallel only
if the scalar expression represented by exp evaluates to a nonzero value at run
time. Only one if clause can be specified.

private (list)
Declares the scope of the data variables in list to be private to each thread.
Data variables in list are separated by commas.

firstprivate (list)
Declares the scope of the data variables in list to be private to each thread.
Each new private object is initialized with the value of the original variable as
if there was an implied declaration within the statement block. Data variables
in list are separated by commas.

num_threads (int_exp)
The value of int_exp is an integer expression that specifies the number of
threads to use for the parallel region. If dynamic adjustment of the number of
threads is also enabled, then int_exp specifies the maximum number of threads
to be used.

shared (list)
Declares the scope of the comma-separated data variables in list to be shared
across all threads.

default (shared | none)
Defines the default data scope of variables in each thread. Only one default
clause can be specified on an omp parallel directive.

Specifying default(shared) is equivalent to stating each variable in a
shared(list) clause.

Specifying default(none) requires that each data variable visible to the
parallelized statement block must be explcitly listed in a data scope clause,
with the exception of those variables that are:
v const-qualified,
v specified in an enclosed data scope attribute clause, or,
v used as a loop control variable referenced only by a corresponding omp for

or omp parallel for directive.

466 XL C/C++: Compiler Reference

copyin (list)
For each data variable specified in list, the value of the data variable in the
master thread is copied to the thread-private copies at the beginning of the
parallel region. Data variables in list are separated by commas.

Each data variable specified in the copyin clause must be a threadprivate
variable.

reduction (operator: list)
Performs a reduction on all scalar variables in list using the specified operator.
Reduction variables in list are separated by commas.

A private copy of each variable in list is created for each thread. At the end of
the statement block, the final values of all private copies of the reduction
variable are combined in a manner appropriate to the operator, and the result
is placed back in the original value of the shared reduction variable. For
example, when the max operator is specified, the original reduction variable
value combines with the final values of the private copies by using the
following expression:
original_reduction_variable = original_reduction_variable < private_copy ?
private_copy : original_reduction_variable;

For variables specified in the reduction clause, they must satisfy the following
conditions:
v Must be of a type appropriate to the operator. If the max or min operator is

specified, the variables must be one of the following types with or without
long, short, signed, or unsigned:
– C _Bool C

– C++ bool C++

– char
– C++ wchar_t C++

– int
– float
– double

v Must be shared in the enclosing context.
v Must not be const-qualified.
v Must not have pointer type.

Usage

When a parallel region is encountered, a logical team of threads is formed. Each
thread in the team executes all statements within a parallel region except for
work-sharing constructs. Work within work-sharing constructs is distributed
among the threads in a team.

Loop iterations must be independent before the loop can be parallelized. An
implied barrier exists at the end of a parallelized statement block.

By default, nested parallel regions are serialized.
Related information:
“OMP_NESTED” on page 35
“OMP_PROC_BIND” on page 37

Chapter 5. Compiler pragmas reference 467

#pragma omp for
Purpose

The omp for directive instructs the compiler to distribute loop iterations within the
team of threads that encounters this work-sharing construct.

Syntax

►► ▼

,

pragma omp for for-loop
clause

►◄

Parameters

clause is any of the following clauses:

collapse (n)
Allows you to parallelize multiple loops in a nest without introducing nested
parallelism.

►► COLLAPSE (n) ►◄

v Only one collapse clause is allowed on a worksharing for or parallel for
pragma.

v The specified number of loops must be present lexically. That is, none of the
loops can be in a called subroutine.

v The loops must form a rectangular iteration space and the bounds and stride
of each loop must be invariant over all the loops.

v If the loop indices are of different size, the index with the largest size will be
used for the collapsed loop.

v The loops must be perfectly nested; that is, there is no intervening code nor
any OpenMP pragma between the loops which are collapsed.

v The associated do-loops must be structured blocks. Their execution must not
be terminated by an break statement.

v If multiple loops are associated to the loop construct, only an iteration of the
innermost associated loop may be curtailed by a continue statement. If
multiple loops are associated to the loop construct, there must be no
branches to any of the loop termination statements except for the innermost
associated loop.

Ordered construct
During execution of an iteration of a loop or a loop nest within a loop
region, the executing thread must not execute more than one ordered
region which binds to the same loop region. As a consequence, if
multiple loops are associated to the loop construct by a collapse clause,
the ordered construct has to be located inside all associated loops.

Lastprivate clause
When a lastprivate clause appears on the pragma that identifies a
work-sharing construct, the value of each new list item from the
sequentially last iteration of the associated loops, is assigned to the
original list item even if a collapse clause is associated with the loop

468 XL C/C++: Compiler Reference

Other SMP and performance pragmas
stream_unroll,unroll,unrollandfuse,nounrollandfuse pragmas cannot
be used for any of the loops associated with the collapse clause loop
nest.

private (list)
Declares the scope of the data variables in list to be private to each thread.
Data variables in list are separated by commas.

firstprivate (list)
Declares the scope of the data variables in list to be private to each thread.
Each new private object is initialized as if there was an implied declaration
within the statement block. Data variables in list are separated by commas.

lastprivate (list)
Declares the scope of the data variables in list to be private to each thread. The
final value of each variable in list, if assigned, will be the value assigned to
that variable in the last iteration. Variables not assigned a value will have an
indeterminate value. Data variables in list are separated by commas.

reduction (operator: list)
Performs a reduction on all scalar variables in list using the specified operator.
Reduction variables in list are separated by commas.

A private copy of each variable in list is created for each thread. At the end of
the statement block, the final values of all private copies of the reduction
variable are combined in a manner appropriate to the operator, and the result
is placed back in the original value of the shared reduction variable. For
example, when the max operator is specified, the original reduction variable
value combines with the final values of the private copies by using the
following expression:
original_reduction_variable = original_reduction_variable < private_copy ?
private_copy : original_reduction_variable;

For variables specified in the reduction clause, they must satisfy the following
conditions:
v Must be of a type appropriate to the operator. If the max or min operator is

specified, the variables must be one of the following types with or without
long, short, signed, or unsigned:
– C _Bool C

– C++ bool C++

– char
– C++ wchar_t C++

– int
– float
– double

v Must be shared in the enclosing context.
v Must not be const-qualified.
v Must not have pointer type.

ordered
Specify this clause if an ordered construct is present within the dynamic extent
of the omp for directive.

schedule (type)
Specifies how iterations of the for loop are divided among available threads.
Acceptable values for type are:

auto With auto, scheduling is delegated to the compiler and runtime
system. The compiler and runtime system can choose any possible

Chapter 5. Compiler pragmas reference 469

mapping of iterations to threads (including all possible valid
schedules) and these may be different in different loops.

dynamic
Iterations of a loop are divided into chunks of size
ceiling(number_of_iterations/number_of_threads).

Chunks are dynamically assigned to active threads on a "first-come,
first-do" basis until all work has been assigned.

dynamic,n
As above, except chunks are set to size n. n must be an integral
assignment expression of value 1 or greater.

guided
Chunks are made progressively smaller until the default minimum
chunk size is reached. The first chunk is of size
ceiling(number_of_iterations/number_of_threads). Remaining chunks are
of size ceiling(number_of_iterations_left/number_of_threads).

The minimum chunk size is 1.

Chunks are assigned to active threads on a "first-come, first-do" basis
until all work has been assigned.

guided,n
As above, except the minimum chunk size is set to n; n must be an
integral assignment expression of value 1 or greater.

runtime
Scheduling policy is determined at run time. Use the
OMP_SCHEDULE environment variable to set the scheduling type and
chunk size.

static Iterations of a loop are divided into chunks of size
ceiling(number_of_iterations/number_of_threads). Each thread is assigned
a separate chunk.

This scheduling policy is also known as block scheduling.

static,n
Iterations of a loop are divided into chunks of size n. Each chunk is
assigned to a thread in round-robin fashion.

n must be an integral assignment expression of value 1 or greater.

This scheduling policy is also known as block cyclic scheduling.

Note: if n=1, iterations of a loop are divided into chunks of size 1 and
each chunk is assigned to a thread in round-robin fashion. This
scheduling policy is also known as block cyclic scheduling.

nowait
Use this clause to avoid the implied barrier at the end of the for directive. This
is useful if you have multiple independent work-sharing sections or iterative
loops within a given parallel region. Only one nowait clause can appear on a
given for directive.

and where for_loop is a for loop construct with the following canonical shape:
for (init_expr; exit_cond; incr_expr)
statement

where:

470 XL C/C++: Compiler Reference

init_expr takes the form: iv = b
integer-type iv = b

exit_cond takes the form: iv <= ub
iv < ub
iv >= ub
iv > ub

incr_expr takes the form: ++iv
iv++
--iv
iv--
iv += incr
iv -= incr
iv = iv + incr
iv = incr + iv
iv = iv - incr

and where:

iv Iteration variable. The iteration variable must be a signed integer not
modified anywhere within the for loop. It is implicitly made private for
the duration of the for operation. If not specified as lastprivate, the
iteration variable will have an indeterminate value after the operation
completes.

b, ub, incr Loop invariant signed integer expressions. No synchronization is
performed when evaluating these expressions and evaluated side effects
may result in indeterminate values.

Usage

This pragma must appear immediately before the loop or loop block directive to be
affected.

Program sections using the omp for pragma must be able to produce a correct
result regardless of which thread executes a particular iteration. Similarly, program
correctness must not rely on using a particular scheduling algorithm.

The for loop iteration variable is implicitly made private in scope for the duration
of loop execution. This variable must not be modified within the body of the for
loop. The value of the increment variable is indeterminate unless the variable is
specified as having a data scope of lastprivate.

An implicit barrier exists at the end of the for loop unless the nowait clause is
specified.

Restriction:

v The for loop must be a structured block, and must not be terminated by a break
statement.

v Values of the loop control expressions must be the same for all iterations of the
loop.

v An omp for directive can accept only one schedule clause.
v The value of n (chunk size) must be the same for all threads of a parallel region.

Chapter 5. Compiler pragmas reference 471

#pragma omp ordered
Purpose

The omp ordered directive identifies a structured block of code that must be
executed in sequential order.

Syntax

►► # pragma omp ordered ►◄

Usage

The omp ordered directive must be used as follows:
v It must appear within the extent of a omp for or omp parallel for construct

containing an ordered clause.
v It applies to the statement block immediately following it. Statements in that

block are executed in the same order in which iterations are executed in a
sequential loop.

v An iteration of a loop must not execute the same omp ordered directive more
than once.

v An iteration of a loop must not execute more than one distinct omp ordered
directive.

#pragma omp parallel for
Purpose

The omp parallel for directive effectively combines the omp parallel and omp for
directives. This directive lets you define a parallel region containing a single for
directive in one step.

Syntax

►► ▼

,

pragma omp parallel for for-loop
clause

►◄

Usage

With the exception of the nowait clause, clauses and restrictions described in the
omp parallel and omp for directives also apply to the omp parallel for directive.

#pragma omp section, #pragma omp sections
Purpose

The omp sections directive distributes work among threads bound to a defined
parallel region.

472 XL C/C++: Compiler Reference

Syntax

►► ▼

,

pragma omp sections clause ►◄

Parameters

clause is any of the following clauses:

private (list)
Declares the scope of the data variables in list to be private to each thread.
Data variables in list are separated by commas.

firstprivate (list)
Declares the scope of the data variables in list to be private to each thread.
Each new private object is initialized as if there was an implied declaration
within the statement block. Data variables in list are separated by commas.

lastprivate (list)
Declares the scope of the data variables in list to be private to each thread. The
final value of each variable in list, if assigned, will be the value assigned to
that variable in the last section. Variables not assigned a value will have an
indeterminate value. Data variables in list are separated by commas.

reduction (operator: list)
Performs a reduction on all scalar variables in list using the specified operator.
Reduction variables in list are separated by commas.

A private copy of each variable in list is created for each thread. At the end of
the statement block, the final values of all private copies of the reduction
variable are combined in a manner appropriate to the operator, and the result
is placed back in the original value of the shared reduction variable. For
example, when the max operator is specified, the original reduction variable
value combines with the final values of the private copies by using the
following expression:
original_reduction_variable = original_reduction_variable < private_copy ?
private_copy : original_reduction_variable;

For variables specified in the reduction clause, they must satisfy the following
conditions:
v Must be of a type appropriate to the operator. If the max or min operator is

specified, the variables must be one of the following types with or without
long, short, signed, or unsigned:
– C _Bool C

– C++ bool C++

– char
– C++ wchar_t C++

– int
– float
– double

v Must be shared in the enclosing context.
v Must not be const-qualified.
v Must not have pointer type.

nowait
Use this clause to avoid the implied barrier at the end of the sections directive.

Chapter 5. Compiler pragmas reference 473

This is useful if you have multiple independent work-sharing sections within a
given parallel region. Only one nowait clause can appear on a given sections
directive.

Usage

The omp section directive is optional for the first program code segment inside the
omp sections directive. Following segments must be preceded by an omp section
directive. All omp section directives must appear within the lexical construct of the
program source code segment associated with the omp sections directive.

When program execution reaches a omp sections directive, program segments
defined by the following omp section directive are distributed for parallel
execution among available threads. A barrier is implicitly defined at the end of the
larger program region associated with the omp sections directive unless the
nowait clause is specified.

#pragma omp parallel sections
Purpose

The omp parallel sections directive effectively combines the omp parallel and
omp sections directives. This directive lets you define a parallel region containing
a single sections directive in one step.

Syntax

►► ▼

,

pragma omp parallel sections
clause

►◄

Usage

All clauses and restrictions described in the omp parallel and omp sections
directives apply to the omp parallel sections directive.

#pragma omp single
Purpose

The omp single directive identifies a section of code that must be run by a single
available thread.

Syntax

►► ▼

,

pragma omp single
clause

►◄

Parameters

clause is any of the following:

474 XL C/C++: Compiler Reference

private (list)
Declares the scope of the data variables in list to be private to each thread.
Data variables in list are separated by commas.

A variable in the private clause must not also appear in a copyprivate clause
for the same omp single directive.

copyprivate (list)
Broadcasts the values of variables specified in list from one member of the
team to other members. This occurs after the execution of the structured block
associated with the omp single directive, and before any of the threads leave
the barrier at the end of the construct. For all other threads in the team, each
variable in the list becomes defined with the value of the corresponding
variable in the thread that executed the structured block. Data variables in list
are separated by commas. Usage restrictions for this clause are:
v A variable in the copyprivate clause must not also appear in a private or

firstprivate clause for the same omp single directive.
v If an omp single directive with a copyprivate clause is encountered in the

dynamic extent of a parallel region, all variables specified in the copyprivate
clause must be private in the enclosing context.

v Variables specified in copyprivate clause within dynamic extent of a parallel
region must be private in the enclosing context.

v A variable that is specified in the copyprivate clause must have an accessible
and unambiguous copy assignment operator.

v The copyprivate clause must not be used together with the nowait clause.

firstprivate (list)
Declares the scope of the data variables in list to be private to each thread.
Each new private object is initialized as if there was an implied declaration
within the statement block. Data variables in list are separated by commas.

A variable in the firstprivate clause must not also appear in a copyprivate
clause for the same omp single directive.

nowait
Use this clause to avoid the implied barrier at the end of the single directive.
Only one nowait clause can appear on a given single directive. The nowait
clause must not be used together with the copyprivate clause.

Usage

An implied barrier exists at the end of a parallelized statement block unless the
nowait clause is specified.

#pragma omp master
Purpose

The omp master directive identifies a section of code that must be run only by the
master thread.

Syntax

►► # pragma omp master ►◄

Chapter 5. Compiler pragmas reference 475

Usage

Threads other than the master thread will not execute the statement block
associated with this construct.

No implied barrier exists on either entry to or exit from the master section.

#pragma omp critical
Purpose

The omp critical directive identifies a section of code that must be executed by a
single thread at a time.

Syntax

►► ▼

,

pragma omp critical (name) ►◄

where name can optionally be used to identify the critical region. Identifiers
naming a critical region have external linkage and occupy a namespace distinct
from that used by ordinary identifiers.

Usage

A thread waits at the start of a critical region identified by a given name until no
other thread in the program is executing a critical region with that same name.
Critical sections not specifically named by omp critical directive invocation are
mapped to the same unspecified name.

#pragma omp barrier
Purpose

The omp barrier directive identifies a synchronization point at which threads in a
parallel region will not execute beyond the omp barrier until all other threads in
the team complete all explicit tasks in the region.

Syntax

►► # pragma omp barrier ►◄

Usage

The omp barrier directive must appear within a block or compound statement. For
example:
if (x!=0) {

#pragma omp barrier /* valid usage */
}

if (x!=0)
#pragma omp barrier /* invalid usage */

476 XL C/C++: Compiler Reference

#pragma omp flush
Purpose

The omp flush directive identifies a point at which the compiler ensures that all
threads in a parallel region have the same view of specified objects in memory.

Syntax

►► ▼

,

pragma omp flush
list

►◄

where list is a comma-separated list of variables that will be synchronized.

Usage

If list includes a pointer, the pointer is flushed, not the object being referred to by
the pointer. If list is not specified, all shared objects are synchronized except those
inaccessible with automatic storage duration.

An implied flush directive appears in conjunction with the following directives:
v omp barrier

v Entry to and exit from omp critical.
v Exit from omp parallel.
v Exit from omp for.
v Exit from omp sections.
v Exit from omp single.

The omp flush directive must appear within a block or compound statement. For
example:
if (x!=0) {

#pragma omp flush /* valid usage */
}

if (x!=0)
#pragma omp flush /* invalid usage */

#pragma omp threadprivate
Purpose

The omp threadprivate directive makes the named file-scope, namespace-scope, or
static block-scope variables private to a thread.

Syntax

►► ▼

,

pragma omp threadprivate (identifier) ►◄

where identifier is a file-scope, name space-scope or static block-scope variable.

Chapter 5. Compiler pragmas reference 477

Usage

Each copy of an omp threadprivate data variable is initialized once prior to first
use of that copy. If an object is changed before being used to initialize a
threadprivate data variable, behavior is unspecified.

A thread must not reference another thread's copy of an omp threadprivate data
variable. References will always be to the master thread's copy of the data variable
when executing serial and master regions of the program.

Use of the omp threadprivate directive is governed by the following points:
v An omp threadprivate directive must appear at file scope outside of any

definition or declaration.
v The omp threadprivate directive is applicable to static-block scope variables and

may appear in lexical blocks to reference those block-scope variables. The
directive must appear in the scope of the variable and not in a nested scope, and
must precede all references to variables in its list.

v A data variable must be declared with file scope prior to inclusion in an omp
threadprivate directive list.

v An omp threadprivate directive and its list must lexically precede any reference
to a data variable found in that list.

v A data variable specified in an omp threadprivate directive in one translation
unit must also be specified as such in all other translation units in which it is
declared.

v Data variables specified in an omp threadprivate list must not appear in any
clause other than the copyin, copyprivate, if, num_threads, and schedule
clauses.

v The address of a data variable in an omp threadprivate list is not an address
constant.

v A data variable specified in an omp threadprivate list must not have an
incomplete or reference type.

#pragma omp task
Purpose

The task pragma can be used to explicitly define a task.

Use the task pragma when you want to identify a block of code to be executed in
parallel with the code outside the task region. The task pragma can be useful for
parallelizing irregular algorithms such as pointer chasing or recursive algorithms.
The task directive takes effect only if you specify the -qsmp compiler option.

Syntax

►► ▼

,

pragma omp task clause ►◄

Parameters

The clause parameter can be any of the following types of clauses:

478 XL C/C++: Compiler Reference

default (shared | none)
Defines the default data scope of variable in each task. Only one default
clause can be specified on an omp task directive.

Specifying default(shared) is equivalent to stating each variable in a
shared(list) clause.

Specifying default(none) requires that each data variable visible to the
construct must be explicitly listed in a data scope clause, with the exception of
variables with the following attributes:
v Threadprivate
v Automatic and declared in a scope inside the construct
v Objects with dynamic storage duration
v Static data members
v The loop iteration variables in the associated for-loops for a work-sharing

for or parallel for construct
v Static and declared in a scope inside the construct

final (exp)
If you specify a final clause and exp evaluates to a nonzero value, the
generated task is a final task. All task constructs encountered inside a final task
create final and included tasks.

You can specify only one final clause on the task pragma.

firstprivate (list)
Declares the scope of the data variables in list to be private to each thread.
Each new private object is initialized with the value of the original variable as
if there was an implied declaration within the statement block. Data variables
in list are separated by commas.

if (exp)
When the if clause is specified, an undeferred task is generated if the scalar
expression exp evaluates to a nonzero value. Only one if clause can be
specified.

mergeable
If you specify a mergeable clause and the generated task is an undeferred task
or included task, a merged task might be generated.

private (list)
Declares the scope of the data variables in list to be private to each thread.
Data variables in list are separated by commas.

shared (list)
Declares the scope of the comma-separated data variables in list to be shared
across all threads.

untied
When a task region is suspended, untied tasks can be resumed by any thread
in a team. The untied clause on a task construct is ignored if either of the
following conditions is a nonzero value:
v A final clause is specified on the same task construct and the final clause

expression evaluates to a nonzero value.
v The task is an included task.

Chapter 5. Compiler pragmas reference 479

Usage

A final task is a task that makes all its child tasks become final and included tasks.
A final task is generated when either of the following conditions is a nonzero
value:
v A final clause is specified on a task construct and the final clause expression

evaluates to nonzero value.
v The generated task is a child task of a final task.

An undeferred task is a task whose execution is not deferred with respect to its
generating task region. In other words, the generating task region is suspended
until the undeferred task has finished running. An undeferred task is generated
when an if clause is specified on a task construct and the if clause expression
evaluates to zero.

An included task is a task whose execution is sequentially included in the
generating task region. In other words, an included task is undeferred and
executed immediately by the encountering thread. An included task is generated
when the generated task is a child task of a final task.

A merged task is a task that has the same data environment as that of its
generating task region. A merged task might be generated when both the following
conditions nonzero values:
v A mergeable clause is specified on a task construct.
v The generated task is an undeferred task or an included task.

The if clause expression and the final clause expression are evaluated outside of
the task construct, and the evaluation order is not specified.
Related reference:
“#pragma omp taskwait”

#pragma omp taskyield
Purpose

The omp taskyield pragma instructs the compiler to suspend the current task in
favor of running a different task. The taskyield region includes an explicit task
scheduling point in the current task region.

Syntax

►► # pragma omp taskyield ►◄

#pragma omp taskwait
Purpose

Use the taskwait pragma to specify a wait for child tasks to be completed that are
generated by the current task.

480 XL C/C++: Compiler Reference

Syntax

Related reference:
“#pragma omp task” on page 478

►► # pragma omp taskwait ►◄

Chapter 5. Compiler pragmas reference 481

482 XL C/C++: Compiler Reference

Chapter 6. Compiler predefined macros

Predefined macros can be used to conditionally compile code for specific
compilers, specific versions of compilers, specific environments, and specific
language features.

Predefined macros fall into several categories:
v “General macros”
v “Macros related to the platform” on page 485
v “Macros related to compiler features” on page 485

“Examples of predefined macros” on page 496 show how you can use them in
your code.

General macros
The following predefined macros are always predefined by the compiler. Unless
noted otherwise, all the following macros are protected, which means that the
compiler will issue a warning if you try to undefine or redefine them.

Table 45. General predefined macros

Predefined macro
name

Description Predefined value

__BASE_FILE__ Indicates the name of the primary source file. The fully qualified file name of the
primary source file.

__COUNTER__ Expands to an integer that starts from 0. The value
increases by 1 each time this macro is expanded.

You can use this macro with the ## operator to
generate unique variable or function names. The
following example shows the declaration of distinct
identifiers with a single token:

#define CONCAT(a, b) a##b
#define CONCAT_VAR(a, b) CONCAT(a, b)
#define VAR CONCAT_VAR(var, __COUNTER__)

//Equivalent to int var0 = 1;
int VAR = 1;

//Equivalent to char var1 = ’a’;
char VAR = ’a’;

An integer variable that starts from 0.
The value increases by 1 each time
this macro is expanded.

__DATE__ Indicates the date that the source file was
preprocessed.

A character string containing the date
when the source file was
preprocessed.

__FILE__ Indicates the name of the preprocessed source file. A character string containing the
name of the preprocessed source file.

__FUNCTION__ Indicates the name of the function currently being
compiled.

A character string containing the
name of the function currently being
compiled.

__LINE__ Indicates the current line number in the source file. An integer constant containing the
line number in the source file.

© Copyright IBM Corp. 1996, 2015 483

Table 45. General predefined macros (continued)

Predefined macro
name

Description Predefined value

__SIZE_TYPE__ Indicates the underlying type of size_t on the
current platform. Not protected.

unsigned int in 32-bit compilation
mode and unsigned long in 64-bit
compilation mode.

__TIME__ Indicates the time that the source file was
preprocessed.

A character string containing the time
when the source file was
preprocessed.

__TIMESTAMP__ Indicates the date and time when the source file was
last modified. The value changes as the compiler
processes any include files that are part of your
source program.

A character string literal in the form
"Day Mmm dd hh:mm:ss yyyy", where:

Day Represents the day of the
week (Mon, Tue, Wed, Thu, Fri,
Sat, or Sun).

Mmm Represents the month in an
abbreviated form (Jan, Feb,
Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, or Dec).

dd Represents the day. If the
day is less than 10, the first d
is a blank character.

hh Represents the hour.

mm Represents the minutes.

ss Represents the seconds.

yyyy Represents the year.

Macros indicating the XL C/C++ compiler
Macros related to the XL C/C++ compiler are always predefined, and they are
protected, which means that the compiler will issue a warning if you try to
undefine or redefine them. You can use the -qshowmacros=pre -E compiler options
to view the values of the predefined macros.

Table 46. Compiler product predefined macros

Predefined macro
name

Description Predefined value

C __IBMC__ Indicates the level of the XL C
compiler.

An integer in format VRM, where:

V Represents the version number

R Represents the release number

M Represents the modification number

C++ __IBMCPP__ Indicates the level of the XL C++
compiler.

An integer in format VRM, where:

V Represents the version number

R Represents the release number

M Represents the modification number

484 XL C/C++: Compiler Reference

Table 46. Compiler product predefined macros (continued)

Predefined macro
name

Description Predefined value

C __xlc__ Indicates the level of the XL C
compiler.

A string in format V.R.M.F, where:

V Represents the version number

R Represents the release number

M Represents the modification number

F Represents the fix level

__xlC__ Indicates the VR level of the XL
C and XL C++ compilers in
hexadecimal format. The XL C
compiler predefines this macro.

A 4-digit hexadecimal integer in format 0xVVRR, where:

V Represents the version number

R Represents the release number

__xlC_ver__ Indicates the MF level of the XL
C and XL C++ compilers in
hexadecimal format. The XL C
compiler predefines this macro.

An 8-digit hexadecimal integer in format 0x0000MMFF,
where:

M Represents the modification number

F Represents the fix level

For example, in PTF 3, the value of the macro is
0x00000003.

Macros related to the platform
The following predefined macros are provided to facilitate porting applications
between platforms. All platform-related predefined macros are unprotected and
can be undefined or redefined without warning unless otherwise specified.

Table 47. Platform-related predefined macros

Predefined macro name Description Predefined value
Predefined under the
following conditions

_BIG_ENDIAN, __BIG_ENDIAN__ Indicates that the platform is
big-endian (that is, the most
significant byte is stored at the
memory location with the
lowest address).

1 Always predefined.

__powerpc, __powerpc__ Indicates that the target is a
Power architecture.

1 Predefined when the
target is a Power
architecture.

__PPC, __PPC__ Indicates that the target is a
Power architecture.

1 Predefined when the
target is a Power
architecture.

__unix, __unix__ Indicates that the operating
system is a variety of UNIX.

1 Always predefined.

Macros related to compiler features
Feature-related macros are predefined according to the setting of specific compiler
options or pragmas. Unless noted otherwise, all feature-related macros are
protected, which means that the compiler will issue a warning if you try to
undefine or redefine them.

Chapter 6. Compiler predefined macros 485

Feature-related macros are discussed in the following sections:
v “Macros related to compiler option settings”
v “Macros related to architecture settings” on page 489
v “Macros related to language levels” on page 490

Macros related to compiler option settings
The following macros can be tested for various features, including source input
characteristics, output file characteristics, and optimization. All of these macros are
predefined by a specific compiler option or suboption, or any invocation or
pragma that implies that suboption. If the suboption enabling the feature is not in
effect, then the macro is undefined.

Table 48. General option-related predefined macros

Predefined macro name Description Predefined value Predefined when the
following compiler option
or equivalent pragma is in
effect

__64BIT__ Indicates that 64-bit
compilation mode
is in effect.

1 -q64

__ALTIVEC__ Indicates support
for vector data
types.
(unprotected)

1 -qaltivec

_CHAR_SIGNED,
__CHAR_SIGNED__

Indicates that the
default character
type is signed
char.

1 -qchars=signed

_CHAR_UNSIGNED,
__CHAR_UNSIGNED__

Indicates that the
default character
type is unsigned
char.

1 -qchars=unsigned

__DEBUG_ALLOC__ Indicates that
debug versions of
the standard
memory
management
functions are being
used.

1 -qheapdebug

C++

__EXCEPTIONS Indicates that C++

exception handling
is enabled.

1 -qeh

__GXX_RTTI Indicates that
runtime type
identification
(RTTI) information
is enabled.

1 -qrtti

486 XL C/C++: Compiler Reference

Table 48. General option-related predefined macros (continued)

Predefined macro name Description Predefined value Predefined when the
following compiler option
or equivalent pragma is in
effect

__IBM_GCC_ASM Indicates support
for GCC inline asm
statements.

1

C

-qasm=gcc and

-qlanglvl=extc99 | extc89 |
extended or
-qkeyword=asm

C++ -qasm=gcc and
-qlanglvl=extended

0

C

-qnoasm and

-qlanglvl=extc99 | extc89 |
extended or
-qkeyword=asm

C++ -qnoasm and
-qlanglvl=extended

C++

__IBM_STDCPP_ASM

Indicates that
support for GCC
inline asm
statements is
disabled.

0 -qnoasm=stdcpp
or-qlanglvl=strict98 |
compat366

__IBM_DFP__ Indicates support
for decimal
floating-point
types.

1 -qdfp

__IBM_DFP_SW_EMULATION__ Indicates that
decimal
floating-point
computations are
implemented
through software
emulation rather
than in hardware
instructions.

1 -qfloat=dfpemulate

C _IBMSMP Indicates that IBM
SMP directives are
recognized.

1 -qsmp

__IBM_UTF_LITERAL Indicates support
for UTF-16 and
UTF-32 string
literals.

1 -qlanglvl=extended

C++

-qlanglvl=

extended

C++

__IGNERRNO__ Indicates that

system calls do not
modify errno,
thereby enabling
certain compiler
optimizations.

1 -qignerrno

C++

__INITAUTO__ Indicates the value

to which automatic
variables which are
not explicitly
initialized in the
source program are
to be initialized.

The two-digit hexadecimal value
specified in the -qinitauto
compiler option.

-qinitauto=hex value

Chapter 6. Compiler predefined macros 487

Table 48. General option-related predefined macros (continued)

Predefined macro name Description Predefined value Predefined when the
following compiler option
or equivalent pragma is in
effect

C++ __INITAUTO_W__ Indicates the value
to which automatic
variables which are
not explicitly
initialized in the
source program are
to be initialized.

An eight-digit hexadecimal
corresponding to the value
specified in the -qinitauto
compiler option repeated 4 times.

-qinitauto=hex value

C++ __LIBANSI__ Indicates that calls
to functions whose
names match those
in the C Standard
Library are in fact
the C library
functions, enabling
certain compiler
optimizations.

1 -qlibansi

__LONGDOUBLE64 Indicates that the
size of a long
double type is 64
bits.

1 -qnoldbl128

__LONGDOUBLE128 Indicates that the
size of a long
double type is 128
bits.

1 -qldbl128

C++

__OBJECT_MODEL_CLASSIC__

Indicates that the
"classic" object
model is in effect.

1 -qobjmodel=classic

C++

__OBJECT_MODEL_IBM__

Indicates that the
IBM object is in
effect.

1 -qobjmodel=ibm

__OPTIMIZE__ Indicates the level
of optimization in
effect.

2 -O | -O2

3 -O3 | -O4 | -O5

__OPTIMIZE_SIZE__ Indicates that
optimization for
code size is in
effect.

1 -O | -O2 | -O3 | -O4 | -O5
and -qcompact

__RTTI_ALL__ Indicates that
runtime type
identification
(RTTI) information
for all operators is
enabled.

1 -qrtti

C++

__RTTI_DYNAMIC_CAST__ Indicates that

runtime type
identification
(RTTI) information
for the
dynamic_cast
operator is
generated.

1 -qrtti | -qrtti=all |
dynamiccast

488 XL C/C++: Compiler Reference

Table 48. General option-related predefined macros (continued)

Predefined macro name Description Predefined value Predefined when the
following compiler option
or equivalent pragma is in
effect

C++

__RTTI_TYPE_INFO__

Indicates that
runtime type
identification
(RTTI) information
for the typeid
operator is
generated.

1 -qrtti | -qrtti=all | typeinfo

C++

__NO_RTTI__ Indicates that

runtime type
identification
(RTTI) information
is disabled.

1 -qnortti

C++

__TEMPINC__ Indicates that the

compiler is using
the
template-
implementation file
method of
resolving template
functions.

1 -qtempinc

__VEC__ Indicates support
for vector data
types.

10206 -qaltivec

Macros related to architecture settings
The following macros can be tested for target architecture settings. All of these
macros are predefined to a value of 1 by a -qarch compiler option setting, or any
other compiler option that implies that setting. If the -qarch suboption enabling the
feature is not in effect, then the macro is undefined.

Table 49. -qarch-related macros

Macro name Description
Predefined by the following -qarch
suboptions

_ARCH_PPC Indicates that the application is targeted
to run on any Power processor.

Defined for all -qarch suboptions except
auto.

_ARCH_PPC64 Indicates that the application is targeted
to run on Power processors with 64-bit
support.

ppc64 | ppc64gr | ppc64grsq | ppc64v
| pwr4 | pwr5 | pwr5x | pwr6 |
pwr6e | pwr7 | pwr8 | ppc970

_ARCH_PPCGR Indicates that the application is targeted
to run on Power processors with
graphics support.

ppcgr | ppc64gr | ppc64grsq | ppc64v
| pwr4 | pwr5 | pwr5x | pwr6 |
pwr6e | pwr7 | pwr8 | ppc970

_ARCH_PPC64GR Indicates that the application is targeted
to run on Power processors with 64-bit
and graphics support.

ppc64gr | ppc64v | pwr4 | pwr5 |
pwr5x | pwr6 | pwr6e | pwr7 | pwr8
| ppc970

_ARCH_PPC64GRSQ Indicates that the application is targeted
to run on Power processors with 64-bit,
graphics, and square root support.

ppc64grsq | ppc64v | pwr4 | pwr5 |
pwr5x | pwr6 | pwr6e | pwr7 | pwr8
| ppc970

_ARCH_PPC64V Indicates that the application is targeted
to run on Power processors with 64-bit
and vector processing support.

ppc64v | ppc970 | pwr6 | pwr6e |
pwr7 | pwr8

Chapter 6. Compiler predefined macros 489

Table 49. -qarch-related macros (continued)

Macro name Description
Predefined by the following -qarch
suboptions

_ARCH_PPC970 Indicates that the application is targeted
to run on the PowerPC 970 processor.

ppc970

_ARCH_PWR4 Indicates that the application is targeted
to run on POWER4 or higher processors.

pwr4 | pwr5 | pwr5x | pwr6 | pwr6e
| pwr7 | pwr8 | ppc970

_ARCH_PWR5 Indicates that the application is targeted
to run on POWER5 or higher processors.

pwr5 | pwr5x | pwr6 | pwr6e | pwr7
| pwr8

_ARCH_PWR5X Indicates that the application is targeted
to run on POWER5+ or higher
processors.

pwr5x | pwr6 | pwr6e | pwr7 | pwr8

_ARCH_PWR6 Indicates that the application is targeted
to run on POWER6 or higher processors.

pwr6 | pwr6e | pwr7 | pwr8

_ARCH_PWR6E Indicates that the application is targeted
to run on POWER6 processors running
in POWER6 raw mode.

pwr6e

_ARCH_PWR7 Indicates that the application is targeted
to run on POWER7 , POWER7+ or
higher processors.

pwr7 | pwr8

_ARCH_PWR8 Indicates that the application is targeted
to run on POWER8 processors.

pwr8

Related information
v “-qarch” on page 109

Macros related to language levels
The following macros can be tested for C99 features, features related to GNU C or
C++, and other IBM language extensions. All of these macros except

C++ __cplusplus, __STDC__ C++ , and C __STDC_VERSION__
C

are predefined to a value of 1 by a specific language level, represented by

a suboption of the -qlanglvl compiler option, or any invocation or pragma that
implies that suboption. If the suboption enabling the feature is not in effect, then
the macro is undefined. For descriptions of the features related to these macros, see
the XL C/C++ Language Reference.

Table 50. Predefined macros for language features

Predefined macro name Description Predefined when the following
language level is in effect

C++ __BOOL__ Indicates that the bool
keyword is accepted.

Always defined except when
-qnokeyword=bool is in effect.

C

__C99_BOOL Indicates support for the

_Bool data type.
extc1x | stdc99 | extc99 |
extc89 | extended

C++

__C99_COMPLEX Indicates that the support

for C99 complex types is
enabled or that the C99
complex header should be
included.

extc1x | stdc99 | extc99 |
extc89 | extended

C++

__C99_COMPLEX_HEADER__ Indicates support for

C99-style complex headers.
c99complexheader

490 XL C/C++: Compiler Reference

Table 50. Predefined macros for language features (continued)

Predefined macro name Description Predefined when the following
language level is in effect

C __C99_CPLUSCMT Indicates support for C++
style comments

extc1x | stdc99 | extc99 |
stdc89 | extc89 | extended (also
-qcpluscmt)

__C99_COMPOUND_LITERAL Indicates support for
compound literals.

C

extc1x | stdc99 |

extc99 | extc89 | extended

C++

extended |

extended0x

C

__C99_DESIGNATED_INITIALIZER Indicates support for

designated initialization.
extc1x | stdc99 | extc99 |
extc89 | extended

C

__C99_DUP_TYPE_QUALIFIER Indicates support for

duplicated type qualifiers.
extc1x | stdc99 | extc99 |
extc89 | extended

C

__C99_EMPTY_MACRO_ARGUMENTS Indicates support for

empty macro arguments.
extc1x | stdc99 | extc99 |
extc89 | extended

C

__C99_FLEXIBLE_ARRAY_MEMBER Indicates support for

flexible array members.
extc1x | stdc99 | extc99 |
extc89 | extended

__C99__FUNC__ Indicates support for the
__func__ predefined

identifier.

C

extc1x | stdc99 |

extc99 | extc89 | extended

C++

extended |

extended0x |c99__func__

__C99_HEX_FLOAT_CONST Indicates support for
hexadecimal floating
constants.

C

extc1x | stdc99 |

extc99 | extc89 | extended

C++

extended |

extended0x | c99hexfloat

C

__C99_INLINE Indicates support for the

inline function specifier.
extc1x | stdc99 | extc99 (also
-qkeyword=inline)

__C99_LLONG Indicates support for
C99-style long long data
types and literals.

C

extc1x | stdc99 |

extc99

C++

extended0x |

c99longlong

__C99_MACRO_WITH_VA_ARGS Indicates support for
function-like macros with
variable arguments.

C

extc1x | stdc99 |

extc99 | extc89 | extended

C++

extended |

extended0x | varargmacros

__C99_MAX_LINE_NUMBER Indicates that the
maximum line number is
2147483647.

C

extc1x | stdc99 |

extc99 | extc89 | extended

C++

extended0x |

c99preprocessor

C

__C99_MIXED_DECL_AND_CODE

Indicates support for
mixed declaration and
code.

extc1x | stdc99 | extc99 |
extc89 | extended

Chapter 6. Compiler predefined macros 491

Table 50. Predefined macros for language features (continued)

Predefined macro name Description Predefined when the following
language level is in effect

__C99_MIXED_STRING_CONCAT Indicates support for
concatenation of wide
string and non-wide string
literals.

C

extc1x | stdc99 |

extc99 | extc89 | extended

C++

extended0x |

c99preprocessor

C

__C99_NON_LVALUE_ARRAY_SUB Indicates support for

non-lvalue subscripts for
arrays.

extc1x | stdc99 | extc99 |
extc89 | extended

C

__C99_NON_CONST_AGGR_INITIALIZER

Indicates support for
non-constant aggregate
initializers.

extc1x | stdc99 | extc99 |
extc89 | extended

__C99_PRAGMA_OPERATOR Indicates support for the
_Pragma operator.

C

extc1x | stdc99 |

extc99 | extc89 | extended

C++

extended extended0x

C

__C99_REQUIRE_FUNC_DECL Indicates that implicit

function declaration is not
supported.

stdc99

__C99_RESTRICT Indicates support for the
C99 restrict qualifier. C++

extended |

extended0x (also
-qkeyword=restrict)

C

__C99_STATIC_ARRAY_SIZE Indicates support for the

static keyword in array
parameters to functions.

extc1x | stdc99 | extc99 |
extc89 | extended

C

__C99_STD_PRAGMAS Indicates support for

standard pragmas.
extc1x | stdc99 | extc99 |
extc89 | extended

C

__C99_TGMATH Indicates support for

type-generic macros in
tgmath.h

extc1x | stdc99 | extc99 |
extc89 | extended

__C99_UCN Indicates support for
universal character names.

C

extc1x | stdc99 |

extc99 | ucs

C++

ucs

C

__C99_VAR_LEN_ARRAY Indicates support for

variable length arrays.
extc1x | stdc99 | extc99 |
extc89 | extended

C++

__C99_VARIABLE_LENGTH_ARRAY

Indicates support for
variable length arrays.

extended | extended0x | c99vla

C++ __cplusplus The numeric value that
indicates the supported
language standard as
defined by that specific
standard.

The format is yyyymmL. (For
example, the format is 199901L
for C99.)

492 XL C/C++: Compiler Reference

Table 50. Predefined macros for language features (continued)

Predefined macro name Description Predefined when the following
language level is in effect

__DIGRAPHS__ Indicates support for
digraphs.

C

extc1x | stdc99 |

extc99 | extc89 | extended (also
-qdigraph)

C++

extended |

extended0x | compat366 |
strict98(also -qdigraph)

__EXTENDED__ Indicates that language
extensions are supported.

extended

C++

__IBM__ALIGN Indicates support for the

__align type qualifier.
Always defined except when
-qnokeyword=__alignof is
specified

__IBM_ALIGNOF__, __IBM__ALIGNOF__ Indicates support for the
__alignof__ operator.

C

extc1x | extc99 |

extc89 | extended

C++

extended

__IBM_ATTRIBUTES Indicates support for type,
variable, and function
attributes.

C

extc1x | extc99 |

extc89 | extended

C++

extended |

extended0x

__IBM_COMPUTED_GOTO Indicates support for
computed goto statements.

C

extc1x | extc99 |

extc89 | extended

C++

extended |

extended0x |
gnu_computedgoto

__IBM_EXTENSION_KEYWORD Indicates support for the
__extension__ keyword.

C

extc1x | extc99 |

extc89 | extended

C++

extended |

extended0x | compat366 |
strict98

C

__IBM_GCC__INLINE__ Indicates support for the

GCC __inline__ specifier.
extc1x | extc99 | extc89 |
extended

C

__IBM_DOLLAR_IN_ID Indicates support for

dollar signs in identifiers.
extc1x | extc99 | extc89 |
extended

C

__IBM_GENERALIZED_LVALUE Indicates support for

generalized lvalues.
extc1x | extc99 | extc89 |
extended

__IBM_INCLUDE_NEXT Indicates support for the
#include_next
preprocessing directive.

C

Always defined

C++

Always defined

except when
-qlanglvl=nognu_include_next
is in effect.

Chapter 6. Compiler predefined macros 493

Table 50. Predefined macros for language features (continued)

Predefined macro name Description Predefined when the following
language level is in effect

__IBM_LABEL_VALUE Indicates support for labels
as values.

C

extc1x | extc99 |

extc89 | extended

C++

extended |

extended0x |gnu_labelvalue

__IBM_LOCAL_LABEL Indicates support for local
labels.

C

extc1x | extc99 |

extc89 | extended

C++

extended |

extended0x | gnu_locallabel

__IBM_MACRO_WITH_VA_ARGS Indicates support for
variadic macro extensions.

C

extc1x | extc99 |

extc89 | extended

C++

extended |

extended0x | gnu_varargmacros

C

__IBM_NESTED_FUNCTION Indicates support for

nested functions.
extc1x | extc99 | extc89 |
extended

C

__IBM_PP_PREDICATE Indicates support for

#assert, #unassert, #cpu,
#machine, and #system
preprocessing directives.

extc1x | extc99 | extc89 |
extended

C

__IBM_PP_WARNING Indicates support for the

#warning preprocessing
directive.

extc1x | extc99 | extc89 |
extended

C

__IBM_REGISTER_VARS Indicates support for

variables in specified
registers.

Always defined.

__IBM__TYPEOF__ Indicates support for the
__typeof__ or typeof
keyword.

C

Always defined

C++

extended |

extended0x (Also
-qkeyword=typeof)

__IBMC_COMPLEX_INIT Indicates support for the
macro based initialization
of complex types: float
_Complex, double
_Complex, and long
double _Complex.

extc1x

__IBMC_GENERIC Indicates support for the
generic selection feature.

C extc89 | extc99 |
extended | extc1x

__IBMC_NORETURN Indicates support for the
_Noreturn function
specifier.

C extc89 | extc99 |
extended | extc1x

C++

extended |

extended0x | c1xnoreturn

C11

__IBMC_STATIC_ASSERT Indicates support for the

static assertions feature.
extc89 | extc99 | extended |
extc1x

494 XL C/C++: Compiler Reference

Table 50. Predefined macros for language features (continued)

Predefined macro name Description Predefined when the following
language level is in effect

C++11 __IBMCPP_AUTO_TYPEDEDUCTION Indicates support for the
auto type deduction
feature.

extended0x |
autotypededuction

C++11

__IBMCPP_C99_LONG_LONG Indicates support for the

C99 long long feature.
extended0x | c99longlong

C++11

__IBMCPP_C99_PREPROCESSOR Indicates support for the

C99 preprocessor features
adopted in the C++11
standard.

extended0x | c99preprocessor

C++ __IBMCPP_COMPLEX_INIT Indicates support for the
initialization of complex
types: float _Complex,
double _Complex, and
long double _Complex.

extended

C++11

__IBMCPP_CONSTEXPR Indicates support for the

generalized constant
expressions feature.

extended0x | constexpr

C++11

__IBMCPP_DECLTYPE Indicates support for the

decltype feature.
extended0x | decltype

C++11

__IBMCPP_DEFAULTED_AND_

DELETED_FUNCTIONS

Indicates support for the
defaulted and deleted
functions feature.

extended0x | defaultanddelete

C++11

__IBMCPP_DELEGATING_CTORS Indicates support for the

delegating constructors
feature.

extended0x | delegatingctors

C++11

__IBMCPP_EXPLICIT_CONVERSION_

OPERATORS

Indicates support for the
explicit conversion
operators feature.

extended0x |
explicitconversionoperators

C++11

__IBMCPP_EXTENDED_FRIEND Indicates support for the

extended friend
declarations feature.

extended0x | extendedfriend

C++11

__IBMCPP_EXTERN_TEMPLATE Indicates support for the

explicit instantiation
declarations feature.

extended | extended0x |
externtemplate

C++11

__IBMCPP_INLINE_NAMESPACE Indicates support for the

inline namespace
definitions feature.

extended0x | inlinenamespace

C++11

__IBMCPP_NULLPTR

Indicates support for the
nullptr feature.

extended0x | nullptr

C++11

__IBMCPP_REFERENCE_COLLAPSING

Indicates support for the
reference collapsing
feature.

extended0x |
referencecollapsing

C++11

__IBMCPP_RIGHT_ANGLE_BRACKET

Indicates support for the
right angle bracket feature.

extended0x | rightanglebracket

C++11

__IBMCPP_RVALUE_REFERENCES Indicates support for the

rvalue references feature.
extended0x | rvaluereferences

C++11

__IBMCPP_SCOPED_ENUM Indicates support for the

scoped enumeration
feature.

extended0x | scopedenum

Chapter 6. Compiler predefined macros 495

Table 50. Predefined macros for language features (continued)

Predefined macro name Description Predefined when the following
language level is in effect

C++11 __IBMCPP_STATIC_ASSERT Indicates support for the
static assertions feature.

C++

extended0x |

static_assert

C++11

__IBMCPP_VARIADIC_TEMPLATES

Indicates support for the
variadic templates feature.

extended0x |
variadic[templates]

_LONG_LONG Indicates support for long
long data types.

C

extc1x | stdc99 |

extc99 | | stdc89 | extc89 |
extended (also -qlonglong)

C++

extended0x |

c99longlong | extended (also
-qlonglong)

C

__SAA__ Indicates that only

language constructs that
support the most recent
level of SAA C standards
are allowed.

saa

C

__SAA_L2__ Indicates that only

language constructs that
conform to SAA Level 2 C
standards are allowed.

saal2

__STDC__ Indicates that the compiler
conforms to the ANSI/ISO
C standard.

C

Predefined to 1 if

ANSI/ISO C standard
conformance is in effect.

C++

Explicitly defined to

0.

__STDC_HOSTED__ Indicates that the
implementation is a hosted
implementation of the
ANSI/ISO C standard.
(That is, the hosted
environment has all the
facilities of the standard C
available).

C extc1x | stdc99 |
extc99

C++

extended0x

C

__STDC_VERSION__ Indicates the version of

ANSI/ISO C standard
which the compiler
conforms to.

The format is yyyymmL. (For
example, the format is 199901L
for C99.)

Examples of predefined macros
This example illustrates use of the __FUNCTION__ and the __C99__FUNC__
macros to test for the availability of the C99 __func__ identifier to return the
current function name:
#include <stdio.h>

#if defined(__C99__FUNC__)
#define PRINT_FUNC_NAME() printf (" In function %s \n", __func__);
#elif defined(__FUNCTION__)
#define PRINT_FUNC_NAME() printf (" In function %s \n", __FUNCTION__);
#else

496 XL C/C++: Compiler Reference

#define PRINT_FUNC_NAME() printf (" Function name unavailable\n");
#endif

void foo(void);

int main(int argc, char **argv)
{

int k = 1;
PRINT_FUNC_NAME();
foo();
return 0;

}

void foo (void)
{

PRINT_FUNC_NAME();
return;

}

The output of this example is:
In function main
In function foo

C++ This example illustrates use of the __FUNCTION__ macro in a C++
program with virtual functions.
#include <stdio.h>
class X { public: virtual void func() = 0;};

class Y : public X {
public: void func() { printf("In function %s \n", __FUNCTION__);}

};

int main() {
Y aaa;
aaa.func();

}

The output of this example is:
In function Y::func()

Chapter 6. Compiler predefined macros 497

498 XL C/C++: Compiler Reference

Chapter 7. Compiler built-in functions

A built-in function is a coding extension to C and C++ that allows a programmer
to use the syntax of C function calls and C variables to access the instruction set of
the processor of the compiling machine. IBM Power architectures have special
instructions that enable the development of highly optimized applications. Access
to some Power instructions cannot be generated using the standard constructs of
the C and C++ languages. Other instructions can be generated through standard
constructs, but using built-in functions allows exact control of the generated code.
Inline assembly language programming, which uses these instructions directly, is
fully supported starting from XL C/C++, V12.1. Furthermore, the technique can be
time-consuming to implement.

As an alternative to managing hardware registers through assembly language, XL
C/C++ built-in functions provide access to the optimized Power instruction set
and allow the compiler to optimize the instruction scheduling.

C++

To call any of the XL C/C++ built-in functions in C++, you must include

the header file builtins.h in your source code. C++

The following sections describe the available built-in functions for the AIX
platform.

Fixed-point built-in functions
Fixed-point built-in functions are grouped into the following categories:
v “Absolute value functions”
v “Assert functions” on page 500
v “Count zero functions” on page 501
v “Load functions” on page 503
v “Multiply functions” on page 503
v “Population count functions” on page 504
v “Rotate functions” on page 505
v “Store functions” on page 506
v “Trap functions” on page 507

Absolute value functions

__labs, __llabs
Purpose

Absolute Value Long, Absolute Value Long Long

Returns the absolute value of the argument.

Prototype

signed long __labs (signed long);

signed long long __llabs (signed long long);

© Copyright IBM Corp. 1996, 2015 499

Assert functions

__assert1, __assert2
Purpose

Generates trap instructions.

Prototype

int __assert1 (int, int, int);

void __assert2 (int);

Bit permutation functions

__bpermd
Purpose

Byte Permute Doubleword

Returns the result of a bit permutation operation.

Prototype

long long __bpermd (long long bit_selector, long long source);

Usage

Eight bits are returned, each corresponding to a bit within source, and were
selected by a byte of bit_selector. If byte i of bit_selector is less than 64, the
permuted bit i is set to the bit of source specified by byte i of bit_selector;
otherwise, the permuted bit i is set to 0. The permuted bits are placed in the
least-significant byte of the result value and the remaining bits are filled with 0s.

Valid only when -qarch is set to target POWER7 processors or higher in 64-bit
mode.

Comparison functions

__cmpb
Purpose

Compare Bytes

Compares each of the eight bytes of source1 with the corresponding byte of source2.
If byte i of source1 and byte i of source2 are equal, 0xFF is placed in the
corresponding byte of the result; otherwise, 0x00 is placed in the corresponding
byte of the result.

Prototype

long long __cmpb (long long source1, long long source2);

500 XL C/C++: Compiler Reference

Usage

Valid only when -qarch is set to target POWER6 processors or higher.

Count zero functions

__cntlz4, __cntlz8
Purpose

Count Leading Zeros, 4/8-byte integer

Prototype

unsigned int __cntlz4 (unsigned int);

unsigned int __cntlz8 (unsigned long long);

__cnttz4, __cnttz8
Purpose

Count Trailing Zeros, 4/8-byte integer

Prototype

unsigned int __cnttz4 (unsigned int);

unsigned int __cnttz8 (unsigned long long);

Division functions
These division functions are valid only when -qarch is set to target POWER7
processors or higher.

__divde
Purpose

Divide Doubleword Extended

Returns the result of a doubleword extended division. The result has a value equal
to dividend/divisor.

Prototype

long long __divde (long long dividend, long long divisor);

Usage

Valid only when -qarch is set to target POWER7 processors or higher in 64-bit
mode.

If the result of the division is larger than 32 bits or if the divisor is 0, the return
value of the function is undefined.

Chapter 7. Compiler built-in functions 501

__divdeu
Purpose

Divide Doubleword Extended Unsigned

Returns the result of a double word extended unsigned division. The result has a
value equal to dividend/divisor.

Prototype

unsigned long long __divdeu (unsigned long long dividend, unsigned long
long divisor);

Usage

Valid only when -qarch is set to target POWER7 processors or higher in 64-bit
mode.

If the result of the division is larger than 32 bits or if the divisor is 0, the return
value of the function is undefined.

__divwe
Purpose

Divide Word Extended

Returns the result of a word extended division. The result has a value equal to
dividend/divisor.

Prototype

int __divwe(int dividend, int divisor);

Usage

Valid only when -qarch is set to target POWER7 processors or higher.

If the divisor is 0, the return value of the function is undefined.

__divweu
Purpose

Divide Word Extended Unsigned

Returns the result of a word extended unsigned division. The result has a value
equal to dividend/divisor.

Prototype

unsigned int __divweu(unsigned int dividend, unsigned int divisor);

Usage

Valid only when -qarch is set to target POWER7 processors or higher.

If the divisor is 0, the return value of the function is undefined.

502 XL C/C++: Compiler Reference

Load functions

__load2r, __load4r
Purpose

Load Halfword Byte Reversed, Load Word Byte Reversed

Prototype

unsigned short __load2r (unsigned short*);

unsigned int __load4r (unsigned int*);

__load8r
Purpose

Load with Byte Reversal (8-byte integer)

Performs an eight-byte byte-reversed load from the given address.

Prototype

unsigned long long __load8r (unsigned long long * address);

Usage

Valid only when -qarch is set to target POWER7 or higher processors in 64-bit
mode.

Multiply functions

__imul_dbl
Purpose

Computes the product of two long integers and stores the result in a pointer.

Prototype

void __imul_dbl (long, long, long*);

__mulhd, __mulhdu
Purpose

Multiply High Doubleword Signed, Multiply High Doubleword Unsigned

Returns the highorder 64 bits of the 128bit product of the two parameters.

Prototype

long long int __mulhd (long int, long int);

unsigned long long int __mulhdu (unsigned long int, unsigned long int);

Usage

Valid only in 64-bit mode.

Chapter 7. Compiler built-in functions 503

__mulhw, __mulhwu
Purpose

Multiply High Word Signed, Multiply High Word Unsigned

Returns the highorder 32 bits of the 64bit product of the two parameters.

Prototype

int __mulhw (int, int);

unsigned int __mulhwu (unsigned int, unsigned int);

Population count functions

__popcnt4, __popcnt8
Purpose

Population Count, 4-byte or 8-byte integer

Returns the number of bits set for a 32-bit or 64-bit integer.

Prototype

int __popcnt4 (unsigned int);

int __popcnt8 (unsigned long long);

__popcntb
Purpose

Population Count Byte

Counts the 1 bits in each byte of the parameter and places that count into the
corresponding byte of the result.

Prototype

unsigned long __popcntb(unsigned long);

__poppar4, __poppar8
Purpose

Population Parity, 4/8-byte integer

Checks whether the number of bits set in a 32/64-bit integer is an even or odd
number.

Prototype

int __poppar4(unsigned int);

int __poppar8(unsigned long long);

504 XL C/C++: Compiler Reference

Return value

Returns 1 if the number of bits set in the input parameter is odd. Returns 0
otherwise.

Rotate functions

__rdlam
Purpose

Rotate Double Left and AND with Mask

Rotates the contents of rs left shift bits, and ANDs the rotated data with the mask.

Prototype

unsigned long long __rdlam (unsigned long long rs, unsigned int shift,
unsigned long long mask);

Parameters

mask
Must be a constant that represents a contiguous bit field.

__rldimi, __rlwimi
Purpose

Rotate Left Doubleword Immediate then Mask Insert, Rotate Left Word Immediate
then Mask Insert

Rotates rs left shift bits then inserts rs into is under bit mask mask.

Prototype

unsigned long long __rldimi (unsigned long long rs, unsigned long long is,
unsigned int shift, unsigned long long mask);

unsigned int __rlwimi (unsigned int rs, unsigned int is, unsigned int shift,
unsigned int mask);

Parameters

shift
A constant value 0 to 63 (__rldimi) or 31 (__rlwimi).

mask
Must be a constant that represents a contiguous bit field.

__rlwnm
Purpose

Rotate Left Word then AND with Mask

Rotates rs left shift bits, then ANDs rs with bit mask mask.

Chapter 7. Compiler built-in functions 505

Prototype

unsigned int __rlwnm (unsigned int rs, unsigned int shift, unsigned int mask);

Parameters

mask
Must be a constant that represents a contiguous bit field.

__rotatel4, __rotatel8
Purpose

Rotate Left Word, Rotate Left Doubleword

Rotates rs left shift bits.

Prototype

unsigned int __rotatel4 (unsigned int rs, unsigned int shift);

unsigned long long __rotatel8 (unsigned long long rs, unsigned long long
shift);

Store functions

__store2r, __store4r
Purpose

Store 2/4-byte Reversal

Prototype

void __store2r (unsigned short, unsigned short*);

void __store4r (unsigned int, unsigned int*);

__store8r
Purpose

Store with Byte-Reversal (eight-byte integer)

Takes the loaded eight-byte integer value and performs a byte-reversed store
operation.

Prototype

void __store8r (unsigned long long source, unsigned long long * address);

Usage

Valid only when -qarch is set to target POWER7 processors or higher in 64-bit
mode.

506 XL C/C++: Compiler Reference

Trap functions

__tdw, __tw
Purpose

Trap Doubleword, Trap Word

Compares parameter a with parameter b. This comparison results in five conditions
which are ANDed with a 5-bit constant TO. If the result is not 0 the system trap
handler is invoked.

Prototype

void __tdw (long a, long b, unsigned int TO);

void __tw (int a, int b, unsigned int TO);

Parameters

TO A value of 0 to 31 inclusive. Each bit position, if set, indicates one or more of
the following possible conditions:

0 (high-order bit)
a is less than b, using signed comparison.

1 a is greater than b, using signed comparison.

2 a is equal to b

3 a is less than b, using unsigned comparison.

4 (low-order bit)
a is greater than b, using unsigned comparison.

Usage

__tdw is valid only in 64-bit mode.

__trap, __trapd
Purpose

Trap if the Parameter is not Zero, Trap if the Parameter is not Zero Doubleword

Prototype

void __trap (int);

void __trapd (long);

Usage

__trapd is valid only in 64-bit mode.

Chapter 7. Compiler built-in functions 507

Binary floating-point built-in functions
Binary floating-point built-in functions are grouped into the following categories:
v “Absolute value functions” on page 499
v “Add functions”
v “Conversion functions” on page 509
v “FPSCR functions” on page 511
v “Multiply functions” on page 514
v “Multiply-add/subtract functions” on page 514
v “Reciprocal estimate functions” on page 515
v “Rounding functions” on page 516
v “Select functions” on page 517
v “Square root functions” on page 517
v “Software division functions” on page 518

For decimal floating-point built-in functions, see Decimal floating-point built-in
functions.

Absolute value functions

__fnabss
Purpose

Floating Absolute Value Single

Returns the absolute value of the argument.

Prototype

float __fnabss (float);

__fnabs
Purpose

Floating Negative Absolute Value, Floating Negative Absolute Value Single

Returns the negative absolute value of the argument.

Prototype

double __fnabs (double);

float __fnabss (float);

Add functions

__fadd, __fadds
Purpose

Floating Add, Floating Add Single

Adds two arguments and returns the result.

508 XL C/C++: Compiler Reference

Prototype

double __fadd (double, double);

float __fadds (float, float);

Conversion functions

__cmplx, __cmplxf, __cmplxl
Purpose

Converts two real parameters into a single complex value.

Prototype

double _Complex __cmplx (double, double);

float _Complex __cmplxf (float, float);

long double _Complex __cmplxl (long double, long double);

__fcfid
Purpose

Floating Convert from Integer Doubleword

Converts a 64-bit signed integer stored in a double to a double-precision
floating-point value.

Prototype

double __fcfid (double);

__fcfud
Purpose

Floating-point Conversion from Unsigned integer Double word

Converts a 64-bit unsigned integer stored in a double into a double-precision
floating-point value.

Prototype

double __fcfud(double);

__fctid
Purpose

Floating Convert to Integer Doubleword

Converts a double-precision argument to a 64-bit signed integer, using the current
rounding mode, and returns the result in a double.

Prototype

double __fctid (double);

Chapter 7. Compiler built-in functions 509

__fctidz
Purpose

Floating Convert to Integer Doubleword with Rounding towards Zero

Converts a double-precision argument to a 64-bit signed integer, using the
rounding mode round-toward-zero, and returns the result in a double.

Prototype

double __fctidz (double);

__fctiw
Purpose

Floating Convert to Integer Word

Converts a double-precision argument to a 32-bit signed integer, using the current
rounding mode, and returns the result in a double.

Prototype

double __fctiw (double);

__fctiwz
Purpose

Floating Convert to Integer Word with Rounding towards Zero

Converts a double-precision argument to a 32-bit signed integer, using the
rounding mode round-toward-zero, and returns the result in a double.

Prototype

double __fctiwz (double);

__fctudz
Purpose

Floating-point Conversion to Unsigned integer Double word with rounding
towards Zero

Converts a floating-point value to unsigned integer double word and rounds to
zero.

Prototype

double __fctudz(double);

Result value

The result is a double number, which is rounded to zero.

510 XL C/C++: Compiler Reference

__fctuwz
Purpose

Floating-point conversion to unsigned integer word with rounding to zero

Converts a floating-point number into a 32-bit unsigned integer and rounds to
zero. The conversion result is stored in a double return value. This function is
intended for use with the __stfiw built-in function.

Prototype

double __fctuwz(double);

Result value

The result is a double number. The low-order 32 bits of the result contain the
unsigned int value from converting the double parameter to unsigned int, rounded
to zero. The high-order 32 bits contain an undefined value.

Example

The following example demonstrates the usage of this function.
#include <stdio.h>

int main(){
double result;
int y;

result = __fctuwz(-1.5);
__stfiw(&y, result);
printf("%d\n", y); /* prints 0 */

result = __fctuwz(1.5);
__stfiw(&y, result);
printf("%d\n", y); /* prints 1 */

return 0;
}

FPSCR functions

__mtfsb0
Purpose

Move to Floating-Point Status/Control Register (FPSCR) Bit 0

Sets bit bt of the FPSCR to 0.

Prototype

void __mtfsb0 (unsigned int bt);

Parameters

bt Must be a constant with a value of 0 to 31.

Chapter 7. Compiler built-in functions 511

__mtfsb1
Purpose

Move to FPSCR Bit 1

Sets bit bt of the FPSCR to 1.

Prototype

void __mtfsb1 (unsigned int bt);

Parameters

bt Must be a constant with a value of 0 to 31.

__mtfsf
Purpose

Move to FPSCR Fields

Places the contents of frb into the FPSCR under control of the field mask specified
by flm. The field mask flm identifies the 4bit fields of the FPSCR affected.

Prototype

void __mtfsf (unsigned int flm, unsigned int frb);

Parameters

flm
Must be a constant 8-bit mask.

__mtfsfi
Purpose

Move to FPSCR Field Immediate

Places the value of u into the FPSCR field specified by bf.

Prototype

void __mtfsfi (unsigned int bf, unsigned int u);

Parameters

bf Must be a constant with a value of 0 to 7.

u Must be a constant with a value of 0 to 15.

__readflm
Purpose

Returns a 64-bit double precision floating point, whose 32 low order bits contain
the contents of the FPSCR. The 32 low order bits are bits 32 - 63 counting from the
highest order bit.

512 XL C/C++: Compiler Reference

Prototype

double __readflm (void);

__setflm
Purpose

Takes a double precision floating-point number and places the lower 32 bits in the
FPSCR. The 32 low order bits are bits 32 - 63 counting from the highest order bit.
Returns the previous contents of the FPSCR.

Prototype

double __setflm (double);

__setrnd
Purpose

Sets the rounding mode.

Prototype

double __setrnd (int mode);

Parameters

The allowable values for mode are:
v 0 — round to nearest
v 1 — round to zero
v 2 — round to +infinity
v 3 — round to -infinity

__dfp_set_rounding_mode
Purpose

Set Rounding Mode

Sets the current decimal rounding mode.

Prototype

void __dfp_set_rounding_mode (unsigned long rounding_mode);

Parameters

rounding_mode
One of the compile-time constant values (0 to 7) or macros listed in Table 52 on
page 534.

Usage

If you change the rounding mode within a function, you must restore the rounding
mode before the function returns.

Chapter 7. Compiler built-in functions 513

__dfp_get_rounding_mode
Purpose

Get Rounding Mode

Gets the current decimal rounding mode.

Prototype

unsigned long __dfp_get_rounding_mode (void);

Return value

The current rounding mode as one of the values (0 to 7) listed in Table 52 on page
534.

Multiply functions

__fmul, __fmuls
Purpose

Floating Multiply, Floating Multiply Single

Multiplies two arguments and returns the result.

Prototype

double __fmul (double, double);

float __fmuls (float, float);

Multiply-add/subtract functions

__fmadd, __fmadds
Purpose

Floating Multiply-Add, Floating Multiply-Add Single

Multiplies the first two arguments, adds the third argument, and returns the result.

Prototype

double __fmadd (double, double, double);

float __fmadds (float, float, float);

__fmsub, __fmsubs
Purpose

Floating Multiply-Subtract, Floating Multiply-Subtract Single

Multiplies the first two arguments, subtracts the third argument and returns the
result.

514 XL C/C++: Compiler Reference

Prototype

double __fmsub (double, double, double);

float __fmsubs (float, float, float);

__fnmadd, __fnmadds
Purpose

Floating Negative Multiply-Add, Floating Negative Multiply-Add Single

Multiplies the first two arguments, adds the third argument, and negates the
result.

Prototype

double __fnmadd (double, double, double);

float __fnmadds (float, float, float);

__fnmsub, __fnmsubs
Purpose

Floating Negative Multiply-Subtract

Multiplies the first two arguments, subtracts the third argument, and negates the
result.

Prototype

double __fnmsub (double, double, double);

float __fnmsubs (float, float, float);

Reciprocal estimate functions
See also “Square root functions” on page 517.

__fre, __fres
Purpose

Floating Reciprocal Estimate, Floating Reciprocal Estimate Single

Prototype

double __fre (double);

float __fres (float);

Usage

__fre is valid only when -qarch is set to target POWER5 or later processors.

Chapter 7. Compiler built-in functions 515

Rounding functions

__fric
Purpose

Floating-point Rounding to Integer with current rounding mode

Rounds a double-precision floating-point value to integer with the current
rounding mode.

Prototype

double __fric(double);

__frim, __frims
Purpose

Floating Round to Integer Minus

Rounds the floating-point argument to an integer using round-to-minus-infinity
mode, and returns the value as a floating-point value.

Prototype

double __frim (double);

float __frims (float);

Usage

Valid only when -qarch is set to target POWER5+ or later processors.

__frin, __frins
Purpose

Floating Round to Integer Nearest

Rounds the floating-point argument to an integer using round-to-nearest mode,
and returns the value as a floating-point value.

Prototype

double __frin (double);

float __frins (float);

Usage

Valid only when -qarch is set to target POWER5+ or later processors.

__frip, __frips
Purpose

Floating Round to Integer Plus

516 XL C/C++: Compiler Reference

Rounds the floating-point argument to an integer using round-to-plus-infinity
mode, and returns the value as a floating-point value.

Prototype

double __frip (double);

float __frips (float);

Usage

Valid only when -qarch is set to target POWER5+ or later processors.

__friz, __frizs
Purpose

Floating Round to Integer Zero

Rounds the floating-point argument to an integer using round-to-zero mode, and
returns the value as a floating-point value.

Prototype

double __friz (double);

float __frizs (float);

Usage

Valid only when -qarch is set to target POWER5+ or later processors.

Select functions

__fsel, __fsels
Purpose

Floating Select, Floating Select Single

Returns the second argument if the first argument is greater than or equal to zero;
returns the third argument otherwise.

Prototype

double __fsel (double, double, double);

float __fsels (float, float, float);

Square root functions

__frsqrte, __frsqrtes
Purpose

Floating Reciprocal Square Root Estimate, Floating Reciprocal Square Root Estimate
Single

Chapter 7. Compiler built-in functions 517

Prototype

double __frsqrte (double);

float __frsqrtes (float);

Usage

__frsqrtes is valid only when -qarch is set to target POWER5+ or later processors.

__fsqrt, __fsqrts
Purpose

Floating Square Root, Floating Square Root Single

Prototype

double __fsqrt (double);

float __fsqrts (float);

Software division functions

__swdiv, __swdivs
Purpose

Software Divide, Software Divide Single

Divides the first argument by the second argument and returns the result.

Prototype

double __swdiv (double, double);

float __swdivs (float, float);

__swdiv_nochk, __swdivs_nochk
Purpose

Software Divide No Check, Software Divide No Check Single

Divides the first argument by the second argument, without performing range
checking, and returns the result.

Prototype

double __swdiv_nochk (double a, double b);

float __swdivs_nochk (float a, float b);

Parameters

a Must not equal infinity. When -qstrict is in effect, a must have an absolute
value greater than 2-970 and less than infinity.

b Must not equal infinity, zero, or denormalized values. When -qstrict is in
effect, b must have an absolute value greater than 2-1022 and less than 21021.

518 XL C/C++: Compiler Reference

Return value

The result must not be equal to positive or negative infinity. When -qstrict in
effect, the result must have an absolute value greater than 2-1021 and less than 21023.

Usage

This function can provide better performance than the normal divide operator or
the __swdiv built-in function in situations where division is performed repeatedly
in a loop and when arguments are within the permitted ranges.

Store functions

__stfiw
Purpose

Store Floating Point as Integer Word

Stores the contents of the loworder 32 bits of value, without conversion, into the
word in storage addressed by addr.

Prototype

void __stfiw (const int* addr, double value);

Binary-coded decimal built-in functions
Binary-coded decimal (BCD) values are compressed, with each decimal digit and
sign bit occupying 4 bits. Digits are ordered right-to-left in the order of
significance, and the final 4 bits encode the sign. A valid encoding must have a
value in the range 0 - 9 in each of its 31 digits and a value in the range 10 - 15 for
the sign field.

Source operands with sign codes of 0b1010, 0b1100, 0b1110, or 0b1111 are
interpreted as positive values. Source operands with sign codes of 0b1011 or
0b1101 are interpreted as negative values.

BCD arithmetic operations encode the sign of their result as follows: A value of
0b1101 indicates a negative value, while 0b1100 and 0b1111 indicate positive values
or zero, depending on the value of the preferred sign (PS) bit. These built-in
functions can operate on values of at most 31 digits.

BCD values are stored in memory as contiguous arrays of 1-16 bytes.

BCD add and subtract
The following functions are valid only when -qarch is set to target POWER8
processors:
v “__bcdadd” on page 520
v “__bcdsub” on page 520

Chapter 7. Compiler built-in functions 519

__bcdadd
Purpose

Returns the result of addition on the BCD values a and b.

The sign of the result is determined as follows:
v If the result is a nonnegative value and ps is 0, the sign is set to 0b1100 (0xC).
v If the result is a nonnegative value and ps is 1, the sign is set to 0b1111 (0xF).
v If the result is a negative value, the sign is set to 0b1101 (0xD).

Prototype

vector unsigned char __bcdadd (vector unsigned char a, vector unsigned char
b, long ps);

Parameters

ps A compile-time known constant.

__bcdsub
Purpose

Returns the result of subtraction on the BCD values a and b.

The sign of the result is determined as follows:
v If the result is a nonnegative value and ps is 0, the sign is set to 0b1100 (0xC).
v If the result is a nonnegative value and ps is 1, the sign is set to 0b1111 (0xF).
v If the result is a negative value, the sign is set to 0b1101 (0xD).

Prototype

vector unsigned char __bcdsub (vector unsigned char a, vector unsigned char
b, long ps);

Parameters

ps A compile-time known constant.

BCD test add and subtract for overflow
The following functions are valid only when -qarch is set to target POWER8
processors:
v “__bcdadd_ofl”
v “__bcdsub_ofl” on page 521
v “__bcd_invalid” on page 521

__bcdadd_ofl
Purpose

Returns 1 if the corresponding BCD add operation results in an overflow, or 0
otherwise.

Prototype

long __bcdadd_ofl (vector unsigned char a, vector unsigned char b);

520 XL C/C++: Compiler Reference

__bcdsub_ofl
Purpose

Returns 1 if the corresponding BCD subtract operation results in an overflow, or 0
otherwise.

Prototype

long __bcdsub_ofl (vector unsigned char a, vector unsigned char b);

__bcd_invalid
Purpose

Returns 1 if a is an invalid encoding of a BCD value, or 0 otherwise.

Prototype

long __bcd_invalid (vector unsigned char a);

BCD comparison
The following functions are valid only when -qarch is set to target POWER8
processors:
v “__bcdcmpeq”
v “__bcdcmpge”
v “__bcdcmpgt”
v “__bcdcmple” on page 522
v “__bcdcmplt” on page 522

__bcdcmpeq
Purpose

Returns 1 if the BCD value a is equal to b, or 0 otherwise.

Prototype

long __bcdcmpeq (vector unsigned char a, vector unsigned char b);

__bcdcmpge
Purpose

Returns 1 if the BCD value a is greater than or equal to b, or 0 otherwise.

Prototype

long __bcdcmpge (vector unsigned char a, vector unsigned char b);

__bcdcmpgt
Purpose

Returns 1 if the BCD value a is greater than b, or 0 otherwise.

Prototype

long __bcdcmpgt (vector unsigned char a, vector unsigned char b);

Chapter 7. Compiler built-in functions 521

__bcdcmple
Purpose

Returns 1 if the BCD value a is less than or equal to b, or 0 otherwise.

Prototype

long __bcdcmple (vector unsigned char a, vector unsigned char b);

__bcdcmplt
Purpose

Returns 1 if the BCD value a is less than b, or 0 otherwise.

Prototype

long __bcdcmplt (vector unsigned char a, vector unsigned char b);

BCD load and store
The following functions are valid only when -qarch is set to target POWER7 or
POWER8 processors:
v “__vec_ldrmb”
v “__vec_strmb”

__vec_ldrmb
Purpose

Loads a string of bytes into vector register, right-justified. Sets the leftmost
elements (16-cnt) to 0.

Prototype

vector unsigned char __vec_ldrmb (char *ptr, size_t cnt);

Parameters

ptr
Points to a base address.

cnt
The number of bytes to load. The value of cnt must be in the range 1 - 16.

__vec_strmb
Purpose

Stores a right-justified string of bytes.

Prototype

void __vec_strmb (char *ptr, size_t cnt, vector unsigned char data);

Parameters

ptr
Points to a base address.

522 XL C/C++: Compiler Reference

cnt
The number of bytes to store. The value of cnt must be in the range 1 - 16 and
must be a compile-time known constant.

Decimal floating-point built-in functions
Decimal floating-point (DFP) built-in functions are grouped into the following
categories:
v “Absolute value functions”
v “Coefficient functions” on page 524
v “Comparison functions” on page 525
v “Conversion functions” on page 526
v “Exponent functions” on page 531
v “NaN functions” on page 532
v “Register transfer functions” on page 533
v “Rounding functions” on page 534
v “Test functions” on page 537

For binary floating-point built-in functions, see Binary floating-point built-in
functions

When -qarch is set to pwr6, pwr6e, or later POWER processors,
-qfloat=nodfpemulate becomes the default. This means that DFP hardware
instructions are generated. Lower-performance software emulation code is
generated only when:
v -qarch is set to pwr5.
v -qarch is set to pwr6, pwr6e, or later processors, and -qfloat=dfpemulate is

enabled

Note: C++ In the prototypes given in the following sections, the C keyword
_Bool is used by convention to represent a Boolean type.

Absolute value functions
Absolute value functions determine the sign of the returned value.

__d64_abs, __d128_abs
Purpose

Absolute Value

Returns the absolute value of the parameter.

Prototype

_Decimal64 __d64_abs (_Decimal64);

_Decimal128 __d128_abs (_Decimal128);

Chapter 7. Compiler built-in functions 523

__d64_nabs, __d128_nabs
Purpose

Negative Absolute Value

Returns the negative absolute value of the parameter.

Prototype

_Decimal64 __d64_nabs (_Decimal64);

_Decimal128 __d128_nabs (_Decimal128);

__d64_copysign, __d128_copysign
Purpose

Copysign

Returns the absolute value of the first parameter, with the sign of the second
parameter.

Prototype

_Decimal64 __d64_copysign (_Decimal64, _Decimal64);

_Decimal128 __d128_copysign (_Decimal128, _Decimal128);

Coefficient functions
Coefficient functions manipulate the fraction without affecting the exponent and
sign, to support decimal-floating point conversion library functions.

__d64_shift_left, __d128_shift_left
Purpose

Shift Coefficient Left.

Shifts the coefficient of the parameter left.

Prototype

_Decimal64 __d64_shift_left (_Decimal64, unsigned long digits);

_Decimal128 __d128_shift_left (_Decimal128, unsigned long digits);

Parameters

digits
The number of digits to be shifted left. The shift count must be in the range 0
to 63; otherwise the result is undefined.

Return value

The sign and exponent are unchanged. The digits are shifted left.

524 XL C/C++: Compiler Reference

__d64_shift_right, __d128_shift_right
Purpose

Shift Coefficient Right.

Shifts the coefficient of the parameter right.

Prototype

_Decimal64 __d64_shift_right (_Decimal64, unsigned long digits);

_Decimal128 __d128_shift_right (_Decimal128, unsigned long digits);

Parameters

digits
The number of digits to be shifted right. The shift count must be in the range 0
to 63; otherwise the result is undefined.

Return value

The sign and exponent are unchanged. The digits are shifted right.

Comparison functions
Comparison functions support extended exception handling and exponent
comparisons.

__d64_compare_exponents, __d128_compare_exponents
Purpose

Compare Exponents

Compares the exponents of two decimal floating-point values.

Prototype

long __d64_compare_exponents (_Decimal64, _Decimal64);

long __d128_compare_exponents (_Decimal128, _Decimal128);

Return value

Returns the following values:
v Less than 0 if the exponent of the first parameter is less than the exponent of the

second parameter.
v 0 if both parameters have the same exponent value or if both are quiet or

signaling NaNs (quiet and signaling are considered equal) or both are infinities.
v Greater than 0 if the exponent of the first argument is greater than the exponent

of the second argument.
v -2 if one of the two parameters is a quiet or signaling NaN or one of the two

parameters is an infinity.

Chapter 7. Compiler built-in functions 525

__d64_compare_signaling, __d128_compare_signaling
Purpose

Compare Signaling Exception on NaN

Compares two decimal floating-point values and raises an Invalid Operation
exception if either is a quiet or signaling NaN.

Prototype

long __d64_compare_signaling (_Decimal64, _Decimal64);

long __d128_compare_signaling (_Decimal128, _Decimal128);

Return value

Returns the following values:
v Less than 0 if the value of the first parameter is less than the value of the second

parameter.
v 0 if both parameters have the same value.
v Greater than 0 if the value of the first parameter is greater than the value of the

second parameter.

If either value is a quiet or signalling NaN, an exception is raised. If no exception
handler has been enabled to trap the exception, the function returns -2.

Usage

If either value is a NaN, normal comparisons using the relational operators (==, !=,
<, <=, > and >=) always return false, which raises an exception for a signaling
NaN but not for a quiet NaN. If you want an exception to be raised when either
value is a quiet or signaling NaN, you should use the Compare Signaling
Exception on NaN built-in functions instead of a relational operator.

Conversion functions
Conversion functions execute decimal floating-point conversions. Some override
the current rounding mode.

__cbcdtd
Purpose

Convert Binary Coded Decimal to Declets.

The low-order 24 bits of each word of the source contain six, 4-bit BCD fields that
are converted to two declets; each set of the two declets is placed into the
low-order 20 bits of the corresponding word in the result. The high-order 12 bits in
each word of the result are set to 0. If a 4-bit BCD field has a value greater than 9,
the results are undefined.

Prototype

long long __cbcdtd (long long);

526 XL C/C++: Compiler Reference

Usage

Valid only when -qarch is set to target POWER7 processors or higher.

__cdtbcd
Purpose

Convert Declets to Binary Coded Decimal.

The low-order 20 bits of each word of the source contain two declets that are
converted to six, 4-bit BCD fields; each set of six, 4-bit BCD fields is placed into the
low-order 24 bits of the corresponding word in the result. The high-order 8 bits in
each word of the result are set to 0.

Prototype

long long __cdtbcd (long long);

Usage

Valid only when -qarch is set to target POWER7 processors or higher.

__d64_to_long_long, __d128_to_long_long
Purpose

Convert to Integer

Converts a decimal floating-point value to a 64-bit signed binary integer, using the
current rounding mode.

Prototype

long long __d64_to_long_long (_Decimal64);

long long __d128_to_long_long (_Decimal128):

Return value

The input value converted to a long long, using the current rounding mode (not
always rounded towards zero as a cast or implicit conversion would be).

__d64_to_long_long_rounding, __d128_to_long_long_rounding
Purpose

Convert to Integer

Converts a decimal floating-point value to a 64-bit signed binary integer, using a
specified rounding mode.

Prototype

long long __d64_to_long_long_rounding (_Decimal64, long rounding_mode);

long long __d128_to_long_long_rounding (_Decimal128, long rounding_mode);

Chapter 7. Compiler built-in functions 527

Parameters

mode
One of the compile time constant values or macros defined in Table 52 on page
534.

Return value

The input value converted to a long long, using the specified rounding mode (not
always rounded towards zero as a cast or implicit conversion would be).

Usage

These functions temporarily override the rounding mode in effect for the current
operation.

__d64_to_signed_BCD
Purpose

Convert to Signed Binary-Coded Decimal

Converts the lower digits of a 64-bit decimal floating-point value to a Signed
Packed Format (packed decimal).

Prototype

unsigned long long __d64_to_signed_BCD (_Decimal64, _Bool value);

Return value

Produces 15 decimal digits followed by a decimal sign in a 64-bit result. The
leftmost digit is ignored.

Positive values are given the sign 0xF if value is true and 0xC if value is false.

Negative values are given the sign 0xD.

Usage

You can use the __d64_shift_right function to access the leftmost digit.

__d128_to_signed_BCD
Purpose

Convert to Signed Binary Coded Decimal.

Converts the lower digits of a 128-bit decimal floating-point value to a Signed
Packed Format (packed decimal).

Prototype

void __d128_to_signed_BCD (_Decimal128, _Bool value, unsigned long long
*upper, unsigned long long *lower);

528 XL C/C++: Compiler Reference

Parameters

upper
The address of the variable that will hold the upper digits of the result.

lower
The address of the variable that will hold the lower digits of the result.

Return value

Produces 31 decimal digits followed by a decimal sign in a 128-bit result. Digits to
the left are ignored. The higher 16 digits are stored in the parameter upper. The
lower 15 digits plus the sign are stored in the parameter lower.

Positive values are given the sign 0xF if value is true and 0xC if value is false.

Negative values are given the sign 0xD.

Usage

You can use the __d128_shift_right function to access the digits to the left.

__d64_to_unsigned_BCD
Purpose

Convert to Unsigned Binary Coded Decimal.

Converts the lower digits of a 64-bit decimal floating-point value to an Unsigned
Packed Format.

Prototype

unsigned long long __d64_to_unsigned_BCD (_Decimal64);

Return value

Returns 16 decimal digits with no sign in a 64-bit result.

Usage

You can use the __d64_shift_right function to access the digits to the left.

__d128_to_unsigned_BCD
Purpose

Convert to Unsigned Binary Coded Decimal.

Converts the lower digits of a 128-bit decimal floating-point value to an Unsigned
Packed Format.

Prototype

void __d128_to_unsigned_BCD (_Decimal128, unsigned long long *upper,
unsigned long long *lower);

Chapter 7. Compiler built-in functions 529

Parameters

upper
The address of the variable that will hold the upper digits of the result.

lower
The address of the variable that will hold the lower digits of the result.

Return value

Produces 32 decimal digits with no sign in a 128-bit result. Digits to the left are
ignored. The higher 16 digits are stored in the parameter upper. The lower 16 digits
are stored in the parameter lower.

Usage

You can use the __d128_shift_right function to access the digits to the left.

__signed_BCD_to_d64
Purpose

Convert from Signed Binary Coded Decimal.

Converts a 64-bit Signed Packed Format (packed decimal - 15 decimal digits
followed by a decimal sign) to a 64-bit decimal floating-point value.

Prototype

_Decimal64 __signed_BCD_to_d64 (unsigned long long);

Parameters

The signs 0xA, 0xC, 0xE, and 0xF are treated as positive. The signs 0xB and 0xD
are treated as negative.

__signed_BCD_to_d128
Purpose

Convert from Signed Binary Coded Decimal.

Converts a 128-bit Signed Packed Format (packed decimal - 31 decimal digits
followed by a decimal sign) to a 128-bit decimal floating-point value.

Prototype

_Decimal128 __signed_BCD_to_d128 (unsigned long long upper, unsigned
long long lower);

Parameters

upper
The upper 16 digits of the input value.

lower
The lower 15 digits plus the sign of the input value.

530 XL C/C++: Compiler Reference

Parameters

The signs 0xA, 0xC, 0xE, and 0xF are treated as positive. The signs 0xB and 0xD
are treated as negative.

__unsigned_BCD_to_d64
Purpose

Convert from Unsigned Binary Coded Decimal.

Converts a 64-bit Unsigned Packed Format (16 decimal digits with no sign) to a
64-bit decimal floating-point value.

Prototype

_Decimal64 __unsigned_BCD_to_d64 (unsigned long long);

__unsigned_BCD_to_d128
Purpose

Convert from Unsigned Binary Coded Decimal.

Converts a 128-bit Unsigned Packed Format (32 decimal digits with no sign) to a
128-bit decimal floating-point value.

Prototype

_Decimal128 __unsigned_BCD_to_d128 (unsigned long long upper, unsigned
long long lower);

Parameters

upper
The upper 16 digits of the input value.

lower
The lower 16 digits of the input value.

Exponent functions
Exponent functions extract the exponent from a value or insert an exponent into a
value, primarily to support decimal-floating point conversion library functions.
They use special values to identify or specify the exponent type.

Table 51. Biased exponents macros and values

Macro Integer value

DFP_BIASED_EXPONENT_FINITE 0

DFP_BIASED_EXPONENT_INFINITY -1

DFP_BIASED_EXPONENT_QNAN -2

DFP_BIASED_EXPONENT_SNAN -3

Chapter 7. Compiler built-in functions 531

__d64_biased_exponent, __d128_biased_exponent
Purpose

Extract Biased Exponent

Returns the exponent of a decimal floating-point value as an integer.

Prototype

long __d64_biased_exponent (_Decimal64);

long __d128_biased_exponent (_Decimal128);

Return value

Returns special values for infinity, quiet NaN, and signalling NaN, as listed in
Table 51 on page 531.

For finite values, the result is DFP_BIASED_EXPONENT_FINITE plus the
exponent bias (398 for _Decimal64, 6176 for _Decimal128) plus the actual exponent.

__d64_insert_biased_exponent, __d128_insert_biased_exponent
Purpose

Insert Biased Exponent

Replaces the exponent of a decimal floating-point value.

Prototype

_Decimal64 __d64_insert_biased_exponent (_Decimal64, long exponent);

_Decimal128 __d128_insert_biased_exponent (_Decimal128, long exponent);

Parameters

exponent
The exponent value to be applied to the first parameter. For infinity, quiet NaN
and signalling NaN, use one of the compile-time constant values or macros
listed in Table 51 on page 531.

For finite values, the result is DFP_BIASED_EXPONENT_FINITE plus the
exponent bias (398 for _Decimal64, 6176 for _Decimal128) plus the
corresponding exponent.

NaN functions
NaN functions create quiet or signaling NaNs.

__d32_sNaN, __d64_sNaN, __d128_sNaN
Purpose

Make Signalling NaN

Creates a signalling NaN of the specified precision, with a positive sign and zero
payload.

532 XL C/C++: Compiler Reference

Prototype

_Decimal32 __d32_sNan (void);

_Decimal64 __d64_sNaN (void);

_Decimal128 __d128_sNaN (void);

__d32_qNaN, __d64_qNaN, __d128qNaN
Purpose

Make Quiet NaN

Creates a quiet NaN of the specified precision, with a positive sign and zero
payload.

Prototype

_Decimal32 __d32_qNaN (void);

_Decimal64 __d64_qNaN (void);

_Decimal128 __d128_qNaN (void);

Register transfer functions
Register transfer functions transfer data between general purpose registers and
floating-point registers. No conversion occurs. Register transfer functions handle
integer data in floating-point registers or floating-point data in general purpose
registers. These functions use instructions that are available with -qarch=pwr6 or
-qarch=pwr6e only, on a POWER6 running in POWER6e (raw) mode.

__gpr_to_d64
Purpose

Transfer from General Purpose Register to Floating-Point Register

Transfers a value from a general purpose register (64-bit mode) or a general
purpose register pair (32-bit mode).

Prototype

_Decimal64 __gpr_to_d64 (long long);

__gprs_to_d128
Purpose

Transfer from General Purpose Register to Floating-Point Register.

Transfers a value from a pair of general purpose registers (64-bit mode) or four
general purpose registers (32-bit mode).

Prototype

_Decimal128 __gprs_to_d128 (unsigned long long*upper, unsigned long
long*lower);

Chapter 7. Compiler built-in functions 533

Parameters

upper
The address of the variable that will hold the upper 64 bits of the result.

lower
The address of the variable that will hold the lower 64 bits of the result.

Return value

The higher 64 bits are stored in the parameter upper. The lower 64 bits are stored in
the parameter lower.

__d64_to_gpr
Purpose

Transfer from Floating-Point Register to General Purpose Register.

Transfers a value from a floating-point register to a general purpose register (64-bit
mode) or a general purpose register pair (32-bit mode).

Prototype

long long __d64_to_gpr (_Decimal64);

__d128_to_gprs
Purpose

Transfer from Floating-Point Register to General Purpose Register.

Transfers a value from a pair of floating-point registers to a pair of general purpose
registers (64-bit mode) or four general purpose registers (32-bit mode).

Prototype

void __d128_to_gprs (_Decimal128, unsigned long long*upper, unsigned long
long*lower);

Parameters

upper
The address of the variable that contains the upper 64 bits of the input value.

lower
The address of the variable that contains the lower 64 bits of the input value.

Rounding functions
Rounding functions perform operations such as rounding and truncation of
floating-point values.

Table 52. Rounding mode macros and values

Macro Integer value

DFP_ROUND_TO_NEAREST_WITH_TIES_TO_EVEN 0

DFP_ROUND_TOWARD_ZERO 1

DFP_ROUND_TOWARD_POSITIVE_INFINITY 2

DFP_ROUND_TOWARD_NEGATIVE_INFINITY 3

534 XL C/C++: Compiler Reference

Table 52. Rounding mode macros and values (continued)

Macro Integer value

DFP_ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_ZERO 4

DFP_ROUND_TO_NEAREST_WITH_TIES_TOWARD_ZERO 5

DFP_ROUND_AWAY_FROM_ZERO 6

DFP_ROUND_TO_PREPARE_FOR_SHORTER_PRECISION 7

DFP_ROUND_USING_CURRENT_MODE1 8

Note:

1. This value is valid only for functions that override the current rounding mode;
it is not valid for __dfp_set_rounding_mode and can not be returned by
__dfp_get_rounding_mode.

__d64_integral, __d128_integral
Purpose

Round to Integral

Rounds a decimal floating-point value to an integer, allowing an Inexact exception
to be raised.

Prototype

_Decimal64 __d64_integral (_Decimal64);

_Decimal128 __d128_integral (_Decimal128);

Return value

The integer is returned in decimal floating-point format, rounded using the current
rounding mode. Digits after the decimal point are discarded.

__d64_integral_no_inexact, __d128_integral_no_inexact
Purpose

Round to Integral

Rounds a decimal floating-point value to an integer, suppressing any Inexact
exception from being raised.

Prototype

_Decimal64 __d64_integral_no_inexact (_Decimal64);

_Decimal128 __d128_integral_no_inexact (_Decimal128);

Return value

The integer is returned in decimal floating-point format, rounded using the current
rounding mode. Digits after the decimal point are discarded.

Chapter 7. Compiler built-in functions 535

__d64_quantize, __d128_quantize
Purpose

Quantize

Returns the arithmetic value of the first parameter, with the exponent adjusted to
match the second parameter, using a specified rounding mode.

Prototype

_Decimal64 __d64_quantize (_Decimal64, _Decimal64, long rounding_mode);

_Decimal128 __d128_quantize (_Decimal128, _Decimal128, long
rounding_mode);

Parameters

rounding_mode
One of the compile-time constant values or macros defined in Table 52 on page
534.

Usage

These functions temporarily override the rounding mode in effect for the current
operation.

__d64_reround, __d128_reround
Purpose

Reround

Complete rounding of a partially rounded value, avoiding double rounding which
causes errors.

Prototype

_Decimal64 __d64_reround (_Decimal64, unsigned long number_of_digits,
unsigned long rounding_mode);

_Decimal128 __d128_reround (_Decimal128, unsigned long number_of_digits,
unsigned long rounding_mode);

Parameters

number_of_digits
The number of digits to round to, from 1 to 15 for __d64_reround and from 1
to 33 for __d128_reround.

rounding_mode
One of the compile-time constant values or macros defined in Table 52 on page
534.

Usage

These functions temporarily override the rounding mode in effect for the current
operation. The value to be rerounded should have been previously rounded using

536 XL C/C++: Compiler Reference

mode DFP_ROUND_TO_PREPARE_FOR_SHORTER_PRECISION or 7 to ensure
correct rounding.

Test functions
Test functions allow extended exception handling of invalid results or
categorization of input values, primarily to support math library functions.

Those functions that begin with __d64_is or __d128_is will not raise an exception,
even for signaling NaNs.

Table 53. Test data class mask macros and values

Macro Integer value

DFP_PPC_DATA_CLASS_ZERO 0x20

DFP_PPC_DATA_CLASS_SUBNORMAL 0x10

DFP_PPC_DATA_CLASS_NORMAL 0x08

DFP_PPC_DATA_CLASS_INFINITY 0x04

DFP_PPC_DATA_CLASS_QUIET_NAN 0x02

DFP_PPC_DATA_CLASS_SIGNALING_NAN 0x01

Table 54. Test data group mask macros and values

Macro Integer value

DFP_PPC_DATA_GROUP_SAFE_ZERO 0x20

DFP_PPC_DATA_GROUP_ZERO_WITH_EXTREME_EXPONENT 0x10

DFP_PPC_DATA_GROUP_NONZERO_WITH_EXTREME_EXPONENT 0x08

DFP_PPC_DATA_GROUP_SAFE_NONZERO 0x04

DFP_PPC_DATA_GROUP_NONZERO_LEFTMOST_DIGIT_NONEXTREME_EXPONENT 0x02

DFP_PPC_DATA_GROUP_SPECIAL 0x01

Table 55. Test data class and group result macros and values

Macro Integer value

DFP_PPC_DATA_POSITIVE_NO_MATCH 0x00

DFP_PPC_DATA_POSITIVE_MATCH 0x02

DFP_PPC_DATA_NEGATIVE_NO_MATCH 0x08

DFP_PPC_DATA_NEGATIVE_MATCH 0x0A

Table 56. Test data class and group result mask macros and values

Macro Integer value

DFP_PPC_DATA_NEGATIVE_MASK 0x08

DFP_PPC_DATA_MATCH_MASK 0x02

__d64_same_quantum, __d128_same_quantum
Purpose

Same Quantum

Returns true if two values have the same quantum

Chapter 7. Compiler built-in functions 537

Prototype

_Bool __d64_same_quantum (_Decimal64, _Decimal64);

_Bool __d128_same_quantum (_Decimal28, _Decimal128);

__d64_issigned, __d128_issigned
Purpose

Is Signed

Returns true if the parameter is negative, negative zero, negative infinity, or
negative NaN.

Prototype

_Bool __d64_issigned (_Decimal64);

_Bool __d128_issigned (_Decimal128);

__d64_isnormal, __d128_isnormal
Purpose

Is Normal

Returns true if the parameter is in the normal range (that is, not a subnormal,
infinity or NaN) and not zero.

Prototype

_Bool _d64_isnormal (_Decimal64);

_Bool _d128_isnormal (_Decimal128);

__d64_isfinite, __d128_isfinite
Purpose

Is Finite

Returns true if the parameter is not positive or negative infinity and not a quiet or
signaling NaN.

Prototype

_Bool __d64_isfinite (_Decimal64);

_Bool __d128_isfinite (_Decimal128);

__d64_iszero, __d128_iszero
Purpose

Is Zero

Returns true if the parameter is positive or negative zero.

538 XL C/C++: Compiler Reference

Prototype

_Bool __d64_iszero (_Decimal64);

_Bool __d128_iszero (_Decimal128);

__d64_issubnormal, __d128_issubnormal
Purpose

Is Subnormal

Returns true if the parameter is a subnormal.

Prototype

_Bool _d64_issubnormal (_Decimal64);

_Bool _d128_issubnormal (_Decimal128);

__d64_isinf, __d128_isinf
Purpose

Is Infinity

Returns true if the parameter is positive or negative infinity.

Prototype

_Bool __d64_isinf (_Decimal64);

_Bool __d128_isinf (_Decimal128);

__d64_isnan, __d128_isnan
Purpose

Is NaN

Returns true if the parameter is a positive or negative quiet or signaling NaN.

Prototype

_Bool __d64_isnan (_Decimal64);

_Bool __d128_isnan (_Decimal128);

__d64_issignaling, __d128_issignaling
Purpose

Is Signaling NaN

Returns true if the parameter is a positive or negative signaling NaN.

Chapter 7. Compiler built-in functions 539

Prototype

_Bool __d64_issignaling (_Decimal64);

_Bool __d128_issignaling (_Decimal128);

__d64_test_data_class, __d128_test_data_class
Purpose

Test Data Class

Reports if a value is a zero, subnormal, normal, infinity, quiet NaN or signaling
NaN, and if the value is positive or negative.

Prototype

long __d64_test_data_class (_Decimal64, unsigned long mask);

long __d128_test_data_class (_Decimal128, unsigned long mask);

Parameters

mask
One of the values or macros defined in Table 53 on page 537 or several ORed
together. The parameter must be a compile time constant expression.

Return value

One of the values listed in Table 55 on page 537.

Usage

You can use an appropriate mask to check combinations of values at the same
time. Use the masks listed in Table 53 on page 537 to check input values. Use the
masks listed in Table 56 on page 537 to check result values.

__d64_test_data_group, __d128_test_data_group
Purpose

Test Data Group

Reports if a value is a safe zero, a zero with an extreme exponent, a subnormal, a
safe nonzero, a normal with no leading zero, or an infinity or NaN and if the value
is positive or negative. Safe means leading zero digits and a non-extreme exponent.
A subnormal can appear as either an extreme nonzero or safe nonzero. The exact
meaning of some masks depends on the particular CPU model.

Prototype

long _d64_test_data_group (_Decimal64, unsigned long mask);

long _d128_test_data_group (_Decimal128, unsigned long mask);

540 XL C/C++: Compiler Reference

Parameters

mask
One of the values or macros defined in Table 54 on page 537 or several ORed
together. The parameter must be a compile time constant expression.

Return value

One of the values listed in Table 55 on page 537.

Usage

You can use an appropriate mask to check combinations of values at the same
time. Use the masks listed in Table 54 on page 537 to check input values. Use the
masks listed in Table 56 on page 537 to check result values.

__d64_test_significance, __d128_test_significance
Purpose

Test Significance

Checks whether a decimal floating-point value has a specified number of digits of
significance.

Prototype

long __d64_test_significance (_Decimal64, unsigned long digits);

long __d128_test_significance (_Decimal128, unsigned long digits);

Parameters

digits
The number of digits of significance to be tested for. digits must be in the range
0 to 63; otherwise the result is undefined. If it is 0, all values including zero
will be considered to have more significant digits, if it is not 0, a zero value
will be considered to have fewer significant digits.

Return value

Returns the following values:
v Less than 0 if the number of digits of significance of the first parameter is less

than the second parameter.
v 0 if the number of digits of significance is the same as the second parameter.
v Greater than 0 if the number of digits of significance of the first parameter is

greater than that of the second parameter or digits is 0.
v -2 if either parameter is a quiet or signaling NaN or positive or negative infinity.

For these functions, the number of significant digits of the value 0 is considered to
be zero.

Miscellaneous functions
This section lists the miscellaneous decimal floating-point built-in functions.

Chapter 7. Compiler built-in functions 541

__addg6s
Purpose

Add and Generate Sixes

Adds source1 to source2 and produces 16 carry bits, one for each carry out of
decimal position n (bit position 4xn).

The result is a doubleword composed of the 16 carry bits. The doubleword consists
of a decimal six (0b0110) in every decimal digit position for which the
corresponding carry bit is 0, and a zero (0b0000) in every position for which the
corresponding carry bit is 1.

Prototype

long long __addg6s (long long source1, long long source2);

Usage

Valid only when -qarch is set to target POWER7 processors or higher in 64-bit
mode.

Synchronization and atomic built-in functions
Synchronization and atomic built-in functions are grouped into the following
categories:
v “Check lock functions”
v “Clear lock functions” on page 544
v “Compare and swap functions” on page 545
v “Fetch functions” on page 545
v “Load functions” on page 547
v “Store functions” on page 548
v “Synchronization functions” on page 549

Check lock functions

__check_lock_mp, __check_lockd_mp
Purpose

Check Lock on Multiprocessor Systems, Check Lock Doubleword on
Multiprocessor Systems

Conditionally updates a single word or doubleword variable atomically.

Prototype

unsigned int __check_lock_mp (const int* addr, int old_value, int new_value);

unsigned int __check_lockd_mp (const long long* addr, long long old_value,
long long new_value);

542 XL C/C++: Compiler Reference

Parameters

addr
The address of the variable to be updated. Must be aligned on a 4-byte
boundary for a single word or on an 8-byte boundary for a doubleword.

old_value
The old value to be checked against the current value in addr.

new_value
The new value to be conditionally assigned to the variable in addr,

Return value

Returns false (0) if the value in addr was equal to old_value and has been set to the
new_value. Returns true (1) if the value in addr was not equal to old_value and has
been left unchanged.

Usage

__check_lockd_mp is valid only in 64-bit mode.

__check_lock_up, __check_lockd_up
Purpose

Check Lock on Uniprocessor Systems, Check Lock Doubleword on Uniprocessor
Systems

Conditionally updates a single word or doubleword variable atomically.

Prototype

unsigned int __check_lock_up (const int* addr, int old_value, int new_value);

unsigned int __check_lockd_up (const long* addr, long old_value, long
new_value);

Parameters

addr
The address of the variable to be updated. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

old_value
The old value to be checked against the current value in addr.

new_value
The new value to be conditionally assigned to the variable in addr,

Return value

Returns false (0) if the value in addr was equal to old_value and has been set to the
new value. Returns true (1) if the value in addr was not equal to old_value and has
been left unchanged.

Usage

__check_lockd_up is valid only in 64-bit mode.

Chapter 7. Compiler built-in functions 543

Clear lock functions

__clear_lock_mp, __clear_lockd_mp
Purpose

Clear Lock on Multiprocessor Systems, Clear Lock Doubleword on Multiprocessor
Systems

Atomic store of the value into the variable at the address addr.

Prototype

void __clear_lock_mp (const int* addr, int value);

void __clear_lockd_mp (const long* addr, long value);

Parameters

addr
The address of the variable to be updated. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

value
The new value to be assigned to the variable in addr,

Usage

__clear_lockd_mp is only valid in 64-bit mode.

__clear_lock_up, __clear_lockd_up
Purpose

Clear Lock on Uniprocessor Systems, Clear Lock Doubleword on Uniprocessor
Systems

Atomic store of the value into the variable at the address addr.

Prototype

void __clear_lock_up (const int* addr, int value);

void __clear_lockd_up (const long* addr, long value);

Parameters

addr
The address of the variable to be updated. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

value
The new value to be assigned to the variable in addr.

Usage

__clear_lockd_up is only valid in 64-bit mode.

544 XL C/C++: Compiler Reference

Compare and swap functions

__compare_and_swap, __compare_and_swaplp
Purpose

Conditionally updates a single word or doubleword variable atomically.

Prototype

int __compare_and_swap (volatile int* addr, int* old_val_addr, int new_val);

int __compare_and_swaplp (volatile long* addr, long* old_val_addr, long
new_val);

Parameters

addr
The address of the variable to be copied. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

old_val_addr
The memory location into which the value in addr is to be copied.

new_val
The value to be conditionally assigned to the variable in addr,

Return value

Returns true (1) if the value in addr was equal to old_value and has been set to the
new value. Returns false (0) if the value in addr was not equal to old_value and has
been left unchanged. In either case, the contents of the memory location specified
by addr are copied into the memory location specified by old_val_addr.

Usage

The __compare_and_swap function is useful when a single word value must be
updated only if it has not been changed since it was last read. If you use
__compare_and_swap as a locking primitive, insert a call to the __isync built-in
function at the start of any critical sections.

__compare_and_swaplp is valid only in 64-bit mode.

Fetch functions

__fetch_and_and, __fetch_and_andlp
Purpose

Clears bits in the word or doubleword specified byaddr by AND-ing that value
with the value specified by val, in a single atomic operation, and returns the
original value of addr.

Prototype

unsigned int __fetch_and_and (volatile unsigned int* addr, unsigned int val);

unsigned long __fetch_and_andlp (volatile unsigned long* addr, unsigned
long val);

Chapter 7. Compiler built-in functions 545

Parameters

addr
The address of the variable to be ANDed. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

value
The value by which the value in addr is to be ANDed.

Usage

This operation is useful when a variable containing bit flags is shared between
several threads or processes.

__fetch_and_andlp is valid only in 64-bit mode.

__fetch_and_or, __fetch_and_orlp
Purpose

Sets bits in the word or doubleword specified by addr by OR-ing that value with
the value specified val, in a single atomic operation, and returns the original value
of addr.

Prototype

unsigned int __fetch_and_or (volatile unsigned int* addr, unsigned int val);

unsigned long __fetch_and_orlp (volatile unsigned long* addr, unsigned long
val);

Parameters

addr
The address of the variable to be ORed. Must be aligned on a 4-byte boundary
for a single word and on an 8-byte boundary for a doubleword.

value
The value by which the value in addr is to be ORed.

Usage

This operation is useful when a variable containing bit flags is shared between
several threads or processes.

__fetch_and_orlp is valid only in 64-bit mode.

__fetch_and_swap, __fetch_and_swaplp
Purpose

Sets the word or doubleword specified by addr to the value of val and returns the
original value of addr, in a single atomic operation.

Prototype

unsigned int __fetch_and_swap (volatile unsigned int* addr, unsigned int val);

unsigned long __fetch_and_swaplp (volatile unsigned long* addr, unsigned
long val);

546 XL C/C++: Compiler Reference

Parameters

addr
The address of the variable to be updated. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

value
The value which is to be assigned to addr.

Usage

This operation is useful when a variable is shared between several threads or
processes, and one thread needs to update the value of the variable without losing
the value that was originally stored in the location.

__fetch_and_swaplp is valid only in 64-bit mode.

Load functions

__lqarx, __ldarx, __lwarx, __lharx, __lbarx
Purpose

Load Quadword and Reserve Indexed, Load Doubleword and Reserve Indexed,
Load Word and Reserve Indexed, Load Halfword and Reserve Indexed, Load Byte
and Reserve Indexed

Loads the value from the memory location specified by addr and returns the result.
For __lwarx, in 64-bit mode, the compiler returns the sign-extended result.

Prototype

void __lqarx (volatile long* addr, long dst[2]);

long __ldarx (volatile long* addr);

int __lwarx (volatile int* addr);

short __lharx(volatile short* addr);

char __lbarx(volatile char* addr);

Parameters

addr
The address of the value to be loaded. Must be aligned on a 4-byte boundary
for a single word, on an 8-byte boundary for a doubleword, and on a 16-byte
boundary for a quadword.

dst
The address to which the value is loaded.

Usage

This function can be used with a subsequent __stqcx (__stdcx, __stwcx, __sthcx,
or __stbcx) built-in function to implement a read-modify-write on a specified
memory location. The two built-in functions work together to ensure that if the
store is successfully performed, no other processor or mechanism have modified
the target memory between the time the load function is executed and the time the

Chapter 7. Compiler built-in functions 547

store function completes. This has the same effect on code motion as inserting
__fence built-in functions before and after the load function and can inhibit
compiler optimization of surrounding code (see “__alignx” on page 693 for a
description of the __fence built-in function).

__ldarx and __lqarx are valid only in 64-bit mode. __lqarx, __lharx, and __lbarx
are valid only when -qarch is set to target POWER8 processors.

Store functions

__stqcx, __stdcx, __stwcx, __sthcx, __stbcx
Purpose

Store Quadword Conditional Indexed, Store Doubleword Conditional Indexed,
Store Word Conditional Indexed, Store Halfword Conditional Indexed, Store Byte
Conditional Indexed

Stores the value specified by val into the memory location specified by addr.

Prototype

int __stqcx(volatile long* addr, long val[2]);

int __stdcx(volatile long* addr, long val);

int __stwcx(volatile int* addr, int val);

int __sthcx(volatile short* addr, short val);

int __stbcx(volatile char* addr, char val);

Parameters

addr
The address of the variable to be updated. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

val
The value that is to be assigned to addr.

Return value

Returns 1 if the update of addr is successful and 0 if it is unsuccessful.

Usage

This function can be used with a preceding __lqarx (__ldarx, __lwarx, __lharx, or
__lbarx) built-in function to implement a read-modify-write on a specified
memory location. The two built-in functions work together to ensure that if the
store is successfully performed, no other processor or mechanism can modify the
target doubleword between the time the __ldarx function is executed and the time
the __stdcx function completes. This has the same effect as inserting __fence
built-in functions before and after the __stdcx built-in function and can inhibit
compiler optimization of surrounding code.

__stdcx is valid only in 64-bit mode. __stqcx, __sthcx, and __stbcx are valid only
when -qarch is set to target POWER8 processors.

548 XL C/C++: Compiler Reference

Synchronization functions

__eieio, __iospace_eioio
Purpose

Enforce In-order Execution of Input/Output

Ensures that all I/O storage access instructions preceding the call to __eioeio
complete in main memory before I/O storage access instructions following the
function call can execute.

Prototype

void __eieio (void);

void __iospace_eieio (void);

Usage

This function is useful for managing shared data instructions where the execution
order of load/store access is significant. The function can provide the necessary
functionality for controlling I/O stores without the cost to performance that can
occur with other synchronization instructions.

__isync
Purpose

Instruction Synchronize

Waits for all previous instructions to complete and then discards any prefetched
instructions, causing subsequent instructions to be fetched (or refetched) and
executed in the context established by previous instructions.

Prototype

void __isync (void);

__lwsync, __iospace_lwsync
Purpose

Lightweight Synchronize

Ensures that all instructions preceding the call to __lwsync complete before any
subsequent store instructions can be executed on the processor that executed the
function. Also, it ensures that all load instructions preceding the call to __lwsync
complete before any subsequent load instructions can be executed on the processor
that executed the function. This allows you to synchronize between multiple
processors with minimal performance impact, as __lwsync does not wait for
confirmation from each processor.

Prototype

void __lwsync (void);

void __iospace_lwsync (void);

Chapter 7. Compiler built-in functions 549

__sync, __iospace_sync
Purpose

Synchronize

Ensures that all instructions preceding the function the call to __sync complete
before any instructions following the function call can execute.

Prototype

void __sync (void);

void __iospace_sync (void);

Cache-related built-in functions
Cache-related built-in functions are grouped into the following categories:
v “Data cache functions”
v “Prefetch built-in functions” on page 552

Data cache functions

__dcbf
Purpose

Data Cache Block Flush

Copies the contents of a modified block from the data cache to main memory and
flushes the copy from the data cache.

Prototype

void __dcbf(const void* addr);

__dcbfl
Purpose

Data Cache Block Flush Line

Flushes the cache line at the specified address from the L1 data cache.

Prototype

void __dcbfl (const void* addr);

Usage

The target storage block is preserved in the L2 cache.

Valid when -qarch is set to target POWER6 processors or higher.

550 XL C/C++: Compiler Reference

__dcbflp
Purpose

Data Cache Block Flush Line Primary

Flushes the cache line at address from the primary data cache of a single processor.

Prototype

void __dcbflp(const void* address);

Usage

Valid only when -qarch is set to target POWER7 processors or higher.

__dcbst
Purpose

Data Cache Block Store

Copies the contents of a modified block from the data cache to main memory.

Prototype

void __dcbst(const void* addr);

__dcbt
Purpose

Data Cache Block Touch

Loads the block of memory containing the specified address into the L1 data cache.

Prototype

void __dcbt (void* addr);

__dcbtna
Purpose

Data cache block hint no longer accessed

Indicates that the block containing address will not be accessed for a long time;
therefore, it must not be kept in the L1 data cache.

Note: Using this function does not necessarily evict the containing block from the
data cache.

Prototype

void __dcbtna (void *addr);

Usage

Valid only when -qarch is set to target POWER8 processors.

Chapter 7. Compiler built-in functions 551

__dcbtst
Purpose

Data Cache Block Touch for Store

Fetches the block of memory containing the specified address into the data cache.

Prototype

void __dcbtst (void* addr);

__dcbz
Purpose

Data Cache Block set to Zero

Sets a cache line containing the specified address in the data cache to zero (0).

Prototype

void __dcbz (void* addr);

__icbt
Purpose

Instruction cache block touch

Indicates that the program will soon run code in the instruction cache block
containing address, and that the block containing address must be loaded into the
instruction cache.

Prototype

void __icbt (void *addr) ;

Usage

Valid only when -qarch is set to target POWER8 processors.

Prefetch built-in functions

__dcbtstt
Purpose

Store Transient Touch provides a hint that describes a block that the program may
perform a store access to. The block is likely to be transient, that is, the time
interval during which the program accesses the unit is likely to be short.

Prototype

void __dcbtstt (void * address);

Usage

Valid only when -qarch is set to target POWER7 processors or higher.

552 XL C/C++: Compiler Reference

__dcbtt
Purpose

Data Cache Block Touch Transient

Load Transient Touch provides a hint that describes a block that the program
might perform a load access to. The block is likely to be transient, that is, the time
interval during which the program accesses the unit is likely to be short.

Prototype

void __dcbtt (void * address);

Usage

Valid only when -qarch is set to target POWER7 processors or higher.

__partial_dcbt
Purpose

Partial Data Cache Block Touch

Loads half of the cache line that contains the specified address into the L3 data
cache.

Prototype

void __partial_dcbt (void * address);

Usage

Valid only when -qarch is set to target POWER7 processors or higher.

__prefetch_by_load
Purpose

Touches a memory location by using an explicit load.

Prototype

void __prefetch_by_load (const void*);

__prefetch_by_stream
Purpose

Touches consecutive memory locations by using an explicit stream.

Prototype

void __prefetch_by_stream (const int, const void*);

__protected_stream_count
Purpose

Sets the number of cache lines for a specific limited-length protected stream.

Chapter 7. Compiler built-in functions 553

Prototype

void __protected_stream_count (unsigned int unit_cnt, unsigned int
stream_ID);

Parameters

unit_cnt
The number of cache lines. Must be an integer with a value of 0 to 1023.

stream_ID
An integer with a value 0-7 on POWER5 processors, a value 0 to 15 on
POWER6 processors, and a value 0 to 11 on POWER7 and POWER8
processors.

Usage

Valid only when -qarch is set to target POWER5 processors or higher.

__protected_stream_count_depth
Purpose

Sets the number of cache lines and the prefetch depth for a specific limited-length
protected stream.

Prototype

void _protected_stream_count_depth (unsigned int unit_cnt, unsigned int
prefetch_depth, unsigned int stream_ ID);

Parameters

unit_cnt
The number of cache lines. Must be an integer with a value of 0 to 1023.

prefetch_depth
A relative, qualitative value which sets the steady-state fetch-ahead distance of
the prefetches for a stream. The fetch-ahead distance is the number of lines
being prefetched in advance of the line from which data is currently being
loaded, or to which data is currently being stored. Valid values are as follows:

0 The default defined in the Data Stream Control Register.

1 None.

2 Shallowest.

3 Shallow.

4 Medium.

5 Deep.

6 Deeper.

7 Deepest.

stream_ID
An integer with a value 0 to 15 on POWER6 processors, and a value 0 to 11 on
or POWER7 and POWER8 processors.

554 XL C/C++: Compiler Reference

Usage

Valid only when -qarch is set to target POWER6 processors or higher.

__protected_stream_go
Purpose

Starts prefetching all limited-length protected streams.

Prototype

void __protected_stream_go (void);

Usage

Valid only when -qarch is set to target POWER5 processors or higher.

__protected_stream_set
Purpose

Establishes a limited-length protected stream which fetches from either incremental
(forward) or decremental (backward) memory addresses. The stream is protected
from being replaced by any hardware detected streams.

Prototype

void __protected_stream_set (unsigned int direction, const void* addr,
unsigned int stream_ID);

Parameters

direction
An integer with a value of 1 (forward) or 3 (backward).

addr
The beginning of the cache line.

stream_ID
An integer with a value 0-7 on POWER5 processors, a value 0 to 15 on
POWER6 processors, and a value 0 to 11 on POWER7 and POWER8
processors.

Usage

Valid only when -qarch is set to target POWER5 processors or higher.

__protected_unlimited_stream_set
Purpose

Establishes an unlimited-length protected stream which fetches from either
incremental (forward) or decremental (backward) memory addresses. The stream is
protected from being replaced by any hardware detected streams.

Prototype

void _protected_unlimited_stream_set (unsigned int direction, const void* addr,
unsigned int ID);

Chapter 7. Compiler built-in functions 555

Parameters

direction
An integer with a value of 1 (forward) or 3 (backward).

addr
The beginning of the cache line.

stream_ID
An integer with a value 0-7 on POWER5 processors, a value 0 to 15 on
POWER6 processors, and a value 0 to 11 on POWER7 and POWER8
processors.

Usage

Valid only when -qarch is set to target POWER5 processors or higher.

__protected_stream_stride
Purpose

Sets the word-offset of the first unit of the stream address_offset, and stride in
word size for protected load or store stream with identifier stream_id

Prototype

void__protected_stream_stride (unsigned int address_offset, unsigned int stride,
unsigned int stream_id);

Parameters

address_offset
The address of the first unit of the prefetch variable.

stride
This is the distance in the number of words of two consecutive elements of the
prefetch stream.

stream_id
An integer with a value 0 to 11.

Usage

Valid only when -qarch is set to target POWER7 processors or higher.

__protected_stream_stop
Purpose

Stops prefetching a protected stream.

Prototype

void __protected_stream_stop (unsigned int stream ID);

Parameters

stream_id
An integer with a value 0-7 on POWER5 processors, a value 0 to 15 on
POWER6 processors, and a value 0 to 11 on POWER7 and POWER8
processors.

556 XL C/C++: Compiler Reference

Usage

Valid only when -qarch is set to target POWER5 processors or higher.

__protected_stream_stop_all
Purpose

Stops prefetching all protected streams.

Prototype

void __protected_stream_stop_all (void);

Usage

Valid only when -qarch is set to target POWER5 processors or higher.

__protected_store_stream_set
Purpose

Establishes a limited--length protected store stream which fetches from either
incremental (forward) or decremental (backward) memory addresses. The stream is
protected from being replaced by any hardware detected streams.

Prototype

void _protected_store_stream_set (unsigned int direction, const void* addr,
unsigned int stream_ID);

Parameters

direction
An integer with a value of 1 (forward) or 3 (backward).

addr
The beginning of the cache line.

stream_ID
An integer with a value 0 to 15 on POWER6 processors, and a value 0 to 11 on
POWER7 and POWER8 processors.

Usage

Valid only when -qarch is set to target POWER6 processors or higher.

__protected_unlimited_store_stream_set
Purpose

Establishes an unlimited-length protected store stream which fetches from either
incremental (forward) or decremental (backward) memory addresses. The stream is
protected from being replaced by any hardware detected streams.

Prototype

void _protected_unlimited_store_stream_set (unsigned int direction, const
void* addr, unsigned int stream_ID);

Chapter 7. Compiler built-in functions 557

Parameters

direction
An integer with a value of 1 (forward) or 3 (backward).

addr
The beginning of the cache line.

stream_ID
An integer with a value 0 to 15 on POWER6 processors, and a value 0 to 11 on
POWER7 and POWER8 processors.

Usage

Valid only when -qarch is set to target POWER6 processors or higher.

__transient_protected_stream_count_depth
Purpose

Sets the number of cache lines unit_cnt and the prefetch depth prefetch_depth for the
limited length protected load or store stream with identifier stream_id. The term
"transient" indicates that the time interval during which the program accesses the
stream's memory is likely to be short, so the processor can remove it from the
cache earlier.

Prototype

void __transient_protected_stream_count_depth (unsigned int unit_cnt,
unsigned int prefetch_depth, unsigned int stream_id);

Parameters

unit_cnt
The number of cache lines. Must be an integer with a value of 0 to 1023.

prefetch_depth
A relative, qualitative value which sets the steady-state fetch-ahead distance of
the prefetches for a stream. The fetch-ahead distance is the number of lines
being prefetched in advance of the line from which data is currently being
loaded, or to which data is currently being stored. Valid values are as follows:

0 The default defined in the Data Stream Control Register.

1 None.

2 Shallowest.

3 Shallow.

4 Medium.

5 Deep.

6 Deeper.

7 Deepest.

stream_id
An integer with a value 0 to 11.

Usage

Valid only when -qarch is set to target POWER7 processors or higher.

558 XL C/C++: Compiler Reference

__transient_unlimited_protected_stream_depth
Purpose

Sets the prefetch depth prefetch_depth for the unlimited length protected load or
store stream with identifier stream_id. The stream is likely to be transient, that is,
the time interval during which the program accesses the unit is likely to be short.

Prototype

void __transient_unlimited_protected_stream_depth (unsigned int
prefetch_depth, unsigned int stream_id);

Parameters

prefetch_depth
A relative, qualitative value which sets the steady-state fetch-ahead distance of
the prefetches for a stream. The fetch-ahead distance is the number of lines
being prefetched in advance of the line from which data is currently being
loaded, or to which data is currently being stored. Valid values are as follows:

0 The default defined in the Data Stream Control Register.

1 None.

2 Shallowest.

3 Shallow.

4 Medium.

5 Deep.

6 Deeper.

7 Deepest.

stream_id
An integer with a value 0 to 11.

Usage

Valid only when -qarch is set to target POWER7 processors or higher.

__unlimited_protected_stream_depth
Purpose

Sets the prefetch depth prefetch_depth for the unlimited length protected load or
store stream with identifier stream_id.

Prototype

void __unlimited_protected_stream_depth (unsigned in prefetch_depth,
unsigned int stream_id);

Parameter

prefetch_depth
A relative, qualitative value which sets the steady-state fetch-ahead distance of
the prefetches for a stream. The fetch-ahead distance is the number of lines
being prefetched in advance of the line from which data is currently being
loaded, or to which data is currently being stored. Valid values are as follows:

Chapter 7. Compiler built-in functions 559

0 The default defined in the Data Stream Control Register.

1 None.

2 Shallowest.

3 Shallow.

4 Medium.

5 Deep.

6 Deeper.

7 Deepest.

stream_id
An integer with a value 0 to 15 on POWER6 processors, and a value 0 to 11 on
POWER7 and POWER8 processors.

Usage

Valid only when -qarch is set to target POWER6 processors or higher.

Cryptography built-in functions
Cryptography built-in functions are valid only when -qarch is set to target
POWER8 processors.

Advanced Encryption Standard functions
Advanced Encryption Standard (AES) functions provide support for Federal
Information Processing Standards Publication 197 (FIPS-197), which is a
specification for encryption and decryption.

__vcipher
Purpose

Performs one round of the AES cipher operation on intermediate state state_array
using a given round_key.

Prototype

vector unsigned char __vcipher (vector unsigned char state_array, vector
unsigned char round_key);

Parameters

state_array
The input data chunk to be encrypted or the result of a previous vcipher
operation.

round_key
The 128-bit AES round key value that is used to encrypt.

Result

Returns the resulting intermediate state.

560 XL C/C++: Compiler Reference

__vcipherlast
Purpose

Performs the final round of the AES cipher operation on intermediate state
state_array using a given round_key.

Prototype

vector unsigned char __vcipherlast (vector unsigned char state_array, vector
unsigned char round_key);

Parameters

state_array
The result of a previous vcipher operation.

round_key
The 128-bit AES round key value that is used to encrypt.

Result

Returns the resulting final state.

__vncipher
Purpose

Performs one round of the AES inverse cipher operation on intermediate state
state_array using a given round_key.

Prototype

vector unsigned char __vncipher (vector unsigned char state_array, vector
unsigned char round_key);

Parameters

state_array
The input data chunk to be decrypted or the result of a previous vncipher
operation.

round_key
The 128-bit AES round key value that is used to decrypt.

Result

Returns the resulting intermediate state.

__vncipherlast
Purpose

Performs the final round of the AES inverse cipher operation on intermediate state
state_array using a given round_key.

Prototype

vector unsigned char __vncipherlast (vector unsigned char state_array, vector
unsigned char round_key);

Chapter 7. Compiler built-in functions 561

Parameters

state_array
The result of a previous vncipher operation.

round_key
The 128-bit AES round key value that is used to decrypt.

Result

Returns the resulting final state.

__vsbox
Purpose

Performs the SubBytes operation, as defined in FIPS-197, on a state_array.

Prototype

vector unsigned char __vsbox (vector unsigned char state_array);

Parameters

state_array
The input data chunk to be encrypted or the result of a previous vcipher
operation.

Result

Returns the result of the operation.

Secure Hash Algorithm functions
Secure Hash Algorithm (SHA) functions provide support for Federal Information
Processing Standards Publication 180-3 (FIPS-180-3), Secure Hash Standard. All
SHA functions operate on unsigned vector integer types.

__vshasigmad
Purpose

Provides support for Federal Information Processing Standards Publication
FIPS-180-3, which is a specification for Secure Hash Standard.

Prototype

vector unsigned long long __vshasigmad (vector unsigned long long x, int
type, int fmask);

Parameters

type
A compile-time constant in the range 0 - 1. The type parameter selects the
function type, which can be either lowercase sigma or uppercase sigma.

fmask
A compile-time constant in the range 0 - 15. The fmask parameter selects the
function subtype, which can be either sigma-0 or sigma-1.

562 XL C/C++: Compiler Reference

Result

Let mask be the rightmost 4 bits of fmask.

For each element i (i=0,1) of x, element i of the returned value is the following
result SHA-512 function:
v The result SHA-512 function is sigma0(x[i]), if type is 0 and bit 2*i of mask is 0.
v The result SHA-512 function is sigma1(x[i]), if type is 0 and bit 2*i of mask is 1.
v The result SHA-512 function is Sigma0(x[i]), if type is non-zero and bit 2*i of

mask is 0.
v The result SHA-512 function is Sigma1(x[i]), if type is non-zero and bit 2*i of

mask is 1.

__vshasigmaw
Purpose

Provides support for Federal Information Processing Standards Publication
FIPS-180-3, which is a specification for Secure Hash Standard.

Prototype

vector unsigned int __vshasigmaw (vector unsigned int x, int type, int fmask)

Parameters

type
A compile-time constant in the range 0 - 1. The type parameter selects the
function type, which can be either lowercase sigma or uppercase sigma.

fmask
A compile-time constant in the range 0 - 15. The fmask parameter selects the
function subtype, which can be either sigma-0 or sigma-1.

Result

Let mask be the rightmost 4 bits of fmask.

For each element i (i=0,1,2,3) of x, element i of the returned value is the following
result SHA-256 function:
v The result SHA-256 function is sigma0(x[i]), if type is 0 and bit i of mask is 0.
v The result SHA-256 function is sigma1(x[i]), if type is 0 and bit i of mask is 1.
v The result SHA-256 function is Sigma0(x[i]), if type is nonzero and bit i of

mask is 0.
v The result SHA-256 function is Sigma1(x[i]), if type is nonzero and bit i of

mask is 1.

Miscellaneous functions

__vpermxor
Purpose

Applies a permute and exclusive-OR operation on two byte vectors.

Chapter 7. Compiler built-in functions 563

Prototype

vector unsigned char __vpermxor (vector unsigned char a, vector unsigned
char b, vector unsigned char mask);

Result

For each i (0 <= i < 16), let indexA be bits 0 - 3 and indexB be bits 4 - 7 of byte
element i of mask.

Byte element i of the result is set to the exclusive-OR of byte elements indexA of a
and indexB of b.

__vpmsumb
Purpose

Performs the exclusive-OR operation on each even-odd pair of the
polynomial-multiplication result of corresponding elements.

Prototype

vector unsigned char __vpmsumb (vector unsigned char a, vector unsigned
char b)

Result

For each i (0 <= i < 16), let prod[i] be the result of polynomial multiplication of
byte elements i of a and b.

For each i (0 <= i < 8), each halfword element i of the result is set as follows:
v Bit 0 is set to 0.
v Bits 1 - 15 are set to prod[2*i] (xor) prod[2*i+1].

__vpmsumd
Purpose

Performs the exclusive-OR operation on each even-odd pair of the
polynomial-multiplication result of corresponding elements.

Prototype

vector unsigned long long __vpmsumd (vector unsigned long long a, vector
unsigned long long b);

Result

For each i (0 <= i < 2), let prod[i] be the result of polynomial multiplication of
doubleword elements i of a and b.

Bit 0 of the result is set to 0.

Bits 1 - 127 of the result are set to prod[0] (xor) prod[1].

564 XL C/C++: Compiler Reference

__vpmsumh
Purpose

Performs the exclusive-OR operation on each even-odd pair of the
polynomial-multiplication result of corresponding elements.

Prototype

vector unsigned short __vpmsumh (vector unsigned short a, vector unsigned
short b);

Result

For each i (0 <= i < 8), let prod[i] be the result of polynomial multiplication of
halfword elements i of a and b.

For eachi (0 <= i < 4), each word element i of the result is set as follows:
v Bit 0 is set to 0.
v Bits 1 - 31 are set to prod[2*i] (xor) prod[2*i+1].

__vpmsumw
Purpose

Performs the exclusive-OR operation on each even-odd pair of the
polynomial-multiplication result of corresponding elements.

Prototype

vector unsigned int __vpmsumw (vector unsigned int a, vector unsigned int
b);

Result

For each i (0 <= i < 4), let prod[i] be the result of polynomial multiplication of
word elements i of a and b.

For each i (0 <= i < 2), each doubleword element i of the result is set as follows:
v Bit 0 is set to 0.
v Bits 1 - 63 are set to prod[2*i] (xor) prod[2*i+1].

Block-related built-in functions

__bcopy
Purpose

Copies n bytes from src to dest. The result is correct even when both areas overlap.

Prototype

void __bcopy(const void* src, void* dest, size_t n);

Chapter 7. Compiler built-in functions 565

Parameters

src
The source address of data to be copied.

dest
The destination address of data to be copied

n The size of the data.

bzero
Purpose

Sets the first n bytes of the byte area starting at s to zero.

Prototype

void bzero(void* s, size_t n);

Parameters

n The size of the data.

s The starting address in the byte area.

Vector built-in functions

Individual elements of vectors can be accessed by using the Vector Multimedia
Extension (VMX) or the Vector Scalar Extension (VSX) built-in functions. This
section provides an alphabetical reference to the VMX and the VSX built-in
functions. You can use these functions to manipulate vectors.

You must specify appropriate compiler options for your architecture when you use
the built-in functions. Built-in functions that use or return a vector unsigned long
long, vector signed long long, vector bool long long, or vector double type
require an architecture that supports the VSX instruction set extensions, such as
POWER7. You must specify an appropriate -qarch suboption, such as-qarch=pwr7,
when you use these types.

Function syntax

This section uses pseudocode description to represent function syntax, as shown
below:
d=func_name(a, b, c)

In the description,
v d represents the return value of the function.
v a, b, and c represent the arguments of the function.
v func_name is the name of the function.

For example, the syntax for the function vector double vec_xld2(int, double*);
is represented by d=vec_xld2(a, b).

566 XL C/C++: Compiler Reference

Note: This section only describes the IBM specific vector built-in functions and the
AltiVec built-in functions with IBM extensions. For information about the other
AltiVec built-in functions, see the AltiVec Application Programming Interface
specification.

vec_abs

Purpose

Returns a vector containing the absolute values of the contents of the given vector.

Syntax
d=vec_abs(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 57. Types of the returned value and function argument

d a

vector signed char vector signed char

vector signed short vector signed short

vector signed int vector signed int

vector float vector float

vector double vector double

Result value

The value of each element of the result is the absolute value of the corresponding
element of a.

vec_abss
Purpose

Returns a vector containing the saturated absolute values of the elements of a
given vector.

Syntax
d=vec_abss(a)

Result and argument types

The following table describes the types of the returned value and the function
argument.

Table 58. Types of the returned value and function argument

d a

vector signed char vector signed char

vector signed short vector signed short

vector signed int vector signed int

Chapter 7. Compiler built-in functions 567

Result value

The value of each element of the result is the saturated absolute value of the
corresponding element of a.

vec_add

Purpose

Returns a vector containing the sums of each set of corresponding elements of the
given vectors.

This function emulates the operation on long long vectors.

Syntax
d=vec_add(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 59. Result and argument types

d a b

The same type as argument a vector signed char The same type as argument a

vector unsigned char

vector signed short

vector unsigned short

vector signed int

vector unsigned int

vector signed long long

vector unsigned long long

vector float

vector double

Result value

The value of each element of the result is the sum of the corresponding elements
of a and b. For integer vectors and unsigned vectors, the arithmetic is modular.

vec_addc
Purpose

Returns a vector containing the carries produced by adding each set of
corresponding elements of two given vectors.

Syntax
d=vec_addc(a, b)

568 XL C/C++: Compiler Reference

Result and argument types

The type of d, a, and b must be vector unsigned int.

Result value

If a carry is produced by adding the corresponding elements of a and b, the
corresponding element of the result is 1; otherwise, it is 0.

vec_adds
Purpose

Returns a vector containing the saturated sums of each set of corresponding
elements of two given vectors.

Syntax
d=vec_adds(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 60. Types of the returned value and function arguments

d a b

vector signed char vector bool char vector signed char

vector signed char vector bool char

vector signed char

vector unsigned char vector bool char vector unsigned char

vector unsigned char vector bool char

vector unsigned char

vector signed short vector bool short vector signed short

vector signed short vector bool short

vector signed short

vector unsigned short vector bool short vector unsigned short

vector unsigned short vector bool short

vector unsigned short

vector signed int vector bool int vector signed int

vector signed int vector bool int

vector signed int

vector unsigned int vector bool int vector unsigned int

vector unsigned int vector bool int

vector unsigned int

Result value

The value of each element of the result is the saturated sum of the corresponding
elements of a and b.

Chapter 7. Compiler built-in functions 569

vec_add_u128
Purpose

Adds unsigned quadword values.

The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Syntax
d=vec_add_u128(a, b)

Result and argument types

The type of d, a, and b must be vector unsigned char.

Result value

Returns low 128 bits of a + b.

vec_addc_u128
Purpose

Gets the carry bit of the 128-bit addition of two quadword values.

The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Syntax
d=vec_addc_u128(a, b)

Result and argument types

The type of d, a, and b must be vector unsigned char.

Result value

Returns the carry out of a + b.

vec_adde_u128
Purpose

Adds unsigned quadword values with carry bit from the previous operation.

The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Syntax
d=vec_adde_u128(a, b, c)

570 XL C/C++: Compiler Reference

Result and argument types

The type of d, a, b, and c must be vector unsigned char.

Result value

Returns low 128 bits of a + b + (c & 1).

vec_addec_u128
Purpose

Gets the carry bit of the 128-bit addition of two quadword values with carry bit
from the previous operation.

The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Syntax
d=vec_addec_u128(a, b, c)

Result and argument types

The type of d, a, and b must be vector unsigned char.

Result value

Returns the carry out of a + b + (c & 1).

vec_all_eq
Purpose

Tests whether all sets of corresponding elements of the given vectors are equal.

Syntax
d=vec_all_eq(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 571

Table 61. Result and argument types

d a b

int vector bool char vector bool char

vector signed char

vector unsigned char

vector signed char vector bool char

vector signed char

vector unsigned char vector bool char

vector unsigned char

vector bool short vector bool short

vector signed short

vector unsigned short

vector signed short vector bool short

vector signed short

vector unsigned short vector bool short

vector unsigned short

vector bool int vector bool int

vector signed int

vector unsigned int

vector signed int vector bool int

vector signed int

vector unsigned int vector bool int

vector unsigned int

vector bool long long vector bool long long

vector signed long long

vector unsigned long long

vector signed long long vector bool long long

vector signed long long

vector unsigned long long vector bool long long

vector unsigned long long

vector float vector float

vector double vector double

Result value

The result is 1 if each element of a is equal to the corresponding element of b.
Otherwise, the result is 0.

vec_all_ge
Purpose

Tests whether all elements of the first argument are greater than or equal to the
corresponding elements of the second argument.

572 XL C/C++: Compiler Reference

Syntax
d=vec_all_ge(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 62. Result and argument types

d a b

int vector bool char vector signed char

vector unsigned char

vector signed char vector bool char

vector signed char

vector unsigned char vector bool char

vector unsigned char

vector bool short vector signed short

vector unsigned short

vector signed short vector bool short

vector signed short

vector unsigned short vector bool short

vector unsigned short

vector bool int vector signed int

vector unsigned int

vector signed int vector bool int

vector signed int

vector unsigned int vector bool int

vector unsigned int

vector bool long long vector signed long long

vector unsigned long long

vector signed long long vector bool long long

vector signed long long

vector unsigned long long vector bool long long

vector unsigned long long

vector float vector float

vector double vector double

Result value

The result is 1 if all elements of a are greater than or equal to the corresponding
elements of b. Otherwise, the result is 0.

Chapter 7. Compiler built-in functions 573

vec_all_gt
Purpose

Tests whether all elements of the first argument are greater than the corresponding
elements of the second argument.

Syntax
d=vec_all_gt(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 63. Result and argument types

d a b

int vector bool char vector signed char

vector unsigned char

vector signed char vector bool char

vector signed char

vector unsigned char vector bool char

vector unsigned char

vector bool short vector signed short

vector unsigned short

vector signed short vector bool short

vector signed short

vector unsigned short vector bool short

vector unsigned short

vector bool int vector signed int

vector unsigned int

vector signed int vector bool int

vector signed int

vector unsigned int vector bool int

vector unsigned int

vector bool long long vector signed long long

vector unsigned long long

vector signed long long vector bool long long

vector signed long long

vector unsigned long long vector bool long long

vector unsigned long long

vector float vector float

vector double vector double

574 XL C/C++: Compiler Reference

Result value

The result is 1 if all elements of a are greater than the corresponding elements of b.
Otherwise, the result is 0.

vec_all_in
Purpose

Tests whether each element of a given vector is within a given range.

Syntax
d=vec_all_in(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 64. Types of the returned value and the function arguments

d a b

int vector float vector float

Result value

The result is 1 if all elements of a have a value less than or equal to the value of
the corresponding element of b, and greater than or equal to the negative of the
value of the corresponding element of b. Otherwise, the result is 0.

vec_all_le
Purpose

Tests whether all elements of the first argument are less than or equal to the
corresponding elements of the second argument.

Syntax
d=vec_all_le(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 575

Table 65. Result and argument types

d a b

int vector bool char vector signed char

vector unsigned char

vector signed char vector bool char

vector signed char

vector unsigned char vector bool char

vector unsigned char

vector bool short vector signed short

vector unsigned short

vector signed short vector bool short

vector signed short

vector unsigned short vector bool short

vector unsigned short

vector bool int vector signed int

vector unsigned int

vector signed int vector bool int

vector signed int

vector unsigned int vector bool int

vector unsigned int

vector bool long long vector signed long long

vector unsigned long long

vector signed long long vector bool long long

vector signed long long

vector unsigned long long vector bool long long

vector unsigned long long

vector float vector float

vector double vector double

Result value

The result is 1 if all elements of a are less than or equal to the corresponding
elements of b. Otherwise, the result is 0.

vec_all_lt
Purpose

Tests whether all elements of the first argument are less than the corresponding
elements of the second argument.

Syntax
d=vec_all_lt(a, b)

576 XL C/C++: Compiler Reference

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 66. Result and argument types

d a b

int vector bool char vector signed char

vector unsigned char

vector signed char vector bool char

vector signed char

vector unsigned char vector bool char

vector unsigned char

vector bool short vector signed short

vector unsigned short

vector signed short vector bool short

vector signed short

vector unsigned short vector bool short

vector unsigned short

vector bool int vector signed int

vector unsigned int

vector signed int vector bool int

vector signed int

vector unsigned int vector bool int

vector unsigned int

vector bool long long vector signed long long

vector unsigned long long

vector signed long long vector bool long long

vector signed long long

vector unsigned long long vector bool long long

vector unsigned long long

vector float vector float

vector double vector double

Result value

The result is 1 if all elements of a are less than the corresponding elements of b.
Otherwise, the result is 0.

vec_all_nan
Purpose

Tests whether each element of the given vector is a NaN.

Syntax
d=vec_all_nan(a)

Chapter 7. Compiler built-in functions 577

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 67. Result and argument types

d a

int vector float

vector double

Result value

The result is 1 if each element of a is a NaN. Otherwise, the result is 0.

vec_all_ne
Purpose

Tests whether all sets of corresponding elements of the given vectors are not equal.

Syntax
d=vec_all_ne(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

578 XL C/C++: Compiler Reference

Table 68. Result and argument types

d a b

int vector bool char vector signed char

vector unsigned char

vector signed char vector bool char

vector signed char

vector unsigned char vector bool char

vector unsigned char

vector bool short vector signed short

vector unsigned short

vector signed short vector bool short

vector signed short

vector unsigned short vector bool short

vector unsigned short

vector bool int vector signed int

vector unsigned int

vector signed int vector bool int

vector signed int

vector unsigned int vector bool int

vector unsigned int

vector bool long long vector signed long long

vector unsigned long long

vector signed long long vector bool long long

vector signed long long

vector unsigned long long vector bool long long

vector unsigned long long

vector float vector float

vector double vector double

Result value

The result is 1 if each element of a is not equal to the corresponding element of b.
Otherwise, the result is 0.

vec_all_nge
Purpose

Tests whether each element of the first argument is not greater than or equal to the
corresponding element of the second argument.

Syntax
d=vec_all_nge(a, b)

Chapter 7. Compiler built-in functions 579

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 69. Result and argument types

d a b

int vector float vector float

vector double vector double

Result value

The result is 1 if each element of a is not greater than or equal to the
corresponding element of b. Otherwise, the result is 0.

vec_all_ngt
Purpose

Tests whether each element of the first argument is not greater than the
corresponding element of the second argument.

Syntax
d=vec_all_ngt(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 70. Result and argument types

d a b

int vector float vector float

vector double vector double

Result value

The result is 1 if each element of a is not greater than the corresponding element of
b. Otherwise, the result is 0.

vec_all_nle
Purpose

Tests whether each element of the first argument is not less than or equal to the
corresponding element of the second argument.

Syntax
d=vec_all_nle(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

580 XL C/C++: Compiler Reference

Table 71. Result and argument types

d a b

int vector float vector float

vector double vector double

Result value

The result is 1 if each element of a is not less than or equal to the corresponding
element of b. Otherwise, the result is 0.

vec_all_nlt
Purpose

Tests whether each element of the first argument is not less than the corresponding
element of the second argument.

Syntax
d=vec_all_nlt(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 72. Result and argument types

d a b

int vector float vector float

vector double vector double

Result value

The result is 1 if each element of a is not less than the corresponding element of b.
Otherwise, the result is 0.

vec_all_numeric
Purpose

Tests whether each element of the given vector is numeric (not a NaN).

Syntax
d=vec_all_numeric(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 581

Table 73. Result and argument types

d a

int vector float

vector double

Result value

The result is 1 if each element of a is numeric (not a NaN). Otherwise, the result is
0.

vec_and

Purpose

Performs a bitwise AND of the given vectors.

Syntax
d=vec_and(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 74. Result and argument types

d a b

vector bool char vector bool char vector bool char

vector signed char vector bool char vector signed char

vector signed char vector signed char

vector bool char

vector unsigned char vector bool char vector unsigned char

vector unsigned char vector unsigned char

vector bool char

vector bool short vector bool short vector bool short

vector signed short vector bool short vector signed short

vector signed short vector signed short

vector bool short

vector unsigned short vector bool short vector unsigned short

vector unsigned short vector unsigned short

vector bool short

vector bool int vector bool int vector bool int

vector signed int vector bool int vector signed int

vector signed int vector signed int

vector bool int

582 XL C/C++: Compiler Reference

Table 74. Result and argument types (continued)

d a b

vector unsigned int vector bool int vector unsigned int

vector unsigned int vector unsigned int

vector bool int

vector bool long long vector bool long long vector bool long long

vector signed long long vector bool long long vector signed long long

vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector bool long long vector unsigned long long

vector unsigned long long vector unsigned long long

vector bool long long

vector float vector bool int vector float

vector float vector bool int

vector float

vector double vector bool long long vector double

vector double vector double

vector bool long long

vec_andc

Purpose

Performs a bitwise AND of the first argument and the bitwise complement of the
second argument.

Syntax
d=vec_andc(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 75. Result and argument types

d a b

vector bool char vector bool char vector bool char

vector signed char vector bool char vector signed char

vector signed char vector signed char

vector bool char

vector unsigned char vector bool char vector unsigned char

vector unsigned char vector unsigned char

vector bool char

vector bool short vector bool short vector bool short

Chapter 7. Compiler built-in functions 583

Table 75. Result and argument types (continued)

d a b

vector signed short vector bool short vector signed short

vector signed short vector signed short

vector bool short

vector unsigned short vector bool short vector unsigned short

vector unsigned short vector unsigned short

vector bool short

vector bool int vector bool int vector bool int

vector signed int vector bool int vector signed int

vector signed int vector signed int

vector bool int

vector unsigned int vector bool int vector unsigned int

vector unsigned int vector unsigned int

vector bool int

vector bool long long vector bool long long vector bool long long

vector signed long long vector bool long long vector signed long long

vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector bool long long vector unsigned long long

vector unsigned long long vector unsigned long long

vector bool long long

vector float vector bool int vector float

vector float vector bool int

vector float

vector double vector bool long long vector double

vector double vector bool long long

vector double

Result value

The result is the bitwise AND of a with the bitwise complement of b.

vec_any_eq
Purpose

Tests whether any set of corresponding elements of the given vectors are equal.

Syntax
d=vec_any_eq(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

584 XL C/C++: Compiler Reference

Table 76. Result and argument types

d a b

int vector bool char vector bool char

vector signed char

vector unsigned char

vector signed char vector bool char

vector signed char

vector unsigned char vector bool char

vector unsigned char

vector bool short vector bool short

vector signed short

vector unsigned short

vector signed short vector bool short

vector signed short

vector unsigned short vector bool short

vector unsigned short

vector bool int vector bool int

vector signed int

vector unsigned int

vector signed int vector bool int

vector signed int

vector unsigned int vector bool int

vector unsigned int

vector bool long long vector bool long long

vector signed long long

vector unsigned long long

vector signed long long vector bool long long

vector signed long long

vector unsigned long long vector bool long long

vector unsigned long long

vector float vector float

vector double vector double

Result value

The result is 1 if any element of a is equal to the corresponding element of b.
Otherwise, the result is 0.

vec_any_ge
Purpose

Tests whether any element of the first argument is greater than or equal to the
corresponding element of the second argument.

Chapter 7. Compiler built-in functions 585

Syntax
d=vec_any_ge(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 77. Result and argument types

d a b

int vector bool char vector signed char

vector unsigned char

vector signed char vector bool char

vector signed char

vector unsigned char vector bool char

vector unsigned char

vector bool short vector signed short

vector unsigned short

vector signed short vector signed short

vector bool short

vector unsigned short vector bool short

vector unsigned short

vector bool int vector signed int

vector unsigned int

vector signed int vector bool int

vector signed int

vector unsigned int vector bool int

vector unsigned int

vector bool long long vector signed long long

vector unsigned long long

vector signed long long vector bool long long

vector signed long long

vector unsigned long long vector bool long long

vector unsigned long long

vector float vector float

vector double vector double

Result value

The result is 1 if any element of a is greater than or equal to the corresponding
element of b. Otherwise, the result is 0.

586 XL C/C++: Compiler Reference

vec_any_gt
Purpose

Tests whether any element of the first argument is greater than the corresponding
element of the second argument.

Syntax
d=vec_any_gt(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 78. Result and argument types

d a b

int vector bool char vector signed char

vector unsigned char

vector signed char vector bool char

vector signed char

vector unsigned char vector bool char

vector unsigned char

vector bool short vector signed short

vector unsigned short

vector signed short vector signed short

vector bool short

vector unsigned short vector bool short

vector unsigned short

vector bool int vector signed int

vector unsigned int

vector signed int vector bool int

vector signed int

vector unsigned int vector bool int

vector unsigned int

vector bool long long vector signed long long

vector unsigned long long

vector signed long long vector bool long long

vector signed long long

vector unsigned long long vector bool long long

vector unsigned long long

vector float vector float

vector double vector double

Chapter 7. Compiler built-in functions 587

Result value

The result is 1 if any element of a is greater than the corresponding element of b.
Otherwise, the result is 0.

vec_any_le
Purpose

Tests whether any element of the first argument is less than or equal to the
corresponding element of the second argument.

Syntax
d=vec_any_le(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

588 XL C/C++: Compiler Reference

Table 79. Result and argument types

d a b

int vector bool char vector signed char

vector unsigned char

vector signed char vector bool char

vector signed char

vector unsigned char vector bool char

vector unsigned char

vector bool short vector signed short

vector unsigned short

vector signed short vector signed short

vector bool short

vector unsigned short vector bool short

vector unsigned short

vector bool int vector signed int

vector unsigned int

vector signed int vector bool int

vector signed int

vector unsigned int vector bool int

vector unsigned int

vector bool long long vector signed long long

vector unsigned long long

vector signed long long vector bool long long

vector signed long long

vector unsigned long long vector bool long long

vector unsigned long long

vector float vector float

vector double vector double

Result value

The result is 1 if any element of a is less than or equal to the corresponding
element of b. Otherwise, the result is 0.

vec_any_lt
Purpose

Tests whether any element of the first argument is less than the corresponding
element of the second argument.

Syntax
d=vec_any_lt(a, b)

Chapter 7. Compiler built-in functions 589

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 80. Result and argument types

d a b

int vector bool char vector signed char

vector unsigned char

vector signed char vector bool char

vector signed char

vector unsigned char vector bool char

vector unsigned char

vector bool short vector signed short

vector unsigned short

vector signed short vector signed short

vector bool short

vector unsigned short vector bool short

vector unsigned short

vector bool int vector signed int

vector unsigned int

vector signed int vector bool int

vector signed int

vector unsigned int vector bool int

vector unsigned int

vector bool long long vector signed long long

vector unsigned long long

vector signed long long vector bool long long

vector signed long long

vector unsigned long long vector bool long long

vector unsigned long long

vector float vector float

vector double vector double

Result value

The result is 1 if any element of a is less than the corresponding element of b.
Otherwise, the result is 0.

vec_any_nan
Purpose

Tests whether any element of the given vector is a NaN.

Syntax
d=vec_any_nan(a)

590 XL C/C++: Compiler Reference

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 81. Result and argument types

d a

int vector float

vector double

Result value

The result is 1 if any element of a is a NaN. Otherwise, the result is 0.

vec_any_ne
Purpose

Tests whether any set of corresponding elements of the given vectors are not equal.

Syntax
d=vec_any_ne(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 591

Table 82. Result and argument types

d a b

int vector bool char vector bool char

vector signed char

vector unsigned char

vector signed char vector bool char

vector signed char

vector unsigned char vector bool char

vector unsigned char

vector bool short vector bool short

vector signed short

vector unsigned short

vector signed short vector bool short

vector signed short

vector unsigned short vector bool short

vector unsigned short

vector bool int vector bool int

vector signed int

vector unsigned int

vector signed int vector bool int

vector signed int

vector unsigned int vector bool int

vector unsigned int

vector bool long long vector bool long long

vector signed long long

vector unsigned long long

vector signed long long vector bool long long

vector signed long long

vector unsigned long long vector bool long long

vector unsigned long long

vector float vector float

vector double vector double

Result value

The result is 1 if any element of a is not equal to the corresponding element of b.
Otherwise, the result is 0.

vec_any_nge
Purpose

Tests whether any element of the first argument is not greater than or equal to the
corresponding element of the second argument.

592 XL C/C++: Compiler Reference

Syntax
d=vec_any_nge(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 83. Result and argument types

d a b

int vector float vector float

vector double vector double

Result value

The result is 1 if any element of a is not greater than or equal to the corresponding
element of b. Otherwise, the result is 0.

vec_any_ngt
Purpose

Tests whether any element of the first argument is not greater than the
corresponding element of the second argument.

Syntax
d=vec_any_ngt(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 84. Result and argument types

d a b

int vector float vector float

vector double vector double

Result value

The result is 1 if any element of a is not greater than the corresponding element of
b. Otherwise, the result is 0.

vec_any_nle
Purpose

Tests whether any element of the first argument is not less than or equal to the
corresponding element of the second argument.

Syntax
d=vec_any_nle(a, b)

Chapter 7. Compiler built-in functions 593

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 85. Result and argument types

d a b

int vector float vector float

vector double vector double

Result value

The result is 1 if any element of a is not less than or equal to the corresponding
element of b. Otherwise, the result is 0.

vec_any_nlt
Purpose

Tests whether any element of the first argument is not less than the corresponding
element of the second argument.

Syntax
d=vec_any_nlt(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 86. Result and argument types

d a b

int vector float vector float

vector double vector double

Result value

The result is 1 if any element of a is not less than the corresponding element of b.
Otherwise, the result is 0.

vec_any_numeric
Purpose

Tests whether any element of the given vector is numeric (not a NaN).

Syntax
d=vec_any_numeric(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

594 XL C/C++: Compiler Reference

Table 87. Result and argument types

d a

int vector float

vector double

Result value

The result is 1 if any element of a is numeric (not a NaN). Otherwise, the result is 0.

vec_any_out
Purpose

Tests whether the value of any element of a given vector is outside of a given
range.

Syntax
d=vec_any_out(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 88. Types of the returned value and the function arguments

d a b

int vector float vector float

Result value

The result is 1 if the absolute value of any element of a is greater than the value of
the corresponding element of b or less than the negative of the value of the
corresponding element of b. Otherwise, the result is 0.

vec_avg
Purpose

Returns a vector containing the rounded average of each set of corresponding
elements of two given vectors.

Syntax
d=vec_avg(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 595

Table 89. Types of the returned value and function arguments

d a b

The same type as argument a vector signed char The same type as argument a

vector unsigned char

vector signed short

vector unsigned short

vector signed int

vector unsigned int

Result value

The value of each element of the result is the rounded average of the values of the
corresponding elements of a and b.

vec_bperm
Purpose

Gathers up to 16 1-bit values from a quadword in the specified order, and places
them in the specified order in the rightmost 16 bits of the leftmost doubleword of
the result vector register, with the rest of the result zeroed.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Syntax
d=vec_bperm(a, b)

Result and argument types

The type of d, a, and b must be vector unsigned char.

Result value

For each i (0 <= i < 16), let index denote the byte value of the ith element of b.

If index is greater than or equal to 128, bit 48+i of the result is set to 0.

If index is smaller than 128, bit 48+i of the result is set to the value of the indexth
bit of input a.

vec_ceil

Purpose

Returns a vector containing the smallest representable floating-point integral values
greater than or equal to the values of the corresponding elements of the given
vector.

Note: vec_ceil is another name for vec_roundp. For details, see “vec_roundp” on
page 649.

596 XL C/C++: Compiler Reference

vec_cmpb
Purpose

Performs a bounds comparison of each set of corresponding elements of the given
vectors.

Syntax
d=vec_cmpb(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 90. Types of the returned value and function arguments

d a b

vector signed int vector float vector float

Result value

Each element of the result has the value 0 if the value of the corresponding
element of a is less than or equal to the value of the corresponding element of b
and greater than or equal to the negative of the value of the corresponding element
of b. Otherwise, the result is determined as follows:
v If an element of b is greater than or equal to zero, the value of the corresponding

element of the result is 0 if the absolute value of the corresponding element of a
is equal to the value of the corresponding element of b, negative if it is greater
than the value of the corresponding element of b, and positive if it is less than
the value of the corresponding element of b.

v If an element of b is less than zero, the value of the element of the result is
positive if the value of the corresponding element of a is less than or equal to
the value of the element of b, and negative otherwise.

vec_cmpeq

Purpose

Returns a vector containing the results of comparing each set of corresponding
elements of the given vectors for equality.

This function emulates the operation on long long vectors.

Syntax
d=vec_cmpeq(a, b)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 597

Table 91. Result and argument types

d a b

vector bool char vector bool char vector bool char

vector signed char vector signed char

vector unsigned char vector unsigned char

vector bool short vector bool short vector bool short

vector signed short vector signed short

vector unsigned short vector unsigned short

vector bool int vector bool int vector bool int

vector signed int vector signed int

vector unsigned int vector unsigned int

vector float vector float

vector bool long long vector bool long long vector bool long long

vector double vector double

When you call this built-in function, the following types are valid only when
-qarch is set to target POWER8 processors.

Table 92. Result and argument types supported only on POWER8 processors

d a b

vector bool long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

Result value

For each element of the result, the value of each bit is 1 if the corresponding
elements of a and b are equal. Otherwise, the value of each bit is 0.

vec_cmpge
Purpose

Returns a vector containing the results of a greater-than-or-equal-to comparison
between each set of corresponding elements of the given vectors.

Syntax
d=vec_cmpge(a, b)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Table 93. Result and argument types

d a b

vector bool char vector signed char vector signed char

vector unsigned char vector unsigned char

598 XL C/C++: Compiler Reference

Table 93. Result and argument types (continued)

d a b

vector bool short vector signed short vector signed short

vector unsigned short vector unsigned short

vector bool int vector signed int vector signed int

vector unsigned int vector unsigned int

vector float vector float

vector bool long long vector double vector double

When you call this built-in function, the following types are valid only when
-qarch is set to target POWER8 processors.

Table 94. Result and argument types supported only on POWER8 processors

d a b

vector bool long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

Result value

For each element of the result, the value of each bit is 1 if the value of the
corresponding element of a is greater than or equal to the value of the
corresponding element of b. Otherwise, the value of each bit is 0.

vec_cmpgt

Purpose

Returns a vector containing the results of a greater-than comparison between each
set of corresponding elements of the given vectors.

This function emulates the operation on long long vectors.

Syntax
d=vec_cmpgt(a, b)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Table 95. Result and argument types

d a b

vector bool char vector signed char vector signed char

vector unsigned char vector unsigned char

vector bool short vector signed short vector signed short

vector unsigned short vector unsigned short

Chapter 7. Compiler built-in functions 599

Table 95. Result and argument types (continued)

d a b

vector bool int vector signed int vector signed int

vector unsigned int vector unsigned int

vector float vector float

vector bool long long vector double vector double

When you call this built-in function, the following types are valid only when
-qarch is set to target POWER8 processors.

Table 96. Result and argument types supported only on POWER8 processors

d a b

vector bool long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

Result value

For each element of the result, the value of each bit is 1 if the value of the
corresponding element of a is greater than the value of the corresponding element
of b. Otherwise, the value of each bit is 0.

vec_cmple
Purpose

Returns a vector containing the results of a less-than-or-equal-to comparison
between each set of corresponding elements of the given vectors.

Syntax
d=vec_cmple(a, b)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Table 97. Result and argument types

d a b

vector bool char vector signed char vector signed char

vector unsigned char vector unsigned char

vector bool short vector signed short vector signed short

vector unsigned short vector unsigned short

vector bool int vector signed int vector signed int

vector unsigned int vector unsigned int

vector float vector float

vector bool long long vector double vector double

When you call this built-in function, the following types are valid only when
-qarch is set to target POWER8 processors.

600 XL C/C++: Compiler Reference

Table 98. Result and argument types supported only on POWER8 processors

d a b

vector bool long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

Result value

For each element of the result, the value of each bit is 1 if the value of the
corresponding element of a is less than or equal to the value of the corresponding
element of b. Otherwise, the value of each bit is 0.

vec_cmplt

Purpose

Returns a vector containing the results of a less-than comparison between each set
of corresponding elements of the given vectors.

This operation emulates the operation on long long vectors.

Syntax
d=vec_cmplt(a, b)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Table 99. Result and argument types

d a b

vector bool char vector signed char vector signed char

vector unsigned char vector unsigned char

vector bool short vector signed short vector signed short

vector unsigned short vector unsigned short

vector bool int vector signed int vector signed int

vector unsigned int vector unsigned int

vector float vector float

vector bool long long vector double vector double

When you call this built-in function, the following types are valid only when
-qarch is set to target POWER8 processors.

Table 100. Result and argument types supported only on POWER8 processors

d a b

vector bool long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

Chapter 7. Compiler built-in functions 601

Result value

For each element of the result, the value of each bit is 1 if the value of the
corresponding element of a is less than the value of the corresponding element of
b. Otherwise, the value of each bit is 0.

vec_cntlz
Purpose

Computes the count of leading zero bits of each element of the input.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Syntax
d=vec_cntlz(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 101. Result and argument types

d a

vector unsigned char vector unsigned char

vector signed char

vector unsigned short vector unsigned short

vector signed short

vector unsigned int vector unsigned int

vector signed int

vector unsigned long long vector unsigned long long

vector signed long long

Result value

Each element of the result is set to the number of leading zeros of the
corresponding element of a.

vec_cpsgn

Purpose

Returns a vector by copying the sign of the elements in vector a to the sign of the
corresponding elements in vector b.

This built-in function is valid only when -qarch is set to target POWER7
processors or higher.

Syntax
d=vec_cpsgn(a, b)

602 XL C/C++: Compiler Reference

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 102. Result and argument types

d a b

vector float vector float vector float

vector double vector double vector double

vec_ctd
Purpose

Converts the type of each element in a from integer to floating-point single
precision and divides the result by 2 to the power of b.

Syntax
d=vec_ctd(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 103. Result and argument types

d a b

vector double vector signed int 0-31

vector unsigned int

vector signed long long

vector unsigned long long

vec_ctf
Purpose

Converts a vector of fixed-point numbers into a vector of floating-point numbers.

Syntax
d=vec_ctf(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 603

Table 104. Result and argument types

d a b

vector float vector signed int 0-31

vector unsigned int

vector signed long long

vector unsigned long long

Result value

The value of each element of the result is the closest floating-point estimate of the
value of the corresponding element of a divided by 2 to the power of b.

Note: The second and fourth elements of the result vector are undefined when the
argument a is a signed long long or unsigned long long vector.

vec_cts
Purpose

Converts a vector of floating-point numbers into a vector of signed fixed-point
numbers.

Syntax
d=vec_cts(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 105. Result and argument types

d a b

vector signed int vector float 0-31

vector double

Result value

The value of each element of the result is the saturated value obtained by
multiplying the corresponding element of a by 2 to the power of b.

vec_ctsl
Purpose

Multiplies each element in a by 2 to the power of b and converts the result into an
integer.

Note: This function does not use elements 1 and 3 of a when a is a double vector.

Syntax
d=vec_ctsl(a, b)

604 XL C/C++: Compiler Reference

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 106. Result and argument types

d a b

vector signed long long vector float 0-31

vector double

vec_ctu
Purpose

Converts a vector of floating-point numbers into a vector of unsigned fixed-point
numbers.

Note: Elements 1 and 3 of the result vector are undefined when a is a double
vector.

Syntax
d=vec_ctu(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 107. Result and argument types

d a b

vector unsigned int vector float 0-31

vector double

Result value

The value of each element of the result is the saturated value obtained by
multiplying the corresponding element of a by 2 to the power of b.

vec_ctul
Purpose

Multiplies each element in a by 2 to the power of b and converts the result into an
unsigned type.

Syntax
d=vec_ctul(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 605

Table 108. Result and argument types

d a b

vector unsigned long long vector float 0-31

vector double

Result value

This function does not use elements 1 and 3 of a when a is a float vector.

vec_cvf
Purpose

Converts a single-precision floating-point vector to a double-precision
floating-point vector or converts a double-precision floating-point vector to a
single-precision floating-point vector.

Syntax
d=vec_cvf(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 109. Result and argument types

d a

vector float vector double

vector double vector float

Result value

When this function converts from vector float to vector double, it converts the
types of elements 0 and 2 in the vector.

When this function converts from vector double to vector float, the types of
element 1 and 3 in the result vector are undefined.

vec_div
Purpose

Divides the elements in vector a by the corresponding elements in vector b and
then assigns the result to corresponding elements in the result vector.

This function emulates the operation on integer vectors. This built-in function is
valid only when -qarch is set to target POWER7 processors or higher.

Syntax
d=vec_div(a, b)

606 XL C/C++: Compiler Reference

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 110. Result and argument types

d a b

The same type as argument a vector signed char The same type as argument a

vector unsigned char

vector signed short

vector unsigned short

vector signed int

vector unsigned int

vector signed long long

vector unsigned long long

vector float

vector double

vec_dss
Purpose

Stops the data stream read specified by a.

Syntax
vec_dss(a)

Result and argument types

a must be a 2-bit unsigned literal. This function does not return any value.

vec_dssall
Purpose

Stops all data stream reads.

Syntax
vec_dssall()

vec_dst
Purpose

Initiates the data read of a line into cache in a state most efficient for reading.

The data stream specified by c is read beginning at the address specified by a
using the control word specified by b. After using this built-in function, the
specified data stream is relatively persistent.

Syntax
vec_dst(a, b, c)

Chapter 7. Compiler built-in functions 607

Result and argument types

This function does not return any value. The following table describes the types of
the function arguments.

Table 111. Types of the function arguments

a b c1

const signed char * any integral type unsigned int

const signed short *

const signed int *

const float *

Note:

1. c must be an unsigned literal with a value in the range 0 - 3 inclusive.

vec_dstst
Purpose

Initiates the data read of a line into cache in a state most efficient for writing.

The data stream specified by c is read beginning at the address specified by a
using the control word specified by b. Use of this built-in function indicates that
the specified data stream is relatively persistent in nature.

Syntax
vec_dstst(a, b, c)

Result and argument types

This function does not return any value. The following table describes the types of
the function arguments.

Table 112. Types of the function arguments

a b c1

const signed char * any integral type unsigned int

const signed short *

const signed int *

const float *

Note:

1. c must be an unsigned literal with a value in the range 0 - 3 inclusive.

vec_dststt
Purpose

Initiates the data read of a line into cache in a state most efficient for writing.

The data stream specified by c is read beginning at the address specified by a
using the control word specified by b. Use of this built-in function indicates that
the specified data stream is relatively transient in nature.

608 XL C/C++: Compiler Reference

Syntax
vec_dststt(a, b, c)

Result and argument types

This function does not return a value. The following table describes the types of
the function arguments.

Table 113. Types of the function arguments

a b c1

const signed char * any integral type unsigned int

const signed short *

const signed int *

const float *

Note:

1. c must be an unsigned literal with a value in the range 0 - 3 inclusive.

vec_dstt
Purpose

Initiates the data read of a line into cache in a state most efficient for reading.

The data stream specified by c is read beginning at the address specified by a
using the control word specified by b. Use of this built-in function indicates that
the specified data stream is relatively transient in nature.

Syntax
vec_dstt(a, b, c)

Result and argument types

This function does not return a value. The following table describes the types of
the function arguments.

Table 114. Types of the function arguments

a b c1

const signed char * any integral type unsigned int

const signed short *

const signed int *

const float *

Note:

1. c must be an unsigned literal with a value in the range 0 - 3 inclusive.

vec_eqv
Purpose

Performs a bitwise equivalence operation on the input vectors.

Chapter 7. Compiler built-in functions 609

This built-in function is valid only when -qarch is set to target POWER8
processors.

Syntax
d=vec_eqv(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 115. Types of the returned value and function arguments

d a b

vector signed char vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char vector unsigned char

vector bool char

vector signed char vector bool char vector signed char

vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short vector unsigned short

vector bool short

vector signed short vector bool short vector signed short

vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int vector unsigned int

vector bool int

vector signed int vector bool int vector signed int

vector unsigned int vector unsigned int

vector bool int vector bool int

vector signed long long vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector bool long long

vector signed long long vector bool long long vector signed long long

vector unsigned long long vector unsigned long long

vector bool long long vector bool long long

vector float vector float vector bool int

vector float

vector bool int vector float

610 XL C/C++: Compiler Reference

Table 115. Types of the returned value and function arguments (continued)

d a b

vector double vector double vector double

vector bool long long

vector bool long long vector double

Result value

Each bit of the result is set to the result of the bitwise operation (a == b) of the
corresponding bits of a and b. For 0 <= i < 128, bit i of the result is set to 1 only if
bit i of a is equal to bit i of b.

vec_expte
Purpose

Returns a vector containing estimates of 2 raised to the values of the corresponding
elements of a given vector.

Syntax
d=vec_expte(a)

Result and argument types

The type of d and a must be vector float.

Result value

Each element of the result contains the estimated value of 2 raised to the value of
the corresponding element of a.

vec_extract

Purpose

Returns the value of element b from the vector a.

Syntax
d=vec_extract(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 611

Table 116. Result and argument types

d a b

signed char vector signed char signed int

unsigned char vector unsigned char

vector bool char

signed short vector signed short

unsigned short vector unsigned short

vector bool short

signed int vector signed int

unsigned int vector unsigned int

vector bool int

signed long long vector signed long long

unsigned long long vector unsigned long long

vector bool long long

float vector float

double vector double

Result value

This function uses the modulo arithmetic on b to determine the element number.
For example, if b is out of range, the compiler uses b modulo the number of
elements in the vector to determine the element position.

vec_floor

Purpose

Returns a vector containing the largest representable floating-point integral values
less than or equal to the values of the corresponding elements of the given vector.

Note: vec_floor is another name for vec_roundm. For details, see “vec_roundm” on
page 648.

vec_gbb
Purpose

Performs a gather-bits-by-bytes operation on the input.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Syntax
d=vec_gbb(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

612 XL C/C++: Compiler Reference

Table 117. Result and argument types

d a

vector unsigned long long vector unsigned long long

vector signed long long vector signed long long

Result value

Each doubleword element of the result is set as follows: Let x(i) (0 <= i < 8)
denote the byte elements of the corresponding input doubleword element, with
x(7) the most significant byte. For each pair of i and j (0 <= i < 8, 0 <= j < 8), the
jth bit of the ith byte element of the result is set to the value of the ith bit of the
jth byte element of the input.

vec_insert

Purpose

Returns a copy of the vector b with the value of its element c replaced by a.

Syntax
d=vec_insert(a, b, c)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 118. Result and argument types

d a b c

vector signed char signed char vector signed char signed int

vector unsigned char unsigned char vector bool char

vector unsigned char

vector signed short signed short vector signed short

vector unsigned short unsigned short vector bool short

vector unsigned short

vector signed int signed int vector signed int

vector unsigned int unsigned int vector bool int

vector unsigned int

vector signed long
long

signed long long vector signed long
long

vector unsigned long
long

unsigned long long vector bool long long

vector unsigned long
long

vector float float vector float

vector double double vector double

Chapter 7. Compiler built-in functions 613

Result value

This function uses the modulo arithmetic on c to determine the element number.
For example, if c is out of range, the compiler uses c modulo the number of
elements in the vector to determine the element position.

vec_ld

Purpose

Loads a vector from the given memory address.

Syntax
d=vec_ld(a, b)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Table 119. Data type of function returned value and arguments (in 32-bit mode)

d a b

vector float vector float int const vector float *

const float *

vector signed int const vector signed int *

const signed int *

vector unsigned int const vector unsigned int *

const unsigned int *

vector signed short const vector signed short *

const signed short *

vector unsigned short const vector unsigned short *

const unsigned short *

vector signed char const vector signed char *

const signed char*

vector unsigned char const vector unsigned char *

const unsigned char *

vector bool char const vector bool char *

vector bool int const vector bool int *

vector bool short const vector bool short *

vector pixel const vector pixel *

Table 120. Data type of function returned value and arguments (in 64-bit mode)

d a b

vector unsigned int int const unsigned long*

vector signed int const signed long*

614 XL C/C++: Compiler Reference

Table 120. Data type of function returned value and arguments (in 64-bit mode) (continued)

d a b

vector unsigned char long const vector unsigned char*

const unsigned char*

vector signed char const vector signed char*

const signed char*

vector unsigned short const vector unsigned short*

const unsigned short*

vector signed short const vector signed short*

const signed short*

vector unsigned int const vector unsigned int*

const unsigned int*

vector signed int const vector signed int*

const signed int*

vector float const vector float*

const float*

vector bool int const vector bool int*

vector bool char const vector bool char*

vector bool short const vector bool short*

vector pixel const vector pixel*

Result value

a is added to the address of b, and the sum is truncated to a multiple of 16 bytes.
The result is the content of the 16 bytes of memory starting at this address.

vec_lde
Purpose

Loads an element from a given memory address into a vector.

Syntax
d=vec_lde(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 615

Table 121. Types of the returned value and function arguments

d a b

vector signed char Any integral type const signed char *

vector unsigned char const unsigned char *

vector signed short const short *

vector unsigned short const unsigned short *

vector signed int const int *

vector unsigned int const unsigned int *

vector float const float *

Result value

The effective address is the sum of a and the address specified by b, truncated to a
multiple of the size in bytes of an element of the result vector. The contents of
memory at the effective address are loaded into the result vector at the byte offset
corresponding to the four least significant bits of the effective address. The
remaining elements of the result vector are undefined.

vec_ldl
Purpose

Loads a vector from a given memory address, and marks the cache line containing
the data as Least Recently Used.

Syntax
d=vec_ldl(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

616 XL C/C++: Compiler Reference

Table 122. Types of the returned value and function arguments

d a b

vector bool char Any integral type const vector bool char *

vector signed char const signed char *

const vector signed char *

vector unsigned char const unsigned char *

const vector unsigned char *

vector bool short const vector bool short *

vector signed short const signed short *

const vector signed short *

vector unsigned short const unsigned short *

const vector unsigned short *

vector bool int const vector bool int *

vector signed int const signed int *

const vector signed int *

vector unsigned int const unsigned int *

const vector unsigned int *

vector float const float *

const vector float *

vector pixel const vector pixel *

Result value

a is added to the address specified by b, and the sum is truncated to a multiple of
16 bytes. The result is the contents of the 16 bytes of memory starting at this
address. This data is marked as Least Recently Used.

vec_loge
Purpose

Returns a vector containing estimates of the base-2 logarithms of the corresponding
elements of the given vector.

Syntax
d=vec_loge(a)

Result and argument types

The type of d and a must be vector float.

Result value

Each element of the result contains the estimated value of the base-2 logarithm of
the corresponding element of a.

Chapter 7. Compiler built-in functions 617

vec_lvsl

Purpose

Returns a vector useful for aligning non-aligned data.

Syntax
d=vec_lvsl(a, b)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Table 123. Data type of function returned value and arguments (in 32-bit mode)

d a b

vector unsigned char int unsigned char*

signed char*

unsigned short*

short*

unsigned int*

int*

float*

Table 124. Data type of function returned value and arguments (in 64-bit mode)

d a b

vector unsigned char int unsigned long*

long*

long unsigned char*

signed char*

unsigned short*

short*

unsigned int*

int*

float*

Result value

The first element of the result vector is the sum of a and the address of b, modulo
16. Each successive element contains the previous element's value plus 1.

vec_lvsr

Purpose

Returns a vector useful for aligning non-aligned data.

618 XL C/C++: Compiler Reference

Syntax
d=vec_lvsr(a, b)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Table 125. Data type of function returned value and arguments (in 32-bit mode)

a a b

vector unsigned char int unsigned char*

signed char*

unsigned short*

short*

unsigned int*

int*

float*

Table 126. Data type of function returned value and arguments (in 64-bit mode)

d a b

vector unsigned char int unsigned long*

long*

long unsigned char*

signed char*

unsigned short*

short*

unsigned int*

int*

float*

Result value

The effective address is the sum of a and the address of b, modulo 16. The first
element of the result vector contains the value 16 minus the effective address. Each
successive element contains the previous element's value plus 1.

vec_madd

Purpose

Returns a vector containing the results of performing a fused multiply-add
operation on each corresponding set of elements of three given vectors.

Syntax
d=vec_madd(a, b, c)

Chapter 7. Compiler built-in functions 619

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 127. Types of the returned value and the function arguments

d a b c

The same type as
argument a

vector float The same type as
argument a

The same type as
argument avector double

Result value

The value of each element of the result is the product of the values of the
corresponding elements of a and b, added to the value of the corresponding
element of c.

vec_madds
Purpose

Returns a vector containing the results of performing a saturated
multiply-high-and-add operation on each corresponding set of elements of three
given vectors.

Syntax
d=vec_madds(a, b, c)

Result and argument types

The type of d, a, b, and c must be vector signed short.

Result value

For each element of the result, the value is produced in the following way: the
values of the corresponding elements of a and b are multiplied. The value of the 17
most significant bits of this product is then added, using 16-bit-saturated addition,
to the value of the corresponding element of c.

vec_max
Purpose

Returns a vector containing the maximum value from each set of corresponding
elements of the given vectors.

Syntax
d=vec_max(a, b)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

620 XL C/C++: Compiler Reference

Table 128. Result and argument types

d a b

vector signed char vector bool char vector signed char

vector signed char vector signed char

vector bool char

vector unsigned char vector bool char vector unsigned char

vector unsigned char vector unsigned char

vector bool char

vector signed short vector bool short vector signed short

vector signed short vector signed short

vector bool short

vector unsigned short vector bool short vector unsigned short

vector unsigned short vector unsigned short

vector bool short

vector signed int vector bool int vector signed int

vector signed int vector signed int

vector bool int

vector unsigned int vector bool int vector unsigned int

vector unsigned int vector unsigned int

vector bool int

vector float vector float vector float

vector double vector double vector double

When you call this built-in function, the following types are valid only when
-qarch is set to target POWER8 processors.

Table 129. Result and argument types supported only on POWER8 processors

d a b

The same type as argument a vector signed long long The same type as argument a

vector unsigned long long

vector bool long long

Result value

The value of each element of the result is the maximum of the values of the
corresponding elements of a and b.

vec_mergee

Purpose

Merges the values of even-numbered elements of two vectors.

Syntax
d=vec_mergee(a,b)

Chapter 7. Compiler built-in functions 621

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 130. Result and argument types

d a b

The same type as argument a vector bool int The same type as argument a

vector signed int

vector unsigned int

Result value

Assume that the elements of each vector are numbered beginning with zero. The
even-numbered elements of the result are obtained, in order, from the
even-numbered elements of a. The odd-numbered elements of the result are
obtained, in order, from the even-numbered elements of b.

Related information

“vec_mergeo” on page 624

vec_mergeh
Purpose

Merges the most significant halves of two vectors.

Syntax
d=vec_mergeh(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

622 XL C/C++: Compiler Reference

Table 131. Result and argument types

d a b

The same type as argument a vector bool char The same type as argument a

vector signed char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector float

vector double

Result value

Assume that the elements of each vector are numbered beginning with 0. The
even-numbered elements of the result are taken, in order, from the high elements
of a. The odd-numbered elements of the result are taken, in order, from the high
elements of b.
Related reference:
“vec_mergel”

vec_mergel
Purpose

Merges the least significant halves of two vectors.

Syntax
d=vec_mergel(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 623

Table 132. Result and argument types

d a b

The same type as argument a vector bool char The same type as argument a

vector signed char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector float

vector double

Result value

Assume that the elements of each vector are numbered beginning with 0. The
even-numbered elements of the result are taken, in order, from the low elements of
a. The odd-numbered elements of the result are taken, in order, from the low
elements of b.
Related reference:
“vec_mergeh” on page 622

vec_mergeo

Purpose

Merges the values of odd-numbered elements of two vectors.

Syntax
d=vec_mergeo(a,b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 133. Result and argument types

d a b

The same type as argument a vector bool int The same type as argument a

vector signed int

vector unsigned int

624 XL C/C++: Compiler Reference

Result value

Assume that the elements of each vector are numbered beginning with zero. The
even-numbered elements of the result are obtained, in order, from the
odd-numbered elements of a. The odd-numbered elements of the result are
obtained, in order, from the odd-numbered elements of b.

Related information

“vec_mergee” on page 621

vec_mfvscr
Purpose

Copies the contents of the Vector Status and Control Register into the result vector.

Syntax
d=vec_mfvscr()

Result and argument types

This function does not have any arguments. The result is of type vector unsigned
short.

Result value

The high-order 16 bits of the VSCR are copied into the seventh element of the
result. The low-order 16 bits of the VSCR are copied into the eighth element of the
result. All other elements are set to zero.

vec_min
Purpose

Returns a vector containing the minimum value from each set of corresponding
elements of the given vectors.

Syntax
d=vec_min(a, b)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Table 134. Result and argument types

d a b

vector signed char vector bool char vector signed char

vector signed char vector signed char

vector bool char

vector unsigned char vector bool char vector unsigned char

vector unsigned char vector unsigned char

vector bool char

Chapter 7. Compiler built-in functions 625

Table 134. Result and argument types (continued)

d a b

vector signed short vector bool short vector signed short

vector signed short vector signed short

vector bool short

vector unsigned short vector bool short vector unsigned short

vector unsigned short vector unsigned short

vector bool short

vector signed int vector bool int vector signed int

vector signed int vector signed int

vector bool int

vector unsigned int vector bool int vector unsigned int

vector unsigned int vector unsigned int

vector bool int

vector float vector float vector float

vector double vector double vector double

When you call this built-in function, the following types are valid only when
-qarch is set to target POWER8 processors.

Table 135. Result and argument types supported only on POWER8 processors

d a b

The same type as argument a vector signed long long The same type as argument a

vector unsigned long long

vector bool long long

Result value

The value of each element of the result is the minimum of the values of the
corresponding elements of a and b.

vec_mladd
Purpose

Returns a vector containing the results of performing a saturated
multiply-low-and-add operation on each corresponding set of elements of three
given vectors.

Syntax
d=vec_mladd(a, b, c)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

626 XL C/C++: Compiler Reference

Table 136. Types of the returned value and function arguments

d a b c

vector signed short vector signed short vector signed short vector signed short

vector signed short vector unsigned short vector unsigned short

vector unsigned short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short vector unsigned short

Result value

The value of each element of the result is the value of the least significant 16 bits
of the product of the values of the corresponding elements of a and b, added to the
value of the corresponding element of c.

The addition is performed using modular arithmetic.

vec_mradds
Purpose

Returns a vector containing the results of performing a saturated
multiply-high-round-and-add operation for each corresponding set of elements of
the given vectors.

Syntax
d=vec_mradds(a, b, c)

Result and argument types

The type of d, a, b, and c must be vector unsigned short.

Result value

For each element of the result, the value is produced in the following way: the
values of the corresponding elements of a and b are multiplied and rounded such
that the 15 least significant bits are 0. The value of the 17 most significant bits of
this rounded product is then added, using 16-bit-saturated addition, to the value of
the corresponding element of c.

vec_msub

Purpose

Returns a vector containing the results of performing a multiply-subtract operation
using the given vectors.

This built-in function is valid only when -qarch is set to target POWER7
processors or higher.

Syntax
d=vec_msub(a, b, c)

Chapter 7. Compiler built-in functions 627

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 137. Result and argument types

d a b c

vector float vector float vector float vector float

vector double vector double vector double vector double

Result value

This function multiplies each element in a by the corresponding element in b and
then subtracts the corresponding element in c from the result.

vec_msum
Purpose

Returns a vector containing the results of performing a multiply-sum operation
using given vectors.

Syntax
d=vec_msum(a, b, c)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Table 138. Types of the returned value and function arguments

d a b c

vector signed int vector signed char vector unsigned char vector signed int

vector unsigned int vector unsigned char vector unsigned char vector unsigned int

vector signed int vector signed short vector signed short vector signed int

vector unsigned int vector unsigned short vector unsigned short vector unsigned int

Result value

For each element n of the result vector, the value is obtained as follows:
v If a is of type vector signed char or vector unsigned char, multiply element p

of a by element p of b where p is from 4n to 4n+3, and then add the sum of
these products and element n of c.
d[0] = a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3] + c[0]
d[1] = a[4]*b[4] + a[5]*b[5] + a[6]*b[6] + a[7]*b[7] + c[1]
d[2] = a[8]*b[8] + a[9]*b[9] + a[10]*b[10] + a[11]*b[11] + c[2]
d[3] = a[12]*b[12] + a[13]*b[13] + a[14]*b[14] + a[15]*b[15] + c[3]

v If a is of type vector signed short or vector unsigned short, multiply element
p of a by element p of b where p is from 2n to 2n+1, and then add the sum of
these products and element n of c.

628 XL C/C++: Compiler Reference

d[0] = a[0]*b[0] + a[1]*b[1] + c[0]
d[1] = a[2]*b[2] + a[3]*b[3] + c[1]
d[2] = a[4]*b[4] + a[5]*b[5] + c[2]
d[3] = a[6]*b[6] + a[7]*b[7] + c[3]

All additions are performed by using 32-bit modular arithmetic.

vec_msums
Purpose

Returns a vector containing the results of performing a saturated multiply-sum
operation using the given vectors.

Syntax
d=vec_msums(a, b, c)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 139. Types of the returned value and function arguments

d a b c

vector signed int vector signed short vector signed short vector signed int

vector unsigned int vector unsigned short vector unsigned short vector unsigned int

Result value

For each element n of the result vector, the value is obtained in the following way:
multiply element p of a by element p of b, where p is from 2n to 2n+1; and then
add the sum of these products to element n of c. All additions are performed by
using 32-bit saturated arithmetic.

vec_mtvscr
Purpose

Copies the given value into the Vector Status and Control Register.

The low-order 32 bits of a are copied into the VSCR.

Syntax
vec_mtvscr(a)

Result and argument types

This function does not return any value. a is of any of the following types:
v vector bool char
v vector signed char
v vector unsigned char
v vector bool short
v vector signed short
v vector unsigned short

Chapter 7. Compiler built-in functions 629

v vector bool int
v vector signed int
v vector unsigned int
v vector pixel

vec_mul

Purpose

Returns a vector containing the results of performing a multiply operation using
the given vectors.

This built-in function is valid only when -qarch is set to target POWER7
processors or higher.

Note: For integer and unsigned vectors, this function emulates the operation.

Syntax
d=vec_mul(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 140. Result and argument types

d a b

The same type as argument
a

vector signed char The same type as argument a

vector unsigned char

vector signed short

vector unsigned short

vector signed int

vector unsigned int

vector signed long long

vector unsigned long long

vector float

vector double

Result value

This function multiplies corresponding elements in the given vectors and then
assigns the result to corresponding elements in the result vector.

vec_mule
Purpose

Returns a vector containing the results of multiplying every second set of
corresponding elements of the given vectors, beginning with the first element.

630 XL C/C++: Compiler Reference

Syntax
d=vec_mule(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 141. Types of the returned value and function arguments

d a b

vector signed short vector signed char vector signed char

vector unsigned short vector unsigned char vector unsigned char

vector signed int vector signed short vector signed short

vector unsigned int vector unsigned short vector unsigned short

Result value

Assume that the elements of each vector are numbered beginning with 0. For each
element n of the result vector, the value is the product of the value of element 2n of
a and the value of element 2n of b.

vec_mulo
Purpose

Returns a vector containing the results of multiplying every second set of
corresponding elements of the given vectors, beginning with the second element.

Syntax
d=vec_mulo(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 142. Types of the returned value and function arguments

d a b

vector signed short vector signed char vector signed char

vector unsigned short vector unsigned char vector unsigned char

vector signed int vector signed short vector signed short

vector unsigned int vector unsigned short vector unsigned short

Result value

Assume that the elements of each vector are numbered beginning with 0. For each
element n of the result vector, the value is the product of the value of element 2n+1
of a and the value of element 2n+1 of b.

Chapter 7. Compiler built-in functions 631

vec_nabs

Purpose

Returns a vector containing the results of performing a negative-absolute operation
using the given vector.

This built-in function is valid only when -qarch is set to target POWER7
processors or higher.

Syntax
d=vec_nabs(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 143. Result and argument types

d a

vector float vector float

vector double vector double

Result value

This function computes the absolute value of each element in the given vector and
then assigns the negated value of the result to the corresponding elements in the
result vector.

vec_nand
Purpose

Performs a bitwise negated-and operation on the input vectors.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Syntax
d=vec_nand(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 144. Types of the returned value and function arguments

d a b

vector signed char vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char vector unsigned char

vector bool char

632 XL C/C++: Compiler Reference

Table 144. Types of the returned value and function arguments (continued)

d a b

vector signed char vector bool char vector signed char

vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short vector unsigned short

vector bool short

vector signed short vector bool short vector signed short

vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int vector unsigned int

vector bool int

vector signed int vector bool int vector signed int

vector unsigned int vector unsigned int

vector bool int vector bool int

vector float vector float

vector signed long long vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector bool long long

vector signed long long vector bool long long vector signed long long

vector unsigned long long vector unsigned long long

vector bool long long vector bool long long

vector double vector double

vector float vector float vector bool int

vector float

vector double vector double vector long long

vector double

Result value

Each bit of the result is set to the result of the bitwise operation !(a & b) of the
corresponding bits of a and b. For 0 <= i < 128, bit i of the result is set to 0 only if
the ith bits of both a and b are 1.

Chapter 7. Compiler built-in functions 633

vec_neg

Purpose

Returns a vector containing the negated value of the corresponding elements in the
given vector.

Note: For vector signed long long, this function emulates the operation. This
built-in function is valid only when -qarch is set to target POWER7 processors or
higher.

Syntax
d=vec_neg(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 145. Result and argument types

d a

The same type as argument a vector signed char

vector signed short

vector signed int

vector signed long long

vector float

vector double

Result value

This function multiplies the value of each element in the given vector by -1.0 and
then assigns the result to the corresponding elements in the result vector.

vec_nmadd

Purpose

Returns a vector containing the results of performing a negative multiply-add
operation on the given vectors.

This built-in function is valid only when -qarch is set to target POWER7
processors or higher.

Syntax
d=vec_nmadd(a, b, c)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

634 XL C/C++: Compiler Reference

Table 146. Result and argument types

d a b c

vector double vector double vector double vector double

vector float vector float vector float vector float

Result value

The value of each element of the result is the product of the corresponding
elements of a and b, added to the corresponding elements of c, and then
multiplied by -1.0.

vec_nmsub

Purpose

Returns a vector containing the results of performing a negative multiply-subtract
operation on the given vectors.

Syntax
d=vec_nmsub(a, b, c)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 147. Result and argument types

d a b c

vector float vector float vector float vector float

vector double vector double vector double vector double

Result value

The value of each element of the result is the product of the corresponding
elements of a and b, subtracted from the corresponding element of c.

vec_nor

Purpose

Performs a bitwise NOR of the given vectors.

Syntax
d=vec_nor(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 635

Table 148. Result and argument types

d a b

vector bool char vector bool char vector bool char

vector signed char vector bool char vector signed char

vector signed char vector signed char

vector bool char

vector unsigned char vector bool char vector unsigned char

vector unsigned char vector unsigned char

vector bool char

vector bool short vector bool short vector vector bool short

vector signed short vector bool short vector signed short

vector signed short vector signed short

vector bool short

vector unsigned short vector bool short vector unsigned short

vector unsigned short vector unsigned short

vector bool short

vector bool int vector bool int vector bool int

vector signed int vector bool int vector signed int

vector signed int vector signed int

vector bool int

vector unsigned int vector bool int vector unsigned int

vector unsigned int vector unsigned int

vector bool int

vector bool long long vector bool long long vector bool long long

vector signed long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector float vector bool int vector float

vector float vector bool int

vector double vector double vector double

Result value

The result is the bitwise NOR of a and b.

vec_or

Purpose

Performs a bitwise OR of the given vectors.

Syntax
d=vec_or(a, b)

636 XL C/C++: Compiler Reference

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 149. Result and argument types

d a b

vector bool char vector bool char vector bool char

vector signed char vector bool char vector signed char

vector signed char vector signed char

vector bool char

vector unsigned char vector bool char vector unsigned char

vector unsigned char vector unsigned char

vector bool char

vector bool short vector bool short vector vector bool short

vector signed short vector bool short vector signed short

vector signed short vector signed short

vector bool short

vector unsigned short vector bool short vector unsigned short

vector unsigned short vector unsigned short

vector bool short

vector bool int vector bool int vector bool int

vector signed int vector bool int vector signed int

vector signed int vector signed int

vector bool int

vector unsigned int vector bool int vector unsigned int

vector unsigned int vector unsigned int

vector bool int

vector bool long long vector bool long long vector bool long long

vector signed long long vector bool long long vector signed long long

vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector bool long long vector unsigned long long

vector unsigned long long vector unsigned long long

vector bool long long

vector float vector bool int vector float

vector float vector bool int

vector float

vector double vector bool long long vector double

vector double vector bool long long

vector double

Chapter 7. Compiler built-in functions 637

Result value

The result is the bitwise OR of a and b.

vec_orc
Purpose

Performs a bitwise OR-with-complement operation of the input vectors.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Syntax
d=vec_orc(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 150. Types of the returned value and function arguments

d a b

vector signed char vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char vector unsigned char

vector bool char

vector signed char vector bool char vector signed char

vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short vector unsigned short

vector bool short

vector signed short vector bool short vector signed short

vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int vector unsigned int

vector bool int

vector signed int vector bool int vector signed int

vector unsigned int vector unsigned int

vector bool int vector bool int

vector float vector float

vector signed long long vector signed long long vector signed long long

vector bool long long

638 XL C/C++: Compiler Reference

Table 150. Types of the returned value and function arguments (continued)

d a b

vector unsigned long long vector unsigned long long vector unsigned long long

vector bool long long

vector signed long long vector bool long long vector signed long long

vector unsigned long long vector unsigned long long

vector bool long long vector bool long long

vector double vector double

vector float vector float vector bool int

vector float

vector double vector double vector bool long long

vector double

Result value

Each bit of the result is set to the result of the bitwise operation (a | ~b) of the
corresponding bits of a and b. For 0 <= i < 128, bit i of the result is set to 1 only if
the ith bit of a is 1 or the ith bit of b is 0.

vec_pack
Purpose

Packs information from each element of two vectors into the result vector.

Syntax
d=vec_pack(a, b)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Table 151. Result and argument types

d a b

vector signed char vector signed short vector signed short

vector unsigned char vector unsigned short vector unsigned short

vector signed short vector signed int vector signed int

vector unsigned short vector unsigned int vector unsigned int

When you call this built-in function, the following types are valid only when
-qarch is set to target POWER8 processors.

Table 152. Result and argument types supported only on POWER8 processors

d a b

vector signed int vector signed long long vector signed long long

vector unsigned int vector unsigned long long vector unsigned long long

vector bool long long vector bool long long vector bool long long

Chapter 7. Compiler built-in functions 639

Result value

The value of each element of the result vector is taken from the low-order half of
the corresponding element of the result of concatenating a and b.

vec_packpx
Purpose

Packs information from each element of two vectors into the result vector.

Syntax
d=vec_packpx(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 153. Types of the returned value and function arguments

d a b

vector pixel vector unsigned int vector unsigned int

Result value

The value of each element of the result vector is taken from the corresponding
element of the result of concatenating a and b in the following way: the least
significant bit of the high order byte is stored into the first bit of the result element;
the most significant 5 bits of each of the remaining bytes are stored into the
remaining portion of the result element.
d[i] = ai[7] || ai[8:12] || ai[16:20] || ai[24:28]
d[i+4] = bi[7] || bi[8:12] || bi[16:20] || bi[24:28]

where i is 0, 1, 2, and 3.

vec_packs
Purpose

Packs information from each element of two vectors into the result vector, using
saturated values.

Syntax
d=vec_packs(a, b)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Table 154. Result and argument types

d a b

vector signed char vector signed short vector signed short

vector unsigned char vector unsigned short vector unsigned short

640 XL C/C++: Compiler Reference

Table 154. Result and argument types (continued)

d a b

vector signed short vector signed int vector signed int

vector unsigned short vector unsigned int vector unsigned int

When you call this built-in function, the following types are valid only when
-qarch is set to target POWER8 processors.

Table 155. Result and argument types supported only on POWER8 processors

d a b

vector signed int vector signed long long vector signed long long

vector unsigned int vector unsigned long long vector unsigned long long

Result value

The value of each element of the result vector is the saturated value of the
corresponding element of the result of concatenating a and b.

vec_packsu
Purpose

Packs information from each element of two vectors into the result vector by using
saturated values.

Syntax
d=vec_packsu(a, b)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Table 156. Result and argument types

d a b

vector unsigned char vector signed short vector signed short

vector unsigned short vector unsigned short

vector unsigned short vector signed int vector signed int

vector unsigned int vector unsigned int

When you call this built-in function, the following types are valid only when
-qarch is set to target POWER8 processors.

Table 157. Result and argument types supported only on POWER8 processors

d a b

vector unsigned int vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

Chapter 7. Compiler built-in functions 641

Result value

The value of each element of the result vector is the saturated value of the
corresponding element of the result of concatenating a and b.

vec_perm

Purpose

Returns a vector that contains some elements of two vectors, in the order specified
by a third vector.

Syntax
d=vec_perm(a, b, c)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 158. Result and argument types

d a b c

The same type as
argument a

vector signed int The same type as
argument a

vector unsigned char

vector unsigned int

vector bool int

vector signed short

vector unsigned short

vector bool short

vector pixel

vector signed char

vector unsigned char

vector bool char

vector float

Result value

Each byte of the result is selected by using the least significant five bits of the
corresponding byte of c as an index into the concatenated bytes of a and b.

vec_permi
Purpose

Returns a vector by permuting and combining the two eight-byte-long vector
elements in a and b based on the value of c.

Syntax
d=vec_permi(a, b, c)

642 XL C/C++: Compiler Reference

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 159. Result and argument types

d a b c

vector bool long long vector bool long long vector bool long long 0–3

vector signed long
long

vector signed long
long

vector signed long
long

vector unsigned long
long

vector unsigned long
long

vector unsigned long
long

vector double vector double vector double

Result value

If we use a[0] and a[1] to represent the first and second eight-byte-long elements
in a, and use b[0] and b[1] for elements in b, then this function determines the
elements in the result vector based on the binary value of c. This is illustrated as
follows:
v 00 - a[0], b[0]

v 01 - a[0], b[1]
v 10 - a[1], b[0]
v 11 - a[1], b[1]

vec_popcnt
Purpose

Computes the population count (number of set bits) in each element of the input.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Syntax
d=vec_popcnt(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 160. Result and argument types

d a

vector unsigned char vector signed char

vector unsigned char

vector unsigned short vector signed short

vector unsigned short

vector unsigned int vector signed int

vector unsigned int

Chapter 7. Compiler built-in functions 643

Table 160. Result and argument types (continued)

d a

vector unsigned long long vector signed long long

vector unsigned long long

Result value

Each element of the result is set to the number of set bits in the corresponding
element of the input.

vec_promote

Purpose

Returns a vector with a in element position b.

Syntax
d=vec_promote(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 161. Result and argument types

d a b

vector signed char signed char signed int

vector unsigned char unsigned char

vector signed short signed short

vector unsigned short unsigned short

vector signed int signed int

vector unsigned int unsigned int

vector signed long long signed long long

vector unsigned long long unsigned long

vector float float

vector double double

Result value

The result is a vector with a in element position b. This function uses modulo
arithmetic on b to determine the element number. For example, if b is out of range,
the compiler uses b modulo the number of elements in the vector to determine the
element position. The other elements of the vector are undefined.

644 XL C/C++: Compiler Reference

vec_re

Purpose

Returns a vector containing estimates of the reciprocals of the corresponding
elements of the given vector.

Syntax
d=vec_re(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 162. Result and argument types

d a

vector float vector float

vector double vector double

Result value

Each element of the result contains the estimated value of the reciprocal of the
corresponding element of a.

vec_revb

Purpose

Returns a vector that contains the bytes of the corresponding element of the
argument in the reverse byte order.

Syntax
d=vec_revb(a)

Result and argument types

The following table describes the types of the returned value and the function
argument.

Chapter 7. Compiler built-in functions 645

Table 163. Result and argument types

d a

The same type as argument a vector signed char

vector unsigned char

vector signed short

vector unsigned short

vector signed int

vector unsigned int

vector signed long long

vector unsigned long long

vector float

vector double

Result value

Each element of the result contains the bytes of the corresponding element of a in
the reverse byte order.

vec_reve

Purpose

Returns a vector that contains the elements of the argument in the reverse element
order.

Syntax
d=vec_reve(a)

Result and argument types

The following table describes the types of the returned value and the function
argument.

Table 164. Result and argument types

d a

The same type as argument a vector signed char

vector unsigned char

vector signed short

vector unsigned short

vector signed int

vector unsigned int

vector signed long long

vector unsigned long long

vector float

vector double

646 XL C/C++: Compiler Reference

Result value

The result contains the elements of a in the reverse element order.

vec_rl
Purpose

Rotates each element of a vector left by a given number of bits.

Syntax
d=vec_rl(a, b)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Table 165. Result and argument types

d a b

The same type as argument a vector signed char The same type as argument a

vector unsigned char

vector signed short

vector unsigned short

vector signed int

vector unsigned int

When you call this built-in function, the following types are valid only when
-qarch is set to target POWER8 processors.

Table 166. Result and argument types supported only on POWER8 processors

d a b

The same type as argument a vector signed long long The same type as argument a

vector unsigned long long

Result value

Each element of the result is obtained by rotating the corresponding element of a
left by the number of bits specified by the corresponding element of b.

vec_round
Purpose

Returns a vector containing the rounded values of the corresponding elements of
the given vector.

Syntax
d=vec_round(a)

Chapter 7. Compiler built-in functions 647

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 167. Result and argument types

d a

vector float vector float

vector double vector double

Result value

Each element of the result contains the value of the corresponding element of a,
rounded to the nearest representable floating-point integer, using IEEE
round-to-nearest rounding.

vec_roundc
Purpose

Returns a vector by rounding every single-precision or double-precision
floating-point element in the given vector to integer.

This built-in function is valid only when -qarch is set to target POWER7
processors or higher.

Syntax
d=vec_roundc(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 168. Result and argument types

d a

vector float vector float

vector double vector double

vec_roundm
Purpose

Returns a vector containing the largest representable floating-point integer values
less than or equal to the values of the corresponding elements of the given vector.

Note: vec_roundm is another name for vec_floor.

Syntax
d=vec_roundm(a)

648 XL C/C++: Compiler Reference

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 169. Result and argument types

d a

vector float vector float

vector double vector double

Related reference:
“vec_floor” on page 612

vec_roundp
Purpose

Returns a vector containing the smallest representable floating-point integer values
greater than or equal to the values of the corresponding elements of the given
vector.

Note: vec_roundp is another name for vec_ceil.

Syntax
d=vec_roundp(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 170. Result and argument types

d a

vector float vector float

vector double vector double

Related reference:
“vec_ceil” on page 596

vec_roundz
Purpose

Returns a vector containing the truncated values of the corresponding elements of
the given vector.

Note: vec_roundz is another name for vec_trunc.

Syntax
d=vec_roundz(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 649

Table 171. Result and argument types

d a

vector float vector float

vector double vector double

Result value

Each element of the result contains the value of the corresponding element of a,
truncated to an integral value.
Related reference:
“vec_trunc” on page 672

vec_rsqrte

Purpose

Returns a vector containing estimates of the reciprocal square roots of the
corresponding elements of the given vector.

Syntax
d=vec_rsqrte(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 172. Result and argument types

d a

vector float vector float

vector double vector double

Result value

Each element of the result contains the estimated value of the reciprocal square
root of the corresponding element of a.

vec_sel

Purpose

Returns a vector containing the value of either a or b depending on the value of c.

Syntax
d=vec_sel(a, b, c)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

650 XL C/C++: Compiler Reference

Table 173. Result and argument types

d a b c

The same type as
argument b

The same type as
argument b

vector bool char vector bool char

vector unsigned char

vector signed char vector bool char

vector unsigned char

vector unsigned char vector bool char

vector unsigned char

vector bool short vector bool short

vector unsigned short

vector signed short vector bool shot

vector unsigned short

vector unsigned short vector bool short

vector unsigned short

vector bool int vector bool int

vector unsigned int

vector signed int vector bool int

vector unsigned int

vector unsigned int vector bool int

vector unsigned int

vector bool long long vector bool long long

vector unsigned long
long

vector signed long long vector bool long long

vector unsigned long
long

vector unsigned long
long

vector bool long long

vector unsigned long
long

vector float vector bool int

vector unsigned int

vector double vector bool long long

vector unsigned long
long

Result value

Each bit of the result vector has the value of the corresponding bit of a if the
corresponding bit of c is 0, or the value of the corresponding bit of b otherwise.

vec_sl
Purpose

Performs a left shift for each element of a vector.

Chapter 7. Compiler built-in functions 651

Syntax
d=vec_sl(a, b)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Table 174. Result and argument types

d a b

vector signed char vector signed char vector unsigned char

vector unsigned char vector unsigned char

vector signed short vector signed short vector unsigned short

vector unsigned short vector unsigned short

vector signed int vector signed int vector unsigned int

vector unsigned int vector unsigned int

When you call this built-in function, the following types are valid only when
-qarch is set to target POWER8 processors.

Table 175. Result and argument types supported only on POWER8 processors

d a b

vector signed long long vector signed long long vector unsigned long long

vector unsigned long long vector unsigned long long

Result value

Each element of the result vector is the result of left shifting the corresponding
element of a by the number of bits specified by the value of the corresponding
element of b, modulo the number of bits in the element. The bits that are shifted
out are replaced by zeroes.

vec_sld
Purpose

Left shifts two concatenated vectors by a given number of bytes.

Syntax
d=vec_sld(a, b, c)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

652 XL C/C++: Compiler Reference

Table 176. Types of the returned value and function arguments

d a b c1

The same type as
argument a

vector signed char The same type as
argument a

unsigned int

vector unsigned char

vector signed short

vector unsigned short

vector signed int

vector unsigned int

vector float

vector pixel

Note:

1. c must be an unsigned literal with a value in the range 0 - 15 inclusive.

Result value

The result is the most significant 16 bytes obtained by concatenating a and b, and
shifting left by the number of bytes specified by c.

vec_sldw

Purpose

Returns a vector by concatenating a and b, and then left-shifting the result vector
by multiples of 4 bytes. c specifies the offset for the shifting operation.

Syntax
d=vec_sldw(a, b, c)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 653

Table 177. Result and argument types

d a b c

The same type as
argument a

vector bool char The same type as
argument a

0–3

vector signed char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector bool long long

vector signed long
long

vector unsigned long
long

vector float

vector double

Result value

After left-shifting the concatenated a and b by multiples of 4 bytes specified by c,
the function takes the four leftmost 4-byte values and forms the result vector.

vec_sll
Purpose

Left shifts a vector by a given number of bits.

Syntax
d=vec_sll(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

654 XL C/C++: Compiler Reference

Table 178. Types of the returned value and function arguments

d a b1

The same type as argument a vector bool char Any of the following types:

vector unsigned char
vector unsigned short
vector unsigned int

vector signed char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector pixel

Note:

1. The least significant three bits of all byte elements in b must be the same.

Result value

The result is produced by shifting the contents of a left by the number of bits
specified by the last three bits of the last element of b. The bits that are shifted out
are replaced by zeroes.

vec_slo
Purpose

Left shifts a vector by a given number of bytes.

Syntax
d=vec_slo(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 179. Types of the returned value and function arguments

d a b

The same type as argument a vector signed char Any of the following types:

vector signed char
vector unsigned char

vector unsigned char

vector signed short

vector unsigned short

vector signed int

vector unsigned int

vector float

vector pixel

Chapter 7. Compiler built-in functions 655

Result value

The result is produced by shifting the contents of a left by the number of bytes
specified by bits 121 through 124 of b. The bits that are shifted out are replaced by
zeroes.

vec_splat

Purpose

Returns a vector that has all of its elements set to a given value.

Syntax
d=vec_splat(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 180. Result and argument types

d a b

The same type as argument a vector bool char 0 - 15

vector signed char 0 - 15

vector unsigned char 0 - 15

vector bool short 0 - 7

vector signed short 0 - 7

vector unsigned short 0 - 7

vector bool int 0 - 3

vector signed int 0 - 3

vector unsigned int 0 - 3

vector bool long long 0 - 1

vector signed long long 0 - 1

vector unsigned long long 0 - 1

vector float 0 - 3

vector double 0 - 1

Result value

The value of each element of the result is the value of the element of a specified by
b.

vec_splats

Purpose

Returns a vector of which the value of each element is set to a.

656 XL C/C++: Compiler Reference

Syntax
d=vec_splats(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 181. Result and argument types

d a

vector signed char signed char

vector unsigned char unsigned char

vector signed short signed short

vector unsigned short unsigned short

vector signed int signed int

vector unsigned int unsigned int

vector signed long long signed long long

vector unsigned long long unsigned long long

vector float float

vector double double

vec_splat_s8
Purpose

Returns a vector with all elements equal to the given value.

Syntax
d=vec_splat_s8(a)

Result and argument types

The following table describes the types of the returned value and the function
argument.

Table 182. Types of the returned value and function argument

d a1

vector signed char signed int

Note:

1. a must be a signed literal with a value in the range -16 to 15 inclusive.

Result value

Each element of the result has the value of a.

vec_splat_s16
Purpose

Returns a vector with all elements equal to the given value.

Chapter 7. Compiler built-in functions 657

Syntax
d=vec_splat_s16(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 183. Types of the returned value and function arguments

d a1

vector signed short signed int

Note:

1. a must be a signed literal with a value in the range -16 to 15 inclusive.

Result value

Each element of the result has the value of a.

vec_splat_s32
Purpose

Returns a vector with all elements equal to the given value.

Syntax
d=vec_splat_s32(a)

Result and argument types

The following table describes the types of the returned value and the function
argument.

Table 184. Types of the returned value and function argument

d a1

vector signed int signed int

Note:

1. a must be a signed literal with a value in the range -16 to 15 inclusive.

Result value

Each element of the result has the value of a.

vec_splat_u8
Purpose

Returns a vector with all elements equal to the given value.

Syntax
d=vec_splat_u8(a)

658 XL C/C++: Compiler Reference

Result and argument types

The following table describes the types of the returned value and the function
argument.

Table 185. Types of the returned value and function argument

d a1

vector unsigned char signed int

Note:

1. a must be a signed literal with a value in the range -16 to 15 inclusive.

Result value

The bit pattern of a is interpreted as an unsigned value. Each element of the result
is given this value.

vec_splat_u16
Purpose

Returns a vector with all elements equal to the given value.

Syntax
d=vec_splat_u16(a)

Result and argument types

The following table describes the types of the returned value and the function
argument.

Table 186. Types of the returned value and function argument

d a1

vector unsigned short signed int

Note:

1. a must be a signed literal with a value in the range -16 to 15 inclusive.

Result value

The bit pattern of a is interpreted as an unsigned value. Each element of the result
is given this value.

vec_splat_u32
Purpose

Returns a vector with all elements equal to the given value.

Syntax
d=vec_splat_u32(a)

Chapter 7. Compiler built-in functions 659

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 187. Types of the returned value and function arguments

d a1

vector unsigned int signed int

Note:

1. a must be a signed literal with a value in the range -16 to 15 inclusive.

Result value

The bit pattern of a is interpreted as an unsigned value. Each element of the result
is given this value.

vec_sqrt
Purpose

Returns a vector containing the square root of each element in the given vector.

This built-in function is valid only when -qarch is set to target POWER7
processors or higher.

Syntax
d=vec_sqrt(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 188. Result and argument types

d a

vector float vector float

vector double vector double

vec_sr
Purpose

Performs a right shift for each element of a vector.

Syntax
d=vec_sr(a, b)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

660 XL C/C++: Compiler Reference

Table 189. Result and argument types

d a b

The same type as argument a vector signed char vector unsigned char

vector unsigned char vector unsigned char

vector signed short vector unsigned short

vector unsigned short vector unsigned short

vector signed int vector unsigned int

vector unsigned int vector unsigned int

When you call this built-in function, the following types are valid only when
-qarch is set to target POWER8 processors.

Table 190. Result and argument types supported only on POWER8 processors

d a b

vector signed long long vector signed long long vector unsigned long long

vector unsigned long long vector unsigned long long vector unsigned long long

Result value

Each element of the result vector is the result of right shifting the corresponding
element of a by the number of bits specified by the value of the corresponding
element of b, modulo the number of bits in the element. The bits that are shifted
out are replaced by zeroes.

vec_sra
Purpose

Performs an algebraic right shift for each element of a vector.

Syntax
d=vec_sra(a, b)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Table 191. Result and argument types

d a b

vector signed char vector signed char vector unsigned char

vector unsigned char vector unsigned char

vector signed short vector signed short vector unsigned short

vector unsigned short vector unsigned short

vector signed int vector signed int vector unsigned int

vector unsigned int vector unsigned int

When you call this built-in function, the following types are valid only when
-qarch is set to target POWER8 processors.

Chapter 7. Compiler built-in functions 661

Table 192. Result and argument types supported only on POWER8 processors

d a b

vector signed long long vector signed long long vector unsigned long long

vector unsigned long long vector unsigned long long

Result value

Each element of the result vector is the result of algebraically right shifting the
corresponding element of a by the number of bits specified by the value of the
corresponding element of b, modulo the number of bits in the element. The bits
that are shifted out are replaced by copies of the most significant bit of the element
of a.

vec_srl
Purpose

Right shifts a vector by a given number of bits.

Syntax
d=vec_srl(a,b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 193. Types of the returned value and function arguments

d a b1

The same type as argument a vector bool char Any of the following types:

vector unsigned char
vector unsigned short
vector unsigned int

vector signed char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector pixel

Note:

1. The least significant three bits of all byte elements in b must be the same.

Result value

The result is produced by shifting the contents of a right by the number of bits
specified by the last three bits of the last element of b. The bits that are shifted out
are replaced by zeroes.

662 XL C/C++: Compiler Reference

vec_sro
Purpose

Right shifts a vector by a given number of bytes.

Syntax
d=vec_sro(a,b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 194. Types of the returned value and function arguments

d a b

The same type as argument a vector signed char Any of the following types:

vector signed char
vector unsigned char

vector unsigned char

vector signed short

vector unsigned short

vector signed int

vector unsigned int

vector float

vector pixel

Result value

The result is produced by shifting the contents of a right by the number of bytes
specified by bits 121 through 124 of b. The bits that are shifted out are replaced by
zeroes.

vec_st

Purpose

Stores a vector to memory at the given address.

Syntax
vec_st(a, b, c)

Result and argument types

The vec_st function returns nothing. b is added to the address of c, and the sum is
truncated to a multiple of 16 bytes. The value of a is then stored into this memory
address.

The following tables describe the types of the function arguments.

Chapter 7. Compiler built-in functions 663

Table 195. Data type of function returned value and arguments (in 32-bit mode)

a b c

vector unsigned char int vector unsigned char*

unsigned char*

vector signed char vector signed char*

signed char*

vector bool char vector bool char*

unsigned char*

signed char*

vector unsigned short vector unsigned short*

unsigned short*

vector signed short vector signed short*

signed short*

vector bool short vector bool short*

unsigned short*

short*

vector pixel vector pixel*

unsigned short*

short*

vector unsigned int vector unsigned int*

unsigned int*

vector signed int vector signed int*

signed int*

vector bool int vector bool int*

unsigned int*

int*

vector float vector float*

float*

Table 196. Data type of function returned value and arguments (in 64-bit mode)

a b c

vector unsigned int int unsigned long*

vector signed int signed long*

664 XL C/C++: Compiler Reference

Table 196. Data type of function returned value and arguments (in 64-bit mode) (continued)

a b c

vector unsigned char long vector unsigned char*

unsigned char*

vector signed char vector signed char*

signed char*

vector bool char vector bool char*

unsigned char*

signed char*

vector unsigned short vector unsigned short*

unsigned short*

vector signed short vector signed short*

signed short*

vector bool short vector bool short*

unsigned short*

short*

vector pixel vector pixel*

unsigned short*

short*

vector unsigned int vector unsigned int*

unsigned int*

vector signed int vector signed int*

signed int*

vector bool int vector bool int*

unsigned int*

int*

vector float vector float*

float*

vec_ste
Purpose

Stores a vector element into memory at the given address.

Syntax
vec_ste(a,b,c)

Result and argument types

This function does not return a value. The following table describes the types of
the function arguments.

Chapter 7. Compiler built-in functions 665

Table 197. Types of the function arguments

a b c

vector bool char Any integral type signed char *

unsigned char *

vector signed char signed char *

vector unsigned char unsigned char *

vector bool short signed short *

unsigned short *

vector signed short signed short *

vector unsigned short unsigned short *

vector bool int signed int *

unsigned int *

vector signed int signed int *

vector unsigned int unsigned int *

vector float float *

vector pixel signed short *

unsigned short *

Result value

The effective address is the sum of b and the address specified by c, truncated to a
multiple of the size in bytes of an element of the result vector. The value of the
element of a at the byte offset that corresponds to the four least significant bits of
the effective address is stored into memory at the effective address.

vec_stl
Purpose

Stores a vector into memory at the given address, and marks the data as Least
Recently Used.

Syntax
vec_stl(a,b,c)

Result and argument types

This function does not return a value. The following table describes the types of
the function arguments.

666 XL C/C++: Compiler Reference

Table 198. Types of the function arguments

a b c

vector bool char Any integral type signed char *

unsigned char *

vector bool char *

vector signed char signed char *

vector signed char *

vector unsigned char unsigned char *

vector unsigned char *

vector bool short signed short *

unsigned short *

vector bool short *

vector signed short signed short *

vector signed short *

vector unsigned short unsigned short *

vector unsigned short *

vector bool int signed int *

unsigned int *

vector bool int *

vector signed int signed int *

vector signed int *

vector unsigned int unsigned int *

vector unsigned int *

vector float float *

vector float *

vector pixel signed short *

unsigned short *

vector pixel *

Result value

b is added to the address specified by c, and the sum is truncated to a multiple of
16 bytes. The value of a is then stored into this memory address. The data is
marked as Least Recently Used.

vec_sub

Purpose

Returns a vector containing the result of subtracting each element of b from the
corresponding element of a.

This function emulates the operation on long long vectors.

Chapter 7. Compiler built-in functions 667

Syntax
d=vec_sub(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 199. Result and argument types

d a b

The same type as argument a vector signed char The same type as argument a

vector unsigned char

vector signed short

vector unsigned short

vector signed int

vector unsigned int

vector signed long long

vector unsigned long long

vector float

vector double

Result value

The value of each element of the result is the result of subtracting the value of the
corresponding element of b from the value of the corresponding element of a. The
arithmetic is modular for integer vectors.

vec_sub_u128
Purpose

Subtracts unsigned quadword values.

The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Syntax
d=vec_sub_u128(a, b)

Result and argument types

The type of d, a, and b must be vector unsigned char.

Result value

Returns low 128 bits of a - b.

668 XL C/C++: Compiler Reference

vec_subc
Purpose

Returns a vector containing the borrows produced by subtracting each set of
corresponding elements of the given vectors.

Syntax
d=vec_subc(a, b)

Result and argument types

The type of d, a, and b must be vector unsigned int.

Result value

The value of each element of the result is the value of the borrow produced by
subtracting the value of the corresponding element of b from the value of the
corresponding element of a. The value is 0 if a borrow occurred, or 1 if no borrow
occurred.

vec_subc_u128
Purpose

Returns the carry bit of the 128-bit subtraction of two quadword values.

The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Syntax
d=vec_subc_u128(a, b)

Result and argument types

The type of d, a, and b must be vector unsigned char.

Result value

Returns the carry out of a - b.

vec_sube_u128
Purpose

Subtracts unsigned quadword values with carry bit from previous operation.

The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Syntax
d=vec_sube_u128(a, b, c)

Chapter 7. Compiler built-in functions 669

Result and argument types

The type of d, a, b, and c must be vector unsigned char.

Result value

Returns the low 128 bits of a - b - (c & 1).

vec_subec_u128
Purpose

Gets the carry bit of the 128-bit subtraction of two quadword values with carry bit
from the previous operation.

The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Syntax
d=vec_subec_u128(a, b, c)

Result and argument types

The type of d, a, b, and c must be vector unsigned char.

Result value

Returns the carry out of a - b - (c & 1).

vec_subs
Purpose

Returns a vector containing the saturated differences of each set of corresponding
elements of the given vectors.

Syntax
d=vec_subs(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 200. Types of the returned value and function arguments

d a b

vector signed char vector bool char vector signed char

vector signed char vector bool char

vector signed char vector signed char

vector unsigned char vector bool char vector unsigned char

vector unsigned char vector bool char

vector unsigned char vector unsigned char

670 XL C/C++: Compiler Reference

Result value

The value of each element of the result is the saturated result of subtracting the
value of the corresponding element of b from the value of the corresponding
element of a.

vec_sum2s
Purpose

Returns a vector containing the results of performing a sum across 1/2 vector
operation on two given vectors.

Syntax
d=vec_sum2s(a, b)

Result and argument types

The type of d, a, and b must be vector signed int.

Result value

The first and third elements of the result are 0. The second element of the result
contains the saturated sum of the first and second elements of a and the second
element of b. The fourth element of the result contains the saturated sum of the
third and fourth elements of a and the fourth element of b.
d[0] = 0
d[1] = a[0] + a[1] + b[1]
d[2] = 0
d[3] = a[2] + a[3] + b[3]

vec_sum4s
Purpose

Returns a vector containing the results of performing a sum across 1/4 vector
operation on two given vectors.

Syntax
d=vec_sum4s(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 201. Types of the returned value and function arguments

d a b

vector signed int vector signed char vector signed int

vector signed int vector signed short vector signed int

vector unsigned int vector unsigned char vector unsigned int

Result value

For each element n of the result vector, the value is obtained as follows:

Chapter 7. Compiler built-in functions 671

v If a is of type vector signed char or vector unsigned char, the value is the
saturated addition of elements 4n through 4n+3 of a and element n of b.
d[0] = a[0] + a[1] + a[2] + a[3] + b[0]
d[1] = a[4] + a[5] + a[6] + a[7] + b[1]
d[2] = a[8] + a[9] + a[10] + a[11] + b[2]
d[3] = a[12] + a[13] + a[14] + a[15] + b[3]

v If a is of type vector signed short, the value is the saturated addition of
elements 2n through 2n+1 of a and element n of b.
d[0] = a[0] + a[1] + b[0]
d[1] = a[2] + a[3] + b[1]
d[2] = a[4] + a[5] + b[2]
d[3] = a[6] + a[7] + b[3]

vec_sums
Purpose

Returns a vector containing the results of performing a sum across vector
operation on the given vectors.

Syntax
d=vec_sums(a, b)

Result and argument types

The type of d, a, and b must be vector signed int.

Result value

The first three elements of the result are 0. The fourth element is the saturated sum
of all the elements of a and the fourth element of b.

vec_trunc

Purpose

Returns a vector containing the truncated values of the corresponding elements of
the given vector.

Note: vec_trunc is another name for vec_roundz. For details, see “vec_roundz” on
page 649.

vec_unpackh
Purpose

Unpacks the most significant half of a vector into a vector with larger elements.

Syntax
d=vec_unpackh(a)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

672 XL C/C++: Compiler Reference

Table 202. Result and argument types

d a

vector signed short vector signed char

vector signed int vector signed short

When you call this built-in function, the following types are valid only when
-qarch is set to target POWER8 processors.

Table 203. Result and argument types supported only on POWER8 processors

d a

vector signed long long vector signed int

vector bool long long vector bool int

Result value

The value of each element of the result is the value of the corresponding element
of the most significant half of a.

vec_unpackl
Purpose

Unpacks the least significant half of a vector into a vector with larger elements.

Syntax
d=vec_unpackl(a)

Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Table 204. Result and argument types

d a

vector signed short vector signed char

vector signed int vector signed short

When you call this built-in function, the following types are valid only when
-qarch is set to target POWER8 processors.

Table 205. Result and argument types supported only on POWER8 processors

d a

vector signed long long vector signed int

vector bool long long vector bool int

Result value

The value of each element of the result is the value of the corresponding element
of the least significant half of a.

Chapter 7. Compiler built-in functions 673

vec_xl

Purpose

Loads a 16-byte vector from the memory address specified by the displacement a
and the pointer b.

This built-in function is valid only when -qarch is set to target POWER7
processors or higher.

Syntax
d=vec_xl(a, b)

Result and argument types

The following tables describe the types of the function returned value and the
function arguments in different bit modes.

Table 206. Data type of function returned value and arguments (in 32-bit mode)

d a b

vector signed char int signed char *

vector unsigned char unsigned char *

vector signed short signed short *

vector unsigned short unsigned short *

vector signed int signed int *

vector unsigned int unsigned int *

vector signed long long signed long long *

vector unsigned long long unsigned long long *

vector float float *

vector double double *

Table 207. Data type of function returned value and arguments (in 64-bit mode)

d a b

vector signed char long signed char *

vector unsigned char unsigned char *

vector signed short signed short *

vector unsigned short unsigned short *

vector signed int signed int *

vector unsigned int unsigned int *

vector signed long long signed long long *

vector unsigned long long unsigned long long *

vector float float *

vector double double *

674 XL C/C++: Compiler Reference

Result value

vec_xl adds the displacement provided by a to the address provided by b to obtain
the effective address for the load operation. It does not truncate the effective
address to a multiple of 16 bytes.

The order of elements in the function result is different on little endian systems.

vec_xl_be
Purpose

Loads a 16-byte vector from the memory address specified by the displacement a
and the pointer b.

This built-in function is valid only when -qarch is set to target POWER7
processors or higher.

Syntax
d=vec_xl_be(a, b)

Result and argument types

The following tables describe the types of the function returned value and the
function arguments in different bit modes.

Table 208. Data type of function returned value and arguments (in 32-bit mode)

d a b

vector signed char int signed char *

vector unsigned char unsigned char *

vector signed short signed short *

vector unsigned short unsigned short *

vector signed int signed int *

vector unsigned int unsigned int *

vector signed long long signed long long *

vector unsigned long long unsigned long long *

vector float float *

vector double double *

Chapter 7. Compiler built-in functions 675

Table 209. Data type of function returned value and arguments (in 64-bit mode)

d a b

vector signed char long signed char *

vector unsigned char unsigned char *

vector signed short signed short *

vector unsigned short unsigned short *

vector signed int signed int *

vector unsigned int unsigned int *

vector signed long long signed long long *

vector unsigned long long unsigned long long *

vector float float *

vector double double *

Result value

vec_xl_be adds the displacement provided by a to the address provided by b to
obtain the effective address for the load operation. It does not truncate the effective
address to a multiple of 16 bytes.

The order of elements in the function result is big endian, even when the function
is called on little endian systems.

vec_xld2
Purpose

Loads a 16-byte vector from two 8-byte elements at the memory address specified
by the displacement a and the pointer b.

This built-in function is valid only when -qarch is set to target POWER7
processors or higher.

Syntax
d=vec_xld2(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Note: The type for operand a in the following table is: int in 32-bit mode, and
long in 64-bit mode.

Table 210. Result and argument types

d a b

vector signed char int signed char *

long

vector unsigned char int unsigned char *

long

676 XL C/C++: Compiler Reference

Table 210. Result and argument types (continued)

d a b

vector signed short int signed short *

long

vector unsigned short int unsigned short *

long

vector signed int int signed int *

long

vector unsigned int int unsigned int *

long

vector signed long long int signed long long *

long

vector unsigned long long int unsigned long long *

long

vector float int float *

long

vector double int double *

long

Result value

This function adds the displacement and the pointer R-value to obtain the address
for the load operation. It does not truncate the effective address to a multiple of 16
bytes.

vec_xlds
Purpose

Loads an 8-byte element from the memory address specified by the displacement a
and the pointer b and then splats it onto a vector.

This built-in function is valid only when -qarch is set to target POWER7
processors or higher.

Syntax
d=vec_xlds(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Note: The type for operand a in the following table is: int in 32-bit mode, and
long in 64-bit mode.

Chapter 7. Compiler built-in functions 677

Table 211. Result and argument types

d a b

vector signed long long int signed long long *

long

vector unsigned long long int unsigned long long *

long

vector double int double *

long

Result value

This function adds the displacement and the pointer R-value to obtain the address
for the load operation. It does not truncate the effective address to a multiple of 16
bytes.

vec_xlw4
Purpose

Loads a 16-byte vector from four 4-byte elements at the memory address specified
by the displacement a and the pointer b.

This built-in function is valid only when -qarch is set to target POWER7
processors or higher.

Syntax
d=vec_xlw4(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Note: The type for operand a in the following table is: int in 32-bit mode, and
long in 64-bit mode.

Table 212. Result and argument types

d a b

vector signed char int signed char *

long

vector unsigned char int unsigned char *

long

vector signed short int signed short *

long

vector unsigned short int unsigned short *

long

vector signed int int signed int *

long

678 XL C/C++: Compiler Reference

Table 212. Result and argument types (continued)

d a b

vector unsigned int int unsigned int *

long

vector float int float *

long

Result value

This function adds the displacement and the pointer R-value to obtain the address
for the load operation. It does not truncate the effective address to a multiple of 16
bytes.

vec_xor

Purpose

Performs a bitwise XOR of the given vectors.

Syntax
d=vec_xor(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 213. Result and argument types

d a b

vector bool char vector bool char vector bool char

vector signed char vector bool char vector signed char

vector signed char vector signed char

vector bool char

vector unsigned char vector bool char vector unsigned char

vector unsigned char vector unsigned char

vector bool char

vector bool short vector bool short vector vector bool short

vector signed short vector bool short vector signed short

vector signed short vector signed short

vector bool short

vector unsigned short vector bool short vector unsigned short

vector unsigned short vector unsigned short

vector bool short

vector bool int vector bool int vector bool int

vector signed int vector bool int vector signed int

vector signed int vector signed int

vector bool int

Chapter 7. Compiler built-in functions 679

Table 213. Result and argument types (continued)

d a b

vector unsigned int vector bool int vector unsigned int

vector unsigned int vector unsigned int

vector bool int

vector bool long long vector bool long long vector bool long long

vector signed long long vector bool long long vector signed long long

vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector bool long long vector unsigned long long

vector unsigned long long vector unsigned long long

vector bool long long

vector float vector bool int vector float

vector float vector bool int

vector float

vector double vector bool long long vector double

vector double vector bool long long

vector double

Result value

The result is the bitwise XOR of a and b.

vec_xst

Purpose

Stores the elements of the 16-byte vector a to the effective address obtained by
adding the displacement provided by b with the address provided by c. The
effective address is not truncated to a multiple of 16 bytes.

The order of vector elements stored to the effective address might be different on
little-endian systems.

This built-in function is valid only when -qarch is set to target POWER7 processors
or higher.

Syntax
d=vec_xst(a, b, c)

Result and argument types

The following tables describe the types of the function returned value and the
function arguments in different bit modes.

The element order of in argument a is different on little-endian systems.

680 XL C/C++: Compiler Reference

Table 214. Data type of function returned value and arguments (in 32-bit mode)

d a b c

void vector signed char int signed char *

vector unsigned char unsigned char *

vector signed short signed short *

vector unsigned short unsigned short *

vector signed int signed int *

vector unsigned int unsigned int *

vector signed long
long

signed long long *

vector unsigned long
long

unsigned long long *

vector float float *

vector double double *

Table 215. Data type of function returned value and arguments (in 64-bit mode)

d a b c

void vector signed char long signed char *

vector unsigned char unsigned char *

vector signed short signed short *

vector unsigned short unsigned short *

vector signed int signed int *

vector unsigned int unsigned int *

vector signed long
long

signed long long *

vector unsigned long
long

unsigned long long *

vector float float *

vector double double *

vec_xst_be

Purpose

Stores the elements of the 16-byte vector a in big endian element order to the
effective address obtained by adding the displacement provided by b with the
address provided by c. The effective address is not truncated to a multiple of 16
bytes.

This built-in function is valid only when -qarch is set to target POWER7 processors
or higher.

Syntax
d=vec_xst_be(a, b, c)

Chapter 7. Compiler built-in functions 681

Result and argument types

The following tables describe the types of the function returned value and the
function arguments in different bit modes.

Table 216. Data type of function returned value and arguments (in 32-bit mode)

d a b c

void vector signed char int signed char *

vector unsigned char unsigned char *

vector signed short signed short *

vector unsigned short unsigned short *

vector signed int signed int *

vector unsigned int unsigned int *

vector signed long
long

signed long long *

vector unsigned long
long

unsigned long long *

vector float float *

vector double double *

Table 217. Data type of function returned value and arguments (in 64-bit mode)

d a b c

void vector signed char long signed char *

vector unsigned char unsigned char *

vector signed short signed short *

vector unsigned short unsigned short *

vector signed int signed int *

vector unsigned int unsigned int *

vector signed long
long

signed long long *

vector unsigned long
long

unsigned long long *

vector float float *

vector double double *

vec_xstd2
Purpose

Puts a 16-byte vector a as two 8-byte elements to the memory address specified by
the displacement b and the pointer c.

This built-in function is valid only when -qarch is set to target POWER7
processors or higher.

Syntax
d=vec_xstd2(a, b, c)

682 XL C/C++: Compiler Reference

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Note: The type for operand a in the following table is: int in 32-bit mode, and
long in 64-bit mode.

Table 218. Result and argument types

d a b c

void vector signed char int signed char *

long

vector unsigned char int unsigned char *

long

vector signed short int signed short *

long

vector unsigned short int unsigned short *

long

vector signed int int signed int *

long

vector unsigned int int unsigned int *

long

vector signed long
long

int signed long long *

long

vector unsigned long
long

int unsigned long long *

long

vector float int float *

long

vector double int double *

long

vector pixel int signed short *

unsigned short *

long signed short *

unsigned short *

Result value

This function adds the displacement and the pointer R-value to obtain the address
for the store operation. It does not truncate the effective address to a multiple of 16
bytes.

vec_xstw4
Purpose

Puts a 16-byte vector a to four 4-byte elements at the memory address specified by
the displacement b and the pointer c.

Chapter 7. Compiler built-in functions 683

This built-in function is valid only when -qarch is set to target POWER7
processors or higher.

Syntax
d=vec_xstw4(a, b, c)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Note: The type for operand b in the following table is: int in 32-bit mode, and
long in 64-bit mode.

Table 219. Result and argument types

d a b c

void vector signed char int signed char *

long

vector unsigned char int unsigned char *

long

vector signed short int signed short *

long

vector unsigned short int unsigned short *

long

vector signed int int signed int *

long

vector unsigned int int unsigned int *

long

vector float int float *

long

vector pixel int signed short *

unsigned short *

long signed short *

unsigned short *

Result value

This function adds the displacement and the pointer R-value to obtain the address
for the store operation. It does not truncate the effective address to a multiple of 16
bytes.

GCC atomic memory access built-in functions (IBM extension)
This section provides reference information for atomic memory access built-in
functions whose behavior corresponds to that provided by GNU Compiler
Collection (GCC). In a program with multiple threads, you can use these functions
to atomically and safely modify data in one thread without interference from other
threads.

684 XL C/C++: Compiler Reference

These built-in functions manipulate data atomically, regardless of how many
processors are installed in the host machine.

In the prototype of each function, the parameter types T, U, and V can be of
pointer or integral type. U and V can also be of real floating-point type, but only
when T is of integral type. The following tables list the integral and floating-point
types that are supported by these built-in functions.

Table 220. Supported integral data types

signed char unsigned char

short int unsigned short int

int unsigned int

long int unsigned long int

long long int ▌1▐ unsigned long long int ▌1▐

C++ bool C _Bool

▌1▐ Restriction: This type is supported only on 64-bit platforms.

Table 221. Supported floating-point data types

float double

long double

In the prototype of each function, the ellipsis (...) represents an optional list of
parameters. XL C/C++ ignores these optional parameters and protects all globally
accessible variables.

The GCC atomic memory access built-in functions are grouped into the following
categories.

Atomic lock, release, and synchronize functions

__sync_lock_test_and_set
Purpose

This function atomically assigns the value of __v to the variable that __p points to.

An acquire memory barrier is created when this function is invoked.

Prototype

T __sync_lock_test_and_set (T* __p, U __v, ...);

Parameters

__p
The pointer of the variable that is to be set.

__v
The value to set to the variable that __p points to.

Return value

The function returns the initial value of the variable that __p points to.

Chapter 7. Compiler built-in functions 685

__sync_lock_release
Purpose

This function releases the lock acquired by the __sync_lock_test_and_set function,
and assigns the value of zero to the variable that __p points to.

A release memory barrier is created when this function is invoked.

Prototype

void __sync_lock_release (T* __p, ...);

Parameters

__p
The pointer of the variable that is to be set.

__sync_synchronize
Purpose

This function synchronizes data in all threads.

A full memory barrier is created when this function is invoked.

Prototype

void __sync_synchronize ();

Atomic fetch and operation functions

__sync_fetch_and_and
Purpose

This function performs an atomic bitwise AND operation on the variable __v with
the variable that __p points to. The result is stored in the address that is specified
by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_fetch_and_and (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable on which the bitwise AND operation is to be
performed. The value of this variable is to be changed to the result of the
operation.

__v
The variable with which the bitwise AND operation is to be performed.

Return value

The function returns the initial value of the variable that __p points to.

686 XL C/C++: Compiler Reference

__sync_fetch_and_nand
Purpose

This function performs an atomic bitwise NAND operation on the variable __v
with the variable that __p points to. The result is stored in the address that is
specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_fetch_and_nand (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable on which the bitwise NAND operation is to be
performed. The value of this variable is to be changed to the result of the
operation.

__v
The variable with which the bitwise NAND operation is to be performed.

Return value

The function returns the initial value of the variable that __p points to.

__sync_fetch_and_or
Purpose

This function performs an atomic bitwise inclusive OR operation on the variable
__v with the variable that __p points to. The result is stored in the address that is
specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_fetch_and_or (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable on which the bitwise inclusive OR operation is to be
performed. The value of this variable is to be changed to the result of the
operation.

__v
The variable with which the bitwise inclusive OR operation is to be performed.

Return value

The function returns the initial value of the variable that __p points to.

Chapter 7. Compiler built-in functions 687

__sync_fetch_and_xor
Purpose

This function performs an atomic bitwise exclusive OR operation on the variable
__v with the variable that __p points to. The result is stored in the address that is
specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_fetch_and_xor (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable on which the bitwise exclusive OR operation is to be
performed. The value of this variable is to be changed to the result of the
operation.

__v
The variable with which the bitwise exclusive OR operation is to be performed.

Return value

The function returns the initial value of the variable that __p points to.

__sync_fetch_and_add
Purpose

This function atomically adds the value of __v to the variable that __p points to.
The result is stored in the address that is specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_fetch_and_add (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable to which __v is to be added. The value of this
variable is to be changed to the result of the add operation.

__v
The variable whose value is to be added to the variable that __p points to.

Return value

The function returns the initial value of the variable that __p points to.

__sync_fetch_and_sub
Purpose

This function atomically subtracts the value of __v from the variable that __p
points to. The result is stored in the address that is specified by __p.

688 XL C/C++: Compiler Reference

A full memory barrier is created when this function is invoked.

Prototype

T __sync_fetch_and_sub (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable from which __v is to be subtracted. The value of this
variable is to be changed to the result of the sub operation.

__v
The variable whose value is to be subtracted from the variable that __p points
to.

Return value

The function returns the initial value of the variable that __p points to.

Atomic operation and fetch functions

__sync_and_and_fetch
Purpose

This function performs an atomic bitwise AND operation on the variable __v with
the variable that __p points to. The result is stored in the address that is specified
by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_and_and_fetch (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable on which the bitwise AND operation is to be
performed. The value of this variable is to be changed to the result of the
operation.

__v
The variable with which the bitwise AND operation is to be performed.

Return value

The function returns the new value of the variable that __p points to.

__sync_nand_and_fetch
Purpose

This function performs an atomic bitwise NAND operation on the variable __v
with the variable that __p points to. The result is stored in the address that is
specified by __p.

A full memory barrier is created when this function is invoked.

Chapter 7. Compiler built-in functions 689

Prototype

T __sync_nand_and_fetch (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable on which the bitwise NAND operation is to be
performed. The value of this variable is to be changed to the result of the
operation.

__v
The variable with which the bitwise NAND operation is to be performed.

Return value

The function returns the new value of the variable that __p points to.

__sync_or_and_fetch
Purpose

This function performs an atomic bitwise inclusive OR operation on the variable
__v with variable that __p points to. The result is stored in the address that is
specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_or_and_fetch (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable on which the bitwise inclusive OR operation is to be
performed. The value of this variable is to be changed to the result of the
operation.

__v
The variable with which the bitwise inclusive OR operation is to be performed.

Return value

The function returns the new value of the variable that __p points to.

__sync_xor_and_fetch
Purpose

This function performs an atomic bitwise exclusive OR operation on the variable
__v with the variable that __p points to. The result is stored in the address that is
specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_xor_and_fetch (T* __p, U __v, ...);

690 XL C/C++: Compiler Reference

Parameters

__p
The pointer of the variable on which the bitwise exclusive OR operation is to
be performed. The value of this variable is to be changed to the result of the
operation.

__v
The variable with which the bitwise exclusive OR operation is to be performed.

Return value

The function returns the new value of the variable that __p points to.

__sync_add_and_fetch
Purpose

This function atomically adds the value of __v to the variable that __p points to.
The result is stored in the address that is specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_add_and_fetch (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable to which __v is to be added. The value of this
variable is to be changed to the result of the add operation.

__v
The variable whose value is to be added to the variable that __p points to.

Return value

The function returns the new value of the variable that __p points to.

__sync_sub_and_fetch
Purpose

This function atomically subtracts the value of __v from the variable that __p
points to. The result is stored in the address that is specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_sub_and_fetch (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable from which __v is to be subtracted. The value of this
variable is to be changed to the result of the sub operation.

Chapter 7. Compiler built-in functions 691

__v
The variable whose value is to be subtracted from the variable that __p points
to.

Return value

The function returns the new value of the variable that __p points to.

Atomic compare and swap functions

__sync_val_compare_and_swap
Purpose

This function compares the value of __compVal to the value of the variable that __p
points to. If they are equal, the value of __exchVal is stored in the address that is
specified by __p; otherwise, no operation is performed.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_val_compare_and_swap (T* __p, U __compVal, V __exchVal, ...);

Parameters

__p
The pointer to a variable whose value is to be compared with.

__compVal
The value to be compared with the value of the variable that __p points to.

__exchVal
The value to be stored in the address that __p points to.

Return value

The function returns the initial value of the variable that __p points to.

__sync_bool_compare_and_swap
Purpose

This function compares the value of __compVal with the value of the variable that
__p points to. If they are equal, the value of __exchVal is stored in the address that
is specified by __p; otherwise, no operation is performed.

A full memory barrier is created when this function is invoked.

Prototype

bool __sync_bool_compare_and_swap (T* __p, U __compVal, V __exchVal, ...);

Parameters

__p
The pointer to a variable whose value is to be compared with.

__compVal
The value to be compared with the value of the variable that __p points to.

692 XL C/C++: Compiler Reference

__exchVal
The value to be stored in the address that __p points to.

Return value

If the value of __compVal and the value of the variable that __p points to are equal,
the function returns true; otherwise, it returns false.

Miscellaneous built-in functions
Miscellaneous functions are grouped into the following categories:
v “Optimization-related functions”
v “Move to/from register functions” on page 694
v “Memory-related functions” on page 696

Optimization-related functions

__alignx
Purpose

Allows for optimizations such as automatic vectorization by informing the
compiler that the data pointed to by pointer is aligned at a known compile-time
offset.

Prototype

void __alignx (int alignment, const void* pointer);

Parameters

alignment
Must be a constant integer with a value greater than zero and of a power of
two.

__builtin_expect
Purpose

Indicates that an expression is likely to evaluate to a specified value. The compiler
may use this knowledge to direct optimizations.

Prototype

long __builtin_expect (long expression, long value);

Parameters

expression
Should be an integral-type expression.

value
Must be a constant literal.

Chapter 7. Compiler built-in functions 693

Usage

If the expression does not actually evaluate at run time to the predicted value,
performance may suffer. Therefore, this built-in function should be used with
caution.

__fence
Purpose

Acts as a barrier to compiler optimizations that involve code motion, or reordering
of machine instructions. Compiler optimizations will not move machine
instructions past the location of the __fence call.

Prototype

void __fence (void);

Examples

This function is useful to guarantee the ordering of instructions in the object code
generated by the compiler when optimization is enabled.

Move to/from register functions

__mftb
Purpose

Move from Time Base

In 32-bit compilation mode, returns the lower word of the time base register. In
64-bit mode, returns the entire doubleword of the time base register.

Prototype

unsigned long __mftb (void);

Usage

In 32-bit mode, this function can be used in conjunction with the__mftbu built-in
function to read the entire time base register. In 64-bit mode, the entire doubleword
of the time base register is returned, so separate use of __mftbu is unnecessary

It is recommended that you insert the __fence built-in function before and after the
__mftb built-in function.

__mftbu
Purpose

Move from Time Base Upper

Returns the upper word of the time base register.

Prototype

unsigned int __mftbu (void);

694 XL C/C++: Compiler Reference

Usage

In 32-bit mode you can use this function in conjunction with the __mftb built-in
function to read the entire time base register

It is recommended that you insert the __fence built-in function before and after the
__mftbu built-in function.

__mfmsr
Purpose

Move from Machine State Register

Moves the contents of the machine state register (MSR) into bits 32 to 63 of the
designated general-purpose register.

Prototype

unsigned long __mfmsr (void);

Usage

Execution of this instruction is privileged and restricted to supervisor mode only.

__mfspr
Purpose

Move from Special-Purpose Register

Returns the value of given special purpose register.

Prototype

unsigned long __mfspr (const int registerNumber);

Parameters

registerNumber
The number of the special purpose register whose value is to be returned. The
registerNumber must be known at compile time.

__mtmsr
Purpose

Move to Machine State Register

Moves the contents of bits 32 to 62 of the designated GPR into the MSR.

Prototype

void __mtmsr (unsigned long value);

Parameters

value
The bitwise OR result of bits 48 and 49 of value is placed into MSR48. The
bitwise OR result of bits 58 and 49 of value is placed into MSR58. The bitwise

Chapter 7. Compiler built-in functions 695

OR result of bits 59 and 49 of value is placed into MSR59. Bits 32:47, 49:50,
52:57, and 60:62 of value are placed into the corresponding bits of the MSR.

Usage

Execution of this instruction is privileged and restricted to supervisor mode only.

__mtspr
Purpose

Move to Special-Purpose Register

Sets the value of a special purpose register.

Prototype

void __mtspr (const int registerNumber, unsigned long value);

Parameters

registerNumber
The number of the special purpose register whose value is to be set. The
registerNumber must be known at compile time.

value
Must be known at compile time.

Related information
v “Register transfer functions” on page 533

Memory-related functions

__alloca
Purpose

Allocates space for an object. The allocated space is put on the stack and freed
when the calling function returns.

Prototype

void* __alloca (size_t size)

Parameters

size
An integer representing the amount of space to be allocated, measured in
bytes.

__builtin_frame_address, __builtin_return_address
Purpose

Returns the address of the stack frame, or return address, of the current function,
or of one of its callers.

696 XL C/C++: Compiler Reference

Prototype

void* __builtin_frame_address (unsigned int level);

void* __builtin_return_address (unsigned int level);

Parameters

level
A constant literal indicating the number of frames to scan up the call stack.
The level must range from 0 to 63. A value of 0 returns the frame or return
address of the current function, a value of 1 returns the frame or return
address of the caller of the current function and so on.

Return value

Returns 0 when the top of the stack is reached. Optimizations such as inlining may
affect the expected return value by introducing extra stack frames or fewer stack
frames than expected. If a function is inlined, the frame or return address
corresponds to that of the function that is returned to.

__mem_delay
Purpose

The __mem_delay built-in function specifies how many delay cycles there are for
specific loads. These specific loads are delinquent loads with a long memory access
latency because of cache misses.

When you specify which load is delinquent the compiler takes that information
and carries out optimizations such as data prefetching. In addition, when you run
-qprefetch=assistthread, the compiler uses the delinquent load information to
perform analysis and generate prefetching assist threads. For more information, see
“-qprefetch” on page 306.

Prototype

void* __mem_delay (const void *address, const unsigned int cycles);

Parameters

address
The address of the data to be loaded or stored.

cycles
A compile time constant, typically either L1 miss latency or L2 miss latency.

Usage

The __mem_delay built-in function is placed immediately before a statement that
contains a specified memory reference.

Examples

Here is how you generate code using assist threads with __mem_delay:

Initial code:

Chapter 7. Compiler built-in functions 697

int y[64], x[1089], w[1024];

void foo(void){
int i, j;
for (i = 0; i &l; 64; i++) {

for (j = 0; j < 1024; j++) {

/* what to prefetch? y[i]; inserted by the user */
__mem_delay(&y[i], 10);
y[i] = y[i] + x[i + j] * w[j];
x[i + j + 1] = y[i] * 2;

}
}

}

Assist thread generated code:
void foo@clone(unsigned thread_id, unsigned version)

{ if (!1) goto lab_1;

/* version control to synchronize assist and main thread */
if (version == @2version0) goto lab_5;

goto lab_1;

lab_5:

@CIV1 = 0;

do { /* id=1 guarded */ /* ~2 */

if (!1) goto lab_3;

@CIV0 = 0;

do { /* id=2 guarded */ /* ~4 */

/* region = 0 */

/* __dcbt call generated to prefetch y[i] access */
__dcbt(((char *)&y + (4)*(@CIV1)))
@CIV0 = @CIV0 + 1;
} while ((unsigned) @CIV0 < 1024u); /* ~4 */

lab_3:
@CIV1 = @CIV1 + 1;
} while ((unsigned) @CIV1 < 64u); /* ~2 */

lab_1:

return;
}

Related information
v “-qprefetch” on page 306

Built-in functions for parallel processing
Use these built-in functions to obtain information about the parallel environment:
v “IBM SMP built-in functions” on page 699
v Chapter 8, “OpenMP runtime functions for parallel processing,” on page 707
v “Transactional memory built-in functions” on page 699

698 XL C/C++: Compiler Reference

IBM SMP built-in functions

__parthds (C only)
Purpose

Returns the value of the parthds runtime option.

Prototype

int __parthds (void);

Return value

If the parthds option is not explicitly set, returns the default value set by the
runtime library. If the -qsmp compiler option was not specified during program
compilation, returns 1 regardless of runtime options selected.

__usrthds (C only)
Purpose

Returns the value of the usrthds runtime option.

Prototype

int __usrthds (void);

Return value

If the usrthds option is not explicitly set, or the -qsmp compiler option is not
specified during program compilation, returns 0 regardless of runtime options
selected.

Transactional memory built-in functions
Transactional memory is a model for parallel programming. This module provides
functions that allow you to designate a block of instructions or statements to be
treated atomically. Such an atomic block is called a transaction. When a thread
executes a transaction, all of the memory operations within the transaction occur
simultaneously from the perspective of other threads.

For some kinds of parallel programs, a transaction implementation can be more
efficient than other implementation methods, such as locks. You can use these
built-in functions to mark the beginning and end of transactions, and to diagnose
the reasons for failure.

In the transactional memory built-in functions, the TM_buff parameter allows for a
user-provided memory location to be used to store the transaction state and
debugging information.

The transactional state is entered following a successful call to __TM_begin or
__TM_simple_begin, and ended by __TM_end, __TM_abort, __TM_named_abort, or by
transaction failure.

Transaction failure occurs when any of the following conditions is met:

Chapter 7. Compiler built-in functions 699

v Memory that is accessed in the transactional state is accessed by another thread
or by the same thread running in the suspended state before the transaction
completes.

v The architecture-defined footprint for memory accesses within a transaction is
exceeded.

v The architecture-defined nesting limit for nested transactions is exceeded.

Transactions can be nested. You can use __TM_begin or __TM_simple_begin in the
transactional state. Within an outermost transaction initiated with __TM_begin,
nested transactions must be initiated with __TM_simple_begin, or by __TM_begin
using the same buffer of the outermost containing transaction.

A nested transaction is subsumed into the containing transaction. Therefore, a
failure of the nested transaction is treated as a failure of all containing transactions,
and the nested transaction completes only when all contained transactions
complete.

Notes:

v Transactional memory built-in functions are valid only when -qarch is set to
target POWER8 processors.

v You must include the htmxlintrin.h file in the source code if you use any of the
transactional memory built-in functions.

Transaction begin and end functions

__TM_begin:
Purpose

Marks the beginning of a transaction.

Prototype

long __TM_begin (void* const TM_buff);

Parameter

TM_buff
The address of a 16-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Usage

Upon a transaction failure (including a user abort), execution resumes from the
point immediately following the __TM_begin that initiated the failed transaction as
if the __TM_begin were unsuccessful. The diagnostic information is transferred from
the TEXASR and TFIAR registers to TM_buff.

You can use the transaction inquiry functions to query the transaction status.

Return value

This function returns _HTM_TBEGIN_STARTED if successful; otherwise, it returns
a different value.

700 XL C/C++: Compiler Reference

Related information

v “__TM_simple_begin”
v “Transaction inquiry functions” on page 702

__TM_end:
Purpose

Marks the end of a transaction.

Prototype

long __TM_end ();

Return value

The return value is _HTM_TBEGIN_STARTED if the thread is in the transactional
state before the instruction starts; otherwise, it returns a different value.

__TM_simple_begin:
Purpose

Marks the beginning of a transaction.

Prototype

long __TM_simple_begin ();

Usage

Upon a transaction failure (including a user abort), execution resumes from the
point immediately following the __TM_simple_begin function that initiated the
failed transaction as if the __TM_simple_begin were unsuccessful. The diagnostic
information is saved in the TEXASR register.

The transaction status of transactions started using __TM_simple_begin cannot be
queried by using the transaction inquiry functions.

Return value

This function returns _HTM_TBEGIN_STARTED if successful; otherwise, it returns
a different value.

Related information

v “__TM_begin” on page 700
v “Transaction inquiry functions” on page 702

Transaction abort functions

__TM_abort:
Purpose

Aborts a transaction with failure code 0.

Chapter 7. Compiler built-in functions 701

Prototype

void __TM_abort ();

Related information

v “__TM_named_abort”

__TM_named_abort:
Purpose

Aborts a transaction with the specified failure code.

Prototype

void __TM_named_abort (unsigned char const code);

Parameter

code
The specified failure code. It is a literal that is in the range of 0 - 255.

Related information

v “__TM_abort” on page 701

Transaction inquiry functions

__TM_failure_address:
Purpose

Gets the code address at which the most recent transaction was aborted.

Prototypes

long __TM_failure_address (void* const TM_buff);

Parameter

TM_buff
The address of a 16-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Return value

This function returns the address at which the most recent transaction was aborted.
The address is obtained from the TFIAR register.

__TM_failure_code:
Purpose

Provides the raw failure code for the transaction.

Prototypes

long long __TM_failure_code (void* const TM_buff);

702 XL C/C++: Compiler Reference

Parameter

TM_buff
The address of a 16-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Return value

The function returns the raw failure code for the transaction. The raw failure code
is obtained from the TEXASR register.

__TM_is_conflict:
Purpose

Queries whether the transaction was aborted because of a conflict.

Prototypes

long __TM_is_conflict (void* const TM_buff);

Parameter

TM_buff
The address of a 16-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Return value

This function returns 1 if both of the following qualifications are met; otherwise, it
returns 0:
v The TDB is valid.
v The transaction was aborted because of a conflict. Bit 11, 12, 13, and 14 of the

TEXASR register are ORed as 1.

__TM_is_failure_persistent:
Purpose

Queries whether the transaction was aborted because of a persistent reason.

Prototypes

long __TM_is_failure_persistent (void* const TM_buff);

Parameter

TM_buff
The address of a 16-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Return value

This function returns 1 if the transaction was aborted because of a persistent
reason; bit 7 of the TEXASR register is 1. Otherwise, the function returns 0.

__TM_is_footprint_exceeded:

Chapter 7. Compiler built-in functions 703

Purpose

Queries whether the transaction was aborted because of exceeding the maximum
number of cache lines.

Prototypes

long __TM_is_footprint_exceeded (void* const TM_buff);

Parameter

TM_buff
The address of a 16-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Return value

This function returns 1 if both of the following qualifications are met; otherwise, it
returns 0:
v The TDB is valid.
v The transaction was aborted because the maximum number of cache lines was

exceeded. Bit 10 of the TEXASR register is 1.

__TM_is_illegal:
Purpose

Queries whether the transaction was aborted because of an illegal attempt, such as
an instruction not permitted in transactional mode or other kind of illegal access.

Prototypes

long __TM_is_illegal (void* const TM_buff);

Parameter

TM_buff
The address of a 16-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Return value

This function returns 1 if both of the following qualifications are met; otherwise, it
returns 0:
v The TDB is valid.
v The transaction was aborted because of an illegal attempt. Bit 8 of the TEXASR

register is 1.

__TM_is_named_user_abort:
Purpose

Queries whether the transaction failed because of a user abort instruction and gets
the transaction abort code.

Prototypes

long __TM_is_named_user_abort (void* const TM_buff, unsigned char* code);

704 XL C/C++: Compiler Reference

Parameter

code
The address of the memory location to save the transaction abort code.

TM_buff
The address of a 16-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Return value

This function returns 1 if both of the following qualifications are met; otherwise, it
returns 0:
v The TDB is valid.
v The transaction failed because of a user abort instruction. Bit 31 of the TEXASR

register is 1.

When both of the preceding qualifications are met, code is set to bit 0 - 7 of the
TEXASR register. The value of code is also passed to the tabort hardware
instruction. When either of the preceding qualifications is not met, code is set to 0.

Related information

v “__TM_is_user_abort”

__TM_is_nested_too_deep:
Purpose

Queries whether the transaction was aborted because of trying to exceed the
maximum nesting depth.

Prototypes

long __TM_is_nested_too_deep (void* const TM_buff);

Parameter

TM_buff
The address of a 16-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Return value

This function returns 1 if both of the following qualifications are met; otherwise, it
returns 0:
v The TDB is valid.
v The transaction was aborted because of trying to exceed the maximum nesting

depth. Bit 9 of the TEXASR register is 1.

__TM_is_user_abort:
Purpose

Queries whether the transaction failed because of a user abort instruction.

Prototypes

long __TM_is_user_abort (void* const TM_buff);

Chapter 7. Compiler built-in functions 705

Parameter

TM_buff
The address of a 16-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Return value

This function returns 1 if both of the following qualifications are met; otherwise, it
returns 0:
v The TDB is valid.
v The transaction failed because of a user abort instruction. Bit 31 of the TEXASR

register is 1.

Related information

v “__TM_is_named_user_abort” on page 704

__TM_nesting_depth:
Purpose

Returns the current nesting depth. If the thread is not in the transactional state, the
function returns the depth at which the most recent transaction was aborted.

Prototypes

long __TM_nesting_depth (void* const TM_buff);

Parameter

TM_buff
The address of a 16-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Return value

If the thread is in the transactional state, this function returns the current nesting
depth. Otherwise, the function returns the depth at which the most recent
transaction was aborted. The function returns 0 if the transaction is completed
successfully.

The current nesting depth is obtained from bit 52 - 63 of the TEXASR register.

706 XL C/C++: Compiler Reference

Chapter 8. OpenMP runtime functions for parallel processing

Function definitions for the omp_ functions can be found in the omp.h header file.

For complete information about OpenMP runtime library functions, refer to the
OpenMP Application Program Interface specification in www.openmp.org.

Related information
v “Environment variables for parallel processing” on page 27

omp_get_max_active_levels
Purpose

Returns the value of the max-active-levels-var internal control variable that
determines the maximum number of nested active parallel regions.
max-active-levels-var can be set with the OMP_MAX_ACTIVE_LEVELS environment
variable or the omp_set_max_active_levels runtime routine.

Prototype

int omp_get_max_active_levels(void);

omp_set_max_active_levels
Purpose

Sets the value of the max-active-levels-var internal control variable to the value in
the argument. If the number of parallel levels requested exceeds the number of the
supported levels of parallelism, the value of max-active-levels-var is set to the
number of parallel levels supported by the run time. If the number of parallel
levels requested is not a positive integer, this routine call is ignored.

When nested parallelism is turned off, this routine has no effect and the value of
max-active-levels-var remains 1. max-active-levels-var can also be set with the
OMP_MAX_ACTIVE_LEVELS environment variable. To retrieve the value for
max-active-levels-var, use the omp_get_max_active_levels function.

Use omp_set_max_active_levels only in serial regions of a program. This routine
has no effect in parallel regions of a program.

Prototype

void omp_set_max_active_levels(int max_levels);

Parameter

max_levels
An integer that specifies the maximum number of nested, active parallel
regions.

© Copyright IBM Corp. 1996, 2015 707

http://www.openmp.org

omp_get_schedule
Purpose

Returns the run-sched-var internal control variable of the team that is processing the
parallel region. The argument kind returns the type of schedule that will be used.
modifier represents the chunk size that is set for applicable schedule types.
run-sched-var can be set with the OMP_SCHEDULE environment variable or the
omp_set_schedule function.

Prototype

int omp_get_schedule(omp_sched_t * kind, int * modifier);

Parameters

kind
The value returned for kind is one of the schedule types affinity, auto, dynamic,
guided, runtime, or static.

Note: The affinity schedule type has been deprecated and might be removed
in a future release. You can use the dynamic schedule type for a similar
functionality.

modifier
For the schedule type dynamic, guided, or static, modifier is the chunk size that
is set. For the schedule type auto, modifier has no meaning.

Related reference:
“omp_set_schedule”
Related information:
“OMP_SCHEDULE” on page 38

omp_set_schedule
Purpose

Sets the value of the run-sched-var internal control variable. Use omp_set_schedule
if you want to set the schedule type separately from the OMP_SCHEDULE
environment variable.

Prototype

void omp_set_schedule (omp_sched_t kind, int modifier);

Parameters

kind
Must be one of the schedule types affinity, auto, dynamic, guided, runtime, or
static.

modifier
For the schedule type dynamic, guided, or static, modifier is the chunk size that
you want to set. Generally it is a positive integer. If the value is less than one,
the default will be used. For the schedule type auto, modifier has no meaning.

Related reference:
“omp_get_schedule”

708 XL C/C++: Compiler Reference

Related information:
“OMP_SCHEDULE” on page 38

omp_get_thread_limit
Purpose

Returns the maximum number of OpenMP threads available to the program. The
value is stored in the thread-limit-var internal control variable. thread-limit-var can be
set with the OMP_THREAD_LIMIT environment variable.

Prototype

int omp_get_thread_limit(void);

omp_get_level
Purpose

Returns the number of active and inactive nested parallel regions that the
generating task is executing in. This does not include the implicit parallel region.
Returns 0 if it is called from the sequential part of the program. Otherwise, returns
a nonnegative integer.

Prototype

int omp_get_level(void);

omp_get_ancestor_thread_num
Purpose

Returns the thread number of the ancestor of the current thread at a given nested
level. Returns -1 if the nested level is not within the range of 0 and the current
thread's nested level as returned by omp_get_level.

Prototype

int omp_get_ancestor_thread_num(int level);

Parameter

level
Specifies a given nested level of the current thread.

omp_get_team_size
Purpose

Returns the thread team size that the ancestor or the current thread belongs to.
omp_get_team_size returns -1 if the nested level is not within the range of 0 and
the current thread's nested level as returned by omp_get_level.

Prototype

int omp_get_team_size(int level);

Chapter 8. OpenMP runtime functions for parallel processing 709

Parameter

level
Specifies a given nested level of the current thread.

omp_get_active_level
Purpose

Returns the number of nested, active parallel regions enclosing the task that
contains the call. The routine always returns a nonnegative integer, and returns 0 if
it is called from the sequential part of the program.

Prototype

int omp_get_active_level(void);

omp_get_num_threads
Purpose

Returns the number of threads currently in the team executing the parallel region
from which it is called.

Prototype

int omp_get_num_threads (void);

omp_set_num_threads
Purpose

Overrides the setting of the OMP_NUM_THREADS environment variable, and
specifies the number of threads to use for a subsequent parallel region by setting
the first value of num_list for OMP_NUM_THREADS.

Prototype

void omp_set_num_threads (int num_threads);

Parameters

num_threads
Must be a positive integer.

Usage

If the num_threads clause is present, then for the parallel region it is applied to, it
supersedes the number of threads requested by this function or the
OMP_NUM_THREADS environment variable. Subsequent parallel regions are not
affected by it.

710 XL C/C++: Compiler Reference

omp_get_max_threads
Purpose

Returns the first value of num_list for the OMP_NUM_THREADS environment
variable. This value is the maximum number of threads that can be used to form a
new team if a parallel region without a num_threads clause is encountered.

Prototype

int omp_get_max_threads (void);

omp_get_thread_num
Purpose

Returns the thread number, within its team, of the thread executing the function.

Prototype

int omp_get_thread_num (void);

Return value

The thread number lies between 0 and omp_get_num_threads()-1 inclusive. The
master thread of the team is thread 0.

omp_get_num_procs
Purpose

Returns the maximum number of processors that could be assigned to the
program.

Prototype

int omp_get_num_procs (void);

omp_in_final
Purpose

Returns a nonzero integer value if the function is called in a final task region;
otherwise, it returns 0.

Prototype

int omp_in_final(void);

omp_in_parallel
Purpose

Returns non-zero if it is called within the dynamic extent of a parallel region
executing in parallel; otherwise, returns 0.

Chapter 8. OpenMP runtime functions for parallel processing 711

Prototype

int omp_in_parallel (void);

omp_set_dynamic
Purpose

Enables or disables dynamic adjustment of the number of threads available for
execution of parallel regions.

Prototype

void omp_set_dynamic (int dynamic_threads);

Parameter

dynamic_threads
Indicates whether the number of threads available in subsequent parallel
region can be adjusted by the runtime library. If dynamic_threads is nonzero, the
runtime library can adjust the number of threads. If dynamic_threads is zero, the
runtime library cannot dynamically adjust the number of threads.

omp_get_dynamic
Purpose

Returns non-zero if dynamic thread adjustment is enabled and returns 0 otherwise.

Prototype

int omp_get_dynamic (void);

omp_set_nested
Purpose

Enables or disables nested parallelism.

Prototype

void omp_set_nested (int nested);

Usage

If the argument to omp_set_nested evaluates to true, nested parallelism is enabled
for the current task; otherwise, nested parallelism is disabled for the current task.
The setting of omp_set_nested overrides the setting of the OMP_NESTED
environment variable.

Note: If the number of threads in a parallel region and its nested parallel regions
exceeds the number of available processors, your program might suffer
performance degradation.

712 XL C/C++: Compiler Reference

omp_get_nested
Purpose

Returns non-zero if nested parallelism is enabled and 0 if it is disabled.

Prototype

int omp_get_nested (void);

omp_init_lock, omp_init_nest_lock
Purpose

Initializes the lock associated with the parameter lock for use in subsequent calls.

Prototype

void omp_init_lock (omp_lock_t *lock);

void omp_init_nest_lock (omp_nest_lock_t *lock);

Parameter

lock
Must be a variable of type omp_lock_t.

omp_destroy_lock, omp_destroy_nest_lock
Purpose

Ensures that the specified lock variable lock is uninitialized.

Prototype

void omp_destroy_lock (omp_lock_t *lock);

void omp_destroy_nest_lock (omp_nest_lock_t *lock);

Parameter

lock
Must be a variable of type omp_lock_t that is initialized with omp_init_lock or
omp_init_nest_lock.

omp_set_lock, omp_set_nest_lock
Purpose

Blocks the thread executing the function until the specified lock is available and
then sets the lock.

Prototype

void omp_set_lock (omp_lock_t * lock);

void omp_set_nest_lock (omp_nest_lock_t * lock);

Chapter 8. OpenMP runtime functions for parallel processing 713

Parameter

lock
Must be a variable of type omp_lock_t that is initialized with omp_init_lock or
omp_init_nest_lock.

Usage

A simple lock is available if it is unlocked. A nestable lock is available if it is
unlocked or if it is already owned by the thread executing the function.

omp_unset_lock, omp_unset_nest_lock
Purpose

Releases ownership of a lock.

Prototype

void omp_unset_lock (omp_lock_t * lock);

void omp_unset_nest_lock (omp_nest_lock_t * lock);

Parameter

lock
Must be a variable of type omp_lock_t that is initialized with omp_init_lock or
omp_init_nest_lock.

omp_test_lock, omp_test_nest_lock
Purpose

Attempts to set a lock but does not block execution of the thread.

Prototype

int omp_test_lock (omp_lock_t * lock);

int omp_test_nest_lock (omp_nest_lock_t * lock);

Parameter

lock
Must be a variable of type omp_lock_t that is initialized with omp_init_lock or
omp_init_nest_lock.

omp_get_wtime
Purpose

Returns the time elapsed from a fixed starting time.

Prototype

double omp_get_wtime (void);

714 XL C/C++: Compiler Reference

Usage

The value of the fixed starting time is determined at the start of the current
program, and remains constant throughout program execution.

omp_get_wtick
Purpose

Returns the number of seconds between clock ticks.

Prototype

double omp_get_wtick (void);

Usage

The value of the fixed starting time is determined at the start of the current
program, and remains constant throughout program execution.

Chapter 8. OpenMP runtime functions for parallel processing 715

716 XL C/C++: Compiler Reference

Notices

Programming interfaces: Intended programming interfaces allow the customer to
write programs to obtain the services of IBM XL C/C++ for AIX.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1996, 2015 717

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

718 XL C/C++: Compiler Reference

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided “AS IS”, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2015.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, or to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM's Privacy Policy at http://www.ibm.com/privacy and
IBM's Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 719

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

720 XL C/C++: Compiler Reference

Index

Special characters
-qassert compiler option 115
-qdbgfmt compiler option 139
-qfdpr compiler option 155
-qflttrap compiler option 163
-qfunctrace 170
-qhelp compiler option 182
-qlibmpi 254
-qlistfmt compiler option 257
-qoptdebug compiler option 289
-qreport compiler option 315
-qsaveopt compiler option 325
-qskipsrc compiler option 332
-qsmp compiler option 334
-qstackprotect compiler option 344
-qunique compiler option 377
-qversion compiler option 385
#pragma nofunctrace 170, 437

A
alias 101

-qalias compiler option 101
pragma disjoint 413

alignment 104
-qalign compiler option 104
pragma align 104
pragma pack 443

alter program semantics 348
appending macro definitions,

preprocessed output 329
architecture 10, 109

-q32 compiler option 100
-q64 compiler option 100
-qarch compiler option 109
-qcache compiler option 123
-qtune compiler option 371
architecture combination 373
macros 489

arrays
padding 182

auto
-qlanglvl compiler option

-qlanglvl=autotypededuction 224

B
backward 17
Backward compatibility issues 17
basic example, described xiv
built-in functions 499

BCD 519
Binary-coded decimal 519

__bcd_invalid 521
__bcdadd 520
__bcdadd_ofl 520
__bcdcmpeq 521
__bcdcmpge 521
__bcdcmpgt 521
__bcdcmple 522

built-in functions (continued)
Binary-coded decimal (continued)

__bcdcmplt 522
__bcdsub 520
__bcdsub_ofl 521
vec_ldrmb 522
vec_strmb 522

block-related 565
cache-related 550
cryptography 560

__vcipher 560
__vcipherlast 561
__vncipher 561
__vncipherlast 561
__vpermxor 563
__vpmsumb 564
__vpmsumd 564
__vpmsumh 565
__vpmsumw 565
__vsbox 562
__vshasigmad 562
__vshasigmaw 563

fixed-point 499
floating-point 508, 523

binary 508
decimal 523

for parallel processing 698
GCC atomic memory access 684
miscellaneous 693
synchronization and atomic 542
transactional memory 699

C
C++11

-qlanglvl compiler options
-qlanglvl=autotypededuction 224
-qlanglvl=c99longlong 224
-qlanglvl=c99preprocessor 224
-qlanglvl=decltype 224
-qlanglvl=defaultanddelete 224
-qlanglvl=delegatingctors 224
-qlanglvl=extended0x 224
-qlanglvl=extendedfriend 224
-qlanglvl=extendedintegersafe 224
-qlanglvl=externtemplate 224
-qlanglvl=inlinenamespace 224
-qlanglvl=nullptr 224
-qlanglvl=referencecollapsing 224
-qlanglvl=rvaluereferences 224
-qlanglvl=static_assert 224
-qlanglvl=variadic[templates] 224

-qwarn0x compiler option 392
C99 long long

-qlanglvl compiler option
-qlanglvl=c99longlong 224

C99 preprocessor
-qlanglvl compiler option

-qlanglvl=c99preprocessor 224
cleanpdf command 299
compatibility 17

compatibility (continued)
-qoldpassbyvalue compiler

option 287
compatibility

options for compatibility 95
compiler options 5

architecture-specific 10
performance optimization 90
resolving conflicts 9
specifying compiler options 5

command line 6
configuration file 8
source files 8

summary of command line
options 77

compiler predefined macros 483
configuration 40

custom configuration files 40
gxlc and gxlc++ options 44
specifying compiler options 8

configuration file 154
constructor

delegating constructors
-qlanglvl=delegatingctors 224

control of transformations 348

D
data types 109

-qaltivec compiler option 109
debug optimized code 289
decltype

-qlanglvl compiler option
-qlanglvl=decltype 224

defaulted and deleted functions
-qlanglvl compiler option

-qlanglvl=defaultanddelete 224
delegating constructors

-qlanglvl compiler option
-qlanglvl=delegatingctors 224

Dynamic Probe Class Library
-qdpcl compiler option 144

E
environment variables

compile-time and link-time 26
OpenMP

OMP_DYNAMIC 35
OMP_PROC_BIND 37
OMP_STACKSIZE 39
OMP_THREAD_LIMIT 39
OMP_WAIT_POLICY 40

runtime
XLSMPOPTS 28

scheduling algorithm environment
variable 38

setting 25
XLSMPOPTS environment

variable 27

© Copyright IBM Corp. 1996, 2015 721

error checking and debugging 86
-g compiler option 173
-qcheck compiler option 127
-qheapdebug compiler option 181
-qlinedebug compiler option 255

exception handling 438
for floating point 163

explicit instantiation declarations
-qlanglvl compiler option

-qlanglvl=externtemplate 224
extended friend declarations

-qlanglvl compiler option
-qlanglvl=extendedfriend 224

F
fini 417
floating-point

exceptions 163
function declarator

trailing return type
-qlanglvl=autotypededuction 224

function trace 170

G
GCC options 11
gxlc and gxlc++ utilities 11

H
high order transformation 182

I
implicit timestamps 366
init pragma 426
inlining 204
interprocedural analysis (IPA) 208
invocations 1

compiler or components 1
preprocessor 12
selecting 1
syntax 3

L
language level

extended0x 224
language standards 224
large pages 250
lib*.a library files 221
lib*.so library files 221
libraries

redistributable 15
XL C/C++ 15

linker 14
-G compiler option 176
invoking 14

linking 14
-brtl compiler option 120
-G compiler option 176
options that control linking 94
order of linking 15

listing 21, 327

listing (continued)
-qattr compiler option 116
-qlist compiler option 256
-qlistopt compiler option 260
-qsource compiler option 339
-qxref compiler option 396
options that control listings and

messages 88

M
macro definitions, preprocessed

output 329
macros

related to architecture 489
related to compiler options 486
related to language features 490
related to the compiler 484
related to the platform 485

maf suboption of -qfloat 351
mergepdf 299
mpi 254
MPI 254

N
name mangling

pragma 434
namespace

-qlanglvl compiler option
-qlanglvl=inlinenamespace 224

nofunctrace 437

O
object model 286

-qobjmodel compiler option 286
pragma object_model 286

OMP_DISPLAY_ENV environment
variable 33

OMP_DYNAMIC environment
variable 35

OMP_MAX_ACTIVE_LEVELS 35
OMP_NESTED environment variable 35
OMP_NUM_THREADS environment

variable 36
OMP_PROC_BIND environment

variable 37
OMP_SCHEDULE environment

variable 38
OMP_STACKSIZE environment

variable 39
OMP_THREAD_LIMIT environment

variable 39
OMP_WAIT_POLICY environment

variable 40
OpenMP 33
OpenMP environment variables 33, 39,

40
operator_new pragma 438
optimization 90

-O compiler option 282
-qalias compiler option 101
-qoptimize compiler option 282
controlling, using option_override

pragma 441

optimization (continued)
loop optimization 90

-qhot compiler option 182
-qstrict_induction compiler

option 352
options for performance

optimization 90

P
parallel processing 33

built-in functions 698
OpenMP environment variables 33
parallel processing pragmas 459
pragma directives 459
setting parallel processing

environment variables 27
performance 90

-O compiler option 282
-qalias compiler option 101
-qoptimize compiler option 282

pragma nofunctrace 437
pragmas

fini 417
init 426
namemanglingrule 434
operator_new 438
report 449
unroll 454

procedure trace 170
profile-directed feedback (PDF) 296

-qpdf1 compiler option 296
-qpdf2 compiler option 296

profiling 292
-qdpcl compiler option 144
-qpdf1 compiler option 296
-qpdf2 compiler option 296
-qshowpdf compiler option 330

R
report

pragma 449
rrm suboption of -qfloat 351

S
scoped enumerations

-qlanglvl compiler option
-qlanglvl=scopedenum 224

shared objects 272
-b compiler option 117
-qmkshrobj 272

shared-memory parallelism (SMP) 28
-qsmp compiler option 334
environment variables 28

showpdf 299
SIGTRAP signal 163
skipsrc

skipsrc 332
stackprotect

stackprotect 344
static assertions

-qlanglvl compiler option
-qlanglvl=extc1x 224
-qlanglvl=static_assert 224

722 XL C/C++: Compiler Reference

T
target machine 109
templates 360

-qlanglvl compiler option
-qlanglvl=externtemplate 224
-qlanglvl=variadic[templates] 224

-qtempinc compiler option 360
-qtemplaterecompile compiler

option 362
-qtemplateregistry compiler

option 363
-qtempmax compiler option 364
-qtmplinst compiler option 368
-qtmplparse compiler option 369
pragma define 412
pragma do_not_instantiate 414
pragma implementation 426
pragma instantiate 412

trailing return type
-qlanglvl compiler option

-qlanglvl=autotypededuction 224
transformations, control of 348
tuning 371

-qarch compiler option 371
-qtune compiler option 371

type specifier
auto

-qlanglvl=autotypededuction 224
decltype(expression)

-qlanglvl=decltype 224

V
variadic templates

-qlanglvl compiler options
-qlanglvl=extendedintegersafe 224
-qlanglvl=variadic[templates] 224

vector built-in functions
vec_abs 567
vec_abss 567
vec_add 568
vec_add_u128 570
vec_addc 568
vec_addc_u128 570
vec_adde_u128 570
vec_addec_u128 571
vec_adds 569
vec_all_in 575
vec_and 582
vec_andc 583
vec_any_out 595
vec_avg 595
vec_bperm 596
vec_ceil 596
vec_cmpb 597
vec_cmpeq 597
vec_cmpgt 599
vec_cmplt 601
vec_cntlz 602
vec_cpsgn 602
vec_dss 607
vec_dssall 607
vec_dst 607
vec_dstst 608
vec_dststt 608
vec_dstt 609

vector built-in functions (continued)
vec_eqv 609
vec_expte 611
vec_extract 611
vec_floor 612
vec_gbb 612
vec_insert 613
vec_ld 614
vec_lde 615
vec_ldl 616
vec_loge 617
vec_lvsl 618
vec_lvsr 618
vec_madd 619
vec_madds 620
vec_mergee 621
vec_mergeo 624
vec_mfvscr 625
vec_mladd 626
vec_mradds 627
vec_msum 628
vec_msums 629
vec_mtvscr 629
vec_mul 630
vec_mule 630
vec_mulo 631
vec_nabs 632
vec_nand 632
vec_neg 634
vec_nor 635
vec_orc 638
vec_pack 639
vec_packpx 640
vec_packs 640
vec_packsu 641
vec_perm 642
vec_popcnt 643
vec_revb 645
vec_reve 646
vec_rl 647
vec_round 647
vec_sl 651
vec_sld 652
vec_sldw 653
vec_sll 654
vec_slo 655
vec_splat 656
vec_splat_s16 657
vec_splat_s32 658
vec_splat_s8 657
vec_splat_u16 659
vec_splat_u32 659
vec_splat_u8 658
vec_splats 656
vec_sr 660
vec_sra 661
vec_srl 662
vec_sro 663
vec_st 663
vec_ste 665
vec_stl 666
vec_sub_u128 668
vec_subc 669
vec_subc_u128 669
vec_sube_u128 669
vec_subec_u128 670
vec_subs 670

vector built-in functions (continued)
vec_sum2s 671
vec_sum4s 671
vec_sums 672
vec_trunc 672
vec_unpackh 672
vec_unpackl 673

vector data types 109
-qaltivec compiler option 109

vector processing 330
-qaltivec compiler option 109

virtual function table (VFT)
pragma hashome 420, 427

visibility attributes 387
pragma directive 418

VMX built-in functions
vec_xl 674
vec_xl_be 675
vec_xst 680
vec_xst_be 681

X
XLSMPOPTS environment variable 28

Index 723

724 XL C/C++: Compiler Reference

IBM®

Product Number: 5765-J07; 5725-C72

Printed in USA

SC27-4259-02

	Contents
	About this document
	Who should read this document
	How to use this document
	How this document is organized
	Conventions
	Related information
	IBM XL C/C++ information
	Standards and specifications
	Other IBM information
	Other information

	Technical support
	How to send your comments

	Chapter 1. Compiling and linking applications
	Invoking the compiler
	Command-line syntax

	Types of input files
	Types of output files
	Specifying compiler options
	Specifying compiler options on the command line
	-q options
	Flag options

	Specifying compiler options in a configuration file
	Specifying compiler options in program source files
	Resolving conflicting compiler options
	Specifying compiler options for architecture-specific compilation

	Reusing GNU C/C++ compiler options with gxlc and gxlc++
	gxlc or gxlc++ syntax

	Preprocessing
	Directory search sequence for included files

	Linking
	Order of linking
	Redistributable libraries
	Compatibility with earlier versions

	Compiler messages and listings
	Compiler messages
	Compiler message format
	Message severity levels and compiler response

	Compiler return codes
	gxlc and gxlc++ return codes

	Compiler listings
	Message catalog errors
	Paging space errors during compilation

	Chapter 2. Configuring compiler defaults
	Setting environment variables
	Compile-time and link-time environment variables
	Runtime environment variables
	Environment variables for parallel processing
	XLSMPOPTS
	Environment variables for OpenMP

	Using custom compiler configuration files
	Creating custom configuration files
	Overriding the default order of attribute values
	Examples of stanzas in custom configuration files

	Configuring the gxlc or gxlc++ option mapping

	Chapter 3. Tracking and reporting compiler usage
	Understanding utilization tracking and reporting
	Overview
	Four usage scenarios
	Scenario: One machine, one shared .cuf file
	Scenario: One machine, multiple .cuf files
	Scenario: Multiple machines, one shared .cuf file
	Scenario: Multiple machines, multiple .cuf files

	Preparing to use this feature
	Time synchronization
	License types and user information
	Central configuration
	Concurrent user considerations
	Usage file considerations
	Usage file location
	The number of usage files
	Usage files on multiple machines
	Usage file size

	Regular utilization checking

	Testing utilization tracking
	Configuring utilization tracking
	Editing utilization tracking configuration file entries

	Understanding the utilization reporting tool
	Utilization reporting tool command-line options

	Generating usage reports
	Understanding usage reports

	Pruning usage files
	Diagnostic messages from utilization tracking and reporting
	Tracking compiler usage with Software License Metric Tags logging

	Chapter 4. Compiler options reference
	Summary of compiler options by functional category
	Output control
	Input control
	Language element control
	Template control (C++ only)
	Floating-point and integer control
	Object code control
	Error checking and debugging
	Listings, messages, and compiler information
	Optimization and tuning
	Linking
	Portability and migration
	Compiler customization
	Deprecated options

	Individual option descriptions
	-+ (plus sign) (C++ only)
	-# (pound sign)
	-q32, -q64
	-qaggrcopy
	-qalias
	-qalign
	-qalignrulefor (C++ only)
	-qalloca, -ma (C only)
	-qaltivec
	-qarch
	-qasm
	-qasm_as
	-qassert
	-qattr
	-b
	-B
	-qbitfields
	-bmaxdata
	-brtl
	-c
	-C, -C!
	-qcache
	-qchars
	-qcheck
	-qcinc (C++ only)
	-qcompact
	-qconcurrentupdate (C only)
	-qcpluscmt (C only)
	-qcrt
	-qc_stdinc (C only)
	-qcpp_stdinc (C++ only)
	-D
	-qdataimported, -qdatalocal, -qtocdata
	-qdbgfmt
	-qdbxextra (C only)
	-qdfp
	-qdigraph
	-qdirectstorage
	-qdollar
	-qdpcl
	-e
	-E
	-qeh (C++ only)
	-qenum
	-qexpfile
	-qextchk
	-f
	-F
	-qfdpr
	-qflag
	-qfloat
	-qflttrap
	-qformat
	-qfullpath
	-qfuncsect
	-qfunctrace
	-g
	-G
	-qgenproto (C only)
	-qhalt
	-qhaltonmsg
	-qheapdebug
	-qhelp
	-qhot
	-I
	-qidirfirst
	-qignerrno
	-qignprag
	-qinclude
	-qinfo
	-qinitauto
	-qinlglue
	-qinline
	-qipa
	-qisolated_call
	-qkeepinlines (C++ only)
	-qkeepparm
	-qkeyword
	-l
	-L
	-qlanglvl
	-qlargepage
	-qldbl128, -qlongdouble
	-qlib
	-qlibansi
	-qlibmpi
	-qlinedebug
	-qlist
	-qlistfmt
	-qlistopt
	-qlonglit
	-qlonglong
	-ma (C only)
	-qmacpstr
	-qmakedep, -M
	-qmaxerr
	-qmaxmem
	-qmbcs, -qdbcs
	-MF
	-qminimaltoc
	-qmkshrobj
	-qnamemangling (C++ only)
	-o
	-O, -qoptimize
	-qobjmodel (C++ only)
	-qoldpassbyvalue (C++ only)
	-qoptdebug
	-qoptfile
	-p, -pg, -qprofile
	-P
	-qpath
	-qpdf1, -qpdf2
	-qphsinfo
	-qpic
	-qppline
	-qprefetch
	-qprint
	-qpriority (C++ only)
	-qprocimported, -qproclocal, -qprocunknown
	-qproto (C only)
	-r
	-qreport
	-qreserved_reg
	-qrestrict
	-qro
	-qroconst
	-qroptr
	-qrtti (C++ only)
	-s
	-S
	-qsaveopt
	-qshowinc
	-qshowmacros
	-qshowpdf
	-qsimd
	-qskipsrc
	-qsmallstack
	-qsmp
	-qsource
	-qsourcetype
	-qspeculateabsolutes
	-qspill
	-qsrcmsg (C only)
	-qstackprotect
	-qstaticinline (C++ only)
	-qstatsym
	-qstdinc
	-qstrict
	-qstrict_induction
	-qsuppress
	-qsymtab (C only)
	-qsyntaxonly
	-t
	-qtabsize
	-qtbtable
	-qtempinc (C++ only)
	-qtemplatedepth (C++ only)
	-qtemplaterecompile (C++ only)
	-qtemplateregistry (C++ only)
	-qtempmax (C++ only)
	-qthreaded
	-qtimestamps
	-qtls
	-qtmplinst (C++ only)
	-qtmplparse (C++ only)
	-qtocmerge
	-qtrigraph
	-qtune
	-qtwolink (C++ only)
	-U
	-qunique
	-qunroll
	-qunwind
	-qupconv (C only)
	-qutf
	-v, -V
	-qvecnvol
	-qversion
	-qvisibility
	-w
	-W
	-qwarn0x (C++11)
	-qwarn64
	-qweakexp
	-qweaksymbol
	-qxcall
	-qxref
	-y
	-Z

	Chapter 5. Compiler pragmas reference
	Pragma directive syntax
	Scope of pragma directives
	Summary of compiler pragmas by functional category
	Language element control
	C++ template pragmas
	Floating-point and integer control
	Error checking and debugging
	Listings, messages and compiler information
	Optimization and tuning
	Object code control
	Portability and migration
	Deprecated directives

	Individual pragma descriptions
	#pragma align
	#pragma alloca (C only)
	#pragma block_loop
	#pragma chars
	#pragma comment
	#pragma define, #pragma instantiate (C++ only)
	#pragma disjoint
	#pragma do_not_instantiate (C++ only)
	#pragma enum
	#pragma execution_frequency
	#pragma expected_value
	#pragma fini (C only)
	#pragma GCC visibility push, #pragma GCC visibility pop
	#pragma hashome (C++ only)
	#pragma ibm independent_loop
	#pragma ibm iterations
	#pragma ibm max_iterations
	#pragma ibm min_iterations
	#pragma ibm snapshot
	#pragma implementation (C++ only)
	#pragma info
	#pragma init (C only)
	#pragma ishome (C++ only)
	#pragma isolated_call
	#pragma langlvl (C only)
	#pragma leaves
	#pragma loopid
	#pragma map
	#pragma mc_func
	#pragma namemangling (C++ only)
	#pragma namemanglingrule (C++ only)
	#pragma nofunctrace
	#pragma nosimd
	#pragma novector
	#pragma object_model (C++ only)
	#pragma operator_new (C++ only)
	#pragma options
	#pragma option_override
	#pragma pack
	#pragma pass_by_value (C++ only)
	#pragma priority (C++ only)
	#pragma reachable
	#pragma reg_killed_by
	#pragma report (C++ only)
	#pragma simd_level
	#pragma STDC CX_LIMITED_RANGE
	#pragma stream_unroll
	#pragma strings
	#pragma unroll, #pragma nounroll
	#pragma unrollandfuse
	#pragma weak
	Pragma directives for parallel processing
	#pragma ibm independent_calls (C only)
	#pragma ibm permutation (C only)
	#pragma ibm schedule (C only)
	#pragma ibm sequential_loop (C only)
	#pragma omp atomic
	#pragma omp parallel
	#pragma omp for
	#pragma omp ordered
	#pragma omp parallel for
	#pragma omp section, #pragma omp sections
	#pragma omp parallel sections
	#pragma omp single
	#pragma omp master
	#pragma omp critical
	#pragma omp barrier
	#pragma omp flush
	#pragma omp threadprivate
	#pragma omp task
	#pragma omp taskyield
	#pragma omp taskwait

	Chapter 6. Compiler predefined macros
	General macros
	Macros indicating the XL C/C++ compiler
	Macros related to the platform
	Macros related to compiler features
	Macros related to compiler option settings
	Macros related to architecture settings
	Macros related to language levels

	Chapter 7. Compiler built-in functions
	Fixed-point built-in functions
	Absolute value functions
	__labs, __llabs

	Assert functions
	__assert1, __assert2

	Bit permutation functions
	__bpermd

	Comparison functions
	__cmpb

	Count zero functions
	__cntlz4, __cntlz8
	__cnttz4, __cnttz8

	Division functions
	__divde
	__divdeu
	__divwe
	__divweu

	Load functions
	__load2r, __load4r
	__load8r

	Multiply functions
	__imul_dbl
	__mulhd, __mulhdu
	__mulhw, __mulhwu

	Population count functions
	__popcnt4, __popcnt8
	__popcntb
	__poppar4, __poppar8

	Rotate functions
	__rdlam
	__rldimi, __rlwimi
	__rlwnm
	__rotatel4, __rotatel8

	Store functions
	__store2r, __store4r
	__store8r

	Trap functions
	__tdw, __tw
	__trap, __trapd

	Binary floating-point built-in functions
	Absolute value functions
	__fnabss
	__fnabs

	Add functions
	__fadd, __fadds

	Conversion functions
	__cmplx, __cmplxf, __cmplxl
	__fcfid
	__fcfud
	__fctid
	__fctidz
	__fctiw
	__fctiwz
	__fctudz
	__fctuwz

	FPSCR functions
	__mtfsb0
	__mtfsb1
	__mtfsf
	__mtfsfi
	__readflm
	__setflm
	__setrnd
	__dfp_set_rounding_mode
	__dfp_get_rounding_mode

	Multiply functions
	__fmul, __fmuls

	Multiply-add/subtract functions
	__fmadd, __fmadds
	__fmsub, __fmsubs
	__fnmadd, __fnmadds
	__fnmsub, __fnmsubs

	Reciprocal estimate functions
	__fre, __fres

	Rounding functions
	__fric
	__frim, __frims
	__frin, __frins
	__frip, __frips
	__friz, __frizs

	Select functions
	__fsel, __fsels

	Square root functions
	__frsqrte, __frsqrtes
	__fsqrt, __fsqrts

	Software division functions
	__swdiv, __swdivs
	__swdiv_nochk, __swdivs_nochk

	Store functions
	__stfiw

	Binary-coded decimal built-in functions
	BCD add and subtract
	__bcdadd
	__bcdsub

	BCD test add and subtract for overflow
	__bcdadd_ofl
	__bcdsub_ofl
	__bcd_invalid

	BCD comparison
	__bcdcmpeq
	__bcdcmpge
	__bcdcmpgt
	__bcdcmple
	__bcdcmplt

	BCD load and store
	__vec_ldrmb
	__vec_strmb

	Decimal floating-point built-in functions
	Absolute value functions
	__d64_abs, __d128_abs
	__d64_nabs, __d128_nabs
	__d64_copysign, __d128_copysign

	Coefficient functions
	__d64_shift_left, __d128_shift_left
	__d64_shift_right, __d128_shift_right

	Comparison functions
	__d64_compare_exponents, __d128_compare_exponents
	__d64_compare_signaling, __d128_compare_signaling

	Conversion functions
	__cbcdtd
	__cdtbcd
	__d64_to_long_long, __d128_to_long_long
	__d64_to_long_long_rounding, __d128_to_long_long_rounding
	__d64_to_signed_BCD
	__d128_to_signed_BCD
	__d64_to_unsigned_BCD
	__d128_to_unsigned_BCD
	__signed_BCD_to_d64
	__signed_BCD_to_d128
	__unsigned_BCD_to_d64
	__unsigned_BCD_to_d128

	Exponent functions
	__d64_biased_exponent, __d128_biased_exponent
	__d64_insert_biased_exponent, __d128_insert_biased_exponent

	NaN functions
	__d32_sNaN, __d64_sNaN, __d128_sNaN
	__d32_qNaN, __d64_qNaN, __d128qNaN

	Register transfer functions
	__gpr_to_d64
	__gprs_to_d128
	__d64_to_gpr
	__d128_to_gprs

	Rounding functions
	__d64_integral, __d128_integral
	__d64_integral_no_inexact, __d128_integral_no_inexact
	__d64_quantize, __d128_quantize
	__d64_reround, __d128_reround

	Test functions
	__d64_same_quantum, __d128_same_quantum
	__d64_issigned, __d128_issigned
	__d64_isnormal, __d128_isnormal
	__d64_isfinite, __d128_isfinite
	__d64_iszero, __d128_iszero
	__d64_issubnormal, __d128_issubnormal
	__d64_isinf, __d128_isinf
	__d64_isnan, __d128_isnan
	__d64_issignaling, __d128_issignaling
	__d64_test_data_class, __d128_test_data_class
	__d64_test_data_group, __d128_test_data_group
	__d64_test_significance, __d128_test_significance

	Miscellaneous functions
	__addg6s

	Synchronization and atomic built-in functions
	Check lock functions
	__check_lock_mp, __check_lockd_mp
	__check_lock_up, __check_lockd_up

	Clear lock functions
	__clear_lock_mp, __clear_lockd_mp
	__clear_lock_up, __clear_lockd_up

	Compare and swap functions
	__compare_and_swap, __compare_and_swaplp

	Fetch functions
	__fetch_and_and, __fetch_and_andlp
	__fetch_and_or, __fetch_and_orlp
	__fetch_and_swap, __fetch_and_swaplp

	Load functions
	__lqarx, __ldarx, __lwarx, __lharx, __lbarx

	Store functions
	__stqcx, __stdcx, __stwcx, __sthcx, __stbcx

	Synchronization functions
	__eieio, __iospace_eioio
	__isync
	__lwsync, __iospace_lwsync
	__sync, __iospace_sync

	Cache-related built-in functions
	Data cache functions
	__dcbf
	__dcbfl
	__dcbflp
	__dcbst
	__dcbt
	__dcbtna
	__dcbtst
	__dcbz
	__icbt

	Prefetch built-in functions
	__dcbtstt
	__dcbtt
	__partial_dcbt
	__prefetch_by_load
	__prefetch_by_stream
	__protected_stream_count
	__protected_stream_count_depth
	__protected_stream_go
	__protected_stream_set
	__protected_unlimited_stream_set
	__protected_stream_stride
	__protected_stream_stop
	__protected_stream_stop_all
	__protected_store_stream_set
	__protected_unlimited_store_stream_set
	__transient_protected_stream_count_depth
	__transient_unlimited_protected_stream_depth
	__unlimited_protected_stream_depth

	Cryptography built-in functions
	Advanced Encryption Standard functions
	__vcipher
	__vcipherlast
	__vncipher
	__vncipherlast
	__vsbox

	Secure Hash Algorithm functions
	__vshasigmad
	__vshasigmaw

	Miscellaneous functions
	__vpermxor
	__vpmsumb
	__vpmsumd
	__vpmsumh
	__vpmsumw

	Block-related built-in functions
	__bcopy
	bzero

	Vector built-in functions
	vec_abs
	vec_abss
	vec_add
	vec_addc
	vec_adds
	vec_add_u128
	vec_addc_u128
	vec_adde_u128
	vec_addec_u128
	vec_all_eq
	vec_all_ge
	vec_all_gt
	vec_all_in
	vec_all_le
	vec_all_lt
	vec_all_nan
	vec_all_ne
	vec_all_nge
	vec_all_ngt
	vec_all_nle
	vec_all_nlt
	vec_all_numeric
	vec_and
	vec_andc
	vec_any_eq
	vec_any_ge
	vec_any_gt
	vec_any_le
	vec_any_lt
	vec_any_nan
	vec_any_ne
	vec_any_nge
	vec_any_ngt
	vec_any_nle
	vec_any_nlt
	vec_any_numeric
	vec_any_out
	vec_avg
	vec_bperm
	vec_ceil
	vec_cmpb
	vec_cmpeq
	vec_cmpge
	vec_cmpgt
	vec_cmple
	vec_cmplt
	vec_cntlz
	vec_cpsgn
	vec_ctd
	vec_ctf
	vec_cts
	vec_ctsl
	vec_ctu
	vec_ctul
	vec_cvf
	vec_div
	vec_dss
	vec_dssall
	vec_dst
	vec_dstst
	vec_dststt
	vec_dstt
	vec_eqv
	vec_expte
	vec_extract
	vec_floor
	vec_gbb
	vec_insert
	vec_ld
	vec_lde
	vec_ldl
	vec_loge
	vec_lvsl
	vec_lvsr
	vec_madd
	vec_madds
	vec_max
	vec_mergee
	vec_mergeh
	vec_mergel
	vec_mergeo
	vec_mfvscr
	vec_min
	vec_mladd
	vec_mradds
	vec_msub
	vec_msum
	vec_msums
	vec_mtvscr
	vec_mul
	vec_mule
	vec_mulo
	vec_nabs
	vec_nand
	vec_neg
	vec_nmadd
	vec_nmsub
	vec_nor
	vec_or
	vec_orc
	vec_pack
	vec_packpx
	vec_packs
	vec_packsu
	vec_perm
	vec_permi
	vec_popcnt
	vec_promote
	vec_re
	vec_revb
	vec_reve
	vec_rl
	vec_round
	vec_roundc
	vec_roundm
	vec_roundp
	vec_roundz
	vec_rsqrte
	vec_sel
	vec_sl
	vec_sld
	vec_sldw
	vec_sll
	vec_slo
	vec_splat
	vec_splats
	vec_splat_s8
	vec_splat_s16
	vec_splat_s32
	vec_splat_u8
	vec_splat_u16
	vec_splat_u32
	vec_sqrt
	vec_sr
	vec_sra
	vec_srl
	vec_sro
	vec_st
	vec_ste
	vec_stl
	vec_sub
	vec_sub_u128
	vec_subc
	vec_subc_u128
	vec_sube_u128
	vec_subec_u128
	vec_subs
	vec_sum2s
	vec_sum4s
	vec_sums
	vec_trunc
	vec_unpackh
	vec_unpackl
	vec_xl
	vec_xl_be
	vec_xld2
	vec_xlds
	vec_xlw4
	vec_xor
	vec_xst
	vec_xst_be
	vec_xstd2
	vec_xstw4

	GCC atomic memory access built-in functions (IBM extension)
	Atomic lock, release, and synchronize functions
	__sync_lock_test_and_set
	__sync_lock_release
	__sync_synchronize

	Atomic fetch and operation functions
	__sync_fetch_and_and
	__sync_fetch_and_nand
	__sync_fetch_and_or
	__sync_fetch_and_xor
	__sync_fetch_and_add
	__sync_fetch_and_sub

	Atomic operation and fetch functions
	__sync_and_and_fetch
	__sync_nand_and_fetch
	__sync_or_and_fetch
	__sync_xor_and_fetch
	__sync_add_and_fetch
	__sync_sub_and_fetch

	Atomic compare and swap functions
	__sync_val_compare_and_swap
	__sync_bool_compare_and_swap

	Miscellaneous built-in functions
	Optimization-related functions
	__alignx
	__builtin_expect
	__fence

	Move to/from register functions
	__mftb
	__mftbu
	__mfmsr
	__mfspr
	__mtmsr
	__mtspr

	Memory-related functions
	__alloca
	__builtin_frame_address, __builtin_return_address
	__mem_delay

	Built-in functions for parallel processing
	IBM SMP built-in functions
	__parthds (C only)
	__usrthds (C only)

	Transactional memory built-in functions
	Transaction begin and end functions
	Transaction abort functions
	Transaction inquiry functions

	Chapter 8. OpenMP runtime functions for parallel processing
	omp_get_max_active_levels
	omp_set_max_active_levels
	omp_get_schedule
	omp_set_schedule
	omp_get_thread_limit
	omp_get_level
	omp_get_ancestor_thread_num
	omp_get_team_size
	omp_get_active_level
	omp_get_num_threads
	omp_set_num_threads
	omp_get_max_threads
	omp_get_thread_num
	omp_get_num_procs
	omp_in_final
	omp_in_parallel
	omp_set_dynamic
	omp_get_dynamic
	omp_set_nested
	omp_get_nested
	omp_init_lock, omp_init_nest_lock
	omp_destroy_lock, omp_destroy_nest_lock
	omp_set_lock, omp_set_nest_lock
	omp_unset_lock, omp_unset_nest_lock
	omp_test_lock, omp_test_nest_lock
	omp_get_wtime
	omp_get_wtick

	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	V
	X

