
z/OS
2.4

Compiler Reference
for XL C/C++ V2.4.1 for z/OS V2.4

IBM

SC31-5801-00

Note

Before using this information and the product it supports, read the information in “Notices” on page
123.

This edition applies to Version 2 Release 4 Modification 1 of XL C/C++ for IBM® z/OS® (5650-ZOS) and to all subsequent
releases and modifications until otherwise indicated in new editions.

Last updated: 2023-02-14
© Copyright International Business Machines Corporation 2019.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this document..vii
Where to find more information...x

z/OS Basic Skills in IBM Knowledge Center... x
Technical support.. xi
How to send your comments to IBM.. xi

If you have a technical problem.. xi

Chapter 1. Compiling and linking applications.. 1
Invoking the compiler.. 1

Command-line syntax.. 1
Types of input files... 2
Types of output files...3
Specifying compiler options.. 3

Specifying compiler options on the command line... 4
Specifying compiler options in a configuration file..4
Specifying compiler options in program source files.. 4
Resolving conflicting compiler options.. 5

Preprocessing...5
Directory search sequence for included files.. 6

Linking.. 7
Order of linking... 8

Compiler messages and listings.. 8
Compiler messages.. 8
Return codes...9
Compiler listings...10

Chapter 2. Configuring compiler defaults..11
Setting environment variables...11

Compile-time and link-time environment variables..11
Runtime environment variables...11

Using custom compiler configuration files..11
Creating custom configuration files... 12

Editing the default configuration file... 14
Configuration file attributes... 14

Chapter 3. Compiler options reference... 17
Summary of compiler options by functional category.. 17

Output control.. 17
Input control...18
Language element control... 18
Template control (C++ only).. 19
Floating-point and integer control... 20
Object code control.. 20
Error checking and debugging... 20
Listings, messages, and compiler information.. 23
Optimization and tuning...24
Linking...25
Portability and migration..25
Compiler customization... 25

Individual option descriptions...26

 iii

-# (pound sign)...27
-+ (plus sign) (C++ only)...28
-C...28
-c... 29
-D.. 30
-E...31
-e...32
-F...33
-g...34
-I... 35
-L... 36
-l..37
-M..38
-MD... 38
-MF..39
-MG... 40
-MM...41
-MMD.. 42
-MQ... 42
-MT..43
-O, -qoptimize...44
-o...47
-P...48
-r..49
-s... 49
-U.. 50
-v, -V..51
-W..52
-qansialias.. 53
-qarch... 55
-qascii... 56
-qasm (-fasm)...57
-qasmlib..58
-qassert.. 59
-qchars (-fsigned-char, -funsigned-char).. 60
-qcompact.. 61
-qcompress...61
-qcsect..62
-qdebug.. 64
-qdigraph.. 68
-qeh (C++ only)...69
-qexportall.. 69
-qfloat... 70
-qgonumber..72
-qhalt.. 72
-qignerrno...73
-qinclude...74
-qinline..75
-qlanglvl (-std).. 76
-qlibansi..79
-qlist..79
-qmakedep... 80
-qmaxmem... 82
-qmemory... 83
-qoffset... 84
-qoptfile.. 84
-qphaseid, -qphsinfo..85
-qro... 87

iv

-qroconst.. 87
-qrtcheck.. 88
-qrtti (-frtti) (C++ only)... 90
-qservice...90
-qshowmacros..91
-qspill..92
-qstackprotect..93
-qstrict.. 94
-qstrict_induction...96
-qsyntaxonly (-fsyntax-only).. 96
-qtemplatedepth (-ftemplate-depth) (C++ only).. 97
-qthreaded..98
-qtune... 99

Supported GCC options... 101

Chapter 4. Compiler pragmas reference... 103
Pragma directive syntax.. 103
Scope of pragma directives... 103
Supported IBM pragmas... 104

#pragma convert..104
#pragma csect... 105
#pragma execution_frequency... 106
#pragma linkage (C only)...107
#pragma leaves..109
#pragma map...109
#pragma option_override.. 111
#pragma priority (C++ only).. 113
#pragma weak (C only)..113
#pragma reachable..114

Chapter 5. Compiler predefined macros... 117
General macros..117
Macros indicating the z/OS XL C/C++ compiler.. 118
Macros related to the platform..118
Macros related to compiler features...119

Macros related to compiler option settings...119
Macros related to language levels... 120

Notices..123
Trademarks.. 123
Standards...124

Index.. 125

 v

vi

About this document

This information supports IBM z/OS XL C/C++ (5650-ZOS) and contains information about IBM XL C/C++
V2.4.1 for z/OS V2.4.

Note: This publication refers to IBM XL C/C++ V2.4.1 for z/OS V2.4 as XL C/C++ V2.4.1.

This document is a reference for the XL C/C++ V2.4.1 compiler. Although it provides information about
compiling and linking applications written in C and C++, it is primarily intended as a reference for compiler
command-line options, pragma directives, predefined macros, and environment variables.

Who should read this document
This document is for experienced C or C++ developers who have some familiarity with the z/OS XL C/C++
compiler or other command-line compilers on z/OS operating systems. It assumes thorough knowledge of
the C or C++ programming language and basic knowledge of operating system commands. Although this
information is intended as a reference guide, programmers new to z/OS XL C/C++ can still find information
about the capabilities and features unique to the XL C/C++ V2.4.1 compiler.

How to use this document
You can use this document to:

• Help determine whether and how you can continue to use existing source code, object code, and load
modules

• Become aware of the changes in compiler and runtime behavior that may affect your migration from
earlier versions of the compiler

Note: In most situations, existing well-written applications can continue to work without modification.

This document does not:

• Discuss all of the enhancements that have been made to the z/OS XL C/C++ compiler.

While this document covers topics such as configuring the compiler environment, and compiling and
linking C or C++ applications using the XL C/C++ V2.4.1 compiler, it does not include the following topics:

• Compiler installation and system requirements: see the Program Directory for XL C/C++ V2R4M1 web
deliverable for z/OS (http://publibfp.dhe.ibm.com/epubs/pdf/i1357010.pdf).

• Basic install and run information: see Getting Started with XL C/C++ V2.4.1 for z/OS V2.4.

Typographical conventions

The following table explains the typographical conventions used in this document.

Table 1. Typographical conventions

Typeface Indicates Example

bold Commands, executable names, compiler
options and pragma directives that
contain lower-case letters.

The xlclang invocation command invokes the
XL C/C++ V2.4.1 compiler.

italics Parameters or variables whose actual
names or values are to be supplied
by the user. Italics are also used to
introduce new terms.

Make sure that you update the size parameter
if you return more than the size requested.

© Copyright IBM Corp. 2019 vii

http://publibfp.dhe.ibm.com/epubs/pdf/i1357010.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/i1357010.pdf

Table 1. Typographical conventions (continued)

Typeface Indicates Example

underlining The default setting of a parameter of a
compiler option or directive.

nomaf | maf

monospace Programming keywords and library
functions, compiler built-in functions,
file and directory names, examples of
program code, command strings, or
user-defined names.

If one or two cases of a switch statement are
typically executed much more frequently than
other cases, break out those cases by handling
them separately before the switch statement.

How to read syntax diagrams

This section describes how to read syntax diagrams. It defines syntax diagram symbols, items that
may be contained within the diagrams (keywords, variables, delimiters, operators, fragment references,
operands) and provides syntax examples that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that comprise a
command statement. They are read from left to right and from top to bottom, following the main path of
the horizontal line.

For users accessing IBM Knowledge Center using a screen reader, syntax diagrams are provided in dotted
decimal format.

The following symbols may be displayed in syntax diagrams:
Symbol

Definition
►►───

Indicates the beginning of the syntax diagram.
───►

Indicates that the syntax diagram is continued to the next line.
►───

Indicates that the syntax is continued from the previous line.
───►◄

Indicates the end of the syntax diagram.

Syntax diagrams contain many different items. Syntax items include:

• Keywords - a command name or any other literal information.
• Variables - variables are italicized, appear in lowercase, and represent the name of values you can

supply.
• Delimiters - delimiters indicate the start or end of keywords, variables, or operators. For example, a left

parenthesis is a delimiter.
• Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal (=), and other

mathematical operations that may need to be performed.
• Fragment references - a part of a syntax diagram, separated from the diagram to show greater detail.
• Separators - a separator separates keywords, variables or operators. For example, a comma (,) is a

separator.

Note: If a syntax diagram shows a character that is not alphanumeric (for example, parentheses, periods,
commas, equal signs, a blank space), enter the character as part of the syntax.

Keywords, variables, and operators may be displayed as required, optional, or default. Fragments,
separators, and delimiters may be displayed as required or optional.

viii About this document

Item type
Definition

Required
Required items are displayed on the main path of the horizontal line.

Optional
Optional items are displayed below the main path of the horizontal line.

Default
Default items are displayed above the main path of the horizontal line.

The following table provides syntax examples.

Table 2. Syntax examples

Item Syntax example

Required item.

Required items appear on the main
path of the horizontal line. You must
specify these items.

KEYWORD required_item

Required choice.

A required choice (two or more items)
appears in a vertical stack on the main
path of the horizontal line. You must
choose one of the items in the stack.

KEYWORD required_choice1

required_choice2

Optional item.

Optional items appear below the main
path of the horizontal line.

KEYWORD

optional_item

Optional choice.

An optional choice (two or more items)
appears in a vertical stack below the
main path of the horizontal line. You
may choose one of the items in the
stack.

KEYWORD

optional_choice1

optional_choice2

Default.

Default items appear above the
main path of the horizontal line.
The remaining items (required or
optional) appear on (required) or
below (optional) the main path of the
horizontal line. The following example
displays a default with optional items.

KEYWORD

default_choice1

optional_choice2

optional_choice3

Variable.

Variables appear in lowercase italics.
They represent names or values.

KEYWORD variable

About this document ix

Table 2. Syntax examples (continued)

Item Syntax example

Repeatable item.

An arrow returning to the left above
the main path of the horizontal line
indicates an item that can be repeated.

A character within the arrow means
you must separate repeated items with
that character.

An arrow returning to the left above
a group of repeatable items indicates
that one of the items can be
selected,or a single item can be
repeated.

KEYWORD repeatable_item

KEYWORD

,

repeatable_item

Fragment.

The fragment symbol indicates that
a labeled group is described below
the main syntax diagram. Syntax is
occasionally broken into fragments if
the inclusion of the fragment would
overly complicate the main syntax
diagram.

KEYWORD fragment

fragment
,required_choice1

,required_choice2

,default_choice

,optional_choice

Softcopy documents

The XL C/C++ V2.4.1 publications are supplied in PDF format and available for download from the z/OS XL
C/C++ documentation library (https://www.ibm.com/support/pages/zos-xl-cc-documentation-library).

To read a PDF file, use the Adobe Reader. If you do not have the Adobe Reader, you can download it
(subject to Adobe license terms) from the Adobe website (www.adobe.com).

Where to find more information
For an overview of the information associated with z/OS, see z/OS Information Roadmap (https://
www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.e0zc100/abstract.htm).

Additional information on z/OS XL C/C++ is available on the product page for z/OS XL C/C++.

z/OS Basic Skills in IBM Knowledge Center
z/OS Basic Skills in IBM Knowledge Center is a Web-based information resource intended to help users
learn the basic concepts of z/OS, the operating system that runs most of the IBM mainframe computers
in use today. IBM Knowledge Center is designed to introduce a new generation of Information Technology
professionals to basic concepts and help them prepare for a career as a z/OS professional, such as a z/OS
system programmer.

Specifically, z/OS Basic Skills is intended to achieve the following objectives:

• Provide basic education and information about z/OS without charge
• Shorten the time it takes for people to become productive on the mainframe
• Make it easier for new people to learn z/OS.

is available to all users (no login required).

x About this document

https://www.ibm.com/support/pages/zos-xl-cc-documentation-library
https://www.ibm.com/support/pages/zos-xl-cc-documentation-library
http://www.adobe.com
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.e0zc100/abstract.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.e0zc100/abstract.htm
https://www.ibm.com/products/xl-cpp-compiler-zos

Technical support
Additional technical support is available from the z/OS XL C/C++ Support page (www.ibm.com/
mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc). This page provides a portal with search capabilities
to technical support FAQs and other support documents.

For the latest information about XL C/C++ V2.4.1 for z/OS V2.4, visit product page for z/OS XL C/C++.

If you cannot find what you need, you can e-mail:

compinfo@cn.ibm.com

How to send your comments to IBM
We appreciate your input on this documentation. Please provide us with any feedback that you have,
including comments on the clarity, accuracy, or completeness of the information.

You can send an email to compinfo@cn.ibm.com and include the following information:

• Your name and address
• Your email address
• Your phone or fax number
• The publication title and order number:

Compiler Reference for XL C/C++ V2.4.1 for z/OS V2.4
SC31-5801-00

• The topic and page number or URL of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute the comments
in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem, take one or more of the following actions:

• Visit the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

About this document xi

https://www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc
https://www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc
https://www.ibm.com/products/xl-cpp-compiler-zos
mailto:compinfo@cn.ibm.com
http://support.ibm.com

xii z/OS: Compiler Reference

Chapter 1. Compiling and linking applications

By default, when you invoke the XL C/C++ V2.4.1 compiler, all of the following phases of translation are
performed:

• Preprocessing of program source
• Compiling and assembling into object files

These different translation phases are actually performed by separate executables, which are referred to
as compiler components. However, you can use compiler options to perform only certain phases, such
as preprocessing, or assembling. You can then re-invoke the compiler to resume compiling preprocessed
output.

The following sections describe how to invoke the XL C/C++ V2.4.1 compiler to preprocess or compile C
and C++ sources and link object files:

• “Invoking the compiler” on page 1
• “Types of input files” on page 2
• “Types of output files” on page 3
• “Specifying compiler options” on page 3
• “Preprocessing” on page 5
• “Linking” on page 7

Invoking the compiler
The XL C/C++ V2.4.1 compiler can be invoked by using the xlclang invocation command to compile and
link C programs and the xlclang++ invocation command to compile and link C++ programs.

The compiler configuration file defines default option settings and, in some cases, macros; for information
about the defaults implied by a particular invocation, see the /usr/lpp/cbclib/xlclang/etc/
xlclang.cfg file.

Notes:

• When you install the XL C/C++ V2.4.1 compiler, a default configuration file is automatically generated
during the installation procedure under /usr/lpp/cbclib/xlclang/sample/xlclang.cfg, which
can be customized to match your installation environment. Then you install the customized
configuration file xlclang.cfg in the /usr/lpp/cbclib/xlclang/etc/ directory, which is
searched by the xlclang utility for the default configuration file.

• A future PTF will only update the default configuration file xlclang.cfg under /usr/lpp/cbclib/
xlclang/sample/. You need to apply the updates to your customized xlclang.cfg file under
the /usr/lpp/cbclib/xlclang/etc/ directory.

Related information
• “-qlanglvl (-std)” on page 76

Command-line syntax
You invoke the compiler using the following syntax:

xlclang

xlclang++ command_line_options

input_files

© Copyright IBM Corp. 2019 1

The parameters of the invocation command can be the names of input files, compiler options, and binder
options.

In addition to invoking the C/C++ compiler, the xlclang and xlclang++ commands can also invoke
Assembler and Binder, similar to the xlc and xlC commands. For detailed information, see "z/OS XL
C/C++ User's Guide".

Your program can consist of several input files. All of these source files can be compiled at once using only
one command line of the compiler. Although more than one source file can be compiled using a single
command line of the compiler, you can specify only one set of compiler options on the command line
per invocation. Each distinct set of command-line compiler options that you want to specify requires a
separate invocation.

Compiler options perform a wide variety of functions, such as setting compiler characteristics, describing
the object code and compiler output to be produced, and performing some preprocessor functions.

By default, the invocation command calls both the compiler and the binder. It passes binder options to
the binder. Consequently, the invocation commands also accept all binder options. To compile without
linking, use the -c compiler option. The -c option stops the compiler after compilation is completed and
produces as output, an object file file_name.o for each file_name.nnn input source file, unless you
use the -o option to specify a different object file name. The binder is not invoked. You can link the object
files later using the same invocation command, specifying the object files without the -c option.

Related information
• “Types of input files” on page 2

Types of input files
The compiler processes the source files in the order in which they are specified on the command line. If
the compiler cannot find a specified source file, it produces an error message and the compiler proceeds
to the next specified file. However, the binder does not run.

By default, the compiler preprocesses and compiles all the specified source files. Although you usually
want to use this default, you can use the compiler to preprocess the source file without compiling; see
“Preprocessing” on page 5 for details.

You can input the following types of files to the XL C/C++ V2.4.1 compiler:

C and C++ source files
These are files containing C or C++ source code.

To use the compiler to compile a C language source file, the source file must have a .c (lowercase c)
suffix.

To use the compiler to compile a C++ language source file, the source file must have a .C (uppercase
C), .cc, .cpp, or .cxx suffix.

Preprocessed source files
Preprocessed files are useful for checking macros and preprocessor directives. Preprocessed source
files have a .i suffix, for example, file_name.i. The invocation command sends the preprocessed
source file, file_name.i to the compiler where it is preprocessed again in the same way as a .c
or .C file.

Object files
Object files must have a .o suffix, for example, file_name.o. Object files and library files, and
unstripped executable files serve as input to the binder. After compilation, the binder links all of the
specified object files to create an executable file.

Assembler files
Assembler files must have a .s suffix, for example, file_name.s. Assembler files are assembled to
create an object file.

2 z/OS: Compiler Reference

Definition side decks
Definition side decks provide input to the binder when linking an application that refers to functions
or variables defined in a DLL. A definition side deck is a file with suffix .x, which contains input that
allows the binder to resolve references to symbols exported from a DLL.

Related information
“Input control” on page 18

Types of output files
You can specify the following types of output files when invoking the XL C/C++ V2.4.1 compiler:

Executable files
By default, executable files are named a.out. To name the executable file something else, use the -o
file_name option with the invocation command. This option creates an executable file with the name
you specify as file_name. The name you specify can be a relative or absolute path name for the
executable file.

Object files
If you specify the -c option, an output object file, file_name.o, is produced for each input file.
The binder is not invoked, and the object files are placed in your current directory. All processing
stops at the completion of the compilation. The compiler gives object files a .o suffix, for example,
file_name.o, unless you specify the -o file_name option, giving a different suffix or no suffix at all.

You can link the object files later into a single executable file by a separate command invocation.

Definition side decks
If you specify the -qexportall compiler option or the _Export keyword in the source files, the
compiler produces a definition side deck, which has a suffix .x and is used to resolve references to
exported symbols in an application that uses this DLL.

Listing files
If you specify -qlist=, a compiler listing file, file_name.lst, is produced for each input file. The
listing file is placed in your current directory.

Make dependency files
If you specify the -qmakedep, -M, -MD, -MM, or -MMD option, a make dependency file suitable for
inclusion in a makefile, file_name.d is produced for each input file.

Related information
“Output control” on page 17

Specifying compiler options
Compiler options perform a wide variety of functions, such as setting compiler characteristics, describing
the object code and compiler output to be produced, and performing some preprocessor functions. You
can specify compiler options in one or more of the following ways:

• On the command line
• In a custom configuration file, which is a file with a .cfg extension
• In your source program

The compiler assumes default settings for most compiler options not explicitly set by you in the ways
listed above.

When specifying compiler options, it is possible for option conflicts and incompatibilities to occur. The
compiler resolves most of these conflicts and incompatibilities in a consistent fashion, as follows:

In most cases, the compiler uses the following order in resolving conflicting or incompatible options:

1. Pragma directives in source code override compiler options specified on the command line.

Chapter 1. Compiling and linking applications 3

2. Compiler options specified on the command line override compiler options specified in a configuration
file. If conflicting or incompatible compiler options are specified in the same command line compiler
invocation, the subsequent option in the invocation takes precedence.

3. Compiler options specified in a configuration file, command line or source program override compiler
default settings.

Option conflicts that do not follow this priority sequence are described in “Resolving conflicting compiler
options” on page 5.

Related information
“Compiler options reference” on page 17
“Compiler pragmas reference” on page 103

Specifying compiler options on the command line
Most options specified on the command line override both the default settings of the option and options
set in the configuration file. Similarly, most options specified on the command line are in turn overridden
by pragma directives, which provide you a means of overriding compiler options right in the source file.
Options that do not follow this scheme are listed in “Resolving conflicting compiler options” on page 5.

Specifying compiler options in a configuration file
The default configuration file (/usr/lpp/cbclib/xlclang/etc/xlclang.cfg) defines values and compiler options
for the compiler. The compiler refers to this file when compiling C or C++ programs.

The configuration file is a plain text file. You can edit this file, or create an additional customized
configuration file to support specific compilation requirements. For more information, see “Using custom
compiler configuration files” on page 11.

Specifying compiler options in program source files
You can specify some compiler options within your program source by using pragma directives. A pragma
is an implementation-defined instruction to the compiler. For those options that have equivalent pragma
directives, you can have several ways to specify the syntax of the pragmas:

• Using #pragma name syntax

Some options also have corresponding pragma directives that use a pragma-specific syntax, which
may include additional or slightly different suboptions. Throughout the section “Individual option
descriptions” on page 26, each option description indicates whether this form of the pragma is
supported, and the syntax is provided.

• Using the standard C99 _Pragma operator

For options that support either forms of the pragma directives listed above, you can also use the C99
_Pragma operator syntax in both C and C++.

Complete details on pragma syntax are provided in “Pragma directive syntax” on page 103.

Other pragmas do not have equivalent command-line options; these are described in detail throughout
Chapter 4, “Compiler pragmas reference,” on page 103.

Options specified with pragma directives in program source files override all other option settings, except
other pragma directives. The effect of specifying the same pragma directive more than once varies. See
the description for each pragma for specific information.

Pragma settings can carry over into included files. To avoid potential unwanted side effects from pragma
settings, you should consider resetting pragma settings at the point in your program source where the
pragma-defined behavior is no longer required. Some pragma options offer reset or pop suboptions to
help you do this. These suboptions are listed in the detailed descriptions of the pragmas to which they
apply.

4 z/OS: Compiler Reference

Resolving conflicting compiler options
In general, if more than one variation of the same option is specified, the compiler uses the setting of the
last one specified. Compiler options specified on the command line must appear in the order you want the
compiler to process them. However, some options have cumulative effects when they are specified more
than once; examples are the -Idirectory and -Ldirectory options.

When options such as -qdebug, -qfloat, and -qstrict are specified with suboptions for multiple
times, each suboption overrides previous specifications of that suboption, but different suboptions are
cumulative.

In most cases, the compiler uses the following order in resolving conflicting or incompatible options:

1. Pragma directives in source code override compiler options specified on the command line.
2. Compiler options specified on the command line override compiler options specified in a configuration

file. If conflicting or incompatible compiler options are specified in the same command line compiler
invocation, the subsequent option in the invocation takes precedence.

3. Compiler options specified in a configuration file, command line or source program override compiler
default settings.

Not all option conflicts are resolved using the preceding rules. The following table summarizes exceptions
and how the compiler handles conflicts between them.

Option Conflicting options Resolution

-E -P -E

-P -c, -o -P

-# -v -#

Preprocessing
Preprocessing manipulates the text of a source file, usually as a first phase of translation that is initiated
by a compiler invocation. Common tasks accomplished by preprocessing are macro substitution, testing
for conditional compilation directives, and file inclusion.

You can invoke the preprocessor separately to process text without compiling. The output is an
intermediate file, which can be input for subsequent translation. Preprocessing without compilation can
be useful as a debugging aid because it provides a way to see the result of include directives, conditional
compilation directives, and complex macro expansions.

The following table lists the options that direct the operation of the preprocessor.

Option Description

“-E” on page 31 Preprocesses the source files and writes the output to standard output. By
default, #line directives are generated.

“-P” on page 48 Preprocesses the source files and creates an intermediary file with a .i file name
suffix for each source file. By default, #line directives are not generated.

“-C” on page 28 Preserves comments in preprocessed output.

“-D” on page 30 Defines a macro name from the command line, as if in a #define directive.

“-qmakedep” on
page 80

Produces the dependency files that are used by the make tool for each source
file.

“-M” on page 38 1 Generates a rule suitable for the make tool that describes the dependencies of
the input file.

Chapter 1. Compiling and linking applications 5

Option Description

-MD 1 Compiles the source files, generates the object file, and generates a rule suitable
for the make tool that describes the dependencies of the input file in a file with
the name of the input file and suffix .d.

-MF file1 Specifies the file to write the dependencies to. The -MF option must be specified
with option -M or -MM.

-MG 1 Assumes that missing header files are generated files and adds them to the
dependency list without raising an error. The -MG option must be used with
option -M, -MD, -MM, or -MMD.

-MM 1 Generates a rule suitable for the make tool that describes the dependencies of
the input file, but does not mention header files that are found in system header
directories nor header files that are included from such a header.

-MMD 1 Compiles the source files, generates the object file, and generates a rule suitable
for the make tool that describes the dependencies of the input file in a file
with the name of the input file and suffix .d. However, the dependencies do not
include header files that are found in system header directories nor header files
that are included from such a header.

-MP 1 Instructs the C preprocessor to add a phony target for each dependency other
than the input file.

-MQ target 1 Changes the target of the rule emitted by dependency generation and quotes any
characters that are special to the make tool.

-MT target 1 Changes the target of the rule emitted by dependency generation.

“-U” on page 50 Undefines a macro name defined by the compiler or by the -D option.

Note:

1. For details about the option, see GNU Compiler Collection online documentation(http://gcc.gnu.org/
onlinedocs/).

Directory search sequence for included files
The XL C/C++ V2.4.1 compiler supports the following types of included files:

• Header files supplied by the compiler (referred to throughout this document as z/OS XL C/C++ headers)
• Header files mandated by the C and C++ standards (referred to throughout this document as system

headers)
• Header files supplied by the operating system (also referred to throughout this document as system

headers)
• User-defined header files

You can use any of the following methods to include any type of header file:

• Use the standard #include <file_name> preprocessor directive to include header files that are not
user-defined.

• Use the standard #include "file_name" preprocessor directive to include user-defined header
files.

• Use the “-qinclude” on page 74 compiler option.

If you specify the header file using a full (absolute) path name, you can use these methods
interchangeably, regardless of the type of header file you want to include. However, if you specify the
header file using a relative path name, the compiler uses a different directory search order for locating the
file depending on the method used to include the file.

6 z/OS: Compiler Reference

http://gcc.gnu.org/onlinedocs/
http://gcc.gnu.org/onlinedocs/

The following summarizes the search order used by the compiler to locate header files depending on the
mechanism used to include the files and on the compiler options that are in effect:

1. Header files included with “-qinclude” on page 74 only: The compiler searches the current (working)
directory from which the compiler is invoked.

2. Header files included with “-qinclude” on page 74 or #include "file_name": The compiler
searches the directory in which the source file is located.

3. All header files: The compiler searches each directory specified by the -I compiler option, in the order
that it displays on the command line.

4. All header files: The compiler searches the standard directory for the system headers. The default
directory for these headers is specified in the compiler configuration file. This location is set during
installation.

Related information
• “-I” on page 35
• “-qinclude” on page 74
• -isystem. Foe details, see GNU Compiler Collection online documentation(http://gcc.gnu.org/

onlinedocs/).

Linking
The binder links specified object files to create one executable file. Invoking the compiler with one of
the invocation commands automatically calls the binder unless you specify one of the following compiler
options:

• -c
• -E
• -M
• -P
• -S
• -fsyntax-only (-qsyntaxonly)
• -#

Input files
Object files, unstripped executable files, and library files serve as input to the binder. Object files must
have a .o suffix, for example, filename.o. Static library file names have a .a suffix, for example,
filename.a. DLL definition side file names have a .x suffix, for example, filename.x.

Output files
The binder generates an executable file and places it in your current directory. The default name for
an executable file is a.out. To name the executable file explicitly, use the -o file_name option with
the invocation command, where file_name is the name you want to give to the executable file. For
example, to compile myfile.c and generate an executable file called myfile, enter:

xlclang myfile.c -o myfile

The compiler invocation commands set several binder options, and link some standard files into the
executable output by default. In most cases, it is better to use one of the compiler invocation commands
to link your object files. For a complete list of options available for linking, see “Linking” on page 25.

Note: If you want to use a nondefault binder, you can customize the configuration file of the compiler to
use the nondefault binder. For more information about how to customize the configuration file, see Using
custom compiler configuration files and Creating custom configuration files.

Chapter 1. Compiling and linking applications 7

http://gcc.gnu.org/onlinedocs/
http://gcc.gnu.org/onlinedocs/

Order of linking
The compiler links libraries in the following order:

1. System startup libraries
2. User .o files and libraries
3. XL C/C++ V2.4.1 libraries
4. C++ standard libraries
5. C standard libraries

Related information
• “Linking” on page 25

Compiler messages and listings
The following sections discuss the various information generated by the compiler after compilation.

• “Compiler messages” on page 8
• “Compiler listings” on page 10

Compiler messages
When the compiler encounters a programming error while compiling a C or C++ source program, it issues
a diagnostic message to the standard error device. You can control which code constructs cause the
compiler to emit errors and warning messages and how they are displayed to the console.

Message severity levels and compiler response
The XL C/C++ V2.4.1 compiler uses a multilevel classification scheme for diagnostic messages. Each level
of severity is associated with a compiler response. The table below provides a key to the abbreviations for
the severity levels and the associated default compiler response.

You can use the -qhalt option to stop the compilation for warnings and all types of errors.

Table 3. Compiler message severity levels

Letter Severity Synonym Compiler response

I Informational note Compilation continues and object code is generated.
The message reports conditions found during
compilation.

W Warning warning Compilation continues and object code is generated.
The message reports valid but possibly unintended
conditions.

E Error error Compilation continues and object code is generated.
The compiler can correct the error conditions that are
found, but the program might not produce the expected
results.

8 z/OS: Compiler Reference

Table 3. Compiler message severity levels (continued)

Letter Severity Synonym Compiler response

S Severe error error Compilation continues, but object code is not
generated. The compiler cannot correct the error
conditions that are found.

• If the message indicates a resource limit (for example,
file system full), provide additional resources and
recompile.

• If the message indicates that different compiler
options are needed, recompile using those options.

• Check for and correct any other errors reported prior
to the severe error.

• If the message indicates an internal compile-time
error, report the message to your IBM service
representative.

U Unrecoverable
error

fatal error The compiler halts. An internal compile-time error has
occurred. Report the message to your IBM service
representative.

Related information
• “-qhalt” on page 72
• “Listings, messages, and compiler information” on page 23

Return codes
For every compilation job or job step, the compiler generates a return code that indicates to the operating
system the degree of success or failure it achieved:

Table 4. Return codes from compilation of a XL C/C++ V2.4.1 program

Return Code Type of Error Detected Compilation Result

0 No error detected; informational
messages may have been issued.

Compilation completed.
Successful execution anticipated.

4 Warning error detected. Compilation completed.
Execution may not be successful.

8 Error detected. Compilation may have been
completed. Successful execution
not possible.

12 Severe error detected. Compilation may have been
completed. Successful execution
not possible.

16 Terminating error detected. Compilation terminated
abnormally. Successful execution
not possible.

33 A library level prior to the z/OS z/OS
V2.4 Language Environment® library
level was used.

Compilation terminated
abnormally. Successful execution
not possible.

Chapter 1. Compiling and linking applications 9

The return code indicates the highest possible error severity that the compiler detected. Therefore, a
particular entry in the "Type of Error Detected" column, includes all error types above it. For example,
return code 12 indicates that the compiler has issued a severe error and may have also issued any
combination of error, warning, and informational messages. But it does not necessarily mean that all
these error types are present in that particular compile.

Compiler listings
A listing is a compiler output file (with a .lst suffix) that contains information about a particular
compilation. As a debugging aid, a compiler listing is useful for determining what has gone wrong in a
compilation.

To produce a listing, you can compile with -qlist, which provides different types of information:

Listing information is organized in sections. A listing contains a header section and a combination of other
sections, depending on other options in effect. The contents of these sections are described as follows.
Heading information

The first page of the listing is identified by the product number, the compiler version and release
numbers, the date and time compilation began (formatted according to the current locale), and the
page number.

Pseudo Assembly Listing
The -qlist compiler option generates a listing of the machine instructions in the object module in a
form similar to assembler language. This Pseudo Assembly listing displays the source statement line
numbers and the line number of any inlined code to aid you in debugging inlined code.

Related information
• “Listings, messages, and compiler information” on page 23

10 z/OS: Compiler Reference

Chapter 2. Configuring compiler defaults

When you compile an application with XL C/C++ V2.4.1, the compiler uses default settings that are
determined in a number of ways:

• Internally defined settings. These settings are predefined by the compiler and you cannot change them.
• Settings defined by system environment variables. Certain environment variables are required by the

compiler; others are optional. You might have already set some of the basic environment variables
during the installation process. “Setting environment variables” on page 11 provides a complete list of
the required and optional environment variables you can set or reset after installing the compiler.

• Settings defined in the compiler configuration file, /usr/lpp/cbclib/xlclang/etc/xlclang.cfg. The compiler
requires many settings that are determined by its configuration file. The configuration file is
automatically generated during the installation procedure. However, you can customize this file after
installation, to specify additional compiler options, default option settings, library search paths, and
other settings. Information on customizing the configuration file is provided in “Using custom compiler
configuration files” on page 11.

Setting environment variables
The following sections discuss the environment variables you can set for XL C/C++ V2.4.1 and
applications you have compiled with it:

• “Compile-time and link-time environment variables” on page 11
• “Runtime environment variables” on page 11

Compile-time and link-time environment variables
The following environment variables are used by the compiler when you are compiling and linking your
code. Many are built into the z/OS system. With the exception of LANG, which must be set if you are using
a locale other than the default en_US, all of these variables are optional.

LANG
Specifies the locale for your operating system. The default locale used by the compiler for messages
and help files is United States English, en_US. For more information on setting the LANG environment
variable to use an alternate locale, see your operating system documentation.

NLSPATH
Specifies the directory search path for finding the compiler message and help files.

CLC_CONFIG
Specifies the location of a custom configuration file to be used by the compiler. The file name must be
given with its absolute path. For more information, see “Using custom compiler configuration files” on
page 11.

Runtime environment variables
The following environment variables are used by the system loader or by your application when it is
executed. All of these variables are optional.

LIBPATH
Allows an absolute or relative pathname to be searched when loading a DLL.

Using custom compiler configuration files
The XL C/C++ V2.4.1 compiler contains a sample configuration file /usr/lpp/cbclib/xlclang/sample/
xlclang.cfg, which can be used to customize the default configuration file /usr/lpp/cbclib/

© Copyright IBM Corp. 2019 11

xlclang/etc/xlclang.cfg. The configuration file specifies information that the compiler uses when
you invoke it.

A configuration file is a UNIX file consisting of named sections called stanzas. Each stanza contains
keywords called configuration file attributes, which are assigned values. The attributes are separated
from their assigned value by an equal sign. A stanza can point to a default stanza by specifying the use
keyword. This allows specifying common attributes in a default stanza and only the deltas in a specific
stanza, referred to as the local stanza.

For any of the supported attributes not found in the configuration file, the xlclang utility uses the built-in
defaults. It uses the first occurrence in the configuration file of a stanza or attribute it is looking for.
Unsupported attributes, and duplicate stanzas and attributes are not diagnosed.

If you are running on a single-user system, or if you already have a compilation environment with
compilation scripts or makefiles, you might want to leave the default configuration file as it is.

If you want users to be able to choose among several sets of compiler options, you might want to use
custom configuration files for specific needs. For example, you might want to enable -qlist by default
for compilations using the xlclang compiler invocation command. This is to avoid forcing your users to
specify this option on the command line for every compilation, because -qnolist is automatically in
effect every time the compiler is called with the xlclang command.

You have several options for customizing configuration files:

• You can directly edit the default configuration file. In this case, the customized options will apply for
all users for all compilations. The disadvantage of this option is that you will need to reapply your
customizations to the new default configuration file that is provided every time you install a compiler
update.

• You can use the default configuration file as the basis of customized copies that you specify at compile
time with the -F option. In this case, the custom file overrides the default file on a per-compilation
basis.

• You can create custom, or user-defined, configuration files that are specified at compile time with the
CLC_CONFIG environment variable. It can be specified on a per-compilation or global basis. Procedures
for creating custom, user-defined configuration files are provided below.

Notes:

1. The difference between specifying values in the stanza and relying on the defaults provided by the
xlclang utility is that the defaults provided by the xlclang utility will not override pragmas.

2. Any entry in the configuration file must occur on a single line. You cannot continue an entry over
multiple lines.

3. After you apply service to the compiler, any customization to the configuration file might need to be
adjusted.

Related reference
“-F” on page 33
Related information
“Compile-time and link-time environment variables” on page 11

Creating custom configuration files
The default configuration file is installed in /usr/lpp/cbclib/xlclang/etc/xlclang.cfg.

You can copy this file and make changes to the copy to support specific compilation requirements or to
support other C or C++ compilation environments. The -F option is used to specify a configuration file
other than the default. For example, to make -qnoro the default for the xlclang compiler invocation
command, add -qnoro to the clang stanza in your copied version of the configuration file.

You can link the compiler invocation command to several different names. The name you specify when
you invoke the compiler determines which stanza of the configuration file the compiler uses. You can add
other stanzas to your copy of the configuration file to customize your own compilation environment.

12 z/OS: Compiler Reference

Only one stanza, in addition to the one referenced by the use attribute, is processed for any one
invocation of the xlclang utility. By default, the stanza that matches the command name used to invoke
the xlclang utility is used, but it can be overridden using the -F flag option as described in the example
below.

Example: You can use the -F option with the compiler invocation command to make links to select
additional stanzas or to specify a stanza or another configuration file:

xlclang++ myfile.C -Fmyconfig:SPECIAL

would compile myfile.C using the SPECIAL stanza in a myconfig configuration file that you had
created.

Example of default configuration file
The default configuration file is installed in /usr/lpp/cbclib/xlclang/etc/xlclang.cfg. The
content is as below:

*
* FUNCTION: z/OS V2.4.1 XL C/C++ Compiler Configuration file
*
* Licensed Materials - Property of IBM
* 5650-ZOS Copyright IBM Corp. 2019.
* US Government Users Restricted Rights - Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*

* Clang C compiler
clang: use = DEFLT

* Clang C++ compiler
clang++: use = DEFLT
 options = -D_XOPEN_SOURCE=600,-D__static_assert=static_assert,-Wno-
parentheses,-Wno-unused-value

* common definitions
DEFLT: cppcomp = /usr/lpp/cbclib/xlclang/exe/clcdrvr
 ccomp = /usr/lpp/cbclib/xlclang/exe/clcdrvr
 as = /bin/c89
 ld_c = /bin/c89
 ld_cpp = /bin/cxx
 xlC = /usr/lpp/cbclib/xlclang/bin/xlclang
 xlCcopt = -D_XOPEN_SOURCE
 sysobj = cee.sceeobj:cee.sceecpp
 syslib_x = cee.sceebnd2:sys1.csslib
 exportlist_c_x = cee.sceelib(celhs003,celhs001)
 exportlist_cpp_x = cee.sceelib(celhs003,celhs001,celhscpp)
 exportlist_c_64 = cee.sceelib(celqs003)
 exportlist_cpp_64 = cee.sceelib(celqs003,celqscpp,cxxrt64)
 cinc = -isystem/usr/include/le
 cppinc = -isystem/usr/include/c++
 options = -D_UNIX03_WITHDRAWN,-L/usr/lpp/cbclib/lib
 libraries = -libmcmp
 steplib = cbc.sclccmp

Examples of stanzas in custom configuration files

clang++: use=DEFLT
 options+=-qlist

This example specifies that -qlist is to be used for
any compilation called by the xlclang++ command.

DEFLT: options = -L/home/user/lib
 libraries = -lmylib

This example specifies that all compilations should
link with /home/user/lib/libmylib.a.

Chapter 2. Configuring compiler defaults 13

Editing the default configuration file
The configuration file specifies information that the compiler uses when you invoke it. XL C/C++ V2.4.1
provides the default configuration file /usr/lpp/cbclib/xlclang/etc/xlclang.cfg at installation
time.

Configuration file attributes
A stanza in the configuration file can contain the following attributes:

acceptable_rc
Enables you to specify a number that represents a return code value for a program invoked by the
xlclang utility. The xlclang utility does not place any restriction on the value assigned to the
acceptable_rc attribute. acceptable_rc can appear as part of any stanza in the configuration file.

Note: If the acceptable_rc attribute is not specified in the configuration file, the xlclang utility
will assign the value from a c89 prefix_ACCEPTABLE_RC environment variable, if it is exported,
to the acceptable_rc, otherwise it will default to 4. The command name used to invoke
the xlclang utility determines the prefix that the xlclang utility will use when looking for a
prefix_ACCEPTABLE_RC environment variable. For example, if the xlclang utility is invoked using the
xlclang++ command name, the xlclang utility will look for _CXX_ACCEPTABLE_RC and, if found,
use it. If the acceptable_rc attribute is specified in the configuration file, the xlclang utility will
use the value specified in the configuration file and will ignore an exported prefix_ACCEPTABLE_RC
environment variable.

as
Path name to be used for the assembler. The default is /bin/c89.

asmlib
Specifies assembler macro libraries to be used when assembling the assembler source code.

asopt
The list of options for the assembler and not for the compiler. These override all normal processing
by the compiler and are directed to the assembler specified in the as attribute. Options are specified
following the c89 utility syntax.

asuffix
The suffix for archive files. The default is a.

asuffix_host
The suffix for archive data sets. The default is LIB.

ccomp
The C compiler. The default is /usr/lpp/cbclib/xlclang/exe/clcdrvr.

cinc
A comma separated list of directories used to search for C header files. The default for this attribute is
-isystem/usr/include/le.

cppcomp
The C++ compiler. The default is /usr/lpp/cbclib/xlclang/exe/clcdrvr.

cppinc
A comma separated list of directories used to search for C++ header files. The default for this attribute
is -isystem/usr/include/c++,-isystem/usr/include/le.For further information on the list
of search places used by the compiler to search for system header files, see the note at the end of this
list of configuration file attributes.

csuffix
The suffix for C source programs. The default is c (lowercase c).

cversion
The compiler version.

cxxsuffix
The suffix for C++ source files. The default is C (uppercase C).

14 z/OS: Compiler Reference

exportlist_c_x
A colon separated list of data sets with member names indicating definition side-decks to be used to
resolve symbols during the link-editing phase of XPLINK C applications. The default for this attribute
is:

CEE.SCEELIB(CELHS003,CELHS001)

exportlist_cpp_x
A colon separated list of data sets with member names indicating definition side-decks to be used
to resolve symbols during the link-editing phase of XPLINK C++ applications. The default for this
attribute is:

CEE.SCEELIB(CELHS003,CELHSCPP,CELHS001)

exportlist_c_64
A colon separated list of data sets with member names indicating definition side-decks to be used to
resolve symbols during the link-editing phase of 64-bit C applications. The default for this attribute is:

CEE.SCEELIB(CELQS003)

exportlist_cpp_64
A colon separated list of data sets with member names indicating definition side-decks to be used to
resolve symbols during the link-editing phase of 64-bit C++ applications. The default for this attribute
is:

CEE.SCEELIB(CELQS003,CELQSCPP,CXXRT64)

isuffix
The suffix for C preprocessed files. The default is i.

ixxsuffix
The suffix for C++ preprocessed files. The default is i.

ld
The path name to be used for the binder. The default is /bin/c89.

ld_c
The path name to be used for the binder when only C sources appear on the command line invoked
with a C stanza. The default is /bin/c89.

ld_cpp
The path name to be used for the binder when at least one C++ source appears on the command line,
or when a C++ stanza is used. The default is /bin/cxx.

libraries
libraries specifies the default libraries that the binder is to use at bind time. The libraries are
specified using the -llibname syntax, with multiple library specifications separated by commas. The
default is -L/usr/lpp/cbclib/lib,-libmcmp.

libraries2
libraries2 specifies additional libraries that the binder is to use at bind time. The libraries are
specified using the -llibname syntax, with multiple library specifications separated by commas. The
default is empty.

options
A string of option flags, separated by commas, to be processed by the compiler as if they had been
entered on the command line.

osuffix
The suffix for object files. The default is .o.

pversion
The runtime library version.

ssuffix
The suffix for assembler files. The default is .s.

Chapter 2. Configuring compiler defaults 15

ssuffix_host
The suffix for assembler data sets. The default is ASM.

steplib
A colon separated list of data sets or keyword NONE used to set the STEPLIB environment variable.
The default is NONE, which causes all programs to be loaded from LPA or linklist.

use
Values for attributes are taken from the named stanza and from the local stanza. For single-valued
attributes, values in the use stanza apply if no value is provided in the local, or default stanza. For
comma-separated lists, the values from the use stanza are added to the values from the local stanza.

xlC
The path name of the C++ compiler invocation command. The default is /usr/lpp/cbclib/
xlclang/bin/xlclang.

xlCcopt
A string of option flags, separated by commas, to be processed when the xlclang++ command is
used for compiling a C file.

xsuffix
The suffix for definition side-deck files. The default is x.

xsuffix_host
The suffix for definition side-deck data sets. The default is EXP.

16 z/OS: Compiler Reference

Chapter 3. Compiler options reference

This section contains a summary of the compiler options available in XL C/C++ V2.4.1 by functional
category, followed by detailed descriptions of the individual options. It also provides a list of supported
GCC options.

Related information
• “Specifying compiler options” on page 3

Summary of compiler options by functional category
The XL C/C++ V2.4.1 options are grouped into the following categories. If the option supports an
equivalent pragma directive, this is indicated. To get detailed information on any option listed, see the
full description for that option.

• “Output control” on page 17
• “Input control” on page 18
• “Language element control” on page 18
• “Template control (C++ only)” on page 19
• “Floating-point and integer control” on page 20
• “Error checking and debugging” on page 20
• “Listings, messages, and compiler information” on page 23
• “Optimization and tuning” on page 24
• “Object code control” on page 20
• “Linking” on page 25
• “Compiler customization” on page 25

Output control
The options in this category control the type of output file the compiler produces, as well as the locations
of the output. These are the basic options that determine the following aspects:

• The compiler components that will be invoked
• The preprocessing, compilation, and linking steps that will (or will not) be taken
• The kind of output to be generated

Table 5. Compiler output options

Option name Description

“-c” on page 29 Instructs the compiler to compile or assemble the source files
only but do not link. With this option, the output is a .o file for
each source file.

“-C” on page 28 When used in conjunction with the -E or -P options, preserves
or removes comments in preprocessed output.

“-E” on page 31 Preprocesses the source files named in the compiler invocation,
without compiling. The preprocessed file is output to the
standard out.

© Copyright IBM Corp. 2019 17

Table 5. Compiler output options (continued)

Option name Description

“-o” on page 47 Specifies a name for the output object, assembler, executable,
or preprocessed file.

“-P” on page 48 Preprocesses the source files named in the compiler invocation,
without compiling, and creates an output preprocessed file for
each input file.

“-qmakedep” on page 80 Produces the dependency files that are used by the make tool
for each source file.

“-qshowmacros” on page 91 Emits macro definitions to preprocessed output.

“-W” on page 52 -Wpoption passes the listed option directly to the preprocessor.

The following options are supported by XL C/C++ V2.4.1 for compatibility with other compilers. For details
about these options, see GNU Compiler Collection online documentation(http://gcc.gnu.org/onlinedocs/).

• -M
• -MD
• -MF file
• -MG
• -MM
• -MMD
• -MP
• -MQ target
• -MT target

Input control
The options in this category specify the type and location of your source files.

Table 6. Compiler input options

Option name Description

“-I” on page 35 Adds a directory to the search path for include files.

“-qasmlib” on page 58 Specifies assembler macro libraries to be used when
assembling the assembler source code.

“-qinclude” on page 74 Specifies additional header files to be included in a
compilation unit, as though the files were named in an
#include statement in the source file.

Language element control
The options in this category allow you to specify the characteristics of the source code. You can also use
these options to enforce or relax language restrictions and enable or disable language extensions.

18 z/OS: Compiler Reference

http://gcc.gnu.org/onlinedocs/

Table 7. Language element control options

Option name Description

“-D” on page 30 Defines a macro as in a #define preprocessor
directive.

“-qasm (-fasm)” on page 57 Controls the interpretation and subsequent
generation of code for assembler language
extensions.

“-qdigraph” on page 68 Enables recognition of digraph key combinations
and operator keywords to represent characters
that are not found on some keyboards. Digraph
key combinations include <:, <%, and so on.
Operator keywords include and, or, and so on.

“-qlanglvl (-std)” on page 76 Determines whether source code and compiler
options should be checked for conformance to a
specific language standard, or subset or superset of
a standard.

“-U” on page 50 Undefines a macro defined by the compiler or by the
-D compiler option.

“-W” on page 52 -Wa,option passes the listed option directly to the
assembler.

The following options are supported by XL C/C++ V2.4.1 for compatibility with other compilers. For details
about these options, see GNU Compiler Collection online documentation(http://gcc.gnu.org/onlinedocs/).

• -fconstexpr-depth
• -fexec-charset
• -ffreestanding
• -fgnu89-inline
• -fgnu-keywords
• -fhosted
• -foperator-names
• -frtti (synonym for -qrtti)
• -fsigned-char (synonym for -qchars=signed)
• -ftemplate-backtrace-limit
• -funsigned-char (synonym for -qchars=unsigned)

Template control (C++ only)
You can use these options to control how the C++ compiler handles templates.

Table 8. C++ template options

Option name Description

“-qtemplatedepth (-ftemplate-depth) (C++ only)” on
page 97

Specifies the maximum number of recursively
instantiated template specializations that will be
processed by the compiler.

Chapter 3. Compiler options reference 19

http://gcc.gnu.org/onlinedocs/

Floating-point and integer control
Specifying the details of how your applications perform calculations can allow you to take better
advantage of your system's floating-point performance and precision, including how to direct rounding.
However, keep in mind that strictly adhering to IEEE floating-point specifications can impact the
performance of your application. Use the options in the following table to control trade-offs between
floating-point performance and adherence to IEEE standards.

Table 9. Floating-point and integer control options

Option name Description

“-qchars (-fsigned-char, -funsigned-char)” on page
60

Determines whether all variables of type char is
treated as signed or unsigned.

“-qfloat” on page 70 Selects different strategies for speeding up
or improving the accuracy of floating-point
calculations.

Object code control
These options affect the characteristics of the object code, preprocessed code, or other output generated
by the compiler.

Table 10. Object code control options

Option name Description

“-qrtti (-frtti) (C++ only)” on page 90 Generates runtime type identification (RTTI) information for
classes with virtual functions.

“-qcompress” on page 61 Suppresses the generation of function names in the function
control block, thereby reducing the size of your application's
load module.

“-qeh (C++ only)” on page 69 Controls whether exception handling is enabled in the
module being compiled.

“-qexportall” on page 69 Exports all externally defined functions and variables in the
compilation unit so that a DLL application can use them.

“-r” on page 49 Produces a nonexecutable output file to use as an input file
in another binder command call. This file may also contain
unresolved symbols.

“-qcsect” on page 62 Instructs the compiler to generate CSECT names in the
output object module.

“-qro” on page 87 Specifies the storage type for string literals.

“-qroconst” on page 87 Specifies the storage location for constant values.

“-s” on page 49 Strips the symbol table, line number information, and
relocation information from the output file.

Error checking and debugging
The options in this category allow you to detect and correct problems in your source code. In some cases,
these options can alter your object code, increase your compile time, or introduce runtime checking that

20 z/OS: Compiler Reference

can slow down the execution of your application. The option descriptions indicate how extra checking can
impact performance.

To control the amount and type of information you receive regarding the behavior and performance of
your application, consult the options in “Listings, messages, and compiler information” on page 23.

Table 11. Error checking and debugging options

Option name Description

“-# (pound sign)” on page 27 Previews the compilation steps specified on the
command line, without actually invoking any compiler
components.

-fstack-protector (-qstackprotect) Provides protection against malicious input data or
programming errors that overwrite or corrupt the
stack.

“-qsyntaxonly (-fsyntax-only)” on page 96 Performs syntax checking without generating an object
file.

“-g” on page 34 Generates debugging information for use by a
symbolic debugger, and makes the program state
available to the debugging session at selected source
locations.

“-qdebug” on page 64 Instructs the compiler to generate debugging
information.

“-qgonumber” on page 72 Generates line number tables that correspond to
the input source file for Debug Tool and CEEDUMP
processing.

“-qrtcheck” on page 88 Generates compare-and-trap instructions which
perform certain types of runtime checking. The
messages can help you to debug your C and C++
programs.

“-qservice” on page 90 Places a string in the object module, which is displayed
in the traceback if the application fails abnormally.

Options to control diagnostic messages formatting
The following options are supported by XL C/C++ V2.4.1 for compatibility with other compilers. For details
about these options, see GNU Compiler Collection online documentation(http://gcc.gnu.org/onlinedocs/).

• -fdiagnostics-show-option
• -felide-type
• -fshow-column
• -fshow-source-location
• -pedantic

Options to request or suppress warnings
The following options are supported by XL C/C++ V2.4.1 for for compatibility with other compilers. see
GNU Compiler Collection online documentation(http://gcc.gnu.org/onlinedocs/).

• -fsyntax-only (synonym for -qsyntaxonly)
• -w

Chapter 3. Compiler options reference 21

http://gcc.gnu.org/onlinedocs/
http://gcc.gnu.org/onlinedocs/

• -Wall
• -Wbad-function-cast
• -Wcast-align
• -Wchar-subscripts
• -Wcomment
• -Wconversion
• -Wc++11-compat
• -Wdelete-non-virtual-dtor
• -Wempty-body
• -Wenum-compare
• -Werror=foo
• -Weverything
• -Wfatal-errors
• -Wfloat-equal
• -Wfoo
• -Wformat
• -Wformat=n
• -Wformat=2
• -Wformat-nonliteral
• -Wformat-security
• -Wformat-y2k
• -Wignored-qualifiers
• -Wimplicit-int
• -Wimplicit-function-declaration
• -Wimplicit
• -Wmain
• -Wmissing-braces
• -Wmissing-field-initializers
• -Wmissing-prototypes
• -Wnarrowing
• -Wno-attributes
• -Wno-builtin-macro-redefined
• -Wno-deprecated
• -Wno-deprecated-declarations
• -Wno-division-by-zero
• -Wno-endif-labels
• -Wno-format
• -Wno-format-extra-args
• -Wno-format-zero-length
• -Wno-int-conversion
• -Wno-invalid-offsetof
• -Wno-int-to-pointer-cast
• -Wno-multichar

22 z/OS: Compiler Reference

• -Wnonnull
• -Wno-return-local-addr
• -Wno-unused-result
• -Wno-virtual-move-assign
• -Wnon-virtual-dtor
• -Woverlength-strings
• -Woverloaded-virtual
• -Wpadded
• -Wparantheses
• -Wpointer-arith
• -Wpointer-sign
• -Wreorder
• -Wreturn-type
• -Wsequence-point
• -Wshadow
• -Wsign-compare
• -Wsign-conversion
• -Wsizeof-pointer-memaccess
• -Wstack-protector
• -Wswitch
• -Wsystem-headers
• -Wtautological-compare
• -Wtype-limits
• -Wtrigraphs
• -Wundef
• -Wuninitialized
• -Wunknown-pragmas
• -Wunused
• -Wunused-label
• -Wunused-parameter
• -Wunused-variable
• -Wunused-value
• -Wvariadic-macros
• -Wvarargs
• -Wvla
• -Wwrite-strings

Listings, messages, and compiler information
The options in this category allow your control over the listing file, as well as how and when to display
compiler messages. You can use these options in conjunction with those described in “Error checking and
debugging” on page 20 to provide a more robust overview of your application when checking for errors
and unexpected behavior.

Chapter 3. Compiler options reference 23

Table 12. Listings and messages options

Option name Description

“-qlist” on page 79 Produces a compiler listing file that includes object and
constant area sections.

“-qoffset” on page 84 Lists offset addresses relative to entry points of
functions.

“-qphaseid, -qphsinfo” on page 85 Causes each compiler component (phase) to issue an
informational message as each phase begins execution
and reports the time taken in each compilation phase.

Optimization and tuning
The options in this category allow you to control the optimization and tuning process, which can improve
the performance of your application at run time.

Remember that not all options benefit all applications. Trade-offs sometimes occur among an increase in
compile time, a reduction in debugging capability, and the improvements that optimization can provide.

Table 13. Optimization and tuning options

Option name Description

“-qansialias” on page 53 Indicates to the compiler that the code strictly
follows the type-based aliasing rule in the ISO C and
C++ standards, and can therefore be compiled with
higher performance optimization of the generated
code.

“-qassert” on page 59 Enables optimizations for restrict qualified pointers.

“-qarch” on page 55 Specifies the processor architecture for which the
code (instructions) should be generated.

“-qcompact” on page 61 Avoids optimizations that increase code size.

“-qignerrno” on page 73 Allows the compiler to perform optimizations as if
system calls would not modify errno.

“-qinline” on page 75 Attempts to inline functions instead of generating
calls to those functions, for improved performance.

“-qlibansi” on page 79 Assumes that all functions with the name of an ANSI
C library function are in fact the system functions.

“-qmaxmem” on page 82 Limits the amount of memory that the compiler
allocates while performing specific, memory-
intensive optimizations to the specified number of
kilobytes.

“-O, -qoptimize” on page 44 Specifies whether to optimize code during
compilation and, if so, at which level.

24 z/OS: Compiler Reference

Table 13. Optimization and tuning options (continued)

Option name Description

“-qstrict” on page 94 Ensures that optimizations that are done by default
at the -O3 and higher optimization levels, and,
optionally at -O2, do not alter the semantics of a
program.

“-qstrict_induction” on page 96 Prevents the compiler from performing induction
(loop counter) variable optimizations. Such
optimizations might be problematic when integer
overflow operations involving the induction variables
occurs.

“-qthreaded” on page 98 Indicates to the compiler whether it must generate
threadsafe code.

“-qtune” on page 99 Tunes instruction selection, scheduling, and other
architecture-dependent performance enhancements
to run best on a specific hardware architecture.

Linking
Though linking occurs automatically, the options in this category allow you to direct input and output to
the binder, controlling how the binder processes your object files.

Table 14. Linking options

Option name Description

“-e” on page 32 Specifies an entry point for a shared object.

“-L” on page 36 At link time, searches the directory path for library files
specified by the -l option.

“-l” on page 37 Searches for the specified library file libkey.a.

“-W” on page 52 -Wl,option passes the listed option directly to the binder.

Portability and migration
The options in this category can help you port software from other platforms to z/OS.

Table 15. Portability and migration options

Option name Description

“-qascii” on page 56 Enables your application to process ASCII data natively at
execution time.

Compiler customization
The options in this category allow you to specify alternative locations for compiler components,
configuration files, standard include directories, and internal compiler operation. These options are useful
for specialized installations, testing scenarios, and the specification of additional command-line options.

Chapter 3. Compiler options reference 25

Table 16. Compiler customization options

Option name Description

“-qoptfile” on page 84 Specifies an options file that contains a list of additional
command line options to be used for the compilation.

“-F” on page 33 Names an alternative configuration file or stanza for the
compiler.

“-qmemory” on page 83 Improves compile-time performance by using a memory
file in place of a temporary work file, if possible.

“-qspill” on page 92 Specifies the size (in bytes) of the register spill space, the
internal program storage areas used by the optimizer for
register spills to storage.

“-W” on page 52 Passes one or more options to a component that is
indicated by a single lower case letter following -W.

Individual option descriptions
This section contains descriptions of the individual compiler options available in XL C/C++ V2.4.1.

For each option, the following information is provided:
Category

The functional category to which the option belongs is listed here.
Pragma equivalent

Many compiler options allow you to use an equivalent pragma directive to apply the option's
functionality within the source code, limiting the scope of the option's application to a single source
file, or even selected sections of code.

When an option supports the #pragma name form of the directive, this is indicated.

Purpose
This section provides a brief description of the effect of the option (and equivalent pragmas), and why
you might want to use it.

Syntax
This section provides the syntax for the option, and where an equivalent #pragma name is supported,
the specific syntax for the pragma.

Note that you can also use the C99-style _Pragma operator form of any pragma; although this syntax
is not provided in the option descriptions. For complete details on pragma syntax, see “Pragma
directive syntax” on page 103

Defaults
In most cases, the default option setting is clearly indicated in the syntax diagram. However, for
many options, there are multiple default settings, depending on other compiler options in effect. This
section indicates the different defaults that may apply.

Parameters
This section describes the suboptions that are available for the option and pragma equivalents, where
applicable. For suboptions that are specific to the command-line option or to the pragma directive,
this is indicated in the descriptions.

Usage
This section describes any rules or usage considerations you should be aware of when using
the option. These can include restrictions on the option's applicability, valid placement of pragma
directives, precedence rules for multiple option specifications, and so on.

26 z/OS: Compiler Reference

Predefined macros
Many compiler options set macros that are protected (that is, cannot be undefined or redefined by
the user). Where applicable, any macros that are predefined by the option, and the values to which
they are defined, are listed in this section. A reference list of these macros (as well as others that are
defined independently of option setting) is provided in Chapter 5, “Compiler predefined macros,” on
page 117

Examples
Where appropriate, examples of the command-line syntax and pragma directive use are provided in
this section.

-# (pound sign)

Category
Error checking and debugging

Pragma equivalent
None.

Purpose
Previews the compilation steps specified on the command line, without actually invoking any compiler
components.

When this option is enabled, information is written to standard output, showing the names of the
programs within the preprocessor, compiler, and binder that would be invoked, and the default options
that would be specified for each program. The preprocessor, compiler, and binder are not invoked.

Syntax
-#

Usage
You can use this command to determine the commands and files that will be involved in a particular
compilation. It avoids the overhead of compiling the source code and overwriting any existing files, such
as .lst files.

This option displays the same information as -v, but it does not invoke the compiler. The -# option
overrides the -v option.

Predefined macros
None.

Examples

To preview the steps for the compilation of the source file myprogram.c, enter:

xlclang myprogram.c -#

Related information
• “-v, -V” on page 51

Chapter 3. Compiler options reference 27

-+ (plus sign) (C++ only)

Category
Input control

Pragma equivalent
None.

Purpose
Compiles any file as a C++ language file.

Syntax
-+

Usage
You can use -+ to compile a file with any suffix other than .a, .o, .so, .S, or .s. If you do not use the -+
option, files must have a suffix of .C (uppercase C), .cc, .cpp, or .cxx to be compiled as a C++ file. If
you compile files with suffix .c (lowercase c) without specifying -+, the files are compiled as a C language
file.

Predefined macros
None.

Examples

To compile the file myprogram.cplspls as a C++ source file, enter:

 xlclang -+ myprogram.cplspls

-C

Category
Output control

Pragma equivalent
None.

Purpose
When used in conjunction with the -E or -P options, preserves or removes comments in preprocessed
output.

When -C is in effect, comments are preserved.

Syntax
-C

28 z/OS: Compiler Reference

Defaults
None.

Usage
The -C option has no effect without either the -E or the -P option. If -E is specified, continuation
sequences are preserved in the output. If -P is specified, continuation sequences are stripped from the
output, forming concatenated output lines.

Predefined macros
None.

Examples

To compile myprogram.c to produce a file myprogram.i that contains the preprocessed program text
including comments, enter:

xlclang myprogram.c -P -C

Related information
• “-E” on page 31
• “-P” on page 48

-c

Category
Output control

Pragma equivalent
None.

Purpose
Instructs the compiler to compile or assemble the source files only but do not link. With this option, the
output is a .o file for each source file.

Syntax
-c

Defaults
By default, the compiler invokes the binder to link object files into a final executable.

Usage
When this option is in effect, the compiler creates an output object file, file_name.o, for each valid
source file, such as file_name.c, file_name.i, file_name.C, file_name.cpp, or file_name.s.
You can use the -o option to provide an explicit name for the object file.

The -c option is overridden if the -E, -P, or -fsyntax-only (-qsyntaxonly) option is specified.

Chapter 3. Compiler options reference 29

Predefined macros
None.

Examples

To compile myprogram.c to produce an object file myprogram.o, but no executable file, enter the
command:

xlclang myprogram.c -c

To compile myprogram.c to produce the object file new.o and no executable file, enter the command:

xlclang myprogram.c -c -o new.o

Related information
• “-E” on page 31
• “-o” on page 47
• “-P” on page 48
• “-qsyntaxonly (-fsyntax-only)” on page 96

-D

Category
Language element control

Pragma equivalent
None.

Purpose
Defines a macro as in a #define preprocessor directive.

Syntax
-D name

= definition

Defaults
Not applicable.

Parameters
name

The macro you want to define. -Dname is equivalent to #define name. For example, -DCOUNT is
equivalent to #define COUNT.

definition
The value to be assigned to name. -Dname=definition is equivalent to #define name definition.
For example, -DCOUNT=100 is equivalent to #define COUNT 100.

30 z/OS: Compiler Reference

Usage
Using the #define directive to define a macro name already defined by the -D option will result in an
error condition.

The -Uname option, which is used to undefine macros defined by the -D option, has a higher precedence
than the -Dname option.

Predefined macros
The compiler configuration file uses the -D option to predefine several macro names for specific
invocation commands. For details, see the configuration file for your system.

Examples

To specify that all instances of the name COUNT be replaced by 100 in myprogram.c, enter:

xlclang myprogram.c -DCOUNT=100

Related information
• “-U” on page 50
• Chapter 5, “Compiler predefined macros,” on page 117

-E

Category
Output control

Pragma equivalent
None.

Purpose
Preprocesses the source files named in the compiler invocation, without compiling. The preprocessed file
is output to the standard out.

Syntax
-E

Defaults
By default, source files are preprocessed, compiled, and linked to produce an executable file.

Usage
Source files with unrecognized file name suffixes are treated and preprocessed as C files.

Unless -C is specified, comments are replaced in the preprocessed output by a single space character.
New lines and #line directives are issued for comments that span multiple source lines.

The -E option overrides the -P and -fsyntax-only (-qsyntaxonly) options. The combination of -E
-o stores the preprocessed result in the file specified by -o.

Chapter 3. Compiler options reference 31

Predefined macros
None.

Examples

To compile myprogram.c and send the preprocessed source to standard output, enter:

xlclang myprogram.c -E

If myprogram.c has a code fragment such as:

#define SUM(x,y) (x + y)
int a ;
#define mm 1 /* This is a comment in a
 preprocessor directive */
int b ; /* This is another comment across
 two lines */
int c ;
 /* Another comment */
c = SUM(a,b) ; /* Comment in a macro function argument*/

the output will be:

int a ;
int b ;
int c ;
c = a + b ;

Related information
• “-C” on page 28
• “-P” on page 48
• “-qsyntaxonly (-fsyntax-only)” on page 96

-e

Category
Linking

Pragma equivalent
None.

Purpose
Specifies the name of the function to be used as the entry point of the program.

Syntax
-e function

Defaults
The function //ceestart is the default.

32 z/OS: Compiler Reference

Parameters
function

The name of the function to be used as the entry point of the program.

Usage
This can be useful when creating a fetchable program, or a non–C or non–C++ main, such as a COBOL
program. Non–C++ linkage symbols of up to 1024 characters in length may be specified. You can specify
an S-name by preceding the function name with double slash (//). An S-name is a short external symbol
name, which is produced by the compiler when compiling C programs with the NOLONGNAME option.

Predefined macros
None.

-F

Category
Compiler customization

Pragma equivalent
None.

Purpose
Names an alternative configuration file or stanza for the compiler.

Note: This option is not equivalent to the -F option that GCC provides.

Syntax
-F file_path

: stanza

: stanza

Defaults
By default, the compiler uses the configuration file that is configured at installation time, and uses the
stanza defined in that file for the invocation command currently being used.

Parameters
file_path

The full path name of the alternate compiler configuration file to use.
stanza

The name of the configuration file stanza to use for compilation. This directs the compiler to use the
entries under that stanza regardless of the invocation command being used.

Usage
Note that any file names or stanzas that you specify with the -F option override the defaults specified
in the system configuration file. If you have specified a custom configuration file with the CLC_CONFIG
environment variable, that file is processed before the one specified by the -F option.

Chapter 3. Compiler options reference 33

Predefined macros
None.

Examples

To compile myprogram.c using a stanza called debug that you have added to the default configuration
file, enter:

xlclang myprogram.c -F:debug

To compile myprogram.c using a configuration file called /usr/tmp/myconfig.cfg, enter:

xlclang myprogram.c -F/usr/tmp/myconfig.cfg

To compile myprogram.c using the stanza debug you have created in a configuration file
called /usr/tmp/myconfig.cfg, enter:

xlclang myprogram.f -F/usr/tmp/myconfig.cfg:debug

Related information
• “Using custom compiler configuration files” on page 11
• “Specifying compiler options in a configuration file” on page 4
• “Compile-time and link-time environment variables” on page 11

-g

Category
Error checking and debugging

Pragma equivalent
None.

Purpose
Generates debugging information for use by a symbolic debugger, and makes the program state available
to the debugging session at selected source locations.

Program state refers to the values of user variables at certain points during the execution of a program.

When the -O2 optimization level is in effect, the debug capability is completely supported.

When an optimization level higher than -O2 is in effect, the debug capability is limited.

Syntax
-g

Defaults
Not applied.

34 z/OS: Compiler Reference

Examples

Use the following command to compile myprogram.c and generate an executable program called
testing for debugging:

xlclang myprogram.c -o testing -g

Related information
• “-O, -qoptimize” on page 44

-I

Category
Input control

Pragma equivalent
None.

Purpose
Adds a directory to the search path for include files.

Syntax
-I directory_path

Defaults
See “Directory search sequence for included files” on page 6 for a description of the default search paths.

Parameters
directory_path

The path for the directory where the compiler should search for the header files.

Usage
If the -I directory option is specified both in the configuration file and on the command line, the paths
specified in the configuration file are searched first. The -I directory option can be specified more than
once on the command line. If you specify more than one -I option, directories are searched in the order
that they appear on the command line.

The -I option has no effect on files that are included using an absolute path name.

Predefined macros
None.

Examples

To compile myprogram.c and search /usr/tmp and then /oldstuff/history for included files,
enter:

xlclang myprogram.c -I/usr/tmp -I/oldstuff/history

Chapter 3. Compiler options reference 35

Related information
• “-qinclude” on page 74
• “Directory search sequence for included files” on page 6
• “Specifying compiler options in a configuration file” on page 4

-L

Category
Linking

Pragma equivalent
None.

Purpose
At link time, searches the directory path for library files specified by the -l option.

Syntax
-L directory_path

Defaults
The default is to search only the standard directories. See the compiler configuration file for the
directories that are set by default.

Parameters
directory_path

The path for the directory which should be searched for library files.

Usage
Paths specified with the -L compiler option are only searched at link time.

If the -Ldirectory option is specified both in the configuration file and on the command line, search paths
specified in the configuration file are the first to be searched at link time.

The -L compiler option is cumulative. Subsequent occurrences of -L on the command line do not replace,
but add to, any directory paths specified by earlier occurrences of -L.

Predefined macros
None.

Examples

To compile myprogram.c so that the directory /usr/tmp/old is searched for the library
libspfiles.a, enter:

xlclang myprogram.c -lspfiles -L/usr/tmp/old

Related information
• “-l” on page 37

36 z/OS: Compiler Reference

-l

Category
Linking

Pragma equivalent
None.

Purpose
Searches for the specified library file libkey.a.

Syntax
-l key

Defaults
The compiler default is to search only some of the compiler runtime libraries. The default configuration
file specifies the default library names to search for with the -l compiler option, and the default search
path for libraries with the -L compiler option.

The C and C++ runtime libraries are automatically added.

Parameters
key

The name of the library minus the lib and .a or .so characters.

Usage
You must also provide additional search path information for libraries not located in the default search
path. The search path can be modified with the -L option.

The -l option is cumulative. Subsequent appearances of the -l option on the command line do not
replace, but add to, the list of libraries specified by earlier occurrences of -l. Libraries are searched in
the order in which they appear on the command line, so the order in which you specify libraries can affect
symbol resolution in your application.

Predefined macros
None.

Examples

To compile myprogram.c and link it with library libmylibrary.so or libmylibrary.a that
is found in the /usr/mylibdir directory, enter the following command. Preference is given to
libmylibrary.so over libmylibrary.a.

xlclang myprogram.c -lmylibrary -L/usr/mylibdir

Related information
• “-L” on page 36
• “Specifying compiler options in a configuration file” on page 4

Chapter 3. Compiler options reference 37

-M

Category
“Output control” on page 17

Pragma equivalent
None.

Purpose
Instructs the compiler to generate a dependency file or dependency files that can be used by the make
utility.

Syntax
-M

Defaults
The default is to search only the standard directories. See the compiler configuration file for the
directories that are set by default.

Usage
The compiler will generate as many dependency files as there are source files specified. -M is the
equivalent of specifying -qmakedep with no suboption.

Dependency file name can be overridden by the -MF option.

Predefined macros
None.

Examples

To compile myprogram.c and create an output file named myprogram.d, enter:

xlclang -c -M myprogram.c

Related information
• “-qmakedep” on page 80
• “-MF” on page 39

-MD

Category
“Output control” on page 17

Pragma equivalent
None.

38 z/OS: Compiler Reference

Purpose
Instructs the compiler to generate a dependency output file as a side effect of the compilation process.

Syntax
-MD

Defaults
None.

Usage
-MD is equivalent to -M -MF file, except that -E is not implied.

If -o is also specified, it's argument is used as the file but with suffix of .d; otherwise the name of the
input file is used, by removing directory components and replacing any suffix with a .d suffix.

If -MD is used with -E, the -o argument specifies the preprocessing output file; otherwise the -o
argument specifies a target object file.

Predefined macros
None.

Related information
• “-M” on page 38
• “-MF” on page 39

-MF

Category
“Output control” on page 17

Pragma equivalent
None.

Purpose
If -M or -qmakedep is specified, instructs the compiler to override the default name of the dependency
file.

Syntax
-MF file_name

Defaults
None.

Usage
file_name can be either a file name or a directory. By default, the dependency file name and path is the
same as the -o compiler option but with .d suffix. If a directory is specified, the default dependency file

Chapter 3. Compiler options reference 39

name is used and placed in this directory. If a relative file name is specified, it is relative to the current
working directory.

Notes:

1. The argument of file_name can not be the name of a data set.
2. If the file specified by -MF already exists, it will be overwritten. Moreover, if the output path specified

does not exist or is write-protected, an error message will be issued.
3. If you specify a single file name for the -MF option when compiling multiple source files, each

generated dependency file overwrites the previous one. Only a single output file will be generated
for the last source file specified on the command line.

Predefined macros
None.

Examples

You can refer to the following table for detail usage of -M and -MF:

Table 17. Example of using -M and -MF

Description Command Dependency File

-MF is not specified xlclang -c -M t.c ./t.d is generated.

xlclang -M -c -o obj.o t.c ./obj.d is generated.

xlclang -c -M -o dir/ t.c ./dir/t.d is generated
if ./dir is writable.

-MF specifies a file xlclang -c -qmakedep -MF dep.u t.c ./dep..d is generated

xlclang -c -o obj.o -M -MF ../dep.x t.c ../dep.x is generated

xlclang -c -M -MF dir/dep.d a.c b.c ./dir/dep.d is generated for
b.c only.

-MF specifies a
directory xlclang -c -M -MF dir/ a.c b.c ./dir/a..d and ./dir/b.d

are generated for a.c and
b.c respectively if ./dir/ is
writable.

Related information
• “-M” on page 38
• “-qmakedep” on page 80

-MG

Category
“Output control” on page 17

Pragma equivalent
None.

40 z/OS: Compiler Reference

Purpose
If -M or -qmakedep is specified, this option instructs the compiler to include missing header files into the
make dependencies file.

Syntax
-MG

Defaults
None.

Usage
When used with -qmakedep=pponly, -MG instructs the compiler to include missing header files into the
make dependencies file and suppress diagnostic messages about missing header files.

When used with -M, -qmakedep, or -qmakedep=gcc, -MG instructs the C compiler to include missing
header files into the make dependency output file, but the C compiler emits only warning messages and
proceeds to create an object file if the missing headers do not cause subsequent severe compile errors.

Predefined macros
None.

Related information
• “-M” on page 38
• “-qmakedep” on page 80

-MM

Category
“Output control” on page 17

Pragma equivalent
None.

Purpose
Like -M but do not mention header files that are found in system header directories, nor header files that
are included, directly or indirectly, from such a header.

Syntax
-MM

Defaults
None.

Chapter 3. Compiler options reference 41

Usage
The choice of angle brackets or double quotes in an #include directive does not in itself determine
whether that header appears in -MM dependency output.

Predefined macros
None.

Related information
• “-M” on page 38

-MMD

Category
“Output control” on page 17

Pragma equivalent
None.

Purpose
Like -MD except mention only user header files, not system header files.

Syntax
-MMD

Defaults
None.

Predefined macros
None.

Related information
• “-MD” on page 38

-MQ

Category
“Output control” on page 17

Pragma equivalent
None.

Purpose
If -M or -qmakedep is specified, this option sets the target to the <target_name> instead of the default
target name.

42 z/OS: Compiler Reference

Syntax
-MQ target_name

Defaults
None.

Usage
The -MQ option is useful in cases where the target contains characters that have special meaning in make.
See the following example:

> xlclang -MQ '$(prefix)t.o' -qmakedep=gcc t.c
$$(prefix)t.o : t.c \
 t1.h \
 t2.h

If the -MQ option is specified multiple times, the targets from each specification are included in the
dependency file.

If -MT and -MQ are mixed on the command line, the targets from all -MQ flags will precede the targets
from all -MT flags when they are emitted in the make dependency file.

Note: -MQ is the same as -MT except that -MQ escapes any characters that have special meaning in make.

Predefined macros
None.

Related information
• “-M” on page 38
• “-MT” on page 43
• “-qmakedep” on page 80

-MT

Category
“Output control” on page 17

Pragma equivalent
None.

Purpose
If -M or -qmakedep is specified, this option sets the target to the <target_name> instead of the default
target name.

Syntax
-MT target_name

Defaults
None.

Chapter 3. Compiler options reference 43

Usage
This option is useful in cases where the target is not in the same directory as the source or when the same
dependency rule applies to more than one target.

When -MT is used with -M or-qmakedep with no suboption, all targets are repeated for each dependency.
See the following example:

> xlc -M -MT t1.o -MT t2.o t.c
t1.o t2.o : t.c
t1.o t2.o : t1.h
t1.o t2.o : t2.h

When -MT is used with -qmakedep=gcc or -qmakedep=pponly, all targets appear on a single line
containing all dependencies. See the following example:

> xlclang -M -MT t1.o -MT t2.o -qmakedep=gcc t.c
t1.o t2.o : t.c \
 t1.h \
 t2.h

If the -MT option is specified multiple times, the targets from each specification are included in the
dependency file.

Predefined macros
None.

Related information
• “-M” on page 38
• “-MQ” on page 42
• “-qmakedep” on page 80

-O, -qoptimize

Category
Optimization and tuning

Purpose
Specifies whether to optimize code during compilation and, if so, at which level.

Syntax

-q

nooptimize

optimize

= 0

2

3

 -O

 -O2

 -O3

44 z/OS: Compiler Reference

Defaults
-qnooptimize

Parameters
nooptimize

Performs only quick local optimizations such as constant folding and elimination of local common
subexpressions.

-O | -O2 | -qoptimize=2
Performs optimizations that the compiler developers considered the best combination for compilation
speed and runtime performance. The optimizations may change from product release to release. If
you need a specific level of optimization, specify the appropriate numeric value.

This setting implies -qstrict and -qnostrict_induction, unless explicitly negated by
-qstrict_induction or -qnostrict.

-O3 | -qoptimize=3
Performs additional optimizations that are memory intensive, compile-time intensive, or both. They
are recommended when the desire for runtime improvement outweighs the concern for minimizing
compilation resources.

-O3 applies the -O2 level of optimization, but with unbounded time and memory limits. -O3 also
performs higher and more aggressive optimizations that have the potential to slightly alter the
semantics of your program. The compiler guards against these optimizations at -O2. The aggressive
optimizations performed when you specify -O3 are:

• Aggressive code motion, and scheduling on computations that have the potential to raise an
exception, are allowed.

Loads and floating-point computations fall into this category. This optimization is aggressive
because it may place such instructions onto execution paths where they will be executed when
they may not have been according to the actual semantics of the program.

For example, a loop-invariant floating-point computation that is found on some, but not all, paths
through a loop will not be moved at -O2 because the computation may cause an exception. At
-O3, the compiler will move it because it is not certain to cause an exception. The same is true for
motion of loads. Although a load through a pointer is never moved, loads off the static or stack base
register are considered movable at -O3. Loads in general are not considered to be absolutely safe
at -O2 because a program can contain a declaration of a static array a of 10 elements and load
a[60000000003], which could cause a segmentation violation.

The same concepts apply to scheduling.

Example:

In the following example, at -O2, the computation of b+c is not moved out of the loop for two
reasons:

– It is considered dangerous because it is a floating-point operation
– It does not occur on every path through the loop

At -O3, the code is moved.

 ...
 int i ;
 float a[100], b, c ;
 for (i = 0 ; i < 100 ; i++)
 {
 if (a[i] < a[i+1])
 a[i] = b + c ;
 }
 ...

• Both -O2 and -O3 conform to the following IEEE rules.

Chapter 3. Compiler options reference 45

With -O2 certain optimizations are not performed because they may produce an incorrect sign in
cases with a zero result, and because they remove an arithmetic operation that may cause some
type of floating-point exception.

For example, X + 0.0 is not folded to X because, under IEEE rules, -0.0 + 0.0 = 0.0, which is
-X. In some other cases, some optimizations may perform optimizations that yield a zero result with
the wrong sign. For example, X - Y * Z may result in a -0.0 where the original computation would
produce 0.0.

In most cases the difference in the results is not important to an application and -O3 allows these
optimizations.

-qmaxmem=-1 is set by default with -O3, allowing the compiler to use as much memory as necessary
when performing optimizations.

Built-in functions do not change errno at -O3.

Integer divide instructions are considered too dangerous to optimize even at -O3.

You can use the -qstrict and -qstrict_induction compiler options to turn off effects of -O3
that might change the semantics of a program. Specifying -qstrict together with -O3 invokes all
the optimizations performed at -O2. Reference to the -qstrict compiler option can appear before or
after the -O3 option.

The -O3 compiler option followed by the -O option leaves -qignerrno on.

Usage
Increasing the level of optimization may or may not result in additional performance improvements,
depending on whether additional analysis detects further opportunities for optimization.

Compilations with optimizations may require more time and machine resources than other compilations.

Optimization can cause statements to be moved or deleted, and generally should not be specified along
with the -g flag for debugging programs. The debugging information produced may not be accurate.

You can use #pragma option_override to specify the optimization options on subprogram level,
which overrides optimization options that are specified on the command line.

Predefined macros
• __OPTIMIZE__ is predefined to 2 when -O | -O2 is in effect; it is predefined to 3 when -O3 is in effect.

Otherwise, it is undefined.
• __OPTIMIZE_SIZE__ is predefined to 1 when -O | -O2 | -O3 and -qcompact are in effect.

Otherwise, it is undefined.

Examples

To compile and optimize myprogram.c, enter:

xlclang myprogram.c -O3

Related information
• “-qcompact” on page 61
• “-g” on page 34
• “-qignerrno” on page 73
• “-qstrict” on page 94

46 z/OS: Compiler Reference

-o

Category
Output control

Pragma equivalent
None.

Purpose
Specifies a name for the output object, assembler, executable, or preprocessed file.

Syntax
-o path

Defaults
See “Types of output files” on page 3 for the default file names and suffixes produced by different phases
of compilation.

Parameters
path

When you are using the option to compile from source files, path can be the name of a file. path
can be a relative or absolute path name. When you are using the option to link from object files, path
must be a file name.

You cannot specify a file name with a C or C++ source file suffix (.C, .c, or .cpp), such as myprog.c;
this results in an error and neither the compiler nor the binder is invoked.

Usage
If you use the -c option with -o, you can compile only one source file at a time. In this case, if more than
one source file name is specified, the compiler issues a warning message and ignores -o.

The -E, -P, and -fsyntax-only (-qsyntaxonly) options override the -o option.

Predefined macros
None.

Examples

To compile myprogram.c so that the resulting executable is called myaccount, enter:

xlclang myprogram.c -o myaccount

To compile test.c to an object file only and name the object file new.o, enter:

xlclang test.c -c -o new.o

Related information
• “-c” on page 29
• “-E” on page 31

Chapter 3. Compiler options reference 47

• “-P” on page 48
• “-qsyntaxonly (-fsyntax-only)” on page 96

-P

Category
Output control

Pragma equivalent
None.

Purpose
Preprocesses the source files named in the compiler invocation, without compiling, and creates an output
preprocessed file for each input file.

The preprocessed output file has the same name as the input file but with a .i suffix.

Syntax
-P

Defaults
By default, source files are preprocessed, compiled, and linked to produce an executable file.

Usage
Source files with unrecognized file name suffixes are preprocessed as C files except those with a .i suffix.

#line directives are not generated.

Line continuation sequences are removed and the source lines are concatenated.

The -P option retains all white space including line-feed characters, with the following exceptions:

• All comments are reduced to a single space (unless -C is specified).
• Line feeds at the end of preprocessing directives are not retained.
• White space surrounding arguments to function-style macros is not retained.

The -P option is overridden by the -E option. The -P option overrides the -c, -o, and -fsyntax-only
(-qsyntaxonly) option.

Predefined macros
None.

Related information
• “-C” on page 28
• “-E” on page 31
• “-qsyntaxonly (-fsyntax-only)” on page 96

48 z/OS: Compiler Reference

-r

Category
Object code control

Pragma equivalent
None.

Purpose
Produces a nonexecutable output file to use as an input file in another binder command call. This file may
also contain unresolved symbols.

Syntax
-r

Defaults
Not applicable.

Usage
A file produced with this flag is expected to be used as an input file in another compiler invocation or
binder command call.

Predefined macros
None.

Examples

To compile myprogram.c and myprog2.c into a single object file mytest.o, enter:

xlclang myprogram.c myprog2.c -r -o mytest.o

-s

Category
Object code control

Pragma equivalent
None.

Purpose
Strips the symbol table, line number information, and relocation information from the output file.

This command is equivalent to the operating system strip command.

Syntax
-s

Chapter 3. Compiler options reference 49

Defaults
The symbol table, line number information, and relocation information are included in the output file.

Usage
Specifying -s saves space, but limits the usefulness of traditional debug programs when you are
generating debugging information using options such as -g.

Predefined macros
None.

Related information
• “-g” on page 34

-U

Category
Language element control

Pragma equivalent
None.

Purpose
Undefines a macro defined by the compiler or by the -D compiler option.

Syntax
-U name

Defaults
Many macros are predefined by the compiler; see Chapter 5, “Compiler predefined macros,” on page 117
for those that can be undefined (that is, are not protected). The compiler configuration file also uses the
-D option to predefine several macro names for specific invocation commands; see the configuration file
for your system for more information.

Parameters
name

The macro you want to undefine.

Usage
The -U option is not equivalent to the #undef preprocessor directive. It cannot undefine names defined
in the source by the #define preprocessor directive. It can only undefine names defined by the compiler
or by the -D option.

The -Uname option has a higher precedence than the -Dname option.

Predefined macros
None.

50 z/OS: Compiler Reference

Examples

Assume that your operating system defines the name __unix, but you do not want your compilation
to enter code segments conditional on that name being defined, compile myprogram.c so that the
definition of the name __unix is nullified by entering:

xlclang myprogram.c -U__unix

Related information
• “-D” on page 30

-v, -V

Category
Listings, messages, and compiler information

Pragma equivalent
None.

Purpose
Reports the progress of compilation, by naming the programs being invoked and the options being
specified to each program.

When the -v option is in effect, information is displayed in a comma-separated list. When the -V option
is in effect, information is displayed in a space-separated list.

Syntax
-v

-V

Defaults
The compiler does not display the progress of the compilation.

Usage
The -v and -V options are overridden by the -# option.

Predefined macros
None.

Examples

To compile myprogram.c so you can watch the progress of the compilation and see messages that
describe the progress of the compilation, the programs being invoked, and the options being specified,
enter:

xlclang myprogram.c -v

Related information
• “-# (pound sign)” on page 27

Chapter 3. Compiler options reference 51

-W

Category
Compiler customization

Pragma equivalent
None.

Purpose
Passes one or more options to a component that is indicated by a single lower case letter following -W.

Syntax

-W a

c

l

, option

Parameters
a

Assembler
c

Compiler
l

Binder
option

Any option that is valid for the component to which it is being passed.

Usage
In the string following the -W option, use a comma as the separator for each option, and do not include
any spaces. If you need to include a character that is special to the shell in the option string, precede the
character with a backslash. For example, if you use the option in the configuration file, you can use the
escape sequence backslash comma (\,) to represent a comma in the parameter string.

You do not need the -W option to pass most options to the binder; unrecognized command-line options,
except -q options, are passed to it automatically. Only binder options with the same letters as compiler
options, such as -v or -S, strictly require -W.

Predefined macros
None.

Related information
• “Invoking the compiler” on page 1

52 z/OS: Compiler Reference

-qansialias

Category
Optimization and tuning

Pragma equivalent
None.

Purpose
Indicates to the compiler that the code strictly follows the type-based aliasing rule in the ISO C and C++
standards, and can therefore be compiled with higher performance optimization of the generated code.

When -qansialias is in effect, you are making a promise to the compiler that your source code obeys
the constraints in the ISO standard. On the basis of using this compiler option, the compiler front end
passes aliasing information to the optimizer, which performs optimization accordingly.

When -qnoansialias is in effect, the optimizer assumes that a given pointer of a given type can point
to an external object or any object whose address is taken, regardless of type. This assumption creates a
larger aliasing set at the expense of performance optimization.

Syntax

-q

ansialias

noansialias

Defaults
-qansialias

Usage
When type-based aliasing is used during optimization, the optimizer assumes that pointers can only be
used to access objects of the same type.

Type-based aliasing improves optimization in the following ways.

• It provides precise knowledge of what pointers can and cannot point at.
• It allows more loads to memory to be moved up and stores to memory moved down past each other,

which allows the delays that normally occur in the original written sequence of statements to be
overlapped with other tasks. These re-arrangements in the sequence of execution increase parallelism,
which is desirable for optimization.

• It allows the removal of some loads and stores that otherwise might be needed in case those values
were accessed by unknown pointers.

• It allows more identical calculations to be recognized ("commoning").
• It allows more calculations that do not depend on values modified in a loop to be moved out of the loop

("code motion").
• It allows better optimization of parameter usage in inlined functions.

Simplified, the rule is that you cannot safely dereference a pointer that has been cast to a type that is not
closely related to the type of what it points at. The ISO C and C++ standards define the closely related
types.

The following are not subject to type-based aliasing:

Chapter 3. Compiler options reference 53

• Types that differ only in reference to whether they are signed or unsigned. For example, a pointer to a
signed int can point to an unsigned int.

• Character pointer types (char, unsigned char, and in C but not C++ signed char).
• Types that differ only in their const or volatile qualification. For example, a pointer to a const int

can point to an int.
• C++ types where one is a class derived from the other.

The XL C/C++ V2.4.1 compiler often exposes type-based aliasing violations that other compilers do
not. The C++ compiler corrects most but not all suspicious and incorrect casts without warnings or
informational messages.

In addition to the specific optimizations to the lines of source code that can be obtained by compiling with
the -qansialias compiler option, other benefits and advantages, which are at the program level, are
described below:

• It reduces the time and memory needed for the compiler to optimize programs.
• It allows a program with a few coding errors to compile with optimization, so that a relatively small

percentage of incorrect code does not prevent the optimized compilation of an entire program.
• It positively affects the long-term maintainability of a program by supporting ISO-compliant code.

It is important to remember that even though a program compiles, its source code may not be completely
correct. When you weigh tradeoffs in a project, the short-term expedience of getting a successful
compilation by forgoing performance optimization should be considered with awareness that you may be
nurturing an incorrect program. The performance penalties that exist today could worsen as the compilers
that base their optimization on strict adherence to ISO rules evolve in their ability to handle increased
parallelism.

The -qansialias compiler option only takes effect if the -qoptimize option is in effect.

Although type-based aliasing does not apply to the volatile and const qualifiers, these qualifiers are
still subject to other semantic restrictions. For example, casting away a const qualifier might lead to an
error at run time.

Predefined macros
None.

Examples

The following example executes as expected when compiled unoptimized or with the -qnoansialias
option; it successfully compiles optimized with -qansialias, but does not necessarily execute as
expected. On non-IBM compilers, the following code may execute properly, even though it is incorrect.

1 extern int y = 7.;
2
3 void main() {
4 float x;
5 int i;
6 x = y;
7 i = *(int *) &x;
8 printf("i=%d. x=%f.\n", i, x);
9 }

In this example, the value in object x of type float has its stored value accessed via the expression *
(int *) &x. The access to the stored value is done by the * operator, operating on the expression (int
*) &x. The type of that expression is (int *), which is not covered by the list of valid ways to access
the value in the ISO standard, so the program violates the standard.

When -qansialias (the default) is in effect, the compiler front end passes aliasing information to the
optimizer that, in this case, an object of type float could not possibly be pointed to by an (int *)
pointer (that is, that they could not be aliases for the same storage). The optimizer performs optimization
accordingly. When it compares the instruction that stores into x and the instruction that loads out of

54 z/OS: Compiler Reference

*(int *), it believes it is safe to put them in either order. Doing the load before the store will make the
program run faster, so it interchanges them. The program becomes equivalent to:

1 extern int y = 7.;
2
3 void main() {
4 float x;
5 int i;
6 int temp;
7 temp = *(int *) &x; /* uninitialized */
8 x = y;
9 i = temp;
10 printf("i=%d. x=%f.\n", i, x);
9 }

The value stored into variable i is the old value of x, before it was initialized, instead of the new value that
was intended. IBM compilers apply some optimizations more aggressively than some other compilers so
correctness is more important.

Related information
• “-qlanglvl (-std)” on page 76
• “-O, -qoptimize” on page 44

-qarch

Category
Optimization and tuning

Pragma equivalent
None.

Purpose
Specifies the processor architecture for which the code (instructions) should be generated.

Syntax

-q arch
= n

Defaults
-qarch=10

Parameters
n

Specifies the group to which a model number belongs.

The following groups of models are supported:
5

Produces code that uses instructions available on the 2064-xxx (z900) and 2066-xxx (z800) models
in z/Architecture® mode.

6
Produces code that uses instructions available on the 2084-xxx (z990) and 2086-xxx (z890) models
in z/Architecture mode.

Chapter 3. Compiler options reference 55

7
Produces code that uses instructions available on the 2094-xxx (IBM System z9® Business Class) and
2096-xxx (IBM System z9 Business Class) models in z/Architecture mode.

8
Produces code that uses instructions available on the 2097-xxx (IBM System z10® Enterprise Class)
and 2098-xxx (IBM System z10 Business Class) models in z/Architecture mode.

9
Produces code that uses instructions available on the 2817-xxx (IBM zEnterprise® 196 (z196)) and
2818-xxx (IBM zEnterprise 114 (z114)) models in z/Architecture mode.

10
Is the default value. Produces code that uses instructions available on the 2827-xxx (IBM zEnterprise
EC12 (zEC12)) and 2828-xxx (IBM zEnterprise BC12 (zBC12)) models in z/Architecture mode.

11
Produces code that uses instructions available on the 2964-xxx (IBM z13® (z13)) and the 2965-xxx
(IBM z13s® (z13s)) models in z/Architecture mode.

12
Produces code that uses instructions available on the 3906-xxx (IBM z14) models in z/Architecture
mode.

13
Produces code that uses instructions available on the 8561-xxx (IBM z15) models in z/Architecture
mode.

Usage
For any given -qarch setting, the compiler defaults to a specific, matching -qtune setting, which can
provide additional performance improvements. For detailed information about using -qarch and -qtune
together, see “-qtune” on page 99.

Predefined macros
None.

Related information
• “-qfloat” on page 70
• “-qtune” on page 99

-qascii

Category
“Portability and migration” on page 25

Pragma equivalent
None.

Purpose
Converts character and string literals to ISO8859-1 and enables your application to process ASCII data
natively at execution time.

56 z/OS: Compiler Reference

Syntax

-q

noascii

ascii

Defaults
-qnoascii

Usage
When -qascii is in effect, the compiler performs the following:

• Uses ISO8859-1 for its default code page rather than IBM-1047 for character constants and string
literals.

• Sets a flag in the program control block to indicate that the compile unit is ASCII.

When -qnoascii is in effect, the compiler uses the IBM-1047 code page for character constants and
string literals, unless the code page is affected by other related options.

Use the -qascii option and the ASCII version of the runtime library if your application must process
ASCII data natively at execution time.

Note: All string literals that are related to the std::error_category and std::exception classes
are in EBCDIC.

Predefined macros
When -qascii is in effect, __CHARSET_LIB is defined to 1 and _ENHANCED_ASCII_EXT is defined to
0x410A0000. When -qnoascii is in effect, those macros are not defined.

-qasm (-fasm)

Category
Language element control

Pragma equivalent
None.

Purpose
Controls the interpretation and subsequent generation of code for assembler language extensions.

When -fasm (-qasm) is in effect, the compiler generates code for assembly statements in the source
code. Suboptions specify the syntax used to interpret the content of the assembly statement.

Note: The system assembler program must be available for this command to take effect.

Syntax

-q

asm

noasm

-f

asm

no-asm

Chapter 3. Compiler options reference 57

Defaults
-qasm or -fasm

Usage
At language levels stdc89 and stdc99, token asm is not a keyword. At all the other language levels,

token asm is treated as a keyword.

 The tokens asm, __asm, and __asm__ are keywords at all language levels.

Example

The following code snippet shows an example of the GCC conventions for asm syntax in inline statements:

int a, b;
int main() {
 asm(" AR %0,%1 " :"+r"(a) :"r"(b));
}

Related information
• “-qlanglvl (-std)” on page 76
• “-qasmlib” on page 58

-qasmlib

Category
Input control

Pragma equivalent
None.

Purpose
Specifies assembler macro libraries to be used when assembling the assembler source code.

Syntax

-q

noasmlib

asmlib =

:

path

Default
-qnoasmlib

Parameters
path

The specified macro library can be a z/OS UNIX System Services file system directory. If the suboption
is a z/OS UNIX System Services file system directory.

58 z/OS: Compiler Reference

Usage
Libraries specified with the -qasmlib option or asmlib XL C/C++ V2.4.1 configuration file attribute are
dynamically allocated in the order in which they were specified.

Multiple specifications of -qasmlib result in macro libraries being appended to the list of macro libraries
in the order in which they were specified.

Specify sys1.maclib with -qasmlib if system macros are used.

-qnoasmlib clears the macro library concatenation.

Related information
For more information about enabling assembler code processing, see “-qasm (-fasm)” on page 57.

-qassert

Category
Optimization and tuning

Pragma equivalent
None.

Purpose
Enables optimizations for restrict qualified pointers.

Syntax

-q assert =

restrict

norestrict

Defaults
-qassert=restrict

Parameters
restrict

Optimizations based on restrict qualified pointers are enabled.
norestrict

Optimizations based on restrict qualified pointers are disabled.

Usage
Restrict qualified pointers were introduced in the C99 Standard and provide exclusive initial access to
the object that they point to. This means that two restrict qualified pointers, declared in the same scope,
designate distinct objects and thus should not alias each other (in other words, they are disjoint). The
compiler can use this aliasing in optimizations that may lead to additional performance gains.

Optimizations based on restrict qualified pointers will occur unless the user explicitly disables them with
the option -qassert=norestrict.

-qassert=restrict does not control whether the keyword restrict is a valid qualifier or not.

Chapter 3. Compiler options reference 59

You are responsible for ensuring that if a restrict pointer p references an object A, then within the scope of
p, only expressions based on the value of p are used to access A. A violation of this rule is not diagnosed
by the compiler and may result in incorrect results. This rule only applies to -qassert=restrict.

Predefined macros
None.

Related information
“-qlanglvl (-std)” on page 76

-qchars (-fsigned-char, -funsigned-char)

Category
Floating-point and integer control

Pragma equivalent
None.

Purpose
Determines whether all variables of type char is treated as signed or unsigned.

Syntax

-q chars =

unsigned

signed

-f

unsigned-char

signed-char

Defaults
-qchars=unsigned or -funsigned-char

Parameters
unsigned

Variables of type char are treated as unsigned char.
signed

Variables of type char are treated as signed char.

Usage
The type of char is still considered to be distinct from the types unsigned char and signed char for
purposes of type-compatibility checking or C++ overloading.

Predefined macros
• _CHAR_SIGNED and __CHAR_SIGNED__ are defined to 1 when -qchars=signed (-fsigned-char)

is in effect; otherwise, they are undefined.

60 z/OS: Compiler Reference

• _CHAR_UNSIGNED and __CHAR_UNSIGNED__ are defined to 1 when -qchars=unsigned (-
funsigned-char) is in effect; otherwise, they are undefined.

Example

To treat all char types as signed when compiling myprogram.c, enter:

xlclang myprogram.c -qchars=signed

-qcompact

Category
Optimization and tuning

Purpose
Avoids optimizations that increase code size.

Syntax

-q

nocompact

compact

Defaults
-qnocompact

Usage
Code size is typically reduced by inhibiting optimizations that replicate or expand code inline, such as
inlining or loop unrolling. Execution time might increase.

This option takes effect only when it is specified at the -O2 optimization level, or higher.

Predefined macros
__OPTIMIZE_SIZE__ is predefined to 1 when -qcompact and an optimization level are in effect.
Otherwise, it is undefined.

Example

To compile myprogram.c, instructing the compiler to reduce code size whenever possible, enter the
following command:

xlclang myprogram.c -O -qcompact

-qcompress

Category
Object code control

Pragma equivalent
None.

Chapter 3. Compiler options reference 61

Purpose
Suppresses the generation of function names in the function control block, thereby reducing the size of
your application's load module.

Syntax

-q

nocompress

compress

Defaults
-qnocompress

Usage
Function names are used by the dump service to provide you with meaningful diagnostic information
when your program encounters a fatal program error. They are also used by tools such as Debug Tool and
the Performance Analyzer. Without these function names, the reports generated by these services and
tools may not be complete.

If -qcompress and -qdebug are in effect at the same time, the compiler issues a warning message and
ignores the -qcompress option.

Predefined macros
None.

Related information
“-qdebug” on page 64

-qcsect

Category
Object code control

Pragma equivalent
#pragma csect

Purpose
Instructs the compiler to generate CSECT names in the output object module.

Syntax

-q

csect

= qualifier

nocsect

Defaults
-qcsect

62 z/OS: Compiler Reference

Parameters
qualifier

Enables the compiler to generate long CSECT names.

Usage
When the CSECT option is in effect, the compiler should ensure that the code and static data sections of
your object module are named. Use this option if you will be using SMP/E to service your product and to
aid in debugging your program.

Specifying -qcsect= is equivalent to specify -qcsect.

The CSECT option names sections of your object module differently depending on whether you specified
-qcsect with or without a qualifier.

The -qcsect option names the code and static data sections of your object module as the following:
basename#suffix

If you specify the -qcsect option without the qualifier suboption.
qualifier#basename#suffix

If you specify the -qcsect option with the qualifier suboption.

where:
qualifier

Is the suboption you specified as a qualifier
basename

Is one of the following:

• When -c is specified, it is the source file name with path information and the right-most extension
information removed.

• When -o is specified, it is the output file name with path information and the right-most extension
information removed.

suffix
suffix is:

• C for code CSECT.
• S for static CSECT.

Notes:

1. The # that is appended as part of the #C or #S suffix is not locale-sensitive.
2. The string that is specified as the qualifier suboption has the following restrictions:

• Leading and trailing blanks are removed
• You can specify a string of any length. However if the complete CSECT name exceeds 1024 bytes, it

is truncated starting from the left.

The CSECT names for all the sections (including the code and static data sections) must conform to the
following rules:

• The first character must be an alphabetic character. An alphabetic character is a letter from A through Z,
or from a through z, or _, $(code point X'5B'), #(code point X'7B') or @(code point X'7C'). The other
characters in the CSECT name may be alphabetic characters, digits, or a combination of the two.

• No other special characters may be included in the CSECT name.
• No spaces are allowed in the CSECT name.
• No double-byte data is allowed in the CSECT name.

Chapter 3. Compiler options reference 63

Predefined macros
None.

-qdebug

Category
Error checking and debugging

Pragma equivalent
None.

Purpose
Instructs the compiler to generate debugging information.

Syntax

-q

nodebug

debug

=

:

file

nofile

level

=
0

level

hook

=

:

all

none

profile

line | noline

block | noblock

path | nopath

func | nofunc

call | nocall

nohook

symbol

nosymbol

Defaults
• -qnodebug

64 z/OS: Compiler Reference

• For file, the default is file.
• For level, the default is level=0.
• For hook, the defaults are hook=all for -qnooptimize and hook=none:profile for -qoptimize.
• For symbol, the default is symbol.

Parameters
file | nofile

Controls whether the DWARF debugging information is stored in a separate debug file.

The file suboption specifies the name of the output file for -qdebug. The output file can be a z/OS
UNIX file or a z/OS UNIX System Services directory.

The nofile suboption instructs the compiler to place the debugging information in the GOFF
NOLOAD classes in the object file instead of a separate debug side file. The binder then merges
the debugging information from different object files into the NOLOAD classes in the executable or
library at binding time. The debugging information in the NOLOAD classes will be loaded only when it
is explicitly required by the debugger.

If you do not specify a file name with the file suboption, the compiler stores the debugging
information in a file that has the name of the source file with a .dbg extension.

For a z/OS UNIX file system directory compile, the file option specifies the z/OS UNIX file system
directory where the output files are generated.

The compiler resolves the full path name for this file name, and places it in the generated object file.
This information can be used by program analysis tools to locate the output file for -qdebug. You can
examine this generated file name in the compiler listing file (see “-qlist” on page 79 for instructions
on how to create a compiler listing file), as shown in the following example:

 PPA4: Compile Unit Debug Block
 000140 0000001A =F'26' DWARF File Name
 000144 **** C'/hfs/fullpath/filename.dbg'

If the compiler cannot resolve the full path name for the file name (for example, because the search
permission was denied for a component of the file name), the compiler will issue a warning message,
and the relative file name will be used instead.

level

Controls the amount of debugging information produced. Different levels can balance between debug
capability and compiler optimization. Higher levels provide more complete debug support, at the cost
of runtime or possible compile-time performance. Lower levels provide higher runtime performance,
at the cost of some capability in the debugging session. The level suboption has the following
values:
0

• If the -qoptimize compiler option is specified, -qdebug=level=0 is equivalent to
-qdebug=level=2.

• If the -qnooptimize compiler option is specified, -qdebug=level=0 is equivalent to
-qnodebug.

Note: In the z/OS UNIX System Services environment, -g forces -qnooptimize and translates to
-qdebug=level=0. To debug at an optimization level, you must specify -g with an explicit level.

1
Generates minimal read-only debugging information about line numbers and source file names.
No program state is preserved.

Note: Specifying -qdebug=level=1 is equivalent to specifying -qnodebug with -qgonumber.
If -qdebug=level=1 and -qnogonumber are specified, a warning message is issued, and the
options are set to -qnodebug and -qnogonumber.

Chapter 3. Compiler options reference 65

2
Generates read-only debugging information about line numbers, source file names, and symbols.
When -qoptimize=2 or higher level is specified, no program state is preserved.

3, 4

Generates read-only debugging information about line numbers, source file names, and symbols.

When -qoptimize=2 or higher level is specified:

• No program state is preserved.
• Function parameter values are available to the debugger at the beginning of each function.

Note: -qdebug=level=3 implies STOREARGS if the linkage mode is XPLINK.

5, 6, 7

Generates read-only debugging information about line numbers, source file names, and symbols.

When -qoptimize=2 or higher level is specified:

• Program state is available to the debugger at if constructs, loop constructs, procedure calls, and
function calls.

• Function parameter values are available to the debugger at the beginning of each function.

8

Generates read-only debugging information about line numbers, source file names, and symbols.

When -qoptimize=2 or higher level is specified:

• Program state is available to the debugger at the beginning of every executable statement.
• Function parameter values are available to the debugger at the beginning of each function.

9

Generates debugging information about line numbers, source file names, and symbols. Modifying
the value of a variable in the debugger is allowed and respected.

When -qoptimize=2 or higher level is specified:

• Program state is available to the debugger at the beginning of every executable statement.
• Function parameter values are available to the debugger at the beginning of each function.

hook

Note: If the -qoptimize compiler option is specified, the only valid suboptions for -qhook are call
and func. If other suboptions are specified, they will be ignored.

Controls the generation of line, block, path, call, and func hook instructions. Hook instructions
appear in the compiler Pseudo Assembly listing in the following form:

EX r0,HOOK..[type of hook]

The type of hook that each hook suboption controls is summarized in the list below:

• line

– STMT - General statement
• block

– BLOCK-ENTRY - Beginning of block
– BLOCK-EXIT - End of block
– MULTIEXIT - End of block and procedure

• path

– LABEL - A label

66 z/OS: Compiler Reference

– DOBGN - Start of a loop
– TRUEIF - True block for an if statement
– FALSEIF - False block for an if statement
– WHENBGN - Case block
– OTHERW - Default case block
– GOTO - Goto statement
– POSTCOMPOUND - End of a PATH block

• call

– CALLBGN - Start of a call sequence
– CALLRET - End of a call sequence

• func

– PGM-ENTRY - Start of a function
– PGM-EXIT - End of a function

There is also a set of shortcuts for specifying a group of hooks:

none
It is the same as specifying noline, noblock, nopath, nocall, and nofunc. It instructs the
compiler to suppress all hook instructions.

all
It is the same as specifying line, block, path, call, and func. It instructs the compiler to
generate all hook instructions. This is the ideal setting for debugging purposes.

profile
It is the same as specifying call and func. It is the ideal setting for tracing the program with the
Performance Analyzer.

symbol

This option provides you with access to variable and other symbol information. For optimized code,
the results are not always well-defined for every variable because the compiler might have optimized
away their use.

Usage
When the -qdebug option is in effect, the compiler generates debugging information based on the
DWARF Version 4 debugging information format, which has been developed by the UNIX International
Programming Languages Special Interest Group (SIG), and is an industry standard format. The generated
debugging information is stored in the file specified by the file suboption, or in GOFF NOLOAD classes
when the nofile suboption is specified.

If you specify the -qinline and -qdebug compiler options when -qoptimize is in effect, the inline
debugging information is generated for inline procedures as well as parameters and local variables of
inline procedures.

If you specify the -qinline and -qdebug compiler options when -qnooptimize is in effect, -qinline
is ignored.

When -qoptimize=2 or -qoptimize=3 is used with -qdebug, the -qdebug=symbol suboption is
enabled by default.

In the z/OS UNIX System Services environment, -g forces -qdebug, -qnooptimize, and -qgonumber.

If you specify -qdebug, automonitor debugging information is generated to list the variables that occur
on each statement of the program source file.

Chapter 3. Compiler options reference 67

Predefined macros
None.

Example
If you specify -qdebug and -qnodebug multiple times, the compiler uses the last specified option with
the last specified suboption. For example, the following specifications have the same result:

xlclang -qdebug=level=8 -qnodebug -qdebug=nosymbol hello.c

xlclang -qdebug=level=8:nosymbol hello.c

-qdigraph

Category
Language element control

Pragma equivalent
None.

Purpose
Enables recognition of digraph key combinations and operator keywords to represent
characters that are not found on some keyboards. Digraph key combinations include <:, <%, and so
on. Operator keywords include and, or, and so on.

Syntax

-q

digraph

nodigraph

Defaults
-qdigraph

Usage
A digraph is a keyword or combination of keys that lets you produce a character that is not available on
some keyboards.

Predefined macros
None.

Examples

To disable digraph character sequences when compiling your program, enter the command:

xlclang myprogram.c -qnodigraph

Related information
• “-qlanglvl (-std)” on page 76

68 z/OS: Compiler Reference

-qeh (C++ only)

Category
Object code control

Pragma equivalent
None.

Purpose
Controls whether exception handling is enabled in the module being compiled.

Syntax

-q

eh

noeh

Defaults
-qeh

Usage
When -qeh is in effect, you can control the generation of C++ exception handling code.

When the -qnoeh option is in effect, the generation of the exception handling code is suppressed, which
results in code that runs faster, but it will not be ANSI-compliant if the program uses exception handling.

If your program does not use C++ structured exception handling, you can compile with -qnoeh to prevent
generation of code that is not needed by your application.

If you compile a source file with -qnoeh, active objects on the stack are not destroyed if the stack
collapses in an abnormal fashion. For example, if a C++ object is thrown, or a Language Environment
exception or signal is raised, objects on the stack will not have their destructors run. If -qnoeh has been
specified and the source file has try/catch blocks or throws objects, the program may not execute as
expected.

Predefined macros
_CPPUNWIND is predefined to 1 when -qeh is in effect; otherwise, it is undefined.

-qexportall

Category
Object code control

Pragma equivalent
None.

Purpose
Exports all externally defined functions and variables in the compilation unit so that a DLL application can
use them.

Chapter 3. Compiler options reference 69

Syntax

-q

noexportall

exportall

Defaults
-qnoexportall

Usage
Use the -qexportall option if you are creating a DLL and want to export all external functions and
variables defined in the DLL. You may not export the main() function.

Notes:

1. If you only want to export some of the external functions and variables in the DLL, use the _Export
keyword for C++.

2. Unused extern inline functions will not be exported when the -qexportall option is specified.

Predefined macros
None.

-qfloat

Category
Floating-point and integer control

Purpose
Selects different strategies for speeding up or improving the accuracy of floating-point calculations.

Syntax
-q float

=

:

fold

nomaf

norrm

afp

nofold

maf

rrm

noafp

Defaults
• The default is -qfloat=fold:nomaf:norrm:afp.

70 z/OS: Compiler Reference

Parameters
fold | nofold

Specifies that constant floating-point expressions in function scope are to be evaluated at compile
time rather than at run time. This is known as folding.

maf | nomaf

Makes floating-point calculations faster and more accurate by using floating-point multiply-add
instructions where appropriate. The results may not be exactly equivalent to those from similar
calculations performed at compile time or on other types of computers. Negative zero results may be
produced. This option may affect the precision of floating-point intermediate results.

Note: The suboption maf does not have any effect on extended floating-point operations.

rrm | norrm

Runtime Rounding Mode (RRM) prevents floating-point optimizations that are incompatible with
runtime rounding to plus and minus infinity modes. It informs the compiler that the floating-point
rounding mode may change at run time or that the floating-point rounding mode is not round to
nearest at run time.

afp | noafp

afp instructs the compiler to generate code which uses the full complement of 16 floating point
registers. These include the four original floating-point registers, numbered 0, 2, 4, and 6, and the
Additional Floating Point (AFP) registers, numbered 1, 3, 5, 7 and 8 through 15.

noafp limits the compiler to generating code using only the original four floating-point registers, 0, 2,
4, and 6, which are available on all IBM Z® machine models.

Usage
This option allows controlling floating point accuracy and use of floating point registers.

Using -qfloat suboptions other than the default settings might produce incorrect results in floating-
point computations if the system does not meet all required conditions for a given suboption. Therefore,
use this option only if the floating-point calculations involving IEEE floating-point values are manipulated
and can properly assess the possibility of introducing errors in the program.

If -qstrict or -qnostrict and float suboptions conflict, the last setting specified is used.

Predefined macros
__BFP__ is defined to 1 when -qfloat is in effect.

Examples

To compile myprogram.c so that the constant floating-point expressions are evaluated at compile time
and multiply-add instructions are not generated, enter:

xlclang myprogram.c -qfloat=fold:nomaf

Related information
• “-qarch” on page 55
• “-qstrict” on page 94

Chapter 3. Compiler options reference 71

-qgonumber

Category
Error checking and debugging

Pragma equivalent
None.

Purpose
Generates line number tables that correspond to the input source file for Debug Tool and CEEDUMP
processing.

Syntax

-q

nogonumber

gonumber

Defaults
• -qnogonumber
• If -qdebug is specified, -qgonumber is the default.

Usage
The -qgonumber option is active by default when you use the -qdebug option. The -qdebug option will
activate the -qgonumber option unless -qnogonumber has been explicitly specified.

In the z/OS UNIX System Services environment, the -qgonumber option is enforced when you use the -g
flag option using the xlclang or xlclang++ command. In another words, the -g flag option will always
activate the -qgonumber option, regardless of other option specifications.

Predefined macros
None.

Related information
“-qdebug” on page 64

-qhalt

Category
Error checking and debugging

Purpose
Stops compilation process of a set of source code before producing any object, executable, or assembler
source files if the maximum severity of compile-time messages equals or exceeds the severity specified
for this option.

72 z/OS: Compiler Reference

Syntax
-q halt = num

Defaults
-qhalt=16

Parameters
num

Return code from the compiler.

Usage
If the return code from compiling a particular member is greater than or equal to the value num specified
in the -qhalt option, no more members are compiled. This option only applies to the compilation of all
members of a specified z/OS UNIX System Services file system directory.

Predefined macros
None.

-qignerrno

Category
Optimization and tuning

Purpose
Allows the compiler to perform optimizations as if system calls would not modify errno.

Syntax
For -qnooptimize and -qoptimize=2:

-q

noignerrno

ignerrno

For -qoptimize=3:

-q

ignerrno

noignerrno

Defaults
• -qnoignerrno when -qnooptimize or -qoptimize=2 is in effect.
• -qignerrno when -qoptimize=3 is in effect.

Usage
When the -qignerrno compiler option is in effect, the compiler is informed that your application is not
using errno. Specifying this option allows the compiler to explore additional optimization opportunities

Chapter 3. Compiler options reference 73

for library functions in LIBANSI. The input to the library functions is assumed to be valid. Invalid input can
lead to undefined behavior.

When the -qnoignerrno compiler option is in effect, the compiler assumes that your application is using
errno.

ANSI library functions use errno to return the error condition. If your program does not use errno,
the compiler has more freedom to explore optimization opportunities for some of these functions (for
example, sqrt()). You can control this optimization by using the -qignerrno option.

The -qignerrno option is turned on by -qoptimize=3. You can use -qnoignerrno to turn it off if
necessary.

Predefined macros
__IGNERRNO__ is defined to 1 when -qignerrno is in effect; otherwise, it is undefined.

Related information
• “-O, -qoptimize” on page 44

-qinclude

Category
Input control

Pragma equivalent
None.

Purpose
Specifies additional header files to be included in a compilation unit, as though the files were named in an
#include statement in the source file.

The headers are inserted before all code statements and any headers specified by an #include
preprocessor directive in the source file. This option is provided for portability among supported
platforms.

Syntax

-q

noinclude

include = file

Defaults
None.

Parameters
file

The header file to be included in the compilation units being compiled.

Usage
Firstly, file is searched in the preprocessor's working directory. If file is not found in the
preprocessor's working directory, it is searched for in the search chain of the #include directive. If

74 z/OS: Compiler Reference

multiple -qinclude options are specified, the files are included in order of appearance on the command
line.

Predefined macros
None.

Examples

To include the files test1.h and test2.h in the source file test.c, enter the following command:

xlclang -qinclude test1.h -qinclude test2.h test.c

Related information
• “Directory search sequence for included files” on page 6

-qinline

Category
Optimization and tuning

Pragma equivalent
None.

Purpose
Attempts to inline functions instead of generating calls to those functions, for improved performance.

Syntax
-q inline

noinline

Defaults
If -qnooptimize is specified, the default is -qnoinline; otherwise, the default is -qinline.

Usage
You can specify -qinline with any optimization level of -O, -O2, -O3 to enable inlining of functions,
including those functions that are declared with the inline specifier or that are defined within a
class declaration .

When -qinline is in effect, the compiler determines whether inlining a specific function can improve
performance. That is, whether a function is appropriate for inlining is subject to two factors: limits on the
number of inlined calls and the amount of code size increase as a result. Therefore, enabling inlining a
function does not guarantee that function will be inlined.

Because inlining does not always improve runtime performance, you need to test the effects of this option
on your code. Do not attempt to inline recursive or mutually recursive functions.

Specifying -qnoinline disables all inlining, including functions declared explicitly as inline. However,
the -qnoinline option does not affect the inlining of the following functions:

• Functions that are specified with the always_inline or __always_inline__ attribute

Chapter 3. Compiler options reference 75

If you specify the -g option to generate debugging information, the inlining effect of -qinline might be
suppressed.

If you specify the -qcompact option to avoid optimizations that increase code size, the inlining effect of
-qinline might be suppressed.

Predefined macros
None.

Examples
To compile myprogram.c so that no functions are inlined, use the following command:

xlclang myprogram.c -O2 -qnoinline

Related information
• “-g” on page 34
• “-O, -qoptimize” on page 44
• “Compiler listings” on page 10

-qlanglvl (-std)

Category
Language element control

Purpose
Determines whether source code and compiler options should be checked for conformance to a specific
language standard, or subset or superset of a standard.

Syntax
-qlanglvl syntax (C only)

-q langlvl =

extc99

c89

stdc89

gnu89

extc89

c99

stdc99

gnu99

c11

stdc11

gnu11

extc11

feature_suboption

76 z/OS: Compiler Reference

-std syntax (C only)

-std =

gnu99

c89

gnu89

c99

c11

gnu11

-qlanglvl syntax (C++ only)

-q langlvl =

gnu++11

c++11

extended0x

feature_suboption

-std syntax (C++ only)

-std =

gnu++11

c++11

Defaults
• -qlanglvl=extc99 or -std=gnu99
• -qlanglvl=gnu++11 or -std=gnu++11

Parameters
 Parameters for C language programs:

c89 | stdc89
Use it if you are compiling new or ported code that is ISO C compliant. It indicates language
constructs that are defined by ISO.

gnu89 | extc89
Indicates language constructs that are defined by the ISO C89 standard, plus additional orthogonal
language extensions that do not alter the behavior of this standard.

Note: The unicode literals are enabled under the EXTC89 language level, and disabled under
the strictly-conforming language levels. When the unicode literals are enabled, the macro
__IBM_UTF_LITERAL is predefined to 1. Otherwise, this macro is not predefined.

c99 | stdc99
Compilation conforms strictly to the ISO C99 standard, also known as ISO C99.

gnu99 | extc99
Indicates language constructs that are defined by the ISO C99 standard, plus additional orthogonal
language extensions that do not alter the behavior of the standard.

Note: The unicode literals are enabled under the extc99 language level, and disabled under
the strictly-conforming language levels. When the unicode literals are enabled, the macro
__IBM_UTF_LITERAL is predefined to 1. Otherwise, this macro is not predefined.

 c11 | stdc11
Compilation conforms strictly to the ISO C11 standard.

Chapter 3. Compiler options reference 77

 gnu11 | extc11
Compilation is based on the C11 standard, invoking all the currently supported C11 features and other
implementation-specific language extensions.

The following table reflects the mapping between the -qlanglvl and -std suboptions:

Table 18. Mapping between the -qlanglvl and -std suboptions (C only)

-qlanglvl suboption Mapping to -std suboption

c89 | stdc89 c89

gnu89 | extc89 gnu89

c99 | stdc99 c99

gnu99 | extc99 gnu99

c11 | stdc11 c11

gnu11 | extc11 gnu11

 Parameters for C++ language programs:

 c++11
Compilation conforms strictly to the ISO C++ standard plus amendments, also known as ISO C++11.

 gnu++11 | extended0x
Compilation is based on the ISO C++ standard, with some differences to accommodate extended
language features.

The following table reflects the mapping between the -qlanglvl and -std suboptions:

Table 19. Mapping between the -qlanglvl and -std suboptions (C ++ only)

-qlanglvl suboption Mapping to -std suboption

c++11 c++11

gnu++11 | extended0x gnu++11

The following feature suboption is available:

libext | nolibext
Specifying this option affects the headers provided by the C runtime library, which in turn control the
availability of general ISO runtime extensions. In addition, it also defines the following macros and
sets their values to 1:

• _MI_BUILTIN (this macro controls the availability of machine built-in instructions.
• _EXT (this macro controls the availability of general ISO runtime extensions)

The default is -qlanglvl=libext. However, -qlanglvl=libext is implicitly enabled by:

-qlanglvl=extc89:extc99

Predefined macros
See “Macros related to language levels” on page 120 for a list of macros that are predefined by
-qlanglvl suboptions.

78 z/OS: Compiler Reference

-qlibansi

Category
Optimization and tuning

Pragma equivalent
None.

Purpose
Assumes that all functions with the name of an ANSI C library function are in fact the system functions.

When -qlibansi is in effect, the optimizer can generate better code because it will know about the
behavior of a given function, such as whether or not it has any side effects.

Syntax

-q

nolibansi

libansi

Defaults
-qnolibansi

Predefined macros
__LIBANSI__ is defined to 1 when -qlibansi is in effect; otherwise, it is not defined.

-qlist

Category
Listings, messages, and compiler information

Purpose
Produces a compiler listing file that includes object and constant area sections.

Syntax

-q

nolist

list
=

filename

directory

Defaults
-qnolist

Chapter 3. Compiler options reference 79

Parameters
filename

Specifies the z/OS UNIX System Services file name for the compiler listing.
directory

Specifies the z/OS UNIX System Services directory for the compiler listing.

Usage
When -qlist is in effect, the listing directs to stdout.

When -qlist= is in effect, a listing file is generated with a .lst suffix for each source file named on the
command line.

When -qlist=filename is in effect, a listing file is generated to filename.

When -qlist=directory is in effect, a listing file with a .lst suffix is generated in the directory.

You can use the object or assembly listing to help understand the performance characteristics of the
generated code and to diagnose execution problems.

Predefined macros
None.

Example

To compile myprogram.c and to produce a listing (.lst) file that includes object , enter:

xlclang myprogram.c -qlist=

Related information
“Compiler listings” on page 10

-qmakedep

Category
Output control

Pragma equivalent
None.

Purpose
Produces the dependency files that are used by the make tool for each source file.

The dependency output file is named with a .d suffix.

Syntax
-q makedep

= gcc

pponly

80 z/OS: Compiler Reference

Defaults
Not applicable.

Parameters
gcc

The format of the generated make rule to match the GCC format: the dependency output file includes
a single target that lists all of the main source file's dependencies.
This suboption is equivalent to -MD.

pponly
Instructs the compiler to produce only the make dependency files without generating an object file,
with the same make dependency file format as the format produced by the gcc suboption.

Usage
For each source file with a .c, .C, .cpp, or .i suffix that is named on the command line, a dependency
output file is generated with the same name as the object file but with a .d suffix. Dependency output
files are not created for any other types of input files. If you use the -o option to rename the object file,
the name of the dependency output file is based on the name specified in the -o option.

The dependency output files generated by these options are not make description files; they must be
linked before they can be used with the make command. For more information about this command, see
your operating system documentation.

The output file look like:

t.o: t.c /usr/include/c++/stdio.h \
 /usr/include/c++/__config \
 /usr/include/le/features.h \
 /usr/include/le/stdio.h \
 /usr/include/le/sys/types.h

Include files are listed according to the search order rules for the #include preprocessor directive,
described in “Directory search sequence for included files” on page 6. If the include file is not found, it is
not added to the .d file.

Files with no include statements produce dependency output files that contain one line listing only the
input file name.

Predefined macros
None.

Examples

Example 1: To compile mysource.c and create a dependency output file named mysource.d, enter:

xlclang -c -qmakedep mysource.c

Example 2: To compile my_src.c and create a dependency output file named mysource.d, enter:

xlclang -c -qmakedep my_src.c -MF mysource.d

Example 3: To compile my_src.c and create a dependency output file named mysource.d in the deps/
directory, enter:

xlclang -c -qmakedep my_src.c -MF deps/mysource.d

Chapter 3. Compiler options reference 81

Example 4: To compile my_src.c and create an object file named my_obj.o and a dependency output
file named my_obj.d, enter:

xlclang -c -qmakedep my_src.c -o my_obj.o

Example 5: To compile my_src.c and create an object file named my_obj.o and a dependency output
file named mysource.d, enter:

xlclang -c -qmakedep my_src.c -o my_obj.o -MF mysource.d

Example 6: To compile my_src1.c and my_src2.c to create two dependency output files, named
my_src1.d and my_src2..d respectively, enter:

xlclang -c -qmakedep my_src1.c my_src2.c

Related information
• “-o” on page 47
• “Directory search sequence for included files” on page 6
• The -M, -MD, -MF, -MG, -MM, -MMD, -MP, -MQ, and -MT options that GCC provides. For details, see GNU

Compiler Collection online documentation(http://gcc.gnu.org/onlinedocs/).

-qmaxmem

Category
Optimization and tuning

Purpose
Limits the amount of memory that the compiler allocates while performing specific, memory-intensive
optimizations to the specified number of kilobytes.

Syntax
-q maxmem = size_limit

Defaults
-qmaxmem=2097152

Parameters
size_limit

The valid range for size is 0 to 2097152. Use the size-limit suboption if you want to specify a memory
size of less value than the default.

Usage
If the memory specified by the -qmaxmem option is insufficient for a particular optimization, the
compilation is completed in such a way that the quality of the optimization is reduced, and a warning
message is issued.

When a large size is specified for -qmaxmem, compilation might be aborted because of insufficient virtual
storage, depending on the source file being compiled, the size of the subprogram in the source, and the
virtual storage available for the compilation.

82 z/OS: Compiler Reference

http://gcc.gnu.org/onlinedocs/
http://gcc.gnu.org/onlinedocs/

The advantage of using the -qmaxmem option is that, for large and complex applications, the compiler
produces a slightly less-optimized object module and generates a warning message, instead of
terminating the compilation with an error message of “insufficient virtual storage”.

Notes:

1. The limit that is set by -qmaxmem is the amount of memory for specific optimizations, and not for the
compiler as a whole. Tables that are required during the entire compilation process are not affected by
or included in this limit.

2. Setting a large limit has no negative effect on the compilation of source files when the compiler needs
less memory.

3. Limiting the scope of optimization does not necessarily mean that the resulting program will be slower,
only that the compiler may finish before finding all opportunities to increase performance.

4. Increasing the limit does not necessarily mean that the resulting program will be faster, only that the
compiler may be able to find opportunities to increase performance.

Predefined macros
None.

Examples

To compile myprogram.c so that the memory specified for local table is 16384 kilobytes, enter:

xlclang myprogram.c -qmaxmem=16384

-qmemory

Category
Compiler customization

Pragma equivalent
None.

Purpose
Improves compile-time performance by using a memory file in place of a temporary work file, if possible.

Syntax

-q

memory

nomemory

Defaults
-qmemory

Usage
This option generally increases compilation speed, but you may require additional memory to use it. If
you use this option and the compilation fails because of a storage error, you must increase your storage
size or recompile your program using the -qnomemory option.

Chapter 3. Compiler options reference 83

Predefined macros
None.

-qoffset

Category
Listings, messages, and compiler information

Pragma equivalent
None.

Purpose
Lists offset addresses relative to entry points of functions.

Syntax

-q

nooffset

offset

Defaults
-qnooffset

Usage
When the -qoffset compiler option is in effect, the compiler displays the offset addresses relative to the
entry point or start of each function in the pseudo assembly listing generated by the -qlist option. The
-qoffset compiler option also prints the CSECT Offset field in the pseudo assembly listing for a function,
which shows the offset of the function in the CSECT.

When the -qnooffset compiler option is in effect, the compiler displays the offset addresses relative to
the beginning of the generated code in the pseudo assembly listing generated by the -qlist option and
does not display the entry point.

If you use the -qoffset option, you must also specify the -qlist option to generate the pseudo
assembly listing. If you specify the -qoffset option but omit the -qlist option, the compiler generates
a warning message, and does not produce a pseudo assembly listing.

Predefined macros
None.

Related information
“-qlist” on page 79

-qoptfile

Category
Compiler customization

84 z/OS: Compiler Reference

Pragma equivalent
None.

Purpose
Specifies an options file that contains a list of additional command line options to be used for the
compilation.

Syntax

-q

nooptfile

optfile = filename

Defaults
-qnooptfile

Parameters
filename

Specifies the name of the options that contains a list of additional command line options. filename
can contain a relative path or absolute path, or it can contain no path. It is a plain text file with one or
more command line options per line.

Usage
The format of the options file follows these rules:

• Specify the options you want to include in the file with the same syntax as on the command line.
The options file is a whitespace-separated list of options. The following special characters indicate
whitespace: \n, \v, \t. (All of these characters have the same effect.)

• A character string between a pair of single or double quotation marks are passed to the compiler as one
option.

• You can include comments in the options file. Comment lines start with the # character and continue to
the end of the line. The compiler ignores comments and empty lines.

When processed, the compiler removes the -qoptfile option from the command line, and sequentially
inserts the options included in the file before the other subsequent options that you specify.

Predefined macros
None.

-qphaseid, -qphsinfo

Category
Listings, messages, and compiler information

Pragma equivalent
None.

Chapter 3. Compiler options reference 85

Purpose
Causes each compiler component (phase) to issue an informational message as each phase begins
execution and reports the time taken in each compilation phase.

Syntax

-q

nophaseid

phaseid

-q

nophsinfo

phsinfo

Defaults
-qnophaseid, -qnophsinfo

Usage
The informational message identifies the compiler phase module name, product identification, and build
level and thus assists you with determining the maintenance level of each compiler component (phase).

Phase ID information is sent to stdout and the timing information is sent to stderr.

In the z/OS UNIX System Services environment, -qphsinfo is synonymous with the -qphaseid
compiler option.

Predefined macros
None.

Example

To compile myprogram.c and report the time taken for each phase of the compilation, enter the
following command:

xlclang myprogram.c -qphaseid

or:

xlclang myprogram.c -qphsinfo

The output looks like:

CLC0000(I) Product(5650-ZOS) Phase(CLCEOPTP) Level(D190213.Z231)
CLC0000(I) Product(5650-ZOS) Phase(CLCDRVR) Level(D190213.Z231)
CLC0000(I) Product(5650-ZOS) Phase(CLCECL) Level(D190213.Z231)
===---===
 Clang front-end time report
===---===
 Total Execution Time: 0.0000 seconds (0.0046 wall clock)
 ---Wall Time--- --- Name ---
 0.0046 (100.0%) Clang front-end timer
 0.0046 (100.0%) Total
CLC0000(I) Product(5650-ZOS) Phase(CLCETBY) Level(D190213.Z231)
CLC0000(I) Product(5650-ZOS) Phase(CLCECWI) Level(D190213.Z231)
W-TRANS - Phase Ends; CPU sec=0.00
OPTIMIZ - Phase Ends; CPU sec=0.00
REGALLO - Phase Ends; CPU sec=0.00
AS - Phase Ends; CPU sec=0.00

86 z/OS: Compiler Reference

-qro

Category
Object code control

Purpose
Specifies the storage type for string literals.

When -qro is in effect, strings are placed in read-only memory. When -qnoro is in effect, strings are
placed in read-write memory.

Syntax
Option syntax

-q

ro

noro

Defaults
-qro

Usage
Placing string literals in read-only memory can improve runtime performance and save storage. However,
code that attempts to modify a read-only string literal may generate a memory error.

Predefined macros
None.

Example

To compile myprogram.c so that the storage type is writable, enter:

xlclang myprogram.c -qnoro

Related information
• “-qroconst” on page 87

-qroconst

Category
Object code control

Purpose
Specifies the storage location for constant values.

When -qroconst is in effect, constants are placed in read-only storage. When -qnoroconst is in effect,
constants are placed in read/write storage.

Chapter 3. Compiler options reference 87

Syntax

-q

roconst

noroconst

Defaults
• -qnoroconst
• -qroconst

Usage
Placing constant values in read-only memory can improve runtime performance, save storage, and
provide shared access. However, code that attempts to modify a read-only constant value generates a
memory error.

"Constant" in the context of the -qroconst option refers to variables that are qualified by const,
including const-qualified characters, integers, floats, enumerations, structures, unions, and arrays. The
following constructs are not affected by this option:

• Variables qualified with volatile and aggregates (such as a structure or a union) that contain
volatile variables

• Pointers and complex aggregates containing pointer members
• Automatic and static types with block scope
• Uninitialized types
• Regular structures with all members qualified by const
• Initializers that are addresses, or initializers that are cast to non-address values

The -qroconst option does not imply the -qro option. Both options must be specified if you want to
specify storage characteristics of both string literals (-qro) and constant values (-qroconst).

Predefined macros
None.

Related information
• “-qro” on page 87

-qrtcheck

Category
Error checking and debugging

Pragma equivalent
None.

Purpose
Generates compare-and-trap instructions which perform certain types of runtime checking. The
messages can help you to debug your C and C++ programs.

88 z/OS: Compiler Reference

Syntax

-q

nortcheck

rtcheck

= all

:

suboption

Defaults
-qnortcheck

Parameters
suboption is one of the suboptions that are shown in Table 20 on page 89, which lists the -qrtcheck
suboptions and the messages they generate.

Note: Default suboptions are underlined.

Table 20. -qnortcheck suboptions and descriptions

RTCHECK Suboption Description

all Automatically generates compare-and-trap instructions for all
possible runtime checks. This suboption is equivalent to
-qrtcheck.

bounds | nobounds Performs runtime checking of addresses when subscripting within
an object of known size.

divzero | nodivzero Performs runtime checking of integer division. A trap will occur if an
attempt is made to divide by zero.

nullptr | nonullptr Performs runtime checking of addresses contained in pointer
variables used to reference storage.

Usage
You can specify the -qrtcheck option more than once. The suboption settings are accumulated, but the
later suboptions override the earlier ones.

You can use the all suboption along with the no... form of one or more of the other options as a filter.
For example, using:

xlclang -qrtcheck=all:nonullptr

provides checking for everything except for addresses contained in pointer variables used to reference
storage. If you use all with the no... form of the suboptions, all should be the first suboption.

Notes:

1. The -qrtcheck option is only valid for architecture level 8 or above, and for Language Environment
V1.10 and up.

2. -qrtcheck without suboption means -qrtcheck=all.

Predefined macros
None.

Chapter 3. Compiler options reference 89

-qrtti (-frtti) (C++ only)

Category
Object code control

Purpose
Generates runtime type identification (RTTI) information for classes with virtual functions.

Syntax

-q

rtti

nortti

-f

rtti

no-rtti

Defaults
-qrtti (-frtti)

Usage
For improved runtime performance, suppress RTTI information generation with the -qnortti (-fno-
rtti) setting.

You should be aware of the following effects when specifying the -qrtti (-frtti) compiler option:

• Contents of the virtual function table will be different when -qrtti (-frtti) is specified.
• When linking objects together, all corresponding source files must be compiled with the correct -qrtti

(-frtti) option specified.
• If you compile a library with mixed objects (-qrtti (-frtti) specified for some objects, -qnortti

(-fno-rtti) specified for others), you might get an undefined symbol error.

Predefined macros
• __RTTI_ALL__ is defined to 1 when -qrtti (-frtti) is in effect; otherwise, it is undefined.
• __NO_RTTI__ is defined to 1 when -qnortti (-fno-rtti) is in effect; otherwise, it is undefined.

Related information
“-qlanglvl (-std)” on page 76.

-qservice

Category
Error checking and debugging

Pragma equivalent
None.

90 z/OS: Compiler Reference

Purpose
Places a string in the object module, which is displayed in the traceback if the application fails abnormally.

Syntax

-q

noservice

service = string

Defaults
-qnoservice

Parameters
string

User-specified string of characters.

Usage
When the -qservice compiler option is in effect, the string in the object module is loaded into memory
when the program is executing. If the application fails abnormally, the string is displayed in the traceback.

You must enclose your string in quotation marks.

The following restrictions apply to the string specified:

• The string cannot exceed 64 characters in length. If it does, excess characters are removed, and the
string is truncated to 64 characters.

• All characters, including DBCS characters, are valid as part of the string.
• Only characters which belong to the invariant character set should be used, to ensure that the signature

within the object module remains readable across locales.

Predefined macros
None.

-qshowmacros

Category
“Output control” on page 17

Pragma equivalent
None.

Purpose
Emits macro definitions to preprocessed output.

Emitting macros to preprocessed output can help determine functionality available in the compiler. The
macro listing may prove useful for debugging complex macro expansions, as well.

Chapter 3. Compiler options reference 91

Syntax

-q

noshowmacros

showmacros

Defaults
-qnoshowmacros

Usage
Note the following when using this option:

• This option has no effect unless preprocessed output is generated; for example, by using the -E or -P
options.

• If a macro is defined and subsequently undefined before compilation ends, this macro will not be
included in the preprocessed output.

• This option lists both compiler predefined macros and user-defined macros.

Related information
• “-E” on page 31
• “-P” on page 48

-qspill

Category
Compiler customization

Pragma equivalent
None.

Purpose
Specifies the size (in bytes) of the register spill space, the internal program storage areas used by the
optimizer for register spills to storage.

When the -qspill compiler option is in effect, you can specify the size of the spill area to be used for the
compilation.

When the -qnospill compiler option is in effect, the compiler defaults to -qspill=256.

Syntax

-q

spill

= size

nospill

Defaults
-qspill=256

92 z/OS: Compiler Reference

Parameters
size

An integer representing the number of bytes for the register allocation spill area.

Usage
When too many registers are in use at once, the compiler saves the contents of some registers in
temporary storage, called the spill area.

If your program is very complex, or if there are too many computations to hold in registers at one time and
your program needs temporary storage, you might need to increase this area. Do not enlarge the spill area
unless the compiler issues a message requesting a larger spill area. In case of a conflict, the largest spill
area specified is used.

The maximum spill area size is 1073741823 bytes or 230–1 bytes. Typically, you will only need to specify
this option when compiling very large programs with -qoptimize.

Note: There is an upper limit for the combined area for your spill area, local variables, and arguments
passed to called functions at -qoptimize. For best use of the stack, do not pass large arguments, such
as structures, by value.

Predefined macros
None.

Examples

If you received a warning message when compiling myprogram.c and want to compile it specifying a spill
area of 900 entries, enter:

xlclang myprogram.c -qspill=900

-qstackprotect

Category
Error checking and debugging

Pragma equivalent
None.

Purpose
Provides protection against malicious input data or programming errors that overwrite or corrupt the
stack.

Syntax

-q

nostackprotect

stackprotect
=

all

size = N

Chapter 3. Compiler options reference 93

Defaults
-qnostackprotect

Parameters
all

Protects all functions whether or not functions have vulnerable objects.
size=N

Protects all functions that contain automatic arrays whose sizes are greater than or equal to N
bytes. N must be an integer value that cannot exceed 231 - 2. The default size is 8 bytes when the
-qstackprotect option is enabled.

Usage
-qstackprotect generates extra code to protect functions with vulnerable objects against stack
corruption. The -qstackprotect option is disabled by default because it can degrade runtime
performance.

Note: The protection takes effect only if the compilation unit that contains the main function is compiled
with -qstackprotect. Otherwise, the protection does not apply to any linked libraries even if the
libraries have been compiled with -qstackprotect.

The compiler might optimize certain procedures into leaf procedures. In this case, -qstackprotect is
not enabled for the procedure and a warning message is generated if the -Wstack-protector option is
enabled.

Predefined macros
None.

Examples
To generate code to protect all functions, enter the following command:

xlclang myprogram.c -qstackprotect=all

To generate code to protect functions with objects of certain size, enter the following command with the
size suboption set to the object size indicated in bytes:

xlclang myprogram.c -qstackprotect=size=8

-qstrict

Category
Optimization and tuning

Pragma equivalent
None.

Purpose
Ensures that optimizations that are done by default at the -O3 and higher optimization levels, and,
optionally at -O2, do not alter the semantics of a program.

94 z/OS: Compiler Reference

Syntax
For -qnooptimize and -qoptimize=2:

-q

strict = subscriptwrap

nosubscriptwrap

nostrict

For -qoptimize=3:

-q

nostrict

strict = subscriptwrap

nosubscriptwrap

Defaults
• For -qnoopt and -qopt=2, the default option is -qstrict.
• For -qopt=3, the default option is -qnostrict.

Parameters
subscriptwrap | nosubscriptwrap

Prevents the compiler from assuming that array subscript expressions will never overflow.

Usage
Used to prevent optimizations done by default at optimization levels -qopt=3, and, optionally at
-qopt=2, from re-ordering instructions that could introduce rounding errors.

When the -qstrict option is in effect, the compiler performs computational operations in a rigidly-
defined order such that the results are always determinable and recreatable.

When the -qnostrict compiler option is in effect, the compiler can reorder certain computations for
better performance. However, the end result may differ from the result obtained when -qstrict is
specified.

-qstrict disables the following optimizations:

• Performing code motion and scheduling on computations such as loads and floating-point computations
that may trigger an exception.

• Relaxing conformance to IEEE rules.
• Reassociating floating-point expressions.

In IEEE floating-point mode, -qnostrict sets -qfloat=maf. To avoid this behavior, explicitly specify
-qfloat=nomaf.

Predefined macros
None.

Related information
• “-qfloat” on page 70
• “-O, -qoptimize” on page 44

Chapter 3. Compiler options reference 95

-qstrict_induction

Category
Optimization and tuning

Pragma equivalent
None.

Purpose
Prevents the compiler from performing induction (loop counter) variable optimizations. Such
optimizations might be problematic when integer overflow operations involving the induction variables
occurs.

Syntax
For C :

-q

strict_induction

nostrict_induction

For C++:

-q

nostrict_induction

strict_induction

Defaults
• For C, the default is -qstrict_induction.

• For C++, the default is -qnostrict_induction.

Usage
When using -O2 or higher optimization, if the intended truncation or sign extension of a
loop induction variable resulting from variable overflow or wrap-around does not occur, you
can specify -qstrict_induction to prevent induction variable optimizations. However, use of
-qstrict_induction is generally not recommended because it can cause considerable performance
degradation.

Predefined macros
None.

Related information
• “-O, -qoptimize” on page 44

-qsyntaxonly (-fsyntax-only)

Category
Error checking and debugging

96 z/OS: Compiler Reference

Pragma equivalent
None.

Purpose
Performs syntax checking without generating an object file.

Syntax
-f syntax-only

-q syntaxonly

Defaults
By default, source files are compiled and linked to generate an executable file.

Usage
The -P, -E, and -C options override the -fsyntax-only (-qsyntaxonly) option, which in turn
overrides the -c and -o options.

The -fsyntax-only (-qsyntaxonly) option suppresses only the generation of an object file. All other
files, such as listing files, are still produced if their corresponding options are set.

Predefined macros
None.

Examples

To check the syntax of myprogram.c without generating an object file, enter:

xlclang myprogram.c -fsyntax-only

Related information
• “-C” on page 28
• “-c” on page 29
• “-E” on page 31
• “-o” on page 47
• “-P” on page 48

-qtemplatedepth (-ftemplate-depth) (C++ only)

Category
Template control

Pragma equivalent
None.

Chapter 3. Compiler options reference 97

Purpose
Specifies the maximum number of recursively instantiated template specializations that will be processed
by the compiler.

Syntax
-q templatedepth = number

-f template-depth = number

Defaults
-qtemplatedepth=300 or -ftemplate-depth=300

Parameters
number

The maximum number of recursive template instantiations. The number can be a value in the range
of 1 to INT_MAX. If your code attempts to recursively instantiate more templates than number,
compilation halts and an error message is issued. If you specify an invalid value, the default value of
300 is used.

Usage
Note that setting this option to a high value can potentially cause an out-of-memory error due to the
complexity and amount of code generated.

Predefined macros
None.

Examples

To allow the following code in myprogram.cpp to be compiled successfully:

template <int n> void myfunc() {
 myfunc<n-1>();
}

template <> void myfunc<0>() {}

 int main() {
 myfunc<400>();
}

Enter:

xlclang++ myprogram.cpp -ftemplate-depth=400

-qthreaded

Category
Optimization and tuning

Pragma equivalent
None.

98 z/OS: Compiler Reference

Purpose
Indicates to the compiler whether it must generate threadsafe code.

Syntax

-q

threaded

nothreaded

Defaults
-qthreaded

Usage
To maintain thread safety, always specify the -qthreaded option when compiling or linking
multithreaded applications. This option does not make code threadsafe, but it ensures that code already
threadsafe remains so after compilation and linking. It also ensures that all optimizations are threadsafe.

Specifying the -qnothreaded option enables the optimizers to perform non-threadsafe transformations
for single threaded programs.

Predefined macros
None.

-qtune

Category
Optimization and tuning

Pragma equivalent
None.

Purpose
Tunes instruction selection, scheduling, and other architecture-dependent performance enhancements to
run best on a specific hardware architecture.

Syntax

-q tune = n

Defaults
-qtune(10)

Parameters
n

Specifies the group to which a model number belongs as a sub-parameter. If you specify a model
which does not exist or is not supported, a warning message is issued stating that the suboption is
invalid and that the default will be used. Current models that are supported include:

Chapter 3. Compiler options reference 99

5
This option generates code that is executable on all models but that is optimized for the model
2064-100 (z900) in z/Architecture mode.

6
This option generates code that is executable on all models, but is optimized for the 2084-xxx
(z990) models.

7
This option generates code that is executable on all models, but is optimized for the 2094-xxx
(IBM System z9 Enterprise Class) and 2096-xxx (IBM System z9 Business Class) models.

8
This option is the default. This option generates code that is executable on all models, but is
optimized for the 2097-xxx (IBM System z10 Enterprise Class) and 2098-xxx (IBM System z10
Business Class) models.

9
This option generates code that is executable on all models, but is optimized for the 2817-xxx
(IBM zEnterprise 196 (z196)) and 2818-xxx (IBM zEnterprise 114 (z114)) models.

10
This option generates code that is executable on all models, but is optimized for the 2827-xxx
(IBM zEnterprise EC12 (zEC12)) and 2828-xxx (IBM zEnterprise BC12 (zBC12)) models.

11
This option generates code that is executable on all models, but is optimized for the 2964-xxx
(IBM z13® (z13)) and the 2965-xxx (IBM z13s (z13s)) models.

12
This option generates code that is executable on all models, but is optimized for the 3906-xxx
(IBM z14) models.

13
This option generates code that is executable on all models, but is optimized for the 8561-xxx
(IBM z15) models.

Note: For these system machine models, x indicates any value. For example, 9672-Rx4 means 9672-
RA4 through to 9672-RY4 and 9672-R14 through to 9672-R94 (the entire range of G3 processors),
not just 9672-RX4.

Usage
The -qtune option specifies the architecture for which the executable program will be optimized. The
-qtune level controls how the compiler selects and orders the available machine instructions, while
staying within the restrictions of the -qarch level in effect. It does so in order to provide the highest
performance possible on the given -qtune architecture from those that are allowed in the generated
code. It also controls instruction scheduling (the order in which instructions are generated to perform
a particular operation). Note that -qtune impacts performance only; it does not impact the processor
model on which you will be able to run your application.

Select -qtune to match the architecture of the machine where your application will run most often.
Use -qtune in cooperation with -qarch. -qtune must always be greater or equal to -qarch because
you will want to tune an application for a machine on which it can run. The compiler enforces this by
adjusting -qtune up rather than -qarch down. -qtune does not specify where an application can run. It
is primarily an optimization option. For many models, the best -qtune level is not the best -qarch level.
For example, the correct choices for model 9672-Rx5 (G4) are -qarch=2 and -qtune=3.

Note: If the -qtune level is lower than the specified -qarch level, the compiler forces -qtune to match
the -qarch level or uses the default -qtune level, whichever is greater.

Predefined macros
None.

100 z/OS: Compiler Reference

Related information
• “-qarch” on page 55

Supported GCC options
The following GCC options are also supported in XL C/C++ V2.4.1. For details about these options, see
GNU Compiler Collection online documentation(http://gcc.gnu.org/onlinedocs/).

Table 21. Supported GCC options

GCC option -q option synonym

-faccess-control

-fasm, -fno-asm -qasm

-fbracket-depth

-fcolor-diagnostics

-fconstexpr-depth

-fdiagnostics-fixit-info

-fdiagnostics-format=[clang|msvc|vi]

-fdiagnostics-print-source-range-info

-fdiagnostics-show-category=[none|id|name]

-fdiagnostics-show-option

-felide-type

-fexec-charset

-ffreestanding

-fhosted

-fgnu-keywords

-fgnu89-inline

-fmessage-length

-foperator-names

-frtti -qrtti

-fsigned-char -qchars=signed

-fshow-column

-fshow-source-location

-fsyntax-only -qsyntaxonly

-ftemplate-backtrace-limit

-ftemplate-depth -qtemplatedepth

-funsigned-char -qchars=unsigned

-isystem

-pedantic

-W

Chapter 3. Compiler options reference 101

http://gcc.gnu.org/onlinedocs/

102 z/OS: Compiler Reference

Chapter 4. Compiler pragmas reference

The following sections describe the available pragmas:

• “Pragma directive syntax” on page 103
• “Scope of pragma directives” on page 103
• “Supported IBM pragmas” on page 104

Pragma directive syntax
XL C/C++ V2.4.1 supports the following forms of pragma directives:
#pragma name

This form uses the following syntax:

pragma name (suboptions)

The name is the pragma directive name, and the suboptions are any required or optional suboptions
that can be specified for the pragma, where applicable.

_Pragma ("name")
This form uses the following syntax:

_Pragma (" name (suboptions) ")

For example, the statement:

_Pragma ("pack(1)")

is equivalent to:

#pragma pack(1)

For all forms of pragma statements, you can specify more than one name and suboptions in a single
#pragma statement.

The name on a pragma is subject to macro substitutions, unless otherwise stated. The compiler diagnoses
unknown pragmas with the -Wunknown-pragmas compiler option and issues warning messages for
these unknown pragmas.

Note: -Wno-unknown-pragmas is the default option. -Wunknown-pragmas needs to be specified
explicitly or enabled implicitly as part of the -Wall compiler option.

Scope of pragma directives
Many pragma directives can be specified at any point within the source code in a compilation unit; others
must be specified before any other directives or source code statements. In the individual descriptions for
each pragma, the "Usage" section describes any constraints on the pragma's placement.

In general, if you specify a pragma directive before any code in your source program, it applies to the
entire compilation unit, including any header files that are included. For a directive that can appear
anywhere in your source code, it applies from the point at which it is specified, until the end of the
compilation unit.

You can further restrict the scope of a pragma's application by using complementary pairs of pragma
directives around a selected section of code.

© Copyright IBM Corp. 2019 103

Many pragmas provide pop or reset suboptions that allow you to enable and disable pragma settings in
a stack-based fashion; examples of these are provided in the relevant pragma descriptions.

Supported IBM pragmas
This section contains descriptions of individual pragmas available in XL C/C++ V2.4.1.

For each pragma, the following information is given:
Purpose

This section provides a brief description of the effect of the pragma, and why you might want to use it.
Syntax

This section provides the syntax for the pragma. For convenience, the #pragma name form of the
directive is used in each case. However, it is perfectly valid to use the alternate C99-style _Pragma
operator syntax; see “Pragma directive syntax” on page 103 for details.

Parameters
This section describes the suboptions that are available for the pragma, where applicable.

Usage
This section describes any rules or usage considerations you should be aware of when using the
pragma. These can include restrictions on the pragma's applicability, valid placement of the pragma,
and so on.

Examples
Where appropriate, examples of pragma directive use are provided in this section.

#pragma convert

Purpose
Provides a way to specify more than one coded character set in a single compilation unit to convert string
literals.

Unlike the -qascii compiler option, it allows for more than one character encoding to be used for string
literals in the same compilation unit.

Syntax
pragma convert (" code_set_name "

pop

)

Parameters
code_set_name

Is a string that specifies an ASCII or EBCDIC based codepage that is not DBCS or UTF-8.
pop

Resets the code set to that which was previously in effect immediately before the current codepage.

Usage
The compiler option -qascii determines the code set in effect before any #pragma convert directives
are introduced, and after all #pragma convert directives are popped from the stack.

The conversion continues from the point of placement of the first #pragma convert directive until
another #pragma convert directive is encountered, or until the end of the main source file. For every
#pragma convert directive in your program, it is good practice to have a corresponding #pragma
convert(pop) as well. This will prevent one file from potentially changing the codepage of another file
that is included.

104 z/OS: Compiler Reference

The following are not converted:

• A string or character constant specified in hexadecimal or octal escape sequence format (because it
represents the value of the desired character on output).

• A string literal that is part of a #include or pragma directive.

• String literals that are used to specify linkage (for example, extern "C").
• A wide character string or wide character literals.
• A string in an asm statement.

Related information
• “-qascii” on page 56

#pragma csect

Purpose
Identifies the name for the code or static control section (CSECT) of the object module.

Syntax
pragma csect (code

static

, " name ")

Parameters
code

Specifies the CSECT that contains the executable code (C functions) and constant data.
static

Designates the CSECT that contains all program variables with the static storage class and all
character strings.

name
The name that is used for the applicable CSECT. The compiler does not map the name in any way. The
name must not conflict with the name of an exposed name (external function or object) in a source
file. In addition, it must not conflict with another #pragma csect directive or #pragma map directive.
For example, the name of the code CSECT must differ from the name of the static CSECTs.

Usage

At most, two #pragma csect directives can appear in a source program as follows:

• One for the code CSECT
• One for the static CSECT

When both #pragma csect and the CSECT compiler option are specified, the compiler first uses the
option to generate the CSECT names, and then the #pragma csect overrides the names generated by the
option.

Examples

Suppose that you compile the following code with the option CSECT(abc) and program name foo.c.

#pragma csect (STATIC, "blah")
int main ()
{

Chapter 4. Compiler pragmas reference 105

 return 0;
}

First, the compiler generates the following CSECT names:

STATIC:abc#foo#S
CODE: abc#foo#C

Then the #pragma csect overrides the static CSECT name, which renders the final CSECT name to be:

STATIC: blah
CODE: abc#foo#C

Related information
• “-qcsect” on page 62

#pragma execution_frequency

Purpose
Marks program source code that you expect will be either very frequently or very infrequently executed.

When optimization is enabled, the pragma is used as a hint to the optimizer.

Syntax
pragma execution_frequency (very_low

very_high

)

Parameters
very_low

Marks source code that you expect will be executed very infrequently.
very_high

Marks source code that you expect will be executed very frequently.

Usage
Use this pragma in conjunction with an optimization option; if optimization is not enabled, the pragma has
no effect.

The pragma must be placed within block scope, and acts on the closest preceding point of branching.

Examples

In the following example, the pragma is used in an if statement block to mark code that is executed
infrequently.

int *array = (int *) malloc(10000);

if (array == NULL) {
 /* Block A */
 #pragma execution_frequency(very_low)
 error();
}

In the next example, the code block Block B is marked as infrequently executed and Block C is likely
to be chosen during branching.

if (Foo > 0) {
 #pragma execution_frequency(very_low)

106 z/OS: Compiler Reference

 /* Block B */
 doSomething();
} else {
 /* Block C */
 doAnotherThing();
}

In this example, the pragma is used in a switch statement block to mark code that is executed
frequently.

while (counter > 0) {
 #pragma execution_frequency(very_high)
 doSomething();
} /* This loop is very likely to be executed. */

switch (a) {
 case 1:
 doOneThing();
 break;
 case 2:
 #pragma execution_frequency(very_high)
 doTwoThings();
 break;
 default:
 doNothing();
} /* The second case is frequently chosen. */

#pragma linkage (C only)

Purpose
Identifies the entry point of modules that are used in interlanguage calls from C programs as well as the
linkage or calling convention that is used on a function call.

The directive also designates other entry points within a program that you can use in a fetch operation.

Syntax
pragma linkage (identifier, OS

FETCHABLE

PLI

COBOL

FORTRAN

, RETURNCODE

OS_DOWNSTACK

OS_UPSTACK

OS_NOSTACK

REFERENCE

)

Defaults
XPLINK linkage.

Parameters
identifier

The name of a function that is to be the entry point of the module, or a typedef name that will be used
to define the entry point. (See below for an example.)

Chapter 4. Compiler pragmas reference 107

FETCHABLE
Indicates that identifier can be used in a fetch operation. A fetched XPLINK module must have its
entry point defined with a #pragma linkage(..., fetchable) directive.

OS
Designates identifier as an OS linkage entry point. OS linkage is the basic linkage convention that is
used by the operating system.

PLI
Designates identifier as a PL/I linkage entry point.

COBOL
Designates identifier as a COBOL linkage entry point.

FORTRAN
Designates identifier as a FORTRAN linkage entry point.

RETURNCODE indicates to the compiler that the routine named by identifier is a FORTRAN routine,
which returns an alternate return code. It also indicates that the routine is defined outside the
translation unit. You can retrieve the return code by using the fortrc function. If the compiler finds
the function definition inside the translation unit, it issues an error message. Note that you can define
functions outside the translation unit, even if you do not specify the RETURNCODE keyword.

OS_DOWNSTACK
Designates identifier as an OS linkage entry point in XPLINK mode with a downward growing stack
frame.

OS_UPSTACK
Designates identifier as an OS linkage entry point in XPLINK mode with a traditional upward growing
stack frame.

This linkage is required for a new XPLINK downward-stack routine to be able to call a traditional
upward-stack OS routine. This linkage explicitly invokes compatibility code to swap the stack between
the calling and the called routines.

OS_NOSTACK
Designates identifier as an OS linkage entry point in XPLINK mode with no preallocated stack frame.
An argument list is constructed containing the addresses of the actual arguments. The size of the
address is 4-byte for 31-bit and 8-byte for 64-bit. Register 1 is set to point to this argument list. For
31-bit only, the last item in this list has its high order bit set. For integer type arguments, the value
passed is widened to the size of the int type, that is 4-byte. Register 13 points to a save area that
may not be followed by z/OS Language Environment control structures, such as the NAB. The size of
the save area is 72-byte for 31-bit and 144-byte for 64-bit. Register 14 contains the return address.
Register 15 contains the entry point of the called function.

REFERENCE
This is synonymous with OS_DOWNSTACK in XPLINK mode. Unlike the linkage OS, this is not affected
by the OSCALL suboption of XPLINK.

Usage
You can use a typedef in a #pragma linkage directive to associate a specific linkage convention with
a function type. In the following example, the directive associates the OS linkage convention with the
typedef func_t:

typedef void func_t(void);
#pragma linkage (func_t,OS)

This typedef can then be used in C declarations wherever a function should have OS linkage. In the
following example:

func_t myfunction;

myfunction is declared as having type func_t, which is associated with OS linkage; myfunction
would therefore have OS linkage.

108 z/OS: Compiler Reference

#pragma leaves

Purpose
Informs the compiler that a named function never returns to the instruction following a call to that
function.

By informing the compiler that it can ignore any code after the function, the directive allows for additional
opportunities for optimization.

This pragma is commonly used for custom error-handling functions, in which programs can be terminated
if a certain error is encountered.

Syntax

pragma leaves (

,

function_name)

Parameters
function_name

The name of the function that does not return to the instruction following the call to it.

Defaults
Not applicable.

Usage
If you specify the -qlibansi compiler option (which informs the compiler that function names that
match functions in the C standard library are in fact C library functions), the compiler checks whether the
longjmp family of functions (longjmp, _longjmp, siglongjmp, and _siglongjmp) contain #pragma
leaves. If the functions do not contain this pragma directive, the compiler will insert this directive for the
functions. This is not shown in the listing.

Examples

#pragma leaves(handle_error_and_quit)
void test_value(int value)
{
 if (value == ERROR_VALUE){
 handle_error_and_quit(value);
 TryAgain(); // optimizer ignores this because
 // never returns to execute it
 }
}

Related information
• “#pragma reachable” on page 114.

#pragma map

Purpose
Converts all references to an identifier to another, externally defined identifier.

Chapter 4. Compiler pragmas reference 109

Syntax
#pragma map syntax (C only)

pragma map (name1 , " name2 ")

#pragma map syntax (C++ only)
pragma map (name1 (argument_list) , " name2 ")

Parameters
name1

The name used in the source code. name1 can represent a data object or function with external
linkage. name1 can represent a data object, a non-overloaded or overloaded function, or
overloaded operator, with external linkage. If the name to be mapped is not in the global
namespace, it must be fully qualified.

name1 should be declared in the same compilation unit in which it is referenced, but should not be
defined in any other compilation unit. name1 must not be used in another #pragma map directive or
any assembly label declaration anywhere in the program.

 argument_list
The list of arguments for the overloaded function or operator function designated by name1. If name1
designates an overloaded function, the function must be parenthesized and must include its argument
list if it exists. If name1 designates a non-overloaded function, only name1 is required, and the
parentheses and argument list are optional.

name2
The name that will appear in the object code. name2 can represent a data object or function with
external linkage.

 name2 can represent a data object, a non-overloaded or overloaded function, or overloaded
operator, with external linkage. name2 must be specified using its mangled name. To obtain C++
mangled names, compile your source to object files only, using the -c compiler option, and use the
nm operating system command on the resulting object file.

If the name exceeds 65535 bytes, an informational message is emitted and the pragma is ignored.

name2 may or may not be declared in the same compilation unit in which name1 is referenced, but
must not be defined in the same compilation unit. Also, name2 should not be referenced anywhere in
the compilation unit where name1 is referenced. name2 must not be the same as that used in another
#pragma map directive or any assembly label declaration in the same compilation unit.

Usage
The #pragma map directive can appear anywhere in the program. Note that in order for a function to
be actually mapped, the map target function (name2) must have a definition available at link time (from
another compilation unit), and the map source function (name1) must be called in your program.

You cannot use #pragma map with compiler built-in functions.

Examples

The following is an example of #pragma map used to map a function name (using the mangled name for
the map name in C++):

/* Compilation unit 1: */

#include <stdio.h>

void func();
extern void bar(); /* optional */

110 z/OS: Compiler Reference

#if __cplusplus
#pragma map (func, "_Z3barv")
#else
#pragma map (func, "bar")
#endif
int main()
{
func();
}

/* Compilation unit 2: */

#include <stdio.h>

void bar()
{
printf("Hello from func bar!\n");
}

The call to func in compilation unit 1 resolves to a call to bar:

Hello from func bar!

 The following is an example of #pragma map used to map an overloaded function name (using C
linkage, to avoid using the mangled name for the map name):

// Compilation unit 1:

#include <iostream>
#include <string>

using namespace std;

void func();
void func(const string&);
extern "C" void bar(const string&); // optional

#pragma map (func(const string&), "bar")

int main()
{
func("Have a nice day!");
}

// Compilation unit 2:

#include <iostream>
#include <string>

using namespace std;

extern "C" void bar(const string& s)
{
cout << "Hello from func bar!" << endl;
cout << s << endl;
}

The call to func(const string&) in compilation unit 1 resolves to a call to bar(const string&):

Hello from func bar!
Have a nice day!

#pragma option_override

Purpose
Allows you to specify optimization options at the subprogram level that override optimization options
given on the command line.

This enables finer control of program optimization, and can help debug errors that occur only under
optimization.

Chapter 4. Compiler pragmas reference 111

Syntax
pragma option_override (identifier , " opt (level , 0

2

3

) "))

Parameters
identifier

The name of a function for which optimization options are to be overridden.

The following table shows the equivalent command line option for each pragma suboption.

#pragma option_override value Equivalent compiler option

level, 0 -O

level, 2 -O2

level, 3 -O3

Usage
The pragma takes effect only if optimization is already enabled by a command-line option. You can only
specify an optimization level in the pragma lower than the level applied to the rest of the program being
compiled.

The #pragma option_override directive only affects functions that are defined in the same compilation
unit. The pragma directive can appear anywhere in the translation unit. That is, it can appear before or
after the function definition, before or after the function declaration, before or after the function has been
referenced, and inside or outside the function definition.

 This pragma cannot be used with overloaded member functions.

Examples

Suppose you compile the following code fragment containing the functions myfunc1 and myfunc2 using
-O2. Because the code contains the #pragma option_override(myfunc2, "opt(level, 0)")
directive, function myfunc2 will not be optimized.

myfunc1(){
 .
 .
 .
}
#pragma option_override(myfunc2, "opt(level, 0)")
myfunc2(){
 .
 .
 .
}

Related information
• “-O, -qoptimize” on page 44

112 z/OS: Compiler Reference

#pragma priority (C++ only)

Purpose
Specifies the priority level for the initialization of static objects.

The C++ standard requires that all global objects within the same translation unit be constructed from top
to bottom, but it does not impose an ordering for objects declared in different translation units.

Syntax
pragma syntax

pragma priority (number)

Defaults
The default priority level is 0.

Parameters
number

An integer literal in the range of -2147482624 to 2147483647. A lower value indicates a higher
priority; a higher value indicates a lower priority. Numbers from -2147483648 to -2147482623 are
reserved for system use. If you do not specify a number, the compiler assumes 0.

Usage
In order to be consistent with the Standard, priority values specified within the same translation unit must
be strictly increasing. Objects with the same priority value are constructed in declaration order.

Note: The C++ variable attribute init_priority can also be used to assign a priority level to a shared
variable of class type.

Examples

To compile the file myprogram.C to produce an object file myprogram.o so that objects within that file
have an initialization priority of 2000, enter the following command:

 xlclang++ myprogram.C -c -qpriority=2000

#pragma weak (C only)

Purpose
Prevents the binder from issuing error messages if it encounters a symbol multiply-defined during linking,
or if it does not find a definition for a symbol.

The pragma can be used to allow a program to call a user-defined function that has the same name as
a library function. By marking the library function definition as "weak", the programmer can reference a
"strong" version of the function and cause the binder to accept multiple definitions of a global symbol in
the object code. While this pragma is intended for use primarily with functions, it will also work for most
data objects.

Syntax
#pragma weak

pragma weak name1

Chapter 4. Compiler pragmas reference 113

Parameters
name1

A name of a data object or function with external linkage.

Usage
There are two forms of the weak pragma:
#pragma weak name1

This form of the pragma marks the definition of the name1 as "weak" in a given compilation unit.
If name1 is referenced from anywhere in the program, the binder will use the "strong" version of
the definition (that is, the definition not marked with #pragma weak), if there is one. If there is no
strong definition, the binder will use the weak definition; if there are multiple weak definitions, it is
unspecified which weak definition the binder will select (typically, it uses the definition found in the
first object file specified on the command line during the link step). name1 must be defined in the
same compilation unit as #pragma weak.

Note: This pragma should not be used with uninitialized global data.

Example

The following is an example of the #pragma weak name1 form:

// Compilation unit 1:
#include <stdio.h>

void func();

int main(){
 func();
}

// Compilation unit 2:
#include <stdio.h>

#ifndef __cplusplus
 #pragma weak func
#endif

void func(){
 printf("func called from compilation unit 2\n");
}

// Compilation unit 3:
#include <stdio.h>

void func(){
 printf("func called from compilation unit 3\n");
}

If all three compilation units are compiled and linked together, the binder will use the strong definition of
func in compilation unit 3 for the call to func in compilation unit 1, and the output will be:

func called from compilation unit 3

If only compilation unit 1 and 2 are compiled and linked together, the binder will use the weak definition
of func in compilation unit 2, and the output will be:

func called from compilation unit 2

#pragma reachable

Purpose
Informs the compiler that the point in the program after a named function can be the target of a branch
from some unknown location.

114 z/OS: Compiler Reference

By informing the compiler that the instruction after the specified function can be reached from a point
in your program other than the return statement in the named function, the pragma allows for additional
opportunities for optimization. The compiler automatically inserts #pragma reachable directives for
the setjmp family of functions (setjmp, _setjmp, sigsetjmp, and _sigsetjmp) when you include the
setjmp.h header file.

Syntax

pragma reachable (

,

function_name)

Parameters
function_name

The name of a function preceding the instruction which is reachable from a point in the program other
than the function's return statement.

Defaults
Not applicable.

Usage
Unlike the #pragma leaves, #pragma reachable is required by the compiler optimizer whenever
the instruction following the call may receive control from some program point other than the return
statement of the called function. If this condition is true and #pragma reachable is not specified, then
the subprogram containing the call should not be compiled with -O, -O2, or -O3.

If you specify the -qlibansi compiler option (which informs the compiler that function names that
match functions in the C standard library are in fact C library functions), the compiler checks whether
the setjmp family of functions (setjmp, _setjmp, sigsetjmp, and _sigsetjmp) contain #pragma
reachable. If the functions do not contain this pragma directive, the compiler will insert this directive for
the functions. This is not shown in the listing.

Chapter 4. Compiler pragmas reference 115

116 z/OS: Compiler Reference

Chapter 5. Compiler predefined macros

The compiler provides many other macros that you can use in your programs. For example, XL C/C++
V2.4.1 supports function-like macros with a variable number of arguments, as a language extension for
compatibility with C and as part of C++11.

These macros have compiler-predefined values. These predefined macros are used to conditionally
compile code for specific compilers, specific versions of compilers, specific environments, and specific
language features. Some predefined macros are protected, which means that the compiler will issue a
warning message if you try to undefine or redefine them. Some predefined macros are unprotected and
can be undefined or redefined without warning.

Predefined macros fall into several categories:

• “General macros” on page 117
• “Macros related to the platform” on page 118
• “Macros related to compiler features” on page 119

General macros
The following predefined macros are always predefined by the compiler. Unless noted otherwise, all the
following macros are protected, which means that the compiler will issue a warning if you try to undefine
or redefine them.

Table 22. General predefined macros

Predefined macro
name

Description Predefined value

__BASE_FILE__ Indicates the name of the primary source file. The fully qualified file name of the
primary source file.

__DATE__ Indicates the date that the source file was
preprocessed.

A character string containing the
date when the source file was
preprocessed.

__FILE__ Indicates the name of the preprocessed source
file.

A character string containing the
name of the preprocessed source
file.

__FUNCTION__ Indicates the name of the function currently being
compiled.

A character string containing the
name of the function currently being
compiled.

__LINE__ Indicates the current line number in the source
file.

An integer constant containing the
line number in the source file.

__SIZE_TYPE__ Indicates the underlying type of size_t on the
current platform. Not protected.

unsigned long

__TIME__ Indicates the time that the source file was
preprocessed.

A character string containing the
time when the source file was
preprocessed.

© Copyright IBM Corp. 2019 117

Table 22. General predefined macros (continued)

Predefined macro
name

Description Predefined value

__TIMESTAMP__ Indicates the date and time when the source
file was last modified. The value changes as the
compiler processes any include files that are part
of your source program.

A character string literal in the
form "Day Mmm dd hh:mm:ss yyyy",
where:
Day

Represents the day of the week
(Mon, Tue, Wed, Thu, Fri, Sat,
or Sun).

Mmm
Represents the month in an
abbreviated form (Jan, Feb,
Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, or Dec).

dd
Represents the day. If the day
is less than 10, the first d is a
blank character.

hh
Represents the hour.

mm
Represents the minutes.

ss
Represents the seconds.

yyyy
Represents the year.

Macros indicating the z/OS XL C/C++ compiler
Most of the macros related to the XL C/C++ V2.4.1 compiler are predefined and protected, which means
that the compiler will issue a warning if you try to undefine or redefine them. You can use the -E
compiler option to view the values of the predefined macros. You can use these macros to distinguish
code consumable by XL C/C++ V2.4.1 from code consumed by other compilers in your programs.

Macros related to the platform
The following predefined macros are provided to facilitate porting applications between platforms. All
platform-related predefined macros are unprotected and can be undefined or redefined without warning
unless otherwise specified.

Table 23. Platform-related predefined macros

Predefined macro name Description Predefined value Predefined under the
following conditions

__370__ Indicates that the program is
compiled or targeted to run on
IBM System/370.

1 Always predefined.

__HHW_370__ Indicates that the host hardware
is System/370.

1 Always predefined for
z/OS.

__HOS_MVS__ Indicates that the host operating
system is z/OS.

1 Always predefined for
z/OS.

118 z/OS: Compiler Reference

Table 23. Platform-related predefined macros (continued)

Predefined macro name Description Predefined value Predefined under the
following conditions

__MVS__ Indicates that the host operating
system is z/OS.

1 Always predefined for
z/OS.

__THW_370__ Indicates that the target
hardware is System/370.

1 Always predefined for
z/OS

__TOS_MVS__ Indicates that the host operating
system is z/OS.

1 Always predefined for
z/OS.

Macros related to compiler features
Feature-related macros are predefined according to the setting of specific compiler options or pragmas.
Unless noted otherwise, all feature-related macros are protected, which means that the compiler will
issue a warning if you try to undefine or redefine them.

Feature-related macros are discussed in the following sections:

• “Macros related to compiler option settings” on page 119
• “Macros related to language levels” on page 120

Macros related to compiler option settings
The following macros can be tested for various features, including source input characteristics, output
file characteristics, and optimization. All of these macros are predefined by a specific compiler option or
suboption, or any invocation or pragma that implies that suboption. If the suboption enabling the feature
is not in effect, then the macro is undefined.

Table 24. General option-related predefined macros

Predefined macro name Description Predefined value Predefined when the
following compiler option
or equivalent pragma is in
effect

__ARCH__ Indicates the target
architecture for
which the source
code is being
compiled.

The integer value specified in the “-
qarch” on page 55 compiler option.

-qarch=level

__BFP__ Indicates that
binary floating point
(BFP) mode is in
effect.

1 Always defined.

_CHAR_SIGNED

__CHAR_SIGNED__

Indicates that the
default character
type is signed
char.

1 -qchars=signed (-fsigned-
char)

_CHAR_UNSIGNED

__CHAR_UNSIGNED__

Indicates that the
default character
type is unsigned
char.

1 -qchars=unsigned (-
funsigned-char)

__CHARSET_LIB Indicates support
for processing
ASCII data natively
at execution time.

1 “-qascii” on page 56

__IBM_UTF_LITERAL Indicates support
for UTF-16 and
UTF-32 string
literals.

1 -qlanglvl=extc89

 -qlanglvl=extended0x

Chapter 5. Compiler predefined macros 119

Table 24. General option-related predefined macros (continued)

Predefined macro name Description Predefined value Predefined when the
following compiler option
or equivalent pragma is in
effect

__IGNERRNO__ Indicates that
system calls do
not modify errno,
thereby enabling
certain compiler
optimizations.

1 -qignerrno

__LIBANSI__ Indicates that calls
to functions whose
names match those
in the C Standard
Library are in
fact the C library
functions, enabling
certain compiler
optimizations.

1 -qlibansi

__OPTIMIZE__ Indicates the level
of optimization in
effect.

The integer value specified in the “-
O, -qoptimize” on page 44 compiler
option.

“-O, -qoptimize” on page 44

__OPTIMIZE_SIZE__ Indicates that
optimization for
code size is in
effect.

1 -O | -O2 | -O3 and “-
qcompact” on page 61

 __RTTI_ALL__ Generates runtime
type identification
(RTTI) information
for classes with
virtual functions.

1 “-qrtti (-frtti) (C++ only)” on
page 90

 __NO_RTTI__ Indicates that
no runtime type
identification (RTTI)
information is
generated.

1 -qnortti

__TUNE__ Indicates the
architecture for
which the
compiler generated
executable code is
optimized.

The integer value specified in the “-
qtune” on page 99 compiler option.

“-qtune” on page 99

Macros related to language levels
The following macros except __cplusplus and __STDC_VERSION__ are predefined to a
value of 1 by a specific language level, represented by a suboption of the “-qlanglvl (-std)” on page 76
compiler option, or any invocation or pragma that implies that suboption. If the suboption enabling the
feature is not in effect, then the macro is undefined.

Table 25. Predefined macros for language levels

Predefined macro name Description Predefined when the
following language level is
in effect

 __BOOL__ Indicates that the bool keyword is accepted. Always defined.

 __cplusplus The numeric value that indicates the
supported language standard as defined by
that specific standard.

The format is yyyymmL.
(For example, the format is
201103L for c++11.)

120 z/OS: Compiler Reference

Table 25. Predefined macros for language levels (continued)

Predefined macro name Description Predefined when the
following language level is
in effect

 __IBMC_GENERIC Indicates support for the generic features of
C11 standard.

gnu89 | gnu99 | gnu11 | c11

__IBMCPP_COMPLEX_INIT
Indicates support for the initialization of
complex types: float _Complex, double
_Complex, and long double _Complex.

extended0x

__STDC__ Indicates that the compiler conforms to the
ANSI/ISO C or C++ standard.

Predefined to 1 if ANSI/ISO
C or C++ standard
conformance is in effect.

 __STDC_VERSION__ Indicates the version of ANSI/ISO C standard
which the compiler conforms to.

The format is yyyymmL.
(For example, the format is
199901L for C99.)

Note: When you compile your source code with xlclang++ and want to use the C99 complex types
that are defined in the C99 header file complex.h, you need to include complex.h and define the
__C99_COMPLEX_HEADER__ macro ; otherwise, the C++ language header file complex is used.

Chapter 5. Compiler predefined macros 121

122 z/OS: Compiler Reference

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

 IBM Corporation
 J74/G4
 555 Bailey Avenue
 San Jose, CA 95141-1099
 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

 Intellectual Property Licensing
 Legal and Intellectual Property Law
 IBM Japan, Ltd.
 3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

 INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
 THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
 EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, other countries, or both.

© Copyright IBM Corp. 2019 123

http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Standards
The following standards are supported:

• The C language is consistent with Programming languages - C ISO/IEC 9899:1999 (C99) and a subset
of Programming languages - C ISO/IEC 9899:2011 (C11). For more information, see International
Organization for Standardization (ISO) (www.iso.org).

• The C++ language is consistent with Programming languages - C++ ISO/IEC 14882:1998 (C++98),
Programming languages - C++ ISO/IEC 14882:2003(E) (C++03), a subset of Programming languages
- C++ ISO/IEC 14882:2011 (C++11), and a subset of Programming languages - C++ (ISO/IEC
14882:2014) (C++14).

The following standards are supported in combination with the z/OS UNIX System Services element:

• A subset of IEEE Std. 1003.1-2001 (Single UNIX Specification, Version 3). For more information, see
IEEE (www.ieee.org).

• IEEE Std 1003.1—1990, IEEE Standard Information Technology—Portable Operating System Interface
(POSIX)—Part 1: System Application Program Interface (API) [C language], copyright 1990 by the
Institute of Electrical and Electronic Engineers, Inc.

• The core features of IEEE P1003.1a Draft 6 July 1991, Draft Revision to Information Technology—
Portable Operating System Interface (POSIX), Part 1: System Application Program Interface (API) [C
Language], copyright 1992 by the Institute of Electrical and Electronic Engineers, Inc.

• IEEE Std 1003.2—1992, IEEE Standard Information Technology—Portable Operating System Interface
(POSIX)—Part 2: Shells and Utilities, copyright 1990 by the Institute of Electrical and Electronic
Engineers, Inc.

• The core features of IEEE Std P1003.4a/D6—1992, IEEE Draft Standard Information Technology—
Portable Operating System Interface (POSIX)—Part 1: System Application Program Interface (API)—
Amendment 2: Threads Extension [C language], copyright 1990 by the Institute of Electrical and
Electronic Engineers, Inc.

• The core features of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point Arithmetic (ANSI),
copyright 1985 by the Institute of Electrical and Electronic Engineers, Inc.

• X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2, copyright 1994 by The
Open Group

• X/Open CAE Specification, Networking Services, Issue 4, copyright 1994 by The Open Group
• United States Government's Federal Information Processing Standard (FIPS) publication for the

programming language C, FIPS-160, issued by National Institute of Standards and Technology, 1991

124 z/OS: Compiler Reference

http://www.iso.org
http://www.iso.org
http://www.ieee.org

Index

B
binder

invoking 7

C
CCSID (coded character set identifier) 104
COBOL linkage 108
command

syntax diagrams viii
compiler generated information

listing 10
overview 8

compiler options
by functional category 17
defaults 11
individual options 26
options overview 17
resolving conflicts 5
specifying

command lines 4
configuration files 4
source files 4

compiler options category
customization 25
Error checking and debugging 20
floating-point 20
input control 18
language element control 18
object code control 20
optimization and tuning 24
output control 17
portability and migration 25
template control 19

compiler predefined macros
overview 117

compiler reference
pragmas 103

configuration
custom configuration files 11

configuration files
custom 12
customizing 14
editing 14

convert pragma 104
csect pragma 105

D
debugging

errors 88
SERVICE compiler option 90

default configuration file
example 13

E
entry point

linkage 107
environment variables

compile time 11
link time 11
runtime 11
setting 11

external
variables

exporting 69
importing 69

F
FETCHABLE preprocessor directive 108
FORTRAN linkage 108
functions

exporting 69
importing 69

G
GCC

options
summary 101

I
invocation

command syntax 1
compiling 1
input files 2
invoking 1
linking 1
output files 3
preprocessing 5

L
language standards

options 76
linkage

COBOL 108
FORTRAN 108
language 107
PL/I 108

linkage pragma 107
linking

control 25
orders 8

listing
files 79
listings and messages control 23

Index 125

M
macros

compiler feature 119
compiler options setting 119
language features 120
platform 118
predefined

identify compiler 118
mainframe

education x
memory

files, compiler work-files 83

O
OS linkage 108

P
PDF documents x
PL/I linkage 108
pragma directives

introduction 104
scope 103
syntax 103

pragmas
convert 104
csect 105
execution_frequency 106
linkage 107
option_override 111
reachable 114

preprocessing
directory search sequence 6

programming errors 88

S
sending

feedback xi
reader comments xi

syntax
invocation command 1

syntax diagrams
how to read viii

T
technical support xi
typographical conventions vii

Z
z/OS Basic Skills Knowledge Center x

126 z/OS: Compiler Reference

IBM®

Product Number: 5650-ZOS

SC31-5801-00

	Contents
	About this document
	Where to find more information
	z/OS Basic Skills in IBM Knowledge Center

	Technical support
	How to send your comments to IBM
	If you have a technical problem

	Chapter 1. Compiling and linking applications
	Invoking the compiler
	Command-line syntax

	Types of input files
	Types of output files
	Specifying compiler options
	Specifying compiler options on the command line
	Specifying compiler options in a configuration file
	Specifying compiler options in program source files
	Resolving conflicting compiler options

	Preprocessing
	Directory search sequence for included files

	Linking
	Order of linking

	Compiler messages and listings
	Compiler messages
	Message severity levels and compiler response

	Return codes
	Compiler listings

	Chapter 2. Configuring compiler defaults
	Setting environment variables
	Compile-time and link-time environment variables
	Runtime environment variables

	Using custom compiler configuration files
	Creating custom configuration files
	Example of default configuration file
	Examples of stanzas in custom configuration files

	Editing the default configuration file
	Configuration file attributes

	Chapter 3. Compiler options reference
	Summary of compiler options by functional category
	Output control
	Input control
	Language element control
	Template control (C++ only)
	Floating-point and integer control
	Object code control
	Error checking and debugging
	Listings, messages, and compiler information
	Optimization and tuning
	Linking
	Portability and migration
	Compiler customization

	Individual option descriptions
	-# (pound sign)
	-+ (plus sign) (C++ only)
	-C
	-c
	-D
	-E
	-e
	-F
	-g
	-I
	-L
	-l
	-M
	-MD
	-MF
	-MG
	-MM
	-MMD
	-MQ
	-MT
	-O, -qoptimize
	-o
	-P
	-r
	-s
	-U
	-v, -V
	-W
	-qansialias
	-qarch
	-qascii
	-qasm (-fasm)
	-qasmlib
	-qassert
	-qchars (-fsigned-char, -funsigned-char)
	-qcompact
	-qcompress
	-qcsect
	-qdebug
	-qdigraph
	-qeh (C++ only)
	-qexportall
	-qfloat
	-qgonumber
	-qhalt
	-qignerrno
	-qinclude
	-qinline
	-qlanglvl (-std)
	-qlibansi
	-qlist
	-qmakedep
	-qmaxmem
	-qmemory
	-qoffset
	-qoptfile
	-qphaseid, -qphsinfo
	-qro
	-qroconst
	-qrtcheck
	-qrtti (-frtti) (C++ only)
	-qservice
	-qshowmacros
	-qspill
	-qstackprotect
	-qstrict
	-qstrict_induction
	-qsyntaxonly (-fsyntax-only)
	-qtemplatedepth (-ftemplate-depth) (C++ only)
	-qthreaded
	-qtune

	Supported GCC options

	Chapter 4. Compiler pragmas reference
	Pragma directive syntax
	Scope of pragma directives
	Supported IBM pragmas
	#pragma convert
	#pragma csect
	#pragma execution_frequency
	#pragma linkage (C only)
	#pragma leaves
	#pragma map
	#pragma option_override
	#pragma priority (C++ only)
	#pragma weak (C only)
	#pragma reachable

	Chapter 5. Compiler predefined macros
	General macros
	Macros indicating the z/OS XL C/C++ compiler
	Macros related to the platform
	Macros related to compiler features
	Macros related to compiler option settings
	Macros related to language levels

	Notices
	Trademarks
	Standards

	Index
	B
	C
	D
	E
	F
	G
	I
	L
	M
	O
	P
	S
	T
	Z

