
AIX Version 7.2

Operating system management

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
399 .

This edition applies to AIX Version 7.1 and to all subsequent releases and modifications until otherwise indicated in new
editions.
© Copyright International Business Machines Corporation 2010, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this document..v
Highlighting...v
Case-sensitivity in AIX... v
ISO 9000...v

Operating system management..1
What's new... 1
Operating system administration.. 1

Available system management interfaces...1
Software vital product data.. 2
Operating system updates... 3
System startup..4
System backup... 19
Shutting down the system..47
System environment.. 48
AIX Usage Metric (SLM tags) for ILMT... 59
AIX Runtime Expert..60
Commands and processes...122
Managing system hang ..141
Process management.. 144
System accounting...151
System Resource Controller.. 177
Operating system files... 182
Operating system shells...200
Operating system security... 300
User environment...313
BSD systems reference.. 327
Input and output redirection... 349
AIX kernel recovery..356

AIX Event Infrastructure for AIX and AIX clusters-AHAFS.. 357
Introduction to the AIX Event Infrastructure..357
AIX Event Infrastructure components.. 357
Setting up the AIX Event Infrastructure.. 360
High-level view of how the AIX Event Infrastructure works...360
Using the AIX Event Infrastructure... 362
Monitoring events...362
Pre-defined event producers... 375
Cluster events...388
Pre-defined event producers for a Cluster Aware AIX instance .. 389

Notices..399
Privacy policy considerations.. 400
Trademarks.. 401

Index.. 403

 iii

iv

About this document

This document provides users and system administrators with complete information that can affect your
selection of options when performing such tasks as backing up and restoring the system, managing
physical and logical storage, sizing appropriate paging space, and so on. It provides complete information
about how to perform such tasks as managing logical volumes, storage, and resources. System users can
learn how to perform such tasks as running commands, handling processes, handling files and directories,
and basic printing.

Other topics useful to users and system administrators include creating and resizing paging space,
managing virtual memory, backing up and restoring the system, managing hardware and pseudodevices,
using the System Resource Controller (SRC), securing files, using storage media, customizing environment
files, and writing shell scripts. This document is also available on the documentation CD that is shipped
with the operating system.

Highlighting
The following highlighting conventions are used in this document:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other
items whose names are predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you
might see displayed, examples of portions of program code similar to what you
might write as a programmer, messages from the system, or information you should
actually type.

Case-sensitivity in AIX
Everything in the AIX® operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS,
the system responds that the command is not found. Likewise, FILEA, FiLea, and filea are three
distinct file names, even if they reside in the same directory. To avoid causing undesirable actions to be
performed, always ensure that you use the correct case.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 2010, 2018 v

vi AIX Version 7.2: Operating system management

Operating system management
System administrators and users can learn how to perform such tasks as running commands, handling
processes, handling files and directories, backing up and restoring the system, managing physical and
logical storage, and basic printing.

Other topics useful to users and system administrators include creating and re-sizing paging space,
managing virtual memory, backing up and restoring the system, managing hardware and pseudo devices,
using the System Resource Controller (SRC), securing files, using storage media, customizing environment
files, and writing shell scripts. This topic is also available on the documentation CD that is shipped with
the operating system.

Operating system management is the task of an individual who is usually referred to, in UNIX literature, as
the system administrator. Unfortunately, only a few system administrator activities are straightforward
enough to be correctly called administration. This and related guides are intended to help system
administrators with their numerous duties.

This operating system provides its own particular version of system-management support in order to
promote ease of use and to improve security and integrity.

What's new in Operating system management
Read about new or significantly changed information for the Operating system and device management
topic collection.

How to see what's new or changed
In PDF files, you might see revision tags (>| and |<) surrounding new and changed information.

September 2018
The following information is a summary of the updates that are made to this topic collection:

• Added information about the “AIX usage metric data (SLM tags) for IBM License Metric Tool” on page
59 topic.

Operating system administration
You can use commands to manage system startup and backup, shutting down the system, system shells
and environments, system resources, and other different parts of AIX.

Operating system management is the task of an individual who is usually referred to, in UNIX literature, as
the system administrator. Unfortunately, only a few system administrator activities are straightforward
enough to be correctly called administration. This and related guides are intended to help system
administrators with their numerous duties.

This operating system provides its own particular version of system-management support in order to
promote ease of use and to improve security and integrity.

Available system management interfaces
In addition to conventional command line system administration, this operating system provides the SMIT
interfaces.

The following are the SMIT interfaces:

• System Management Interface Tool (SMIT), a menu-based user interface that constructs commands
from the options you choose and executes them.

With SMIT, you can:

© Copyright IBM Corp. 2010, 2018 1

– Install, update, and maintain software
– Configure devices
– Configure disk storage units into volume groups and logical volumes
– Make and extend file systems and paging space
– Manage users and groups
– Configure networks and communication applications
– Print
– Perform problem determination
– Schedule jobs
– Manage system resources and workload
– Manage system environments
– Manage cluster system data

• An object-oriented graphical user interface that supports the same system management tasks as SMIT,
but eases system management tasks by:

– Reducing user errors through error checking and dialog design
– Offering step-by-step procedures for new or complex tasks
– Offering advanced options for more experienced administrators
– Making it easier to visualize complex data or relationships among system objects
– Monitoring system activity and alerting the administrator when predefined events occur
– Providing context-sensitive helps, overviews, tips, and links to online documentation

Software vital product data
Certain information about software products and their installable options is maintained in the Software
Vital Product Data (SWVPD) database.

The SWVPD consists of a set of commands and Object Data Manager (ODM) object classes for the
maintenance of software product information. The SWVPD commands are provided for the user to query
(lslpp) and verify (lppchk) installed software products. The ODM object classes define the scope and
format of the software product information that is maintained.

The installp command uses the ODM to maintain the following information in the SWVPD database:

• Name of the installed software product
• Version of the software product
• Release level of the software product, which indicates changes to the external programming interface of

the software product
• Modification level of the software product, which indicates changes that do not affect the external

programming interface of the software product
• Fix level of the software product, which indicates small updates that are to be built into a regular
modification level at a later time

• Fix identification field
• Names, checksums, and sizes of the files that make up the software product or option
• Installation state of the software product: applying, applied, committing, committed, rejecting, or

broken.

2 AIX Version 7.2: Operating system management

Operating system updates
The operating system package is divided into filesets, where each fileset contains a group of logically
related customer deliverable files. Each fileset can be individually installed and updated.

Revisions to filesets are tracked using the version, release, maintenance, and fix (VRMF) levels. By
convention, each time an AIX fileset update is applied, the fix level is adjusted. Each time an AIX
maintenance package or technology level is applied, the modification level is adjusted, and the fix level is
reset to zero. The initial installation of an AIX version, for example, AIX 6.1, is called a base installation.
The operating system provides updates to its features and functionality, which might be packaged as a
maintenance package, a technology level, a program temporary fix (PTF), or a service pack (a group of
PTFs).

Maintenance Packages and Technology Levels
Maintenance packages and technology levels provide new functionality that is intended to upgrade
the release. The maintenance part of the VRMF is updated in a maintenance package. For example,
the first maintenance package for AIX 6.1 is 6.1.1.0; the second is 6.1.2.0, and so on. To list the
maintenance package, use the oslevel -r command.

To determine the maintenance package or technology level installed on a particular system, type:

oslevel

To determine which filesets need an update for the system to reach a specific maintenance package
or technology level (in this example, 6.1.1.0), use the following command:

oslevel -l 6.1.1.0

To determine if a recommended maintenance package or technology level is installed (in this
example, 6100-02), use the following command:

oslevel -r 6100-02

To determine which filesets need an update for the system to reach the 6100-02 maintenance
package or technology level, use the following command:

oslevel -rl 6100-02

To determine the maintenance package or technology level of a particular fileset (in this example,
bos.mp), use the following command:

lslpp -L bos.mp

PTFs
Between releases, you might receive PTFs to correct or prevent a particular problem. A particular
installation might need some, all, or even none of the available PTFs.

Recommended Maintenance Packages
A recommended maintenance package is a set of PTFs between technology levels that have been
extensively tested together and are recommended for preventive maintenance.

Interim Fixes
An interim fix is similar to a PTF, but it is usually offered when a PTF is not available. Interim fixes are
also released when the PTF would upgrade a system to the next maintenance level and users might
want their systems to remain at the current level.

To determine the version and release level, maintenance package, technology level, and service pack
level, as well as which filesets need to be updated to reach a particular level, see the oslevel and the lslpp
commands in Commands Reference.

Operating system management 3

System startup
When the base operating system starts, the system initiates a complex set of tasks. Under normal
conditions, these tasks are performed automatically.

There are some situations when you want to instruct the system to reboot; for example, to cause the
system to recognize newly installed software, to reset peripheral devices, to perform routine maintenance
tasks like checking file systems, or to recover from a system hang or crash. For information on these
procedures, see:

Related tasks
Recreating a corrupted boot image
The following procedure describes how to identify a corrupted boot image and re-create it.

Administering system startup
There are multiple scenarios that you might encounter when you want to boot or reboot your system. To
shut down or reboot your system you can use either the shutdown or reboot command. You should use
the shutdown command when multiple users are logged on to the system.

Rebooting a running system
Because processes might be running that should be terminated more gracefully than a reboot permits,
shutdown is the preferred method for all systems.

There are two methods for shutting down and rebooting your system, shutdown and reboot. Always use
the shutdown method when multiple users are logged on to the system.

Task SMIT Fast Path Command or File

Rebooting a Multiuser System smit shutdown shutdown -r

Rebooting a Single-User System smit shutdown shutdown -r or reboot

Rebooting a unresponsive system remotely
The remote reboot facility allows the system to be rebooted through a native (integrated) system port.

The POWER5 integrated system ports are similar to serial ports except that system ports are available only
for specifically supported functions.

The system is rebooted when the reboot_string is received at the port. This facility is useful when the
system does not otherwise respond but is capable of servicing system port interrupts. Remote reboot can
be enabled on only one native system port at a time. Users are expected to provide their own external
security for the port. This facility runs at the highest device interrupt class and a failure of the UART
(Universal Asynchronous Receive/Transmit) to clear the transmit buffer quickly may have the effect of
causing other devices to lose data if their buffers overflow during this time. It is suggested that this facility
only be used to reboot a machine that is otherwise hung and cannot be remotely logged into. File systems
will not be synchronized, and a potential for some loss of data which has not been flushed exists. It is
strongly suggested that when remote reboot is enabled that the port not be used for any other purpose,
especially file transfer, to prevent an inadvertent reboot.

Two native system port attributes control the operation of remote reboot.

reboot_enable

Indicates whether this port is enabled to reboot the machine on receipt of the remote reboot_string, and
if so, whether to take a system dump prior to rebooting.

no - Indicates remote reboot is disabled
reboot - Indicates remote reboot is enabled
dump - Indicates remote reboot is enabled, and prior to rebooting a system dump
 will be taken on the primary dump device

reboot_string

4 AIX Version 7.2: Operating system management

Specifies the remote reboot_string that the serial port will scan for when the remote reboot feature is
enabled. When the remote reboot feature is enabled and the reboot_string is received on the port, a >
character is transmitted and the system is ready to reboot. If a 1 character is received, the system is
rebooted; any character other than 1 aborts the reboot process. The reboot_string has a maximum length
of 16 characters and must not contain a space, colon, equal sign, null, new line, or Ctrl-\ character.

Remote reboot can be enabled through SMIT or the command line. For SMIT the path System
Environments -> Manage Remote Reboot Facility may be used for a configured TTY. Alternatively,
when configuring a new TTY, remote reboot may be enabled from the Add a TTY or Change/Show
Characteristics of a TTY menus. These menus are accessed through the path Devices -> TTY.

From the command line, the mkdev or chdev commands are used to enable remote reboot. For example,
the following command enables remote reboot (with the dump option) and sets the reboot string to
ReBoOtMe on tty1.

chdev -l tty1 -a remreboot=dump -a reboot_string=ReBoOtMe

This example enables remote reboot on tty0 with the current reboot_string in the database only (will
take effect on the next reboot).

chdev -P -l tty0 -a remreboot=reboot

If the tty is being used as a normal port, then you will have to use the pdisable command before
enabling remote reboot. You may use penable to reenable the port afterwards.

Related information
Function differences between system ports and serial ports

Booting from hard disk for maintenance
You can boot a machine in maintenance mode from a hard disk.

Prerequisites

A bootable removable media (tape or CD-ROM) must not be in the drive. Also, refer to the hardware
documentation for the specific instructions to enable maintenance mode boot on your particular model.

Procedure

To boot a machine in maintenance mode from a hard disk:

1. To reboot, either turn the machine off and then power it back on, or press the reset button.
2. Press the key sequence for rebooting in maintenance mode that is specified in your hardware

documentation.
3. The machine will boot to a point where it has a console device configured.

If there is a system dump that needs to be retrieved, the system dump menu will be displayed on the
console.

Note:

a. If the console fails to configure when there is a dump to be retrieved, the system will hang. The
system must be booted from a removable medium to retrieve the dump.

b. The system automatically dumps to the specified dump device when the reset button is pressed.
To change the primary or secondary dump device designation in a running system, see the
sysdumpdev command.

4. If there is no system dump, or if it has been copied, the diagnostic operating instructions will be
displayed. Press Enter to continue to the Function Selection menu.

5. From the Function Selection menu, you can select diagnostic or single-user mode:

Single-User Mode: To perform maintenance in a single-user environment, choose this option
(option 5). The system continues to boot and enters single-user mode. Maintenance that requires the
system to be in a standalone mode can be performed in this mode, and the bosboot command can be
run, if required.

Operating system management 5

Related information
Starting a System Dump

Booting a system that has crashed
In some instances, you might have to boot a system that has stopped (crashed) without being properly
shut down.

The prerequisites for this procedure are:

• Your system crashed and was not properly shut down due to unusual conditions.
• Your system is turned off.

This procedure covers the basics of how to boot if your system was unable to recover from a crash.
Perform the following steps:

1. Ensure that all hardware and peripheral devices are correctly connected.
2. Turn on all of the peripheral devices.
3. Watch the screen for information about automatic hardware diagnostics.

a) If any hardware diagnostics tests are unsuccessful, refer to the hardware documentation.
b) If all hardware diagnostics tests are successful, turn the system unit on.

Resetting an unknown root password
The following procedure describes how to recover access to root privileges when the system's root
password is unavailable or unknown.

The following procedure requires some system downtime. If possible, schedule your downtime when it
least impacts your workload to protect yourself from a possible loss of data or functionality.

The information in this how-to scenario was tested using specific versions of AIX. The results you obtain
might vary significantly depending on your version and level of AIX.

1. Insert the product media for the same version and level as the current installation into the
appropriate drive.

2. Power on the machine.
3. When the screen of icons appears, or when you hear a double beep, press the F1 key repeatedly until

the System Management Services menu appears.
4. Select Multiboot.
5. Select Install From.
6. Select the device that holds the product media and then select Install.
7. Select the AIX version icon.
8. Define your current system as the system console by pressing the F1 key and then press Enter.
9. Select the number of your preferred language and press Enter.

10. Choose Start Maintenance Mode for System Recovery by typing 3 and press Enter.
11. Select Access a Root Volume Group.

A message displays explaining that you will not be able to return to the Installation menus without
rebooting if you change the root volume group at this point.

12. Type 0 and press Enter.
13. Type the number of the appropriate volume group from the list and press Enter.
14. Select Access this Volume Group and start a shell by typing 1 and press Enter.
15. At the # (number sign) prompt, type the passwd command at the command line prompt to reset the

root password.
For example:

passwd
Changing password for "root"

6 AIX Version 7.2: Operating system management

root's New password:
Enter the new password again:

16. To write everything from the buffer to the hard disk and reboot the system, type the following:

sync;sync;sync;reboot

When the login screen appears, the password you set in step 15 should now permit access to root
privileges.

Related information
passwd command
reboot command

Booting systems with planar graphics
If the machine has been installed with the planar graphics susbsystem only, and later an additional
graphics adapter is added to the system, the following occurs:

1. A new graphics adapter is added to the system, and its associated device driver software is installed.
2. The system is rebooted, and one of the following occurs:

a. If the system console is defined to be /dev/lft0 (lscons displays this information), the user is
asked to select which display is the system console at reboot time. If the user selects a graphics
adapter (non-TTY device), it also becomes the new default display. If the user selects a TTY device
instead of an LFT device, no system login appears. Reboot again, and the TTY login screen is
displayed. It is assumed that if the user adds an additional graphics adapter into the system and
the system console is an LFT device, the user will not select the TTY device as the system console.

b. If the system console is defined to be a TTY, then at reboot time the newly added display adapter
becomes the default display.

Note: Since the TTY is the system console, it remains the system console.
3. If the system console is /def/lft0, then after reboot, DPMS is disabled in order to show the system

console selection text on the screen for an indefinite period of time. To re-enable DPMS, reboot the
system again.

Deploying run level script execution
Run level scripts allow users to start and stop selected applications while changing the run level.

Put run level scripts in the subdirectory of /etc/rc.d that is specific to the run level:

• /etc/rc.d/rc2.d
• /etc/rc.d/rc3.d
• /etc/rc.d/rc4.d
• /etc/rc.d/rc5.d
• /etc/rc.d/rc6.d
• /etc/rc.d/rc7.d
• /etc/rc.d/rc8.d
• /etc/rc.d/rc9.d

The /etc/rc.d/rc will run the scripts it finds in the specified directory when the run level changes - first
running the stop application scripts then running the start application scripts.

Note: Scripts beginning with K are stop scripts, while scripts beginning with S are start scripts.

Modifying the /etc/inittab file
Four commands are available to modify the records in the etc/inittab file.

Adding records - mkitab command

Operating system management 7

To add a record to the /etc/inittab file, type the following at a command prompt:

mkitab Identifier:Run Level:Action:Command

For example, to add a record for tty2, type the following at a command prompt:

mkitab tty002:2:respawn:/usr/sbin/getty /dev/tty2

In the above example:

Item Description

tty002 Identifies the object whose run level you are defining.

2 Specifies the run level at which this process runs.

respawn Specifies the action that the init command should take for
this process.

/usr/sbin/getty /dev/tty2 Specifies the shell command to be executed.

Changing records - chitab command

To change a record to the /etc/inittab file, type the following at a command prompt:

chitab Identifier:Run Level:Action:Command

For example, to change a record for tty2 so that this process runs at run levels 2 and 3, type:

chitab tty002:23:respawn:/usr/sbin/getty /dev/tty2

In the above example:

Item Description

tty002 Identifies the object whose run level you are defining.

23 Specifies the run levels at which this process runs.

respawn Specifies the action that the init command should take for
this process.

/usr/sbin/getty /dev/tty2 Specifies the shell command to be executed.

Listing records - lsitab command

To list all records in the /etc/inittab file, type the following at a command prompt:

lsitab -a

To list a specific record in the /etc/inittab file, type:

lsitab Identifier

For example, to list the record for tty2, type: lsitab tty2.

Removing records - rmitab command

To remove a record from the /etc/inittab file, type the following at a command prompt:

rmitab Identifier

For example, to remove the record for tty2, type: rmitab tty2.

Related concepts
System run level

8 AIX Version 7.2: Operating system management

The system run level specifies the system state and defines which processes are started.

Reactivation of an inactive system
Your system can become inactive because of a hardware problem, a software problem, or a combination
of both.

This procedure guides you through steps to correct the problem and restart your system. If your system
is still inactive after completing the procedure, refer to the problem-determination information in your
hardware documentation.

Use the following procedures to reactivate an inactive system:

Hardware check
There are several procedures you can use to check your hardware.

Check your hardware by:

Checking the power:

If the Power-On light on your system is active, go to Checking the operator panel display, below.

If the Power-On light on your system is not active, check that the power is on and the system is plugged
in.

Checking the operator panel display:

If your system has an operator panel display, check it for any messages.

If the operator panel display on your system is blank, go to Activating your display or terminal, below.

If the operator panel display on your system is not blank, go to the service guide for your unit to find
information concerning digits in the Operator Panel Display.

Activating your display or terminal:

Check several parts of your display or terminal, as follows:

• Make sure the display cable is securely attached to the display and to the system unit.
• Make sure the keyboard cable is securely attached.
• Make sure the mouse cable is securely attached.
• Make sure the display is turned on and that its Power-On light is lit.
• Adjust the brightness control on the display.
• Make sure the terminal's communication settings are correct.

If your system is now active, your hardware checks have corrected the problem.

Related tasks
Restarting the system
In addition to checking the hardware and checking the processes, you can restart you system to
reactivate an inactive system.
Checking the processes
A stopped or stalled process might make your system inactive.

Checking the processes
A stopped or stalled process might make your system inactive.

Check your system processes by:

1. Restarting line scrolling
2. Using the Ctrl+D key sequence
3. Using the Ctrl+C key sequence
4. Logging in from a remote terminal or host
5. Ending stalled processes remotely

Operating system management 9

Restarting line scrolling:

Restart line scrolling halted by the Ctrl-S key sequence by doing the following:

1. Activate the window or shell with the problem process.
2. Press the Ctrl-Q key sequence to restart scrolling.

The Ctrl-S key sequence stops line scrolling, and the Ctrl-Q key sequence restarts line scrolling.

If your scroll check did not correct the problem with your inactive system, go to the next section, Using
the Ctrl-D key sequence.

Using the Ctrl-D key sequence:

1. Activate the window or shell with the problem process.
2. Press the Ctrl-D key sequence. The Ctrl-D key sequence sends an end of file (EOF) signal to the

process. The Ctrl-D key sequence may close the window or shell and log you out.

If the Ctrl-D key sequence did not correct the problem with your inactive system, go to the next section,
Using the Ctrl-C key sequence.

Using the Ctrl-C key sequence:

End a stopped process by doing the following:

1. Activate the window or shell with the problem process.
2. Press the Ctrl-C key sequence. The Ctrl-C key sequence stops the current search or filter.

If the Ctrl-C key sequence did not correct the problem with your inactive system, go to the next section,
Logging in from a remote terminal or host:.

Logging in from a remote terminal or host:

Log in remotely in either of two ways:

• Log in to the system from another terminal if more than one terminal is attached to your system.
• Log in from another host on the network (if your system is connected to a network) by typing the tn

command as follows:

tn YourSystemName

The system asks for your regular login name and password when you use the tn command.

If you were able to log in to the system from a remote terminal or host, go to the next section, Ending
stalled processes remotely.

If you were not able to log in to the system from a remote terminal or host you need to restart the system.

You can also start a system dump to determine why your system became inactive.

Ending stalled processes remotely:

End a stalled process from a remote terminal by doing the following:

1. List active processes by typing the following ps command:

ps -ef

The -e and -f flags identify all active and inactive processes.
2. Identify the process ID of the stalled process.

For help in identifying processes, use the grep command with a search string. For example, to end the
xlock process, type the following to find the process ID:

ps -ef | grep xlock

The grep command allows you to search on the output from the ps command to identify the process
ID of a specific process.

10 AIX Version 7.2: Operating system management

3. End the process by typing the following kill command:

Note: You must have root user authority to use the kill command on processes you did not initiate.

kill -9 ProcessID

If you cannot identify the problem process, the most recently activated process might be the cause of
your inactive system. End the most recent process if you think that is the problem.

If your process checks have not corrected the problem with your inactive system you need to restart the
system.

Related concepts
Hardware check
There are several procedures you can use to check your hardware.
Related tasks
Restarting the system
In addition to checking the hardware and checking the processes, you can restart you system to
reactivate an inactive system.
Related information
System Dump Facility

Restarting the system
In addition to checking the hardware and checking the processes, you can restart you system to
reactivate an inactive system.

If the procedures for “Hardware check” on page 9 and “Checking the processes” on page 9 fail to correct
the problem that makes your system inactive, you need to restart your system.

Note: Before restarting your system, complete a system dump.

1. Check the state of the boot device.

Your system boots with either a removable medium, an external device, a small computer system
interface (SCSI) device, an integrated device electronics (IDE) device, or a local area network (LAN).
Decide which method applies to your system, and use the following instructions to check the boot
device:

• For a removable medium, such as tape, make sure the medium is inserted correctly.
• For IDE devices, verify that the IDE device ID settings are unique per adapter. If only one device is

attached to the adapter, the IDE device ID must be set to the master device.
• For an externally attached device, such as a tape drive, make sure:

– The power to the device is turned on.
– The device cables are correctly attached to the device and to the system unit.
– The ready indicator is on (if the device has one).

• For external SCSI devices, verify that the SCSI address settings are unique.
• For a LAN, verify that the network is up and operable.

If the boot device is working correctly, continue to the next step.
2. Load your operating system by doing the following:

a) Turn off your system's power.
b) Wait one minute.
c) Turn on your system's power.
d) Wait for the system to boot.

If the operating system failed to load, boot the hard disk from maintenance mode or hardware
diagnostics.

Operating system management 11

If you are still unable to restart the system, use an SRN to report the problem with your inactive system to
your service representative.

Related concepts
Hardware check
There are several procedures you can use to check your hardware.
Related tasks
Checking the processes
A stopped or stalled process might make your system inactive.
Related information
System Dump Facility

Creating boot images
To install the base operating system or to access a system that will not boot from the system hard drive,
you need a boot image. This procedure describes how to create boot images. The boot image varies for
each type of device.

When the system is first installed, the bosboot command creates a boot image from a RAM (random
access memory) disk file system image and the operating system kernel. The boot image is transferred to
a particular media such as the hard disk. When the machine is rebooted, the boot image is loaded from
the media into memory. For more information about the bosboot command, see bosboot.

The associated RAM disk file system contains device configuration routines for the following devices:

• Disk
• Tape
• CD-ROM
• Network Token-Ring, Ethernet, or FDDI device

• You must have root user authority to use the bosboot command.
• The /tmp file system must have at least 20 MB of free space.
• The physical disk must contain the boot logical volume. To determine which disk device to specify, type

the following at a command prompt:

lsvg -l rootvg

The lsvg -l command lists the logical volumes on the root volume group (rootvg). From this list you can
find the name of the boot logical volume.

Then type the following at a command prompt:

lsvg -M rootvg

The lsvg -M command lists the physical disks that contain the various logical volumes.

Creating a boot image on a boot logical volume
If the base operating system is being installed (either a new installation or an update), the bosboot
command is called to place the boot image on the boot logical volume. The boot logical volume is
a physically contiguous area on the disk created through the Logical Volume Manager (LVM) during
installation.

For a list of prerequisites for this procedure, see “Creating boot images” on page 12.

The bosboot command does the following:

1. Checks the file system to see if there is enough room to create the boot image.
2. Creates a RAM file system using the mkfs command and a prototype file.
3. Calls the mkboot command, which merges the kernel and the RAM file system into a boot image.

12 AIX Version 7.2: Operating system management

4. Writes the boot image to the boot logical volume.

To create a boot image on the default boot logical volume on the fixed disk, type the following at a
command prompt:

bosboot -a

OR:

bosboot -ad /dev/ipldevice

Note: Do not reboot the machine if the bosboot command fails while creating a boot image. Resolve the
problem and run the bosboot command to successful completion.

You must reboot the system for the new boot image to be available for use.

Creating boot images for network devices
You can create boot images for an Ethernet boot or Token-Ring boot.

For a list of prerequisites for this procedure, see “Creating boot images” on page 12.

To create a boot image for an Ethernet boot, type the following at a command prompt:

bosboot -ad /dev/ent

For a Token-Ring boot:

bosboot -ad /dev/tok

System run level
The system run level specifies the system state and defines which processes are started.

For example, when the system run level is 3, all processes defined to operate at that run level are started.
Near the end of the system boot phase of the boot process, the run level is read from the initdefault entry
of the /etc/inittab file. The system operates at that run level until it receives a signal to change it. The
system run level can be changed with the init command. The /etc/inittab file contains a record for
each process that defines run levels for that process. When the system boots, the init command reads
the /etc/inittab file to determine which processes to start.

The following are the currently-defined run levels:

Item Description

0-9 When the init command changes to run levels 0-9, it kills all processes at the current run
levels then restarts any processes associated with the new run levels.

0-1 Reserved for the future use of the operating system.

2 Default run level.

3-9 Can be defined according to the user's preferences.

a, b, c When the init command requests a change to run levels a, b, or c, it does not kill
processes at the current run levels; it simply starts any processes assigned with the new run
levels.

Q, q Tells the init command to reexamine the /etc/inittab file.

Related tasks
Modifying the /etc/inittab file

Operating system management 13

Four commands are available to modify the records in the etc/inittab file.

Identifying the system run level
Before performing maintenance on the operating system or changing the system run level, you might
need to examine the various run levels.

This procedure describes how to identify the run level at which the system is operating and how to display
a history of previous run levels. The init command determines the system run level.

Identification of the current run level
At the command line, type cat /etc/.init.state. The system displays one digit; that is the current
run level. See the init command or the /etc/inittab file for more information about run levels.

Displaying a history of previous run levels
You can display a history of previous run levels using the fwtmp command.

Note: The bosext2.acct.obj code must be installed on your system to use this command.

1. Log in as root user.
2. Type the following at a command prompt:

/usr/lib/acct/fwtmp </var/adm/wtmp |grep run-level

The system displays information similar to the following:

run-level 2 0 1 0062 0123 697081013 Sun Feb 2 19:36:53 CST 1992
run-level 2 0 1 0062 0123 697092441 Sun Feb 2 22:47:21 CST 1992
run-level 4 0 1 0062 0123 698180044 Sat Feb 15 12:54:04 CST 1992
run-level 2 0 1 0062 0123 698959131 Sun Feb 16 10:52:11 CST 1992
run-level 5 0 1 0062 0123 698967773 Mon Feb 24 15:42:53 CST 1992

Configuring run levels on multiuser systems
You can change run levels on multiuser systems.

1. Check the /etc/inittab file to confirm that the run level to which you are changing supports the
processes that you are running.
The getty process is particularly important, since it controls the terminal line access for the system
console and other logins. Ensure that the getty process is enabled at all run levels.

2. Use the wall command to inform all users that you intend to change the run level and request that
users log off.
For more information about the wall command, see wall.

3. Use the smit telinit fast path to access the Set System Run Level menu.
4. Type the new run level in the System RUN LEVEL field.
5. Press Enter to implement all of the settings in this procedure.

The system responds by telling you which processes are terminating or starting as a result of the
change in run level and by displaying the message:

INIT: New run level: n

where n is the new run-level number.

Configuring run levels on single-user systems
You can change run levels on single-user systems.

1. Check the /etc/inittab file to confirm that the run level to which you are changing supports the
processes that you are running.
The getty process is particularly important, since it controls the terminal line access for the system
console and other logins. Ensure that the getty process is enabled at all run levels. For more
information about the inittab file, see inittab.

14 AIX Version 7.2: Operating system management

2. Use the smit telinit fast path to access the Set System Run Level menu.
For more information about the telinit command, see telinit.

3. Type the new system run level in the System RUN LEVEL field.
4. Press Enter to implement all of the settings in this procedure.

The system responds by telling you which processes are terminating or starting as a result of the
change in run level and by displaying the message:

INIT: New run level: n

where n is the new run-level number.

Boot process
There are three types of system boots and two resources that are required in order to boot the operating
system.

During the boot process, the system tests the hardware, loads and runs the operating system, and
configures devices. To boot the operating system, the following resources are required:

• A boot image that can be loaded after the machine is turned on or reset.
• Access to the root (/) and /usr file systems.

There are three types of system boots:

Item Description

Hard Disk Boot A machine is started for normal operations.

Diskless Network Boot A diskless or dataless workstation is started remotely over a
network. A machine is started for normal operations. One or more
remote file servers provide the files and programs that diskless or
dataless workstations need to boot.

Maintenance Boot A machine is started from a hard disk, network, tape, or CD-ROM
in maintenance mode. A system administrator can perform tasks
such as installing new or updated software and running diagnostic
checks.

During a hard disk boot, the boot image is found on a local disk created when the operating system was
installed. During the boot process, the system configures all devices found in the machine and initializes
other basic software required for the system to operate (such as the Logical Volume Manager). At the end
of this process, the file systems are mounted and ready for use.

The same general requirements apply to diskless network clients. They also require a boot image and
access to the operating system file tree. Diskless network clients have no local file systems and get all
their information by way of remote access.

Related concepts
Processing the system boot
Most users perform a hard disk boot when starting the system for general operations. The system finds all
information necessary to the boot process on its disk drive.
Maintenance boot process
Occasions might arise when a boot is needed to perform special tasks such as installing new or updated
software, performing diagnostic checks, or for maintenance. In this case, the system starts from a
bootable medium such as a CD-ROM, DVD, tape drive, network, or disk drive.
RAM file system

Operating system management 15

The RAM file system, part of the boot image, is totally memory-resident and contains all programs that
allow the boot process to continue. The files in the RAM file system are specific to the type of boot.

Processing the system boot
Most users perform a hard disk boot when starting the system for general operations. The system finds all
information necessary to the boot process on its disk drive.

When the system is started by turning on the power switch (a cold boot) or restarted with the reboot or
shutdown commands (a warm boot), a number of events must occur before the system is ready for use.
These events can be divided into the following phases:

Related concepts
Boot process
There are three types of system boots and two resources that are required in order to boot the operating
system.

Firmware phase
The firmware prepares the system to load and run the operating system.

Its initialization phase involves the following steps:

1. The firmware performs basic testing on the system resources that are required for starting the
operating system.

2. The firmware checks the user boot list, a list of available boot devices. This boot list can be changed to
suit your requirements by using the bootlist command. If the user boot list in non-volatile random
access memory (NVRAM) is not valid or if a valid boot device is not found, the default boot list is then
checked. In either case, the first valid boot device found in the boot list is used for system startup.
If a valid user boot list exists in NVRAM, the devices in the list are checked in order. If no user boot
list exists, all adapters and devices on the bus are checked. In either case, devices are checked in a
continuous loop until a valid boot device is found for system startup.

Note: The system maintains a default boot list that is stored in NVRAM for normal mode boot. A
separate service mode boot list is also stored in NVRAM, and you must refer to the specific hardware
instructions for your model to learn how to access the service-mode boot list.

3. When a valid boot device is found, the first record or program sector number (PSN) is checked. If it is
a valid boot record, it is read into memory and is added to the IPL control block in memory. Included
in the key boot record data are the starting location of the boot image on the boot device, the length of
the boot image, and instructions on where to load the boot image in memory.

4. The boot image is read sequentially from the boot device into memory starting at the location specified
in NVRAM. The disk boot image consists of the kernel, a RAM file system, and base customized device
information.

5. Control is passed to the kernel, which begins system initialization.
6. The kernel runs init, which runs phase 1 of the rc.boot script.

When the kernel initialization phase is completed, base device configuration begins.

Base device configuration phase
The init process starts the rc.boot script. Phase 1 of the rc.boot script performs the base device
configuration.

Phase 1 of the rc.boot script includes the following steps:

1. The boot script calls the restbase program to build the customized Object Data Manager (ODM)
database in the RAM file system from the compressed customized data.

2. The boot script starts the configuration manager, which accesses phase 1 ODM configuration rules to
configure the base devices.

3. The configuration manager starts the sys, bus, disk, SCSI, and the Logical Volume Manager (LVM) and
rootvg volume group configuration methods.

16 AIX Version 7.2: Operating system management

4. The configuration methods load the device drivers, create special files, and update the customized
data in the ODM database.

Booting the system
This procedure completes the system boot phase.

1. The init process starts phase 2 running of the rc.boot script. Phase 2 of rc.boot includes the
following steps:
a) Call the ipl_varyon program to vary on the rootvg volume group.
b) Mount the hard disk file systems onto their normal mount points.
c) Run the swapon program to start paging.
d) Copy the customized data from the ODM database in the RAM file system to the ODM database in

the hard disk file system.
e) Exit the rc.boot script.

2. After phase 2 of the rc.boot script is complete, the boot process switches from the RAM file system
to the file systems that are stored on the hard disk.

3. Then the init process runs the processes defined by records in the /etc/inittab file. One of
the instructions in the /etc/inittab file runs phase 3 of the rc.boot script, which includes the
following steps:
a) Mount the /tmp hard disk file system.
b) Start the configuration manager phase 2 to configure all remaining devices.
c) Use the savebase command to save the customized data to the boot logical volume.
d) Exit the rc.boot script.

At the end of this process, the system is up and ready for use.

Maintenance boot process
Occasions might arise when a boot is needed to perform special tasks such as installing new or updated
software, performing diagnostic checks, or for maintenance. In this case, the system starts from a
bootable medium such as a CD-ROM, DVD, tape drive, network, or disk drive.

The maintenance boot sequence of events is similar to the sequence of a normal boot.

1. The firmware performs basic testing on the system resources that are required for starting the
operating system.

2. The firmware checks the user boot list. You can use the bootlist command to change the user boot
list to suit your requirements. If the user boot list in non-volatile random access memory (NVRAM) is
not valid or if no valid boot device is found, the default boot list is checked. In either case, the first valid
boot device found in the boot list is used for starting the system.

Note: For a normal boot, the operating system also maintains a default boot list and a user boot
list, which are stored in NVRAM. Separate default boot list and user boot list are also maintained for
starting the system in maintenance mode.

3. When a valid boot device is found, the first record or program sector number (PSN) is checked. If it is
a valid boot record, it is read into memory and is added to the initial program load (IPL) control block
in memory. Included in the key boot record data are the starting location of the boot image on the boot
device, the length of the boot image, and the offset to the entry point to start running when the boot
image is in memory.

4. The boot image is read sequentially from the boot device into memory, starting at the location
specified in NVRAM.

5. Control is passed to the kernel, which begins running programs in the RAM file system.
6. The ODM database contents determine which devices are present, and the cfgmgr command

dynamically configures all devices found, including all disks which are to contain the root file system.

Operating system management 17

7. If a CD-ROM, DVD, tape, or the network is used to boot the system, the rootvg volume group (or
rootvg) is not varied on, because the rootvg might not exist (as is the case when installing the operating
system on a new system). Network configuration can occur at this time. No paging occurs when a
maintenance boot is performed.

At the end of this process, the system is ready for installation, maintenance, or diagnostics.

Note: If the system is started from the hard disk, the rootvg is varied on, the hard disk root file system and
the hard disk /usr file system are mounted in the RAM file system, a menu is displayed that allows you
to enter various diagnostics modes or single-user mode. If you select single-user mode, you can continue
the boot process and enter single-user mode, where the init run level is set to the letter S. The system is
then ready for maintenance, software updates, or for running the bosboot command.

Related concepts
Boot process
There are three types of system boots and two resources that are required in order to boot the operating
system.

RAM file system
The RAM file system, part of the boot image, is totally memory-resident and contains all programs that
allow the boot process to continue. The files in the RAM file system are specific to the type of boot.

A maintenance boot RAM file system might not have the logical volume routines, because the rootvg
might not need to be varied on. During a hard disk boot, however, it is desirable that the rootvg be varied
on and paging activated as soon as possible. Although there are differences in these two boot scenarios,
the structure of the RAM file system does not vary to a great extent.

The init command, which is located on the RAM file system, is a basic boot command interpreter
program that is designed for use during the boot process. This boot command interpreter program
controls the boot process by calling the rc.boot script. The rc.boot script determines from which
device the machine was started. The boot device determines which devices must be configured on the
RAM file system. If the machine is started over the network, the network devices need to be configured
so that the client file systems can be remotely mounted. In the case of a tape, CD-ROM, or DVD boot, the
console is configured to display the base operating system (BOS) installation menus. After the rc.boot
script identifies the boot device, the appropriate configuration routines are called from the RAM file
system. The rc.boot script is called twice by the boot command interpreter program to match the
two configuration phases during the boot process. A third call to rc.boot occurs during a disk or a
network boot when the real init command is called. The inittab file contains an rc.boot stanza that
completes the final configuration of the machine.

The RAM file system for each boot device is also unique because of the various types of devices to be
configured. A prototype file is associated with each type of boot device. The prototype file is a template of
files making up the RAM file system. The bosboot command uses the mkfs command to create the RAM
file system using the various prototype files. See the bosboot command for more details.

Related concepts
Boot process

18 AIX Version 7.2: Operating system management

There are three types of system boots and two resources that are required in order to boot the operating
system.

Troubleshooting system startup
Use these troubleshooting methods to tackle some of the basic problems that might occur when your
system is starting. If the troubleshooting information does not address your problem, contact your service
representative.

Systems that will not boot
If a system will not boot from the hard disk, you may still be able to gain access to the system in order to
ascertain and correct the problem.

If you have a system that will not boot from the hard disk, see the procedure on how to access a system
that will not boot in Troubleshooting your installation in the Installation and migration.

This procedure enables you to get a system prompt so that you can attempt to recover data from the
system or perform corrective action enabling the system to boot from the hard disk.

Note:

• This procedure is intended only for experienced system managers who have knowledge of how to boot
or recover data from a system that is unable to boot from the hard disk. Most users should not attempt
this procedure, but should contact their service representative.

• This procedure is not intended for system managers who have just completed a new installation,
because in this case the system does not contain data that needs to be recovered. If you are unable to
boot from the hard disk after completing a new installation, contact your service representative.

Related reference
Boot problem diagnostics
A variety of factors can cause a system to be unable to boot.

Boot problem diagnostics
A variety of factors can cause a system to be unable to boot.

Some of these factors are:

• Hardware problems
• Defective boot tapes or CD-ROMs
• Improperly configured network boot servers
• Damaged file systems
• Errors in scripts such as /sbin/rc.boot

If the boot process halts with reference code 2702 and displays the message "INSUFFICIENT ENTITLED
MEMORY" use the HMC to increase the amount of entitled memory available for that partition.

Related concepts
Systems that will not boot
If a system will not boot from the hard disk, you may still be able to gain access to the system in order to
ascertain and correct the problem.

System backup
Once your system is in use, your next consideration should be to back up the file systems, directories,
and files. If you back up your file systems, you can restore files or file systems in the event of a hard disk
crash. There are different methods for backing up information.

Backing up file systems, directories, and files represents a significant investment of time and effort. At the
same time, all computer files are potentially easy to change or erase, either intentionally or by accident.

Operating system management 19

Attention: When a hard disk crashes, the information contained on that disk is destroyed. The only
way to recover the destroyed data is to retrieve the information from your backup copy.

If you use a careful and methodical approach to backing up your file systems, you should always be able
to restore recent versions of files or file systems with little difficulty.

Several methods exist for backing up information. One of the most frequently used methods is called
backup by name, file name archive, or regular backup. This is a copy of a file system, directory, or file that
is kept for file transfer or in case the original data is unintentionally changed or destroyed. This method
of backup is done when the i flag is specified and is used to make a backup copy of individual files and
directories. It is a method commonly used by individual users to back up their accounts.

Another frequently used method is called backup by i-node, file system archive, or archive backup. This
method of backup is done when the i flag is not specified. This is used for future reference, historical
purposes, or for recovery if the original data is damaged or lost. It is used to make a backup copy of an
entire file system and is the method commonly used by system administrators to back up large groups
of files, such as all of the user accounts in /home. A file system backup allows incremental backups to
be performed easily. An incremental backup backs up all files that have been modified since a specified
previous backup.

The compress and pack commands enable you to compress files for storage, and the uncompress and
unpack commands unpack the files once they have been restored. The process of packing and unpacking
files takes time, but once packed, the data uses less space on the backup medium. For more information
about these commands, see compress, pack, uncompress, and unpack.

Several commands create backups and archives. Because of this, data that has been backed up needs
to be labeled as to which command was used to initiate the backup, and how the backup was made (by
name or by file system).

Item Description

backup Backs up files by name or by file system. For more information, see backup.

mksysb Creates an installable image of the rootvg. For more information, see mksysb.

cpio Copies files into and out of archive storage. For more information, see cpio.

dd Converts and copies a file. Commonly used to convert and copy data to and from systems
running other operating systems, for example, mainframes. dd does not group multiple
files into one archive; it is used to manipulate and move data. For more information, see
dd.

tar Creates or manipulates tar format archives. For more information, see tar.

rdump Backs up files by file system onto a remote machine's device. For more information, see
rdump.

pax (POSIX-conformant archive utility) Reads and writes tar and cpio archives. For more
information, see pax.

Related concepts
Backup for BSD 4.3 system managers
BSD 4.3 system managers can back up data.
Related tasks
Backing up user files or file systems

20 AIX Version 7.2: Operating system management

Two procedures can be used to back up files and file systems: the SMIT fast paths smit backfile or
smit backfilesys, and the backup command.

Backup concepts
Before you start backing up your data, you need to understand the types of data, policies, and media that
you can use.

Backup policies
No single backup policy can meet the needs of all users. A policy that works well for a system with one
user, for example, could be inadequate for a system that serves one hundred users. Likewise, a policy
developed for a system on which many files are changed daily would be inefficient for a system on which
data changes infrequently.

Whatever the appropriate backup strategy for your site, it is very important that one exist and that
backups be done frequently and regularly. It is difficult to recover from data loss if a good backup strategy
has not been implemented.

Only you can determine the best backup policy for your system, but the following general guidelines might
be helpful:

• Make sure you can recover from major losses.

Can your system continue to run after any single fixed disk failure? Can you recover your system if all the
fixed disks should fail? Could you recover your system if you lost your backup diskettes or tape to fire or
theft? If data were lost, how difficult would it be to re-create it? Think through possible, even unlikely,
major losses, and design a backup policy that enables you to recover your system after any of them.

• Check your backups periodically.

Backup media and their hardware can be unreliable. A large library of backup tapes or diskettes is
useless if data cannot be read back onto a fixed disk. To make certain that your backups are usable,
display the table of contents from the backup tape periodically (using restore -T or tar -t for
archive tapes). If you use diskettes for your backups and have more than one diskette drive, read
diskettes from a drive other than the one on which they were created. You might want the security
of repeating each level 0 backup with a second set of media. If you use a streaming tape device for
backups, you can use the tapechk command to perform rudimentary consistency checks on the tape.
For more information about these commands, see restore -T, tar -t, and tapechk.

• Keep old backups.

Develop a regular cycle for reusing your backup media; however, do not reuse all of your backup media.
Sometimes it is months before you or some other user of your system notices that an important file is
damaged or missing. Save old backups for such possibilities. For example, you could have the following
three cycles of backup tapes or diskettes:

– Once per week, recycle all daily diskettes except the Friday diskette.
– Once per month, recycle all Friday diskettes except for the one from the last Friday of the month. This

makes the last four Friday backups always available.
– Once per quarter, recycle all monthly diskettes except for the last one. Keep the last monthly diskette

from each quarter indefinitely, preferably in a different building.
• Check file systems before backing up.

A backup made from a damaged file system might be useless. Before making your backups, it is good
policy to check the integrity of the file system with the fsck command. For more information, see fsck.

• Ensure files are not in use during a backup.

Do not use the system when you make your backups. If the system is in use, files can change while they
are being backed up, and the backup copy will not be accurate.

• Back up your system before major changes are made to the system.

Operating system management 21

It is always good policy to back up your entire system before any hardware testing or repair work is
performed or before you install any new devices, programs, or other system features.

• Other factors.

When planning and implementing a backup strategy, consider the following factors:

– How often does the data change? The operating system data does not change very often, so you do
not need to back it up frequently. User data, on the other hand, usually changes frequently, so you
should back it up frequently.

– How many users are on the system? The number of users affects the amount of storage media and
frequency required for backups.

– How difficult would it be to re-create the data? It is important to consider that some data cannot be
re-created if there is no backup available.

Having a backup strategy in place to preserve your data is very important. Evaluating the needs of your
site will help you to determine the backup policy that is best for you. Perform user information backups
frequently and regularly. Recovering from data loss is very difficult if a good backup strategy has not been
implemented.

Note: For the backup of named pipes (FIFO special files) the pipes can be either closed or open. However,
the restoration fails when the backup is done on open named pipes. When restoring a FIFO special file, its
i-node is all that is required to recreate it because it contains all its characteristic information. The content
of the named pipe is not relevant for restoration. Therefore, the file size during backup is zero (all the
FIFOs closed) before the backup is made.

Attention: System backup and restoration procedures require that the system be restored on the
same type of platform from which the backup was made. In particular, the CPU and I/O planar
boards must be of the same type.

Backup media
Several different types of backup media are available. The different types of backup media available to
your specific system configuration depend upon both your software and hardware.

Several types of backup media are available. The types of backup media available to your specific
system configuration depend upon your software and hardware. The types most frequently used are tapes
(8-mm tape and 9-track tape), diskettes (5.25-inch diskette and 3.5-inch diskette), remote archives, and
alternate local hard disks. Unless you specify a different device using the backup -f command, the
backup command automatically writes its output to /dev/rfd0, which is the diskette drive.

Attention: Running the backup command results in the loss of all material previously stored on
the selected backup medium.

Diskettes

Diskettes are the standard backup medium. Unless you specify a different device using the backup
-f command, the backup command automatically writes its output to the /dev/rfd0 device, which
is the diskette drive. To back up data to the default tape device, type /dev/rmt0 and press Enter.

Be careful when you handle diskettes. Because each piece of information occupies such a small area
on the diskette, small scratches, dust, food, or tobacco particles can make the information unusable.
Be sure to remember the following:

• Do not touch the recording surfaces.
• Keep diskettes away from magnets and magnetic field sources, such as telephones, dictation

equipment, and electronic calculators.
• Keep diskettes away from extreme heat and cold. The recommended temperature range is 10

degrees Celsius to 60 degrees Celsius (50 degrees Fahrenheit to 140 degrees Fahrenheit).
• Proper care helps prevent loss of information.
• Make backup copies of your diskettes regularly.

22 AIX Version 7.2: Operating system management

Attention: Diskette drives and diskettes must be the correct type to store data successfully. If
you use the wrong diskette in your 3.5-inch diskette drive, the data on the diskette could be
destroyed.

The diskette drive uses the following 3.5-inch diskettes:

• 1 MB capacity (stores approximately 720 KB of data)
• 2 MB capacity (stores approximately 1.44 MB of data)

Tapes

Because of their high capacity and durability, tapes are often chosen for storing large files or many
files, such as archive copies of file systems. They are also used for transferring many files from one
system to another. Tapes are not widely used for storing frequently accessed files because other
media provide much faster access times.

Tape files are created using commands such as backup, cpio, and tar, which open a tape drive,
write to it, and close it.

Backup strategy
There are two methods of backing up large amounts of data.

• Complete system backup
• Incremental backup

To understand these two types of backups and which one is right for a site or system, it is important to
have an understanding of file system structure and data placement. After you have decided on a strategy
for data placement, you can develop a backup strategy for that data.

Related tasks
Implementing scheduled backups
This procedure describes how to develop and use a script to perform a weekly full backup and daily
incremental backups of user files.

System data versus user data
Data is defined as programs or text and for this discussion is broken down into two classes:

• System data, which makes up the operating system and its extensions. This data is always to be kept in
the system file systems, namely / (root), /usr, /tmp, /var, and so on.

• User data is typically local data that individuals need to complete their specific tasks. This data is to be
kept in the /home file system or in file systems that are created specifically for user data.

User programs and text are not to be placed in file systems designed to contain system data. For example,
a system manager might create a new file system and mount it over/local. An exception is /tmp, which
is used for temporary storage of system and user data.

Backups
In general, backups of user and system data are kept in case the data is accidentally removed or if there is
a disk failure. It is easier to manage backups when user data is kept separate from system data.

The following are reasons for keeping system data separate from user data:

• User data tends to change much more often than operating system data. Backup images are much
smaller if the system data is not backed up into the same image as the user data. The number of users
affects the storage media and frequency that is required for backup.

• It is quicker and easier to restore user data when it is kept separate. Restoring the operating system
along with the user data requires extra time and effort. The reason is that the method that is used to
recover the operating system data involves starting the system from removable media (tape or CD) and
installing the system backup.

To back up the system data, unmount all user file systems, including /home with the umount command.
If these file systems are in use, you cannot unmount them. Schedule the backups at low usage times so
they can be unmounted; if the user data file systems remain mounted, they are backed up along with the

Operating system management 23

operating system data. Use the mount command to ensure that only the operating system file systems are
mounted.

The only mounted file systems are /, /usr, /var, and /tmp, and the result of the mount command can
be similar to the following output:

node mounted mounted over vfs date options

 /dev/hd4 / jfs Jun 11 10:36 rw,log=/dev/hd8

 /dev/hd2 /usr jfs Jun 11 10:36 rw,log=/dev/hd8

 /dev/hd9var /var jfs Jun 11 10:36 rw,log=/dev/hd8

 /dev/hd /tmp jfs Jun 11 10:36 rw,log=/dev/hd8

After you are certain that all user file systems are unmounted, you are now ready to back up the operating
system data.

When you finish backing up the operating system, mount the user file system by using the smit mount
command. Next, you can back up files, file systems, or other volume groups, depending on your needs.

Related concepts
System image and user-defined volume groups backup
The rootvg is stored on a hard disk, or group of disks, and contains start up files, the BOS, configuration
information, and any optional software products. A user-defined volume group (also called nonrootvg
volume group) typically contains data files and application software.

System replication (cloning)
Cloning saves configuration data along with user or system data. For example, you might want to replicate
a system or volume group; it is sometimes called cloning.

You can then install this image onto another system and can use it just like the first system. The mksysb
command is used to clone the rootvg volume group, which contains the operating system, while the
savevg command is used to clone a volume group.

Command summary for backup files and storage media
Commands are available for backing up files and storing data.

Item Description

backup Backs up files and file systems

compress Compresses and expands data

cpio Copies files into and out of archive storage and directories

fdformat Formats diskettes

flcopy Copies to and from diskettes

format Formats diskettes

fsck Checks file system consistency and interactively repairs the file system

pack Compresses files

restore Copies previously backed-up file systems or files, which were created by the backup
command from a local device

tapechk Checks consistency of the streaming tape device

tar Manipulates archives

tcopy Copies a magnetic tape

uncompress Compresses and expands data

unpack Expands files

24 AIX Version 7.2: Operating system management

Administering system backups
There are multiple ways to backup your system and restore a system backup.

Backing up user files or file systems
Two procedures can be used to back up files and file systems: the SMIT fast paths smit backfile or
smit backfilesys, and the backup command.

• If you are backing up by i-node file systems that may be in use, unmount them first to prevent
inconsistencies.

Attention: If you attempt to back up a mounted file system, a warning message is displayed. The
backup command continues, but inconsistencies in the file system may occur. This warning does
not apply to the root (/) file system.

• To prevent errors, make sure the backup device has been cleaned recently.

To back up user files and file systems, you can use the SMIT fast paths smit backfile or smit
backfilesys.

You can use the SMIT interface for backing up single and small file systems by name, such as /home on
your local system. Note that SMIT cannot make archives in any other format than that provided by the
backup command. Also, not every flag of the backup command is available through SMIT. SMIT might
hang if multiple tapes or disks are needed during the backup. For more information, see the backup
command description in Commands Reference, Volume 1.

Use the backup command when you want to back up large and multiple file systems. You can specify
a level number to control how much data is backed up (full, 0; incremental, 1-9). Using the backup
command is the only way you can specify the level number on backups.

The backup command creates copies in one of the two following backup formats:

• Specific files backed up by name using the -i flag.
• Entire file systems backed up by i-node using the -Level and FileSystem parameters. The file

system is defragmented when it is restored from backup.

Attention: Backing up by i-node does not work correctly for files that have a user ID (UID) or a
group ID (GID) greater than 65535. These files are backed up with UID or GID truncated and will,
therefore, have the wrong UID or GID attributes when restored. For these cases, you must back up
by name.

Backing Up User Files or File Systems Tasks

Task SMIT Fast Path Command or File

Back Up User Files smit
backfile

1. Log in to your user account.
2. Backup: find . -print |
backup -ivf /dev/rmt0

Back Up User File Systems smit
backfilesys

1. Unmount files systems that you
plan to back up. For example:
umount all or umount /home /
filesys1

2. Verify the file systems.
For example: fsck /home /
filesys1

3. Back up by i-node. For example:
backup -5 -uf/dev/rmt0 /
home/libr

4. Restore the files using the following
command: restore -t

Operating system management 25

Note: If this command generates an error message, you must repeat the entire backup.

Related concepts
System backup
Once your system is in use, your next consideration should be to back up the file systems, directories,
and files. If you back up your file systems, you can restore files or file systems in the event of a hard disk
crash. There are different methods for backing up information.

Restoring backed-up files
After the data has been correctly backed up, there are several different methods of restoring the data
based upon the type of backup command you used.

You need to know how your backup or archive was created to restore it correctly. Each backup procedure
gives information about restoring data. For example, if you use the backup command, you can specify
a backup either by file system or by name. That backup must be restored the way it was done, by file
system or by name. For information about the backup command, see backup.

Several commands restore backed up data, such as:

Item Description

restore Copies files created by the backup command. For more information about using this
command, see the section below.

rrestore Copies file systems backed up on a remote machine to the local machine. For more
information, see rrestore.

cpio Copies files into and out of archive storage. For more information, see cpio .

tar Creates or manipulates tar archives. For more information, see tar.

pax (POSIX-conformant archive utility) Reads and writes tar and cpio archives. For more
information, see pax.

The following sections discuss the restore and smit commands.

Note:

• Files must be restored using the same method by which they were backed up. For example, if a file
system was backed up by name, it must be restored by name.

• When more than one diskette is required, the restore command reads the diskette that is mounted,
prompts you for a new one, and waits for your response. After inserting the new diskette, press the
Enter key to continue restoring files.

Restoring files using the restore command

Use the restore command to read files written by the backup command and restore them on your
local system.

See the following examples:

• To list the names of files previously backed up, type the following:

restore -T

Information is read from the /dev/rfd0 default backup device. If individual files are backed up,
only the file names are displayed. If an entire file system is backed up, the i-node number is also
shown.

• To restore files to the main file system, type the following:

restore -x -v

The -x flag extracts all the files from the backup media and restores them to their proper places in
the file system. The -v flag displays a progress report as each file is restored. If a file system backup

26 AIX Version 7.2: Operating system management

is being restored, the files are named with their i-node numbers. Otherwise, only the names are
displayed.

• To copy the /home/mike/manual/chap1 file, type the following:

restore -xv /home/mike/manual/chap1

This command extracts the /home/mike/manual/chap1 file from the backup medium and
restores it. The /home/mike/manual/chap1 file must be a name that the restore -T command
can display.

• To copy all the files in a directory named manual, type the following:

restore -xdv manual

This command restores the manual directory and the files in it. If the directory does not exist, a
directory named manual is created in the current directory to hold the files being restored.

See the restore command in the Commands Reference, Volume 4 for the complete syntax.

Restoring files using the smit command

Use the smit command to run the restore command, which reads files written by the backup
command and restores them on your local system.

1. At the prompt, type the following:

smit restore

2. Make your entry in the Target DIRECTORY field. This is the directory where you want the restored
files to reside.

3. Proceed to the BACKUP device or FILE field and enter the output device name, as in the following
example for a raw magnetic tape device:

/dev/rmt0

If the device is not available, a message similar to the following is displayed:

Cannot open /dev/rmtX, no such file or directory.

This message indicates that the system cannot reach the device driver because there is no file for
rmtX in the /dev directory. Only items in the available state are in the /dev directory.

4. For the NUMBER of blocks to read in a single input field, the default is recommended.
5. Press Enter to restore the specified file system or directory.

Creating a remote archive
Use this procedure to archive files to a remote tape device.

Running AIX systems cannot mount a remote tape device as if it were local to the system; however, data
can be sent to a remote machine tape device using the rsh command. The following procedure writes to a
single tape only. Multiple-tape archives require specialized application software.

In the following procedure, assume the following:
blocksize

Represents the target tape device blocksize.
remotehost

Is the name of the target system (the system that has the tape drive).
sourcehost

Is the name of the source system (the system being archived).
/dev/rmt0

Is the name of the remote tape device

Operating system management 27

pathname
Represents the full pathname of a required directory or file.

When using the following instructions, assume that both the local and remote user is root.

1. Ensure you have access to the remote machine.
The source machine must have access to the system with the tape drive. (The target system can be
accessed using any of the defined users on that system, but the user name must have root authority to
do many of the following steps.)

2. Using your favorite editor, create a file in the / (root) directory of the target system called .rhosts
that allows the source system access to the target system.
You need to add the authorized host name and user ID to this file. To determine the name of the source
machine for the .rhosts file, you can use the following command:

host SourceIPaddress

For the purposes of this example, assume you add the following line to the .rhosts file:

sourcehost.mynet.com root

3. Save the file and then change its permissions using the following command:

chmod 600 .rhosts

4. Use the rsh command to test your access from the source machine. For example:

rsh remotehost

If everything is set up correctly, you should be granted shell access to the remote machine. You should
not see a login prompt asking for a user name. Type exit to log out of this test shell.

5. Decide on the appropriate tape device blocksize.
The following are the recommended values:

Item Description

9-track or 0.25-in. media blocksize: 512

8-mm or 4-mm media blocksize: 1024

If you are unsure and want to check the current block size of the tape device, use the tctl command.
For example:

tctl -f /dev/rmt0 status

If you want to change the tape blocksize, use the chdev command. For example:

chdev -l rmt0 -a block_size=1024

6. Create your archive using one of the following methods:
Backup by Name

To remotely create a backup archive by name, use the following command:

find pathname -print | backup -ivqf- | rsh remotehost \
 "dd of=/dev/rmt0 bs=blocksize conv=sync"

Backup by inode
To remotely create a backup archive by inode, first unmount your file system then use the backup
command. For example:

umount /myfs
backup -0 -uf- /myfs | rsh remotehost \
 "dd of=/dev/rmt0 bs=blocksize conv=sync"

28 AIX Version 7.2: Operating system management

Create and Copy an Archive to Remote Tape
To create and copy an archive to the remote tape device, use the following command:

find pathname -print | cpio -ovcB | rsh remotehost \
 "dd ibs=5120 obs=blocksize of=/dev/rmt0"

Create a tar Archive
To remotely create a tar archive, use the following command:

tar -cvdf- pathname | rsh remotehost \
 "dd of=/dev/rmt0 bs=blocksize conv=sync"

Create a Remote Dump
To remotely create a remote dump of the /myfs file system, use the following command:

rdump -u -0 -f remotehost:/dev/rmt0 /myfs

The -u flag tells the system to update the current backup level records in the /etc/dumpdates
file. The -0 is the setting of the Level flag. Backup level 0 specifies that all the files in the /myfs
directory are to be backed up. For more information, see the rdump command description in
Commands Reference, Volume 4.

7. Restore your remote archive using one of the following methods:
Restore a Backup by Name

To restore a remote backup archive by name, use the following command:

rsh remotehost "dd if=/dev/rmt0 bs=blocksize" | restore \
 -xvqdf- pathname

Restore a Backup by inode
To restore a remote backup archive by inode, use the following command:

rsh remotehost "dd if=/dev/rmt0 bs=blocksize" | restore \
 -xvqf- pathname

Restore a Remote cpio Archive
To restore a remote archive created with the cpio command, use the following command:

rsh remotehost "dd if=/dev/rmt0 ibs=blocksize obs=5120" | \
 cpio -icvdumB

Restore a tar Archive
To restore a remote tar archive, use the following command:

rsh remotehost "dd if=/dev/rmt0 bs=blocksize" | tar -xvpf- pathname

Restore a Remote Dump
To restore a remote dump of the /myfs file system, use the following command:

cd /myfs
rrestore -rvf remotehost:/dev/rmt0

Restoring user files from a backup image
If you need to restore a backup image destroyed by accident, your most difficult problem is determining
which of the backup tapes contains this file. The restore -T command can be used to list the contents
of an archive. It is a good idea to restore the file in the /tmp directory so that you do not accidentally
overwrite the user's other files.

Make sure the device is connected and available. To check availability, type:

lsdev -C | pg

If the backup strategy included incremental backups, then it is helpful to find out from the user when
the file was most recently modified. This helps to determine which incremental backup contains the file.

Operating system management 29

If this information cannot be obtained or is found to be incorrect, then start searching the incremental
backups in reverse order (7, 6, 5, ...). For incremental file system backups, the -i flag (interactive mode) of
the restore command is very useful in both locating and restoring the lost file. (Interactive mode is also
useful for restoring an individual user's account from a backup of the /home file system.)

The procedures in the following table describe how to implement a level 0 (full) restoration of a directory
or file system.

Restoring from Backup Image Tasks

Task SMIT Fast Path Command or File

Restore Individual User Files smit restfile See restore command.

Restoring a User File System smit restfilesys 1. mkfs /dev/hd1
2. mount /dev/hd1 /
filesys

3. cd /filesys
4. restore -r

Restoring a User Volume Group smit restvg See restvg -q command.

Restoring access to an unlinked or deleted system library
When the existing libc.a library is not available, most operating system commands are not recognized.

The most likely causes for this type of problem are the following:

• The link in /usr/lib no longer exists.
• The file in /usr/ccs/lib has been deleted.

The following procedure describes how to restore access to the libc.a library. This procedure requires
system downtime. If possible, schedule your downtime when it least impacts your workload to protect
yourself from a possible loss of data or functionality.

The information in this how-to scenario was tested using specific versions of AIX. The results you obtain
might vary significantly depending on your version and level of AIX.

Related information
mount command
unmount command
reboot command

Restoring a deleted symbolic link
Use the following procedure to restore a symbolic link from the /usr/lib/libc.a library to
the /usr/ccs/lib/libc.a path.

The information in this how-to scenario was tested using specific versions of AIX. The results you obtain
might vary significantly depending on your version and level of AIX.

1. With root authority, set the LIBPATH environment variable to point to the /usr/ccs/lib directory by
typing the following commands:

LIBPATH=/usr/ccs/lib:/usr/lib
export LIBPATH

At this point, you should be able to execute system commands.
2. To restore the links from the /usr/lib/libc.a library and the /lib directory to the /usr/lib

directory, type the following commands:

ln -s /usr/ccs/lib/libc.a /usr/lib/libc.a
ln -s /usr/lib /lib

30 AIX Version 7.2: Operating system management

At this point, commands should run as before. If you still do not have access to a shell, skip the rest
of this procedure and continue with the next section, “Restoring a deleted system library file” on page
31.

3. Type the following command to unset the LIBPATH environment variable.

unset LIBPATH

Restoring a deleted system library file
This procedure to restore a deleted system library file requires system downtime. The system is booted
and then the library is restored from a recent mksysb tape.

1. Before your reboot, ensure the PROMPT field in the bosinst.data file is set to yes.
2. Insert a recent mksysb tape into the tape drive.

The mksysb must contain the same OS and maintenance package or technology level as the installed
system. If you restore a libc.a library from a mksysb that conflicts with the level on the installed
system, you will not be able to issue commands.

3. Reboot the machine.
4. When the screen of icons appears, or when you hear a double beep, press the F1 key repeatedly until

the System Management Services menu is displayed.
5. Select Multiboot.
6. Select Install From.
7. Select the tape device that holds the mksysb and then select Install.

It can take several minutes before the next prompt appears.
8. Define your current system as the system console by pressing the F1 key and press Enter.
9. Select the number of your preferred language and press Enter.

10. Select Start Maintenance Mode for System Recovery by typing 3 and press Enter.
11. Select Access a Root Volume Group. A message displays explaining that you will not be able to

return to the Installation menus without rebooting if you change the root volume group at this point.
12. Type 0 and press Enter.
13. Type the number of the appropriate volume group from the list and press Enter.
14. Select Access this Volume Group by typing 2 and press Enter.
15. Mount the / (root) and /usr file systems by typing the following commands:

mount /dev/hd4 /mnt
mount /dev/hd2 /mnt/usr
cd /mnt

16. To restore the symbolic link for the libc.a library, if needed, type the following command:

ln -s /usr/ccs/lib/libc.a /mnt/usr/lib/libc.a

After the command runs, do one of the following:

• If the command is successful, skip to step 20.
• If a message displays that the link already exists, continue with step 17.

17. Set the block size of the tape drive by issuing the following commands, where X is the number of the
appropriate tape drive.

tctl -f /dev/rmtX rewind
tctl -f /dev/rmtX.1 fsf 1
restbyname -xvqf /dev/rmtX.1 ./tapeblksz
cat tapeblksz

Operating system management 31

If the value from the cat tapeblksz command is not equal to 512, type the following commands,
replacing Y with the value from the cat tapeblksz command:

ln -sf /mnt/usr/lib/methods /etc/methods
/etc/methods/chgdevn -l rmtX -a block_size=Y

You should receive a message that rmtX has been changed.
18. Ensure the tape is at the correct location for restoring the library by typing the following commands

(where X is the number of the appropriate tape drive):

tctl -f /dev/rmtX rewind
tctl -f /dev/rmtX.1 fsf 3

19. Restore the missing library using one of the following commands (where X is the number of the
appropriate tape drive):

• To restore the libc.a library only, type the following command:

restbyname -xvqf /dev/rmtX.1 ./usr/ccs/lib/libc.a

• To restore the /usr/ccs/lib directory, type the following command:

restbyname -xvqf /dev/rmtX.1 ./usr/ccs/lib

• To restore the /usr/ccs/bin directory, type the following command:

restbyname -xvqf /dev/rmtX.1 ./usr/ccs/bin

20. Flush the data to disk by typing the following commands:

cd /mnt/usr/sbin
./sync;./sync;./sync

21. Unmount the /usr and / (root) file systems by typing the following commands:

cd /
umount /dev/hd2
umount /dev/hd4

If either umount command fails, cycle power on this machine and begin this procedure again.
22. Reboot the system by typing the following command:

reboot

After the system is rebooted, operating system commands should be available.

Recreating a corrupted boot image
The following procedure describes how to identify a corrupted boot image and re-create it.

If your machine is currently running and you know the boot image has been corrupted or deleted, recreate
the boot image by running the bosboot command with root authority.

Attention: Never reboot the system when you suspect the boot image is corrupted.

The following procedure assumes your system is not rebooting correctly because of a corrupted boot
image. If possible, protect your system from a possible loss of data or functionality by scheduling your
downtime when it least impacts your workload.

The information in this how-to scenario was tested using specific versions of AIX. The results you obtain
might vary significantly depending on your version and level of AIX.

1. Insert the product media into the appropriate drive.
2. Power on the machine following the instructions provided with your system.
3. From the System Management Services menu, select Multiboot.

32 AIX Version 7.2: Operating system management

4. From the next screen, select Install From.
5. Select the device that holds the product media and then select Install.
6. Select the AIX version icon.
7. Follow the online instructions until you can select which mode you use for installation. At that point,

select Start Maintenance Mode for System Recovery.
8. Select Access a Root Volume Group.
9. Follow the online instructions until you can select Access this Volume Group and start a shell.

10. Use the bosboot command to re-create the boot image. For example:

bosboot -a -d /dev/hdisk0

If the command fails and you receive the following message:

0301-165 bosboot: WARNING! bosboot failed - do not attempt to boot device.

Try to resolve the problem using one of the following options, and then run the bosboot command
again until you have successfully created a boot image:

• Delete the default boot logical volume (hd5) and then create a new hd5.

Or

• Run diagnostics on the hard disk. Repair or replace, as necessary.

If the bosboot command continues to fail, contact your customer support representative.

Attention: If the bosboot command fails while creating a boot image, do not reboot your
machine.

11. When the bosboot command is successful, use the reboot command to reboot your system.

Related concepts
System startup
When the base operating system starts, the system initiates a complex set of tasks. Under normal
conditions, these tasks are performed automatically.
Related information
bosboot command

Making an online backup of a JFS
Making an online backup of a mounted journaled file system (JFS) or enhanced journaled file system
(JFS2) creates a static image of the logical volume that contains the file system.

To make an online backup of a mounted JFS, the logical volume that the file system resides on and the
logical volume that its log resides on must be mirrored.

Note: Because the file writes are asynchronous, the split-off copy might not contain all data that was
written immediately before the split. Any modifications that begin after the split begins might not be
present in the backup copy. Therefore, it is recommended that file system activity be minimal while the
split is taking place.

The information in this how-to scenario was tested using specific versions of AIX. The results you obtain
might vary significantly depending on your version and level of AIX.

To split off a mirrored copy of the /home/xyz file system to a new mount point named /
jfsstaticcopy, type the following:

chfs -a splitcopy=/jfsstaticcopy /home/xyz

You can control which mirrored copy is used as the backup by using the copy attribute. The second
mirrored copy is the default if a copy is not specified by the user. For example:

 chfs -a splitcopy=/jfsstaticcopy -a copy=1 /home/xyz

Operating system management 33

At this point, a read-only copy of the file system is available in /jfsstaticcopy. Any changes made to
the original file system after the copy is split off are not reflected in the backup copy.

To reintegrate the JFS split image as a mirrored copy at the /testcopy mount point, use the following
command:

 rmfs /testcopy

The rmfs command removes the file system copy from its split-off state and allows it to be reintegrated
as a mirrored copy.

Making and backing up a snapshot of a JFS2
You can make a snapshot of a mounted JFS2 that establishes a consistent block-level image of the file
system at a point in time.

The information in this how-to scenario was tested using specific versions of AIX. The results you obtain
might vary significantly depending on your version and level of AIX.

The snapshot image remains stable even as the file system that was used to create the snapshot,
called the snappedFS, continues to change. The snapshot retains the same security permissions as the
snappedFS had when the snapshot was made.

In the following scenario, you create a snapshot and back up the snapshot to removable media without
unmounting or quiescing the file system, all with one command: backsnap. You can also use the
snapshot for other purposes, such as accessing the files or directories as they existed when the snapshot
was taken. You can do the various snapshot procedures by using SMIT or the backsnap and snapshot
commands.

To create a snapshot of the /home/abc/test file system and back it up (by name) to the tape
device /dev/rmt0, use the following command:

backsnap -m /tmp/snapshot -s size=16M -i f/dev/rmt0 /home/abc/test

This command creates a logical volume of 16 megabytes for the snapshot of the JFS2 file system (/
home/abc/test). The snapshot is mounted on /tmp/snapshot and then a backup by name of the
snapshot is made to the tape device. After the backup completes, the snapshot remains mounted. Use
the -R flag with the backsnap command if you want the snapshot removed when the backup completes.

Related information
File Systems
backsnap command
chfs command
rmfs command
snapshot command

Making and backing up an external snapshot of a JFS2
You can make a snapshot of a mounted JFS2 that establishes a consistent block-level image of the file
system at a point in time.

The snapshot image remains stable even as the file system that was used to create the snapshot,
called the snappedFS, continues to change. The snapshot retains the same security permissions as the
snappedFS had when the snapshot was made.

In the following scenario, you use the backsnap command to create an external snapshot and back up
the snapshot to removable media without un mounting or quiescing the file system. You can also use the
snapshot for other purposes, such as accessing the files or directories as they existed when the snapshot
was taken. You can do the various snapshot procedures using SMIT, or the backsnap and snapshot
commands.

34 AIX Version 7.2: Operating system management

To create an external snapshot of the /home/abc/test file system and back it up, by name, to
the /dev/rmt0 tape device, run the following command:

backsnap -m /tmp/snapshot -s size=16M -if/dev/rmt0 /home/abc/test

The previous command creates a logical volume of 16 MB for the snapshot of the /home/abc/test
JFS2 file system. The snapshot is mounted on the /tmp/snapshot directory and then a backup of the
snapshot, by name, is made to the tape device. After the backup is complete, the snapshot is unmounted
but remains available. Use the -R flag with the backsnap command if you want the snapshot removed
when the backup is completed.

Related information
File Systems

Making and backing up an internal snapshot of a JFS2
You can make a snapshot of a mounted JFS2 that establishes a consistent block-level image of the file
system at a point in time.

The snapshot image remains stable even as the file system that was used to create the snapshot,
called the snappedFS, continues to change. The snapshot retains the same security permissions as the
snappedFS had when the snapshot was made.

In the following scenario, you use the backsnap command to create an internal snapshot and back up
the snapshot to removable media without un mounting or quiescing the file system. You can also use the
snapshot for other purposes, such as accessing the files or directories as they existed when the snapshot
was taken. You can do the various snapshot procedures using SMIT, or the backsnap and snapshot
commands.

To create an internal snapshot of the /home/abc/test file system and back it up, by name, to the /dev/
rmt0 tape device , run the following command:

backsnap -n mysnapshot -if/dev/rmt0 /home/abc/test

The previous command creates an internal snapshot, named mysnapshot, of the /home/abc/test file
system. The snapshot is accessed from the /home/abc/test/.snapshot/mysnapshot directory and
then a backup is made to the tape device. Use the -R flag with the backsnap command if you want the
snapshot removed after the backup is completed.

Related information
File Systems

Compressing files (compress and pack commands)
Use the compress command and the pack command to compress files for storage.

Use the uncompress command and the unpack command to expand the restored files.

The process of compressing and expanding files takes time; however, after the files are packed, the data
uses less space on the backup medium.

To compress a file system, use one of the following methods:

• Use the -p flag with the backup command.
• Use the compress or pack commands.

Advantages for compressing files include:

• Saving money and time by compressing files before sending them over a network.
• Saving storage and archiving system resources:

– Compress file systems before making backups to preserve tape space.
– Compress log files created by shell scripts that run at night; it is easy to have the script compress the

file before it exits.

Operating system management 35

– Compress files that are not currently being accessed. For example, the files belonging to a user who
is away for extended leave can be compressed and placed into a tar archive on disk or to a tape and
later be restored.

Note:

• The compress command might run out of working space in the file system while compressing. The
command creates the compressed files before it deletes any of the uncompressed files, so it needs a
space about 50% larger than the total size of the files.

• A file might fail to compress because it is already compressed. If the compress command cannot
reduce file sizes, the command fails.

See the compress command for details about the return values but, in general, the problems
encountered when compressing files can be summarized as follows:

• The command might run out of working space in the file system while compressing. Because the
compress command creates the compressed files before it deletes any of the uncompressed files, it
needs extra space-from 50% to 100% of the size of any given file.

• A file might fail to compress because it is already compressed. If the compress command cannot
reduce the file size, it fails.

Compressing files using the compress command
Use the compress command to reduce the size of files using adaptive Lempel-Zev coding.

Each original file specified by the File parameter is replaced by a compressed file with a .Z appended to
its name. The compressed file retains the same ownership, modes, and access and modification times
of the original file. If no files are specified, the standard input is compressed to the standard output. If
compression does not reduce the size of a file, a message is written to standard error and the original file
is not replaced.

Use the uncompress command to restore compressed files to their original form.

The amount of compression depends on the size of the input, the number of bits per code specified
by the Bits variable, and the distribution of common substrings. Typically, source code or English text is
reduced by 50 to 60 percent. The compression of the compress command is generally more compact
and takes less time to compute than the compression achieved by the pack command, which uses
adaptive Huffman coding.

For example, to compress the foo file and write the percentage compression to standard error, type the
following:

compress -v foo

See the compress command in the Commands Reference, Volume 1 for the complete syntax.

Compressing files using the pack command
Use the pack command to store the file or files specified by the File parameter in a compressed form
using Huffman coding.

The input file is replaced by a packed file with a name derived from the original file name (File.z), with
the same access modes, access and modification dates, and owner as the original file. The input file name
can contain no more than 253 bytes to allow space for the added .z suffix. If the pack command is
successful, the original file is removed.

Use the unpack command to restore packed files to their original form.

If the pack command cannot create a smaller file, it stops processing and reports that it is unable to
save space. (A failure to save space generally happens with small files or files with uniform character
distribution.) The amount of space saved depends on the size of the input file and the character frequency
distribution. Because a decoding tree forms the first part of each .z file, you do not save space with files
smaller than three blocks. Typically, text files are reduced 25 to 40 percent.

The exit value of the pack command is the number of files that it could not pack. Packing is not done
under any of the following conditions:

36 AIX Version 7.2: Operating system management

• The file is already packed.
• The input file name has more than 253 bytes.
• The file has links.
• The file is a directory.
• The file cannot be opened.
• No storage blocks are saved by packing.
• A file named File.z already exists.
• The .z file cannot be created.
• An I/O error occurred during processing.

For example, to compress the files chap1 and chap2, type the following:

pack chap1 chap2

This compresses chap1 and chap2 and replaces them with files named chap1.z and chap2.z. The
pack command displays the percent decrease in size for each file.

See the pack command in the Commands Reference, Volume 4 for the complete syntax.

Expanding compressed files (uncompress and unpack commands)
Use the uncompress and unpack commands to expand compressed files.

Expanding files using the uncompress command

Use the uncompress command to restore original files that were compressed by the compress
command. Each compressed file specified by the File variable is removed and replaced by an
expanded copy. The expanded file has the same name as the compressed version but without the .Z
extension. The expanded file retains the same ownership, modes, and access and modification times
as the original file. If no files are specified, standard input is expanded to standard output.

Although similar to the uncompress command, the zcat command always writes the expanded
output to standard output.

For example, to uncompress the foo file, type the following:

uncompress foo

See the uncompress command in Commands Reference, Volume 5 for the complete syntax.

Expanding files using the unpack command

Use the unpack command to expand files created by the pack command. For each file specified, the
unpack command searches for a file called File.z. If this file is a packed file, the unpack command
replaces it with its expanded version. The unpack command renames the new file by removing the .z
suffix from File. The new file has the same access modes, access and modification dates, and owner
as the original packed file.

The unpack command operates only on files ending in .z. As a result, when you specify a file name
that does not end in .z, the unpack command adds the suffix and searches the directory for a file
name with that suffix.

The exit value is the number of files that the unpack command was unable to unpack. A file cannot be
unpacked if any of the following situations exists:

• The file name (exclusive of .z) has more than 253 bytes.
• The file cannot be opened.
• The file is not a packed file.
• A file with the unpacked file name already exists.
• The unpacked file cannot be created.

Operating system management 37

Note: The unpack command writes a warning to standard error if the file it is unpacking has links.
The new unpacked file has a different i-node (index node) number than the packed file from which
it was created. However, any other files linked to the original i-node number of the packed file still
exist and are still packed.

For example, to unpack the packed files chap1.z and chap2.z, type the following:

unpack chap1.z chap2

This expands the packed files chap1.z and chap2.z, and replaces them with files named chap1 and
chap2.

Note: You can provide the unpack command with file names with or without the .z suffix.

See the unpack command in Commands Reference, Volume 5 for the complete syntax.

System image and user-defined volume groups backup
The rootvg is stored on a hard disk, or group of disks, and contains start up files, the BOS, configuration
information, and any optional software products. A user-defined volume group (also called nonrootvg
volume group) typically contains data files and application software.

You can backup an image of the system and volume groups using, SMIT, or command procedures. A
backup image serves two purposes. One is to restore a corrupted system using the system backup image.
The other is to transfer installed and configured software from one system to others.

The SMIT procedures use the mksysb command to create a backup image that can be stored either on
tape or in a file. If you choose tape, the backup program writes a boot image to the tape, which makes it
suitable for installing.

Note:

• Startup tapes cannot be made on or used to start a PowerPC-based personal computer.
• If you choose the SMIT method for backup, you must first install the sysbr fileset in the bos.sysmgt

software package.

Related concepts
Backups
In general, backups of user and system data are kept in case the data is accidentally removed or if there is
a disk failure. It is easier to manage backups when user data is kept separate from system data.

Backing up the system image and user-defined volume groups
You can make backups of the system image and the user-defined volume groups.

Before backing up the rootvg volume group:

• All hardware must already be installed, including external devices, such as tape and CD-ROM drives.
• This backup procedure requires the sysbr fileset, which is in the BOS System Management Tools and

Applications software package. Type the following command to determine whether the sysbr fileset is
installed on your system:

lslpp -l bos.sysmgt.sysbr

If your system has the sysbr fileset installed, continue the backup procedures.

If the lslpp command does not list the sysbr fileset, install it before continuing with the backup
procedure.

installp -agqXd device bos.sysmgt.sysbr

where device is the location of the software; for example, /dev/rmt0 for a tape drive.

Before backing up a user-defined volume group:

• Before being saved, a volume group must be varied on and the file systems must be mounted.

38 AIX Version 7.2: Operating system management

Attention: Executing the savevg command results in the loss of all material previously stored
on the selected output medium.

• Make sure the backup device has been cleaned recently to prevent errors.

The following procedures describe how to make an installable image of your system.

Backing Up Your System Tasks

Task SMIT Fast Path Command or File

Backing up the rootvg volume
group

1. Log in as root.
2. Mount file systems for

backup.1smit mountfs
3. Unmount any local

directories that are mounted
over another local directory.
smit umountfs

4. Make at least 8.8MB of
free disk space available in
the /tmp directory.2

5. Back up: smit mksysb
6. Write-protect the backup

media.
7. Record any backed-up root

and user passwords.

1. Log in as root.
2. Mount file systems for backup.1 See
mount command.

3. Unmount any local directories that are
mounted over another local directory.
See umount command.

4. Make at least 8.8MB of free disk space
available in the /tmp directory.2

5. Back up. See mksysb command.
6. Write-protect the backup media.
7. Record any backed-up root and user

passwords.

Verify a Backup Tape3 smit lsmksysb

Backing up a user-defined
volume group4

smit savevg 1. Modify the file system size before
backing up, if necessary.5 mkvgdata
VGName then edit /tmp/vgdata/
VGName/VGName.data

2. Save the volume group. See the
savevg command.

Note:

1. The mksysb command does not back up file systems mounted across an NFS network.
2. The mksysb command requires this working space for the duration of the backup. Use the df

command, which reports in units of 512-byte blocks, to determine the free space in the /tmp
directory. Use the chfs command to change the size of the file system, if necessary.

3. This procedure lists the contents of a mksysb backup tape. The contents list verifies most of the
information on the tape but does not verify that the tape can be booted for installations. The only way
to verify that the boot image on a mksysb tape functions correctly is by booting from the tape.

4. If you want to exclude files in a user-defined volume group from the backup image, create a file
named /etc/exclude.volume_group_name, where volume_group_name is the name of the volume
group that you want to back up. Then edit /etc/exclude.volume_group_name and enter the
patterns of file names that you do not want included in your backup image. The patterns in this file are
input to the pattern matching conventions of the grep command to determine which files are excluded
from the backup.

5. If you choose to modify the VGName.data file to alter the size of a file system, you must not specify
the -i flag or the -m flag with the savevg command, because the VGName.data file is overwritten.

Related information
Installing optional software products and service updates

Operating system management 39

Installing system backups

Pre-backup configuration
Configure the source system before creating a backup image of it. If, however, you plan to use a backup
image for installing other, differently configured target systems, create the image before configuring the
source system.

The source system is the system from which you created the backup copy. The target system is the system
on which you are installing the backup copy.

The installation program automatically installs only the device support required for the hardware
configuration of the installed machine. Therefore, if you are using a system backup to install other
machines, you might need to install additional devices on the source system before making the backup
image and using it to install one or more target systems.

Use the SMIT fast path, smit devinst, to install additional device support on the source system.

• If there is sufficient disk space on the source and target systems, install all device support.
• If there is limited disk space on the source and target systems, selectively install device support.

A backup transfers the following configurations from the source system to the target system:

• Paging space information
• Logical volume information
• rootvg information
• Placement of logical partitions (if you have selected the map option).

Related information
Installing optional software and service updates
Customizing your installation

File system mounts and unmounts
Before performing a backup, you must mount all file systems you want to back up and unmount all file
systems you do not want to back up.

The Backup Methods procedure backs up only mounted file systems in the rootvg. You must, therefore,
mount all file systems you want to back up before starting. Similarly, you must unmount file systems you
do not want backed up.

This backup procedure backs up files twice if a local directory is mounted over another local directory
in the same file system. For example, if you mount /tmp over /usr/tmp, the files in the /tmp directory
are backed up twice. This duplication might exceed the number of files a file system can hold, which can
cause a future installation of the backup image to fail.

Security considerations for backups
If you install the backup image on other systems, you might not, for security reasons, want passwords and
network addresses copied to the target systems.

Also, copying network addresses to a target system creates duplicate addresses that can disrupt network
communications.

Backup image restoration
When installing the backup image, the system checks whether the target system has enough disk space
to create all the logical volumes stored on the backup. If there is enough space, the entire backup is
recovered. Otherwise, the installation halts and the system prompts you to choose more destination hard
disks.

File systems created on the target system are the same size as they were on the source system, unless
the SHRINK variable was set to yes in the image.data file before the backup image was made. An
exception is the /tmp directory, which can be increased to allocate enough space for the bosboot
command. For information about setting variables, see the image.data file.

40 AIX Version 7.2: Operating system management

When the system finishes installing the backup image, the installation program reconfigures the ODM on
the target system. If the target system does not have exactly the same hardware configuration as the
source system, the program might modify device attributes in the following target system files:

• All files in /etc/objrepos beginning with Cu
• All files in the /dev directory.

Related information
Installing system backups

Implementing scheduled backups
This procedure describes how to develop and use a script to perform a weekly full backup and daily
incremental backups of user files.

• The amount of data scheduled for backup cannot exceed one tape when using this script.
• Make sure the tape is loaded in the backup device before the cron command runs the script.
• Make sure the device is connected and available, especially when using scripts that run at night. Use the
lsdev -C | pg command to check availability.

• Make sure the backup device has been cleaned recently to prevent errors.
• If you are backing up file systems that might be in use, unmount them first to prevent file system

corruption.
• Check the file system before making the backup. Use the procedure described in File system verification

or run the fsck command.

The script included in this procedure is intended only as a model and needs to be carefully tailored to the
needs of the specific site.

Related concepts
Backup strategy
There are two methods of backing up large amounts of data.

Backing up file systems using the cron command
This procedure describes how to write a crontab script that you can pass to the cron command for
execution.

The script backs up two user file systems, /home/plan and /home/run, on Monday through Saturday
nights. Both file systems are backed up on one tape, and each morning a new tape is inserted for the next
night. The Monday night backups are full archives (level 0). The backups on Tuesday through Saturday are
incremental backups.

1. The first step in making the crontab script is to issue the crontab-e command. This opens an empty
file where you can make the entries that are submitted to the cron script for execution each night (the
default editor is vi). Type:

crontab -e

2. The following example shows the six crontab fields. Field 1 is for the minute, field 2 is for the hour on
a 24-hour clock, field 3 is for the day of the month, and field 4 is for the month of the year. Fields 3 and
4 contain an * (asterisk) to show that the script runs every month on the day specified in the day/wk
field. Field 5 is for the day of the week, and can also be specified with a range of days, for example,
1-6. Field 6 is for the shell command being run.

min hr day/mo mo/yr day/wk shell command

0 2 * * 1 backup -0 -uf /dev/rmt0.1 /home/plan

The command line shown assumes that personnel at the site are available to respond to prompts
when appropriate. The -0 (zero) flag for the backup command stands for level zero, or full backup.
The -u flag updates the backup record in the /etc/dumpdates file and the f flag specifies the device
name, a raw magnetic tape device 0.1 as in the example above.

Operating system management 41

3. Type a line similar to that in step 2 for each file system backed up on a specific day. The following
example shows a full script that performs six days of backups on two file systems:

0 2 * * 1 backup -0 -uf/dev/rmt0.1 /home/plan
0 3 * * 1 backup -0 -uf/dev/rmt0.1 /home/run
0 2 * * 2 backup -1 -uf/dev/rmt0.1 /home/plan
0 3 * * 2 backup -1 -uf/dev/rmt0.1 /home/run
0 2 * * 3 backup -2 -uf/dev/rmt0.1 /home/plan
0 3 * * 3 backup -2 -uf/dev/rmt0.1 /home/run
0 2 * * 4 backup -3 -uf/dev/rmt0.1 /home/plan
0 3 * * 4 backup -3 -uf/dev/rmt0.1 /home/run
0 2 * * 5 backup -4 -uf/dev/rmt0.1 /home/plan
0 3 * * 5 backup -4 -uf/dev/rmt0.1 /home/run
0 2 * * 6 backup -5 -uf/dev/rmt0.1 /home/plan
0 3 * * 6 backup -5 -uf/dev/rmt0.1 /home/run

4. Save the file you created and exit the editor. The operating system passes the crontab file to the
cron script.

Related information
rmt Special File

Backup of files on a DMAPI-managed JFS2 file system
There are options in the tar and backbyinode commands that allow you to back up the extended
attributes (EAs).

With the backbyinode command on a DMAPI file system, only the data resident in the file system at
the time the command is issued is backed up. The backbyinode command examines the current state
of metadata to do its work. This can be advantageous with DMAPI, because it backs up the state of the
managed file system. However, any offline data will not be backed up.

To back up all of the data in a DMAPI file system, use a command that reads entire files, such as the
tar command. This can cause a DMAPI-enabled application to restore data for every file accessed by
the tar command, moving data back and forth between secondary and tertiary storage, so there can be
performance implications.

Formatting diskettes (format or fdformat command)
You can format diskettes in the diskette drive specified by the Device parameter (the /dev/rfd0 device
by default) with the format and fdformat commands.

Attention: Formatting a diskette destroys any existing data on that diskette.

The format command determines the device type, which is one of the following:

• 5.25-inch low-density diskette (360 KB) containing 40x2 tracks, each with 9 sectors
• 5.25-inch high-capacity diskette (1.2 MB) containing 80x2 tracks, each with 15 sectors
• 3.5-inch low-density diskette (720 KB) containing 80x2 tracks, each with 9 sectors
• 3.5-inch high-capacity diskette (2.88 MB) containing 80x2 tracks, each with 36 sectors

The sector size is 512 bytes for all diskette types.

Use the format command to format a diskette for high density unless the Device parameter specifies a
different density.

Use the fdformat command to format a diskette for low density unless the -h flag is specified. The
Device parameter specifies the device containing the diskette to be formatted (such as the /dev/rfd0
device for drive 0).

Before formatting a diskette, the format and fdformat commands prompt for verification. This allows
you to end the operation cleanly if necessary.

See the following examples:

42 AIX Version 7.2: Operating system management

• To format a diskette in the /dev/rfd0 device, type the following:

format -d /dev/rfd0

• To format a diskette without checking for bad tracks, type the following:

format -f

• To format a 360 KB diskette in a 5.25-inch, 1.2 MB diskette drive in the /dev/rfd1 device, type the
following:

format -l -d /dev/rfd1

• To force high-density formatting of a diskette when using the fdformat command, type the following:

fdformat -h

See the format command in the Commands Reference, Volume 2 for the complete syntax.

Checking the integrity of a file system (fsck command)
Use the fsck command to check and interactively repair inconsistent file systems.

It is important to run this command on every file system as part of system initialization. You must be able
to read the device file on which the file system resides (for example, the /dev/hd0 device). Normally, the
file system is consistent, and the fsck command merely reports on the number of files, used blocks, and
free blocks in the file system. If the file system is inconsistent, the fsck command displays information
about the inconsistencies found and prompts you for permission to repair them. The fsck command is
conservative in its repair efforts and tries to avoid actions that might result in the loss of valid data. In
certain cases, however, the fsck command recommends the destruction of a damaged file.

Attention: Always run the fsck command on file systems after a system malfunction. Corrective
actions can result in some loss of data. The default action for each consistency correction is to wait
for the operator to type yes or no. If you do not have write permission for an affected file, the fsck
command will default to a no response.

See the following examples:

• To check all the default file systems, type the following:

fsck

This form of the fsck command asks you for permission before making any changes to a file system.
• To fix minor problems automatically with the default file systems, type the following:

fsck -p

• To check the /dev/hd1 file system , type the following:

fsck /dev/hd1

This checks the unmounted file system located on the /dev/hd1 device.

Note: The fsck command does not make corrections to a mounted file system.

See the fsck command in the Commands Reference, Volume 2 for the complete syntax.

Copying to or from diskettes (flcopy command)
Use the flcopy command to copy a diskette (opened as /dev/rfd0) to a file named floppy created in
the current directory.

The message Change floppy, hit return when done displays as needed. The flcopy command
then copies the floppy file to the diskette.

See the following examples:

Operating system management 43

• To copy /dev/rfd1 to the floppy file in the current directory, type the following:

flcopy -f /dev/rfd1 -r

• To copy the first 100 tracks of the diskette, type the following:

flcopy -f /dev/rfd1 -t 100

See the flcopy command in the Commands Reference, Volume 2 for the complete syntax.

Copying files to tape or disk (cpio -o command)
Use the cpio -o command to read file path names from standard input and copy these files to standard
output, along with path names and status information.

Path names cannot exceed 128 characters. Avoid giving the cpio command path names made up of
many uniquely linked files because it might not have enough memory to keep track of the path names and
would lose linking information.

See the following examples:

• To copy files in the current directory whose names end with .c onto diskette, type the following:

ls *.c | cpio -ov >/dev/rfd0

The -v flag displays the names of each file.
• To copy the current directory and all subdirectories onto diskette, type the following:

find . -print | cpio -ov >/dev/rfd0

This saves the directory tree that starts with the current directory (.) and includes all of its
subdirectories and files.

• To use a shorter command string, type the following:

find . -cpio /dev/rfd0 -print

The -print entry displays the name of each file as it is copied.

See the cpio command in the Commands Reference, Volume 1 for the complete syntax.

Copying files from tape or disk (cpio -i command)
Use the cpio -i command to read from standard input an archive file created by the cpio -o command
and copy from it the files with names that match the Pattern parameter.

These files are copied into the current directory tree. You can list more than one Pattern parameter by
using the file name notation described in the ksh command. The default for the Pattern parameter is an
asterisk (*), which selects all files in the current directory. In an expression such as [a-z], the hyphen (-)
means through, according to the current collating sequence.

Note: The patterns "*.c" and "*.o" must be enclosed in quotation marks to prevent the shell from
treating the asterisk (*) as a pattern-matching character. This is a special case in which the cpio
command itself decodes the pattern-matching characters.

See the following examples:

• To list the files that have been saved onto a diskette with the cpio command, type the following:

cpio -itv </dev/rfd0

This displays the table of contents of the data previously saved onto the /dev/rfd0 file in the cpio
command format. The listing is similar to the long directory listing produced by the ls -l command.

• To list only the file path names, use only the -it flags.

44 AIX Version 7.2: Operating system management

• To copy the files previously saved with the cpio command from a diskette, type the following:

cpio -idmv </dev/rfd0

This copies the files previously saved onto the /dev/rfd0 file by the cpio command back into the file
system (specify the -i flag). The -d flag allows the cpio command to create the appropriate directories
if a directory tree is saved. The -m flag maintains the last modification time in effect when the files are
saved. The -v flag causes the cpio command to display the name of each file as it is copied.

• To copy selected files from diskette, type the following:

cpio -i "*.c" "*.o" </dev/rfd0

This copies the files that end with .c or .o from diskette.

See the cpio command in the Commands Reference, Volume 1 for the complete syntax.

Copying to or from tapes (tcopy command)
Use the tcopy command to copy magnetic tapes.

For example, to copy from one streaming tape to a 9-track tape, type the following:

tcopy /dev/rmt0 /dev/rmt8

See the tcopy command in the Commands Reference, Volume 5 for the complete syntax.

Checking the integrity of a tape (tapechk command)
Use the tapechk command to perform rudimentary consistency checking on an attached streaming tape
device.

Some hardware malfunctions of a streaming tape drive can be detected by simply reading a tape. The
tapechk command provides a way to perform tape reads at the file level.

For example, to check the first three files on a streaming tape device, type the following:

tapechk 3

See the tapechk command in the Commands Reference, Volume 3 for the complete syntax.

Archiving files (tar command)
The archive backup method is used for a copy of one or more files, or an entire database that is saved for
future reference, historical purposes, or for recovery if the original data is damaged or lost.

Usually, an archive is used when that specific data is removed from the system.

Use the tar command to write files to or retrieve files from an archive storage. The tar command looks
for archives on the default device (usually tape), unless you specify another device.

When writing to an archive, the tar command uses a temporary file (the /tmp/tar* file) and maintains
in memory a table of files with several links. You receive an error message if the tar command cannot
create the temporary file or if there is not enough memory available to hold the link tables.

See the following examples:

• To write the file1 and file2 files to a new archive on the default tape drive, type the following:

tar -c file1 file2

• To extract all files in the /tmp directory from the archive file on the /dev/rmt2 tape device and use the
time of extraction as the modification time, type the following:

tar -xm -f/dev/rmt2 /tmp

Operating system management 45

• To display the names of the files in the out.tar disk archive file from the current directory, type the
following:

tar -vtf out.tar

See the tar command in the Commands Reference, Volume 5 for more information and the complete
syntax.

File backup
Use either the backup command or the smit command to create copies of your files on backup media,
such as a magnetic tape or diskette.

Attention: If you attempt to back up a mounted file system, a message displays. The backup
command continues, but inconsistencies in the file system can occur. This situation does not apply
to the root (/) file system.

The copies you created with the backup command or the smit command are in one of the following
backup formats:

• Specific files backed up by name, using the -i flag.
• Entire file system backed up by i-node number, using the -Level and FileSystem parameters.

Note:

– The possibility of data corruption always exists when a file is modified during system backup.
Therefore, make sure that system activity is at a minimum during the system backup procedure.

– If a backup is made to 8-mm tape with the device block size set to 0 (zero), it is not possible to
directly restore data from the tape. If you have done backups with the 0 setting, you can restore data
from them by using special procedures described under the restore command.

Attention: Be sure the flags you specify match the backup media.

Backing up files using the backup command
Use the backup command to create copies of your files on backup media.

For example, to back up selected files in your $HOME directory by name, type the following:

find $HOME -print | backup -i -v

The -i flag prompts the system to read from standard input the names of files to be backed up. The find
command generates a list of files in the user's directory. This list is piped to the backup command as
standard input. The -v flag displays a progress report as each file is copied. The files are backed up on the
default backup device for the local system.

See the following examples:

• To back up the root file system, type the following:

backup -0 -u /

The 0 level and the / tell the system to back up the / (root) file system. The file system is backed
up to the /dev/rfd0 file. The -u flag tells the system to update the current backup level record in
the /etc/dumpdates file.

• To back up all files in the / (root) file system that were modified since the last 0 level backup, type the
following:

backup -1 -u /

See the backup command in Commands Reference, Volume 4 for the complete syntax.

46 AIX Version 7.2: Operating system management

Backing up files using the smit command
Use the smit command to run the backup command, which creates copies of your files on backup
media.

1. At the prompt, type the following:

smit backup

2. Type the path name of the directory on which the file system is normally mounted in the DIRECTORY
full pathname field:

/home/bill

3. In the BACKUP device or FILE fields, enter the output device name, as in the following example for a
raw magnetic tape device:

/dev/rmt0

4. Use the Tab key to toggle the optional REPORT each phase of the backup field if you want error
messages printed to the screen.

5. In a system management environment, use the default for the MAX number of blocks to write on
backup medium field because this field does not apply to tape backups.

6. Press Enter to back up the named directory or file system.
7. Run the restore -t command.

If this command generates an error message, you must repeat the entire backup.

Shutting down the system
The shutdown command is the safest and most thorough way to halt the operating system.

You might want to shut down your system:

• After installing new software or changing the configuration for existing software
• When a hardware problem exists
• When the system is irrevocably hung
• When system performance is degraded
• When the file system is possibly corrupt.

When you designate the appropriate flags, this command notifies users that the system is about to go
down, kills all existing processes, unmounts file systems, and halts the system. See shutdown for more
information.

Review the following information for details on specific shutdown situations:

Shutting down the system without rebooting
There are two ways of shutting down the system with no reboot.

You can use two methods to shut down the system without rebooting: the SMIT fastpath, or the
shutdown command.
Prerequisites

You must have root user authority to shut down the system.

To shut down the system using SMIT:

1. Log in as root.
2. At the command prompt, type:

smit shutdown

To shut down the system using the shutdown command:

Operating system management 47

1. Log in as root.
2. At the command prompt, type:

shutdown

Shutting down the system to single-user mode
In some cases, you might need to shut down the system and enter single-user mode to perform software
maintenance and diagnostics.

1. Type cd / to change to the root directory.
You must be in the root directory to shut down the system to single-user mode to ensure that file
systems are unmounted cleanly.

2. Type shutdown -m.
The system shuts down to single-user mode.

A system prompt displays and you can perform maintenance activities.

Shutting down the system in an emergency
Use the shutdown command to stop the system quickly without notifying other users.

You can use the shutdown command to shut down the system under emergency conditions.

Type shutdown -F. The -F flag instructs the shutdown command to bypass sending messages to other
users and shut down the system as quickly as possible.

System environment
The system environment is primarily the set of variables that define or control certain aspects of process
execution.

They are set or reset each time a shell is started. From the system-management point of view, it is
important to ensure the user is set up with the correct values at log in. Most of these variables are set
during system initialization. Their definitions are read from the /etc/profile file or set by default.

Profiles
The shell uses two types of profile files when you log in to the operating system.

The shell evaluates the commands contained in the files and then runs the commands to set up your
system environment. The files have similar functions except that the /etc/profile file controls profile
variables for all users on a system whereas the .profile file allows you to customize your own
environment.

The following profile and system environment information is provided:

• /etc/profile file
• .profile file
• System environment variable setup
• Changing the Message of the Day
• “Time data manipulation services” on page 49.

/etc/profile file

The first file that the operating system uses at login time is the /etc/profile file. This file controls
system-wide default variables such as:

• Export variables
• File creation mask (umask)
• Terminal types

48 AIX Version 7.2: Operating system management

• Mail messages to indicate when new mail has arrived.

The system administrator configures the profile file for all users on the system. Only the system
administrator can change this file.

.profile File

The second file that the operating system uses at login time is the .profile file. The .profile
file is present in your home ($HOME) directory and enables you to customize your individual working
environment. The .profile file also overrides commands and variables set in the /etc/profile
file. Because the .profile file is hidden, use the ls -a command to list it. Use the .profile file to
control the following defaults:

• Shells to open
• Prompt appearance
• Environment variables (for example, search path variables)
• Keyboard sound

The following example shows a typical .profile file:

PATH=/usr/bin:/etc:/home/bin1:/usr/lpp/tps4.0/user:/home/gsc/bin::
epath=/home/gsc/e3:
export PATH epath
csh

This example has defined two paths (PATH and epath), exported them, and opened a C shell (csh).

You can also use the .profile file (or if it is not present, the .profile file) to determine login
shell variables. You can also customize other shell environments. For example, use the .chsrc
and .kshrc files to tailor a C shell and a Korn shell, respectively, when each type shell is started.

Time data manipulation services
The time functions access and reformat the current system date and time.

You do not need to specify any special flag to the compiler to use the time functions. Include the header
file for these functions in the program. To include a header file, use the following statement:

#include <time.h>

The time services are the following:

Item Description

adjtime Corrects the time to allow synchronization of the
system clock.

ctime, localtime, gmtime, mktime,
difftime, asctime, tzset

Converts date and time to string representation.

getinterval, incinterval, absinterval,
resinc, resabs, alarm, ualarm, getitimer,
setitimer

Manipulates the expiration time of interval timers.

gettimer, settimer, restimer, stime,
time

Gets or sets the current value for the specified
systemwide timer.

gettimerid Allocates a per-process interval timer.

gettimeofday, settimeofday, ftime Gets and sets date and time.

nsleep, usleep, sleep Suspends a current process from running.

reltimerid Releases a previously allocated interval timer.

Operating system management 49

Filesets and hardware needed for 64-bit mode
The kernel runs in 64-bit mode, allowing fast access to large amounts of data and efficient handling of
64-bit data types.

The base operating system 64-bit runtime fileset is bos.64bit. Installing bos.64bit also installs
the /etc/methods/cfg64 file. The /etc/methods/cfg64 file is a command that enables the 64-bit
runtime environment. This command is invoked by the rc.boot script during phase 3 of the boot
process.

Beginning with AIX 6.1, the 32-bit kernel has been deprecated. Installing the AIX 6.1 base operating
system enables the 64-bit mode.

Note: Hardware must be 64-bit capable to run AIX 6.1. The following RS/6000® models use 604e
processors and are not 64-bit capable:

• 7025 F50 Series
• 7026 H50 Series
• 9076 H50 Series
• 7043 150 Series
• 7046 B50 Series

To verify the capability of your processor, run the following command:

/usr/sbin/prtconf -c

The prtconf command returns either 32 or 64, depending on the capability of your processor. If your
system does not have the prtconf command, you can use the bootinfo command with the -y flag.

Hardware required for 64-bit mode
You must have 64-bit hardware to run 64-bit applications.

To determine whether your system has 32-bit or 64-bit hardware architecture:

1. Log in as a root user.
2. At the command line, enter bootinfo -y.

This produces the output of either 32 or 64, depending on whether the hardware architecture is 32-bit or
64-bit. In addition, if you enter lsattr -El proc0 at any version of AIX, the type of processor for your
server displays.

32-bit and 64-bit performance comparisons
In most cases, running 32-bit applications on 64-bit hardware is not a problem, because 64-bit hardware
can run both 64-bit and 32-bit software. However, 32-bit hardware cannot run 64-bit software.

To find out if any performance issues exist for applications that are running on the system, refer to those
application's user guides for their recommended running environment.

Dynamic Processor Deallocation
AIX can detect and automatically stop using a faulty processor.

Starting with machine type 7044 model 270, the hardware of all systems with two or more processors is
able to detect correctable errors, which are gathered by the firmware. These errors are not fatal and, as
long as they remain rare occurrences, can be safely ignored. However, when a pattern of failures seems to
be developing on a specific processor, this pattern might indicate that this component is likely to exhibit
a fatal failure in the near future. This prediction is made by the firmware based on the failure rates and
threshold analysis.

On these systems, AIX implements continuous hardware surveillance and regularly polls the firmware for
hardware errors. When the number of processor errors hits a threshold and the firmware recognizes that

50 AIX Version 7.2: Operating system management

there is a distinct probability that this system component will fail, the firmware returns an error report. In
all cases, the error is logged in the system error log. In addition, on multiprocessor systems, depending on
the type of failure, AIX attempts to stop using the untrustworthy processor and deallocate it. This feature
is called Dynamic Processor Deallocation.

At this point, the processor is also flagged by the firmware for persistent deallocation for subsequent
reboots, until maintenance personnel replaces the processor.

Processor deallocation impacts to applications
Processor deallocation is transparent for the vast majority of applications, including drivers and kernel
extensions. However, you can use the published interfaces to determine whether an application or kernel
extension is running on a multiprocessor machine, find out how many processors there are, and bind
threads to specific processors.

The bindprocessor interface for binding processes or threads to processors uses bind CPU numbers. The
bind CPU numbers are in the range [0..N-1] where N is the total number of CPUs. To avoid breaking
applications or kernel extensions that assume no "holes" in the CPU numbering, AIX always makes it
appear for applications as if it is the "last" (highest numbered) bind CPU to be deallocated. For instance,
on an 8-way SMP, the bind CPU numbers are [0..7]. If one processor is deallocated, the total number of
available CPUs becomes 7, and they are numbered [0..6]. Externally, it looks like CPU 7 has disappeared,
regardless of which physical processor failed.

Note: In the rest of this description, the term CPU is used for the logical entity and the term processor for
the physical entity.

Potentially, applications or kernel extensions that are binding processes or threads could be broken if
AIX silently terminated their bound threads or forcefully moved them to another CPU when one of the
processors needs to be deallocated. Dynamic Processor Deallocation provides programming interfaces
so that such applications and kernel extensions can be notified that a processor deallocation is about
to happen. When these applications and kernel extensions receive notification, they are responsible for
moving their bound threads and associated resources (such as timer request blocks) away from the last
bind CPU ID and for adapting themselves to the new CPU configuration.

After notification, if some threads remain bound to the last bind CPU ID, the deallocation is aborted, the
aborted deallocation is logged in the error log, and AIX continues using the ailing processor. When the
processor ultimately fails, it causes a total system failure. Therefore, it is important that applications or
kernel extensions receive notification of an impending processor deallocation and act on this notice.

Even in the rare cases that the deallocation cannot go through, Dynamic Processor Deallocation still gives
advanced warning to system administrators. By recording the error in the error log, it gives them a chance
to schedule a maintenance operation on the system to replace the ailing component before a global
system failure occurs.

Processor deallocation process
AIX can stop a failing processor by deallocating it.

The typical flow of events for processor deallocation is as follows:

1. The firmware detects that a recoverable error threshold has been reached by one of the processors.
2. The firmware error report is logged in the system error log, and, when AIX is executing on a machine

that supports processor deallocation, AIX starts the deallocation process.
3. AIX notifies non-kernel processes and threads bound to the last bind CPU.
4. AIX waits up to ten minutes for all the bound threads to move away from the last bind CPU. If threads

remain bound, AIX aborts the deallocation.
5. If all processes or threads are unbound from the ailing processor, the previously registered High

Availability Event Handlers (HAEHs) are invoked. An HAEH might return an error that aborts the
deallocation.

6. Unless aborted, the deallocation process ultimately stops the failing processor.

Operating system management 51

If there is a failure at any point of the deallocation, the failure and its cause are logged. The system
administrator can look at the error log, take corrective action (when possible) and restart the deallocation.
For instance, if the deallocation was aborted because an application did not unbind its bound threads, the
system administrator can stop the application, restart the deallocation, and then restart the application.

Enabling Dynamic Processor Deallocation
If your machine supports Dynamic Processor Deallocation, you can use SMIT or system commands to turn
the feature on or off.

Dynamic Processor Deallocation is enabled by default during installation, provided the machine has the
correct hardware and firmware to support it.

SMIT fastpath procedure
1. With root authority, type smit system at the system prompt, then press Enter.
2. In the Systems Environment window, select Change / Show Characteristics of Operating System.
3. Use the SMIT dialogs to complete the task.

To obtain additional information for completing the task, you can select the F1 Help key in the SMIT
dialogs.

Commands procedure
With root authority, you can use the following commands to work with the Dynamic Processor
Deallocation:

• Use the chdev command to change the characteristics of the device specified. For information about
using this command, see chdev in the Commands Reference, Volume 1.

• If the processor deallocation fails for any reason, you can use the ha_star command to restart it after
it has been fixed. For information about using this command, see ha_star in the Commands Reference,
Volume 2.

• Use the errpt command to generate a report of logged errors. For information about using this
command, see errpt in the Commands Reference, Volume 2.

Methods of turning processor deallocation on and off
Dynamic Processor Deallocation can be enabled or disabled by changing the value of the cpuguard
attribute of the ODM object sys0.

The possible values for the attribute are enable and disable.

The default is enabled (the attribute cpuguard has a value of enable). System administrators who
want to disable this feature must use either the system menus, the SMIT System Environments menu, or
the chdev command. (In previous AIX versions, the default was disabled.)

Note: If processor deallocation is turned off (disabled), the errors are still logged. The error log will
contain an error such as CPU_FAILURE_PREDICTED, indicating that AIX was notified of a problem with a
CPU.

Restarting an aborted processor deallocation
Sometimes the processor deallocation fails because an application did not move its bound threads away
from the last logical CPU.

Once this problem has been fixed, either by unbinding (when it is safe to do so) or by stopping the
application, the system administrator can restart the processor deallocation process using the ha_star
command.

The syntax for this command is:

 ha_star -C

where -C is for a CPU predictive failure event.

52 AIX Version 7.2: Operating system management

Processor state considerations
There are several things you should consider about processor states.

Physical processors are represented in the ODM database by objects named procn where n is a decimal
number that represents the physical processor number. Like any other device represented in the ODM
database, processor objects have a state, such as Defined/Available, and attributes.

The state of a proc object is always Available as long as the corresponding processor is present,
regardless of whether it is usable. The state attribute of a proc object indicates if the processor is used
and, if not, the reason. This attribute can have three values:

Item Description

enable The processor is used.

disable The processor has been dynamically deallocated.

faulty The processor was declared defective by the firmware at startup time.

If an ailing processor is successfully deallocated, its state goes from enable to disable. Independently of
AIX, this processor is also flagged in the firmware as defective. Upon reboot, the deallocated processor
will not be available and will have its state set to faulty. The ODM proc object, however, is still marked
Available. You must physically remove the defective CPU from the system board or remove the CPU board
(if possible) for the proc object to change to Defined.

In the following example, processor proc4 is working correctly and is being used by the operating system,
as shown in the following output:

 # lsattr -EH -l proc4
 attribute value description user_settable

 state enable Processor state False
 type PowerPC_RS64-III Processor type False
 #

When processor proc4 gets a predictive failure, it gets deallocated by the operating system, as shown in
the following:

 # lsattr -EH -l proc4
 attribute value description user_settable

 state disable Processor state False
 type PowerPC_RS64-III Processor type False
 #

At the next system restart, processor proc4 is reported by firmware as defective, as shown in the
following:

 # lsattr -EH -l proc4
 attribute value description user_settable

 state faulty Processor state False
 type PowerPC_RS64-III Processor type False
 #

But the status of processor proc4 remains Available, as shown in the following:

 # lsdev -CH -l proc4
 name status location description

 proc4 Available 00-04 Processor
 #

Deallocation error log entries
Three different error log messages are associated with CPU deallocation.

The following are examples.

Operating system management 53

errpt short format - summary
The following is an example of entries displayed by the errpt command (without options):

errpt
IDENTIFIER TIMESTAMP T C RESOURCE_NAME DESCRIPTION
804E987A 1008161399 I O proc4 CPU DEALLOCATED
8470267F 1008161299 T S proc4 CPU DEALLOCATION ABORTED
1B963892 1008160299 P H proc4 CPU FAILURE PREDICTED
#

• If processor deallocation is enabled, a CPU FAILURE PREDICTED message is always followed by
either a CPU DEALLOCATED message or a CPU DEALLOCATION ABORTED message.

• If processor deallocation is not enabled, only the CPU FAILURE PREDICTED message is logged.
Enabling processor deallocation any time after one or more CPU FAILURE PREDICTED messages
have been logged initiates the deallocation process and results in a success or failure error log entry,
as described above, for each processor reported failing.

errpt long format - detailed description
The following is the form of output obtained with errpt -a:

• CPU_FAIL_PREDICTED

Error description: Predictive Processor Failure

This error indicates that the hardware detected that a processor has a high probability to fail in a
near future. It is always logged whether or not processor deallocation is enabled.

DETAIL DATA: Physical processor number, location

Example error log entry - long form

 LABEL: CPU_FAIL_PREDICTED
 IDENTIFIER: 1655419A

 Date/Time: Thu Sep 30 13:42:11
 Sequence Number: 53
 Machine Id: 00002F0E4C00
 Node Id: auntbea
 Class: H
 Type: PEND
 Resource Name: proc25
 Resource Class: processor
 Resource Type: proc_rspc
 Location: 00-25

 Description
 CPU FAILURE PREDICTED

 Probable Causes
 CPU FAILURE

 Failure Causes
 CPU FAILURE

 Recommended Actions
 ENSURE CPU GARD MODE IS ENABLED
 RUN SYSTEM DIAGNOSTICS.

 Detail Data
 PROBLEM DATA
 0144 1000 0000 003A 8E00 9100 1842 1100 1999 0930 4019
 0000 0000 0000 0000 0000
 0000 0000 0000 0000 0000 0000 0000 0000 4942 4D00 5531
 2E31 2D50 312D 4332 0000
 0002 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
 0000 0000 0000 0000 0000
 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
 0000 0000 0000 0000 0000

• CPU_DEALLOC_SUCCESS

54 AIX Version 7.2: Operating system management

Error Description: A processor has been successfully deallocated after detection of a predictive
processor failure. This message is logged when processor deallocation is enabled, and when the
CPU has been successfully deallocated.

DETAIL DATA: Logical CPU number of deallocated processor.

Example: error log entry - long form:

 LABEL: CPU_DEALLOC_SUCCESS
 IDENTIFIER: 804E987A

 Date/Time: Thu Sep 30 13:44:13
 Sequence Number: 63
 Machine Id: 00002F0E4C00
 Node Id: auntbea
 Class: O
 Type: INFO
 Resource Name: proc24

 Description
 CPU DEALLOCATED

 Recommended Actions
 MAINTENANCE IS REQUIRED BECAUSE OF CPU FAILURE

 Detail Data
 LOGICAL DEALLOCATED CPU NUMBER

 0

In this example, proc24 was successfully deallocated and was logical CPU 0 when the failure
occurred.

• CPU_DEALLOC_FAIL

Error Description: A processor deallocation, due to a predictive processor failure, was not
successful. This message is logged when CPU deallocation is enabled, and when the CPU has not
been successfully deallocated.

DETAIL DATA: Reason code, logical CPU number, additional information depending of the type of
failure.

The reason code is a numeric hexadecimal value. The possible reason codes are:

Item Description

2 One or more processes/threads remain bound to the last logical CPU. In this case,
the detailed data give the PIDs of the offending processes.

3 A registered driver or kernel extension returned an error when notified. In this
case, the detailed data field contains the name of the offending driver or kernel
extension (ASCII encoded).

4 Deallocating a processor causes the machine to have less than two available
CPUs. This operating system does not deallocate more than N-2 processors on an
N-way machine to avoid confusing applications or kernel extensions using the total
number of available processors to determine whether they are running on a Uni
Processor (UP) system where it is safe to skip the use of multiprocessor locks, or a
Symmetric Multi Processor (SMP).

200 (0xC8) Processor deallocation is disabled (the ODM attribute cpuguard has a value of
disable). You normally do not see this error unless you start ha_star manually.

Examples: error log entries - long format

Example 1:

 LABEL: CPU_DEALLOC_ABORTED
 IDENTIFIER: 8470267F
 Date/Time: Thu Sep 30 13:41:10

Operating system management 55

 Sequence Number: 50
 Machine Id: 00002F0E4C00
 Node Id: auntbea
 Class: S
 Type: TEMP
 Resource Name: proc26

Description
CPU DEALLOCATION ABORTED

Probable Causes
SOFTWARE PROGRAM

Failure Causes
SOFTWARE PROGRAM

 Recommended Actions
 MAINTENANCE IS REQUIRED BECAUSE OF CPU FAILURE
 SEE USER DOCUMENTATION FOR CPU GARD

Detail Data
DEALLOCATION ABORTED CAUSE
0000 0003
DEALLOCATION ABORTED DATA
6676 6861 6568 3200

In this example, the deallocation for proc26 failed. The reason code 3 means that a kernel
extension returned an error to the kernel notification routine. The DEALLOCATION ABORTED DATA
above spells fvhaeh2, which is the name the extension used when registering with the kernel.

Example 2:

 LABEL: CPU_DEALLOC_ABORTED
 IDENTIFIER: 8470267F
 Date/Time: Thu Sep 30 14:00:22
 Sequence Number: 71
 Machine Id: 00002F0E4C00
 Node Id: auntbea
 Class: S
 Type: TEMP
 Resource Name: proc19

Description
CPU DEALLOCATION ABORTED

Probable Causes
SOFTWARE PROGRAM

Failure Causes
SOFTWARE PROGRAM

 Recommended Actions
 MAINTENANCE IS REQUIRED BECAUSE OF CPU FAILURE;
 SEE USER DOCUMENTATION FOR CPU GARD

Detail Data
DEALLOCATION ABORTED CAUSE
0000 0002
DEALLOCATION ABORTED DATA
0000 0000 0000 4F4A

In this example, the deallocation for proc19 failed. The reason code 2 indicates thread(s) were
bound to the last logical processor and did not unbind after receiving the SIGCPUFAIL signal. The
DEALLOCATION ABORTED DATA shows that these threads belonged to process 0x4F4A.

Options of the ps command (-o THREAD, -o BND) allow you to list all threads or processes along
with the number of the CPU they are bound to, when applicable.

Example 3:

 LABEL: CPU_DEALLOC_ABORTED
 IDENTIFIER: 8470267F

 Date/Time: Thu Sep 30 14:37:34
 Sequence Number: 106
 Machine Id: 00002F0E4C00
 Node Id: auntbea

56 AIX Version 7.2: Operating system management

 Class: S
 Type: TEMP
 Resource Name: proc2

Description
CPU DEALLOCATION ABORTED

Probable Causes
SOFTWARE PROGRAM

Failure Causes
SOFTWARE PROGRAM

 Recommended Actions
 MAINTENANCE IS REQUIRED BECAUSE OF CPU FAILURE
 SEE USER DOCUMENTATION FOR CPU GARD

Detail Data
DEALLOCATION ABORTED CAUSE
0000 0004
DEALLOCATION ABORTED DATA
0000 0000 0000 0000

In this example, the deallocation of proc2 failed because there were two or fewer active processors
at the time of failure (reason code 4).

System environment variable setup
The system environment is primarily the set of variables that define or control certain aspects of process
execution.

They are set or reset each time a shell is started. From the system-management point of view, it is
important to ensure the user is set up with the correct values at login. Most of these variables are set
during system initialization. Their definitions are read from the /etc/profile file or set by default.

Testing the system battery
If your system is losing track of time, the cause might be a depleted or disconnected battery.

1. To determine the status of your system battery, type the following diag command:

diag -B -c

2. When the Diagnostics main menu appears, select the Problem Determination option.
If the battery is disconnected or depleted, a problem menu will be displayed with a service request
number (SRN). Record the SRN on Item 4 of the Problem Summary Form and report the problem to
your hardware service organization.

If your system battery is operational, your system time might have been reset incorrectly because either
the date or setclock command was run incorrectly or unsuccessfully.

Related concepts
Setting up the system clock
The system clock records the time of system events, allows you to schedule system events (such as
running hardware diagnostics at 3:00 a.m.), and tells when you first created or last saved files.

Setting up the system clock
The system clock records the time of system events, allows you to schedule system events (such as
running hardware diagnostics at 3:00 a.m.), and tells when you first created or last saved files.

Use the date command to set your system clock. Use the setclock command to set the time and date
by contacting a time server.

Related tasks
Testing the system battery

Operating system management 57

If your system is losing track of time, the cause might be a depleted or disconnected battery.

date command
The date command displays or sets the date and time.

Enter the following command to determine what your system recognizes as the current date and time:

/usr/bin/date

Attention: Do not change the date when the system is running with more than one user.

The following formats can be used when setting the date with the Date parameter:

• mmddHHMM[YYyy] (default)
• mmddHHMM[yy]

The variables to the Date parameter are defined as follows:

Ite
m

Description

mm Specifies the number of the month.

dd Specifies the number of the day in the month.

HH Specifies the hour in the day (using a 24-hour clock).

MM Specifies the minute number.

YY Specifies the first two digits of a four-digit year.

yy Specifies the last two numbers of the year.

With root authority, you can use the date command to set the current date and time. For example:

date 021714252002

Sets the date to Feb. 17, 2002, and time to 14:25. For more information about the date command, see its
description in Commands Reference, Volume 2.

setclock command
The setclock command displays or sets the time and date by requesting the current time from a time
server on a network.

To display your system's date and time, enter:

/usr/sbin/setclock

The setclock command takes the first response from the time server, converts the calendar clock
reading found there, and shows the local date and time. If no time server responds, or if the network is
not operational, the setclock command displays a message to that effect and leaves the date and time
settings unchanged.

Note: Any host running the inetd daemon can act as a time server.

With root authority, you can use the setclock command to send an Internet TIME service request to a
time server host and sets the local date and time accordingly. For example:

setclock TimeHost

Where TimeHost is the host name or IP address of the time server.

Related information
setclock command

58 AIX Version 7.2: Operating system management

Olson time zone support and setup
Beginning with AIX 6.1, support for time zone values consistent with the Olson database are provided.

The POSIX time zone specification supported in previous AIX releases, does not adequately handle
changes to time zone rules such as daylight saving time. The Olson database maintains a historical record
of time zone rules, so that if the rules change in a specific location, AIX interprets dates and time correctly
both in the present and in the past.

Time zone definitions conforming to the POSIX specification are still supported and recognized by AIX.
AIX checks the TZ environment variable to determine if the environment variable matches an Olson time
zone value. If the TZ environment variable does not match an Olson time zone value, AIX then follows the
POSIX specification rules.

For more details about the TZ environment variable, refer to Environment file.

To set the time zone using Olson defined values, use the following SMIT path: System Environments >
Change / Show Date, Time and Time Zone > Change Time Zone Using System Defined Values.

Message of the day setup
The message of the day is displayed every time a user logs in to the system.

It is a convenient way to communicate information to all users, such as installed software version
numbers or current system news. To change the message of the day, use your favorite editor to edit
the /etc/motd file.

AIX usage metric data (SLM tags) for IBM License Metric Tool
The Software License Metric (SLM) tags generated by the AIX operating system serve as a usage metric
data that is used by the IBM License Metric Tool. The usage metric data records the virtual CPU
(vCPU) information that represents the number of virtual CPUs that are online in the system.

To use the IBM License Metric Tool, you must install the slm.rte fileset that is available in the AIX
operating system expansion pack and the fileset can also be downloaded from the website.

The IBM License Metric Tool generates a vcpu.slmtag Software License Metric Tag (SLMTAG) file that
expands dynamically. The vcpu.slmtag file is located in the /var/opt/slm directory. This file is used
by the BigFix® Agent (BESClient) to incorporate the IBM License Metric Tool Agent software and to send
the file to the IBM License Metric Tool server.

The IBM License Metric Tool can be used with the BigFix Agent (BESClient) that is installed and configured
in the system. The BigFix Agent must be separately obtained from IBM License Metric Tool server and
installed in the client. If the BigFix agent is not installed in the system, the SLMTAG file is created, but data
is not sent to the IBM License Metric Tool server.

You can configure the IBM License Metric Tool with the environment variables that are defined in
the /etc/environment file. At the time of installation, these variables are set to default values. The
following configurable variables can be configured.

Variable Details

SLM_VCPU_PERIOD_HOURS Time period that is specified in hours, for adding a
new metric entry. The default value is 720 hours
(30 days). This value must be a multiple of 4. If
you specify a value that is not a multiple of 4, the
next multiple of 4 is considered by the IBM License
Metric Tool. The minimum value is 4 hours.

SLM_VCPU_MAX_FSIZE Maximum file size that is specified in bytes is the
maximum size (in bytes) for the record file. If the
file size exceeds this limit, the file is archived.
The default value is 2097152 bytes (2 MB). The
minimum value is 10 KB. If you specify a lower

Operating system management 59

Variable Details

value, the IBM License Metric Tool considers it as
10 KB.

SLM_VCPU_COUNT_ARCH Number of archives retained by the tool. The
default value is 4. The minimum value is 1. If you
specify a lower value, the IBM License Metric Tool
considers it as 1.

The usage metric data is displayed in the Resource Utilization page of the IBM License Metric Tool Server
GUI. The usage metric data is displayed next to the host name as the VCPUmetric type and the COUNT
subtype.

Related information
IBM License Metric Tool 9.2.0

AIX Runtime Expert
AIX Runtime Expert provides a simplified set of actions that can be used against a single consolidation for
collecting, applying, and verifying the runtime environment for one or more AIX instances.

There are tools provided by AIX components, such as Reliability Availability Serviceability (RAS), Security,
or Kernel, which allow you to change settings within each component layer in order to tune the operating
system to a particular need or requirement. AIX Runtime Expert enables system-wide configuration by
using an extendable framework to handle the many different configuration methods that currently exist in
AIX.

AIX Runtime Expert executes multiple-component configuration commands as a single action using a
configuration profile. You can use this profile to apply identical system settings across multiple systems.
AIX Runtime Expert provides a simplified alternative for managing the runtime configuration of one or
more systems, but it does not prevent the use of other methods to change system settings.

AIX Runtime Expert concepts
You must have basic knowledge of AIX Runtime Expert before you start using it.

AIX Runtime Expert base capabilities support configuration profile management and application for a
single AIX system. To enable multiple system scalable consumption for a single profile, an LDAP based
profile description can be discovered and consumed by AIX systems as they start or as the system
is directed by administrative operations at the target AIX endpoints. Remote management for AIX
Runtime Expert can only be done with the Network Install Manager (NIM) component. Using existing
NIM functions, you can run AIX Runtime Expert remotely on several stand-alone NIM clients from a NIM
master machine.

AIX Runtime Expert profiles
AIX Runtime Expert profiles are used to set values on a running system, extract values for a running
system, and compare values against a running system or against another profile.

A profile describes one or more runtime configuration controls and their settings for the targeted
functional area. A profile can represent a full set of controls or a subset of controls and their values.
Configuration profiles are standard XML files. Using AIX Runtime Expert you can manage profiles and
apply them on the defined system.

A profile can contain configuration parameters and tuning parameters without any values, like sample
profiles. The purpose of a profile without any parameters is to extract the current systems values from
the specified profile. Profiles containing at least one parameter without any values have the following
limitations:

• Using the artexset command fails with an error.

60 AIX Version 7.2: Operating system management

https://www.ibm.com/docs/en/license-metric-tool

• Using the artexdiff command returns a warning message for each parameter that has no value.

The value of a parameter in a profile can contain the following:

• No value
• A blob value, which is a base64 encoded binary data as an in-line text file. The blob value is used to

replace existing files, like /etc/motd or /etc/hosts.
• A non-blob value, which is a value assigned to system configuration parameters, like an integer or string.

In the /etc/security/artex/samples directory you can view existing sample profiles. The sample
profiles only contain parameter names that are supported by the default settings installed with AIX
Runtime Expert. The parameters in the sample profiles do not have any values. Sample profiles are read
only files. Use the sample profiles as a template to create new configuration profiles. You cannot apply
existing samples to a running system.

The following examples are some of the base configuration commands that can be controlled through
configuration profiles:

• Network configuration

– no
– mktcpip

• Kernel configuration

– ioo
– schedo

• RAS configuration

– alog
• Security configuration

– setsecattr

Example

The following example displays a configuration profile for different catalogs and sub-catalogs with
assigned values for different parameters. You could edit this profile with any XML editor or use the vi
command and change the existing values for the defined parameters.

<?xml version="1.0" encoding="UTF-8" ?>
<Profile origin="get" version="1.0" date="2009-04-25T15:33:37Z">
<Catalog id="vmoParam">
<Parameter name="kernel_heap_psize" value="0" applyType="nextboot" reboot="true" />
<Parameter name="maxfree" value="1088" />
</Catalog>
<Catalog id="noParam">
<SubCat id="tcp_network">
<Parameter name="tcp_recvspace" value="16384" />
<Parameter name="tcp_sendspace" value="16384" />
</SubCat>
<SubCat id="general_network">
<Parameter name="use_sndbufpool" value="1" applyType="nextboot" reboot="true" />
</SubCat>
</Catalog>
<Catalog id="lvmoParam">
<Parameter name="max_vg_pbuf_count" value="0">
<Target class="vg" instance="rootvg" />
</Parameter>
<Parameter name="pv_pbuf_count" value="512">
<Target class="vg" instance="rootvg" />
</Parameter>
</Catalog>

Related tasks
Modifying AIX Runtime Expert profiles

Operating system management 61

AIX Runtime Expert profiles are XML files and can be modified with any XML editor or any text editor.
Creating AIX Runtime Expert profiles
Use existing samples in the /etc/security/artex/samples directory to create a new profile with the
artexget command. The sample profiles are a template for you to create a profile that you can modify
and save into a custom file.
Getting AIX Runtime Expert profile values
Use the artexget command to find information about a profile.
Applying AIX Runtime Expert profiles
To set a system with the configuration and tunable parameters from a profile, apply a profile using the
artexset command.

AIX Runtime Expert catalogs
Catalogs are the mechanism that defines and specifies configuration controls that can be operated on by
AIX Runtime Expert.

Catalogs are provided for the controls that are currently supported by the AIX Runtime Expert.
Catalogs are definition files that map configuration profile values to parameters that run commands and
configuration actions.

AIX Runtime Expert provides you with existing read-only catalogs, located in the /etc/security/
artex/catalogs directory, that identify values that can be modified. Do not modify these catalogs.

Each catalog contains parameters for one component. However, some catalogs can contain parameters
from more than one closely related components. The names of the catalogs describe the components
that are contained in the catalog. The <description> XML element in each catalog provides a
description of the catalog.

AIX Runtime Expert and LDAP
AIX Runtime Expert can retrieve profiles from the Lightweight Directory Access Protocol (LDAP) server.

The AIX Runtime Expert profiles must be stored as ibm-artexProfile objects and have the following
mandatory attributes:

• Ibm-artexProfileName. The AIX Runtime Expert profile name.
• Ibm-artexProfileXMLData. The XML content of the AIX Runtime Expert profile that is stored as an

octetString.

The AIX Runtime Expert schema must be installed on the LDAP server before storing any AIX Runtime
Expert profiles. Setting up an LDAP server for AIX Runtime Expert is similar to setting up an LDAP server
for user authentication. For more information about setting up LDAP, see Setting up an ITDS security
information server.

Setting up an LDAP client for AIX Runtime Expert is similar to setting up an LDAP client for user
authentication. For more information, view the Setting up an LDAP client topic. To set up an LDAP client,
use the mksecldap -c command to correctly configure the secldapclntd daemon. AIX Runtime Expert
relies on the secldapclntd daemon to access the LDAP server. By default, AIX Runtime Expert looks for
profile entries under the identifier DN: ou=artex,cn=AIXDATA. You can customize this DN by updating
the artexbasedn key in the /etc/security/ldap/ldap.cfg secldapclntd configuration file.

Uploading an AIX Runtime Expert profile

To upload an AIX Runtime Expert profile, you can either create an LDAP data interchange formatted (LDIF)
file and use the ldapadd command or use an LDAP administration tool such as Tivoli® Directory Server
Web Administration Tool.

The following is an example of a profile that is saved in LDIF:

dn: ou=artex,cn=AIXDATA
objectClass: organizationalUnit
objectClass: top
ou: artex

62 AIX Version 7.2: Operating system management

dn: ibm-artexProfileName=alogProfile.xml,ou=artex,cn=AIXDATA
objectClass: ibm-artexProfile
objectClass: top
ibm-artexProfileName: alogProfile.xml
ibm-artexProfileXMLData:< file:///etc/security/artex/samples/alogProfile.xml

The following is an example of uploading a profile using the ldapadd command and a sample LDIF file
named sample.ldif:

ldapadd -c -h <ldaphost> -D cn=admin -w <password> -f sample.ldif

Related tasks
Creating AIX Runtime Expert profiles
Use existing samples in the /etc/security/artex/samples directory to create a new profile with the
artexget command. The sample profiles are a template for you to create a profile that you can modify
and save into a custom file.
Related information
IBM Security Directory Server

AIX Runtime Expert and RBAC
Role Based Access Control (RBAC) can be used to give non root users the ability to execute the AIX
Runtime Expert commands.

AIX Runtime Expert authorizations
On installing the artex.base.rte fileset three system authorizations get created that allow different levels
of access to the AIX Runtime Expert functionality:

• The aix.system.config.artex.read authorization allows the execution of the artexlist and
artexmerge commands. The artexget and artexdiff commands are also allowed, but only to
obtain the profile values. The values cannot be captured from the system (that is the artexget
command cannot be run with the –r, –n or –p flags, and artexdiff command can only be run between
two profiles).

• The aix.system.config.artex.get authorization allows all operations allowed by the
artex.system.config.read authorization, and additionally allows the unrestricted execution of the
artexget and artexdiff command.

• The aix.system.config.artex.set authorization allows all operations allowed by the
artex.system.config.get authorization and additionally allows the execution of the artexset
command.

AIX Runtime Expert roles
AIX Runtime Expert does not create any new role however the artex.base.rte filesets add the
aix.system.config.artex authorization to the SysConfig role. Any user with SysConfig role or any
enclosing role (such as the isso role) will be able to run the artexlist, artexmerge, artexdiff,
artexget and artexset commands.

Restrictions
For security reasons, the use of the ARTEX_CATALOG_PATH environment variable is restricted to the root
user. Non root users who are granted the right to execute the AIX Runtime Expert commands through the
RBAC cannot use the ARTEX_CATALOG_PATH environment variable.

Operating system management 63

Administering AIX Runtime Expert
AIX Runtime Expert uses a few simple commands to create profiles, modify profiles, combine profiles,
and apply profiles.

Configuring AIX Runtime Expert
AIX Runtime Expert uses the configuration file /etc/security/artex/config/artex.conf.

An entry in the configuration file consists of the name of a configuration option, followed by one or more
spaces and a value. Blank lines and lines starting with a # sign are ignored.

The following options are supported:

Table 1. Configuration Options

Options Description

ARTEX_CATALOG_PATH Colon-separated list of directories searched
for catalog files. This option is overridden
by the ARTEX_CATALOG_PATH environment
variable. Default path is /etc/security/artex/
catalogs.

ARTEX_PROFILE_PATH Colon-separated list of directories searched for
profile files by the artexlist command if no
directory is specified. This option is overridden
by the ARTEX_PROFILE_PATH environment
variable. Default path is /etc/security/artex/
samples.

DEBUG_LOG_CATEGORY Debug category for the log file. This option can be
repeated to select multiple debug categories.

DEBUG_LOG_LEVEL Debug level for the log file between 0 (no debug
traces) and 3 (most verbose).

MAX_CMDS Maximum number of external commands executed
concurrently. External commands executed by AIX
Runtime Expert are queued so that no more
than MAX_CMDS external commands are executed
simultaneously at any given time. Default is 10.

Creating AIX Runtime Expert profiles
Use existing samples in the /etc/security/artex/samples directory to create a new profile with the
artexget command. The sample profiles are a template for you to create a profile that you can modify
and save into a custom file.

To create a profile with all of the parameters supported by AIX Runtime Expert, complete the following
steps:

1. Configure and tune your system to have the desired settings for a new profile.
2. Go to the samples directory: /etc/security/artex/samples
3. Run the following command to create a new profile named custom_all.xml:

artexget -p all.xml > /directory_for_new_profile/custom_all.xml

Note: The custom_all.xml profile can be used to configure other systems that have a similar current
system configuration.

To create a profile for a specific component, such as network options, complete the following steps:

1. Configure and tune your system to have the desired settings for a new profile.
2. Go to the samples directory: /etc/security/artex/samples.

64 AIX Version 7.2: Operating system management

3. Create a new profile named custom_no.xml from the existing sample profile, noProfile.xml, by
running the following command:

artexget -p noProfile.xml > /directory_for_new_profile/custom_no.xml

The newly created profiles can be customized by changing or removing the values of the parameters using
an XML editor or any text editor.

The custom profiles can be uploaded to LDAP server to use from multiple AIX systems. To upload the
profiles to LDAP server, use the tools provided by LDAP.

Related concepts
AIX Runtime Expert and LDAP
AIX Runtime Expert can retrieve profiles from the Lightweight Directory Access Protocol (LDAP) server.
AIX Runtime Expert profiles
AIX Runtime Expert profiles are used to set values on a running system, extract values for a running
system, and compare values against a running system or against another profile.
Related tasks
Getting AIX Runtime Expert profile values
Use the artexget command to find information about a profile.
Applying AIX Runtime Expert profiles
To set a system with the configuration and tunable parameters from a profile, apply a profile using the
artexset command.
Related information
artexget command

Modifying AIX Runtime Expert profiles
AIX Runtime Expert profiles are XML files and can be modified with any XML editor or any text editor.

User-created profiles using artexget command can be customized by changing the values of the
parameters or by removing some of the parameters that are not required to modify or monitor the profile.

To modify AIX Runtime Expertprofiles, complete the following steps:

1. From the directory where custom_all.xml is located, run the following commands to save a copy of
the profile:

cp custom_all.xml custom_all_backup.xml

2. From the directory where custom_all.xml is located, run the following command to edit the profile:

vi custom_all.xml

Note: You can use any XML editor or text editor.
3. Modify the values of the parameters or remove the parameters that are not required to change or

monitor the profile.
4. Run the following command to verify that the profile changes have been saved correctly by comparing

them against the current system settings:

artexdiff -c -r custom_all.xml custom_all_backup.xml

The artexdiff command displays the parameters that were modified by the editor. The
<FirstValue> displays the value of the profile, and the <SecondValue> displays the value of the
current system.

Related concepts
AIX Runtime Expert profiles

Operating system management 65

AIX Runtime Expert profiles are used to set values on a running system, extract values for a running
system, and compare values against a running system or against another profile.
Related tasks
Getting AIX Runtime Expert profile values
Use the artexget command to find information about a profile.
Applying AIX Runtime Expert profiles
To set a system with the configuration and tunable parameters from a profile, apply a profile using the
artexset command.
Related information
artexdiff command

Combining AIX Runtime Expert profiles
A profile can represent a full set of controls or any subset of controls. Another useful way to modify
profiles is to combine profiles that represent a subset of controls using the artxmerge command.

You can use the artexmerge command to combine one or more profiles into a single profile.

To combine profiles complete, the following steps:

1. From the directory where the profiles are stored run the following command:

artexmerge profile_name1.xml profile_name2.xml > new_profile_name.xml

2. Run the following command to view the profile and verify that it is a valid profile:

 artexget new_profile_name.xml

Note: If the profiles you are combining have duplicate parameters, the process of combining the
profiles will fail. Alternatively, if you use the -f flag, then the parameter values from the latest profile
are used.

Related information
artexmerge command

Finding AIX Runtime Expert profiles
Use the artexlist command to find profiles in a given path and from an LDAP server.

To find profiles, complete the following steps:

1. If the profile is on the local system, run the following command:

artexlist

2. If the profile is located on an LDAP server, run the following command:

artexlist -l

By default, the command lists the profiles in the /etc/security/artex/samples directory. To
override the default path with an environment variable, set the ARTEX_PROFILE_PATH to one or more
semicolon delimited paths, or a path that can be passed as an argument.
Related information
artexlist command

Getting AIX Runtime Expert profile values
Use the artexget command to find information about a profile.

Using a profile, you can display the values from the profile or from the system in different formats (XML,
CSV, or text) with different filters, such as parameters that need a reboot to take effect and parameters
that need some services to be stopped and restarted.

Getting values from the system is useful in the following situations:

66 AIX Version 7.2: Operating system management

To take a snapshot of a system
When a system is configured correctly, you can save the configuration of the system by taking a
snapshot. You can use this snapshot at a later date, if any of the parameters are changed and you do
not remember which parameters were changed. The snapshot profile can be used to bring the system
back to the desired configuration.

To clone the configuration of a system for use on other systems
After a system is configured and tuned in an environment, you can extract the system settings into an
AIX Runtime Expert profile and apply the profile on other systems.

To debug a problem
When a problem is found on a production system, you can use a profile to set up the same system
settings on a test system and than debug the problems on the test system.

To get information about a profile, complete the following steps:

1. Go to the directory where the profile you want to get information about is located.
2. To get information about the profile run the following command:

artexget name_of_profile.xml

Limitation: When a system has many users defined, the AIX Runtime Expert commands artexget,
artexset, and artexdiff applied to profiles such as, chuserProfile.xml, coreProfile.xml, or all.xml
profiles, requires more time to complete than usual.

Related concepts
AIX Runtime Expert profiles
AIX Runtime Expert profiles are used to set values on a running system, extract values for a running
system, and compare values against a running system or against another profile.
Related tasks
Creating AIX Runtime Expert profiles
Use existing samples in the /etc/security/artex/samples directory to create a new profile with the
artexget command. The sample profiles are a template for you to create a profile that you can modify
and save into a custom file.
Modifying AIX Runtime Expert profiles
AIX Runtime Expert profiles are XML files and can be modified with any XML editor or any text editor.
Related information
artexget command

Applying AIX Runtime Expert profiles
To set a system with the configuration and tunable parameters from a profile, apply a profile using the
artexset command.

To apply a user-created profile, complete the following steps:

1. Go to the directory where the profile you want to apply is stored.
2. To apply the profile to the system, run the following command:

artexset -c name_of_profile.xml

3. Optional: If you want to apply a profile every time the system restarts to maintain a consistent
configuration, run the following command:

artexset -b name_of_profile.xml

Note: The restricted parameters are supported as read-only parameters. Therefore, the values
of these parameters can be retrieved with theartexget command, but cannot be set with the
artexset command.

Related concepts
AIX Runtime Expert profiles

Operating system management 67

AIX Runtime Expert profiles are used to set values on a running system, extract values for a running
system, and compare values against a running system or against another profile.
Related tasks
Creating AIX Runtime Expert profiles
Use existing samples in the /etc/security/artex/samples directory to create a new profile with the
artexget command. The sample profiles are a template for you to create a profile that you can modify
and save into a custom file.
Modifying AIX Runtime Expert profiles
AIX Runtime Expert profiles are XML files and can be modified with any XML editor or any text editor.
Related information
artexset command

Rolling back AIX Runtime Expert profiles
Use the artexset –u command to reset the configuration settings to the previous configuration setting
of a system. You can apply the system settings that were being used before the profile was applied.

You cannot use the rollback command if you have not changed the system settings during your current
session.

Rolling back is not considered a re-imaging of an operating system. When you use the rollback
command, you are not deleting or creating resources, you are not deleting or creating resources but
instead reverting the runtime configuration values to the system's previous settings. With the rollback
command you cannot roll back to settings from a particular time or date. You can only roll back to the
systems previous settings before you made a change.

The rollback command can be used in the following cases:

• Testing configuration changes to a system. If the new configuration works poorly, you can quickly revert
to a previously trusted configuration.

• Debugging a system. If a system starts running poorly, a roll back could confirm if configuration changes
have played a part in a newly detected problem.

• Implementing a new profile in order to satisfy some special exception situation. For example, a
specified action only occurs once a month on the system, and after it has been applied to your system
you want to restore the system to its previous configuration.

To roll back to the previous system settings, complete the following steps:

1. To roll back a profile, run the following command:

artexset -u

2. To verify that the roll back completed correctly, run the following command to compare system
settings:

artexdiff -f txt -r -profile_name.xml

Note: The profile_name.xml is the name of the latest applied profile to the system.

The differences between the system and the profile are displayed.

Related information
artexget command
artexlist command

Comparing AIX Runtime Expert profiles
Use the artexdiff command to compare two profiles or a profile values with system values.

To compare the profiles for two different systems complete the following steps:

1. Run the following command from system 1:

68 AIX Version 7.2: Operating system management

artexget -p all.xml > all_system1.xml

2. Run the following command from system 2:

artexget -p all.xml > all_system2.xml

To verify any configuration parameters are changed on a system after a period of time, for example, if you
go on vacation and want to verify any changes while you were gone, run the following commands:.

• After you return from vacation, run the following command:

$ artexget -p all.xml > all_before_vacation.xml

• To view any configuration changes that occurred during your vacation, run the following command:

$ artexdiff -c -p all_before_vacation.xml

Related information
artexget command
artexlist command

Writing AIX Runtime Expert profiles
You can expand the scope of AIX Runtime Expert by adding catalogs and profiles that the program can
use. You must be familiar with AIX Runtime Expert concepts before attempting to write new catalogs.

The smallest piece of information handled by AIX Runtime Expert is a parameter. Parameters can
be tunable, configuration files, environment variables, properties of objects such as users, devices or
subsystems (such objects are called targets in the AIX Runtime Expert context).

Parameters are aggregated into profiles according to the domain of activity (such as user, tcpi). Profiles
are the intended means of interaction between the users and the AIX Runtime Expert framework. Profiles
are input to the artexget command that retrieve the parameter value on the system and return a profile.
Profiles (including values) are input to the artexset command that set the parameters to the value read
into the profile.

Concepts in writing AIX Runtime Expert profile
AIX Runtime Expert profiles are XML files that contain a list of configuration parameters and optionally the
parameter values and the usage flags.

Profiles can be located on the system being tuned when using the AIX Runtime Expert commands directly
on the command line.

Profile locations
AIX Runtime Expert sample profiles are located in the directory /etc/security/artex/samples.

When you are writing a new catalog for the AIX Runtime Expert to support, it is recommended that
you also write a sample profile that can be used as an entry for the artexget command. A sample
profile is a read-only profile with no values assigned to the parameters. Existing sample profiles are
located in the /etc/security/artex/samples directory. By default, the artexlist command lists
only the profiles located in the default directory, but the default directory can be modified by setting the
ARTEX_PROFILE_PATH environment variable. Multiple directories can be specified in this environment
variable by using the : separator.

All profiles from the samples directory are merged during the installation of the artex.base.samples
fileset, to form the default.xml profile that is used by the snap command. A profile that should not
be part of the default.xml profile should not be delivered in the samples directory. Example of profiles
that should not be included in the default.xml profile are the profiles that have the potential to include
thousands of parameters (for example if it uses users as a target class) and profiles that should be run
only on specific systems (for instance the vios attributes profile).

Operating system management 69

Profile naming
AIX Runtime Expert profiles are named based on the commands.

Profiles are usually built around a single command or a set of commands. Profiles may include several
catalogs if the catalogs are closely related. The convention is to name the files based on a command
say, commandProfile.xml for the sample profile and commandParam.xml for the catalog, but this is not
mandatory. Only the.xml file extension is required.

Profile process
Discusses the process to write a new AIX Runtime Expert profile.

The following steps are required to be performed when writing a new AIX Runtime Expert profile:

1. Make a list of the parameters you want in the profile.
2. Create an <Parameter name=“...”> element for each of the parameters, setting the name attribute to

the name used in the catalog file <ParameterDef> element.
3. Group all parameters defined in a same catalog file inside the same <Catalog id=“...”> element,

setting the id attribute to the same id used in the catalog file <Catalog> element.
4. For each <Parameter> element, do the following:

a. If the parameter is defined with the reboot=true in the catalog file, add the reboot=true and
applyType=nextboot attributes.

b. If the parameter must be only captured and not set, add the readOnly=true attribute.
c. If the parameter is defined with a non-empty targetClass attribute in the catalog file, do the

following:

i) If target discovery is desired for this parameter, then define a single <Parameter> element for
this parameter and use the special <Target class=“” instance=“” > target for this element.

ii) If specific targets need to be defined for this parameter, then define one <Parameter> element
for each target. Under each <Parameter> element, define the appropriate <Target class=“...”
instance=“...” /> elements to specify the target completely.

5. Test the profile by running the artexget –r command.

AIX Runtime Expert profile elements

<Profile> element
The <Profile> element is the root element for all profile files.

Syntax
The following attributes are supported:

Table 2. Attributes

Attribute Required Type Description

origin no string Origin of the profile.

date no dateTime Date of creation or
last modification of the
profile. Format is YYYY-
MM-DDThh:mm:ss.

readOnly no boolean Tells whether this profile
can be used in a set
operation. Default value
isfalse.

version no string Version number of the
profile.

70 AIX Version 7.2: Operating system management

The following child elements are supported:

Table 3. Child Elements

Child element Required Number Description

<ShortDescription> no 0 - 1 Short textual description
of the catalog.

<Description> no 0 – 1 Long textual description
of the catalog.

<Comments> no 0 – 1 User-provided
comments.

<Catalog> no 0 – any Catalog required to
handle the operations
on a profile.

Attributes
The origin attribute

The origin attribute is an informational attribute that can be assigned the following values:

• When creating a sample profile, the origin attribute must be set to reference.
• When a profile is created by using the artexget command, the origin attribute is automatically set to
get.

Child elements
The <Comments> element is an optional string reserved for other purposes. This element must not be
used when a profile is created manually, and it not used by the base AIX Runtime Expert commands.

Examples
1. An empty sample profile would look like this:

<?xml version="1.0" encoding="UTF-8"?>
<Profile origin="reference" version="2.0.0" readOnly="true">
</Profile>

2. The artexget -r /etc/security/artex/samples/smtctmProfile.xml command outputs a
profile similar to following example:

<?xml version="1.0" encoding="UTF-8"?>
<Profile origin="get" version="2.0.1" date="2010-09-29T07:50:56Z">
 <Catalog id="smtctlParam" version="2.0">
 <Parameter name="enableSMT" value="1"/>
 </Catalog>
</Profile>

Related information
The <Catalog> element

The <Description> and <ShortDescription> element.

Operating system management 71

<Description> and <ShortDescription> elements
The <Description> and the <ShortDescription> elements can be used to provide a textual description for
profiles and parameters.

Syntax
The parent element of the <ShortDescription> element is:

• <Profile> element

The parent element of the <Description> element can be:

• <Profile> element
• <Parameter> element

Both the <Description> and <ShortDescription> elements have the same format. The text contained by
the <Description> element is the string content of the XML tag.

Usage
Descriptions in profile files are not currently used by the AIX Runtime Expert framework. AIX Runtime
Expert commands ignore any comments included in the input profile.

Examples
Following is an example of the <Description> and <ShortDescription> elements:

<ShortDescription>
 Short summary of field contents.
</ShortDescription>
<Description>
This text field can be used to display in full detail the use of the parent element.
</Description>

Related information
The <Profile> element.

The <Parameter> element.

<Catalog> element
The <Catalog> element indicates the name of the catalog file that contains the definitions for the child
<Parameter> elements.

Syntax
Parent element: <Profile>

The following attributes are supported:

Table 4. Attributes

Attribute Required Type Description

id yes string Specifies the catalog id.
This name should be
unique on the system.

version no string Specifies the version of
the catalog used to build
this profile.

The following child elements are supported:

72 AIX Version 7.2: Operating system management

Table 5. Child elements

Child element Required Number Description

<Parameter> no 0 – any Parameter included in
the catalog.

<SubCat> no 0 – any Subcategory included in
the catalog.

<Seed> no 0 – any Seed included in the
catalog.

Attributes
id attribute

The id attribute must be set to the name of the catalog that defines the parameters listed under the
<Catalog> element. The id attribute is the base name of the catalog file on the disk, with the .xml
extension removed. For example, a profile will use the <Catalog id=“commandParam”> element to
reference the commandParam.xml catalog file.

By default, the catalog files are searched under the/etc/security/artex/catalogs directory.
However it is possible, for the root user only, to search other directories by setting the
ARTEX_CATALOG_PATH environment variable. Multiple directories can be specified in this
environment variable using the : separator.

version attribute

The version attribute is written as MM.mm where MM is the major number and mm is the minor
number.

The version attribute must match the version of the referenced catalog file (see The <Catalog>
element in the section Writing AIX Runtime Expert catalogs). If an AIX Runtime Expert command is
run on a profile that references a catalog with the incorrect version, the following warning message is
displayed:

0590-218 Catalog version differs from the one referenced in profile
Local catalog version is '2.1'. Version used to build profile was '2.0'

Usage
The <Catalog> element identifies the catalog file that contains the definition of the listed seeds and
parameters. All seeds and parameter elements in a profile must be located in the appropriate <Catalog>
element.

A profile may reference several catalogs. For example, the default.xml profile is built during the
installation of the artex.base.sample fileset by merging a select set of other sample profiles.

Examples
The security attributes profile secattrProfile.xml uses three catalogs, each catalog handling, one of
the security tables:

<Profile origin="reference" readOnly="true" version="2.0.0">
 <Catalog id="privcmdParam" version="2.0"
 <Parameter name="privatecommands" />
 </Catalog>
 <Catalog id="privdevParam" version="2.0">
 <Parameter name="privatedevices"/>
 </Catalog>
 <Catalog id="privfileParam" version="2.0">
 <Parameter name="privatefiles" />
 </Catalog>
</Profile>

Operating system management 73

Related information
The <Catalog> element (in catalog files).

<SubCat> element
The <SubCat> element provides a means to create logical subcategories under a <Catalog> element.

Syntax
Parent element: <Catalog>, <SubCat>

The following attributes are supported:

Table 6. Attributes

Attribute Required Type Description

id yes string Specifies the
subcategory name.
This name should be
unique within a same
<Catalog> element.

The following child elements are supported

Table 7. Child Elements

Child element Required Number Description

<Parameter> no 0 – any Contains a parameter
name.

<SubCat> no 0 – any Nested subcategory

Attributes
The id attribute uniquely identifies a subcategory within a catalog. A profile may include several
subcategories with the same id, provided that these are not used under the same <Catalog> element.

Child elements
A <SubCat> element may have another <SubCat> as a child element. There is no limit to the number of
nested subcategories you can define.

Usage
Subcategories are only included for readability. They do not affect the way parameters are handled.

Examples
The noProfile.xml profile includes several subcategories. Following is an example:

<Profile origin="reference" readOnly="true" version="2.0.0">
 <Catalog id="noParam" version="2.0">
 <SubCat id="general_network"
 <Parameter name="fasttimo"/>
 <Parameter name="nbc_limit"/>
 </SubCat>
 <SubCat id="tcp_network">
 <Parameter name="clean_partial_conns"/>
 <Parameter name="delayack"/>
 </SubCat>
 <SubCat id="restricted">
 <Parameter name="extendednetstats" readOnly="true"/>
 <Parameter name="inet_stack_size" readOnly="true"/>

74 AIX Version 7.2: Operating system management

 </SubCat>
 </Catalog>
</Profile>

Related information
The <Parameter> element.

<Parameter> element
The <Parameter> element defines a configuration parameter.

Syntax
The following attributes are supported:

Table 8. Attributes

Attribute Required Type Description

name yes string Specifies the name of
the parameter. This
name must be unique
within a catalog.

value no string Value of the parameter,
if it is defined.

applyType no string Specifies whether the
runtime or next boot
value of the parameter
must be retrieved or
set if no flag is
specified. Default value
is runtime.

reboot no boolean When true, indicates
that a reboot is required
before a value change is
effective. Default value
is false.

readOnly no boolean Specifies whether the
value of the parameter
cannot be set. Default:
value is false.

disruptive no boolean Specifies whether the
method used to set
the parameter implies
disruptive constraints.
Default value is false.

setDiscover no boolean Specifies whether the
set method must be
set to the value for all
discovered instances of
a target class. Default
value is false.

The following child elements are supported

Operating system management 75

Table 9. Child Elements

Child element Required Number Description

<Value> no 0 - 1 Value of the parameter.

<Target> no 0 - any Target to which the
parameter applies.

<Description> no 0 - 1 Description of the
parameter.

<Property> no 0 - any Property of the
parameter.

Attributes
Table 10. Attributes

Attribute Description

name The name of the parameter is the only required
attribute of the <Parameter> element. Along
with the catalog name specified in the parent
<Catalog> element, the parameter name uniquely
identifies a parameter definition in the catalog file.

value The value of the parameter can be specified either
as an attribute or as a child element.

applyType The applyType attribute can take the values
runtime (the default value) or nextboot. This
attribute determines the command that is used to
handle the parameter.

For set operations, applyType=runtime indicates
that the <Set type=“permanent”> command
from the catalog file should be used to set the
parameter. The applyType=nextboot indicates
that the <Set type=“nextboot”> command should
be used instead.

For get operations, when the –p flag is used,
applyType=runtime indicates that the <Get
type=“current”> command from the catalog file
must be used to obtain the parameter. The
<applyType>=nextboot indicates that the <Get
type=“nextboot”> command should be used
instead.

The applyType attribute must be set to nextboot
if the reboot attribute is set to true.

76 AIX Version 7.2: Operating system management

Table 10. Attributes (continued)

Attribute Description

reboot This attribute has a default value of false. When set
to true, it means that the system must be rebooted
before any change to the parameter is effective.
This attribute must match the reboot attribute
defined in the corresponding <ParameterDef>
element of the catalog file.

When this attribute is set to true, the applyType
attribute must be set to nextboot.

When you set a parameter that has the reboot
attribute set, a warning is displayed to the user,
stating that a reboot operation is needed:

0590-206 A manual post-operation is
required for the changes to take effect
Please reboot the system

Only set the reboot attribute to true when a change
to the parameter value will not be effective until
after the next reboot.

readOnly This attribute indicates that the value of the
parameter can be read by the artexget
command, but that it will not be set using the
artexset command, nor taken into account in a
comparison operation with live values by using the
artexdiff commands. The default value is false.

A few situations that can warrant setting the
readOnly attribute to true follow:

• The parameter is static and its value cannot be
modified (e.g. the memory_frames parameter in
the vmo command).

• Access to the parameter is restricted and it
is not recommended for the user to modify
it in automatic procedures. In this case, the
set configuration methods should be defined
for this parameter in the catalog file, but a
system administrator must remove manually the
readOnly attribute from the profile to be able to
set the parameter.

setDiscover The setDiscover attribute, when set to true
indicates that, when the artexset command is
called with the –d flag, the discover command
must be called to discover all instances of the
target, and set all to the value stored in the profile.

The setDiscover default value is false. A value of
true only makes sense if the parameter has target
classes defined in the catalog file.

Do not specify this attribute when creating a
sample profile. Advanced users must add this
attribute manually when deemed necessary.

Operating system management 77

Other attributes

The type and disruptive attributes are informative attributes that are automatically set by the artextget
command when it is called with the -i flag. Do not include these attributes when you are creating a sample
profile.

Examples
1. The following example is an excerpt from the vmoProfile.xml sample catalog, showcasing the use

of various optional attributes:

<Profile origin="reference" readOnly="true" version="2.0.0">
 <Catalog id="vmoParam" version="2.1">
 <Parameter name="nokilluid"/>
 <Parameter name="memory_frames" readOnly="true"/>
 <Parameter name="kernel_heap_psize" reboot="true" applyType="nextboot"/>
 </Catalog>
</Profile>

2. If you run the artexget –r command on the profile from example 1 the following profile is
displayed:

<Profile origin="get" version="2.0.1" date="2011-03-24T13:41:01Z">
 <Catalog id="vmoParam" version="2.1">
 <Parameter name="nokilluid" value="0"/>
 <Parameter name="memory_frames" value="393216" readOnly="true"/>
 <Parameter name="kernel_heap_psize" value="4096" applyType="nextboot" reboot="true"/>
 </Catalog>
</Profile>

Related information
The Parameter values topic.

The <ParameterDef> element.

Parameter values
The value of a parameter can be set in a profile either as an attribute if they are short enough, or as a child
element of the <Parameter> element.

Use
When writing a sample profile, no value must be assigned to the parameters. The value of a parameter, if
it exists, is automatically included in the profile obtained by running an artexget command.

The runtime and nextboot values
The concept of runtime and nextboot values is an important part of the AIX Runtime Expert
framework.

The runtime value of the parameter is its current value retrieved on the system at the time the artexget
command is run. The nextboot value is the value the parameter will have after the next reboot of the
system.

For example, the parameter type_of_dump in the profile sysdumpdevProfile.xml. The current
(runtime) value of this parameter may be traditional or firmware-assisted. If this value is
changed (using the artexset command or directly by using the sysdumpdev command), it will not be
effective until the next reboot. The nextboot value of this parameter will then be the modified value.

<Parameter name="type_of_dump" applyType="nextboot" reboot="true" />

78 AIX Version 7.2: Operating system management

Example
The following example shows a parameter with the value specified as an attribute, and another parameter
with the value specified as a child element:

<Profile origin="get" version="2.0.1" date="2010-09-28T12:30:03Z">
<Catalog id="login.cfgParam" version="2.0">
<Parameter name="shells">
<Value>
/bin/sh,/bin/bsh,/bin/csh,/bin/ksh,/bin/tsh,
/bin/ksh93,/usr/bin/sh,/usr/bin/bsh,/usr/bin/csh,
/usr/bin/ksh,/usr/bin/tsh,/usr/bin/ksh93,
/usr/bin/rksh,/usr/bin/rksh93,
/usr/sbin/uucp/uucico,/usr/sbin/sliplogin,
/usr/sbin/snappd
</Value>
</Parameter>
<Parameter name="maxlogins" value="32767"/>
</Catalog>
</Profile>

<Property> element
The <Property> element assigns a value to a parameter property.

Syntax
Parent element: <Parameter>

The following attributes are supported:

Table 11. Attributes

Attribute Required Type Description

name yes string Specifies the name of
the property.

value no string Specifies the value of
the property.

Usage
The <Property> element assigns a value to the property name of the parent element. This value is used
when the %p[name] sequence is expanded during command-line generation.

The <Property> element is generally not added manually to profiles. The element is inserted
automatically in the output profile when the artexget –r and artexget –n commands are run, based
on the command defined under the corresponding <Property> element of the catalog file.

Example
The following example sets the nodeId property for the netaddr parameter. The property value is
captured by the artexget –r command and is the output of the uname –f command:

<Parameter name="netaddr" value="172.16.128.13">
 <Target class="device" instance="en0"/>
 <Property name="nodeId" value="8000108390E00009"/>
</Parameter>

Operating system management 79

<Seed> element
The <Seed> element defines a seed that is expanded into one or more <ParameterDef> elements during
the <Get> operation.

Syntax
Parent element: <Catalog>

The following attribute is supported:

Table 12. Attribute

Attribute Required Type Description

name yes string Specifies the name of
the seed element that
matches a SeedDef
element in the catalog
file.

The following child elements are supported:

Table 13. Child elements

Child element Required Number Description

<Parameter> no 0 – any Filters discovered
parameters based on
the names of the
parameters.

<Target> no 0 – any Filters discovered
parameters based on
their targets.

Usage
The <Seed> element discovers parameters dynamically during a <Get> operation.

When the artexget command is issued, each <Seed> element in the input profile is expanded into one
or more <Parameter> elements. The profiles are expanded based on the rules defined in the matching
<SeedDef> element of the catalog file. This process is called parameter discovery. After the parameter
discovery process is completed, the artexget command proceeds as usual with the expanded profile.

The optional <Parameter> and <Target> child elements are used to filter the discovered parameters.
Discovered parameters that do not match the criteria defined in the <Parameter> subelement, are
discarded. Also, those parameters that apply to targets that do not match the criteria defined in the
<Target> subelement, are discarded.

Examples
This example uses the devSeed catalog to define a seed that can be used to discover all attributes of all
devices:

<?xml version="1.0" encoding="UTF-8"?>
<Catalog id="devSeed" version="3.0">
 <SeedDef name="devAttr">
 <Discover>
 <Command>
 /usr/sbin/lsdev -F 'name class subclass type' |
 while read DEV CLASS SUBCLASS TYPE
 do
 CAT=devParam.$CLASS.$SUBCLASS.$TYPE
 /usr/sbin/lsattr -F attribute -l $DEV |

80 AIX Version 7.2: Operating system management

 while read PAR
 do
 echo "device=$DEV $CAT $PAR"
 done
 done
 </Command>
 Mask target="1" catalog="2" name="3">(.*) (.*) (.*)</Mask>
 </Discover>
 </SeedDef>
</Catalog>

The following profile can be used to discover all the supported attributes of all the supported devices:

<?xml version="1.0" encoding="UTF-8"?>
<Profile>
 <Catalog id="devSeed" version="3.0">
 <Seed name="devAttr"/>
 </Catalog>
</Profile>

2. Using the same catalog, a <Target> filter can be used to discover all the supported attributes of all
Ethernet adapters:

<?xml version="1.0" encoding="UTF-8"?>
<Profile>
 <Catalog id="devSeed" version="3.0">
 <Seed name="devAttr">
 <Target class="device" match="^en[0-9]+$"/>
 </Seed>
 </Catalog>
</Profile>

3. A <Parameter> filter can be added to capture only the netaddr, netaddr6, alias, and alias6 attributes
of all Ethernet adapters:

<?xml version="1.0" encoding="UTF-8"?>
<Profile>
 <Catalog id="devSeed" version="3.0">
 <Seed name="devattr">
 <Parameter match="^(netaddr|alias)6?$"/>
 <Target class="device" match="^en[0-9]+$"/>
 </Seed>
 </Catalog>
</Profile>

<Target> element
A <Target> element defines the instance of a target class to which the parameter applies.

Syntax
Parent element: <Parameter>

Multiple occurrences of the same parameter from the same catalogs are allowed if, and only if, they apply
to different instances of their target.

The following attributes are supported:

Table 14. Attributes

Attribute Required Type Description

class yes string Specifies the name of
the target class.

instance no* string Specifies the name of
the instance of a class.

Operating system management 81

Table 14. Attributes (continued)

Attribute Required Type Description

match no* string Specifies the regular
expression as applied to
the discovered instance
names.

* One and only one of the instance and match attributes must be specified.

Use
Some parameters do not apply to the system as a whole, but to a specific object. An example is the home
directory of a user as specified in the chuserProfile.xml profile; this parameter applies to a specific
user (root, guest) in a specific loadable module (files, LDAP). In this example, the user and the module are
two target classes. The home parameter applies to specific instances of these target class. For example,
the guest instance of the user class, and the files instance of the module class.

If the class and instance attributes are both set to the empty string, then a discovery is performed for
this parameter when the artexget command is run on such a profile, the discovery method declared
in the corresponding catalog file is executed, and a parameter is created in the output profile for each
discovered instance of the parameter. See example 1.

If the class and instance attributes are both specified, then the target is fully qualified and the parameter
only applies to the specified instance of the target class. See example 2.

If the class and match attributes are both specified, a discovery is performed as above, but only
target instances with a name that matches the regular expression specified in the match attribute are
discovered. See example 3.

When writing a sample profile, the class and instance attributes must be left empty. This means that,
when encountering the empty target class, the artexget command will discover the list of the instances
of that target class (all the users or the subsystems on the system) before retrieving the values.

Running the artexset command on an undiscovered target class displays a warning:

0590-216 Some parameters in the profile require a target discovery and will be ignored

Examples
1. An example of a profile with targets before discovery is the chuserProfile.xml profile that defines

the home directory of a user. The following example shows a sample profile:

<Profile version="2.0.0" origin="reference" readOnly="true">
 <Catalog id="chuserParam" version="2.0">
 <Parameter name="home">
 <Target class="" instance=""/>
 </Parameter>
 </Catalog>
</Profile>

2. After discovery, the chuserProfile.xml profile would contain a copy of the home parameter for
each discovered user in each of the discovered loadable modules:

<Profile version="2.0.0" origin="get">
 <Catalog id="chuserParam" version="2.0">

 <Parameter name="home" value="/">
 <Target class="user" instance="root"/>
 <Target class="module" instance="files"/>
 </Parameter>

 <Parameter name="home" value="/etc">
 <Target class="user" instance="daemon"/>
 <Target class="module" instance="files"/>

82 AIX Version 7.2: Operating system management

 </Parameter>

 ...

 </Catalog>
</Profile>

3. The following profile uses the match attribute to discover the home directory of all users with a name
that starts with a u in the file module:

<Profile version="2.0.0" origin="reference" readOnly="true"
 <Catalog id="chuserParam" version="2.0">
 <Parameter name="home">
 <Target class="user" match="^u"/>
 <Target class="module" instance="files"/>
 </Parameter>
</Catalog>
</Profile>

Related information
The <Discover> element (in catalog files).

Writing AIX Runtime Expert catalogs
Catalog files are used internally by the AIX Runtime Expert framework.

The catalog files contain the parameter definitions and binding information to configuration methods that
describe the commands used to retrieve or set parameter values. Catalog files are local to the system
which is being tuned and configured.

AIX Runtime Expert catalog concepts
Catalog files contain all the information required to perform operations on parameters, including
definitions, conditions of use, and configuration methods. Catalog files must not be manipulated directly
by users and are only used through the AIX Runtime Expert core engine.

Catalogs are installed on a system at the same time as the AIX Runtime Expert core engine. When
new catalogs are linked to components or third-party applications that are installed on a system, it is
important to ensure they are in level with the installed AIX Runtime Expert core engine.

Catalog location
AIX Runtime Expert catalog files are stored in the /etc/security/artex/catalogs directory.

The name of a catalog file must exactly match its id attribute, suffixed with .xml extension. For example,
a catalog named commandParam.xml must have an id attribute value commandParam.

In order to be located by the profile that reference it, the catalog must have the same name in the catalog
XML file and in the <Catalog> element of the profile XML file. By default, the AIX Runtime Expert core
engine looks for catalogs in the default directory /etc/security/artex/catalogs. This behavior can
be changed, for the root user only, by setting the ARTEX_CATALOG_PATH environment variable. Multiple
directories can be specified in this environment variable using the : separator.

Catalog process
Steps to write a new AIX Runtime Expert catalog.

The following steps are required to be performed when writing a new AIX Runtime Expert catalog:

1. Make a list of parameters you want in the catalog file.
2. For each parameter, create a <ParameterDef> element
3. If several parameters use the same command for a <Get>, <Set>, <Discover> or <Diff> operation:

• Define a <CfgMethod> element at the top of the catalog.
• Use the cfgmethod attribute to inherit from the configuration method.

Operating system management 83

4. If several parameters are subject to the same constraint, define a <ConstraintDef> element at the top
of the catalog.

5. For each parameter:

a. Define the <Get type=“current”> and <Get type=“nextboot”> operations for each parameter,
either directly under the <ParameterDef> element, or referenced under the <CfgMethod>
element, or using any of the combinations.

b. Define all the supported <Set> operations for each parameter, either directly under the
<ParameterDef> element, or under the referenced <CfgMethod> element, or using any
combination of those possibilities.

c. If the parameter requires a target:

i) Define the supported target classes using the targetClass attribute
ii) Define the discover operation, either directly under the <ParameterDef> element, or the

referenced <CfgMethod> element, or using any combination of those possibilities. In most
cases the discover method will be defined in a configuration method.

d. If the parameter requires a reboot for a change to take effect, add the reboot =true attribute.
e. If the parameter is subject to a constraint, either define a <ConstraintDef> element under the

<ParameterDef> element, or use the constraint attribute to reference an existing constraint.
6. To test the catalog file:

a. Create a profile with all the parameters defined in the catalog file.
b. Use the artexget –r command to capture values and test the <Discover> and <Get> operations.
c. Use the artexset –c –F –R –l all command on the resulting profile to test the <Set> and

<Diff> operations.
d. Additionally, the –g 3 –g COMMANDS flags can be added to those two commands to get more

information about the command line generated to perform the requested operation.

Related information
See the topic about the <Catalog> root element.

AIX Runtime Expert catalog elements

<Catalog> element
The <Catalog> element is the root element for all catalog files.

Syntax
The following attributes are supported:

Table 15. Attributes

Attribute Required Type Description

id yes string Specifies the name of
the catalog. This name
must be unique on the
system.

version no string Specifies the version
number of the catalog.

date no dateTime Specifies the date of
creation. Format is
YYYY-MM-DDThh:mm:ss.

84 AIX Version 7.2: Operating system management

Table 15. Attributes (continued)

Attribute Required Type Description

priority no integer Specifies the order of
execution of the catalog
relative to others in the
set methods. Default
value is 0.

inherit no string Specifies the name of a
catalog to inherit.

The following child elements are supported. The number column defines how many occurrences of the
child are allowed:

Table 16. Child elements

Child element Required Number Description

<ShortDescription> no 0 – 1 Short textual description
for the catalog.

<Description> no 0 – 1 Long textual description
for the catalog.

<SubCat> no 0 – any Sub category

<ParameterDef> no 0 – any Contains the properties
of a parameter.

<ConstraintDef> no 0 – any Parameter constraints
definition (conditions
and disruptive
commands).

<CfgMethod> no 0 – any Configuration method
definition

<PrereqDef> no 0 – any Defines a prerequisite.

<PropertyDef> no 0 – any Defines a property.

<SeedDef> no 0 – any Defines a seed.

Attributes
Table 17. Attributes

Attribute Description

id The id attribute should match the catalog file name, stripped from its .xml
extension. The catalog id is referenced in profiles using the <Catalog> element.

Operating system management 85

Table 17. Attributes (continued)

Attribute Description

Priority The priority attribute is used when the set methods of a specific catalog are
required to be run before or after the set methods of other catalogs when they
are included in the same profile (for example, the compound profile default.xml).
The default priority of a catalog is 0.

The rule is that when two catalogs share the same priority, their set methods
are run in an undefined order. If a catalog has a priority with a positive value, its
set methods are executed before the others, in the descending priority order. If a
catalog has a priority with a negative value, its set methods are executed after the
others, in the descending priority order.

Version The Version attribute is present in both profiles and catalogs. The version helps
identifying whether profiles and catalogs are compatible with the AIX Runtime
Expert core engine and with each other. See Version attribute for more details.

Date The date attribute is not currently used for the <Catalog> element. It is included for
future use and maintainability.

inherit The inherit attribute specifies the name of a catalog to inherit from, without the .xml
extension. All the elements defined in the inherited catalog are available in the main
catalog, as if they were defined locally.

Example
Following is an example of a catalog using the priority attribute. The aixpertParam.xml catalog sets
security options and must be set after all other catalogs have been set. Thus, its priority is set to a high
negative value.

<Catalog id="aixpertParam" version="2.0" priority="-1000">

Related information
The <ConstraintDef> element.

The <CfgMethod> element.

The <Description> and <ShortDescription> elements.

The <ParameterDef> element.

The <SubCat> element.

Version attribute

Syntax
The version of a catalog is written as an attribute in the format MM.mm where MM is the major number
and mm is the minor number.

<Catalog id="commandParam" version="2.0">

Major version number
The major version number is the same for all AIX Runtime Expert catalogs installed on a system, and the
whole AIX Runtime Expert framework, where it is referenced. This major number is increased at each
major change of the XML schema of the profiles and catalogs.

86 AIX Version 7.2: Operating system management

When creating a new catalog, set the major version number to the current AIX Runtime Expert core
engine version number, which can be found by looking inside any of the standard catalog files that come
with the artex.base.rte fileset.

If an artexget command is invoked on a profile whose major version number differs from the one
referenced in the AIX Runtime Expert core engine, the command fails with the following error:

0590-117 Version error
This profile was created on a version unsupported by ARTEX

It is also advised that a profile and a catalog share the same major version number in order to be
compatible. A profile references catalogs with a specific version number. If the major version number of
the profile is not the same as the catalog major version number, any AIX Runtime Expert command will
display a warning to inform the user that results may be unpredictable:

0590-218 Catalog version differs from the one referenced in profile

Minor version number
The minor version number is specific to each catalog and is increased each time a major change in the
catalog makes it incompatible with the previous version. A profile references catalogs with a specific
version number. If the profile minor version number is not the same as the catalog minor version
number, any AIX Runtime Expert command will issue a warning to inform the user that results may
be unpredictable:

0590-218 Catalog version differs from the one referenced in profile

When creating a new sample profile or catalog, set the minor version number to 0.

<Description> and <ShortDescription> elements
Descriptions are optional informative text fields that can be added to various elements in the catalog files.
These fields are optional, but it is recommended that catalog writers use them to document the parent
element.

Syntax
The parent element of a <ShortDescription> element can be one of:

• <Catalog>
• <SubCat>

The parent element of a <Description> element can be one of:

• <Catalog>
• <SubCat>
• <ParameterDef>
• <ConstraintDef>

The content of the <Description> and <ShortDescription> elements is either a simple string, or a
translated message defined by one of the <NLSCatalog>, <NLSSmitHelp> or <NLSCommand> elements.
See the Globalization support topic for more information.

Usage
Currently, only the description of <ParameterDef> elements is retrieved and displayed by the artexget
command with the -i flag. It is recommended to provide globalization for the text included in those
description fields.

The description field of the other elements are currently not used by the AIX Runtime Expert framework,
but they should be provided for future use and for documentation purpose.

Operating system management 87

Example
1. Here is a simple example of description fields:

<ShortDescription>
 chuser parameters
</ShortDescription>
<Description>
 Parameter definition for the chuser command
</Description>

2. The same example, using translated messages from the artexcat.cat message file:

<ShortDescription>
<NLSCatalog catalog="artexcat.cat" setNum="12" msgNum="1">
 chuser parameters
</NLSCatalog>
</ShortDescription>
<Description>
<NLSCatalog catalog="artexcat.cat" setNum="12" msgNum="2">
 Parameter definition for the chuser command
</NLSCatalog>
</Description>

Globalization support
This section describes how globalization is implemented in the descriptive fields of the AIX Runtime
Expert catalogs.

Syntax
Parent element: <Description>, <ShortDescription>

The parent element may contain one (and only one) of the following child elements:

Table 18. Child Elements

Child element Required Number Description

<NLSCatalog> no 0 – 1 String included in a
message catalog

<NLSSmitHelp> no 0 – 1 String included in a
SMIT help HTML file

<NLSCommand> no 0 – 1 String issued by an AIX
command

NLS Catalog
The NLS Catalog globalization format is used when the localized message to display is included in an
existing message catalog in the catgets() format.

The <NLSCatalog> element contains the following attributes:

Table 19. Attributes

Attribute Required Type Description

catalog yes string Name of the catalog
where the message
resides

setNum yes integer Number of the message
set where the message
resides

88 AIX Version 7.2: Operating system management

Table 19. Attributes (continued)

Attribute Required Type Description

msgNum yes integer Number of the message
in the message set

If the localized message catalog does not exist, the default message is displayed instead. The default
message is, optionally, included as the contents of the <NLSCatalog> element. It is a recommended
practice to provide a default message.

NLS SMIT Help
The NLS Smit Help globalization format is used when the localized message to display already exists in a
SMIT help HTML file.

The <NLSSmitHelp> element contains the following attribute:

Table 20. Attributes

Attribute Required Type Decsription

msgId yes integer The help_msg_id field
provided in the SMIT
stanza

If the localized help file does not exist, the default message is displayed instead. The default message
is, optionally, included as the contents of the <NLSSmitHelp> element. It is a recommended practice to
provide a default message.

NLS Command
The NLS Command globalization format is used when the localized message to display is issued by an AIX
command. This is the case for all tuning commands (like no, vmo) that provide a –h flag to display help
text for a specific parameter.

The <NLSCommand> element contains the following attribute:

Table 21. Attribute

Attribute Required Type Description

command command string Shell expression to
execute

Examples
1. Example of the <NLSCatalog> element from the chssysParam.xml AIX Runtime Expert catalog,

including a default message.

<Description>
 <NLSCatalog catalog="artexcat.cat" setNum="10" msgNum="2">
 Changes a subsystem definition in the subsystem object class.
 </NLSCatalog>
</Description>

2. Example of the <NLSSmitHelp> element:

<Description>
 <NLSSmitHelp msgId="055136"/>
</Description>

Operating system management 89

3. Example of the <NLSCommand> element from the schedoParam.xml catalog:

<Description>
 <NLSCommand command="/usr/sbin/schedo -h maxspin | /usr/bin/tail -n +2"/>
</Description>

<SubCat> element
Subcategories, optional parameters, subsets inside a catalog, can be specified by using the <SubCat>
element inside a catalog file.

Syntax
Parent element: <Catalog>,<SubCat>

The following attributes are supported:

Table 22. Attributes

Attribute Required Type Description

id yes string Specifies the name of
the catalog subcategory.
This name should be
unique per catalog file.

The following child elements are supported:

Table 23. Child Elements

Child element Required Description

<ShortDescription> no Short textual description of the
subcategory.

<Description> no Long textual description of the
subcategory.

<SubCat> no Nested subcategory. This
element may occur multiple
times.

<ParameterDef> no Contains the properties of a
parameter. This element may
occur multiple times.

Attribute
A subcategory is local to a catalog:

• A subcategory id is unique inside a catalog file.
• Multiple catalogs can make use of the same subcategory identifier.

The subcategories defined in a catalog must exactly match the subcategories reported in the associated
sample profile.

Related information
The <Description> and <ShortDescription> elements.

The <SubCat> element.

The <ParameterDef> element.

90 AIX Version 7.2: Operating system management

<ParameterDef> element
AIX Runtime Expert are defined in a catalog file by using the <ParameterDef> element.

Syntax
Parent element: <Catalog>,<ParameterDef>

The following attributes are supported:

Table 24. Attributes

Attribute Required Type Description

name yes string Specifies the name of
the parameter. This
name must be unique
per catalog.

type yes string Specifies the parameter
type, as seen from the
core engine.

targetClass no string Specifies the target
classes for the
parameter if any.

reboot no boolean When true, indicates
that a reboot is required.
Default value is false.

cfgmethod no string Specifies the id of the
configuration method
defined at <Catalog>
level that contains
methods to use for this
parameter.

constraint no string Specifies the id of a
constraint defined at
<Catalog> element level
for the current catalog
file.

priority no integer Execution rank of this
parameter in the set
method relative to
other parameters in this
catalog. Default value is
0.

The following child elements are supported:

Table 25. Child Elements

Child element Required Description

<Description> no Textual description of the
parameter.

<ConstraintDef> no Parameter constraint definition
(disruptive commands).

Operating system management 91

Table 25. Child Elements (continued)

Child element Required Description

<Get> no Configuration method definition
for the get operation. This
element may occur multiple
times.

<Set> no Configuration method definition
for the set operation. This
element may occur multiple
times.

<Diff> no Configuration method definition
for diff operation.

<Discover> no Configuration method definition
for target discovery.

Attribute
Table 26. Attributes

Attribute Description

name The name attribute uniquely identifies a parameter
within a catalog file. See the parameter name
attribute topic for more information.

type The required type attribute indicates the value type
of the parameter. The supported values are:

• string, for alphanumerical strings;
• integer, for numerical values;
• integer-bi, for numerical values with an optional

uppercase or lowercase K, M, G, T, P or E suffix
for “kilo”, “mega”, “giga”, “tera”, “peta” and
“exa”. These suffixes are interpreted as powers
of 1024;

• integer-si, for numerical values with an optional
SI suffix. Same as the integer-bi type, except
suffixes are interpreted as powers of 1000.

• boolean, for boolean values. Supported values
are 0 and 1.

• binary, for binary values, encoded as base-64
strings in profiles.

92 AIX Version 7.2: Operating system management

Table 26. Attributes (continued)

Attribute Description

reboot The default for the boolean ‘reboot’ attribute is
“false”. If a parameter change requires a reboot
to take effect, then this parameter must have its
‘reboot’ attribute set to “true”.

AIX Runtime Expert itself never reboots systems.
By default, the artexset command will not force
the setting of reboot parameters. If the profile
contains reboot parameters, the command will fail:

0590-502: profile has
parameters that require a reboot.
Profile has not been set. Use -l all
flag to force set for all parameters

If called with the proper –l flag, the artexset
command sets the value and warns the users that
a reboot is required for changes to take effect:

0590-206 A manual post-operation is
required for thechanges to take effect
Please reboot the system

priority By default, parameters are set in no defined
order by the artexset command. The priority
attribute can be used alter this behavior and
force a parameter to be set before or after other
parameters.

The default priority is 0. The priority attribute
can be used to change this default priority to
any integer value between -2147483648 and
2147483647. Parameters with a higher priority are
executed before parameters with a lower priority.
The order in which parameters with the same
priority are set is undefined.

targetClass Some parameters have to be associated with a
target, as explained in section on “The Target
element” of a profile. Those parameter must
have their targetClass attribute set to the coma-
separated list of their supported target classes.

cfgmethod A <ParameterDef> element can inherit command
line elements from a <CfgMethod> element by
referencing this configuration method id attribute
with the cfgmethod attribute. For more information
on configuration methods, refer to the section on
<CfgMethod> element.

constraint A <ParameterDef> element can use the constraint
attribute to reference the id attribute of a
<ConstraintDef> element, indicating that the
parameter is subjected to the constraint. For more
information on constraints, refer to the section on
“The <ConstraintDef> element”.

Operating system management 93

Examples
1. Following is an example of a parameter definition with an alternative integer type: kernel_heap_size,

from the vmoParam.xml catalog file:

<ParameterDef name="kernel_heap_psize" type="integer-bi">

When extracting the value of this parameter through an artexget command, the result is something
like (excerpted from the resulting profile).

<Parameter name="kernel_heap_psize" value="16M"… />

The parameter value will be interpreted differently, depending on the type:

• Since it is declared to be of type integer-bi, the value is 16M= 16,777,216.
• If the type had been integer-si, the value would have been “16M”=16,000,000.

2. Example of a binary parameter: the trusted signature database tsd.dat in the tsdParam.xml
catalog:

<ParameterDef name="tsdatabase" type="binary">

3. Example of a parameter with a reboot attribute. The type of dump parameter in the
sysdumpdevParam.xml catalog:

<ParameterDef name="type_of_dump" type="string" reboot="true">

4. Example of a parameter with one target class: the addr parameter from the mktcpipParam.xml
catalog applies to a specific network interface:

<ParameterDef name="addr" type="string" cfgmethod="mktcpip" targetClass="interface">

5. Example of a parameter with several target classes: the naming specification parameter from the
coreParam.xml applies to a specific user (root, admin, guest, etc.) in a specific registry (files, LDAP).

<ParameterDef name="namingspecification" type="string" reboot="true"
targetClass="user,registry"
cfgmethod="coremgt">

6. Example of use of the cfgmethod attribute: For the <Get type="current"> operation, the fixed
parameter of the chlicenseParam.xml catalog inherits the <Command> element from the chlicense
configuration method, but it also defines its own <Filter> and <Mask> locally for this same operation:

<CfgMethod id="chlicense">
 <Get type="current">
 <Command>lslicense -c -A</Command>
 </Get>
</CfgMethod>
<ParameterDef name="fixed" cfgmethod="chlicense" type="integer">
 <Get type="current">
 <Filter>tail -n 1 | cut -d: -f3</Filter>
 <Mask value="1">(.*)</Mask>
 </Get>
</ParameterDef>

7. Example of usage of the constraint attribute: the authorizations parameter of the authParam.xml
catalog is subjected to the setkst constraint defined earlier in a <ConstraintDef> element:

<ParameterDef name="authorizations" cfgmethod="cat" constraint="setkst" type="string">

name attribute
The name of a parameter is often dictated by the command used to get or set the parameter.

Parameter names must be unique within a catalog file. This is required to ensure that a <Parameter>
element in a profile can be associated with a unique <ParameterDef> element in a catalog file.

94 AIX Version 7.2: Operating system management

• If the get command displays several parameter-value pairs, then the <Mask> element can be used
to extract multiple parameters from a single command output. This is only possible if the name of the
parameter matches the name used in the output of the get command.

• If the set command accepts several parameter-value pairs, then the %n and %v1 sequences can
be used in an <Argument> element to set multiple parameters with a single command. This is only
possible if the name of the parameter matches the name used by the set command.

Examples
1. Example: The raso –a command used in the rasoParam.xml catalog displays one parameter per

line of display:

kern_heap_noexec = 0
kernel_noexec = 1
mbuf_heap_noexec = 0
mtrc_commonbufsize = 485

In this easy case, the parameter names will be kernel_heap_noexec, kernel_noexec, etc.
2. Example: The command used in the get configuration method of the acctctlParam.xml catalog

displays a result that is more difficult to parse. Not only is the name of the parameter integrated
into a non-formatted sentence, but both the parameter names and their values are localized. The get
configuration methods will have to run the command while setting the environment variable LANG=C,
and, in each line, replace the key words by pertinent parameter names:

Advanced Accounting is not running.
Email notification is off.
The current email address to be used is not set.
Recover CPU accounting time in turbo mode is False.

In the above example, the variable names that have been chosen are accounting, email,
email_adddr and turacct.

Related information
• The <Parameter> element
• The <Mask> element
• Expansion of command line elements

<ConstraintDef> element

Syntax
Parent element: <Catalog>, <ParameterDef>

The following attributes are supported:

Table 27. Attributes

Attribute Required Type Description

id no* string Specifies the name
of the parameter
constraint.

*This attribute must be specified for <Constraint> elements defined at the catalog level.

The following child elements are supported:

Operating system management 95

Table 28. Child Elements

Child Elements Required Description

<Description> no Textual description of the
disruptive command.

<PreOp> no Disruptive operations to run
before setting the parameter
value.

<PostOp> no Disruptive operations to run after
setting the parameter value.

<BuiltIn> no Built-in disruptive operation This
element may occur multiple
times.

Usage
Some tuning and configuration parameters may require disruptive operations for value changes to take
effect. A disruptive operation is any operation that may temporarily interrupt access to a service or a
device. Typical disruptive operations are restarting a daemon, unmounting or mounting a filesystem,
bringing a network adapter card offline or online. The AIX Runtime Expert program uses constraints to
show that a parameter requires a disruptive operations for changes to take effect. A <ConstraintDef>
element is used to define such a constraint.

The constraint can be defined either:

• Inside a <ParameterDef> element, if the constraint only applies to the single parameter.
• At the catalog level, the <ConstraintDef> element must have an id attribute to allow the constraint to

be referenced later in <ParameterDef> elements.

Built-In constraint
The <BuiltIn> element does not contain any attribute or child element.

The built-in constraint defines operations that are hard coded in the core engine. There is currently
only one built-in constraint defined: bosboot. The difference of built-in constraints with other disruptive
operations is that the bosboot command is never run by AIX Runtime Expert. The core engine will only
warn that a bosboot is required for changes to take effect.

0590-206 A manual post-operation is required for the changes to take effect
Please perform a bosboot

PreOp and PostOp constraint
The <PreOp> element defines mandatory commands (shell expressions) to be run before the parameter
value is set by the set configuration method. The <PostOp> element defines mandatory commands to be
run after the execution of the set configuration method.

An <ConstraintDef> element must contain 0 or one <PreOp> child element, and 0 or one <PostOp> child
element.

Examples
1. Example of a built-in constraint (at catalog level)

<ConstraintDef id="bosboot">
 <Description>
<NLSCatalog catalog="artexcat.cat" setNum="51" msgNum="3">
 bosboot

96 AIX Version 7.2: Operating system management

</NLSCatalog>
 </Description>
 <Built>Inbosboot</BuiltIn>
</ConstraintDef>

2. Example of <PreOp> constraint: The clic constraint in the trustchkParam.xml catalog. Note that in
this example, the preop command does not run anything, but only checks the presence of a kernel
extension required by the set command. If the kernel extension is not installed, then the constraint
defined in the <PreOp> element will fail and the set command will not be run:

<ConstraintDef id="clic">
 <Description>
 <NLSCatalog catalog="artexcat.cat" setNum="48" msgNum="3">
 Check that the clic.rte kernel extension is installed.
 </NLSCatalog>
 </Description>
 <Pre>Oplslpp -l "clic*"</PreOp>
 </ConstraintDef>

3. Example of <PostOp> constraint: The set Kernel Security Tables constraint in the authParam.xml
catalog. The modified databases need to be loaded only once in the kernel after all modifications have
been made.

<ConstraintDef id="setkst">
 <Description>
<NLSCatalog catalog="artexcat.cat" setNum="5" msgNum="3">
Send the authorizations database to the KST (Kernel Security Tables)
 </NLSCatalog></Description>
 <PostOp>/usr/sbin/setkst -t auth >/dev/null</PostOp>
 </ConstraintDef>

<CfgMethod> element

Syntax
Parent element: <Catalog>

The following attribute is supported:

Table 29. Attribute

Attribute Required Type Description

id yes string Specifies the name
of the configuration
method.

The following child elements are supported:

Table 30. Child elements

Child elements Required Number Description

<Get> no 0 – 1 Configuration method
definition for the get
operation. This element
may occur multiple
times.

<Set> no 0 – 1 Configuration method
definition for the set
operation. This element
may occur multiple
times.

Operating system management 97

Table 30. Child elements (continued)

Child elements Required Number Description

<Diff> no 0 – 1 Configuration method
definition for diff
operation.

<Discover> no 0 – 1 Configuration method
definition for target
discovery.

<Property> no 0 – any Assigns a property to the
parameters using the
configuration method.

Usage
The <CfgMethod> element defines a configuration method that can later be referenced by a parameter
using the cfgmethod attribute of the <ParameterDef> element. The parameter then inherits all the
elements defined under the referenced configuration method.

Depending on the parameter, using a configuration may offer several advantages over the local definition:

• It simplifies the catalog file, avoiding duplication of the same command line elements for several
parameters.

• It allows multiple parameters to be treated by a single command.

Example
The vmoParam.xml catalog defines a lot of parameters that all use the same configuration method. Here
is a simplified version of this catalog:

<Catalog id="vmoParam" version="2.1">
 <CfgMethod id="vmo">
 <Get type="current">
 <Command>/usr/sbin/vmo -a</Command>
 <Mask name="1" value="2">[[:space:]]*(.*) = (.*)</Mask>
 </Get>

 <Get type="nextboot">
 <Command>/usr/sbin/vmo -r -a</Command>
 <Mask name="1" value="2">[[:space:]]*(.*) = (.*)</Mask>
 </Get>

 <Set type="permanent">
 <Command>/usr/sbin/vmo -p%a</Command>
 <Argument>%n=%v1</Argument>
 </Set>

 <Set type="nextboot">
 <Command>/usr/sbin/vmo -r%a</Command>
 <Argument>%n=%v1</Argument>
 </Set>
 </CfgMethod>

 <ParameterDef name="ame_maxfree_mem" cfgmethod="vmo" type="integer" />
 <ParameterDef name="ame_min_ucpool_size" cfgmethod="vmo" type="integer" />
 <ParameterDef name="ame_minfree_mem" cfgmethod="vmo" type="integer" />
 ...

</Catalog>

Related Information
• Command line generation
• The <Get> element

98 AIX Version 7.2: Operating system management

• The <Set> element

<Get> element

Syntax
Parent element: <CfgMethod>, <ParameterDef>

The following attribute is supported:

Table 31. Attribute

Attribute Required Type Description

type yes string Specifies the type of the
get command (current
or nextboot).

The following child elements are supported:

Table 32. Child elements

Child elements Required Number Description

<Command> no 0 – 1 Command

<Argument> no 0 – 1 Command-line arguments

<Stdin> no 0 – 1 Arguments supported by the <Stdin>
element

<Filter> no 0 – 1 Filter

<Mask> no 0 – 1 Output capturing mask

<Prereq> no 0 – any Assigns a prerequisite to the get
operation

The <Command> element must be defined for each parameter, either at the <CfgMethod> level or
directly at the <ParameterDef> level.

Usage
The <Get> element describes how the value of a particular parameter is captured. It can be used
either directly under the <ParameterDef> element, or under a <CfgMethod> element referenced in the
<ParameterDef> element using the cfgmethod attribute, or using a combination of those two possibilities.

Two Get elements should be defined for each parameter, one for each supported value of the type
attribute:

• Get type=“current” identifies the method that will be run to retrieve the runtime value of the
parameter.

• Get type=“nextboot” identifies the method that will be run to retrieve the value that the parameter will
have after the next reboot of the system.

• The get method to be run depends on the operation being performed:

– If the artexget command is called with the –r flag, the current get method is used.
– If the artexget command is called with the –n flag, the nextboot get method is used.
– If the artexget command is called with the –p flag, the method run depends on the parameters

input to the applyType attribute. The current get method is used for the parameters that have their
applyType attribute set to runtime and the nextboot get method is used for the parameters that have
an applyType attribute of reboot.

Operating system management 99

Related Information
Command line generation

The <Mask> element.

<Set> element
The <Set> element defines how to build a command line to set the value of a parameter.

Syntax
Parent element: <CfgMethod>, <ParameterDef>

The following attribute is supported:

Table 33. Attribute

Attribute Required Type Description

type yes string Specifies the type of
the set command as
current or nextboot.

The following child elements are supported:

Table 34. Child elements

Child elements Required Number Description

<Command> no 0 – 1 Command

<Argument> no 0 – 1 Command-line arguments

<Stdin> no 0 – 1 Stdin arguments

<Prereq> no 0 – any Assigns a prerequisite to the <Set>
operation

Note: The <Command> element must be defined for each parameter, either at the <CfgMethod> level or
directly at the <ParameterDef> level.

Usage
There are three types of <Set> elements that can be defined for each parameter, identified by their
required type attribute:

• Set type=“current” defines a set operation that only changes the value of the parameter for the current
session. Any change made using the set operation will be lost after a reboot of the system.

• Set type=“nextboot” defines a set operation that only changes the value the parameter will take after
the next reboot of the system. The current value is not modified.

• Set type=“permanent” defines a set operation that changes both the current and the nextboot value of
the parameter.

The type of the set operation run is decided based on parameters included when the artexset
command is run, based the parameter applyType attribute in the profile. The following table summarizes
the set methods that are run, depending on the set methods defined in the catalog file depending on the
applyType attribute for the parameter:

Table 35. Set Methods - set method types defined and Parameter applyType attribute.

current nextboot permanent runtime nextboot

0 0 0 not set (error) not set (error)

100 AIX Version 7.2: Operating system management

Table 35. Set Methods - set method types defined and Parameter applyType attribute. (continued)

current nextboot permanent runtime nextboot

0 0 1 set permanent not set (error)

0 1 0 set nextboot + warning set nextboot

0 1 1 set permanent not set (error)

1 0 0 set current + warning set nextboot

1 0 1 set permanent not set (error)

1 1 0 set current set nextboot set nextboot

1 1 1 set permanent set nextboot

Related Information
Command line generation.

<Diff> element
The <Diff> element defines how to build a command line to compare two values of a parameter.

Syntax
Parent element: <CfgMethod>, <ParameterDef>

The following child elements are supported:

Table 36. Child elements

Child elements Required Description

<Command> no Command

<Argument> no Command-line arguments

<Stdin> no Stdin arguments

<Filter> no Filter

<Mask> no Output capturing mask

Note: The <Command> element must be defined for each parameter, either at the <CfgMethod> level or
directly at the <ParameterDef> level.

Usage
The <Diff> element is usually not required, since the framework knows how to compare two parameter
values internally based on the type (string, integer, integer-bi, binary, etc.). However, in case the internal
comparison is not adapted for a particular parameter, it is possible to use an external command instead.

Example
The following <Diff> element can be used for most parameters, even though using the internal
comparison function is more efficient. The <Diff> element uses the diff command to compare two
files that contains the two values:

<Diff>
 <Command>/usr/bin/diff %f1 %f2; echo $?</Command>
</Diff>

Operating system management 101

Related Information
Command line generation.

The <Mask> element.

<Discover> element
The <Discover> element defines how to build a command line to discover targets for a parameter that
supports them.

Syntax
Parent element: <CfgMethod>, <ParameterDef>

The following child elements are supported:

Table 37. Child elements

Child elements Required Number Description

<Command> no 0 – 1 Command

<Prereq> no 0 – any Assigns a prerequisite to the discover
operation

Note: The <Command> element must be defined for each parameter, either at the <CfgMethod> level or
directly at the <ParameterDef> level.

Usage
A discover command is used to obtain the list of target instances for a given parameter.

The output of a discover command for a parameter that supports N target classes have the following
format:

class_1=inst_1_1;class_2=inst_2_1;...;class_N=inst_N_1
class_1=inst_1_2;class_2=inst_2_2;...;
class_N=inst_N_2class_1=inst_1_3;
class_2=inst_2_3;...;class_N=inst_N_3
...

The artexget command generates and runs a discover command for parameters that satisfy one of the
following criteria:

• Contain a <Target> element with empty class and instance attributes. <Target class="" instance="" />
• Contain at least one <Target> element with a match attribute: <Target class="..." match="..." />

The artexset command additionally requires the following two criteria to be satisfied:

• The artexset command is called with the –d flag.
• The <Parameter> element in the profile has the setDiscover attribute set to true.

Examples
1. The mktcpipParam.xml catalog uses the following discover command to obtain the list of the

network interfaces defined on the system:

<Discover>
 <Command>
 /usr/sbin/lsdev -C -c if -F "name" | /usr/bin/sed -e 's/^/interface=/'
 </Command>
</Discover>

102 AIX Version 7.2: Operating system management

This command gives the following output:

interface=en0
interface=et0
interface=lo0

2. The chuserParam.xml catalog uses the following discover command to get to the list of all users
for all loadable authentication modules:

<Discover>
 <Command>
 /usr/sbin/lsuser -a registry ALL |
/usr/bin/sed -e "s/\(.*\) registry=\(.*\)/module=\2;user=\1/g"
</Command>
</Discover>

This command gives the following output:

module=LDAP;user=daemon
module=LDAP;user=bin
module=LDAP;user=sys
module=LDAP;user=adm
...
module=files;user=root
module=files;user=daemon
module=files;user=bin
module=files;user=sys
module=files;user=adm
...

<Command> element
The <Command> element defines the base command used to perform the operation defined by the
parent element.

Syntax
Parent element: <Get>, <Set>, <Diff>, <Discover>, <PrereqDef>, <Prereq>, <PropertyDef>,
<Property>, <Command>

Usage
The content of the <Command> element is expanded as described in section Expansion of command line
elements and combined with the other command line elements to form a complete command line. See
section Command line generation for more details.

Some characters often found in shell expressions, such as <, > and & are not allowed in XML documents.
These characters must be replaced by the corresponding XML entity:

Table 38. XML entities

Character XML entity

< <

> >

& &

Alternatively, a CDATA section can be used if the expression contains many of such characters. The CDATA
sections start with <![CDATA[and ends with]]>.

The <Command> element must be defined for each supported operation of each parameter, either at the
<CfgMethod> level or at the <ParameterDef> level.

Operating system management 103

Example
The envParam.xml catalog defines a parameter called profile that represents the contents of the /etc/
profile file. For this parameter, the <Get> element uses the cat command to capture the content of
the /etc/profile file:

<ParameterDef name="profile">
 <Get type="current">
 <Command>/usr/bin/cat /etc/environment</Command>
 </Get>
</ParameterDef>

<Argument> element

Syntax
Parent element: <Get>, <Set>, <Diff>, <PrereqDef>, <Prereq>, <PropertyDef>, <Property>

Usage
The content of the <Argument> element is expanded as described in section Expansion of command line
elements and combined with the <Command> and or the <Stdin> elements to form a complete command
line. See section Command line generation for more details.

Some characters often found in shell expressions, such as <, > and & are not allowed in XML documents.
These characters must be replaced by the corresponding XML entity:

Table 39. XML entities

Character XML entity

< <

> >

& &

Alternatively, a CDATA section can be used if the expression contains many of such characters. CDATA
sections start with <![CDATA[and ends with]]>.

Example
The vmoParam.xml catalog uses the <Argument> element to add an argument to the vmo command for
each vmo parameter in the profile:

<CfgMethod id="vmo">
 <Set type="permanent">
 <Command>/usr/sbin/vmo -p%a</Command>
 <Argument> -o %n=%v1</Argument>
 </Set>
</CfgMethod>

<Stdin> element

Syntax
Parent element: <Get>, <Set>, <Diff>, <PrereqDef>, <Prereq>, <PropertyDef>, <Property>

Usage
The content of the <Stdin> element is expanded as described in section Expansion of command line
elements and the resulting data is written to the standard input of the command line generated for the
operation defined in the parent element.

104 AIX Version 7.2: Operating system management

Example
The envParam.xml catalog defines a parameter called profile that represents the content of the /etc/
profile file. For this parameter, the set operation writes the value of the parameter to the standard input
of the cat command to overwrite the /etc/profile file:

<ParameterDef name="profile">
 <Set type="permanent">
 <Command>/usr/bin/cat > /etc/profile</Command>
 <Stdin>%v1</Stdin>
 </Set>
 </Get>

Related information
Command line generation

<Filter> element

Syntax
Parent element: <Get>, <Diff>, <PropertyDef>, <Property>

Usage
The content of the <Filter> element is a command to which the output of the command line generated for
the operation defined in the parent element is passed as input.

Some characters often found in shell expressions, such as <, > and & are not allowed in XML documents.
These characters will need to be replaced by the corresponding XML entity:

Table 40. XML entities

Character XML entity

< <

> >

& &

Alternatively, a CDATA section can be used if the expression contains many of such characters. The CDATA
sections start with <![CDATA[and ends with]]>.

Example
The nfsParam.xml catalog uses the <Filter> element for the get operation of parameter v4_root_node
to extract the root node from the output of the nfds –getnode command:

<ParameterDef id="v4_root_node">
 <Get type="current">
 <Command>
 /usr/sbin/nfsd -getnodes
 </Command>
 <Filter>
 /usr/bin/awk -F: 'NR == 2 { printf("%s", $1) }'
 </Filter>
 </Get>
</ParameterDef>

Related information
Command line generation

Operating system management 105

<Mask> element

Syntax
Parent element: <Get>, <Diff>, <Discover> (only under a <SeedDef>),<PropertyDef>, <Property>

The following attributes are supported when used in a <Get> or <Diff> element:

Table 41. Attributes

Attribute Required Type Description

name no integer Specifies the index of
the subexpression that
matches the name of the
parameter. Valid values
are 1 and 2.

value no integer Specifies the index of
the subexpression that
matches the value of the
parameter. Valid values
are 1 and 2.

The following attributes are supported when used under the <Discover> subelement of a <SeedDef>
element:

Table 42. Attributes

Attribute Required Type Description

catalog yes integer Specifies the index of
the subexpression that
matches the name of the
catalog. Valid values are
1, 2, and 3.

name yes integer Specifies the index of
the subexpression that
matches the name of the
parameter. Valid values
are 1, 2, and 3.

target no integer Specifies the index of
the subexpression that
matches the target of
the parameter. Valid
values are 1, 2, and 3.

The following attribute is supported when used under the <PropertyDef> or <Property> element:

Table 43. Attribute

Attribute Required Type Description

value no integer Specifies the index of
the subexpression that
matches the name of the
parameter. Must be set
to “1” if specified.

106 AIX Version 7.2: Operating system management

Usage
The <Mask> element defines a regular expression that is applied on each line of command output to
extract data from those lines. The data that is extracted depends on where the <Mask> element is used.

If no attributes are specified, the last line in the command output that matches the regular expression is
used to extract the data. The extracted data is the part of the line that matches the regular expression.
When used under a <Get> or <Diff> element, the extracted data is used as the parameter value. When
used under a <PropertyDef> or <Property> element, the extracted data is used as the property value.

If only the value attribute is specified, it must be set to 1, and the regular expression must contain only
one subexpression. The last line in the command output that matches the regular expression is used to
extract the data. The extracted data is the part of the line that matches the first (and only) subexpression.
When used under a <Get> or <Diff> element, the extracted data is used as the parameter value. When
used under a <PropertyDef> or <Property> element, the extracted data is used as the property value.

If the name and value attributes are specified, one of those attributes must be set to 1 and the other
must be set to 2, and the regular expression must contain two subexpressions. A name and a value
are extracted from each line of the command output that matches the regular expression. When used
in a <Get> element, the name is used as the parameter name and the value as the parameter value.
When used in a <Diff>element, the name is used as the parameter name and the value is used as the
comparison result. Using this function, the values of several parameters can be extracted by using a single
get command, and several parameters can be compared by using a single diff command.

When used in the <Discover> subelement of a <SeedDef> element, the catalog and name attributes must
be specified. A catalog name and a parameter name are extracted from each line of the command output
that matches the regular expression. If a catalog that matches the extracted catalog name is found on
the system, and if it contains a definition for a parameter that matches the extracted parameter name,
a parameter is inserted into the profile. The optional target argument can be added to extract a target
definition for each discovered parameter. The target definition must follow the semicolon-separated list of
class=instance pairs format, such as class1=instance1;class2=instance2;... format.

Examples
1. The vmoParam.xml catalog uses the <Mask> element with the name and value attributes to extract

all parameter values from a single vmo –a command:

<CfgMethod id="vmo">
 <Get type="current">
 <Command>/usr/sbin/vmo -a</Command>
 <Mask name="1" value="2">[[:space:]]*(.*) = (.*)</Mask>
 </Get>
</CfgMethod>

2. Had the vmoParam.xml catalog been written in a way that one separate command was used to
capture the value of each parameter, then the <Mask> element could have been used with just the
value attribute set and no name attribute:

<CfgMethod id="vmo">
 <Get type="current">
 <Command>/usr/sbin/vmo -o %n</Command>
 <Mask value="1"> = (.*)</Mask>
 </Get>
</CfgMethod>

3. Or, by using a regular expression that matches only the value:

<CfgMethod id="vmo">
 <Get type="current">
 <Command>/usr/sbin/vmo –o %n</Command>
 <Mask>[^]*$</Mask>
 </Get>
</CfgMethod>

Operating system management 107

From the three examples above, the first is the most efficient, since it requires only a single command
to capture all the vmo command parameters. Examples 2 and 3 would generate a separate command
for each vmo command parameter, since the parameter name is used in the <Command> element.

4. The following <SeedDef> element defines a seed that can be used to discover all attributes of all
devices. It uses a target to designate the device they operate on:

<SeedDef name="devAttr">
 <Discover>
 <Command>
 /usr/sbin/lsdev -F 'name class subclass type' |
 while read DEV CLASS SUBCLASS TYPE
 do
 /usr/sbin/lsattr -F attribute -l $DEV |
 while read PAR
 do
 echo device=$DEV devParam.$CLASS.$SUBCLASS.$TYPE $PAR
 done
 done
 </Command>
 <Mask target="1" catalog="2" name="3">(.*) (.*) (.*) <Mark>
 </Discover>
</SeedDef>

The discovery command prints each discovered device attribute on a separate line, by using the following
format:

device=DeviceName devParam.Class.Subclass.Type AttributeName

For example,

device=en0 devParam.if.EN.en tcp_recvspace
device=en0 devParam.if.EN.en tcp_sendspace
device=ent0 devParam.adapter.vdevice.IBM,l-lan alt_addr
device=ent0 devParam.adapter.vdevice.IBM,l-lan chksum_offload

Related information
Command line generation

<SeedDef> element
The <SeedDef> element defines a seed that can be used in a profile by using a <Seed> element.

Syntax
Parent element: <Catalog>

The following attribute is supported:

Table 44. Attribute

Attribute Required Type Description

name yes string Specifies the name of
the seed. This name
must be unique for each
catalog.

The following child element is supported:

Table 45. Child element

Child element Required Description

<Discover> yes Specifies the command that is used to discover
parameters.

108 AIX Version 7.2: Operating system management

Usage
Seeds are used to discover parameters dynamically during a get operation.

When the artexget command is issued, each <Seed> element in the input profile is expanded into one
or more <Parameter> elements, based on the rules defined in the matching <SeedDef> element of the
catalog file. This process is called parameter discovery. The artexget command then proceeds as usual
with the expanded profile.

The <SeedDef> element contains only a <Discover> subelement, that defines a command to
run, and a mask to extract parameter names, catalog names (as colon-separated lists, without
the .xml extension), and optionally targets from the output of the command (by using the
class1=instance1;class2=instance2;... format). For each line of the output, the first catalog from the
colon-separated list that is found on the system is loaded. If a parameter definition is found in this
catalog, then a parameter is created in the output profile that has the targets that were extracted from the
line. Lines from the command output that do not match the mask, or for which no catalog file is found, or
that have no parameter definition if found in the catalog file, are ignored.

Examples
1. The following catalog defines a <SeedDef> element called vmoTunables that discovers all the

nonrestricted vmo tunables seed supported by AIX Runtime Expert:

<?xml version="1.0" encoding="UTF-8"?>
<Catalog id="vmoSeed">
 <SeedDef name="vmoTunables">
 <Discover>
 <Command>/usr/sbin/vmo -x | /usr/bin/awk -F, '{ print "vmoParam:" $1 }'</Command>
 <Mask catalog="1" name="2">(.*):(.*)/Mask>
 </Discover>
 </SeedDef>
</Catalog>

The discovery command prints each tunable on a separate line, preceded by the name of the catalog
that defines the tunables:

...
vmoParam:enhanced_affinity_vmpool_limit
vmoParam:esid_allocator
vmoParam:force_relalias_lite
vmoParam:kernel_heap_psize
...

The following profile uses the vmo tunables seed to capture all the nonrestricted vmo tunables seed
supported by AIX Runtime Expert:

<?xml version="1.0" encoding="UTF-8"?>
<Profile>
 <Catalog id="vmoSeed">
 <Seed name="vmoTunables"/>
 </Catalog>
</Profile>

When the artexget –r command is run on the profile, the command generates a profile similar to
the following example:

<?xml version="1.0" encoding="UTF-8"?>
<Profile>
 <Catalog id="vmoParam">
 ...
 <Parameter name="enhanced_affinity_vmpool_limit" value="10"/>
 <Parameter name="esid_allocator" value="0"/>
 <Parameter name="force_relalias_lite" value="0"/>
 <Parameter name="kernel_heap_psize" value="65536" applyType="nextboot" reboot="true"/>
 ...
</Catalog>
</Profile>

Operating system management 109

2. The following <SeedDef> element defines a seed that is used to discover all attributes of all devices.
The element uses a target seed to designate the device they operate on:

<SeedDef name="devAttr">
 <Discover>
 <Command>
 /usr/sbin/lsdev -F 'name class subclass type' |
 while read DEV CLASS SUBCLASS TYPE
 do
 /usr/sbin/lsattr -F attribute -l $DEV |
 while read PAR
 do
 echo device=$DEV devParam.$CLASS.$SUBCLASS.$TYPE:devParam.$CLASS
.$SUBCLASS:devParam.$CLASS $PAR
 done
 done
 </Command>
 <Mask target="1" catalog="2" name="3">(.*) (.*) (.*)</Mask>
 </Discover>
</SeedDef>

The discovery command prints each discovered device attribute on a separate line, by using the
following format:

device=DeviceName devParam.Class.Subclass.Type:devParam.Class.Subclass:devParam.Class
AttributeName

For example:

device=en0 devParam.if.EN.en:devParam.if.EN:devParam.if tcp_recvspace
device=en0 devParam.if.EN.en:devParam.if.EN:devParam.if tcp_sendspace
device=ent0 devParam.adapter.vdevice.IBM,l-lan:devParam.adapter.vdevice:devParam.adapter
alt_addr
device=ent0 devParam.adapter.vdevice.IBM,l-lan:devParam.adapter.vdevice:devParam.adapter
chksum_offload

<Prereq> element
The <Prereq> element assigns a prerequisite to <Get>, <Set>, and <Discover> operations.

Syntax
Parent element: <Get>, <Set>, and <Discover>

The following attribute is supported:

Table 46. Attribute

Attribute Required Type Description

id no string Specifies an unique
identifier

The following child elements are supported:

Table 47. Child elements

Child element Required Description

<Command> no Command

<Argument> no Command-line arguments

<Stdin> no Arguments supported by the <Stdin> element

<ErrMessage> no Message to print if prerequisites fail

Note: The <Command> element must be defined for each prerequisite: at the <ParameterDef> level, at
the <CfgMethod> level, or in a <PrereqDef> element.

110 AIX Version 7.2: Operating system management

Usage
Prereqs are commands that condition the processing of a <Get>, <Set>, and <Discover> operation
for parameters that use this <Get>, <Set>, and <Discover> operations. Parameters for which a prereq
command fails (nonzero return code) are ignored, and the error message defined in the prerequisite is
displayed.

The <Prereq> element assigns a prerequisite to the parent <Get>, <Set>, or <Discover> operation.
The prerequisite is either defined locally under the <Prereq> element, or inherited from a higer-level
<Prereq> or <PrereqDef> element that has a matching id attribute.

A parameter has all the prerequisites defined locally under the <ParameterDef> element. Also, the
prerequisite has the properties defined in the configuration method of the parameter, if a configuration
method is used. The consequence is that if a prerequisite is defined in a <CfgMethod> element, all the
<ParameterDef> elements that use the configuration method will automatically have that prerequisite
(although some of those elements might redefine the prerequisite locally).

The <Command>, <Argument>, <Stdin>, and <ErrMessage> elements that define a prerequisite for a
given operation are searched in this order:

• Under the <Prereq> subelement of the relevant operation of the <ParameterDef> element.
• If the <ParameterDef> element has a cfgmethod attribute, under the <Prereq> subelement that has a

matching id of the relevant operation of the configuration method.
• Under the <PrereqDef> element of the catalog that has a matching id.

Example
The following example defines a prerequisite that checks that the netaddr and netaddr6 parameters are
applied on the same system on which they were captured:

<ParameterDef name="netaddr" type="string" targetClass="device" cfgmethod="attr">
 <Set type="permanent">
 <Prereq>
 <Command>[[`/usr/bin/uname -f` = %p[nodeId]]]</Command>
 <ErrMessage>Parameter cannot be applied to a different node</ErrMessage>
 </Prereq>
 </Set>
</ParameterDef>

<ParameterDef name="netaddr6" type="string" targetClass="device" cfgmethod="attr">
 <Set type="permanent">
 <Prereq>
 <Command>[[`/usr/bin/uname -f` = %p[nodeId]]]</Command>
 <ErrMessage>Parameter cannot be applied to a different node</ErrMessage>
 </Prereq>
 </Set>
</ParameterDef>

In this example, the test is run twice: once for the netaddr parameter, and once for the netaddr6
parameter. This dual processing is because each parameter has its own prerequisite with its own
<Command> element. See , artex_catalog_elem_PrereqDef.dita for an example that requires only one
run of the test.

<PrereqDef> element
The <PrereqDef> element that can later be used in a <Prereq> element.

Syntax
Parent element: <Catalog>

The following attribute is supported:

Operating system management 111

Table 48. Attribute

Attribute Required Type Description

name yes string Specifies the name of
the property.

The following child elements are supported:

Table 49. Child elements

Child element Required Description

<Command> no Command

<Argument> no Command-line arguments

<Stdin> no Arguments that are supported by the <Stdin>
element

<ErrMessage> no Message to print if prerequisite fails

Note: The <Command> element must be defined for each prerequisite: at the <ParameterDef> level, at
the <CfgMethod> level, or in a <PrereqDef> element.

Usage
Prereq are commands that condition the run of the <Get>, <Set>, and <Discover> operations for
parameters that use the <Get>, <Set>, or <Discover> operation. Parameters for which a prereq
command fails (nonzero return code) are ignored, and the error message defined in the prerequisite
is displayed.

The <PrereqDef> element defines a prerequisite. This prerequisites can later be associated with an
operation of a parameter or a configuration method by using a <Prereq> element that has the same id
attribute.

Example
The following example defines the nodeId prerequisite and assigns it to the netaddr and netaddr6
parameters:

<PrereqDef id="nodeId">
 <Command>[[`/usr/bin/uname -f` = %p[nodeId]]]</Command>
 <ErrMessage>Parameter cannot be applied to a different node</ErrMessage>
</PrereqDef>

<ParameterDef name="netaddr" type="string" targetClass="device" cfgmethod="attr">
 <Set type="permanent">
 <Prereq id="nodeId"/>
 </Set>
 <Property name="nodeId"/>
</ParameterDef>

<ParameterDef name="netaddr6" type="string" targetClass="device" cfgmethod="attr">
 <Set type="permanent">
 <Prereq id="nodeId"/>
 </Set>
 <Property name="nodeId"/>
</ParameterDef>

In this example, the test is executed only once, because the two parameters use the same <Command>
element for their prerequisites, and the generated command line is the same for the two parameters.

112 AIX Version 7.2: Operating system management

<Property> element
The <Property > element assigns a property to a parameter or a configuration method.

Syntax
Parent element: <CfgMethod>, <ParameterDef>

The following attribute is supported:

Table 50. Attribute

Attribute Required Type Description

name yes string Specifies the name of
the property.

The following child elements are supported:

Table 51. Child element

Child element Required Description

<Command> no Command

<Argument> no Command-line arguments

<Stdin> no Arguments supported by the <Stdin> element

<Filter> no Filter

<Mask> no Output capturing mask

Note: The <Command> element must be defined for each property: at the <ParameterDef> level, at the
<CfgMethod> level, or in a <PropertyDef> element.

Usage
Properties are key-value pairs that are associated with a parameter. The value of the key-value pairs is
retrieved by the artexget –r and artexget –n commands and saved in the output profile. Property
values saved in a profile can be inserted into a command line by using the %p[property_name] sequence.

The <Property> element assigns a property to a parameter or to a configuration method. The property
is either defined locally under the <Property> element, or inherited from a higher-level <Property> or
<PropertyDef> element that has a matching name attribute.

A parameter has all the properties defined locally under the <ParameterDef> element. Also, the
parameter has all the properties defined under the parameters configuration method, if a configuration
method is used. The consequence is that if a property is defined under a <CfgMethod> element, all
the <ParameterDef> elements that use the configuration method will automatically have that property
(although some of them might redefine the property locally).

Property values are extracted from the output of a command line. The command line is built by combining
the <Command>, <Argument>, <Stdin>, and <Filter> elements as described in the Command line
generation section. You must use one of the following property values: the raw output of the command
line or the portion of the output that matches the mask, if a <Mask> element is specified.

The <Command>, <Argument>, <Stdin>, <Filter>, and <Mask> elements that define a property are
searched in this order:

• Under the <Property> element at the <ParameterDef> level.
• If the <ParameterDef> element has a cfgmethod attribute, under the configuration method of the

<Property> element that has a matching name attribute.
• Under the <PropertyDef> element of the catalog that has a matching name attribute.

Operating system management 113

Example
The following example assigns a nodeId property to the netaddr and netaddr6 parameters:

<ParameterDef name="netaddr" type="string" targetClass="device" cfgmethod="attr">
 <Property name="nodeId">
 <Command>/usr/bin/uname -f/<Command>
 <Mask>.*/<Mask>
 </Property>
</ParameterDef>

<ParameterDef name="netaddr6" type="string" targetClass="device" cfgmethod="attr">
 <Property name="nodeId">
 <Command>/usr/bin/uname -f</Command>
 <Mask>.*</Mask>
 </Property>
</ParameterDef>

In this example, the mask matches the whole line and is only used to exclude the newline character at the
end of the command output.

In this example, the uname command is run twice: once for the netaddr parameter, and once for the
netaddr6 parameter. The command is run twice because each parameter has its own property with its
own <Command> element. See artex_catalog_elem_PropertyDef.dita, for an example that requires only
one run of the uname command.

<PropertyDef> element
The <PropertyDef> element defines a property that can be used in a <Property> element.

Syntax
Parent element: <Catalog>

The following attribute is supported:

Table 52. Attribute

Attribute Required Type Description

name yes string Specifies the name of
the property.

The following child elements are supported:

Table 53. Child element

Child element Required Description

<Command> no Command

<Argument> no Command-line arguments

<Stdin> no Arguments supported by the <Stdin> elements

<Filter> no Filter

<Mask> no Output capturing mask

Note: The <Command> element must be defined for each property: at the <ParameterDef> level, at the
<CfgMethod> level, or in a <PropertyDef> element.

Usage
Properties are key-value pairs associated with a parameter. The value of the key-value pairs are retrieved
by the artexget –r and artexget –n commands and saved in the output profile. Property values
saved in a profile can be inserted into a command line by using the %p[property_name] sequence.

114 AIX Version 7.2: Operating system management

The <PropertyDef> element defines a property. This property can later be associated to a parameter or
configuration method by using a <Property> element that has the same name attribute.

Example
The following example assigns a nodeId property to the netaddr and netaddr6 parameters:

<PropertyDef name="nodeId">
 <Command>/usr/bin/uname -f</Command>
 <Mask>.*</Mask>
</PropertyDef>

<ParameterDef name="netaddr" type="string" targetClass="device" cfgmethod="attr">
 <Property name="nodeId"/>
</ParameterDef>

<ParameterDef name="netaddr6" type="string" targetClass="device" cfgmethod="attr">
 <Property name="nodeId"/>
</ParameterDef>

In this example, the uname command is run only once, because the two parameters use the same
<Command> element for their property, and the generated command line is the same for the two
parameters.

Command-line generation
The AIX Runtime Expert framework relies on external commands to capture, set and optionally compare
parameter values. This topic explains how command lines are built based on the syntax information
provided in the catalog files.

Operations
For each parameter, the following operations can be defined:

• Get type="current", used to capture the current value of the parameter.
• Get type="nextboot", used to capture the value the parameter that the parameter will have after a

reboot.
• Set type="current", used to set the current value of the parameter. This parameter value is lost upon

reboot.
• Set type="nextboot", used to set the value the parameter that the parameter will have after a reboot.
• Set type="permanent", used to set the current value of the parameter, knowing that this value will

persist after a reboot.
• diff operation, used to compare two values of the parameter.
• Discover operation, used to find targets for parameters that support them.
• Property, used to capture a property for a parameter.
• Prerequisite, used to condition the execution of a get, set, or discover operation for a given parameter.

Not all operations need to be defined for all parameters. The two get operations and all the set operations
supported by the parameters must be defined. The diff operation is optional, and if it is not defined,
comparisons between parameter values are done internally based on the parameter type, such as string,
and integer. The discover operation must be defined only for parameters that have targets. Properties and
prerequisites are only defined when needed.

Command line elements
For each operation supported by a parameter, up to five different elements can be used to define how a
command line can be built to perform the operation:

• <Command> element, used to define the base command, for handling parameters.
• <Stdin> element, used to define the data that will be written to the command line standard input.

Operating system management 115

• <Argument> element, used to insert parameter specific data into a <Command> or <Stdin> element.
• <Filter> element, used to filter the output a command line for the get and diff operations.
• <Mask> element, used to extract data from the output of a command line for the get, diff, and
property operations.

When an operation needs to be performed, the <Command>, <Stdin>, <Argument> and <Filter>
elements defined for the requested operation are combined together to generate a set of command
lines, as explained in the Command line generation algorithm topic. The generated command lines are
then run by a shell. For the get, diff, and property operations, the <Mask> element is used to extract
the requested data (parameter values, comparison results, or property values) from the command output.

Configuration methods
Command line elements can be defined locally inside a <ParameterDef> element, or inherited from a
<CfgMethod> element referenced in the <ParameterDef> element using the cfgmethod attribute.

Combination are permitted: the set of command line elements defined for a specific operation of a
specific parameter is the union of the command line elements defined locally under the <ParameterDef>
element, and the command line elements defined for the same operation in the <CfgMethod> element
referenced by the cfgmethod attribute of the <ParameterDef> element. If the same command line
element is defined both locally and in a configuration method, then the local definition takes precedence.

For example, in this non-optimized catalog file:

<CfgMethod id=”vmo”>
 <Get type=”nextboot”>
 <Command>/usr/sbin/vmo -r%a</Command>
 <Mask name="1" value="2">[[:space:]]*(.*) = (.*)</Mask>
 </Get>

 <Set type=”permanent”>
 <Command>/usr/sbin/vmo –p –o%a</Command>
 <Argument> -o %n=%p</Argument>
 </Set>

</CfgMethod>

<ParameterDef name=”lgpg_size” cfgmethod=”vmo”>
 <Get type=”current”>
 <Command>/usr/sbin/vmo -o lgpg_size</Command>
 <Mask name="1" value="2">[[:space:]]*(.*) = (.*)</Mask>
 </Get>

 <Get type=”nextboot”>
 <Argument> -o lgpg_size</Argument>
 </Get>

</ParameterDef>

We can see that:

• The <Get type="current"> operation is entirely defined at the <ParameterDef> level.
• The <Get type="nextboot"> operation has some elements defined at the <CfgMethod> level

(<Command> and <Mask>) and some elements defined at the <ParameterDef> level (<Argument>).
• The <Get type="current"> operation is entirely defined at the <CfgMethod> level.

Using a configuration method offers two main advantages:

• It simplifies the catalog. In many cases parameter definitions will inherit all their command line element
from a configuration method, and the <ParameterDef> element will be empty.

• It allows different parameters to be grouped together in a single command line, when possible.

Command line generation algorithm
Command lines are generated using an algorithm that allows several parameters to be grouped in a single
command.

116 AIX Version 7.2: Operating system management

Parameter grouping is not only desirable from a performance and efficiency standpoint it is also
necessary for certain parameters. For example, the vmo parameters lgpg_regions and lgpg_size, which
cannot be set independently and need to be set together in a single vmo command invocation.

The command line generation algorithm is functionally equivalent to the following steps:

1. Each parameter in the input profile has its <Command> and <Stdin> elements partially expanded.
During this phase, the %a, %v1[name], %v2[name], %f1[name] and %f2[name] sequences are ignored
and not expanded.

2. Parameters that verify all five conditions below are grouped together:

• Parameters use the same <Command> element.
• Parameters use the same <Stdin> element.
• Parameters use the same <Filter> element.
• The expansion of the <Command> element performed during step 1 produced identical strings.
• The expansion of their <Stdin> element performed during step 1 produced identical strings.

The group now has its own, partially expanded <Command> and <Stdin> elements and its own
<Filter> element, shared by all the parameters in the group.

3. For each group of parameters, the group <Command> and <Stdin> elements have the %v1[name],
%v2[name], %f1[name] and %f2[name] sequences expanded. Parameter name is only searched
within the group.

4. For each group of parameters, the group <Command> and <Stdin> elements have the %a
sequences expanded: each parameter in the group has its <Argument> element expanded, and
the concatenation of those expanded <Argument> elements replaces any %a sequence in the
<Command> and <Stdin> elements.

The result of this process is a set of command lines, with optionally data to write on their standard input
and a command to filter their output.

Expansion of command line elements
The <Command>, <Stdin> and <Argument> elements support special sequences that are expanded by
the AIX Runtime Expert framework to produce the final command lines.

The table below is a short reference of all the supported sequences. For more details on a sequence, refer
to the sections below.

Table 54. Sequence

Sequence Expands to

%% The literal % character.

%a The concatenation of the expanded Argument
strings for all parameters that can be processed in
the same command line.

%n The name of the parameter.

%v1 The value of the parameter.

%v2 The second value of the parameter. Only valid for
diff operations.

%f1 The name of the temporary file that will contain the
value of the parameter.

%f2 The name of the temporary file that will contain the
second value of the parameter. Only valid for diff
operations.

%v1[name] The value of parameter name.

Operating system management 117

Table 54. Sequence (continued)

Sequence Expands to

%v2[name] The second value of parameter name. Only valid for
diff operations.

%f1[name] The name of a temporary file that will contain the
value of the parameter name.

%f2[name] The name of a temporary file that will contain the
second value of parameter name. Only valid for
diff operations.

%t[class] The name of the target instance for the target
class.

%p[name] The value of property name.

%c The catalog id.

Escaping of % sequences
Parameter names, parameter values and target names that are expanded by the AIX Runtime Expert
are enclosed between single quotes when they are used inside a <Command> element or inside an
<Argument> element that is to be inserted (via the %a sequence) into a <Command> element. This is to
ensure that those strings will be passed to the shell as a single word, even if they include spaces or other
special characters. Additionally, any single quote character within the expanded expression is properly
escaped.

The catalog writers must be careful to not use the %n, %v1, %v2, %v1[name], %v2[name] or %t[class]
sequences inside a quoted string. If those sequences must be used within a string, the string must be
closed before the % sequence as shown in the following example:

echo "Parameter "%n" is set to "%v1

Failure to do so will result in incorrect command lines and is a security risk.

The %% sequence
The %% sequence expands to the literal % character.

For example, the string:

/bin/ps -aeF"%%a"

expands to the following string:

/bin/ps -aeF"%a"

The %a sequence
The %a sequence can be used either in the <Command> string, or in the <Stdin> string. It is substituted
with the concatenation of all the expanded <Argument> strings of all the parameters that can be treated
in the same command (see the Command line generation topic for a formal description on parameter
grouping).

For example, the following catalog (note that it could be simplified by using the %n sequence) :

<CfgMethod id=”vmo”>
 <Get type=”current”
 <Command>/usr/sbin/vmo%a</Command>
 </Get>

118 AIX Version 7.2: Operating system management

</CfgMethod>
<ParameterDef name=”lgpg_size” cfgmethod=”vmo”>
 <Get type=”current”>
 <Argument> -o lgpg_size</Argument>
 </Get>
</ParameterDef>
<ParameterDef name=”lgpg_regions” cfgmethod=”vmo”>
 <Get type=”current”>
 <Argument> -o lgpg_regions</Argument>
 </Get>
</ParameterDef>

And the following profile:

<Parameter name=”lgpg_size” />
<Parameter name=”lgpg_regions” />

will produce the following command line for the “get current” operation:

/usr/sbin/vmo –o lgpg_size –o lgpg_regions

The %n sequence
The %n sequence is substituted with the name of the parameter.

Using the %n sequence, the example from the %a section could be simplified as follows:

<CfgMethod id=”vmo”>
<Get type=”current”>
 <Command>/usr/sbin/vmo%a</Command>
 <Argument> -o %n</Argument>
</Get>
</CfgMethod>
<ParameterDef name=”lgpg_size” cfgmethod=”vmo” />
<ParameterDef name=”lgpg_regions” cfgmethod=”vmo” />

With the following profile:

<Parameter name=”lgpg_size” />
<Parameter name=”lgpg_regions” />

The following command line would be generated for the get current operation:

/usr/sbin/vmo –o ’lgpg_size’ –o ’lgpg_regions’

The %v1 and %v2 sequences
The %v1 sequence is substituted with the value of the parameter.

The %v2 sequence is only valid for <Diff> operations and is substituted with the second value of the
parameter.

For example, the following catalog:

<CfgMethod id=”vmo”>
 <Set type=”permanent”>
 <Command>/usr/sbin/vmo -p%a</Command>
 <Argument> -o %n=%v1</Argument>
 </Set>
</CfgMethod>
<ParameterDef name=”lgpg_size” cfgmethod=”vmo” />
<ParameterDef name=”lgpg_regions” cfgmethod=”vmo” />

with the following profile:

<Parameter name=”lgpg_size” value=”16M”/>
<Parameter name=”lgpg_regions” value=”128” />

Operating system management 119

would generate the following command line for the set permanent operation:

/usr/sbin/vmo –p –o ’lgpg_size’=’16M’ –o ’lgpg_regions’=’128’

The %f1 and %f2 sequences
The %f1 and %f2 sequences are substituted with the name of temporary file created before the
command is executed. The file content is the value of the parameter for %f1 and the second value of
the parameter for %f2. The %f2 sequence can only be used for <Diff> operations.

For example, the following catalog:

<ParameterDef name=”some_file”>
 <Diff>
 <Command>/usr/bin/diff %f1 %f2</Command>
 </Diff>
</ParameterDef>

When an artexdiff is performed between the two profiles including the same parameter with a different
value:

<Parameter name=”some_file” value=”foo” />
<Parameter name=”some_file” value=”bar” />

Then two temporary files /tmp/file1 and /tmp/file2 (actual file names will be different) containing
respectively the “foo” and “bar” strings will be created, and the following command will be executed:

/usr/bin/diff /tmp/file1 /tmp/file2

The %v1[name] and %v2[name] sequences
The %v1[name] sequence is substituted with the value of parameter name.

The %v2[name] sequence is only valid for <Diff> operations and is substituted with the second value of
parameter name.

Those sequences are useful when a configuration command accepts several parameters at the same
time, but require that some of them be placed in a particular position on the command line. This is the
case of the chcons command for example, which requires that the path to the console device or file
come last on the command line. Using the %v1[name] sequence, the chcons catalog could be written as
follows:

<CfgMethod id=”chcons”>
 <Set type=”nextboot”>
 <Command>/usr/sbin/chcons%a %v1[console_device]</Command>
 <Argument> -a %n=%v1</Argument>
 </Set>
</CfgMethod>
<ParameterDef name=”console_device” cfgmethod=”chcons” reboot=”true” />
<ParameterDef name=”console_logname” cfgmethod=”chcons” reboot=”true” />
<ParameterDef name=”console_logsize” cfgmethod=”chcons” reboot=”true” />

with the following profile:

<Parameter name=”console_device” value=”/dev/vty0”/>
<Parameter name=”console_logname” value=”/var/adm/ras/conslog” />
<Parameter name=”console_logverb” value=”9” />

This catalog would generate the following command line for the set nextboot operation:

/usr/sbin/chcons –a ’console_logname’=’/var/adm/ras/conslog’ –a ’console_logverb’=’9’ /dev/vty0

120 AIX Version 7.2: Operating system management

The %f1[name] and %f2[name] sequences
The %f1[name] and %f2[name] sequences are substituted with the name of temporary file created before
the command is executed. The file content is the value of parameter name for %f1[name] and the
second value of parameter name for %f2[name]. The %f2[name] sequence can only be used for <Diff>
operations.

The %t[class] sequences
The %t[class] sequence is substituted with the name of the target instance being treated for target class.

The %t[class] sequence is used for parameters that apply to a specific object, not to the whole system.
An example of this is the chuser command, whose parameters apply to a specific user (root, guest) for a
specific registry (files, LDAP). The catalog for the chuser command could be written as follows:

<CfgMethod id=”chuser”>
 <Set type=”permanent”>
<Command>/usr/bin/chuser –R %t[module]%a %t[user]</Command>
 <Argument> %n=%v1</Argument>
 </Set>
</CfgMethod>
<ParameterDef name=”shell” cfgmethod=”chuser” targetClass=”module,user”>
<ParameterDef name=”histsize” cfgmethod=”chuser” targetClass=”module,user” />

With the following profile, which sets the shell and histsize parameters for users adam and bob in the
LDAP and files registries:

<Parameter name=”shell” value=”/usr/bin/ksh”>
 <Target class=”module” instance=”LDAP” />
 <Target class=”user” instance=”adam” />
</Parameter>
<Parameter name=”histsize” value=”5000”>
 <Target class=”module” instance=”LDAP” />
 <Target class=”user” instance=”adam” />
</Parameter>
<Parameter name=”shell” value=”/usr/bin/ksh”>
 <Target class=”module” instance=”files” />
 <Target class=”user” instance=”adam” />
</Parameter>
<Parameter name=”histsize” value=”5000”>
 <Target class=”module” instance=”files” />
 <Target class=”user” instance=”adam” />
</Parameter>
<Parameter name=”shell” value=”/usr/bin/bash”>
 <Target class=”module” instance=”LDAP” />
 <Target class=”user” instance=”bob” />
</Parameter>
<Parameter name=”histsize” value=”10000”>
 <Target class=”module” instance=”LDAP” />
 <Target class=”user” instance=”bob” />
</Parameter>
<Parameter name=”shell” value=”/usr/bin/bash”>
 <Target class=”module” instance=”files” />
 <Target class=”user” instance=”bob” />
</Parameter>
<Parameter name=”histsize” value=”10000”>
 <Target class=”module” instance=”files” />
 <Target class=”user” instance=”bob” />
</Parameter>

It would execute the following commands:

/usr/bin/chuser –R ’LDAP’ ’shell’=’/usr/bin/ksh’ ’histsize’=’5000’ ’adam’
/usr/bin/chuser –R ’files’ ’shell’=’/usr/bin/ksh’ ’histsize’=’5000’ ’adam’
/usr/bin/chuser –R ’LDAP’ ’shell’=’/usr/bin/bash’ ’histsize’=’10000’ ’bob’
/usr/bin/chuser –R ’files’ ’shell’=’/usr/bin/bash’ ’histsize’=’10000’ ’bob’

Notice how four commands were generated. The reason is that the %t[module] and %t[user] sequences
were used in the <Command> string, meaning that each command is specific to a particular module and
user. Because of this, only parameters that apply to the same module and user are grouped together.

Operating system management 121

The %p[name] sequence
The %p[name] sequence is substituted with the value specified in the input profile for property name. For
example, the following prerequisite uses the %p[nodeId] sequence to check that the node id of the local
system (returned by the uname –f command) matches the node id stored in the nodeId property of the
profile:

<PrereqDef id="nodeId">
 <Command>[[`/usr/bin/uname -f` = %p[nodeId]]]</Command>
 <ErrMessage>Parameter cannot be applied to a different node</ErrMessage>
</PrereqDef>

The %c sequence
The %c sequence is substituted with the id of the catalog file that the parameter belongs to. This is the
catalog id specified in the profile, which can be different from the id of the catalog that actually defines
the parameter if catalog inheritance is used.

For example, the following prerequisite uses the %c sequence to check that the uniquetype of the target
device matches the name of the catalog file:

<PrereqDef id="devUniqueType">
 <Command>[["devParam.`/usr/sbin/lsdev -F uniquetype -l %t[device] | /usr/bin/tr / .`" =
%c]]</Command>
 <ErrMessage>Parameter cannot be applied to a different device type</ErrMessage>
</PrereqDef>

Commands and processes
A command is a request to perform an operation or run a program. A process is a program or command
that is actually running on the computer.

You use commands to tell the operating system what task you want it to perform. When commands
are entered, they are deciphered by a command interpreter (also known as a shell), and that task is
processed.

The operating system can run many different processes at the same time.

The operating system allows you to manipulate the input and output (I/O) of data to and from your system
by using specific I/O commands and symbols. You can control input by specifying the location from which
to gather data. For example, you can specify to read input entered on the keyboard (standard input) or to
read input from a file. You can control output by specifying where to display or store data. For example,
you can specify to write output data to the screen (standard output) or to write it to a file.

Commands
Some commands can be entered simply by typing one word. It is also possible to combine commands so
that the output from one command becomes the input for another command.

Combining commands so that the output from one command becomes the input for another command is
known as piping.

Flags further define the actions of commands. A flag is a modifier used with the command name on the
command line, usually preceded by a dash.

Commands can also be grouped together and stored in a file. These files are known as shell procedures
or shell scripts. Instead of executing the commands individually, you execute the file that contains the
commands.

To enter a command, type the command name at the prompt, and press Enter.

$ CommandName

122 AIX Version 7.2: Operating system management

Related concepts
Shell features
There are advantages to using the shell as an interface to the system.
Related tasks
Creating and running a shell script
A shell script is a file that contains one or more commands. Shell scripts provide an easy way to carry out
tedious commands, large or complicated sequences of commands, and routine tasks. When you enter the
name of a shell script file, the system executes the command sequence contained by the file.

Command syntax and command names
Although some commands can be entered by simply typing one word, other commands use flags and
parameters. Each command has a syntax that designates both the required and optional flags and
parameters.

The general format for a command is as follows:

CommandName flag(s) parameter(s)

The following are some general rules about commands:

• Spaces between commands, flags, and parameters are significant.
• Two commands can be entered on the same line by separating the commands with a semicolon (;). For

example:

$ CommandOne;CommandTwo

The shell runs the commands sequentially.
• Commands are case-sensitive. The shell distinguishes between uppercase and lowercase letters. To the

shell, print is not the same as PRINT or Print.
• A very long command can be entered on more than one line by using the backslash (\) character. A

backslash signifies line continuation to the shell. The following example is one command that spans two
lines:

$ ls Mail info temp \
(press Enter)

> diary
(the > prompt appears)

The > character is your secondary prompt ($ is the nonroot user's default primary prompt), indicating
that the current line is the continuation of the previous line. Note that csh (the C shell) gives no
secondary prompt, and the break must be at a word boundary, and its primary prompt is %.

The first word of every command is the command name. Some commands have only a command name.

Command flags
A number of flags might follow the command name. Flags modify the operation of a command and are
sometimes called options.

A flag is set off by spaces or tabs and usually starts with a dash (-). Exceptions are ps, tar, and ar, which
do not require a dash in front of some of the flags. For example, in the following command:

ls -a -F

ls is the command name, and -a -F are the flags.

When a command uses flags, they come directly after the command name. Single-character flags in a
command can be combined with one dash. For example, the previous command can also be written as
follows:

ls -aF

Operating system management 123

There are some circumstances when a parameter actually begins with a dash (-). In this case, use the
delimiter dash dash (—) before the parameter. The — tells the command that whatever follows is not a flag
but a parameter.

For example, if you want to create a directory named -tmp and you type the following command:

mkdir -tmp

The system displays an error message similar to the following:

mkdir: Not a recognized flag: t
Usage: mkdir [-p] [-m mode] Directory ...

The correct way of typing the command is as follows:

mkdir -- -tmp

Your new directory, -tmp, is now created.

Command parameters
After the command name, there might be a number of flags, followed by parameters. Parameters are
sometimes called arguments or operands. Parameters specify information that the command needs in
order to run.

If you do not specify a parameter, the command might assume a default value. For example, in the
following command:

ls -a temp

ls is the command name, -a is the flag, and temp is the parameter. This command displays all (-a) the
files in the directory temp.

In the following example:

ls -a

the default value is the current directory because no parameter is given.

In the following example:

ls temp mail

no flags are given, and temp and mail are parameters. In this case, temp and mail are two different
directory names. The ls command displays all but the hidden files in each of these directories.

Whenever a parameter or option-argument is, or contains, a numeric value, the number is interpreted
as a decimal integer, unless otherwise specified. Numerals in the range 0 to INT_MAX, as defined in
the /usr/include/sys/limits.h file, are syntactically recognized as numeric values.

If a command you want to use accepts negative numbers as parameters or option-arguments, you can
use numerals in the range INT_MIN to INT_MAX, both as defined in the /usr/include/sys/limits.h
file. This does not necessarily mean that all numbers within that range are semantically correct. Some
commands have a built-in specification permitting a smaller range of numbers, for example, some of
the print commands. If an error is generated, the error message lets you know the value is out of the
supported range, not that the command is syntactically incorrect.

Usage statements
Usage statements are a way to represent command syntax and consist of symbols such as brackets ([]),
braces ({ }), and vertical bars (|).

The following is a sample of a usage statement for the unget command:

unget [-rSID] [-s] [-n] File ...

The following conventions are used in the command usage statements:

124 AIX Version 7.2: Operating system management

• Items that must be entered literally on the command line are in bold. These items include the command
name, flags, and literal characters.

• Items representing variables that must be replaced by a name are in italics. These items include
parameters that follow flags and parameters that the command reads, such as Files and Directories.

• Parameters enclosed in brackets are optional.
• Parameters enclosed in braces are required.
• Parameters not enclosed in either brackets or braces are required.
• A vertical bar signifies that you choose only one parameter. For example, [a | b] indicates that you can

choose a, b, or nothing. Similarly, { a | b } indicates that you must choose either a or b.
• Ellipses (...) signify the parameter can be repeated on the command line.
• The dash (-) represents standard input.

Shutdown command
If you have root user authority, you can use the shutdown command to stop the system. If you are not
authorized to use the shutdown command, simply log out of the operating system and leave it running.

Attention: Do not turn off the system without first shutting down. Turning off the system ends all
processes running on the system. If other users are working on the system, or if jobs are running
in the background, data might be lost. Perform proper shutdown procedures before you stop the
system.

At the prompt, type the following:

shutdown

When the shutdown command completes and the operating system stops running, you receive the
following message:

....Shutdown completed....

See the shutdown command for the complete syntax.

Locating another command or program (whereis command)
The whereis command locates the source, binary, and manuals sections for specified files. The
command attempts to find the desired program from a list of standard locations.

See the following examples:

• To find files in the current directory that have no documentation, type the following:

whereis -m -u *

• To find all of the files that contain the name Mail, type the following:

whereis Mail

The system displays information similar to the following:

Mail: /usr/bin/Mail /usr/lib/Mail.rc

See the whereis command in the Commands Reference, Volume 6 for the complete syntax.

Displaying information about a command (man command)
The man command displays information on commands, subroutines, and files.

The general format for the man command is as follows:

man CommandName

Operating system management 125

To obtain information about the pg command, type the following:

man pg

The system displays information similar to the following:

 pg Command

 Purpose

 Formats files to the display.

 Syntax

 pg [- Number] [-c] [-e] [-f] [-n] [-p String]
 [-s] [+LineNumber | +/Pattern/] [File ...]

 Description

 The pg command reads a file name from the File parameter and
 writes the file to standard output one screen at a time. If you
 specify a - (dash) as the File parameter, or run the pg command
 without options, the pg command reads standard input. Each
 screen is followed by a prompt. If you press the Enter key,
 another page is displayed. Subcommands used with the pg command
 let you review or search in the file.

See the man command in the Commands Reference, Volume 3 for the complete syntax.

Displaying the function of a command (whatis command)
The whatis command looks up a given command, system call, library function, or special file name, as
specified by the Command parameter, from a database you create using the catman -w command.

For information about the catman -w command, see catman -w. The whatis command displays
the header line from the manual section. You can then issue the man command to obtain additional
information. For more information about the man command, see man.

The whatis command is equivalent to using the man -f command.

To find out what the ls command does, type the following:

whatis ls

The system displays information similar to the following:

ls(1) -Displays the contents of a directory.

See the whatis command in the Commands Reference, Volume 6 for the complete syntax.

Listing previously entered commands (history command)
Use the history command to list commands that you have previously entered.

The history command is a Korn shell built-in command that lists the last 16 commands entered.
The Korn shell saves commands that you entered to a command history file, usually named
$HOME/.sh_history. Using this command saves time when you need to repeat a previous command.

By default, the Korn shell saves the text of the last 128 commands for nonroot users and 512 commands
for the root user. The history file size (specified by the HISTSIZE environment variable) is not limited,
although a very large history file size can cause the Korn shell to start slowly.

Note: The Bourne shell does not support command history.

To list the previous commands you entered, at the prompt, type the following:

history

126 AIX Version 7.2: Operating system management

The history command entered by itself lists the previous 16 commands entered. The system displays
information similar to the following:

928 ls
929 mail
930 printenv MAILMSG
931 whereis Mail
932 whatis ls
933 cd /usr/include/sys
934 ls
935 man pg
936 cd
937 ls | pg
938 lscons
939 tty
940 ls *.txt
941 printenv MAILMSG
942 pwd
943 history

The listing first displays the position of the command in the $HOME/.sh_history file followed by the
command.

To list the previous five commands, at the prompt, type the following:

history -5

A listing similar to the following is displayed:

939 tty
940 ls *.txt
941 printenv MAILMSG
942 pwd
943 history
944 history -5

The history command followed by a number lists all the previous commands entered, starting at that
number.

To list the commands since 938, at the prompt, type the following:

history 938

A listing similar to the following is displayed:

938 lscons
939 tty
940 ls *.txt
941 printenv MAILMSG
942 pwd
943 history
944 history -5
945 history 938

Related concepts
Operating system shells
Your interface to the operating system is called a shell.
Command history substitution
Use the fc built-in command to list or edit portions of the history file. To select a portion of the file to edit
or list, specify the number or the first character or characters of the command.

Repeating commands using the r alias
Use the r Korn shell alias to repeat previous commands.

Type r, and press Enter, and you can specify the number or the first character or characters of the
command.

Operating system management 127

If you want to list the displays currently available on the system, type lsdisp at the prompt. The system
returns the information on the screen. If you want the same information returned to you again, at the
prompt, type the following:

r

The system runs the most recently entered command again. In this example, the lsdisp command runs.

To repeat the ls *.txt command, at the prompt, type the following:

r ls

The r Korn shell alias locates the most recent command that begins with the character or characters
specified.

String substitution using the r alias
You can use the r Korn shell alias to modify a command before it is run.

In this case, a substitution parameter of the form Old=new can be used to modify the command before it
is run.

The following examples show how to use the r alias:

• If command line 940 is ls *.txt, and you want to run ls *.exe, at the prompt, type the following:

r txt=exe 940

This runs command 940, substituting exe for txt.
• If the command on line 940 is the most recent command that starts with a lowercase letter l, you can

also type the following:

r txt=exe l

Note: Only the first occurrence of the Old string is replaced by the New string. Entering the r Korn shell
alias without a specific command number or character performs the substitution on the immediately
previous command entered.

Editing the command history
Use the fc Korn shell built-in command to list or edit portions of the command history file.

To select a portion of the file to edit or list, specify the number or the first character or characters of the
command. You can specify a single command or range of commands.

If you do not specify an editor program as an argument to the fc Korn shell built-in command, the editor
specified by the FCEDIT variable is used. If the FCEDIT variable is not defined, the /usr/bin/ed editor is
used. The edited command or commands are printed and run when you exit the editor. Use the printenv
command to display the value of the FCEDIT variable.

The following are examples of how to edit the command history:

• If you want to run the command:

cd /usr/tmp

which is very similar to command line 933, at the prompt, type the following:

fc 933

At this point, your default editor appears with the command line 933. Change include/sys to tmp,
and when you exit your editor, the edited command is run.

128 AIX Version 7.2: Operating system management

• You can also specify the editor you want to use in the fc command. For example, if you want to edit a
command using the /usr/bin/vi editor, at the prompt, type the following:

fc -e vi 933

At this point, the vi editor appears with the command line 933.
• You can also specify a range of commands to edit. For example, if you want to edit the commands 930

through 940, at the prompt, type the following:

fc 930 940

At this point, your default editor appears with the command lines 930 through 940. When you exit the
editor, all the commands that appear in your editor are run sequentially.

Creating a command alias (alias shell command)
An alias lets you create a shortcut name for a command, file name, or any shell text. By using aliases, you
save a lot of time when doing tasks you do frequently. You can create a command alias.

Use the alias Korn shell built-in command to define a word as an alias for some command. You can use
aliases to redefine built-in commands but not to redefine reserved words.

The first character of an alias name can be any printable character except the metacharacters. Any
remaining characters must be the same as for a valid file name.

The format for creating an alias is as follows:

alias Name=String

in which the Name parameter specifies the name of the alias, and the String parameter specifies a string
of characters. If String contains blank spaces, enclose it in quotation marks.

The following are examples how to create an alias:

• To create an alias for the command rm -i (prompts you before deleting files), at the prompt, type the
following:

alias rm="/usr/bin/rm -i"

In this example, whenever you enter the command rm, the actual command performed
is /usr/bin/rm -i.

• To create an alias named dir for the command ls -alF | pg (which displays detailed information of
all the files in the current directory, including the invisible files; marks executable files with an * and
directories with a /; and scrolls per screen), at the prompt, type the following:

alias dir="/usr/bin/ls -alF | pg"

In this example, whenever you enter the command dir, the actual command performed
is /usr/bin/ls -alF | pg.

• To display all the aliases you have, at the prompt, type the following:

alias

The system displays information similar to the following:

rm="/usr/bin/rm -i"
dir="/usr/bin/ls -alF | pg"

Related concepts
Command aliasing in the Korn shell or POSIX shell

Operating system management 129

The Korn shell, or POSIX shell, allows you to create aliases to customize commands.

International character support in text formatting
You can use text formatting commands to work with text composed of the international extended
character set used for European languages.

The international extended character set provides the characters and symbols used in many European
languages, as well as an ASCII subset composed of English-language characters, digits, and punctuation.

All characters in the European extended character set have ASCII forms. These forms can be used to
represent the extended characters in input, or the characters can be entered directly with a device such
as a keyboard that supports the European extended characters.

The following text-formatting commands support all international languages that use single-byte
characters. These commands are located in /usr/bin. (The commands identified with an asterisk (*)
support text processing for multibyte languages.

addbib* hyphen pic* pstext
checkmm ibm3812 ps4014 refer*
checknr* ibm3816 ps630 roffbib*
col* ibm5587G* psbanne soelim*
colcrt ibm5585H-T* psdit sortbib*
deroff* indxbib* psplot tbl*
enscript lookbib* psrev troff*
eqn* makedev* psroff vgrind
grap* neqn* psrv xpreview*
hplj nroff*

Text-formatting commands and macro packages not in the preceding list have not been enabled to
process international characters.

Related concepts
Multibyte character support in text formatting
Certain text formatting commands can be used to process text for multibyte languages.

Text formatting with extended single-byte characters
If your input device supports characters from the European-language extended character set, you can
enter them directly.

Otherwise, use the following ASCII escape sequence form to represent these characters:

The form \[N], where N is the 2- or 4-digit hexadecimal code for the character.

Note: The NCesc form \<xx> is no longer supported.

Text containing extended characters is output according to the formatting conventions of the language
in use. Characters that are not defined for the interface to a specific output device produce no output or
error indication.

Although the names of the requests, macro packages, and commands are based on English, most of them
can accept input (such as file names and parameters) containing characters in the European extended
character set.

For the nroff and troff commands and their preprocessors, the command input must be ASCII, or an
unrecoverable syntax error will result. International characters, either single-byte or multibyte, can be
entered when enclosed within quotation marks and within other text to be formatted. For example, using
macros from the pic command:

define foobar % SomeText %

After the define directive, the specified name, foobar, must be ASCII. However, the replacement text,
SomeText, can contain non-ASCII characters.

130 AIX Version 7.2: Operating system management

Multibyte character support in text formatting
Certain text formatting commands can be used to process text for multibyte languages.

These commands are identified with an asterisk (*) in the list under International character support in
text formatting. Text formatting commands not in the list have not been enabled to process international
characters.

If supported by your input device, multibyte characters can be entered directly. Otherwise, you can enter
any multibyte character in the ASCII form \[N], where N is the 2-, 4-, 6-, 7-, or 8-digit hexadecimal
encoding for the character.

Although the names of the requests, macros, and commands are based on English, most of them can
accept input (such as file names and parameters) containing any type of multibyte character.

If you are already familiar with using text-formatting commands with single-byte text, the following list
summarizes characteristics that are noteworthy or unique to the multibyte locales:

• Text is not hyphenated.
• Special format types are required for multibyte numerical output. Japanese format types are available.
• Text is output in horizontal lines, filled from left to right.
• Character spacing is constant, so characters automatically align in columns.
• Characters that are not defined for the interface to a specific output device produce no output or error

indication.

Related concepts
International character support in text formatting
You can use text formatting commands to work with text composed of the international extended
character set used for European languages.

Displaying a Calendar
You can write a calendar to standard output by using the cal command.

The Month parameter names the month for which you want the calendar. It can be a number from 1
through 12 for January through December, respectively. If no Month is specified, the cal command
defaults to the current month.

The Year parameter names the year for which you want the calendar. Because the cal command can
display a calendar for any year from 1 through 9999, type the full year rather than just the last two digits.
If no Year is specified, the cal command defaults to the present year.

The following are examples of how to use the cal command:

1. To display a calendar for February 2002 at your workstation, type:

cal 2 2002

2. Press Enter.
3. To print a calendar for the year 2002, type:

cal 2002 | qprt

4. Press Enter.

See the cal command in Commands Reference, Volume 1 for the complete syntax.

Displaying reminder messages
You can display a reminder message by reading a file named calendar. This file is created in your home
directory with the calendar command. The command writes to standard output any line in the file that
contains today's or tomorrow's date.

You can read a file named calendar, which you create in your home directory with the calendar
command. The command writes to standard output any line in the file that contains today's or tomorrow's
date.

Operating system management 131

The calendar command recognizes date formats such as Dec. 7 or 12/7. It also recognizes the special
character asterisk (*) when it is followed by a slash (/). It interprets */7, for example, as signifying the
seventh day of every month.

On Fridays, the calendar command writes all lines containing the dates for Friday, Saturday, Sunday,
and Monday. The command does not, however, recognize holidays. On holidays the command functions as
usual and gives only the next day's schedule.

Using a typical calendar file
A typical calendar file might look similar to the following:

*/25 - Prepare monthly report
Aug. 12 - Fly to Denver
aug 23 - board meeting
Martha out of town - 8/23, 8/24, 8/25
8/24 - Mail car payment
sat aug/25 - beach trip
August 27 - Meet with Simmons
August 28 - Meet with Wilson

To run the calendar command, type:

calendar

If today is Friday, August 24, the calendar command displays the following:

*/25 - Prepare monthly report
Martha out of town - 8/23, 8/24, 8/25
8/24 - Mail car payment
sat aug/25 - beach trip
August 27 - Meet with Simmons

Using a calendar file that contains an include statement
A calendar file that contains an include statement might look like the following:

#include </tmp/out>
1/21 -Annual review
1/21 -Weekly project meeting
1/22 *Meet with Harrison in Dallas*
Doctor's appointment - 1/23
1/23 -Vinh's wedding

To run the calendar command, type:

calendar

If today is Wednesday, January 21, the calendar command displays the following:

Jan.21 Goodbye party for David
Jan.22 Stockholder meeting in New York
1/21 -Annual review
1/21 -Weekly project meeting
1/22 *Meet with Harrison in Dallas*

The results of the calendar command indicate the /tmp/out file contained the following lines:

Jan.21 Goodbye party for David
Jan.22 Stockholder meeting in New York

See the calendar command in Commands Reference, Volume 1 for the complete syntax.

132 AIX Version 7.2: Operating system management

Factoring a Number
You can factor numbers with the factor command.

When called without specifying a value for the Number parameter, the factor command waits for you to
enter a positive number less than 1E14 (100,000,000,000,000). It then writes the prime factors of that
number to standard output. It displays each factor in order and the proper number of times if the same
factor is used more than once. To exit, enter 0 (zero) or any non-numeric character.

When called with an argument, the factor command determines the prime factors of the Number
parameter, writes the results to standard output, and exits.

The following is an example of how to calculate factors:

1. To calculate the prime factors of the number 123, type:

factor 123

2. Press Enter. The following displays:

123 3 41

See the factor command in Commands Reference, Volume 2 for the complete syntax.

Locating a command by keyword
You can display the man page sections that contain any of the given Keywords in their title by using the
apropos command.

The apropos command considers each word separately is not case-sensitive. Words that are part of
other words are also displayed. For example, when looking for the word compile, the apropos command
also finds all instances of the word compiler.

Note: The database containing the keywords is /usr/share/man/whatis, which must first be
generated with the catman -w command.

The apropos command is equivalent to using the man command with the -k option.

For example, to find the manual sections that contain the word password in their titles, run the following
command:

apropos password

See the apropos command in the Commands Reference, Volume 1 for the complete syntax.

Setting up a reminder to leave
You can have the system remind you to leave at a specified time with the leave command.

The leave command reminds you to leave at 5 minutes and 1 minute before the actual time, then again
at the specified time, and at every minute thereafter. When you log out, the leave command exits just
before it would have displayed the next message.

If you do not specify a time, the leave command prompts with the At what time do you need
to leave? message. A reply of newline causes the leave command to exit; otherwise, the reply is
assumed to be a time. This form is suitable for inclusion in a .login or .profile file.

Enter the time in the hhmm format. All times are converted to a 12-hour clock and assumed to relate to
the next 12 hours. You can use the + flag to set the number of hours and minutes from the current time for
the alarm to occur.

Note: The leave command ignores interrupt, quit, and terminate operations. To clear the leave
command, either log out or use the kill -9 command and provide the process ID.

For example, to remind yourself to leave at 3:45, type the following and press Enter:

leave 345

Operating system management 133

To remind yourself to leave in 20 minutes, type the following and press Enter:

leave +0020

Processes
A program or command that is actually running on the computer is referred to as a process.

Processes exist in parent-child hierarchies. A process started by a program or command is a parent
process; a child process is the product of the parent process. A parent process can have several child
processes, but a child process can have only one parent.

The system assigns a process identification number (PID number) to each process when it starts. If you
start the same program several times, it will have a different PID number each time.

When a process is started on a system, the process uses a part of the available system resources. When
more than one process is running, a scheduler that is built into the operating system gives each process
a share of the computer's time, based on established priorities. These priorities can be changed by using
the nice or renice commands.

Note: To change a process priority to a higher one, you must have root user authority. All users can lower
priorities on a process they start by using the nice command or on a process they have already started,
by using the renice command.

The following list describes the types of processes:

Foreground and background processes

Processes that require a user to start them or to interact with them are called foreground processes.
Processes that are run independently of a user are referred to as background processes. Programs
and commands run as foreground processes by default. To run a process in the background, place an
ampersand (&) at the end of the command name that you use to start the process.

Daemon processes

Daemons are processes that run unattended. They are constantly in the background and are available
at all times. Daemons are usually started when the system starts, and they run until the system stops.
A daemon process typically performs system services and is available at all times to more than one
task or user. Daemon processes are started by the root user or root shell and can be stopped only
by the root user. For example, the qdaemon process provides access to system resources such as
printers. Another common daemon is the sendmail daemon.

Zombie processes

A zombie process is a dead process that is no longer executing but is still recognized in the process
table (in other words, it has a PID number). It has no other system space allocated to it. Zombie
processes have been killed or have exited and continue to exist in the process table until the parent
process dies or the system is shut down and restarted. Zombie processes display as <defunct>
when listed by the ps command.

Process startup
You start a foreground process from a display station by either entering a program name or command
name at the system prompt.

After a foreground process has started, the process interacts with you at your display station until it is
complete. No other interaction (for example, entering another command) can take place at the display
station until the process is finished or you halt it.

A single user can run more than one process at a time, up to a default maximum of 40 processes per user.

Starting a process in the foreground

To start a process in the foreground, enter the name of the command with the appropriate parameters
and flags:

134 AIX Version 7.2: Operating system management

$ CommandName

Starting a process in the background

To run a process in the background, type the name of the command with the appropriate parameters
and flags, followed by an ampersand (&):

$ CommandName&

When a process is running in the background, you can perform additional tasks by entering other
commands at your display station.

Generally, background processes are most useful for commands that take a long time to run. However,
because they increase the total amount of work the processor is doing, background processes can
slow down the rest of the system.

Most processes direct their output to standard output, even when they run in the background.
Unless redirected, standard output goes to the display device. Because the output from a background
process can interfere with your other work on the system, it is usually good practice to redirect the
output of a background process to a file or a printer. You can then look at the output whenever you are
ready.

Note: Under certain circumstances, a process might generate its output in a different sequence when
run in the background than when run in the foreground. Programmers might want to use the fflush
subroutine to ensure that output occurs in the correct order regardless of whether the process runs in
foreground or background.

While a background process is running, you can check its status with the ps command.

Command to check the process status (ps command)
Any time the system is running, processes are also running. You can use the ps command to find out
which processes are running and display information about those processes.

The ps command has several flags that enable you to specify which processes to list and what
information to display about each process.

To show all processes running on your system, at the prompt, type the following:

ps -ef

The system displays information similar to the following:

 USER PID PPID C STIME TTY TIME CMD
 root 1 0 0 Jun 28 - 3:23 /etc/init
 root 1588 6963 0 Jun 28 - 0:02 /usr/etc/biod 6
 root 2280 1 0 Jun 28 - 1:39 /etc/syncd 60
 mary 2413 16998 2 07:57:30 - 0:05 aixterm
 mary 11632 16998 0 07:57:31 lft/1 0:01 xbiff
 mary 16260 2413 1 07:57:35 pts/1 0:00 /bin/ksh
 mary 16469 1 0 07:57:12 lft/1 0:00 ksh /usr/lpp/X11/bin/xinit
 mary 19402 16260 20 09:37:21 pts/1 0:00 ps -ef

The columns in the previous output are defined as follows:

Item Description

USER User login name

PID Process ID

PPID Parent process ID

C CPU utilization of process

STIME Start time of process

TTY Controlling workstation for the process

Operating system management 135

Item Description

TIME Total execution time for the process

CMD Command

In the previous example, the process ID for the ps -ef command is 19402. Its parent process ID is
16260, the /bin/ksh command.

If the listing is very long, the top portion scrolls off the screen. To display the listing one page (screen) at a
time, pipe the ps command to the pg command. At the prompt, type the following:

ps -ef | pg

To display status information of all processes running on your system, at the prompt, type the following:

ps gv

This form of the command lists a number of statistics for each active process. Output from this command
looks similar to the following:

 PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
 0 - A 0:44 7 8 8 xx 0 0 0.0 0.0 swapper
 1 - A 1:29 518 244 140 xx 21 24 0.1 1.0 /etc/init
 771 - A 1:22 0 16 16 xx 0 0 0.0 0.0 kproc
 1028 - A 0:00 10 16 8 xx 0 0 0.0 0.0 kproc
 1503 - A 0:33 127 16 8 xx 0 0 0.0 0.0 kproc
 1679 - A 1:03 282 192 12 32768 130 0 0.7 0.0 pcidossvr
 2089 - A 0:22 918 72 28 xx 1 4 0.0 0.0 /etc/sync
 2784 - A 0:00 9 16 8 xx 0 0 0.0 0.0 kproc
 2816 - A 5:59 6436 2664 616 8 852 156 0.4 4.0 /usr/lpp/
 3115 - A 0:27 955 264 128 xx 39 36 0.0 1.0 /usr/lib/
 3451 - A 0:00 0 16 8 xx 0 0 0.0 0.0 kproc
 3812 - A 0:00 21 128 12 32768 34 0 0.0 0.0 usr/lib/lpd/
 3970 - A 0:00 0 16 8 xx 0 0 0.0 0.0 kproc
 4267 - A 0:01 169 132 72 32768 16 16 0.0 0.0 /etc/sysl
 4514 lft/0 A 0:00 60 200 72 xx 39 60 0.0 0.0 /etc/gett
 4776 pts/3 A 0:02 250 108 280 8 303 268 0.0 2.0 -ksh
 5050 - A 0:09 1200 424 132 32768 243 56 0.0 1.0 /usr/sbin
 5322 - A 0:27 1299 156 192 xx 24 24 0.0 1.0 /etc/cron
 5590 - A 0:00 2 100 12 32768 11 0 0.0 0.0 /etc/writ
 5749 - A 0:00 0 208 12 xx 13 0 0.0 0.0 /usr/lpp/
 6111 - T 0:00 66 108 12 32768 47 0 0.0 0.0 /usr/lpp/

See the ps command in the Commands Reference, Volume 4 for the complete syntax.

Setting the initial priority of a process (nice command)
You can set the initial priority of a process to a value lower than the base scheduling priority.

To set the initial priority of a process to a value lower than the base scheduling priority, use the nice
command to start the process.

Note: To run a process at a higher priority than the base scheduling priority, you must have root user
authority.

To set the initial priority of a process, type the following:

nice -n Number CommandString

where Number is in the range of 0 to 39, with 39 being the lowest priority. The nice value is the decimal
value of the system-scheduling priority of a process. The higher the number, the lower the priority. If you
use zero, the process will run at its base scheduling priority. CommandString is the command and flags
and parameters you want to run.

See the nice command in the Commands Reference, Volume 4 for the complete syntax.

You can also use the smit nice command to perform this task.

136 AIX Version 7.2: Operating system management

Changing the priority of a running process (renice command)
You can change the scheduling priority of a running process to a value lower or higher than the base
scheduling priority by using the renice command from the command line. This command changes the
nice value of a process.

Note: To run a process at a higher priority or to change the priority for a process that you did not start, you
must have root user authority.

To change the priority of a running process, type the following:

renice Priority -p ProcessID

where Priority is a number in the range of -20 to 20. The higher the number, the lower the priority. If you
use zero, the process will run at its base scheduling priority. ProcessID is the PID for which you want to
change the priority.

You can also use the smit renice command to perform this task.

Foreground process cancellation
If you start a foreground process and then decide that you do not want it to finish, you can cancel it by
pressing INTERRUPT. This is usually Ctrl-C or Ctrl-Backspace.

Note: INTERRUPT (Ctrl-C) does not cancel background processes. To cancel a background process, you
must use the kill command.

Most simple commands run so quickly that they finish before you have time to cancel them. The examples
in this section, therefore, use a command that takes more than a few seconds to run: find / -type f.
This command displays the path names for all files on your system. You do not need to study the find
command in order to complete this section; it is used here simply to demonstrate how to work with
processes.

In the following example, the find command starts a process. After the process runs for a few seconds,
you can cancel it by pressing the INTERRUPT key:

$ find / -type f
/usr/sbin/acct/lastlogin
/usr/sbin/acct/prctmp
/usr/sbin/acct/prdaily
/usr/sbin/acct/runacct
/usr/sbin/acct/sdisk
/usr/sbin/acct/shutacct INTERRUPT (Ctrl-C)
$ _

The system returns the prompt to the screen. Now you can enter another command.

Related tasks
List of control key assignments for your terminal (stty command)
To display your terminal settings, use the stty command. Note especially which keys your terminal uses
for control keys.

Keyboard command to stop a foreground process
It is possible for a process to be stopped but not have its process ID (PID) removed from the process
table. You can stop a foreground process by pressing Ctrl-Z from the keyboard.

Note: Ctrl-Z works in the Korn shell (ksh) and C shell (csh), but not in the Bourne shell (bsh).

Restarting a stopped process
This procedure describes how to restart a process that has been stopped with a Ctrl-Z.

Note: Ctrl-Z works in the Korn shell (ksh) and C shell (csh), but not in the Bourne shell (bsh). To restart a
stopped process, you must either be the user who started the process or have root user authority.

1. To show all the processes running or stopped but not those killed on your system, type the following:

ps -ef

Operating system management 137

You might want to pipe this command through a grep command to restrict the list to those processes
most likely to be the one you want to restart. For example, if you want to restart a vi session, you
could type the following:

ps -ef | grep vi

This command would display only those lines from the ps command output that contained the word
vi. The output would look something like this:

UID PID PPID C STIME TTY TIME COMMAND
root 1234 13682 0 00:59:53 - 0:01 vi test
root 14277 13682 1 01:00:34 - 0:00 grep vi

2. In the ps command output, find the process you want to restart and note its PID number. In the
example, the PID is 1234.

3. To send the CONTINUE signal to the stopped process, type the following:

kill -19 1234

Substitute the PID of your process for the 1234. The -19 indicates the CONTINUE signal. This
command restarts the process in the background. If the process can run in the background, you are
finished with the procedure. If the process must run in the foreground (as a vi session would), you
must proceed with the next step.

4. To bring the process in to the foreground, type the following:

fg 1234

Once again, substitute the PID of your process for the 1234. Your process should now be running in
the foreground. (You are now in your vi edit session).

Scheduling a process for later operation
You can set up a process as a batch process to run in the background at a scheduled time.

The at and smit commands let you enter the names of commands to be run at a later time and allow you
to specify when the commands should be run.

Note: The /var/adm/cron/at.allow and /var/adm/cron/at.deny files control whether you can
use the at command. A person with root user authority can create, edit, or delete these files. Entries in
these files are user login names with one name to a line. The following is an example of an at.allow file:

root
nick
dee
sarah

If the at.allow file exists, only users whose login names are listed in it can use the at command. A
system administrator can explicitly stop a user from using the at command by listing the user's login
name, in the at.deny file. If only the at.deny file exists, any user whose name does not appear in the
file can use the at command.

You cannot use the at command if any one of the following is true:

• The at.allow file and the at.deny file do not exist (allows root user only).
• The at.allow file exists but the user's login name is not listed in it.
• The at.deny file exists and the user's login name is listed in it.

If the at.allow file does not exist and the at.deny file does not exist or is empty, only someone with
root user authority can submit a job with the at command.

The at command syntax allows you to specify a date string, a time and day string, or an increment string
for when you want the process to run. It also allows you to specify which shell or queue to use. The
following examples show some typical uses of the command.

138 AIX Version 7.2: Operating system management

For example, if your login name is joyce and you have a script named WorkReport that you want to run
at midnight, do the following:

1. Type the time you want the program to start running:

at midnight

2. Type the names of the programs to run, pressing Enter after each name. After typing the surname,
press the end-of-file character (Ctrl-D) to signal the end of the list.

WorkReport^D

After you press Ctrl-D, the system displays information similar to the following:

job joyce.741502800.a at Fri Jul 6 00:00:00 CDT 2002.

The program WorkReport is given the job number joyce.741502800.a and will run at midnight,
July 6.

3. To list the programs you have sent to be run later, type the following:

at -l

The system displays information similar to the following:

joyce.741502800.a Fri Jul 6 00:00:00 CDT 2002

See the at command for the complete syntax.

Related tasks
Listing all scheduled processes (at or atq command)
Use the -l flag with the at command or with the atq command to list all scheduled processes.
Removing a process from the schedule
You can remove a scheduled process with the at command using the -r flag.

Listing all scheduled processes (at or atq command)
Use the -l flag with the at command or with the atq command to list all scheduled processes.

Both commands give the same output; however, the atq command can order the processes in the same
amount of time that the at command is issued and displays only the number of processes in the queue.

You can list all scheduled processes in the following ways:

• With the at command from the command line
• With the atq command

at command

To list the scheduled processes, type the following:

at -l

This command lists all the scheduled processes in your queue. If you are a root user, this command
lists all the scheduled processes for all users. For complete details of the syntax, see the at
command.

atq command

See the following examples on how to use the atq command:

• To list all scheduled processes in the queue, type the following:

atq

• If you are a root user, you can list the scheduled processes in a particular user's queue by typing:

Operating system management 139

atq UserName

• To list the number of scheduled processes in the queue, type the following:

atq -n

Related tasks
Scheduling a process for later operation
You can set up a process as a batch process to run in the background at a scheduled time.
Removing a process from the schedule
You can remove a scheduled process with the at command using the -r flag.

Removing a process from the schedule
You can remove a scheduled process with the at command using the -r flag.

See the following example on how to use the at or atq command:

1. To remove a scheduled process, you must know its process number.
You can obtain the process number by using the at -l command or the atq command.

2. When you know the number of the process you want to remove, type the following:

at -r ProcessNumber

You can also use the smit rmat command to perform this task.

Related tasks
Listing all scheduled processes (at or atq command)
Use the -l flag with the at command or with the atq command to list all scheduled processes.
Scheduling a process for later operation
You can set up a process as a batch process to run in the background at a scheduled time.

Removing a background process (kill command)
If INTERRUPT does not halt your foreground process or if you decide, after starting a background process,
that you do not want the process to finish, you can cancel the process with the kill command.

Before you can cancel a process using the kill command, you must know its PID number. The general
format for the kill command is as follows:

kill ProcessID

Note:

• To remove a process, you must have root user authority or be the user who started the process. The
default signal to a process from the kill command is -15 (SIGTERM).

• To remove a zombie process, you must remove its parent process.

1. Use the ps command to determine the process ID of the process you want to remove. You might want
to pipe this command through a grep command to list only the process you want. For example, if you
want the process ID of a vi session, you could type the following:

ps -l | grep vi

2. In the following example, you issue the find command to run in the background. You then decide to
cancel the process. Issue the ps command to list the PID numbers.

$ find / -type f > dir.paths &
[1] 21593
$ ps
 PID TTY TIME COMMAND
 1627 pts3 0:00 ps
 5461 pts3 0:00 ksh
 17565 pts3 0:00 -ksh
 21593 pts3 0:00 find / -type f

140 AIX Version 7.2: Operating system management

$ kill 21593
$ ps
 PID TTY TIME COMMAND
 1627 pts3 0:00 ps
 5461 pts3 0:00 ksh
 17565 pts3 0:00 -ksh
[1] + Terminated 21593 find / -type f > dir.paths &

The command kill 21593 ends the background find process, and the second ps command returns
no status information about PID 21593. The system does not display the termination message until
you enter your next command, unless that command is cd.

The kill command lets you cancel background processes. You might want to do this if you realize
that you have mistakenly put a process in the background or that a process is taking too long to run.

See the kill command in the Commands Reference, Volume 3 for the complete syntax.

The kill command can also used in smit by typing:

smit kill

Command summary for commands and processes
The following are commands for commands and processes.

Table 55. Command summary for commands

Item Description

alias Shell command that prints a list of aliases to standard output

history Shell command that displays the history event list

man Displays information about commands, subroutines, and files online

whatis Describes the function a command performs

whereis Locates the source, binary, or manual for installed programs

Table 56. Command summary for processes

Item Description

at Runs commands at a later time, lists all scheduled processes, or removes a process from
the schedule

atq Displays the queue of jobs waiting to be run

kill Sends a signal to running processes

nice Runs a command at a lower or higher priority

ps Shows current status of processes

renice Alters priority of running processes

Managing system hang
System hang management allows users to run mission-critical applications continuously while improving
application availability. System hang detection alerts the system administrator of possible problems and
then allows the administrator to log in as root or to reboot the system to resolve the problem.

shconf command

The shconf command is invoked when System Hang Detection is enabled. The shconf command
configures which events are surveyed and what actions are to be taken if such events occur. You can
specify any of the following actions, the priority level to check, the time out while no process or thread

Operating system management 141

executes at a lower or equal priority, the terminal device for the warning action, and the getty command
action:

• Log an error in errlog file
• Display a warning message on the system console (alphanumeric console) or on a specified TTY
• Reboot the system
• Give a special getty to allow the user to log in as root and launch commands
• Launch a command

For the Launch a command and Give a special getty options, system hang detection launches the special
getty command or the specified command at the highest priority. The special getty command prints
a warning message that it is a recovering getty running at priority 0. The following table captures the
various actions and the associated default parameters for priority hang detection. Only one action is
enabled for each type of detection.

Option Enablement Priority Timeout (seconds)

Log an error in errlog file disabled 60 120

Display a warning message disabled 60 120

Give a recovering getty enabled 60 120

Launch a command disabled 60 120

Reboot the system disabled 39 300

Note: When Launch a recovering getty on a console is enabled, the shconf command adds the -u flag
to the getty command in the inittab that is associated with the console login.

For lost IO detection, you can set the time out value and enable the following actions:

Option Enablement

Display a warning message disabled

Reboot the system disabled

shdaemon daemon

The shdaemon daemon is a process that is launched by init and runs at priority 0 (zero). It is in charge
of handling system hang detection by retrieving configuration information, initiating working structures,
and starting detection times set by the user.

Related concepts
Priority hang detection
AIX can detect system hang conditions and try to recover from such situations, based on user-defined
actions.
Lost I/O hang detection
AIX can detect system hang conditions and try to recover from such situations, based on user-defined
actions.

Configuring system hang detection
You can manage the system hang detection configuration from the SMIT management tool.

SMIT menu options allow you to enable or disable the detection mechanism, display the current state
of the feature, and change or show the current configuration. The fast paths for system hang detection
menus are:
smit shd

Manage System Hang Detection

142 AIX Version 7.2: Operating system management

smit shstatus
System Hang Detection Status

smit shpriocfg
Change/Show Characteristics of Priority Problem Detection

smit shreset
Restore Default Priority Problem Configuration

smit shliocfg
Change/Show Characteristics of Lost I/O Detection

smit shlioreset
Restore Default Lost I/O Detection Configuration

You can also manage system hang detection using the shconf command.

Priority hang detection
AIX can detect system hang conditions and try to recover from such situations, based on user-defined
actions.

All processes (also known as threads) run at a priority. This priority is numerically inverted in the range
0-126. Zero is highest priority and 126 is the lowest priority. The default priority for all threads is 60. The
priority of a process can be lowered by any user with the nice command. Anyone with root authority can
also raise a process's priority.

The kernel scheduler always picks the highest priority runnable thread to put on a CPU. It is therefore
possible for a sufficient number of high priority threads to completely tie up the machine such that low
priority threads can never run. If the running threads are at a priority higher than the default of 60, this
can lock out all normal shells and logins to the point where the system appears hung.

The System Hang Detection feature provides a mechanism to detect this situation and allow the system
administrator a means to recover. This feature is implemented as a daemon (shdaemon) that runs at the
highest process priority. This daemon queries the kernel for the lowest priority thread run over a specified
interval. If the priority is above a configured threshold, the daemon can take one of several actions. Each
of these actions can be independently enabled, and each can be configured to trigger at any priority and
over any time interval. The actions and their defaults are:

 Action Default Default Default Default
 Enabled Priority Timeout Device

1) Log an error no 60 2
2) Console message no 60 2 /dev/console
3) High priority yes 60 2 /dev/tty0
 login shell
4) Run a command at no 60 2
 high priority
5) Crash and reboot no 39 5

Related concepts
Managing system hang
System hang management allows users to run mission-critical applications continuously while improving
application availability. System hang detection alerts the system administrator of possible problems and
then allows the administrator to log in as root or to reboot the system to resolve the problem.

Lost I/O hang detection
AIX can detect system hang conditions and try to recover from such situations, based on user-defined
actions.

Because of I/O errors, the I/O path can become blocked and further I/O on that path is affected. In these
circumstances it is essential that the operating system alert the user and execute user defined actions.
As part of the Lost I/O detection and notification, the shdaemon, with the help of the Logical Volume
Manager, monitors the I/O buffers over a period of time and checks whether any I/O is pending for too
long a period of time. If the wait time exceeds the threshold wait time defined by the shconf file, a lost

Operating system management 143

I/O is detected and further actions are taken. The information about the lost I/O is documented in the
error log. Also based on the settings in the shconf file, the system might be rebooted to recover from the
lost I/O situation.

For lost I/O detection, you can set the time out value and also enable the following actions:

Action Default Enabled Default Device

Console message no /dev/console

Crash and reboot no -

For more information on system hang detection, see “Managing system hang ” on page 141.

Related concepts
Managing system hang
System hang management allows users to run mission-critical applications continuously while improving
application availability. System hang detection alerts the system administrator of possible problems and
then allows the administrator to log in as root or to reboot the system to resolve the problem.

Process management
The process is the entity that the operating system uses to control the use of system resources. Threads
can control processor-time consumption, but most system management tools still require you to refer to
the process in which a thread is running, rather than to the thread itself.

Tools are available to:

• Observe the creation, cancellation, identity, and resource consumption of processes

– The ps command is used to report process IDs, users, CPU-time consumption, and other attributes.
– The who -u command reports the shell process ID of logged-on users.
– The svmon command is used to report process real-memory consumption. (See Performance Toolbox

Version 3: Guide and Reference for information on the svmon command.)
– The acct command mechanism writes records at process termination summarizing the process's

resource use.
• Control the priority level at which a process contends for the CPU.

– The nice command causes a command to be run with a specified process priority.
– The renice command changes the priority of a given process.

• Terminate processes that are out of control.

– The kill command sends a termination signal to one or more processes.

Process monitoring
You, as the system administrator, can manage processes.

The ps command is the primary tool for observing the processes in the system. Most of the flags of the ps
command fall into one of two categories:

• Flags that specify which types of processes to include in the output
• Flags that specify which attributes of those processes are to be displayed

The most widely useful variants of ps for system-management purposes are:

Item Description

ps -ef Lists all nonkernel processes, with the userid, process ID, recent CPU usage, total
CPU usage, and the command that started the process (including its parameters).

144 AIX Version 7.2: Operating system management

Item Description

ps -fu UserID Lists all of the processes owned by UserID, with the process ID, recent CPU
usage, total CPU usage, and the command that started the process (including its
parameters).

To identify the current heaviest users of CPU time, you could enter:

ps -ef | egrep -v "STIME|$LOGNAME" | sort +3 -r | head -n 15

This command lists, in descending order, the 15 most CPU-intensive processes other than those owned
by you.

For more specialized uses, the following two tables are intended to simplify the task of choosing ps flags
by summarizing the effects of the flags.

Process-Specifying Flags

 -A -a -d -e -G -g -k -p -t -U -u a g t x

All
processes

Y - - - - - - - - - Y - -

Not
processes
group
leaders and
not
associated
with a
terminal

- Y - - - - - - - - - - -

Not process
group
leaders

- - Y - - - - - - - - - -

Not kernel
processes

- - - Y - - - - - - - - -

Members of
specified-
process
groups

- - - - Y - - - - - - - -

Kernel
processes

- - - - - Y - - - - - - -

Those
specified in
process
number list

- - - - - - Y - - - - - -

Those
associated
with tty(s) in
the list

- - - - - - - Y (n
ttys)

- - - Y (1
tty)

-

Specified
user
processes

- - - - - - - - Y - - - -

Operating system management 145

Process-Specifying Flags (continued)

 -A -a -d -e -G -g -k -p -t -U -u a g t x

Processes
with
terminals

- - - - - - - - - Y - - -

Not
associated
with a tty

- - - - - - - - - - - - Y

Column-Selecting Flags

Default1 -f -l -U
-u

Default2 e l s u v

PID Y Y Y Y Y Y Y Y Y Y

TTY Y Y Y Y Y Y Y Y Y Y

TIME Y Y Y Y Y Y Y Y Y Y

CMD Y Y Y Y Y Y Y Y Y Y

USER - Y - - - - - - Y -

UID - - Y Y - - Y - - -

PPID - Y Y - - - Y - - -

C - Y Y - - - Y - - -

STIME - Y - - - - - - Y -

F - - Y - - - - - - -

S/STAT - - Y - Y Y Y Y Y Y

PIR - - Y - - - Y - - -

NI/NICE - - Y - - - Y - - -

ADDR - - Y - - - Y - - -

SIZE - - - - - - - - Y -

SZ - Y - - - Y - Y - -

WCHAN - - Y - - - Y - - -

RSS - - - - - - Y - Y Y

SSIZ - - - - - - - Y - -

%CPU - - - - - - - - Y Y

%MEM - - - - - - - - Y Y

PGIN - - - - - - - - - Y

LIM - - - - - - - - - Y

TSIZ - - - - - - - - - Y

TRS - - - - - - - - - Y

Environment (following the
command)

- - - - - Y - - - -

146 AIX Version 7.2: Operating system management

If ps is given with no flags or with a process-specifying flag that begins with a minus sign, the columns
displayed are those shown for Default1. If the command is given with a process-specifying flag that does
not begin with minus, Default2 columns are displayed. The -u or -U flag is both a process-specifying and
column-selecting flag.

The following are brief descriptions of the contents of the columns:

Item Description

PID Process ID

TTY Terminal or pseudo-terminal associated with the process

TIME Cumulative CPU time consumed, in minutes and seconds

CMD Command the process is running

USER Login name of the user to whom the process belongs

UID Numeric user ID of the user to whom the process belongs

PPID ID of the parent process of this process

C Recently used CPU time

STIME Time the process started, if less than 24 hours. Otherwise the date the process is
started

F Eight-character hexadecimal value describing the flags associated with the process
(see the detailed description of the ps command)

S/STAT Status of the process (see the detailed description of the ps command)

PRI Current priority value of the process

NI/NICE Nice value for the process

ADDR Segment number of the process stack

SIZE (-v flag) The virtual size of the data section of the process (in kilobytes)

SZ (-l and l flags) The size in kilobytes of the core image of the process.

WCHAN Event on which the process is waiting

RSS Sum of the numbers of working-segment and code-segment pages in memory times
4

SSIZ Size of the kernel stack

%CPU Percentage of time since the process started that it was using the CPU

%MEM Nominally, the percentage of real memory being used by the process, this measure
does not correlate with any other memory statistics

PGIN Number of page ins caused by page faults. Since all I/O is classified as page faults,
this is basically a measure of I/O volume

LIM Always xx

TSIZ Size of the text section of the executable file

TRS Number of code-segment pages times 4

Environment Value of all the environment variables for the process

Process priority alteration
Basically, if you have identified a process that is using too much CPU time, you can reduce its effective
priority by increasing its nice value with the renice command.

For example:

Operating system management 147

renice +5 ProcID

The nice value of the ProcID's would increase process from the normal 20 of a foreground process to 25.
You must have root authority to reset the process ProcID's nice value to 20. Type:

renice -5 ProcID

Process termination
Normally, you use the kill command to end a process.

The kill command sends a signal to the designated process. Depending on the type of signal and the
nature of the program that is running in the process, the process might end or might keep running. The
signals you send are:

Item Description

SIGTERM (signal 15) is a request to the program to terminate. If the program has a signal handler for
SIGTERM that does not actually terminate the application, this kill may have no effect.
This is the default signal sent by kill.

SIGKILL (signal 9) is a directive to kill the process immediately. This signal cannot be caught or
ignored.

It is typically better to issue SIGTERM rather than SIGKILL. If the program has a handler for SIGTERM, it
can clean up and terminate in an orderly fashion. Type:

kill -term ProcessID

(The -term could be omitted.) If the process does not respond to the SIGTERM, type:

kill -kill ProcessID

You might notice occasional defunct processes, also called zombies, in your process table. These
processes are no longer executing, have no system space allocated, but still retain their PID number.
You can recognize a zombie process in the process table because it displays <defunct> in the CMD
column. For example:

 UID PID PPID C STIME TTY TIME CMD
 .
 .
 .
 lee 22392 20682 0 Jul 10 - 0:05 xclock
 lee 22536 21188 0 Jul 10 pts/0 0:00 /bin/ksh
 lee 22918 24334 0 Jul 10 pts/1 0:00 /bin/ksh
 lee 23526 22536 22 0:00 <defunct>
 lee 24334 20682 0 Jul 10 ? 0:00 aixterm
 lee 24700 1 0 Jul 16 ? 0:00 aixterm
root 25394 26792 2 Jul 16 pts/2 0:00 ksh
 lee 26070 24700 0 Jul 16 pts/3 0:00 /bin/ksh
 lee 26792 20082 0 Jul 10 pts/2 0:00 /bin/ksh
root 27024 25394 2 17:10:44 pts/2 0:00 ps -ef

Zombie processes continue to exist in the process table until the parent process dies or the system is shut
down and restarted. In the example shown above, the parent process (PPID) is the ksh command. When
the Korn shell is exited, the defunct process is removed from the process table.

Sometimes a number of these defunct processes collect in your process table because an application has
forked several child processes and has not exited. If this becomes a problem, the simplest solution is to
modify the application so its sigaction subroutine ignores the SIGCHLD signal.

Related information
sigaction command

148 AIX Version 7.2: Operating system management

Binding or unbinding a process
You can bind a process to a processor or unbind a previously bound process.

You must have root user authority to bind or unbind a process you do not own.

On multiprocessor systems, you can bind a process to a processor or unbind a previously bound process
from:

• SMIT
• command line

Note: While binding a process to a processor might lead to improved performance for the bound
process (by decreasing hardware-cache misses), overuse of this facility could cause individual
processors to become overloaded while other processors are under used. The resulting bottlenecks
could reduce overall throughput and performance. During normal operations, it is better to let the
operating system assign processes to processors automatically, distributing system load across all
processors. Bind only those processes that you know can benefit from being run on a single processor.

Binding or Unbinding a Process Tasks

Task SMIT Fast Path Command or File

Binding a Process smit bindproc bindprocessor -q

Unbinding a Process smit ubindproc bindprocessor -u

Fixes for stalled or unwanted processes
Stalled or unwanted processes can cause problems with your terminal. Some problems produce
messages on your screen that give information about possible causes.

To perform the following procedures, you must have either a second terminal, a modem, or a network
login. If you do not have any of these, fix the terminal problem by rebooting your machine.

Choose the appropriate procedure for fixing your terminal problem:

Freeing a terminal taken over by processes
You can stop stalled or unwanted process.

Identify and stop stalled or unwanted processes by doing the following:

1. Determine the active processes running on the screen by typing the following ps command:

ps -ef | pg

The ps command shows the process status. The -e flag writes information about all processes (except
kernel processes), and the f flag generates a full listing of processes including what the command
name and parameters were when the process was created. The pg command limits output to a single
page at a time, so information does not quickly scroll off the screen.

Suspicious processes include system or user processes that use up excessive amounts of a system
resource such as CPU or disk space. System processes such as sendmail, routed, and lpd frequently
become runaways. Use the ps -u command to check CPU usage.

2. Determine who is running processes on this machine by using the who command:

who

The who command displays information about all users currently on this system, such as login name,
workstation name, date, and time of login.

3. Determine if you need to stop, suspend, or change the priority of a user process.

Note: You must have root authority to stop processes other than your own. If you terminate or change
the priority of a user process, contact the process owner and explain what you have done.

Operating system management 149

• Stop the process using the kill command. For example:

kill 1883

The kill command sends a signal to a running process. To stop a process, specify the process
ID (PID), which is 1883 in this example. Use the ps command to determine the PID number of
commands.

• Suspend the process and run it in the background by using the ampersand (&). For example:

/u/bin1/prog1 &

The & signals that you want this process to run in the background. In a background process, the
shell does not wait for the command to complete before returning the shell prompt. When a process
requires more than a few seconds to complete, run the command in background by typing an & at
the end of the command line. Jobs running in the background appear in the normal ps command.

• Change the priority of the processes that have taken over by using the following renice command:

renice 20 1883

The renice command alters the scheduling priority of one or more running processes. The higher
the number, the lower the priority with 20 being the lowest priority.

In the previous example, renice reschedules process number 1883 to the lowest priority. It will run
when there is a small amount of unused processor time available.

Responding to screen messages
Use this procedure to respond to and recover from screen messages.

1. Make sure the DISPLAY environment variable is set correctly. Use either of the following methods to
check the DISPLAY environment:

• Use the setsenv command to display the environment variables.

setsenv

The setsenv command displays the protected state environment when you logged in.

Determine if the DISPLAY variable has been set. In the following example, the DISPLAY variable
does not appear, which indicates that the DISPLAY variable is not set to a specific value.

SYSENVIRON:
NAME=casey
TTY=/dev/pts/5
LOGNAME=casey
LOGIN=casey

OR
• Change the value of the DISPLAY variable. For example, to set it to the machine named bastet and

terminal 0, enter:

DISPLAY=bastet:0
export DISPLAY

If not specifically set, the DISPLAY environment variable defaults to unix:0 (the console). The
value of the variable is in the format name:number where name is the host name of a particular
machine, and number is the X server number on the named system.

2. Reset the terminal to its defaults using the following stty command:

stty sane

150 AIX Version 7.2: Operating system management

The stty sane command restores the “sanity” of the terminal drivers. The command outputs an
appropriate terminal resetting code from the /etc/termcap file (or /usr/share/lib/terminfo if
available).

3. If the Return key does not work correctly, reset it by typing:

^J stty sane ^J

The ^J represents the Ctrl-J key sequence.

Running multiple queues using environment variables RT_MPC and RT_GRQ
The use of multiple queues increases the processor affinity of threads, but there is a special situation
where you might want to counteract this effect.

When there is only one run queue, a thread that has been awakened (the waking thread) by another
running thread (the waker thread) would normally be able to use the CPU immediately on which the waker
thread was running. With multiple run queues, the waking thread may be on the run queue of another CPU
which cannot notice the waking thread until the next scheduling decision. This may result in up to a 10 ms
delay.

This is similar to scenarios in earlier releases of this operating system which might have occurred using
the bindprocessor option. If all CPUs are constantly busy, and there are a number of interdependent
threads waking up, there are two options available.

• The first option, which uses one run queue, is to set the environment variable RT_GRQ=ON which forces
unbound selected threads to be dispatched off the global run queue.

• Alternatively, users can choose the real time kernel option (type the command bosdebug -R on and
then bosboot) and the RT_MPC=ON environment variable for selected processes. It is essential to
maintain a performance log of your systems to closely monitor the impact of any tuning you attempt.

System accounting
The system accounting utility allows you to collect and report on individual and group use of various
system resources.

This accounting information can be used to bill users for the system resources they utilize, and to
monitor selected aspects of the system operation. To assist with billing, the accounting system provides
the resource-usage totals defined by members of the adm group, and, if the chargefee command is
included, factors in the billing fee.

The accounting system also provides data to assess the adequacy of current resource assignments, set
resource limits and quotas, forecast future needs, and order supplies for printers and other devices.

The following information should help you understand how to implement the accounting utility in your
system.

Accounting data reports
After the various types of accounting data are collected, the records are processed and converted into
reports.

Accounting commands automatically convert records into scientific notation when numbers become
large. A number is represented in scientific notation in the following format:

Basee+Exp

Basee-Exp

which is the number equal to the Base number multiplied by 10 to the +Exp or -Exp power. For example,
the scientific notation 1.345e+9 is equal to 1.345x109, or 1,345,000,000. And the scientific notation
1.345e-9 is equal to 1.345x10-9 or, 0.000000001345.

Related concepts
Process accounting data

Operating system management 151

The Accounting system collects data on resource usage for each process as it runs.

Daily accounting reports
To generate a daily report, use the runacct command.

This command summarizes data into an ASCII file named /var/adm/acct/sum(x)/rprtMMDD. MMDD
specifies the month and day the report is run. The report covers the following:

• Daily report
• Daily Usage report
• Daily Command Summary
• Monthly Total Command Summary
• Last Login

Daily report
Daily accounting reports contain data on connect-time, processes, disk usage, printer usage, and fees to
charge.

The acctmerg command merges raw accounting data on connect-time, processes, disk usage, printer
usage, and fees to charge into daily reports. Called by the runacct command as part of its daily
operation, the acctmerg command produces the following:

/var/adm/acct/nite(x)/dacct
An intermediate report that is produced when one of the input files is full.

/var/adm/acct/sum(x)/tacct
A cumulative total report in tacct format. This file is used by the monacct command to produce the
ASCII monthly summary.

The acctmerg command can convert records between ASCII and binary formats and merge records from
different sources into a single record for each user. For more information about the acctmerg command,
see acctmerg.

The first line of the Daily report begins with the start and finish times for the data collected in the
report, a list of system-level events including any existing shutdowns, reboots, and run-level changes. The
total duration is also listed indicating the total number of minutes included within the accounting period
(usually 1440 minutes, if the report is run every 24 hours). The report contains the following information:

Item Description

LINE Console, tty, or pty In use

MINUTES Total number of minutes the line was in use

PERCENT Percentage of time in the accounting period that the line was in use

SESS Number of new login sessions started

ON Same as # SESS

OFF Number of logouts plus interrupts made on the line

Daily Usage accounting report
The Daily Usage report is a summarized report of system usage per user ID during the accounting period.

Some fields are divided into prime and non-prime time, as defined by the accounting administrator in
the /usr/lib/acct/holidays directory. The report contains the following information:

Item Description

UID User ID

LOGIN NAME User name

CPU (PRIME/NPRIME) Total CPU time for all of the user's processes in minutes

152 AIX Version 7.2: Operating system management

Item Description

KCORE (PRIME/NPRIME) Total memory used by running processes, in kilobyte-minutes

CONNECT (PRIME/NPRIME) Total connect time (how long the user was logged in) in minutes

DISK BLOCKS Average total amount of disk space used by the user on all
filesystems for which accounting is enabled

FEES Total fees entered with chargefee command

OF PROCS Total number of processes belonging to this user

OF SESS Number of distinct login sessions for this user

DISK SAMPLES Number of times disk samples were run during the accounting
period. If no DISK BLOCKS are owned, the value will be zero

Daily Command Summary accounting report
The Daily Command Summary report shows each command executed during the accounting period, with
one line per each unique command name.

The table is sorted by TOTAL KCOREMIN (described below), with the first line including the total
information for all commands. The data listed for each command is cumulative for all executions of the
command during the accounting period. The columns in this table include the following information:

Item Description

COMMAND NAME Command that was executed

NUMBER CMDS Number of times the command executed

TOTAL KCOREMIN Total memory used by running the command, in kilobyte-minutes

TOTAL CPU-MIN Total CPU time used by the command in minutes

TOTAL REAL-MIN Total real time elapsed for the command in minutes

MEAN SIZE-K Mean size of memory used by the command per CPU minute

MEAN CPU-MIN Mean numbr of CPU minutes per execution of the command

HOG FACTOR Measurement of how much the command hogs the CPU while it is active. It is
the ratio of TOTAL CPU-MIN over TOTAL REAL-MIN

CHARS TRNSFD Number of characters transferred by the command with system reads and
writes

BLOCKS READ Number of physical block reads and writes performed by the command

Monthly Total Command Summary accounting report
The Monthly Total Command Summary, created by the monacct command, provides information about all
commands executed since the previous monthly report.

The fields and information mean the same as those in the Daily Command Summary.

Last login
The Last Login report displays two fields for each user ID. The first field is YY-MM-DD and indicates the
most recent login for the specified user. The second field is the name of the user account.

A date field of 00-00-00 indicates that the user ID has never logged in.

Accounting report summary
You can generate a report that summarizes raw accounting data.

To summarize raw accounting data, use the sa command. This command reads the raw accounting data,
usually collected in the /var/adm/pacct file, and the current usage summary data in the /var/adm/

Operating system management 153

savacct file, if summary data exists. It combines this information into a new usage summary report and
purges the raw data file to make room for further data collection.

Prerequisites

The sa command requires an input file of raw accounting data such as the pacct file (process accounting
file). To collect raw accounting data, you must have an accounting system set up and running.

Procedure

The purpose of the sa command is to summarize process accounting information and to display or store
that information. The simplest use of the command displays a list of statistics about every process that
has run during the life of the pacct file being read. To produce such a list, type:

/usr/sbin/sa

To summarize the accounting information and merge it into the summary file, type:

/usr/sbin/sa -s

The sa command offers many additional flags that specify how the accounting information is processed
and displayed. See the sa command description for more information.

Related tasks
Setting up an accounting system
You can set up an accounting system.

Monthly report
You can generate a Monthly accounting report.

Called by the cron daemon, the monacct command produces the following:

Item Description

/var/adm/acct/fiscal A periodic summary report produced from the /var/adm/acct/sum/
tacct report by the monacct command. The monacct command can
be configured to run monthly or at the end of a fiscal period.

Connect-time reports
Accounting records include login, logout, system-shutdown, and lastlogin records.

The runacct command calls two commands, acctcon1 and acctcon2, to process the login, logout,
and system-shutdown records that collect in the /var/adm/wtmp file. The acctcon1 command converts
these records into session records and writes them to the /var/adm/acct/nite(x)/lineuse file.
The acctcon2 command then converts the session records into a total accounting record, /var/adm/
logacct, that the acctmerg command adds to daily reports. For information about these commands,
see runacct, acctcon1, and acctcon2.

If you run the acctcon1 command from the command line, you must include the -l flag to produce
the line-use report, /var/adm/acct/nite(x)/lineuse. To produce an overall session report for the
accounting period, /var/adm/acct/nite(x)/reboots, use the acctcon1 command with the -o flag.

The lastlogin command produces a report that gives the last date on which each user logged in. For
information about the lastlogin command, see lastlogin.

Related concepts
Connect-time accounting data
Connect-time data is collected by the init command and the login command.
Disk-usage accounting data

154 AIX Version 7.2: Operating system management

Much accounting information is collected as the resources are consumed. The dodisk command, run
as specified by the cron daemon, periodically writes disk-usage records for each user to the /var/adm/
acct/nite(x)/dacct file.

Disk-usage accounting report
The disk-usage records collected in the /var/adm/acct/nite(x)/dacct file are merged into the daily
accounting reports by the acctmerg command.

For information about the acctmerg command, see acctmerg.

Printer-Usage accounting report
The ASCII record in the /var/adm/qacct file can be converted to a total accounting record to be added
to the daily report by the acctmerg command.

For information about the acctmerg command, see acctmerg.

Related concepts
Printer-usage accounting data
The collection of printer-usage data is a cooperative effort between the enq command and the queuing
daemon.

Fee accounting report
If you used the chargefee command to charge users for services such as file restores, consulting, or
materials, an ASCII total accounting record is written in the /var/adm/fee file. This file is added to the
daily reports by the acctmerg command.

For information about the chargefee and acctmerg commands, see chargefee and acctmerg.

Related concepts
Fee accounting data
You can produce an ASCII total accounting record in the /var/adm/fee file.

Fiscal accounting reports
The Fiscal Accounting Reports generally collected monthly by using the monacct command.

The report is stored in /var/adm/acct/fiscal(x)/fiscrptMM where MM is the month that
the monacct command was executed. This report includes information similar to the daily reports
summarized for the entire month.

Accounting system activity reports
You can generate a report that shows Accounting system activity.

To generate a report on system activity, use the prtacct command. This command reads the information
in a total accounting file (tacct file format) and produces formatted output. Total accounting files include
the daily reports on connect time, process time, disk usage, and printer usage.

Prerequisites

The prtacct command requires an input file in the tacct file format. This implies that you have an
accounting system set up and running or that you have run the accounting system in the past.

Procedure

Generate a report on system activity by entering:

prtacct -f Specification -v Heading File

Specification is a comma-separated list of field numbers or ranges used by the acctmerg command. The
optional -v flag produces verbose output where floating-point numbers are displayed in higher precision
notation. Heading is the title you want to appear on the report and is optional. File is the full path name of
the total accounting file to use for input. You can specify more than one file.

Operating system management 155

Related tasks
Setting up an accounting system
You can set up an accounting system.

Greater than eight character username support
In order to maintain backwards compatibility with all scripts, long username support is not enabled by
default within accounting. Instead, all user IDs are truncated to the first eight characters.

In order to enable long username support, most commands have been given the additional -X flag,
which allows them to accept and output greater than eight-character user IDs (in both ASCII and binary
formats). In addition, when long username support is enabled, commands and scripts will process files
in the /var/adm/acct/sumx, /var/adm/acct/nitex, and /var/adm/acct/fiscalx directories,
instead of using /var/adm/acct/sum, /var/adm/acct/nite, and /var/adm/acct/fiscal.

Accounting commands
The accounting commands function several different ways.

Some commands:

• Collect data or produce reports for a specific type of accounting: connect-time, process, disk usage,
printer usage, or command usage.

• Call other commands. For example, the runacct command, which is usually run automatically by the
cron daemon, calls many of the commands that collect and process accounting data and prepare
reports. To obtain automatic accounting, you must first configure the cron daemon to run the runacct
command. See the crontab command for more information about how to configure the cron daemon
to submit commands at regularly scheduled intervals. For information about these commands, see
runacct, cron daemon, and crontab.

• Perform maintenance functions and ensure the integrity of active data files.
• Enable members of the adm group to perform occasional tasks, such as displaying specific records, by

entering a command at the keyboard.
• Enable a user to display specific information. There is only one user command, the acctcom command,

which displays process accounting summaries.

Commands that run automatically
Several commands automatically collect accounting data.

Several commands usually run by the cron daemon automatically collect accounting data. These
commands are:
runacct

Handles the main daily accounting procedure. Normally initiated by the cron daemon during non-
prime hours, the runacct command calls several other accounting commands to process the active
data files and produce command and resource usage summaries, sorted by user name. It also calls
the acctmerg command to produce daily summary report files, and the ckpacct command to
maintain the integrity of the active data files.

ckpacct
Handles pacct file size. It is advantageous to have several smaller pacct files if you must restart the
runacct procedure after a failure in processing these records. The ckpacct command checks the
size of the /var/adm/pacct active data file, and if the file is larger than 500 blocks, the command
invokes the turnacct switch command to turn off process accounting temporarily. The data is
transferred to a new pacct file, /var/adm/pacct x. (x is an integer that increases each time a new
pacct file is created.) If the number of free disk blocks falls below 500, the ckpacct command calls
the turnacct off command to turn off process accounting.

dodisk
Calls the acctdisk command and either the diskusg command or the acctdusg command to write
disk-usage records to the /var/adm/acct/nite/dacct file. This data is later merged into the daily
reports.

156 AIX Version 7.2: Operating system management

dodisk
Calls the acctdisk command and either the diskusg command or the acctdusg command to write
disk-usage records to the /var/adm/acct/nite/dacct file. This data is later merged into the daily
reports.

monacct
Produces a periodic summary from daily reports.

sa1
Collects and stores binary data in the /var/adm/sa/sa dd file, where dd is the day of the month.

sa2
Writes a daily report in the/var/adm/sa/sadd file, where dd is the day of the month. The command
removes reports from the /var/adm/sa/sadd file that have been there longer than one week.

Other commands are run automatically by procedures other than the cron daemon:

startup
When added to the /etc/rc file, the startup command initiates startup procedures for the
accounting system.

shutacct
Records the time accounting was turned off by calling the acctwtmp command to write a line
to /var/adm/wtmp file. It then calls the turnacct off command to turn off process accounting.

Keyboard commands
A member of the adm group can enter the following commands from the keyboard.

ac
Prints connect-time records. This command is provided for compatibility with Berkeley Software
Distribution (BSD) systems.

acctcom
Displays process accounting summaries. This command is also available to users.

acctcon1
Displays connect-time summaries. Either the -l flag or the -o flag must be used.

accton
Turns process accounting on and off.

chargefee
Charges the user a predetermined fee for units of work performed. The charges are added to the daily
report by the acctmerg command.

fwtmp
Converts files between binary and ASCII formats.

last
Displays information about previous logins. This command is provided for compatibility with BSD
systems.

lastcomm
Displays information about the last commands that were executed. This command is provided for
compatibility with BSD systems.

lastlogin
Displays the time each user last logged in.

pac
Prepares printer/plotter accounting records. This command is provided for compatibility with BSD
systems.

prctmp
Displays a session record.

prtacct
Displays total accounting files.

Operating system management 157

sa
Summarizes raw accounting information to help manage large volumes of accounting information.
This command is provided for compatibility with BSD systems.

sadc
Reports on various local system actions, such as buffer usage, disk and tape I/O activity, TTY device
activity counters, and file access counters.

sar
Writes to standard output the contents of selected cumulative activity counters in the operating
system. The sar command reports only on local activities.

time
Prints real time, user time, and system time required to run a command.

timex
Reports in seconds the elapsed time, user time, and run time.

Related concepts
System data collection and reporting
You can set up the system to automatically collect data and generate reports.

Accounting files
The two main accounting directories are the /usr/sbin/acct directory, where all the C language
programs and shell procedures needed to run the accounting system are stored, and the /var/adm
directory, which contains the data, report and summary files.

The accounting data files belong to members of the adm group, and all active data files (such as wtmp and
pacct) reside in the adm home directory /var/adm.

Accounting data files
The following files are in the /var/adm directory.

Item Description

/var/adm/diskdiag Diagnostic output during the running of disk accounting
programs

/var/adm/dtmp Output from the acctdusg command

/var/adm/fee Output from the chargefee command, in ASCII tacct
records

/var/adm/pacct Active process accounting file

/var/adm/wtmp Active process accounting file

/var/adm/Spacct .mmdd Process accounting files for mmdd during the execution of
the runacct command.

Accounting report and summary files
Some subdirectories are needed before you enable the Accounting system.

Report and summary files reside in a /var/adm/acct subdirectory. You must create the following
subdirectories before the Accounting system is enabled.

/var/adm/acct/nite(x)
Contains files that the runacct command reuses daily

/var/adm/acct/sum(x)
Contains the cumulative summary files that the runacct command updates daily

/var/adm/acct/fiscal(x)
Contains the monthly summary files that the monacct command creates.

158 AIX Version 7.2: Operating system management

Related tasks
Setting up an accounting system
You can set up an accounting system.

Starting the runacct command for accounting
You can start the runacct command.

Prerequisites

1. You must have the accounting system installed.
2. You must have root user or adm group authority.

Notes:

1. If you call the runacct command with no parameters, the command assumes that this is the first time
that the command has been run today. Therefore, you need to include the mmdd parameter when you
restart the runacct program, so that the month and day are correct. If you do not specify a state,
the runacct program reads the /var/adm/acct/nite(x)/statefile file to determine the entry
point for processing. To override the /var/adm/acct/nite(x)/statefile file, specify the desired
state on the command line.

2. When you perform the following task, you might need to use the full path name /usr/sbin/acct/
runacct rather than the simple command name, runacct.

Procedure

To start the runacct command, type the following:

nohup runacct 2> \
/var/adm/acct/nite/accterr &

This entry causes the command to ignore all INTR and QUIT signals while it performs background
processing. It redirects all standard error output to the /var/adm/acct/nite/accterr file.

Restarting the runacct command for Accounting
If the runacct command is unsuccessful, you can restart it.

The prerequisites for this procedure are:

• You must have the accounting system installed.
• You must have root user or adm group authority.

Note: The most common reason why the runacct command can fail are because:

• The system goes down.
• The /usr file system runs out of space.
• The /var/adm/wtmp file has records with inconsistent date stamps.

If the runacct command is unsuccessful, do the following:

1. Check the /var/adm/acct/nite(x)/active mmdd file for error messages.
2. If both the active file and lock files exist in acct/nite, check the accterr file, where error messages

are redirected when the cron daemon calls the runacct command.
3. Perform any actions needed to eliminate errors.
4. Restart the runacct command.
5. To restart the runacct command for a specific date, type the following:

nohup runacct 0601 2>> \
/var/adm/acct/nite/accterr &

This restarts the runacct program for June 1 (0601). The runacct program reads the /var/adm/
acct/nite/statefile file to find out with which state to begin. All standard error output is
appended to the /var/adm/acct/nite/accterr file.

Operating system management 159

6. To restart the runacct program at a specified state, for example, the MERGE state, type the following:

nohup runacct 0601 MERGE 2>> \
/var/adm/acct/nite/accterr &

runacct command files
The runacct command produces report and summary files.

The following report and summary files, produced by the runacct command, are of particular interest:

Item Description

/var/adm/acct/nite(x)/
lineuse

Contains usage statistics for each terminal line on the system. This
report is especially useful for detecting bad lines. If the ratio between
the number of logouts and logins exceeds about 3 to 1, there is a
good possibility that a line is failing.

/var/adm/acct/nite(x)/
daytacct

Contains the total accounting file for the previous day.

/var/adm/acct/sum(x)/
tacct

Contains the accumulation of each day's nite/daytacct file and
can be used for billing purposes. The monacct command restarts the
file each month or fiscal period.

/var/adm/acct/sum(x)/cms Contains the accumulation of each day's command summaries. The
monacct command reads this binary version of the file and purges it.
The ASCII version is nite/cms.

/var/adm/acct/sum(x)/
daycms

Contains the daily command summary. An ASCII version is stored in
nite/daycms.

/var/adm/acct/sum(x)/
loginlog

Contains a record of the last time each user ID was used.

/var/adm/acct/sum(x)/
rprt mmdd

This file contains a copy of the daily report saved by the runacct
command.

Files in the /var/adm/acct/nite(x) directory
The following files are in the /var/adm/acct/nite(x) directory.

Item Description

active Used by the runacct command to record progress and print warning
and error messages. The file active. mmdd is a copy of the active
file made by the runacct program after it detects an error.

cms ASCII total command summary used by the prdaily command.

ctacct.mmdd Connect total accounting records.

ctmp Connect session records.

daycms ASCII daily command summary used by the prdaily command.

daytacct Total accounting records for one day.

dacct Disk total accounting records, created by the dodisk command.

accterr Diagnostic output produced during the execution of the runacct
command.

lastdate Last day the runacct executed, in date +%m%d format.

lock1 Used to control serial use of the runacct command.

lineuse tty line usage report used by the prdaily command.

log Diagnostic output from the acctcon1 command.

160 AIX Version 7.2: Operating system management

Item Description

logmmdd Same as log after the runacct command detects an error.

reboots Contains beginning and ending dates from wtmp, and a listing of
system restarts.

statefile Used to record the current state during execution of the runacct
command.

tmpwtmp wtmp file corrected by the wtmpfix command.

wtmperror Contains wtmpfix error messages.

wtmperrmmdd Same as wtmperror after the runacct command detects an error.

wtmp.mmdd Contains previous day's wtmp file. Removed during the cleanup of
runacct command.

Files in the /var/adm/acct/sum(x) directory
The following files are in the /var/adm/acct/sum(x) directory.

Item Description

cms Total command summary file for the current fiscal period, in binary format.

cmsprev Command summary file without the latest update.

daycms Command summary file for the previous day, in binary format.

lastlogin File created by the lastlogin command.

pacct.mmdd Concatenated version of all pacct files for mmdd. This file is removed after system
startup by the remove command. For information about the remove command, see
remove.

rprtmmdd Saved output of the prdaily command.

tacct Cumulative total accounting file for the current fiscal period.

tacctprev Same as tacct without the latest update.

tacctmmdd Total accounting file for mmdd.

Files in the /var/adm/acct/fiscal(x) directory
The following files are in the /var/adm/acct/fiscal(x) directory.

Item Description

cms? Total command summary file for the fiscal period, specified by ?, in binary format

fiscrpt? A report similar to that of the prdaily command for fiscal period, specified by ?, in binary
format

tacct? Total accounting file for fiscal period, specified by ?, in binary format.

Accounting file formats
The following table summarizes the accounting file output and formats.

Item Description

wtmp Produces the active process accounting file. The format of the wtmp file is defined in the
utmp.h file. For information about the utmp.h file, see utmp.h.

ctmp Produces connect session records. The format is described in the ctmp.h file.

pacct* Produces active process accounting records. The format of the output is defined in
the /usr/include/sys/acct.h file.

Operating system management 161

Item Description

Spacct* Produces process accounting files for mmdd during the running of the runacct
command. The format of these files is defined in the sys/acct.h file.

daytacct Produces total accounting records for one day. The format of the file is defined in the
tacct file format.

sum/tacct Produces binary file that accumulates each day's command summaries. The format of
this file is defined in the /usr/include/sys/acct.h header file.

ptacct Produces concatenated versions of pacct files. The format of these files are defined in
the tacct file.

ctacct Produces connect total accounting records. The output of this file is defined in the
tacct file.

cms Produces total accounting command summary used by the prdaily command, in
binary format. The ASCII version is nite/cms.

daycms Daily command summary used by the prdaily command, in binary format. The ASCII
version is nite/daycms.

Administering system accounting
There are multiple tasks you can complete for system accounting. These tasks include setting up an
accounting system, showing CPU usage, and displaying accounting processes.

Setting up an accounting system
You can set up an accounting system.

You must have root authority to complete this procedure.

The information below is an overview of the steps you must take to set up an accounting system. Refer to
the commands and files noted in these steps for more specific information.

1. Use the nulladm command to ensure that each file has the correct access permission: read (r) and
write (w) permission for the file owner and group and read (r) permission for others by typing:

/usr/sbin/acct/nulladm wtmp pacct

This provides access to the pacct and wtmp files.
2. Update the /etc/acct/holidays file to include the hours you designate as prime time and to reflect

your holiday schedule for the year.

Note: Comment lines can appear anywhere in the file as long as the first character in the line is an
asterisk (*).

a. To define prime time, fill in the fields on the first data line (the first line that is not a comment),
using a 24-hour clock. This line consists of three 4-digit fields, in the following order:

i) Current year
ii) Beginning of prime time (hhmm)

iii) End of prime time (hhmm)

Leading blanks are ignored. You can enter midnight as either 0000 or 2400.

For example, to specify the year 2000, with prime time beginning at 8:00 a.m. and ending at 5:00
p.m., enter:

2000 0800 1700

b. To define the company holidays for the yea, fill in the next data line. Each line contains four fields, in
the following order:

162 AIX Version 7.2: Operating system management

i) Day of the year
ii) Month

iii) Day of the month
iv) Description of holiday

The day-of-the-year field contains the number of the day on which the holiday falls and must be
a number from 1 through 365 (366 on leap year). For example, February 1st is day 32. The other
three fields are for information only and are treated as comments.

A two-line example follows:

 1 Jan 1 New Year's Day
332 Nov 28 Thanksgiving Day

3. Turn on process accounting by adding the following line to the /etc/rc file or by deleting the
comment symbol (#) in front of the line if it exists:

/usr/bin/su - adm -c /usr/sbin/acct/startup

The startup procedure records the time that accounting was turned on and cleans up the previous
day's accounting files.

4. Identify each file system you want included in disk accounting by adding the following line to the
stanza for the file system in the /etc/filesystems file:

account = true

5. Specify the data file to use for printer data by adding the following line to the queue stanza in
the /etc/qconfig file:

acctfile = /var/adm/qacct

6. As the adm user, create a /var/adm/acct/nite, a /var/adm/acct/fiscal, a and /var/adm/
acct/sum directory to collect daily and fiscal period records:

su - adm
cd /var/adm/acct
mkdir nite fiscal sum
exit

For long usernames, use the following commands instead:

su - adm
cd /var/adm/acct
mkdir nitex fiscalx sumx
exit

7. Set daily accounting procedures to run automatically by editing the /var/spool/cron/
crontabs/adm file to include the dodisk, ckpacct, and runacct commands.
For example:

0 2 * * 4 /usr/sbin/acct/dodisk
5 * * * * /usr/sbin/acct/ckpacct
0 4 * * 1-6 /usr/sbin/acct/runacct
 2>/var/adm/acct/nite/accterr

For long usernames, add the following lines instead:

0 2 * * 4 /usr/sbin/acct/dodisk -X
5 * * * * /usr/sbin/acct/ckpacct
0 4 * * 1-6 /usr/sbin/acct/runacct -X
 2>/var/adm/acct/nitex/accterr

The first line starts disk accounting at 2:00 a.m. (0 2) each Thursday (4). The second line starts a
check of the integrity of the active data files at 5 minutes past each hour (5 *) every day (*). The third

Operating system management 163

line runs most accounting procedures and processes active data files at 4:00 a.m. (0 4) every Monday
through Saturday (1-6). If these times do not fit the hours your system operates, adjust your entries.

Note: You must have root user authority to edit the /var/spool/cron/crontabs/adm file.
8. Set the monthly accounting summary to run automatically by including the monacct command in

the /var/spool/cron/crontabs/adm file.
For example, type:

15 5 1 * * /usr/sbin/acct/monacct

For long usernames, add the following line instead:

15 5 1 * * /usr/sbin/acct/monacct -X

Be sure to schedule this procedure early enough to finish the report. This example starts the procedure
at 5:15 a.m. on the first day of each month.

9. To submit the edited cron file, type:

crontab /var/spool/cron/crontabs/adm

Related concepts
System data collection and reporting
You can set up the system to automatically collect data and generate reports.
Accounting system activity reports
You can generate a report that shows Accounting system activity.
Accounting report summary
You can generate a report that summarizes raw accounting data.
Related tasks
Displaying the process time of active Accounting processes
You can display the process time for active processes.
Displaying the process time of finished Accounting processes
You can display the process time of finished processes.
Showing the CPU usage for each accounting process
You can display formatted reports about the CPU usage by user with the acctprc1 command.
Showing the CPU accounting usage for each user
You can display a formatted report about the CPU usage by user with a combination of the acctprc1 and
prtacct commands.
Displaying printer or plotter usage accounting records
You can display printer or plotter usage accounting records with the pac command.
Related reference
Accounting report and summary files
Some subdirectories are needed before you enable the Accounting system.

Displaying Accounting system activity
You can display formatted information about system activity with the sar command.

To display system activity statistics, the sadc command must be running.

Note: The typical method of running the sadc command is to place an entry for the sa1 command in the
root crontab file. The sa1 command is a shell-procedure variant of the sadc command designed to work
with the cron daemon.

To display basic system-activity information, type:

sar 2 6

164 AIX Version 7.2: Operating system management

where the first number is the number of seconds between sampling intervals and the second number is
the number of intervals to display. The output of this command looks something like this:

 arthurd 2 3 000166021000 05/28/92

14:03:40 %usr %sys %wio %idle
14:03:42 4 9 0 88
14:03:43 1 10 0 89
14:03:44 1 11 0 88
14:03:45 1 11 0 88
14:03:46 3 9 0 88
14:03:47 2 10 0 88

Average 2 10 0 88

The sar command also offers a number of flags for displaying an extensive array of system statistics. To
see all available statistics, use the -A flag. For a list of the available statistics and the flags for displaying
them, see the sar command.

Note: To have a daily system activity report written to /var/adm/sa/sadd, include an entry in the root
crontab file for the sa2 command. The sa2 command is a shell procedure variant for the sar command
designed to work with the cron daemon.

Showing Accounting system activity while running a command
You can display formatted information about system activity while a particular command is running.

The -o and -p flags of the timex command require that system accounting be turned on.

You can use the time and timex commands to display formatted information about system activity while
a particular command is running.

To display the elapsed time, user time, and system execution time for a particular command, type:

time CommandName

OR

timex CommandName

To display the total system activity (all the data items reported by the sar command) during the
execution of a particular command, type:

timex -s CommandName

The timex command has two additional flags. The -o flag reports the total number of blocks read or
written by the command and all of its children. The -p flag lists all of the process accounting records for a
command and all of its children.

Displaying the process time of active Accounting processes
You can display the process time for active processes.

The acctcom command reads input in the total accounting record form (acct file format). This implies
that you have process accounting turned on or that you have run process accounting in the past.

The ps command offers a number of flags to tailor the information displayed.

To produce a full list of all active processes except kernel processes, type:

ps -ef

You can also display a list of all processes associated with terminals. To do this, type:

ps -al

Operating system management 165

Both of these usages display a number of columns for each process, including the current CPU time for
the process in minutes and seconds.

Related tasks
Setting up an accounting system
You can set up an accounting system.

Displaying the process time of finished Accounting processes
You can display the process time of finished processes.

The acctcom command reads input in the total accounting record form (acct file format). This implies
that you have process accounting turned on or that you have run process accounting in the past.

The process accounting functions are turned on with the startup command, which is typically started at
system initialization with a call in the /etc/rc file. When the process accounting functions are running,
a record is written to /var/adm/pacct (a total accounting record file) for every finished process that
includes the start and stop time for the process. You can display the process time information from a
pacct file with the acctcom command. This command has a number of flags that allow flexibility in
specifying which processes to display.

For example, to see all processes that ran for a minimum number of CPU seconds or longer, use the -O
flag, type:

acctcom -O 2

This displays records for every process that ran for at least 2 seconds. If you do not specify an input file,
the acctcom command reads input from the /var/adm/pacct directory.

Related tasks
Setting up an accounting system
You can set up an accounting system.

Showing the CPU usage for each accounting process
You can display formatted reports about the CPU usage by user with the acctprc1 command.

The acctprc1 command requires input in the total accounting record form (acct file format). This
implies that you have process accounting turned on or that you have run process accounting in the past.

To produce a formatted report of CPU usage by process, type:

acctprc1 </var/adm/pacct

Related tasks
Setting up an accounting system
You can set up an accounting system.

Showing the CPU accounting usage for each user
You can display a formatted report about the CPU usage by user with a combination of the acctprc1 and
prtacct commands.

The acctprc1, acctprc2, or accton Command command requires input in the total accounting record form
(acct file format). This implies that you have process accounting turned on or that you have run process
accounting in the past.

To show the CPU usage for each user, perform the following steps:

1. Produce an output file of CPU usage by process by typing:

acctprc1 </var/adm/pacct >out.file

The /var/adm/pacct file is the default output for process accounting records. You might want to
specify an archive pacct file instead.

2. Produce a binary total accounting record file from the output of the previous step by typing:

166 AIX Version 7.2: Operating system management

acctprc2 <out.file >/var/adm/acct/nite/daytacct

Note: The daytacct file is merged with other total accounting records by the acctmerg command to
produce the daily summary record, /var/adm/acct/sum(x)/tacct.

3. Use the Showing the CPU accounting usage for each user command to display a formatted report of
CPU usage summarized by the user by typing:

prtacct </var/adm/acct/nite/daytacct

Related tasks
Setting up an accounting system
You can set up an accounting system.

Displaying connect time usage for accounting
You can display the connect time of all users, of individual users, and by individual login with the ac
command.

The ac command extracts login information from the /var/adm/wtmp file, so this file must exist. If the
file has not been created, the following error message is returned:

No /var/adm/wtmp

If the file becomes too full, additional wtmp files are created; you can display connect-time information
from these files by specifying them with the -w flag. For more information about the ac command, see ac.

To display the total connect time for all users, type:

/usr/sbin/acct/ac

This command displays a single decimal number that is the sum total connect time, in minutes, for all
users who have logged in during the life of the current wtmp file.

To display the total connect time for one or more particular users, type:

/usr/sbin/acct/ac User1 User2 ...

This command displays a single decimal number that is the sum total connect time, in minutes, for the
user or users you specified for any logins during the life of the current wtmp file.

To display the connect time by individual user plus the total connect time, type:

/usr/sbin/acct/ac -p User1 User2 ...

This command displays as a decimal number for each user specified equal to the total connect time, in
minutes, for that user during the life of the current wtmp file. It also displays a decimal number that is the
sum total connect time for all the users specified. If no user is specified in the command, the list includes
all users who have logged in during the life of the wtmp file.

Displaying disk space utilization for accounting
You can display disk space utilization information with the acctmerg command.

To display disk space utilization information, the acctmerg command requires input from a dacct file
(disk accounting). The collection of disk-usage accounting records is performed by the dodisk command.

To display disk space utilization information, type:

acctmerg -a1 -2,13 -h </var/adm/acct/nite(x)/dacct

This command displays disk accounting records, which include the number of 1 KB blocks utilized by each
user.

Operating system management 167

Note: The acctmerg command always reads from standard input and can read up to nine additional files.
If you are not piping input to the command, you must redirect input from one file; the rest of the files can
be specified without redirection.

Displaying printer or plotter usage accounting records
You can display printer or plotter usage accounting records with the pac command.

• To collect printer usage information, you must have an accounting system set up and running. See
“Setting up an accounting system” on page 162 for guidelines.

• The printer or plotter for which you want accounting records must have an acctfile= clause in the
printer stanza of the /etc/qconfig file. The file specified in the acctfile= clause must grant read
and write permissions to the root user or printq group.

• If the -s flag of the pac command is specified, the command rewrites the summary file name by
appending _sum to the path name specified by the acctfile= clause in the /etc/qconfig file. This
file must exist and grant read and write permissions to the root user or printq group.

To display printer usage information for all users of a particular printer, type:

/usr/sbin/pac -PPrinter

If you do not specify a printer, the default printer is named by the PRINTER environment variable. If the
PRINTER variable is not defined, the default is lp0.

To display printer usage information for particular users of a particular printer, type:

/usr/sbin/pac -PPrinter User1 User2 ...

The pac command offers other flags for controlling what information gets displayed.

Related tasks
Setting up an accounting system
You can set up an accounting system.

Updating the holidays file
The Holidays file is out of date after the last holiday listed has passed or the year has changed. You can
update the Holidays file.

The acctcon1 command (started from the runacct command) sends mail to the root and adm accounts
when the /usr/lib/acct/holidays file gets out of date.

Update the out-of-date Holidays file by editing the /var/adm/acct/holidays file to differentiate
between prime and nonprime time.

Prime time is assumed to be the period when your system is most active, such as workdays. Saturdays
and Sundays are always nonprime times for the accounting system, as are any holidays that you list.

The holidays file contains three types of entries: comments, the year and prime-time period, and a list of
holidays as in the following example:

* Prime/Non-Prime Time Table for Accounting System
*
* Curr Prime Non-Prime
* Year Start Start
 1992 0830 1700
*
* Day of Calendar Company
* Year Date Holiday
*
* 1 Jan 1 New Year's Day
* 20 Jan 20 Martin Luther King Day
* 46 Feb 15 President's Day
* 143 May 28 Memorial Day
* 186 Jul 3 4th of July
* 248 Sep 7 Labor Day
* 329 Nov 24 Thanksgiving
* 330 Nov 25 Friday after
* 359 Dec 24 Christmas Eve

168 AIX Version 7.2: Operating system management

* 360 Dec 25 Christmas Day
* 361 Dec 26 Day after Christmas

The first noncomment line must specify the current year (as four digits) and the beginning and end of
prime time, also as four digits each. The concept of prime and nonprime time only affects the way that the
accounting programs process the accounting records.

If the list of holidays is too long, the acctcon1 command generates an error, and you will need to shorten
your list. You are safe with 20 or fewer holidays. If you want to add more holidays, just edit the holidays
file each month.

Collecting accounting data
Once you have setup system accounting you will want to start collecting and processing the different type
of accounting data.

System data collection and reporting
You can set up the system to automatically collect data and generate reports.

For data to be collected automatically, a member of the adm group must have been setup as an
accounting system. The accounting system setup enables the cron daemon to run the commands that
generate data on:

• The amount of time each user spends logged in to the system
• Usage of the processing unit, memory, and I/O resources
• The amount of disk space occupied by each user's files
• Usage of printers and plotters
• The number of times a specific command is given.

The system writes a record of each session and process after they are completed. These records
are converted into total accounting (tacct) records arranged by user and merged into a daily report.
Periodically, the daily reports are combined to produce totals for the defined fiscal period. Methods for
collecting and reporting the data and the various accounting commands and files are discussed in the
following sections.

Although most of the accounting data is collected and processed automatically, a member of the adm
group can enter certain commands from the keyboard to obtain specific information.

Related tasks
Setting up an accounting system
You can set up an accounting system.
Related reference
Keyboard commands
A member of the adm group can enter the following commands from the keyboard.

Connect-time accounting data
Connect-time data is collected by the init command and the login command.

When you log in, the login program writes a record in the /etc/utmp file. This record includes your user
name, the date and time of the login, and the login port. Commands, such as who, use this file to find out
which users are logged into the various display stations. If the /var/adm/wtmp connect-time accounting
file exists, the login command adds a copy of this login record to it. For information about the init and
login commands, see init and login.

When your login program ends (normally when you log out), the init command records the end of the
session by writing another record in the /var/adm/wtmp file. Logout records differ from login records
in that they have a blank user name. Both the login and logout records have the form described in the
utmp.h file. For information about the utmp.h file, see utmp.h.

The acctwtmp command also writes special entries in the /var/adm/wtmp file concerning system
shutdowns and startups.

Operating system management 169

Related concepts
Connect-time reports
Accounting records include login, logout, system-shutdown, and lastlogin records.

Process accounting data
The Accounting system collects data on resource usage for each process as it runs.

This data includes:

• The user and group numbers under which the process runs
• The first eight characters of the name of the command
• A 64-bit numeric key representing the Workload Manager class that the process belongs to
• The elapsed time and processor time used by the process
• Memory use
• The number of characters transferred
• The number of disk blocks read or written on behalf of the process

The accton command records these data in a specified file, usually the /var/adm/pacct file. For more
information about the accton command, see accton.

Related commands are the startup command, the shutacct command, the dodisk command,
the ckpacct command, and the turnacct command. For information about these commands, see
startup, shutacct, dodisk, ckpacct, and turnacct.

Related concepts
Accounting data reports
After the various types of accounting data are collected, the records are processed and converted into
reports.

Process accounting reports
Two commands process the billing-related data that was collected in the /var/adm/pacct or other
specified file.

The acctprc1 command translates the user ID into a user name and writes ASCII records containing
the chargeable items (prime and non-prime CPU time, mean memory size, and I/O data). The acctprc2
command transforms these records into total accounting records that are added to daily reports by the
acctmerg command. For more information about the acctmerg command, see acctmerg.

Process accounting data also provides information that you can use to monitor system resource usage.
The acctcms command summarizes resource use by command name. This provides information on how
many times each command was run, how much processor time and memory was used, and how intensely
the resources were used (also known as the hog factor). The acctcms command produces long-term
statistics on system utilization, providing information on total system usage and the frequency with which
commands are used. For more information about the acctcms command, see acctcms.

The acctcom command handles the same data as the acctcms command, but provides detailed
information about each process. You can display all process accounting records or select records of
particular interest. Selection criteria include the load imposed by the process, the time period when the
process ended, the name of the command, the user or group that invoked the process, the name of
the WLM class the proces belonged to, and the port at which the process ran. Unlike other accounting
commands, acctcom can be run by all users. For more information about the acctcom command, see
acctcom.

Disk-usage accounting data
Much accounting information is collected as the resources are consumed. The dodisk command, run
as specified by the cron daemon, periodically writes disk-usage records for each user to the /var/adm/
acct/nite(x)/dacct file.

To accomplish this, the dodisk command calls other commands. Depending upon the thoroughness of
the accounting search, the diskusg command or the acctdusg command can be used to collect data.

170 AIX Version 7.2: Operating system management

The acctdisk command is used to write a total accounting record. The total accounting record, in turn, is
used by the acctmerg command to prepare the daily accounting report.

The dodisk command charges a user for the links to files found in the user's login directory and evenly
divides the charge for each file between the links. This distributes the cost of using a file over all who use
it and removes the charges from users when they relinquish access to a file. For more information about
the dodisk command and cron daemon, see dodisk and cron.

Related concepts
Connect-time reports
Accounting records include login, logout, system-shutdown, and lastlogin records.

Printer-usage accounting data
The collection of printer-usage data is a cooperative effort between the enq command and the queuing
daemon.

The enq command enqueues the user name, job number, and the name of the file to be printed. After
the file is printed, the qdaemon command writes an ASCII record to a file, usually the /var/adm/qacct
file, containing the user name, user number, and the number of pages printed. You can sort these records
and convert them to total accounting records. For more information about these commands, see enq and
qdaemon.

Related concepts
Printer-Usage accounting report
The ASCII record in the /var/adm/qacct file can be converted to a total accounting record to be added
to the daily report by the acctmerg command.

Fee accounting data
You can produce an ASCII total accounting record in the /var/adm/fee file.

You can enter the chargefee command to produce an ASCII total accounting record in
the /var/adm/fee file. This file will be added to daily reports by the acctmerg command.

For information about the chargefee and acctmerg commands, see chargefee and acctmerg.

Related concepts
Fee accounting report
If you used the chargefee command to charge users for services such as file restores, consulting, or
materials, an ASCII total accounting record is written in the /var/adm/fee file. This file is added to the
daily reports by the acctmerg command.

Troubleshooting system accounting
Use these troubleshooting methods to tackle some of the basic problems that may occur when using
system accounting. If the troubleshooting information does not address your problem, contact your
service representative.

Fixing tacct errors
If you are using the accounting system to charge users for system resources, the integrity of
the /var/adm/acct/sum/tacct file is quite important. Occasionally, mysterious tacct records appear
that contain negative numbers, duplicate user numbers, or a user number of 65,535. You can fix these
problems.

You must have root user or adm group authority.

To patch a tacct file, perform the following steps:

1. Move to the /var/adm/acct/sum directory by typing:

cd /var/adm/acct/sum

2. Use the prtacct command to check the total accounting file, tacctprev, by typing:

Operating system management 171

prtacct tacctprev

The prtacct command formats and displays the tacctprev file so that you can check connect time,
process time, disk usage, and printer usage.

3. If the tacctprev file looks correct, change the latest tacct .mmdd file from a binary file to an ASCII
file. In the following example, the acctmerg command converts the tacct.mmdd file to an ASCII file
named tacct.new:

acctmerg -v < tacct.mmdd > tacct.new

Note: The acctmerg command with the -a flag also produces ASCII output. The -v flag produces
more precise notation for floating-point numbers.

The acctmerg command is used to merge the intermediate accounting record reports into a
cumulative total report (tacct). This cumulative total is the source from which the monacct command
produces the ASCII monthly summary report. Since the monacct command procedure removes all the
tacct.mmdd files, you recreate the tacct file by merging these files.

4. Edit the tacct.new file to remove the bad records and write duplicate user number records to
another file by typing:

acctmerg -i < tacct.new > tacct.mmdd

5. Create the tacct file again by typing:

acctmerg tacctprev < tacct.mmdd > tacct

Fixing wtmp errors
The /var/adm/wtmp, or "who temp" file, might cause problems in the day-to-day operation of the
accounting system. You can fix wtmp errors.

You must have root user or adm group authority to perform this procedure.

When the date is changed and the system is in multiuser mode, date change records are written to
the /var/adm/wtmp file. When a date change is encountered, the wtmpfix command adjusts the time
stamps in the wtmp records. Some combinations of date changes and system restarts may slip past the
wtmpfix command and cause the acctcon1 command to fail and the runacct command to send mail
to the root and adm accounts listing incorrect dates.

To fix wtmp errors, perform the following procedure:

1. Move to the /var/adm/acct/nite directory by typing:

cd /var/adm/acct/nite

2. Convert the binary wtmp file to an ASCII file that you can edit by typing:

fwtmp < wtmp.mmdd > wtmp.new

The fwtmp command converts wtmp from binary to ASCII.
3. Edit the ASCII wtmp.new file to delete damaged records or all records from the beginning of the file up

to the needed date change by typing:

vi wtmp.new

4. Convert the ASCII wtmp.new file back to binary format by typing:

fwtmp -ic < wtmp.new > wtmp.mmdd

5. If the wtmp file is beyond repair, use the nulladm command to create an empty wtmp file.
This prevents any charges in the connect time.

nulladm wtmp

172 AIX Version 7.2: Operating system management

The nulladm command creates the file specified with read and write permissions for the file owner
and group, and read permissions for other users. It ensures that the file owner and group are adm.

Related tasks
Fixing Accounting errors
You can correct date and time-stamp inconsistencies.

Fixing incorrect Accounting file permissions
To use the Accounting system, file ownership and permissions must be correct.

You must have root user or adm group authority to perform this procedure.

The adm administrative account owns the accounting command and scripts, except for /var/adm/
acct/accton which is owned by root.

To fix incorrect Accounting file permissions, perform the following procedure:

1. To check file permissions using the ls command, type:

ls -l /var/adm/acct

-rws--x--- 1 adm adm 14628 Mar 19 08:11 /var/adm/acct/fiscal
-rws--x--- 1 adm adm 14628 Mar 19 08:11 /var/adm/acct/nite
-rws--x--- 1 adm adm 14628 Mar 19 08:11 /var/adm/acct/sum

2. Adjust file permissions with the chown command, if necessary.
The permissions are 755 (all permissions for owner and read and execute permissions for all others).
Also, the directory itself should be write-protected from others.
For example:

a. Move to the /var/adm/acct directory by typing:

cd /var/adm/acct

b. Change the ownership for the sum, nite, and fiscal directories to adm group authority by typing:

chown adm sum/* nite/* fiscal/*

To prevent tampering by users trying to avoid charges, deny write permission for others on these
files. Change the accton command group owner to adm, and permissions to 710, that is, no
permissions for others. Processes owned by adm can execute the accton command, but ordinary
users cannot.

3. The /var/adm/wtmp file must also be owned by adm. If /var/adm/wtmp is owned by root, you will
see the following message during startup:

/var/adm/acct/startup: /var/adm/wtmp: Permission denied

To correct the ownership of /var/adm/wtmp, change ownership to the adm group by typing the
following command:

chown adm /var/adm/wtmp

Fixing Accounting errors
You can correct date and time-stamp inconsistencies.

You must have root user or adm group authority to perform this procedure.

Processing the /var/adm/wtmp file might produce some warnings mailed to root. The wtmp file contains
information collected by /etc/init and /bin/login and is used by accounting scripts primarily for
calculating connect time (the length of time a user is logged in). Unfortunately, date changes confuse the
program that processes the wtmp file. As a result, the runacct command sends mail to root and adm
complaining of any errors after a date change since the last time accounting was run.

1. Determine if you received any errors.

Operating system management 173

The acctcon1 command outputs error messages that are mailed to adm and root by the runacct
command.
For example, if the acctcon1 command stumbles after a date change and fails to collect connect
times, adm might get mail like the following mail message:

Mon Jan 6 11:58:40 CST 1992
acctcon1: bad times: old: Tue Jan 7 00:57:14 1992
new: Mon Jan 6 11:57:59 1992
acctcon1: bad times: old: Tue Jan 7 00:57:14 1992
new: Mon Jan 6 11:57:59 1992
acctcon1: bad times: old: Tue Jan 7 00:57:14 1992
new: Mon Jan 6 11:57:59 1992

2. Adjust the wtmp file by typing:

/usr/sbin/acct/wtmpfix wtmp

The wtmpfix command examines the wtmp file for date and time-stamp inconsistencies and corrects
problems that could make acctcon1 fail. However, some date changes slip by wtmpfix.

3. Run accounting right before shutdown or immediately after startup.
Using the runacct command at these times minimizes the number of entries with bad times. The
runacct command continues to send mail to the root and adm accounts, until you edit the runacct
script, find the WTMPFIX section, and comment out the line where the file log gets mailed to the root
and adm accounts.

Related tasks
Fixing wtmp errors
The /var/adm/wtmp, or "who temp" file, might cause problems in the day-to-day operation of the
accounting system. You can fix wtmp errors.

Accounting errors encountered when running the runacct command
You might encounter errors when running the runacct command.

Note: You must have root user or adm group authority to run the runacct command.

The runacct command processes files that are often very large. The procedure involves several passes
through certain files and consumes considerable system resources while it is taking place. Since the
runacct command consumes considerable resources, it is normally run early in the morning when it can
take over the machine and not disturb anyone.

The runacct command is a script divided into different stages. The stages allow you to restart the
command where it stopped, without having to rerun the entire script.

When the runacct encounters problems, it sends error messages to different destinations depending on
where the error occurred. Usually it sends a date and a message to the console directing you to look in the
activeMMDD file (such as active0621 for June 21st) which is in the /usr/adm/acct/nite directory.
When the runacct command aborts, it moves the entire active file to activeMMDD and appends a
message describing the problem.

Review the following error message tables for errors that you might encounter when running the runacct
command.

Note:

• The abbreviation MMDD stands for the month and day, such as 0102 for January 2. For example,
an unrecoverable error during the CONNECT1 process on January 2 creates the file active0102
containing the error message.

• The abbreviation "SE message" stands for the standard error message such as:

********* ACCT ERRORS : see active0102 *********

174 AIX Version 7.2: Operating system management

Preliminary State and Error Messages from the runnacct Command

State Command Unrecoverable? Error Message Destinations

pre runacct yes * 2 CRONS or
ACCT PROBLEMS
* ERROR: locks
found, run
aborted

console, mail,
active

pre runacct yes runacct:
Insufficient
space in /usr
(nnn blks);
Terminating
procedure

console, mail,
active

pre runacct yes SE message;
ERROR: acctg
already run
for 'date':
check lastdate

console, mail,
activeMMDD

pre runacct no * SYSTEM
ACCOUNTING
STARTED *

console

pre runacct no restarting
acctg for
'date' at
STATE

console active,
console

pre runacct no restarting
acctg for
'date'
at state
(argument $2)
previous state
was STATE

active

pre runacct yes SE message;
Error: runacct
called with
invalid
arguments

console, mail,
activeMMDD

States and Error Messages from the runacct Command

State Command Unrecoverable
?

Error Message Destinations

SETUP runacct no ls -l fee
pacct* /var/ad
m/wtmp

active

SETUP runacct yes SE message;
ERROR:
turnacct
switch
returned
rc=error

console, mail,
activeMMDD

Operating system management 175

States and Error Messages from the runacct Command (continued)

State Command Unrecoverable
?

Error Message Destinations

SETUP runacct yes SE message;
ERROR:
SpacctMMDD
already exists
file setups
probably
already run

activeMMDD

SETUP runacct yes SE message;
ERROR:
wtmpMMDD
already
exists: run
setup manually

console, mail,
activeMMDD

WTMPFIX wtmpfix no SE message;
ERROR: wtmpfix
errors see
xtmperrorMMDD

activeMMDD,
wtmperrorMMDD

WTMPFIX wtmpfix no wtmp
processing
complete

active

CONNECT1 acctcon1 no SE message;
(errors from
acctcon1 log)

console, mail,
activeMMDD

CONNECT2 acctcon2 no connect acctg
complete

active

PROCESS runacct no WARNING:
accounting
already run
for pacctN

active

PROCESS acctprc1
acctprc2

no process acctg
complete for
SpacctNMMDD

active

PROCESS runacct no all process
actg complete
for date

active

MERGE acctmerg no tacct merge to
create dayacct
complete

active

FEES acctmerg no merged fees OR
no fees

active

DISK acctmerg no merged disk
records OR no
disk records

active

MERGEACCT acctmerg no WARNING:
recreating
sum/tacct

active

176 AIX Version 7.2: Operating system management

States and Error Messages from the runacct Command (continued)

State Command Unrecoverable
?

Error Message Destinations

MERGEACCT acctmerg no updated sum/
tacct

active

CMS runacct no WARNING:
recreating
sum/cms

active

CMS acctcms no command
summaries
complete

active

CLEANUP runacct no system
accounting
completed at
'date'

active

CLEANUP runacct no *SYSTEM
ACCOUNTING
COMPLETED*

console

<wrong> runacct yes SE message;
ERROR: invalid
state, check
STATE

console, mail,
activeMMDD

Note: The label <wrong> in the previous table does not represent a state, but rather a state other than
the correct state that was written in the state file /usr/adm/acct/nite/statefile.

Summary of Message Destinations

Destination Description

console The /dev/console device

mail Message mailed to root and adm accounts

active The /usr/adm/acct/nite/active file

activeMMDD The /usr/adm/acct/nite/activeMMDD file

wtmperrMMDD The /usr/adm/acct/nite/wtmperrorMMDD file

STATE Current state in /usr/adm/acct/nite/statefile file

fd2log Any other error messages

System Resource Controller
The System Resource Controller (SRC) provides a set of commands and subroutines to make it easier for
the system manager and programmer to create and control subsystems.

A subsystem is any program or process or set of programs or processes that is usually capable of
operating independently or with a controlling system. A subsystem is designed as a unit to provide a
designated function.

The SRC was designed to minimize the need for operator intervention. It provides a mechanism to control
subsystem processes using a common command line and the C interface. This mechanism includes the
following:

• Consistent user interface for start, stop, and status inquiries

Operating system management 177

• Logging of the abnormal termination of subsystems
• Notification program called at the abnormal system termination of related processes
• Tracing of a subsystem, a group of subsystems, or a subserver
• Support for control of operations on a remote system
• Refreshing of a subsystem (such as after a configuration data change).

The SRC is useful if you want a common way to start, stop, and collect status information on processes.

Related concepts
Introduction to AIX for BSD system managers
The following are tips to help Berkeley Software Distribution (BSD) system managers get started
managing AIX.

Subsystem components
The following are the properties and components of a subsystem.

A subsystem can have one or more of the following properties:

• Is known to the system by name
• Requires a more complex execution environment than a subroutine or nonprivileged program
• Includes application programs and libraries as well as subsystem code
• Controls resources that can be started and stopped by name
• Requires notification if a related process is unsuccessful to perform cleanup or to recover resources
• Requires more operational control than a simple daemon process
• Needs to be controlled by a remote operator
• Implements subservers to manage specific resources
• Does not put itself in the background.

A few subsystem examples are ypserv, ntsd, qdaemon, inetd, syslogd, and sendmail.

Note: See each specific subsystem for details of its SRC capabilities.

Use the lssrc -a command to list active and inactive subsystems on your system.

The following defines subsystem groups and subservers:

Subsystem Group

A subsystem group is a group of any specified subsystems. Grouping subsystems together allows
the control of several subsystems at one time. A few subsystem group examples are TCP/IP, SNA
Services, Network Information System (NIS), and Network File Systems (NFS).

Subserver

A subserver is a program or process that belongs to a subsystem. A subsystem can have multiple
subservers and is responsible for starting, stopping, and providing status of subservers. Subservers
can be defined only for a subsystem with a communication type of IPC message queues and sockets.
Subsystems using signal communications do not support subservers.

Subservers are started when their parent subsystems are started. If you try to start a subserver and
its parent subsystem is not active, the startsrc command starts the subsystem as well.

178 AIX Version 7.2: Operating system management

SRC hierarchy
The System Resource Controller hierarchy begins with the operating system followed by a subsystem
group (such as tcpip), which contains a subsystem (such as the inetd daemon), which in turn can own
several subservers (such as the ftp daemon and the finger command).

SRC administration commands
You can administer SRC from the command line.

The SRC administration commands are:

Item Description

srcmstr daemon Starts the System Resource Controller

startsrc command Starts a subsystem, subsystem group, or subserver

stopsrc command Stops a subsystem, subsystem group, or subserver

refresh command Refreshes a subsystem

traceson command Turns on tracing of a subsystem, a group of subsystems, or a subserver

tracesoff command Turns off tracing of a subsystem, a group of subsystems, or a subserver

lssrc command Gets status on a subsystem.

Starting the System Resource Controller
The System Resource Controller (SRC) is started during system initialization with a record for the /usr/
sbin/srcmstr daemon in the /etc/inittab file.

The following are the prerequisites for starting the SRC:

• Reading and writing the /etc/inittab file requires root user authority.
• The mkitab command requires root user authority.
• The srcmstr daemon record must exist in the /etc/inittab file.

The default /etc/inittab file already contains such a record, so this procedure might be unnecessary.
You can also start the SRC from the command line, a profile, or a shell script, but there are several reasons
for starting it during initialization:

• Starting the SRC from the /etc/inittab file allows the init command to restart the SRC if it stops
for any reason.

• The SRC is designed to simplify and reduce the amount of operator intervention required to control
subsystems. Starting the SRC from any source other than the /etc/inittab file is counterproductive
to that goal.

• The default /etc/inittab file contains a record for starting the print scheduling subsystem
(qdaemon) with the startsrc command. Typical installations have other subsystems started with
startsrc commands in the /etc/inittab file as well. Because the srcmstr command requires the
SRC be running, removing the srcmstr daemon from the /etc/inittab file causes these startsrc
commands to fail.

Note: This procedure is necessary only if the /etc/inittab file does not already contain a record for the
srcmstr daemon.

1. Make a record for the srcmstr daemon in the /etc/inittab file using the mkitab command.
For example, to make a record identical to the one that appears in the default /etc/inittab file,
type:

mkitab -i fbcheck srcmstr:2:respawn:/usr/sbin/srcmstr

The -i fbcheck flag ensures that the record is inserted before all subsystems records.

Operating system management 179

2. Tell the init command to reprocess the /etc/inittab file by typing:

telinit q

When init revisits the /etc/inittab file, it processes the newly entered record for the srcmstr
daemon and starts the SRC.

Related concepts
Subsystem control
The traceson command can be used to turn on, and the traceoff command can be used to turn off,
tracing of a System Resource Controller (SRC) resource such as a subsystem, a group of subsystems, or a
subserver.
Related tasks
Refreshing a subsystem or subsystem group
Use the refresh command to tell a System Resource Controller (SRC) resource such as a subsystem or a
group of subsystems to refresh itself.

Starting or stopping a subsystem, subsystem group, or subserver
Use the startsrc command to start a System Resource Controller (SRC) resource such as a subsystem,
a group of subsystems, or a subserver. Use the stopsrc command to stop an SRC resource such as a
subsystem, a group of subsystems, or a subserver.

The following are the prerequisites for starting or stopping a subsystem, subsystem group, or subserver:

• To start or stop an SRC resource, the SRC must be running. The SRC is normally started during system
initialization. The default /etc/inittab file, which determines what processes are started during
initialization, contains a record for the srcmstr daemon (the SRC). To see if the SRC is running, type ps
-A and look for a process named srcmstr.

• The user or process starting an SRC resource must have root user authority. The process that initializes
the system (init command) has root user authority.

• The user or process stopping an SRC resource must have root user authority.

The startsrc command can be used:

• From the /etc/inittab file so the resource is started during system initialization
• From the command line
• With SMIT

When you start a subsystem group, all of its subsystems are also started. When you start a subsystem, all
of its subservers are also started. When you start a subserver, its parent subsystem is also started if it is
not already running.

When you stop a subsystem, all its subservers are also stopped. However, when you stop a subserver, the
state of its parent subsystem is not changed.

Both the startsrc and stopsrc commands contain flags that allow requests to be made on local or
remote hosts. See the srcmstr command for the configuration requirements to support remote SRC
requests.

Starting or stopping a subsystem tasks

Task SMIT fast path Command or file

Start a subsystem smit
startssys

/bin/startsrc -s
SubsystemName , or edit /etc/
inittab

Stop a subsystem smit
stopssys

/bin/stopsrc -s SubsystemName

180 AIX Version 7.2: Operating system management

Related information
stopsrc command
startsrc command
srcmstr command

Displaying status of a subsystem or subsystems
Use the lssrc command to display the status of a System Resource Controller (SRC) resource such as a
subsystem, a group of subsystems, or a subserver.

All subsystems can return a short status report that includes which group the subsystem belongs to,
whether the subsystem is active, and what its process ID (PID) is. If a subsystem does not use the signals
communication method, it can be programmed to return a long status report containing additional status
information.

The lssrc command provides flags and parameters for specifying the subsystem by name or PID, for
listing all subsystems, for requesting a short or long status report, and for requesting the status of SRC
resources either locally or on remote hosts.

See the srcmstr command for the configuration requirements to support remote SRC requests.

Displaying the Status of Subsystems Tasks

Task SMIT Fast
Path

Command or File

Display the status of a subsystem (long format) smit qssys lssrc -l -s
SubsystemName

Display the status of all subsystems smit lsssys lssrc -a

Display the status of all subsystems on a particular host lssrc -hHostName -a

Refreshing a subsystem or subsystem group
Use the refresh command to tell a System Resource Controller (SRC) resource such as a subsystem or a
group of subsystems to refresh itself.

The following are the prerequisites for refreshing a subsystem or subsystem group:

• The SRC must be running.
• The resource you want to refresh must not use the signals communications method.
• The resource you want to refresh must be programmed to respond to the refresh request.

The refresh command provides flags and parameters for specifying the subsystem by name or PID. You
can also use it to request a subsystem or group of subsystems be refreshed, either locally or on remote
hosts. See the srcmstr command for the configuration requirements to support remote SRC requests.

Refreshing a Subsystem or Subsystem Group

Task SMIT Fast Path Command or File

Refresh a Subsystem smit refresh refresh -s Subsystem

Related tasks
Starting the System Resource Controller

Operating system management 181

The System Resource Controller (SRC) is started during system initialization with a record for the /usr/
sbin/srcmstr daemon in the /etc/inittab file.

Subsystem control
The traceson command can be used to turn on, and the traceoff command can be used to turn off,
tracing of a System Resource Controller (SRC) resource such as a subsystem, a group of subsystems, or a
subserver.

Use the traceson command to turn on tracing of a System Resource Controller (SRC) resource such as a
subsystem, a group of subsystems, or a subserver.

Use the tracesoff command to turn off tracing of a System Resource Controller (SRC) resource such as
a subsystem, a group of subsystems, or a subserver.

The traceson and traceoff commands can be used to remotely turn on or turn off tracing on a specific
host. See the srcmstr command for the configuration requirements for supporting remote SRC requests.
Prerequisites

• To turn the tracing of an SRC resource either on or off , the SRC must be running.
• The resource you want to trace must not use the signals communications method.
• The resource you want to trace must be programmed to respond to the trace request.

Turning On/Off Subsystem, Subsystem Group, or Subserver Tasks

Task SMIT Fast Path Command or File

Turn on Subsystem Tracing (short
format)

smit tracessyson traceson -s Subsystem

Turn on Subsystem Tracing (long
format)

smit tracessyson traceson -l -s Subsystem

Turn off Subsystem Tracing smit tracessysoff tracesoff -s Subsystem

Related tasks
Starting the System Resource Controller
The System Resource Controller (SRC) is started during system initialization with a record for the /usr/
sbin/srcmstr daemon in the /etc/inittab file.

Operating system files
Files are used for all input and output (I/O) of information in the operating system, to standardize access
to both software and hardware.

Input occurs when the contents of a file is modified or written to. Output occurs when the contents of one
file is read or transferred to another file. For example, to create a printed copy of a file, the system reads
the information from the text file and writes that information to the file representing the printer.

Types of files
The types of files recognized by the system are either regular, directory, or special. However, the
operating system uses many variations of these basic types.

The following basic types of files exist:

Item Description

regular Stores data (text, binary, and executable)

directory Contains information used to access other files

special Defines a FIFO (first-in, first-out) pipe file or a physical device

182 AIX Version 7.2: Operating system management

All file types recognized by the system fall into one of these categories. However, the operating system
uses many variations of these basic types.

Regular files

Regular files are the most common files and are used to contain data. Regular files are in the form of
text files or binary files:

Text files

Text files are regular files that contain information stored in ASCII format text and are readable
by the user. You can display and print these files. The lines of a text file must not contain NUL
characters, and none can exceed {LINE_MAX} bytes in length, including the newline character.

The term text file does not prevent the inclusion of control or other nonprintable characters (other
than NUL). Therefore, standard utilities that list text files as inputs or outputs are either able to
process the special characters or they explicitly describe their limitations within their individual
sections.

Binary files

Binary files are regular files that contain information readable by the computer. Binary files might
be executable files that instruct the system to accomplish a job. Commands and programs are
stored in executable, binary files. Special compiling programs translate ASCII text into binary
code.

Text and binary files differ only in that text files have lines of less than {LINE_MAX} bytes, with no
NUL characters, each terminated by a newline character.

Directory files

Directory files contain information that the system needs to access all types of files, but directory
files do not contain the actual file data. As a result, directories occupy less space than a regular
file and give the file system structure flexibility and depth. Each directory entry represents either a
file or a subdirectory. Each entry contains the name of the file and the file's index node reference
number (i-node number). The i-node number points to the unique index node assigned to the file. The
i-node number describes the location of the data associated with the file. Directories are created and
controlled by a separate set of commands.

Special files

Special files define devices for the system or are temporary files created by processes. The basic
types of special files are FIFO (first-in, first-out), block, and character. FIFO files are also called pipes.
Pipes are created by one process to temporarily allow communication with another process. These
files cease to exist when the first process finishes. Block and character files define devices.

Every file has a set of permissions (called access modes) that determine who can read, modify, or
execute the file.

Related concepts
File and directory access modes
Every file has an owner. For new files, the user who creates the file is the owner of that file. The owner
assigns an access mode to the file. Access modes grant other system users permission to read, modify, or
execute the file. Only the file's owner or users with root authority can change the access mode of a file.

File naming conventions
The name of each file must be unique within the directory where it is stored. This ensures that the file also
has a unique path name in the file system.

File naming guidelines are:

• A file name can be up to 255 characters long and can contain letters, numbers, and underscores.
• The operating system is case-sensitive, which means it distinguishes between uppercase and lowercase

letters in file names. Therefore, FILEA, FiLea, and filea are three distinct file names, even if they
reside in the same directory.

Operating system management 183

• File names should be as descriptive and meaningful as possible.
• Directories follow the same naming conventions as files.
• Certain characters have special meaning to the operating system. Avoid using these characters when

you are naming files. These characters include the following:

 / \ " ' * ; - ? [] () ~ ! $ { } < > # @ & | space tab newline

• A file name is hidden from a normal directory listing if it begins with a dot (.). When the ls command is
entered with the -a flag, the hidden files are listed along with regular files and directories.

File path names
The path name for each file and directory in the file system consists of the names of every directory that
precedes it in the tree structure.

Because all paths in a file system originate from the /(root) directory, each file in the file system has a
unique relationship to the root directory, known as the absolute path name. Absolute path names begin
with the slash (/) symbol. For example, the absolute path name of file h could be /B/C/h. Notice that
two files named h can exist in the system. Because the absolute paths to the two files are different, /B/h
and /B/C/h, each file named h has a unique name within the system. Every component of a path name is
a directory except the final component. The final component of a path name can be a file name.

Note: Path names cannot exceed 1023 characters in length.

Pattern matching with wildcards and metacharacters
Wildcard characters provide a convenient way to specify multiple file names or directory names.

The wildcard characters are asterisk (*) and question mark (?). The metacharacters are open and close
square brackets ([]), hyphen (-), and exclamation mark (!).

Pattern matching using the * wildcard character
Use the asterisk (*) to match any sequence or string of characters.

The (*) indicates any characters, including no characters.

See the following examples:

• If you have the following files in your directory:

1test 2test afile1 afile2 bfile1 file file1 file10 file2 file3

and you want to refer to only the files that begin with file, use:

file*

The files selected would be: file, file1, file10, file2, and file3.
• To refer to only the files that contain the word file, use:

file

The files selected would be: afile1, afile2, bfile1, file, file1, file10, file2, and file3.

Pattern matching using the ? wildcard character
Use the ? to match any one character.

The ? indicates any single character. See the following examples:

• To refer to only the files that start with file and end with a single character, use:

file?

The files selected would be: file1, file2, file3.

184 AIX Version 7.2: Operating system management

• To refer to only the files that start with file and end with any two characters, use:

file??

The file selected would be: file10.

Pattern matching using [] shell metacharacters
Metacharacters offer another type of wildcard notation by enclosing the desired characters within []. It
is like using the ?, but it allows you to choose specific characters to be matched.

The [] also allow you to specify a range of values using the hyphen (-). To specify all the letters in the
alphabet, use [[:alpha:]]. To specify all the lowercase letters in the alphabet, use [[:lower:]].

See the following examples:

• To refer to only the files that end in 1 or 2, use:

*file[12]

The files selected would be: afile1, afile2, file1, and file2.
• To refer to only the files that start with any number, use:

[0123456789]* or [0-9]*

The files selected would be: 1test and 2test.
• To refer to only the files that do not begin with an a, use:

[!a]*

The files selected would be: 1test, 2test, bfile1, file, file1, file10, file2, and file3.

Pattern matching versus regular expressions
Regular expressions allow you to select specific strings from a set of character strings. The use of regular
expressions is generally associated with text processing.

Regular expressions can represent a wide variety of possible strings. While many regular expressions
can be interpreted differently depending on the current locale, internationalization features provide for
contextual invariance across locales.

See the examples in the following comparison:

Pattern Matching Regular Expression

* .*

? .

[!a] [^a]

[abc] [abc]

[[:alpha:]] [[:alpha:]]

See the awk command in the Commands Reference, Volume 1 for the complete syntax.

Administering files
There are many ways to work with the files on your system. Usually you create a text file with a text editor.

The common editors in the UNIX environment are vi and ed. Because several text editors are available,
you can choose an editor you feel comfortable with.

Operating system management 185

You can also create files by using input and output redirection. You can send the output of a command to
a new file or append it to an existing file.

After creating and modifying files, you might have to copy or move files from one directory to another,
rename files to distinguish different versions of a file, or give different names to the same file. You might
also need to create directories when working on different projects.

Also, you might need to delete certain files. Your directory can quickly get cluttered with files that contain
old or useless information. To release storage space on your system, ensure that you delete files that are
no longer needed.

Deleting files (rm command)
Use the rm command to remove files you no longer need.

The rm command removes the entries for a specified file, group of files, or certain select files from a list
within a directory. User confirmation, read permission, and write permission are not required before a file
is removed when you use the rm command. However, you must have write permission for the directory
containing the file.

The following are examples of how to use the rm command:

• To delete the file named myfile, type the following:

rm myfile

• To delete all the files in the mydir directory, one by one, type the following:

rm -i mydir/*

After each file name displays, type y and press Enter to delete the file. Or to keep the file, just press
Enter.

See the rm command in the Commands Reference, Volume 4 for the complete syntax.

Moving and renaming files (mv command)
Use the mv command to move files and directories from one directory to another or to rename a file or
directory. If you move a file or directory to a new directory without specifying a new name, it retains its
original name.

Attention: The mv command can overwrite many existing files unless you specify the -i flag. The -i
flag prompts you to confirm before it overwrites a file. The -f flag does not prompt you. If both the
-f and -i flags are specified in combination, the last flag specified takes precedence.

Moving files with mv command

The following are examples of how to use the mv command:

• To move a file to another directory and give it a new name, type the following:

mv intro manual/chap1

This moves the intro file to the manual/chap1 directory. The name intro is removed from the
current directory, and the same file appears as chap1 in the manual directory.

• To move a file to another directory, keeping the same name, type the following:

mv chap3 manual

This moves chap3 to manual/chap3.

Renaming files with mv command

Use the mv command to change the name of a file without moving it to another directory.

To rename a file, type the following:

mv appendix apndx.a

186 AIX Version 7.2: Operating system management

This renames the appendix file to apndx.a. If a file named apndx.a already exists, its old contents
are replaced with those of the appendix file.

See the mv command in the Commands Reference, Volume 3 for the complete syntax.

Copying files (cp command)
Use the cp command to create a copy of the contents of the file or directory specified by the SourceFile
or SourceDirectory parameters into the file or directory specified by the TargetFile or TargetDirectory
parameters.

If the file specified as the TargetFile exists, the copy writes over the original contents of the file without
warning. If you are copying more than one SourceFile, the target must be a directory.

If a file with the same name exists at the new destination, the copied file overwrites the file at the new
destination. Therefore, it is a good practice to assign a new name for the copy of the file to ensure that a
file of the same name does not exist in the destination directory.

To place a copy of the SourceFile into a directory, specify a path to an existing directory for the
TargetDirectory parameter. Files maintain their respective names when copied to a directory unless you
specify a new file name at the end of the path. The cp command also copies entire directories into other
directories if you specify the -r or -R flags.

You can also copy special-device files using the -R flag. Specifying -R causes the special files to be
re-created under the new path name. Specifying the -r flag causes the cp command to attempt to copy
the special files to regular files.

The following are examples of how to use the cp command:

• To make a copy of a file in the current directory, type the following:

cp prog.c prog.bak

This copies prog.c to prog.bak. If the prog.bak file does not already exist, then the cp command
creates it. If it does exist, then the cp command replaces it with a copy of the prog.c file.

• To copy a file in your current directory into another directory, type the following:

cp jones /home/nick/clients

This copies the jones file to /home/nick/clients/jones.
• To copy all the files in a directory to a new directory, type the following:

cp /home/janet/clients/* /home/nick/customers

This copies only the files in the clients directory to the customers directory.
• To copy a specific set of files to another directory, type the following:

cp jones lewis smith /home/nick/clients

This copies the jones, lewis, and smith files in your current working directory to the /home/nick/
clients directory.

• To use pattern-matching characters to copy files, type the following:

cp programs/*.c .

This copies the files in the programs directory that end with .c to the current directory, indicated by
the single dot (.). You must type a space between the c and the final dot.

See the cp command in the Commands Reference, Volume 1 for the complete syntax.

Operating system management 187

Finding files (find command)
Use the find command to recursively search the directory tree for each specified Path, seeking files that
match a Boolean expression written using the terms given in the following text.

The output from the find command depends on the terms specified by the Expression parameter.

The following are examples of how to use the find command:

• To list all files in the file system with the name .profile, type the following:

find / -name .profile

This searches the entire file system and writes the complete path names of all files named .profile.
The slash (/) tells the find command to search the /(root) directory and all of its subdirectories.

To save time, limit the search by specifying the directories where you think the files might be.
• To list files having a specific permission code of 0600 in the current directory tree, type the following:

find . -perm 0600

This lists the names of the files that have only owner-read and owner-write permission. The dot (.)
tells the find command to search the current directory and its subdirectories. For an explanation of
permission codes, see the chmod command.

• To search several directories for files with certain permission codes, type the following:

find manual clients proposals -perm -0600

This lists the names of the files that have owner-read and owner-write permission and possibly other
permissions. The manual, clients, and proposals directories and their subdirectories are searched.
In the previous example, -perm 0600 selects only files with permission codes that match 0600
exactly. In this example, -perm -0600 selects files with permission codes that allow the accesses
indicated by 0600 and other accesses above the 0600 level. This also matches the permission codes
0622 and 2744.

• To list all files in the current directory that have been changed during the current 24-hour period, type
the following:

find . -ctime 1

• To search for regular files with multiple links, type the following:

find . -type f -links +1

This lists the names of the ordinary files (-type f) that have more than one link (-links +1).

Note: Every directory has at least two links: the entry in its parent directory and its own .(dot) entry. For
more information on multiple file links, see the ln command.

• To search for all files that are exactly 414 bytes in length, type the following:

find . -size 414c

See the find command in the Commands Reference, Volume 2 for the complete syntax.

Displaying the file type (file command)
Use the file command to read the files specified by the File or -fFileList parameter, perform a series of
tests on each one, and attempt to classify the files by type. The command then writes the file types to
standard output.

If a file appears to be ASCII, the file command examines the first 512 bytes and determines its
language. If a file does not appear to be ASCII, the file command further attempts to determine
whether it is a binary data file or a text file that contains extended characters.

188 AIX Version 7.2: Operating system management

If the File parameter specifies an executable or object module file and the version number is greater than
0, the file command displays the version stamp.

The file command uses the /etc/magic file to identify files that have a magic number; that is, any file
containing a numeric or string constant that indicates the type.

The following are examples of how to use the file command:

• To display the type of information the file named myfile contains, type the following:

file myfile

This displays the file type of myfile (such as directory, data, ASCII text, C program source, or archive).
• To display the type of each file named in the filenames.lst file, which contains a list of file names,

type the following:

file -f filenames.lst

This displays the type of each file named in the filenames.lst file. Each file name must display on a
separate line.

• To create the filenames.lst file that contains all the file names in the current directory, type the
following:

ls > filenames.lst

Edit the filenames.lst file as desired.

See the file command in the Commands Reference, Volume 2 for the complete syntax.

Commands for displaying file contents (pg, more, page, and cat commands)
The pg, more, and page commands allow you to view the contents of a file and control the speed at which
your files are displayed.

You can also use the cat command to display the contents of one or more files on your screen. Combining
the cat command with the pg command allows you to read the contents of a file one full screen at a time.

You can also display the contents of files by using input and output redirection.

Related concepts
Input and output redirection
The AIX operating system allows you to manipulate the input and output (I/O) of data to and from your
system by using specific I/O commands and symbols.

Using the pg command
Use the pg command to read the files named in the File parameter and writes them to standard output
one screen at a time.

If you specify hyphen (-) as the File parameter or run the pg command without options, the pg
command reads standard input. Each screen is followed by a prompt. If you press the Enter key, another
screen displays. Subcommands used with the pg command let you review content that has already
passed.

For example, to look at the contents of the file myfile one page at a time, type the following:

pg myfile

See the pg command in the Commands Reference, Volume 4 for the complete syntax.

Using the more or page commands
Use the more or page command to display continuous text one screen at a time.

It pauses after each screen and prints the filename and percent completed (for example, myfile (7%))
at the bottom of the screen. If you then press the Enter key, the more command displays an additional
line. If you press the Spacebar, the more command displays another screen of text.

Operating system management 189

Note: On some terminal models, the more command clears the screen, instead of scrolling, before
displaying the next screen of text.

For example, to view a file named myfile, type the following:

more myfile

Press the Spacebar to view the next screen.

See the more command in theCommands Reference, Volume 3 for the complete syntax.

cat command
Use the cat command to read each File parameter in sequence and writes it to standard output.

See the following examples:

• To display the contents of the file notes, type the following:

cat notes

If the file is more than 24 lines long, some of it scrolls off the screen. To list a file one page at a time, use
the pg command.

• To display the contents of the files notes, notes2, and notes3, type the following:

cat notes notes2 notes3

See the cat command in the Commands Reference, Volume 1 for the complete syntax.

Finding text strings within files (grep command)
Use the grep command to search the specified file for the pattern specified by the Pattern parameter and
writes each matching line to standard output.

The following are examples of how to use the grep command:

• To search in a file named pgm.s for a pattern that contains some of the pattern-matching characters
*, ^, ?, [,], \(, \), \{, and \}, in this case, lines starting with any lowercase or uppercase letter, type the
following:

grep "^[a-zA-Z]" pgm.s

This displays all lines in the pgm.s file that begin with a letter.
• To display all lines in a file named sort.c that do not match a particular pattern, type the following:

grep -v bubble sort.c

This displays all lines that do not contain the word bubble in the sort.c file.
• To display lines in the output of the ls command that match the string staff, type the following:

ls -l | grep staff

See the grep command in the Commands Reference, Volume 2 for the complete syntax.

Sorting text files (sort command)
Use the sort command to alphabetize lines in the files specified by the File parameters and write the
result to standard output.

If the File parameter specifies more than one file, the sort command concatenates the files and
alphabetizes them as one file.

Note: The sort command is case-sensitive and orders uppercase letters before lowercase (this behavior
is dependent on the locale).

190 AIX Version 7.2: Operating system management

In the following examples, the contents of the file named names are:

marta
denise
joyce
endrica
melanie

and the contents of the file named states are:

texas
colorado
ohio

• To display the sorted contents of the file named names, type the following:

sort names

The system displays information similar to the following:

denise
endrica
joyce
marta
melanie

• To display the sorted contents of the names and states files, type the following:

sort names states

The system displays information similar to the following:

colorado
denise
endrica
joyce
marta
melanie
ohio
texas

• To replace the original contents of the file named names with its sorted contents, type the following:

sort -o names names

This replaces the contents of the names file with the same data but in sorted order.

See the sort command in the Commands Reference, Volume 5 for the complete syntax.

Comparing files (diff command)
Use the diff command to compare text files. It can compare single files or the contents of directories.

When the diff command is run on regular files, and when it compares text files in different directories,
the diff command tells which lines must be changed in the files so that they match.

The following are examples of how to use the diff command:

• To compare two files, type the following:

diff chap1.bak chap1

This displays the differences between the chap1.bak and chap1 files.
• To compare two files while ignoring differences in the amount of white space, type the following:

diff -w prog.c.bak prog.c

If the two files differ only in the number of spaces and tabs between words, the diff -w command
considers the files to be the same.

Operating system management 191

See the diff command in the Commands Reference, Volume 2 for the complete syntax.

Counting words, lines, and bytes in files (wc command)
Use the wc command to count the number of lines, words, and bytes in the files specified by the File
parameter.

If a file is not specified for the File parameter, standard input is used. The command writes the results to
standard output and keeps a total count for all named files. If flags are specified, the ordering of the flags
determines the ordering of the output. A word is defined as a string of characters delimited by spaces,
tabs, or newline characters.

When files are specified on the command line, their names are printed along with the counts.

See the following examples:

• To display the line, word, and byte counts of the file named chap1, type the following:

wc chap1

This displays the number of lines, words, and bytes in the chap1 file.
• To display only byte and word counts, type the following:

wc -cw chap*

This displays the number of bytes and words in each file where the name starts with chap, and displays
the totals.

See the wc command in the Commands Reference, Volume 6 for the complete syntax.

Displaying the first lines of files (head command)
Use the head command to write to standard output the first few lines of each of the specified files or of
the standard input.

If no flag is specified with the head command, the first 10 lines are displayed by default.

For example, to display the first five lines of the Test file, type the following:

head -5 Test

See the head command in the Commands Reference, Volume 2 for the complete syntax.

Displaying the last lines of files (tail command)
Use the tail command to write the file specified by the File parameter to standard output beginning at a
specified point.

See the following examples:

• To display the last 10 lines of the notes file, type the following:

tail notes

• To specify the number of lines to start reading from the end of the notes file, type the following:

tail -20 notes

• To display the notes file one page at a time, beginning with the 200th byte, type the following:

tail -c +200 notes | pg

• To follow the growth of the file named accounts, type the following:

tail -f accounts

192 AIX Version 7.2: Operating system management

This displays the last 10 lines of the accounts file. The tail command continues to display lines as
they are added to the accounts file. The display continues until you press the (Ctrl-C) key sequence to
stop the display.

See the tail command in the Commands Reference, Volume 5 for the complete syntax.

Cutting sections of text files (cut command)
Use the cut command to write selected bytes, characters, or fields from each line of a file to standard
output.

See the following examples:

• To display several fields of each line of a file, type the following:

cut -f1,5 -d: /etc/passwd

This displays the login name and full user name fields of the system password file. These are the first
and fifth fields (-f1,5) separated by colons (-d:).

• If the /etc/passwd file looks like this:

su:*:0:0:User with special privileges:/:/usr/bin/sh
daemon:*:1:1::/etc:
bin:*:2:2::/usr/bin:
sys:*:3:3::/usr/src:
adm:*:4:4:system administrator:/var/adm:/usr/bin/sh
pierre:*:200:200:Pierre Harper:/home/pierre:/usr/bin/sh
joan:*:202:200:Joan Brown:/home/joan:/usr/bin/sh

the cut command produces:

su:User with special privileges
daemon:
bin:
sys:
adm:system administrator
pierre:Pierre Harper
joan:Joan Brown

See the cut command in the Commands Reference, Volume 1 for the complete syntax.

Pasting sections of text files (paste command)
Use the paste command to merge the lines of up to 12 files into one file.

See the following examples:

• If you have a file named names that contains the following text:

rachel
jerry
mark
linda
scott

and another file named places that contains the following text:

New York
Austin
Chicago
Boca Raton
Seattle

and another file named dates that contains the following text:

February 5
March 13
June 21
July 16
November 4

Operating system management 193

To paste the text of the files names, places, and dates together, type the following:

paste names places dates > npd

This creates a file named npd that contains the data from the names file in one column, the places file
in another, and the dates file in a third. The npd file now contains the following:

rachel New York February 5
jerry Austin March 13
mark Chicago June 21
linda Boca Raton July 16
scott Seattle November 4

A tab character separates the name, place, and date on each line. These columns do not align, because
the tab stops are set at every eighth column.

• To separate the columns with a character other than a tab, type the following:

paste -d"!@" names places dates > npd

This alternates ! and @ as the column separators. If the names, places, and dates files are the same
as in example 1, then the npd file contains the following:

rachel!New York@February 5
jerry!Austin@March 13
mark!Chicago@June 21
linda!Boca Raton@July 16
scott!Seattle@November 4

• To list the current directory in four columns, type the following:

ls | paste - - - -

Each hyphen (-) tells the paste command to create a column containing data read from the standard
input. The first line is put in the first column, the second line in the second column, and so on.

See the paste command in the Commands Reference, Volume 4 for the complete syntax.

Numbering lines in text files (nl command)
Use the nl command to read the specified file (standard input by default), numbers the lines in the input,
and writes the numbered lines to standard output.

See the following examples:

• To number only the lines that are not blank, type the following:

nl chap1

This displays a numbered listing of chap1, numbering only the lines that are not blank in the body
sections.

• To number all lines, type the following:

nl -ba chap1

This numbers all the lines in the file named chap1, including blank lines.

See the nl command in the Commands Reference, Volume 4 for the complete syntax.

Removing columns in text files (colrm command)
Use the colrm command to remove specified columns from a file. Input is taken from standard input.
Output is sent to standard output.

If the command is called with one parameter, the columns of each line from the specified column to
the last column are removed. If the command is called with two parameters, the columns from the first
specified column to the second specified column are removed.

Note: Column numbering starts with column 1.

194 AIX Version 7.2: Operating system management

See the following examples:

• To remove columns from the text.fil file, type the following:

colrm 6 < text.fil

If text.fil contains:

123456789

then the colrm command displays:

12345

See the colrm command in the Commands Reference, Volume 1 for the complete syntax.

File and directory links
Links are connections between a file name and an index node reference number (i-node number), the
internal representation of a file. Because directory entries contain file names paired with i-node numbers,
every directory entry is a link.

The i-node number actually identifies the file, not the file name. By using links, any i-node number or file
can be known by many different names. For example, i-node number 798 contains a memo regarding
June sales in the Omaha office. Presently, the directory entry for this memo is as follows:

i-node
Number

File Name

798 memo

Because this information relates to information stored in the sales and omaha directories, linking is used
to share the information where it is needed. Using the ln command, links are created to these directories.
Now the file has three file names as follows:

i-node
Number

File Name

798 memo

798 sales/june

798 omaha/junesales

When you use the pg or cat command to view the contents of any of the three file names, the same
information is displayed. If you edit the contents of the i-node number from any of the three file names,
the contents of the data displayed by all of the file names will reflect any changes.

Types of links
There are two types of links: hard and symbolic.

Links are created with the ln command and are of the following types:

Item Description

hard link Allows access to the data of a file from a new file name. Hard links ensure the existence
of a file. When the last hard link is removed, the i-node number and its data are deleted.
Hard links can be created only between files that are in the same file system.

symbolic link Allows access to data in other file systems from a new file name. The symbolic link is
a special type of file that contains a path name. When a process encounters a symbolic
link, the process may search that path. Symbolic links do not protect a file from deletion
from the file system.

Operating system management 195

Note: The user who creates a file retains ownership of that file no matter how many links are created.
Only the owner of the file or the root user can set the access mode for that file. However, changes can be
made to the file from a linked file name with the proper access mode.

A file or directory exists as long as there is one hard link to the i-node number for that file. In the long
listing displayed by the ls -l command, the number of hard links to each file and subdirectory is given. All
hard links are treated equally by the operating system, regardless of which link was created first.

Linking files (ln command)
Linking files with the ln command is a convenient way to work with the same data as if it were in more
than one place.

Links are created by giving alternate names to the original file. The use of links allows a large file, such as
a database or mailing list, to be shared by several users without making copies of that file. Not only do
links save disk space, but changes made to one file are automatically reflected in all the linked files.

The ln command links the file designated in the SourceFile parameter to the file designated
by the TargetFile parameter or to the same file name in another directory specified by the
TargetDirectory parameter. By default, the ln command creates hard links. To use the ln command
to create symbolic links, add the -s flag.

Note: You cannot link files across file systems without using the -s flag.

If you are linking a file to a new name, you can list only one file. If you are linking to a directory, you can
list more than one file.

The TargetFile parameter is optional. If you do not designate a target file, the ln command creates
a file in your current directory. The new file inherits the name of the file designated in the SourceFile
parameter.

See the following examples:

• To create a link to a file named chap1, type the following:

ln -f chap1 intro

This links chap1 to the new name, intro. When the -f flag is used, the file name intro is created if it
does not already exist. If intro does exist, the file is replaced by a link to chap1. Both the chap1 and
intro file names refer to the same file.

• To link a file named index to the same name in another directory named manual, type the following:

ln index manual

This links index to the new name, manual/index.
• To link several files to names in another directory, type the following:

ln chap2 jim/chap3 /home/manual

This links chap2 to the new name /home/manual/chap2 and jim/chap3 to /home/manual/chap3.
• To use the ln command with pattern-matching characters, type the following:

ln manual/* .

Note: You must type a space between the asterisk and the period.

This links all files in the manual directory into the current directory, dot (.), giving them the same names
they have in the manual directory.

• To create a symbolic link, type the following:

ln -s /tmp/toc toc

This creates the symbolic link, toc, in the current directory. The toc file points to the /tmp/toc file. If
the /tmp/toc file exists, the cat toc command lists its contents.

196 AIX Version 7.2: Operating system management

• To achieve identical results without designating the TargetFile parameter, type the following:

ln -s /tmp/toc

See the ln command in the Commands Reference, Volume 3 for the complete syntax.

Command for removing linked files
The rm command removes the link from the file name that you indicate.

When one of several hard-linked file names is deleted, the file is not completely deleted because it
remains under the other name. When the last link to an i-node number is removed, the data is removed as
well. The i-node number is then available for reuse by the system.

See the rm command in the Commands Reference, Volume 3 for the complete syntax.

DOS files
The AIX operating system allows you to work with DOS files on your system.

Copy to a diskette the DOS files you want to work with. Your system can read these files into a base
operating system directory in the correct format and back onto the diskette in DOS format.

Note: The wildcard characters * and ? (asterisk and question mark) do not work correctly with the
commands discussed in this section (although they do with the base operating system shell). If you do not
specify a file name extension, the file name is matched as if you had specified a blank extension.

Copying DOS files to base operating system files
Use the dosread command to copy the specified DOS file to the specified base operating system file.

Note: DOS file-naming conventions are used with one exception. Because the backslash (\) character can
have special meaning to the base operating system, use a slash (/) character as the delimiter to specify
subdirectory names in a DOS path name.

See the following examples:

• To copy a text file named chap1.doc from a DOS diskette to the base operating file system, type the
following:

dosread -a chap1.doc chap1

This copies the DOS text file \CHAP1.DOC on the /dev/fd0 default device to the base operating
system file chap1 in the current directory.

• To copy a binary file from a DOS diskette to the base operating file system, type the following:

dosread -D/dev/fd0 /survey/test.dta /home/fran/testdata

This copies the \SURVEY\TEST.DTA DOS data file on /dev/fd0 to the base operating system file /
home/fran/testdata.

See the dosread command in the Commands Reference, Volume 2 for the complete syntax.

Copying base operating system files to DOS files
Use the doswrite command to copy the specified base operating system file to the specified DOS file.

Note: DOS file-naming conventions are used with one exception. Because the backslash (\) character can
have special meaning to the base operating system, use a slash (/) character as the delimiter to specify
subdirectory names in a DOS path name.

See the following examples:

• To copy a text file named chap1 from the base operating file system to a DOS diskette, type the
following:

doswrite -a chap1 chap1.doc

Operating system management 197

This copies the base operating system file chap1 in the current directory to the DOS text file
\CHAP1.DOC on /dev/fd0.

• To copy a binary file named /survey/test.dta from the base operating file system to a DOS diskette,
type the following:

doswrite -D/dev/fd0 /home/fran/testdata /survey/test.dta

This copies the base operating system data file /home/fran/testdata to the DOS file
\SURVEY\TEST.DTA on /dev/fd0.

See the doswrite command in the Commands Reference, Volume 2 for the complete syntax.

Deleting DOS files
Use the dosdel command to delete the specified DOS file.

Note: DOS file-naming conventions are used with one exception. Because the backslash (\) character can
have special meaning to the base operating system, use a slash (/) character as the delimiter to specify
subdirectory names in a DOS path name.

The dosdel command converts lowercase characters in the file or directory name to uppercase before it
checks the disk. Because all file names are assumed to be full (not relative) path names, you need not add
the initial slash (/).

For example, to delete a DOS file named file.ext on the default device (/dev/fd0), type the following:

dosdel file.ext

See the dosdel command in the Commands Reference, Volume 2 for the complete syntax.

Displaying contents of a DOS directory
Use the dosdir command to display information about the specified DOS files or directories.

Note: DOS file-naming conventions are used with one exception. Because the backslash (\) character can
have special meaning to the base operating system, use a slash (/) character as the delimiter to specify
subdirectory names in a DOS path name.

The dosdir command converts lowercase characters in the file or directory name to uppercase before it
checks the disk. Because all file names are assumed to be full (not relative) path names, you need not add
the initial / (slash).

For example, to read a directory of the DOS files on /dev/fd0, type the following:

dosdir

The command returns the names of the files and disk-space information, similar to the following.

PG3-25.TXT
PG4-25.TXT
PG5-25.TXT
PG6-25.TXT
Free space: 312320 bytes

See the dosdir command in the Commands Reference, Volume 2 for the complete syntax.

Command summary for files
The following are commands for files, file handling procedures, and DOS files. There is also a list of
commands for linking files and directories.

Table 57. Commands for files

Item Description

* Wildcard, matches any characters

198 AIX Version 7.2: Operating system management

Table 57. Commands for files (continued)

Item Description

? Wildcard, matches any single character

[] Metacharacters, matches enclosed characters.

Table 58. Commands for file handling procedures

Item Description

cat Concatenates or displays files

cmp Compares two files

colrm Extracts columns from a file

cp Copies files

cut Writes out selected bytes, characters, or fields from each line of a file

diff Compares text files

file Determines the file type

find Finds files with a matching expression

grep Searches a file for a pattern

head Displays the first few lines or bytes of a file or files

more Displays continuous text one screen at a time on a display screen

mv Moves files

nl Numbers lines in a file

pg Formats files to the display

rm Removes (unlinks) files or directories

paste Merges the lines of several files or subsequent lines in one file

sort Sorts files, merges files that are already sorted, and checks files to determine if they
have been sorted

tail Writes a file to standard output, beginning at a specified point

wc Counts the number of lines, words, and bytes in a file

Table 59. Command for linking files and directories

Item Description

ln Links files and directories

Table 60. Commands for DOS files

Item Description

dosdel Deletes DOS files

dosdir Lists the directory for DOS files

dosread Copies DOS files to Base Operating System files

doswrite Copies Base Operating System files to DOS files

Operating system management 199

Operating system shells
Your interface to the operating system is called a shell.

The shell is the outermost layer of the operating system. Shells incorporate a programming language
to control processes and files, as well as to start and control other programs. The shell manages the
interaction between you and the operating system by prompting you for input, interpreting that input for
the operating system, and then handling any resulting output from the operating system.

Shells provide a way for you to communicate with the operating system. This communication is carried
out either interactively (input from the keyboard is acted upon immediately) or as a shell script. A shell
script is a sequence of shell and operating system commands that is stored in a file.

When you log in to the system, the system locates the name of a shell program to execute. After it is
executed, the shell displays a command prompt. This prompt is usually a $ (dollar sign). When you type a
command at the prompt and press the Enter key, the shell evaluates the command and attempts to carry
it out. Depending on your command instructions, the shell writes the command output to the screen or
redirects the output. It then returns the command prompt and waits for you to type another command.

A command line is the line on which you type. It contains the shell prompt. The basic format for each line
is as follows:

$ Command Argument(s)

The shell considers the first word of a command line (up to the first blank space) as the command and all
subsequent words as arguments.

Note: When libc.a is moved or renamed, the Killed error message is displayed from the shell because
there is no libc.a file available for the system to load and run the utilities. The recsh command invokes
the recovery shell, which provides an ability to rename libc.a if it is accidently moved.

Related tasks
Listing previously entered commands (history command)
Use the history command to list commands that you have previously entered.

Shell concepts
Before you start working with the different types of shells available for AIX you need to understand basic
terminology and features.

Available shells
The following are the shells that are provided with AIX.

• Korn shell (started with the ksh command)
• Bourne shell (started with the bsh command)
• Restricted shell (a limited version of the Bourne shell, and started with the Rsh command)
• POSIX shell (also known as the Korn Shell, and started with the psh command)
• Restricted shell for the Korn shell (ksh and ksh93). The ksh and ksh93 shells are provided with their

restricted shell equivalents rksh and rksh93.
• Default shell (started with the sh command)
• C shell (started with the csh command)
• Trusted shell (a limited version of the Korn shell, and started with the tsh command)
• Remote shell (started with the rsh command)

The login shell refers to the shell that is loaded when you log in to the computer system. Your login
shell is set in the /etc/passwd file. The Korn shell is the standard operating system login shell and is
backward-compatible with the Bourne Shell.

The Korn shell (/usr/bin/ksh) is set up as the default shell. The default or standard shell refers to
the shells linked to and started with the /usr/bin/sh command. The Bourne shell (/usr/bin/sh) can

200 AIX Version 7.2: Operating system management

be substituted as the default shell. The POSIX shell, which is invoked by the /usr/bin/psh command,
resides as a link to the /usr/bin/sh command.

Related concepts
Bourne shell
The Bourne shell is an interactive command interpreter and command programming language.
Korn shell or POSIX shell commands
The Korn shell is an interactive command interpreter and command programming language. It conforms
to the Portable Operating System Interface for Computer Environments (POSIX), an international
standard for operating systems.

Shells terminology
The terms and definitions in this table are helpful in understanding shells.

Item Description

blank A blank is one of the characters in the blank character class defined in the
LC_CTYPE category. In the POSIX shell, a blank is either a tab or space.

built-in command A command that the shell executes without searching for it and creating a
separate process.

command A sequence of characters in the syntax of the shell language. The shell reads
each command and carries out the desired action either directly or by invoking
separate utilities.

comment Any word that begins with pound sign (#). The word and all characters that
follow it, until the next newline character, are ignored.

identifier A sequence of letters, digits, or underscores from the portable character set,
starting with a letter or underscore. The first character of an identifier must
not be a digit. Identifiers are used as names for aliases, functions, and named
parameters.

Operating system management 201

Item Description

list A sequence of one or more pipelines separated by one of the following
symbols: semicolon (;), ampersand (&), double ampersand (&&), or double bar
(||). The list is optionally ended by one of the following symbols: semicolon
(;), ampersand (&), or bar ampersand (|&).
;

Sequentially processes the preceding pipeline. The shell carries out each
command in turn and waits for the most recent command to complete.

&
Asynchronously processes the preceding pipeline. The shell carries out
each command in turn, processing the pipeline in the background without
waiting for it to complete.

|&
Asynchronously processes the preceding pipeline and establishes a two-
way pipe to the parent shell. The shell carries out each command in
turn, processing the pipeline in the background without waiting for it to
complete. The parent shell can read from and write to the standard input
and output of the created command by using the read -p and print -p
commands. Only one such command can be active at any given time.

&&
Processes the list that follows this symbol only if the preceding pipeline
returns an exit value of zero (0).

||
Processes the list that follows this symbol only if the preceding pipeline
returns a nonzero exit value.

The semicolon (;), ampersand (&), and bar ampersand (|&) have a lower
priority than the double ampersand (&&) and double bar (||). The ;, &, and
|& symbols have equal priority among themselves. The && and || symbols
are equal in priority. One or more newline characters can be used instead of a
semicolon to delimit two commands in a list.

Note: The |& symbol is valid only in the Korn shell.

metacharacter Each metacharacter has a special meaning to the shell and causes termination
of a word unless it is quoted. Metacharacters are: pipe (|), ampersand
(&), semicolon (;), less-than sign (<), greater-than sign (>), left parenthesis
((), right parenthesis ()), dollar sign ($), backquote (`), backslash (\), right
quote ('), double quotation marks ("), newline character, space character,
and tab character. All characters enclosed between single quotation marks
are considered quoted and are interpreted literally by the shell. The special
meaning of metacharacters is retained if not quoted. (Metacharacters are also
known as parser metacharacters in the C shell.)

parameter assignment
list

Includes one or more words of the form Identifier=Value in which spaces
surrounding the equal sign (=) must be balanced. That is, leading and trailing
blanks, or no blanks, must be used.

Note: In the C shell, the parameter assignment list is of the form
setIdentifier=Value. The spaces surrounding the equal sign (=) are required.

202 AIX Version 7.2: Operating system management

Item Description

pipeline A sequence of one or more commands separated by pipe (|). Each command
in the pipeline, except possibly the last command, is run as a separate process.
However, the standard output of each command that is connected by a pipe
becomes the standard input of the next command in the sequence. If a list is
enclosed with parentheses, it is carried out as a simple command that operates
in a separate subshell.

If the reserved word ! does not precede the pipeline, the exit status will be the
exit status of the last command specified in the pipeline. Otherwise, the exit
status is the logical NOT of the exit status of the last command. In other words,
if the last command returns zero, the exit status will be 1. If the last command
returns greater than zero, the exit status will be zero.

The format for a pipeline is as follows:

[!] command1 [| command2 ...]

Note: Early versions of the Bourne shell used the caret (^) to indicate a pipe.

shell variable A name or parameter to which a value is assigned. Assign a variable by typing
the variable name, an equal sign (=), and then the value. The variable name can
be substituted for the assigned value by preceding the variable name with a
dollar sign ($). Variables are particularly useful for creating a short notation for
a long path name, such as $HOME for the home directory. A predefined variable
is one whose value is assigned by the shell. A user-defined variable is one
whose value is assigned by a user.

simple command A sequence of optional parameter assignment lists and redirections, in any
sequence. They are optionally followed by commands, words, and redirections.
They are terminated by ;, |, &, ||, &&, |&, or a newline character. The command
name is passed as parameter 0 (as defined by the exec subroutine). The value
of a simple command is its exit status of zero if it terminates normally or
nonzero if it terminates abnormally. The sigaction, sigvec, or signal subroutine
includes a list of signal-exit status values.

subshell A shell that is running as a child of the login shell or the current shell.

wildcard character Also known as a pattern-matching character. The shell associates them with
assigned values. The basic wildcards are ?, *, [set], and [!set]. Wildcard
characters are particularly useful when performing file name substitution.

word A sequence of characters that does not contain any blanks. Words are
separated by one or more metacharacters.

Specifying a shell for a script file
When you run an executable shell script in either the Korn (the POSIX Shell) or Bourne shell, the
commands in the script are carried out under the control of the current shell (the shell from which the
script is started) unless you specify a different shell. When you run an executable shell script in the C
shell, the commands in the script are carried out under the control of the Bourne shell (/usr/bin/bsh)
unless you specify a different shell.

You can run a shell script in a specific shell by including the shell within the shell script.

To run an executable shell script under a specific shell, type #!Path on the first line of the shell script,
and press Enter. The #! characters identify the file type. The Path variable specifies the path name of the
shell from which to run the shell script.

For example, to run the bsh script in the Bourne shell, type the following:

#!/usr/bin/bsh

Operating system management 203

When you precede a shell script file name with a shell command, the shell specified on the command
line overrides any shell specified within the script file itself. Therefore, typing ksh myfile and pressing
Enter runs the file named myfile under the control of the Korn shell, even if the first line of myfile is
#!/usr/bin/csh.

Shell features
There are advantages to using the shell as an interface to the system.

The primary advantages of interfacing to the system through a shell are as follows:

• Wildcard substitution in file names (pattern-matching)

Carries out commands on a group of files by specifying a pattern to match, rather than specifying an
actual file name.

For more information, see:

– “File name substitution in the Korn shell or POSIX shell” on page 227
– “File name substitution in the Bourne shell” on page 260
– “File name substitution in the C shell” on page 279

• Background processing

Sets up lengthy tasks to run in the background, freeing the terminal for concurrent interactive
processing.

For more information, see the bg command in the following:

– “Job control in the Korn shell or POSIX shell” on page 243
– “C shell built-in commands” on page 286

Note: The Bourne shell does not support job control.
• Command aliasing

Gives an alias name to a command or phrase. When the shell encounters an alias on the command line
or in a shell script, it substitutes the text to which the alias refers.

For more information, see:

– “Command aliasing in the Korn shell or POSIX shell” on page 256
– “Alias substitution in the C shell” on page 276

Note: The Bourne shell does not support command aliasing.
• Command history

Records the commands you enter in a history file. You can use this file to easily access, modify, and
reissue any listed command.

For more information, see the history command in the following:

– “Korn shell or POSIX shell command history” on page 256
– “C shell built-in commands” on page 286
– “History substitution in the C shell” on page 297

Note: The Bourne shell does not support command history.
• File name substitution

Automatically produces a list of file names on a command line using pattern-matching characters.

For more information, see:

– “File name substitution in the Korn shell or POSIX shell” on page 227
– “File name substitution in the Bourne shell” on page 260
– “File name substitution in the C shell” on page 279

204 AIX Version 7.2: Operating system management

• Input and output redirection

Redirects input away from the keyboard and redirects output to a file or device other than the terminal.
For example, input to a program can be provided from a file and redirected to the printer or to another
file.

For more information, see:

– “Input and output redirection in the Korn shell or POSIX shell” on page 228
– “Input and output redirection in the Bourne shell” on page 261
– “Input and output redirection in the C shell” on page 299

• Piping

Links any number of commands together to form a complex program. The standard output of one
program becomes the standard input of the next.

For more information, see the pipeline definition in “Shells terminology” on page 201.
• Shell variable substitution

Stores data in user-defined variables and predefined shell variables.

For more information, see:

– “Parameter substitution in the Korn shell or POSIX shell” on page 225
– “Variable substitution in the Bourne shell” on page 271
– “Variable substitution in the C shell” on page 277

Related concepts
Commands
Some commands can be entered simply by typing one word. It is also possible to combine commands so
that the output from one command becomes the input for another command.

Character classes
You can use character classes to match file names.

You can use character classes to match file names, as follows:

[[:charclass:]]

This format instructs the system to match any single character belonging to the specified class. The
defined classes correspond to ctype subroutines, as follows:

Character Class Definition

alnum Alphanumeric characters

alpha Uppercase and lowercase letters

blank Space or horizontal tab

cntrl Control characters

digit Digits

graph Graphic characters

lower Lowercase letters

print Printable characters

punct Punctuation characters

space Space, horizontal tab, carriage return, newline, vertical tab, or form-feed
character

upper Uppercase characters

Operating system management 205

Character Class Definition

xdigit Hexadecimal digits

Restricted shell
The restricted shell is used to set up login names and execution environments whose capabilities are
more controlled than those of the regular Bourne shell.

The Rsh or bsh -r command opens the restricted shell. The behavior of these commands is identical to
those of the bsh command, except that the following actions are not allowed:

• Changing the directory (with the cd command)
• Setting the value of PATH or SHELL variables
• Specifying path or command names containing a slash (/)
• Redirecting output

If the restricted shell determines that a command to be run is a shell procedure, it uses the Bourne shell
to run the command. In this way, it is possible to provide a user with shell procedures that access the full
power of the Bourne shell while imposing a limited menu of commands. This situation assumes that the
user does not have write and execute permissions in the same directory.

If the File [Parameter] parameter is specified when the Bourne shell is started, the shell runs the script file
identified by the File parameter, including any parameters specified. The script file specified must have
read permission. Any setuid and setgid settings for script files are ignored. The shell then reads the
commands. If either the -c or -s flag is used, do not specify a script file.

When started with the Rsh command, the shell enforces restrictions after interpreting the .profile
and /etc/environment files. Therefore, the writer of the .profile file has complete control over user
actions by performing setup actions and leaving the user in an appropriate directory (probably not the
login directory). An administrator can create a directory of commands in the /usr/rbin directory that
the Rsh command can use by changing the PATH variable to contain the directory. If it is started with the
bsh -r command, the shell applies restrictions when interpreting the .profile files.

When called with the name Rsh, the restricted shell reads the user's .profile file ($HOME/.profile).
It acts as the regular Bourne shell while doing this, except that an interrupt causes an immediate exit
instead of a return to command level.

The Korn shell can be started as a restricted shell with the command ksh -r.

The inodes for ksh and rksh are identical, and the inodes for ksh93 and rksh93 are identical.

Creating and running a shell script
A shell script is a file that contains one or more commands. Shell scripts provide an easy way to carry out
tedious commands, large or complicated sequences of commands, and routine tasks. When you enter the
name of a shell script file, the system executes the command sequence contained by the file.

You can create a shell script by using a text editor. Your script can contain both operating system
commands and shell built-in commands.

The following steps are general guidelines for writing shell scripts:

1. Using a text editor, create and save a file. You can include any combination of shell and operating
system commands in the shell script file. By convention, shell scripts that are not set up for use by
many users are stored in the $HOME/bin directory.

Note: The operating system does not support the setuid or setgid subroutines within a shell script.
2. Use the chmod command to allow only the owner to run (or execute) the file. For example, if your file is

named script1, type the following:

chmod u=rwx script1

206 AIX Version 7.2: Operating system management

3. Type the script name on the command line to run the shell script. To run the script1 shell script, type
the following:

script1

Note: You can run a shell script without making it executable if a shell command (ksh, bsh, or csh)
precedes the shell script file name on the command line. For example, to run a nonexecutable file
named script1 under the control of the Korn shell, type the following:

ksh script1

Related concepts
Commands
Some commands can be entered simply by typing one word. It is also possible to combine commands so
that the output from one command becomes the input for another command.

Korn shell
The Korn shell (ksh command) is backwardly compatible with the Bourne shell (bsh command) and
contains most of the Bourne shell features as well as several of the best features of the C shell.

Variables set by the Korn shell or POSIX shell
The following are variables that are set by the shell.

Item Description

underscore (_) Indicates initially the absolute path name of the shell or script being executed
as passed in the environment. Subsequently, it is assigned the last argument
of the previous command. This parameter is not set for commands that are
asynchronous. This parameter is also used to hold the name of the matching
MAIL file when checking for mail.

ERRNO Specifies a value that is set by the most recently failed subroutine. This value is
system-dependent and is intended for debugging purposes.

LINENO Specifies the line number of the current line within the script or function being
executed.

OLDPWD Indicates the previous working directory set by the cd command.

OPTARG Specifies the value of the last option argument processed by the getopts
regular built-in command.

OPTIND Specifies index of the last option argument processed by the getopts regular
built-in command.

PPID Identifies the process number of the parent of the shell.

PWD Indicates the present working directory set by the cd command.

RANDOM Generates a random integer, uniformly distributed between 0 and 32767. The
sequence of random numbers can be initialized by assigning a numeric value to
the RANDOM variable.

REPLY Set by the select statement and by the read regular built-in command when no
arguments are supplied.

SECONDS Specifies the number of seconds since shell invocation is returned. If this
variable is assigned a value, then the value returned upon reference will be
the value that was assigned plus the number of seconds since the assignment.

Operating system management 207

Variables used by the Korn shell or POSIX shell
The following are variables that are used by the shell.

Item Description

CDPATH Indicates the search path for the cd (change directory) command.

COLUMNS Defines the width of the edit window for the shell edit modes and for printing select
lists.

EDITOR If the value of this parameter ends in emacs, gmacs, or vi, and the VISUAL variable
is not set with the set special built-in command, then the corresponding option is
turned on.

ENV If this variable is set, then parameter substitution is performed on the value to
generate the path name of the script that will be executed when the shell is invoked.
This file is typically used for alias and function definitions. This variable will be
ignored for noninteractive shells.

FCEDIT Specifies the default editor name for the fc regular built-in command.

FPATH Specifies the search path for function definitions. This path is searched when a
function with the -u flag is referenced and when a command is not found. If an
executable file is found, then it is read and executed in the current environment.

HISTFILE If this variable is set when the shell is invoked, then the value is the path name of the
file that will be used to store the command history.

The initialization process for the history file can be dependent on the system start-
up files because some start-up files can contain commands that effectively preempt
the settings the user has specified for HISTFILE and HISTSIZE. For example, function
definition commands are recorded in the history file. If the system administrator
includes function definitions in a system start-up file that is called before the ENV file
or before HISTFILE or HISTSIZE variable is set, the history file is initialized before
the user can influence its characteristics.

HISTSIZE If this variable is set when the shell is invoked, then the number of previously
entered commands that are accessible by this shell will be greater than or equal to
this number. The default is 128 commands for nonroot users and 512 commands for
the root user.

HOME Indicates the name of your login directory, which becomes the current directory
upon completion of a login. The login program initializes this variable. The cd
command uses the value of the $HOME parameter as its default value. Using this
variable rather than an explicit path name in a shell procedure allows the procedure
to be run from a different directory without alterations.

IFS Specifies IFS (internal field separators), which are normally space, tab, and
newline, used to separate command words that result from command or parameter
substitution and for separating words with the regular built-in command read.
The first character of the IFS parameter is used to separate arguments for the $*
substitution.

208 AIX Version 7.2: Operating system management

Item Description

KSH_STAK_SIZE Increases the internal stack size of the Korn shell (ksh). By default, the size of the
internal stack is 16 KB. To increase the size of the internal stack to process large
files, use the KSH_STAK_SIZE environment variable.

The values of the KSH_STAK_SIZE environment variable must be in the range 32 KB
- 64 MB. The following examples show the format that you must use to specify the
KSH_STAK_SIZE environment variable:

• To increase the size of the internal stack to 1 MB, type the following command:

export KSH_STAK_SIZE=1MB

• To increase the size of the internal stack to 30 KB, type the following command:

export KSH_STAK_SIZE=30KB

Although you want to increase the internal stack size to 30 KB, the KSH_STAK_SIZE
environment variable rounds off the value to 32 KB because the KSH_STAK_SIZE
environment variable must be in the range 32 KB - 64 MB.

Similarly, if you want to increase the internal stack size to a value greater than 64
MB, the KSH_STAK_SIZE environment variable still rounds off the value to 32 KB.

LANG Provides a default value for the LC_* variables.

LC_ALL Overrides the value of the LANG and LC_* variables.

LC_COLLATE Determines the behavior of range expression within pattern matching.

LC_CTYPE Defines character classification, case conversion, and other character attributes.

LC_MESSAGES Determines the language in which messages are written.

LINES Determines the column length for printing select lists. Select lists print vertically until
about two-thirds of lines specified by the LINES variable are filled.

MAIL Specifies the file path name used by the mail system to detect the arrival of new
mail. If this variable is set to the name of a mail file and the MAILPATH variable is not
set, then the shell informs the user of new mail in the specified file.

MAILCHECK Specifies how often (in seconds) the shell checks for changes in the modification
time of any of the files specified by the MAILPATH or MAIL variables. The default
value is 600 seconds. When the time has elapsed, the shell checks before issuing the
next prompt.

MAILPATH Specifies a list of file names separated by colons. If this variable is set, then the
shell informs the user of any modifications to the specified files that have occurred
during the period, in seconds, specified by the MAILCHECK variable. Each file name
can be followed by a ? and a message that will be printed. The message will undergo
variable substitution with the $_ variable defined as the name of the file that has
changed. The default message is you have mail in $_.

NLSPATH Determines the location of message catalogs for the processing of LC_MESSAGES.

PATH Indicates the search path for commands, which is an ordered list of directory path
names separated by colons. The shell searches these directories in the specified
order when it looks for commands. A null string anywhere in the list represents the
current directory.

PS1 Specifies the string to be used as the primary system prompt. The value of this
parameter is expanded for parameter substitution to define the primary prompt
string, which is a $ by default. The ! character in the primary prompt string is
replaced by the command number.

Operating system management 209

Item Description

PS2 Specifies the value of the secondary prompt string, which is a > by default.

PS3 Specifies the value of the selection prompt string used within a select loop, which is
#? by default.

PS4 The value of this variable is expanded for parameter substitution and precedes each
line of an execution trace. If omitted, the execution trace prompt is a +.

SHELL Specifies the path name of the shell, which is kept in the environment.

SHELL PROMPT When used interactively, the shell prompts with the value of the PS1 parameter
before reading a command. If at any time a new line is entered and the shell requires
further input to complete a command, the shell issues the secondary prompt (the
value of the PS2 parameter).

TMOUT Specifies the number of seconds a shell waits inactive before exiting. If the TMOUT
variable is set to a value greater than zero (0), the shell exits if a command is not
entered within the prescribed number of seconds after issuing the PS1 prompt. (Note
that the shell can be compiled with a maximum boundary that cannot be exceeded
for this value.)

Note: After the timeout period has expired, there is a 60-second pause before the
shell exits.

VISUAL If the value of this variable ends in emacs, gmacs, or vi, then the corresponding
option is turned on.

The shell gives default values to the PATH, PS1, PS2, MAILCHECK, TMOUT, and IFS parameters, but the
HOME, SHELL, ENV, and MAIL parameters are not set by the shell (although the HOME parameter is set by
the login command).

Command substitution in the Korn shell or POSIX shell
The Korn Shell, or POSIX Shell, lets you perform command substitution. In command substitution, the
shell executes a specified command in a subshell environment and replaces that command with its
output.

To execute command substitution in the Korn shell or POSIX shell, type the following:

$(command)

or, for the backquoted version, type the following:

`command`

Note: Although the backquote syntax is accepted by ksh, it is considered obsolete by the X/Open
Portability Guide Issue 4 and POSIX standards. These standards recommend that portable applications
use the $(command) syntax.

The shell expands the command substitution by executing command in a subshell environment and
replacing the command substitution (the text of command plus the enclosing $() or backquotes) with
the standard output of the command, removing sequences of one or more newline characters at the end
of the substitution.

In the following example, the $() surrounding the command indicates that the output of the whoami
command is substituted:

echo My name is: $(whoami)

You can perform the same command substitution with:

echo My name is: `whoami`

210 AIX Version 7.2: Operating system management

The output from both examples for user dee is:

My name is: dee

You can also substitute arithmetic expressions by enclosing them in (). For example, the command:

echo Each hour contains $((60 * 60)) seconds

produces the following result:

Each hour contains 3600 seconds

The Korn shell or POSIX shell removes all trailing newline characters when performing command
substitution. For example, if your current directory contains the file1, file2, and file3 files, the
command:

echo $(ls)

removes the newline characters and produces the following output:

file1 file2 file3

To preserve newline characters, insert the substituted command in " ":

echo "$(ls)"

Arithmetic evaluation in the Korn shell or POSIX shell
The Korn shell or POSIX shell regular built-in let command enables you to perform integer arithmetic.

Constants are of the form [Base]Number. The Base parameter is a decimal number between 2 and 36
inclusive, representing the arithmetic base. The Number parameter is a number in that base. If you omit
the Base parameter, the shell uses a base of 10.

Arithmetic expressions use the same syntax, precedence, and associativity of expression as the C
programming language. All of the integral operators, other than double plus (++), double hyphen (—),
question mark-colon (?:), and comma (,), are supported. The following table lists valid Korn shell or
POSIX shell operators in decreasing order of precedence:

Operator Definition

- Unary minus

! Logical negation

~ Bitwise negation

* Multiplication

/ Division

% Remainder

+ Addition

- Subtraction

<<, >> Left shift, right shift

<=,>=, <>, ==, != Comparison

& Bitwise AND

^ Bitwise exclusive OR

| Bitwise OR

Operating system management 211

Operator Definition

&& Logical AND

|| Logical OR

= *=, /=, &= +=, -=, <<=, > >=, &=, ^=, |= Assignment

Many arithmetic operators, such as *, &, <, and >, have special meaning to the Korn shell or POSIX shell.
These characters must be quoted. For example, to multiply the current value of y by 5 and reassign the
new value to y, use the expression:

let "y = y * 5"

Enclosing the expression in quotation marks removes the special meaning of the * character.

You can group operations inside let command expressions to force grouping. For example, in the
expression:

let "z = q * (z - 10)"

the command multiplies q by the reduced value of z.

The Korn shell or POSIX shell includes an alternative form of the let command if only a single expression
is to be evaluated. The shell treats commands enclosed in (()) as quoted expressions. Therefore, the
expression:

((x = x / 3))

is equivalent to:

let "x = x / 3"

Named parameters are referenced by name within an arithmetic expression without using the parameter
substitution syntax. When a named parameter is referenced, its value is evaluated as an arithmetic
expression.

Specify an internal integer representation of a named parameter with the -i flag of the typeset special
built-in command. Using the -i flag, arithmetic evaluation is performed on the value of each assignment
to a named parameter. If you do not specify an arithmetic base, the first assignment to the parameter
determines the arithmetic base. This base is used when parameter substitution occurs.

Related concepts
Korn shell or POSIX shell commands
The Korn shell is an interactive command interpreter and command programming language. It conforms
to the Portable Operating System Interface for Computer Environments (POSIX), an international
standard for operating systems.
Parameters in the Korn shell
Korn shell parameters are discussed below.

Field splitting in the Korn shell or POSIX shell
After performing command substitution, the Korn shell scans the results of substitutions for those field
separator characters found in the IFS (Internal Field Separator) variable. Where such characters are
found, the shell splits the substitutions into distinct arguments.

The shell retains explicit null arguments ("" or '') and removes implicit null arguments (those resulting
from parameters that have no values).

• If the value of IFS is a space, tab, or newline character, or if it is not set, any sequence of space, tab,
or newline characters at the beginning or end of the input will be ignored and any sequence of those

212 AIX Version 7.2: Operating system management

characters within the input will delimit a field. For example, the following input yields two fields, school
and days:

<newline><space><tab>school<tab><tab>days<space>

• Otherwise, and if the value of IFS is not null, the following rules apply in sequence. IFS white space
is used to mean any sequence (zero or more instances) of white-space characters that are in the IFS
value (for example, if IFS contains space/comma/tab, any sequence of space and tab characters is
considered IFS white space).

1. IFS white space is ignored at the beginning and end of the input.
2. Each occurrence in the input of an IFS character that is not IFS white space, along with any adjacent

IFS white space, delimits a field.
3. Nonzero length IFS white space delimits a field.

List of Korn shell or POSIX shell special built-in commands
Special commands are built into the Korn shell and POSIX shell and executed in the shell process.

Item Description

: (colon) Expands only arguments.

. (dot) Reads a specified file and then executes the commands.

break Exits from the enclosing for, while, until, or select loop, if one exists.

continue Resumes the next iteration of the enclosing for, while, until, or select loop.

eval Reads the arguments as input to the shell and executes the resulting command or
commands.

exec Executes the command specified by the Argument parameter, instead of this shell,
without creating a new process.

exit Exits the shell whose exit status is specified by the n parameter.

export Marks names for automatic export to the environment of subsequently executed
commands.

newgrp Equivalent to the exec/usr/bin/newgrp [Group ...] command.

readonly Marks the specified names read-only.

return Causes a shell to return to the invoking script.

set Unless options or arguments are specified, writes the names and values of all shell
variables in the collation sequence of the current locale.

shift Renames positional parameters.

times Prints the accumulated user and system times for both the shell and the processes run
from the shell.

trap Runs a specified command when the shell receives a specified signal or signals.

typeset Sets attributes and values for shell parameters.

unset Unsets the values and attributes of the specified parameters.

Related concepts
Korn shell or POSIX shell built-in commands

Operating system management 213

Special commands are built in to the Korn shell and POSIX shell and executed in the shell process.

Korn shell or POSIX shell regular built-in commands
The following is a list of the Korn shell or POSIX shell regular built-in commands.

Item Description

alias Prints a list of aliases to standard output.

bg Puts specified jobs in the background.

cd Changes the current directory to the specified directory or substitutes the current string
with the specified string.

echo Writes character strings to standard output.

fc Selects a range of commands from the last HISTSIZE variable command typed at the
terminal. Re-executes the specified command after old-to-new substitution is performed.

fg Brings the specified job to the foreground.

getopts Checks the Argument parameter for legal options.

jobs Lists information for the specified jobs.

kill Sends the TERM (terminate) signal to specified jobs or processes.

let Evaluates specified arithmetic expressions.

print Prints shell output.

pwd Equivalent to the print -r -$PWD command.

read Takes shell input.

ulimit Sets or displays user process resource limits as defined in the /etc/security/limits
file.

umask Determines file permissions.

unalias Removes the parameters in the list of names from the alias list.

wait Waits for the specified job and terminates.

whence Indicates how each specified name would be interpreted if used as a command name.

For more information, see “Korn shell or POSIX shell built-in commands” on page 231.

Related concepts
Korn shell or POSIX shell built-in commands
Special commands are built in to the Korn shell and POSIX shell and executed in the shell process.

Conditional expressions for the Korn shell or POSIX shell
A conditional expression is used with the [[compound command to test attributes of files and to
compare strings.

Word splitting and file name substitution are not performed on words appearing between [[and]]. Each
expression is constructed from one or more of the following unary or binary expressions:

Item Description

-a File True, if the specified file is a symbolic link that points to another file that does exist.

-b File True, if the specified file exists and is a block special file.

-c File True, if the specified file exists and is a character special file.

-d File True, if the specified file exists and is a directory.

-e File True, if the specified file exists.

214 AIX Version 7.2: Operating system management

Item Description

-f File True, if the specified file exists and is an ordinary file.

-g File True, if the specified file exists and its setgid bit is set.

-h File True, if the specified file exists and is a symbolic link.

-k File True, if the specified file exists and its sticky bit is set.

-n String True, if the length of the specified string is nonzero.

-o Option True, if the specified option is on.

-p File True, if the specified file exists and is a FIFO special file or a pipe.

-r File True, if the specified file exists and is readable by the current process.

-s File True, if the specified file exists and has a size greater than 0.

-t FileDescriptor True, if specified file descriptor number is open and associated with a terminal
device.

-u File True, if the specified file exists and its setuid bit is set.

-w File True, if the specified file exists and the write bit is on. However, the file will not be
writable on a read-only file system even if this test indicates true.

-x File True, if the specified file exists and the execute flag is on. If the specified file
exists and is a directory, then the current process has permission to search in the
directory.

-z String True, if length of the specified string is 0.

-L File True, if the specified file exists and is a symbolic link.

-O File True, if the specified file exists and is owned by the effective user ID of this
process.

-G File True, if the specified file exists and its group matches the effective group ID of this
process.

-S File True, if the specified file exists and is a socket.

File1 -nt File2 True, if File1 exists and is newer than File2.

File1 -ot File2 True, if File1 exists and is older than File2.

File1 -ef File2 True, if File1 and File2 exist and refer to the same file.

String1 = String2 True, if String1 is equal to String2.

String1 != String2 True, if String1 is not equal to String2.

String = Pattern True, if the specified string matches the specified pattern.

String != Pattern True, if the specified string does not match the specified pattern.

String1 < String2 True, if String1 comes before String2 based on the ASCII value of their characters.

String1 > String2 True, if String1 comes after String2 based on the ASCII value of their characters.

Expression1 -eq
Expression2

True, if Expression1 is equal to Expression2.

Expression1 -ne
Expression2

True, if Expression1 is not equal to Expression2.

Expression1 -lt
Expression2

True, if Expression1 is less than Expression2.

Expression1 -gt
Expression2

True, if Expression1 is greater than Expression2.

Operating system management 215

Item Description

Expression1 -le
Expression2

True, if Expression1 is less than or equal to Expression2.

Expression1 -ge
Expression2

True, if Expression1 is greater than or equal to Expression2.

Note: In each of the previous expressions, if the File variable is similar to /dev/fd/n, where n is an
integer, then the test is applied to the open file whose descriptor number is n.

You can construct a compound expression from these primitives, or smaller parts, by using any of the
following expressions, listed in decreasing order of precedence:

Item Description

(Expression) True, if the specified expression is true. Used to group expressions.

! Expression True, if the specified expression is false.

Expression1 &&
Expression2

True, if Expression1 and Expression2 are both true.

Expression1 ||
Expression2

True, if either Expression1 or Expression2 is true.

Quotation of characters in the Korn shell or POSIX shell
When you want the Korn shell or POSIX shell to read a character as a regular character, rather than with
any normally associated meaning, you must quote it.

Each metacharacter has a special meaning to the shell and, unless quoted, causes termination of a word.
The following characters are considered metacharacters by the Korn shell or POSIX shell and must be
quoted if they are to represent themselves:

• pipe (|)
• ampersand (&)
• semicolon (;)
• less-than sign (<) and greater-than sign (>)
• left parenthesis (() and right parenthesis ())
• dollar sign ($)
• backquote (`) and single quotation mark (')
• backslash (\)
• double-quotation marks (")
• newline character
• space character
• tab character

To negate the special meaning of a metacharacter, use one of the quoting mechanisms in the following
list.

Item Description

Backslash A backslash (\) that is not quoted preserves the literal value of the
following character, with the exception of a newline character. If a
newline character follows the backslash, then the shell interprets
this as line continuation.

216 AIX Version 7.2: Operating system management

Item Description

Single Quotation Marks Enclosing characters in single quotation marks (' ') preserves the
literal value of each character within the single quotation marks. A
single quotation mark cannot occur within single quotation marks.

A backslash cannot be used to escape a single quotation mark in a
string that is set in single quotation marks. An embedded quotation
mark can be created by writing, for example: 'a'\''b', which
yields a'b.

Double Quotation Marks Enclosing characters in double quotation marks (" ") preserves the
literal value of all characters within the double quotation marks,
with the exception of the dollar sign, backquote, and backslash
characters, as follows:
$

The dollar sign retains its special meaning introducing
parameter expansion, a form of command substitution, and
arithmetic expansion.

The input characters within the quoted string that are also
enclosed between $(and the matching) will not be affected
by the double quotation marks, but define that command whose
output replaces the $(...) when the word is expanded.

Within the string of characters from an enclosed ${ to the
matching }, there must be an even number of unescaped
double quotation marks or single quotation marks, if any. A
preceding backslash character must be used to escape a literal
{ or }.

`
The backquote retains its special meaning introducing the other
form of command substitution. The portion of the quoted string,
from the initial backquote and the characters up to the next
backquote that is not preceded by a backslash, defines that
command whose output replaces ` ... ` when the word is
expanded.

\
The backslash retains its special meaning as an escape
character only when followed by one of the following
characters: $, `, ", \, or a newline character.

A double quotation mark must be preceded by a backslash to be included within double quotation marks.
When you use double quotation marks, if a backslash is immediately followed by a character that would
be interpreted as having a special meaning, the backslash is deleted, and the subsequent character is
taken literally. If a backslash does not precede a character that would have a special meaning, it is left in
place unchanged, and the character immediately following it is also left unchanged. For example:

"\$" -> $
"\a" -> \a

The following conditions apply to metacharacters and quoting characters in the Korn or POSIX shell:

• The meanings of dollar sign, asterisk ($*) and dollar sign, at symbol ($@) are identical when not quoted,
when used as a parameter assignment value, or when used as a file name.

• When used as a command argument, double quotation marks, dollar sign, asterisk, double quotation
marks ("$*") is equivalent to "$1d$2d...", where d is the first character of the IFS parameter.

Operating system management 217

• Double quotation marks, at symbol, asterisk, double quotation marks ("$@") are equivalent to "$1"
"$2"

• Inside backquotes (``), the backslash quotes the characters backslash (\), single quotation mark ('),
and dollar sign ($). If the backquotes occur within double quotation marks (" "), the backslash also
quotes the double quotation marks character.

• Parameter and command substitution occurs inside double quotation marks (" ").
• The special meaning of reserved words or aliases is removed by quoting any character of the reserved

word. You cannot quote function names or built-in command names.

Restricted Korn shell
The Restricted Korn Shell is used to set up login names and execution environments whose capabilities
are more controlled than those of the regular Korn shell.

The rksh or ksh -r command opens the Restricted Korn Shell. The behavior of these commands is
identical to those of the ksh command, except that the following actions are not allowed:

• Change the current working directory
• Set the value of the SHELL, ENV, or PATH variables
• Specify the pathname of a command containing a / (slash)
• Redirect output of a command with > (right caret), >| (right caret, pipe symbol), <> (left caret, right

caret), or >> (two right carets).

If the Restricted Korn Shell determines that a command to be run is a shell procedure, it uses the Korn
shell to run the command. In this way, it is possible to provide an end user with shell procedures that
access the full power of the Korn shell while imposing a limited menu of commands. This situation
assumes that the user does not have write and execute permissions in the same directory.

If the File [Parameter] parameter is specified when the Korn shell is started, the shell runs the script file
identified by the File parameter, including any parameters specified. The script file specified must have
read permission. Any setuid and setgid settings for script files are ignored. The shell then reads the
commands. If either the -c or -s flag is used, do not specify a script file.

When started with the rksh command, the shell enforces restrictions after interpreting the .profile
and /etc/environment files. Therefore, the writer of the .profile file has complete control over user
actions by performing setup actions and leaving the user in an appropriate directory (probably not the
login directory). An administrator can create a directory of commands in the /usr/rbin directory that
the rksh command can use by changing the PATH variable to contain the directory. If it is started with the
ksh -r command, the shell applies restrictions when interpreting the .profile files.

When called with the rksh command, the Restricted Korn Shell reads the user's .profile file
($HOME/.profile). It acts as the regular Korn shell while doing this, except that an interrupt causes
an immediate exit instead of a return to command level.

Reserved words in the Korn shell or POSIX shell
The following reserved words have special meaning to the Korn shell or POSIX shell.

! case do
done elif else
esac fi for
function if in
select then time
until while {
} [[]]

The reserved words are recognized only when they appear without quotation marks and when the word is
used as the following:

• First word of a command
• First word following one of the reserved words other than case, for, or in
• Third word in a case or for command (only in is valid in this case)

218 AIX Version 7.2: Operating system management

Enhanced Korn shell (ksh93)
In addition to the default system Korn shell (/usr/bin/ksh), AIX provides an enhanced version available
as Korn shell /usr/bin/ksh93. This enhanced version is mostly upwardly compatible with the current
default version, and includes a few additional features that are not available in Korn shell /usr/bin/ksh.

Some scripts might perform differently under Korn shell ksh93 than under the default shell because
variable handling is somewhat different under the two shells.

Note: There is also a restricted version of the enhanced Korn shell available, called rksh93.

The following features are not available in Korn shell /usr/bin/ksh, but are available in Korn
shell /usr/bin/ksh93:

Item Description

Arithmetic
enhancements

You can use libm functions (math functions typically found in the C programming
language), within arithmetic expressions, such as $ value=$((sqrt(9))). More
arithmetic operators are available, including the unary +, ++, --, and the ?: construct
(for example, "x ? y : z"), as well as the , (comma) operator. Arithmetic bases are
supported up to base 64. Floating point arithmetic is also supported. "typeset -E"
(exponential) can be used to specify the number of significant digits and "typeset
-F" (float) can be used to specify the number of decimal places for an arithmetic
variable. The SECONDS variable now displays to the nearest hundredth of a second,
rather than to the nearest second.

Compound
variables

Compound variables are supported. A compound variable allows a user to specify
multiple values within a single variable name. The values are each assigned with a
subscript variable, separated from the parent variable with a period (.). For example:

$ myvar=(x=1 y=2)
$ print "${myvar.x}"
1

Compound
assignments

Compound assignments are supported when initializing arrays, both for indexed
arrays and associative arrays. The assignment values are placed in parentheses, as
shown in the following example:

$ numbers=(zero one two three)
$ print ${numbers[0]} ${numbers[3]}
zero three

Associative
arrays

An associative array is an array with a string as an index.

The typeset command used with the -A flag allows you to specify associative arrays
within ksh93. For example:

$ typeset -A teammates
$ teammates=([john]=smith [mary]=jones)
$ print ${teammates[mary]}
jones

Variable name
references

The typeset command used with the -n flag allows you to assign one variable name
as a reference to another. In this way, modifying the value of a variable will in turn
modify the value of the variable that is referenced. For example:

$ greeting="hello"
$ typeset -n welcome=greeting # establishes the reference
$ welcome="hi there" # overrides previous value
$ print $greeting
hi there

Operating system management 219

Item Description

Parameter
expansions

The following parameter-expansion constructs are available:

• ${!varname} is the name of the variable itself.
• ${!varname[@]} names the indexes for the varname array.
• ${param:offset} is a substring of param, starting at offset.
• ${param:offset:num} is a substring of param, starting at offset, for num number

of characters.
• ${@:offset} indicates all positional parameters starting at offset.
• ${@:offset:num} indicates num positional parameters starting at offset.
• ${param/pattern/repl} evaluates to param, with the first occurrence of pattern

replaced by repl.
• ${param//pattern/repl} evaluates to param, with every occurrence of pattern

replaced by repl.
• ${param/#pattern/repl} if param begins with pattern, then param is replaced

by repl.
• ${param/%pattern/repl} if param ends with pattern, then param is replaced by

repl.

Discipline
functions

A discipline function is a function that is associated with a specific variable. This
allows you to define and call a function every time that variable is referenced, set,
or unset. These functions take the form of varname.function, where varname is the
name of the variable and function is the discipline function. The predefined discipline
functions are get, set, and unset.

• The varname.get function is invoked every time varname is referenced. If the
special variable .sh.value is set within this function, then the value of varname is
changed to this value. A simple example is the time of day:

$ function time.get
> {
> .sh.value=$(date +%r)
> }
$ print $time
09:15:58 AM
$ print $time # it will change in a few seconds
09:16:04 AM

• The varname.set function is invoked every time varname is set. The .sh.value
variable is given the value that was assigned. The value assigned to varname is
the value of .sh.value when the function completes. For example:

$ function adder.set
> {
> let .sh.value="
$ {.sh.value} + 1"
> }
$ adder=0
$ echo $adder
1
$ adder=$adder
$ echo $adder
2

• The varname.unset function is executed every time varname is unset. The variable
is not actually unset unless it is unset within the function itself; otherwise it retains
its value.

Within all discipline functions, the special variable .sh.name is set to the name of
the variable, while .sh.subscript is set to the value of the variables subscript, if
applicable.

220 AIX Version 7.2: Operating system management

Item Description

Function
environments

Functions declared with the function myfunc format are run in a separate function
environment and support local variables. Functions declared as myfunc() run with
the same environment as the parent shell.

Variables Variables beginning with .sh. are reserved by the shell and have special meaning.
See the description of Discipline Functions in this table for an explanation
of .sh.name, .sh.value, and .sh.subscript. Also available is .sh.version, which
represents the version of the shell.

Command
return values

Return values of commands are as follows:

• If the command to be executed is not found, the return value is set to 127.
• If the command to be executed is found, but not executable, the return value is 126.
• If the command is executed, but is terminated by a signal, the return value is 256

plus the signal number.

PATH search
rules

Special built-in commands are searched for first, followed by all functions (including
those in FPATH directories), followed by other built-ins.

Shell history The hist command allows you to display and edit the shells command history. In
the ksh shell, the fc command was used. The fc command is an alias to hist.
Variables are HISTCMD, which increments once for each command executed in the
shells current history, and HISTEDIT, which specifies which editor to use when using
the hist command.

Operating system management 221

Item Description

Built-in
commands

The enhanced Korn shell contains the following built-in commands:

• The builtin command lists all available built-in commands.
• The printf command works in a similar manner as the printf() C library routine.

See the printf command.
• The disown blocks the shell from sending a SIGHUP to the specified command.
• The getconf command works in the same way as the stand-alone

command /usr/bin/getconf. See the getconf command.
• The read built-in command has the following flags:

– read -d {char} allows you to specify a character delimiter instead of the default
newline.

– read -t {seconds} allows you to specify a time limit, in seconds, after which the
read command will time out. If read times out, it will return FALSE.

• The exec built-in command has the following flags:

– exec -a {name} {cmd} specifies that argument 0 of cmd be replaced with name.
– exec -c {cmd} tells exec to clear the environment before executing cmd.

• The kill built-in command has the following flags:

– kill -n {signum} is used for specifying a signal number to send to a process,
while kill -s {signame} is used to specify a signal name.

– kill -l, with no arguments, lists all signal names but not their numbers.
• The whence built-in command has the following flags:

– The -a flag displays all matches, not only the first one found.
– The -f flag tells whence not to search for any functions.

• An escape character sequence is used for use by the print and echo commands.
The Esc (Escape) key can be represented by the sequence \E.

• All regular built-in commands recognize the -? flag, which shows the syntax for the
specified command.

• The getopts built-in requires optstring to contain a leading + to allow options
beginning with a + symbol.

222 AIX Version 7.2: Operating system management

Item Description

Other
miscellaneous
differences
between Korn
shell ksh and
Korn shell
ksh93

Other differences are:

• With Korn shell ksh93, you cannot export functions using the typeset -fx built-in
command.

• With Korn shell ksh93, you cannot export an alias using the alias -x built-in
command.

• With Korn shell ksh93, a dollar sign followed by a single quote ($') is interpreted
as an ANSI C string. You must quote the dollar sign (\"$\"') to get the old (ksh)
behavior.

• Argument parsing logic for Korn shell ksh93 built-in commands has been changed.
The undocumented combinations of argument parsing to Korn shell ksh built-in
commands do not work in Korn shell ksh93. For example, typeset -4i works
similar to typeset -i4 in Korn shell ksh, but does not work in Korn shell ksh93.

• With Korn shell ksh93, command substitution and arithmetic expansion is
performed on special environment variables PS1, PS3, and ENV while expanding.
Therefore, you must escape the grave symbol (`) and the dollar sign and
opening parenthesis symbols ($() using a backslash (\) to retain the old
behavior. For example, Korn shell ksh literally assigns x=$'name\toperator'
as $name\toperator; Korn shell ksh93 expands \t and assigns it as name<\t
expanded>operator. To preserve the Korn shell ksh behavior, you must quote $.
For example, x="$"'name\toperator'.

• The ERRNO variable has been removed in Korn shell ksh93.
• In Korn shell ksh93, file names are not expanded for non-interactive shells after the

redirection symbol.
• With Korn shell ksh93, you must use the -t option of the alias command to display

tracked aliases. The tracked alias feature is now obsolete, so the displayed aliases
might not be tracked.

• With Korn shell ksh93, in emacs mode, Ctrl+T swaps the current and previous
character. With ksh, Ctrl+T swaps the current and next character.

• Korn shell ksh93 does not allow unbalanced parentheses within ${name
operator value}. For example, ${name-(} needs an escape such as ${name-\
(} to work in both versions.

• With Korn shell ksh93, the kill -l command lists only the signal names, not their
numerical values.

Exit status in the Korn shell or POSIX shell
Errors detected by the shell, such as syntax errors, cause the shell to return a nonzero exit status.
Otherwise, the shell returns the exit status of the last command carried out.

The shell reports detected runtime errors by printing the command or function name and the error
condition. If the number of the line on which an error occurred is greater than 1, then the line number is
also printed in [] (brackets) after the command or function name.

For a noninteractive shell, an error encountered by a special built-in or other type of command will cause
the shell to write a diagnostic message as shown in the following table:

Error Special Built-In Other Utilities

Shell language syntax error will exit will exit

Utility syntax error (option or operand error) will exit will not exit

Redirection error will exit will not exit

Variable assignment error will exit will not exit

Operating system management 223

Error Special Built-In Other Utilities

Expansion error will exit will exit

Command not found not applicable may exit

Dot script not found will exit not applicable

If any of the errors shown as "will (may) exit" occur in a subshell, the subshell will (may) exit with a
nonzero status, but the script containing the subshell will not exit because of the error.

In all cases shown in the table, an interactive shell will write a diagnostic message to standard error,
without exiting.

Parameters in the Korn shell
Korn shell parameters are discussed below.

A parameter is defined as the following:

• Identifier of any of the characters asterisk (*), at sign (@), pound sign (#), question mark (?), hyphen (-),
dollar sign ($), and exclamation point (!). These are called special parameters.

• Argument denoted by a number (positional parameter)
• Parameter denoted by an identifier, with a value and zero or more attributes (named parameter/

variables).

The typeset special built-in command assigns values and attributes to named parameters. The
attributes supported by the Korn shell are described with the typeset special built-in command.
Exported parameters pass values and attributes to the environment.

The value of a named parameter is assigned by:

Name=Value [Name=Value] ...

If the -i integer attribute is set for the Name parameter, then the Value parameter is subject to arithmetic
evaluation.

The shell supports a one-dimensional array facility. An element of an array parameter is referenced by a
subscript. A subscript is denoted by an arithmetic expression enclosed by brackets []. To assign values
to an array, use set -A Name Value The value of all subscripts must be in the range of 0 through 511.
Arrays need not be declared. Any reference to a named parameter with a valid subscript is legal and an
array will be created, if necessary. Referencing an array without a subscript is equivalent to referencing
the element 0.

Positional parameters are assigned values with the set special command. The $0 parameter is set from
argument 0 when the shell is invoked. The $ character is used to introduce parameters that can be
substituted.

Related concepts
Shell startup
You can start the Korn shell with the ksh command, psh command (POSIX shell), or the exec command.
Korn shell functions
The function reserved word defines shell functions. The shell reads and stores functions internally. Alias
names are resolved when the function is read. The shell executes functions in the same manner as
commands, with the arguments passed as positional parameters.
Arithmetic evaluation in the Korn shell or POSIX shell
The Korn shell or POSIX shell regular built-in let command enables you to perform integer arithmetic.
Related reference
Korn shell compound commands

224 AIX Version 7.2: Operating system management

A compound command can be a list of simple commands or a pipeline, or it can begin with a reserved
word. Most of the time, you will use compound commands such as if, while, and for when you are
writing shell scripts.

Parameter substitution in the Korn shell or POSIX shell
The Korn shell, or POSIX shell, lets you perform parameter substitutions.

The following are substitutable parameters:

Item Description

${Parameter} The shell reads all the characters from the ${ to the matching } as part
of the same word, even if that word contains braces or metacharacters.
The value, if any, of the specified parameter is substituted. The braces are
required when the Parameter parameter is followed by a letter, digit, or
underscore that is not to be interpreted as part of its name, or when a
named parameter is subscripted.

If the specified parameter contains one or more digits, it is a positional
parameter. A positional parameter of more than one digit must be enclosed
in braces. If the value of the variable is * or @), each positional parameter,
starting with $1, is substituted (separated by a field separator character). If
an array identifier with a subscript * or @ is used, then the value for each of
the elements (separated by a field separator character) is substituted.

${#Parameter} If the value of the Parameter parameter is * or @, the number of
positional parameters is substituted. Otherwise, the length specified by
the Parameter parameter is substituted.

${#Identifier[*]} The number of elements in the array specified by the Identifier parameter
is substituted.

${Parameter:-Word} If the Parameter parameter is set and is not null, then its value is
substituted; otherwise, the value of the Word parameter is substituted.

${Parameter:=Word} If the Parameter parameter is not set or is null, then it is set to the value of
the Word parameter. Positional parameters cannot be assigned in this way.

${Parameter:?Word} If the Parameter parameter is set and is not null, then substitute its value.
Otherwise, print the value of the Word variable and exit from the shell. If
the Word variable is omitted, then a standard message is printed.

${Parameter:+Word} If the Parameter parameter is set and is not null, then substitute the value
of the Word variable.

${Parameter#Pattern} | $
{Parameter##Pattern}

If the specified shell Pattern parameter matches the beginning of the value
of the Parameter parameter, then the value of this substitution is the value
of the Parameter parameter with the matched portion deleted. Otherwise,
the value of the Parameter parameter is substituted. In the first form,
the smallest matching pattern is deleted. In the second form, the largest
matching pattern is deleted.

Operating system management 225

Item Description

${Parameter%Pattern} | $
{Parameter%%Pattern}

If the specified shell Pattern matches the end of the value of the Parameter
variable, then the value of this substitution is the value of the Parameter
variable with the matched part deleted. Otherwise, substitute the value of
the Parameter variable. In the first form, the smallest matching pattern is
deleted; in the second form, the largest matching pattern is deleted.

In the previous expressions, the Word variable is not evaluated unless it is
to be used as the substituted string. Thus, in the following example, the
pwd command is executed only if the -d flag is not set or is null:

echo ${d:-$(pwd)}

Note: If the : is omitted from the previous expressions, the shell checks only whether the Parameter
parameter is set.

Related concepts
Unattended terminals
All systems are vulnerable if terminals are left logged in and unattended. The most serious problem
occurs when a system manager leaves a terminal unattended that has been enabled with root authority.
In general, users should log out anytime they leave their terminals.

Predefined special parameters in the Korn shell or POSIX shell
Some parameters are set automatically by the Korn shell or POSIX shell.

The following parameters are automatically set by the shell:

Item Description

@ Expands the positional parameters, beginning with $1. Each parameter is separated by a
space.

If you place " around $@, the shell considers each positional parameter a separate string.
If no positional parameters exist, the shell expands the statement to an unquoted null
string.

* Expands the positional parameters, beginning with $1. The shell separates each
parameter with the first character of the IFS parameter value.

If you place " around $*, the shell includes the positional parameter values in double
quotation marks. Each value is separated by the first character of the IFS parameter.

Specifies the number (in decimals) of positional parameters passed to the shell, not
counting the name of the shell procedure itself. The $# parameter thus yields the number
of the highest-numbered positional parameter that is set. One of the primary uses of this
parameter is to check for the presence of the required number of arguments.

- Supplies flags to the shell on invocation or with the set command.

? Specifies the exit value of the last command executed. Its value is a decimal string. Most
commands return 0 to indicate successful completion. The shell itself returns the current
value of the $? parameter as its exit value.

226 AIX Version 7.2: Operating system management

Item Description

$ Identifies the process number of this shell. Because process numbers are unique among
all existing processes, this string of up to 5 digits is often used to generate unique names
for temporary files.

The following example illustrates the recommended practice of creating temporary files in
a directory used only for that purpose:

temp=$HOME/temp/$$
ls >$temp
.
.
.
rm $temp

! Specifies the process number of the most recent background command invoked.

zero (0) Expands to the name of the shell or shell script.

File name substitution in the Korn shell or POSIX shell
The Korn shell, or POSIX shell, performs file name substitution by scanning each command word
specified by the Word variable for certain characters.

If a command word includes the *), ? or [characters, and the -f flag has not been set, the shell regards
the word as a pattern. The shell replaces the word with file names, sorted according to the collating
sequence in effect in the current locale, that match that pattern. If the shell does not find a file name to
match the pattern, it does not change the word.

When the shell uses a pattern for file name substitution, the . and / characters must be matched explicitly.

Note: The Korn shell does not treat these characters specially in other instances of pattern matching.

These pattern-matching characters indicate the following substitutions:

Item Description

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of characters separated by a hyphen (-)
matches any character lexically within the inclusive range of that pair, according to the collating
sequence in effect in the current locale. If the first character following the opening [is !, then
any character not enclosed is matched. A hyphen (-) can be included in the character set by
putting it as the first or last character.

You can also use the [:charclass:] notation to match file names within a range indication. This format
instructs the system to match any single character belonging to class. The definition of which characters
constitute a specific character class is present through the LC_CTYPE category of the setlocale subroutine.
All character classes specified in the current locale are recognized.

The names of some of the character classes are as follows:

• alnum
• alpha
• cntrl
• digit
• graph
• lower
• print
• punct

Operating system management 227

• space
• upper
• xdigit

For example, [[:upper:]] matches any uppercase letter.

The Korn shell supports file name expansion based on collating elements, symbols, or equivalence
classes.

A PatternList is a list of one or more patterns separated from each other with a |. Composite patterns are
formed with one or more of the following:

Item Description

?(PatternList) Optionally matches any one of the given patterns

*(PatternList) Matches zero or more occurrences of the given patterns

+(PatternList) Matches one or more occurrences of the given patterns

@(PatternList) Matches exactly one of the given patterns

!(PatternList) Matches anything, except one of the given patterns

Pattern matching has some restrictions. If the first character of a file name is a dot (.), it can be matched
only by a pattern that also begins with a dot. For example, * matches the file names myfile and
yourfile but not the file names .myfile and .yourfile. To match these files, use a pattern such as
the following:

.*file

If a pattern does not match any file names, then the pattern itself is returned as the result of the
attempted match.

File and directory names should not contain the characters *, ?, [, or] because they can cause infinite
recursion (that is, infinite loops) during pattern-matching attempts.

Quote removal
Some characters will be removed if they are not quoted.

The quote characters, backslash (\), single quote ('), and double quote (") that were present in the
original word will be removed unless they have themselves been quoted.

Input and output redirection in the Korn shell or POSIX shell
Before the Korn shell executes a command, it scans the command line for redirection characters. These
special notations direct the shell to redirect input and output.

Redirection characters can appear anywhere in a simple command or can precede or follow a command.
They are not passed on to the invoked command.

The shell performs command and parameter substitution before using the Word or Digit parameter
except as noted. File name substitution occurs only if the pattern matches a single file and blank
interpretation is not performed.

Item Description

<Word Uses the file specified by the Word parameter as standard input (file descriptor 0).

228 AIX Version 7.2: Operating system management

Item Description

>Word Uses the file specified by the Word parameter as standard output (file descriptor 1). If
the file does not exist, the shell creates it. If the file exists and the noclobber option is
on, an error results; otherwise, the file is truncated to zero length.

Note: When multiple shells have the noclobber option set and they redirect output to
the same file, there could be a race condition, which might result in more than one of
these shell processes writing to the file. The shell does not detect or prevent such race
conditions.

>|Word Same as the >Word command, except that this redirection statement overrides the
noclobber option.

> >Word Uses the file specified by the Word parameter as standard output. If the file currently
exists, the shell appends the output to it (by first seeking the end-of-file character). If
the file does not exist, the shell creates it.

<>Word Opens the file specified by the Word parameter for reading and writing as standard
input.

<<[-]Word Reads each line of shell input until it locates a line containing only the value of the
Word parameter or an end-of-file character. The shell does not perform parameter
substitution, command substitution, or file name substitution on the file specified.
The resulting document, called a here document, becomes the standard input. If
any character of the Word parameter is quoted, no interpretation is placed upon the
characters of the document.

The here document is treated as a single word that begins after the next newline character and continues
until there is a line containing only the delimiter, with no trailing blank characters. Then the next here
document, if any, starts. The format is as follows:

[n]<<word
 here document
delimiter

If any character in word is quoted, the delimiter is formed by removing the quote on word. The here
document lines will not be expanded. Otherwise, the delimiter is the word itself. If no characters in
word are quoted, all lines of the here document will be expanded for parameter expansion, command
substitution, and arithmetic expansion.

The shell performs parameter substitution for the redirected data. To prevent the shell from interpreting
the \, $, and single quotation mark (') characters and the first character of the Word parameter, precede
the characters with a \ character.

If a hyphen (-) is appended to <<, the shell strips all leading tabs from the Word parameter and the
document.

Item Description

<&Digit Duplicates standard input from the file descriptor specified by the Digit
parameter

>& Digit Duplicates standard output in the file descriptor specified by the Digit
parameter

<&- Closes standard input

>&- Closes standard output

<&p Moves input from the co-process to standard input

>&p Moves output to the co-process to standard output

Operating system management 229

If one of these redirection options is preceded by a digit, then the file descriptor number referred to
is specified by the digit (instead of the default 0 or 1). In the following example, the shell opens file
descriptor 2 for writing as a duplicate of file descriptor 1:

... 2>&1

The order in which redirections are specified is significant. The shell evaluates each redirection in terms of
the (FileDescriptor, File) association at the time of evaluation. For example, in the statement:

... 1>File 2>&1

the file descriptor 1 is associated with the file specified by the File parameter. The shell associates file
descriptor 2 with the file associated with file descriptor 1 (File). If the order of redirections were reversed,
file descriptor 2 would be associated with the terminal (assuming file descriptor 1 had previously been)
and file descriptor 1 would be associated with the file specified by the File parameter.

If a command is followed by an ampersand (&) and job control is not active, the default standard input for
the command is the empty file /dev/null. Otherwise, the environment for the execution of a command
contains the file descriptors of the invoking shell as modified by input and output specifications.

Related concepts
Input and output redirection
The AIX operating system allows you to manipulate the input and output (I/O) of data to and from your
system by using specific I/O commands and symbols.
Related tasks
Redirecting output to inline input (here) documents
You can redirect output to inline input (here) documents.

Coprocess facility
The Korn shell, or POSIX shell, allows you to run one or more commands as background processes. These
commands, run from within a shell script, are called coprocesses.

Designate a coprocess by placing the |& operator after a command. Both standard input and output of the
command are piped to your script.

A coprocess must meet the following restrictions:

• Include a newline character at the end of each message
• Send each output message to standard output
• Clear its standard output after each message

The following example demonstrates how input is passed to and returned from a coprocess:

echo "Initial process"
./FileB.sh |&
read -p a b c d
echo "Read from coprocess: $a $b $c $d"
print -p "Passed to the coprocess"
read -p a b c d
echo "Passed back from coprocess: $a $b $c $d"

FileB.sh
 echo "The coprocess is running"
 read a b c d
 echo $a $b $c $d

The resulting standard output is as follows:

Initial process
Read from coprocess: The coprocess is running
Passed back from coprocess: Passed to the coprocess

Use the print -p command to write to the coprocess. Use the read -p command to read from the
coprocess.

230 AIX Version 7.2: Operating system management

Related concepts
Korn shell or POSIX shell commands
The Korn shell is an interactive command interpreter and command programming language. It conforms
to the Portable Operating System Interface for Computer Environments (POSIX), an international
standard for operating systems.

Redirection of coprocess input and output
The standard input and output of a coprocess is reassigned to a numbered file descriptor by using I/O
redirection.

For example, the command:

exec 5>&p

moves the input of the coprocess to file descriptor 5.

After this coprocess has completed, you can use standard redirection syntax to redirect command output
to the coprocess. You can also start another coprocess. Output from both coprocesses is connected to the
same pipe and is read with the read -p command. To stop the coprocess, type the following:

read -u5

Korn shell or POSIX shell built-in commands
Special commands are built in to the Korn shell and POSIX shell and executed in the shell process.

Unless otherwise indicated, the output is written to file descriptor 1 and the exit status is zero (0) if the
command does not contain any syntax errors. Input and output redirection is permitted. There are two
types of built-in commands: special built-in commands and regular built-in commands.

Special built-in commands differ from regular built-in commands in the following ways:

• A syntax error in a special built-in command might cause the shell executing the command to end. This
does not happen if you have a syntax error in a regular built-in command. If a syntax error in a special
built-in command does not end the shell program, the exit value is nonzero.

• Variable assignments specified with special built-in commands remain in effect after the command
completes.

• I/O redirections are processed after parameter assignments.

In addition, words that are in the form of a parameter assignment following the export, readonly,
and typeset special commands are expanded with the same rules as a parameter assignment. Tilde
substitution is performed after the =, and word-splitting and file name substitution are not performed.

Related concepts
Korn shell or POSIX shell commands
The Korn shell is an interactive command interpreter and command programming language. It conforms
to the Portable Operating System Interface for Computer Environments (POSIX), an international
standard for operating systems.
Korn shell functions
The function reserved word defines shell functions. The shell reads and stores functions internally. Alias
names are resolved when the function is read. The shell executes functions in the same manner as
commands, with the arguments passed as positional parameters.
Related reference
List of Korn shell or POSIX shell special built-in commands
Special commands are built into the Korn shell and POSIX shell and executed in the shell process.
Korn shell or POSIX shell regular built-in commands

Operating system management 231

The following is a list of the Korn shell or POSIX shell regular built-in commands.

Special built-in command descriptions for the Korn shell or POSIX shell
Special commands are built into the Korn shell and POSIX shell and executed in the shell process.

The special built-in commands of the Korn shell are described below:

 : eval newgrp shift
 . exec readonly times
 break exit return trap
 continue export set typeset
 unset

Item Description

: [Argument ...] Expands only arguments. It is used when a command is necessary, as in the then
condition of an if command, but nothing is to be done by the command.

. File [Argument ...] Reads the complete specified file and then executes the commands. The
commands are executed in the current shell environment. The search path
specified by the PATH variable is used to find the directory containing the
specified file. If any arguments are specified, they become the positional
parameters. Otherwise, the positional parameters are unchanged. The exit
status is the exit status of the most recent command executed. See “Parameter
substitution in the Korn shell or POSIX shell” on page 225 for more information
on positional parameters.

Note: The .File [Argument ...] command reads the entire file before any
commands are carried out. Therefore, the alias and unalias commands in
the file do not apply to any functions defined in the file.

break [n] Exits from the enclosing for, while, until, or select loop, if one exists. If you
specify the n parameter, the command breaks the number of levels specified by
the n parameter. The value of n is any integer equal to or greater than 1.

continue [n] Resumes the next iteration of the enclosing for, while, until, or select loop. If
you specify the n parameter, the command resumes at the nth enclosing loop.
The value of n is any integer equal to or greater than 1.

eval [Argument ...] Reads the specified arguments as input to the shell and executes the resulting
command or commands.

exec [Argument ...] Executes the command specified by the argument in place of this shell (without
creating a new process). Input and output arguments can appear and affect
the current process. If you do not specify an argument, the exec command
modifies file descriptors as prescribed by the input and output redirection list. In
this case, any file descriptor numbers greater than 2 that are opened with this
mechanism are closed when invoking another program.

exit [n] Exits the shell with the exit status specified by the n parameter. The n parameter
must be an unsigned decimal integer with range 0-255. If you omit the n
parameter, the exit status is that of the most recent command executed. An
end-of-file character also exits the shell unless the ignoreeof option of the set
special command is turned on.

232 AIX Version 7.2: Operating system management

Item Description

export -p [Name[=
Value]] ...

Marks the specified names for automatic export to the environment of
subsequently executed commands.

-p writes to standard output the names and values of all exported variables, in
the following format:

"export %s= %s\n", <name> <value>

newgrp [Group] Equivalent to the exec/usr/bin/newgrp [Group] command.

Note: This command does not return.

readonly -p
[Name[= Value]] ...

Marks the names specified by the Name parameter as read-only. These names
cannot be changed by subsequent assignment.

-p writes to standard output the names and values of all exported variables, in
the following format:

"export %s= %s\n", <name> <value>

return [n] Causes a shell function to return to the invoking script. The return status is
specified by the n parameter. If you omit the n parameter, the return status is
that of the most recent command executed. If you invoke the return command
outside of a function or a script, then it is the same as an exit command.

Operating system management 233

Item Description

set [+ |-
abCefhkmnostuvx]
[+ |-o Option]... [+ |-
AName] [Argument ...]

If no options or arguments are specified, the set command writes the names
and values of all shell variables in the collation sequence of the current locale.
When options are specified, they will set or unset attributes of the shell,
described as follows:
-A

Array assignment. Unsets the Name parameter and assigns values
sequentially from the specified Argument parameter list. If the +A flag is
used, the Name parameter is not unset first.

-a
Automatically exports all subsequent parameters that are defined.

-b
Notifies the user asynchronously of background job completions.

-C
Equivalent to set -o noclobber.

-e
Executes the ERR trap, if set, and exits if a command has a nonzero exit
status unless the simple command is:

+ contained in an && or || list
+ the command immediately following if, while or until
+ contained in the pipeline following !

This mode is disabled while reading profiles.
-f

Disables file name substitution.
-h

Designates each command as a tracked alias when first encountered.
-k

Places all parameter-assignment arguments in the environment for a
command, not only those arguments that precede the command name.

-m
Runs background jobs in a separate process and prints a line upon
completion. The exit status of background jobs is reported in a completion
message. On systems with job control, this flag is turned on automatically for
interactive shells. For more information, see “Job control in the Korn shell or
POSIX shell” on page 243.

-n
Reads commands and checks them for syntax errors, but does not execute
them. This flag is ignored for interactive shells.

234 AIX Version 7.2: Operating system management

Item Description

 -o Option
Prints current option settings and an error message if you do not specify
an argument. You can set more than one option on a single ksh command
line. If the +o flag is used, the specified option is unset. When arguments
are specified, they will cause positional parameters to be set or unset.
Arguments, as specified by the Option variable, can be one of the following:
allexport

Same as the -a flag.
bgnice

Runs all background jobs at a lower priority. This is the default mode.
emacs

Enters an emacs-style inline editor for command entry.
errexit

Same as the -e flag.
gmacs

Enters a gmacs-style inline editor for command entry.
ignoreeof

Does not exit the shell when it encounters an end-of-file character. To
exit the shell, you must use the exit command or press the Ctrl-D key
sequence more than 11 times.

keyword
Same as the -k flag.

Note: This flag is for backward compatibility with the Bourne shell only.
Its use is strongly discouraged.

markdirs
Appends a backslash / to all directory names that are a result of file
name substitution.

monitor
Same as the -m flag.

noclobber
Prevents redirection from truncating existing files. When you specify this
option, a vertical bar must follow the redirection symbol (>|) to truncate
a file.

noexec
Same as the -n flag.

noglob
Same as the -f flag.

nolog
Prevents function definitions in .profile and $ENV files from being
saved in the history file.

nounset
Same as the -u flag.

privileged
Same as the -p flag.

Operating system management 235

Item Description

trackall

Same as the -h flag.
verbose

Same as the -v flag.
vi

Enters the insert mode of a vi-style inline editor for command entry.
Entering escape character 033 puts the editor into the move mode. A
return sends the line.

viraw
Processes each character as it is typed in vi mode.

xtrace
Same as the -x flag.

-p
Disables processing of the $HOME/.profile file and uses the /etc/
suid_profile file instead of the ENV file. This mode is enabled whenever
the effective user ID (UID) or group ID (GID) is not equal to the real UID or
GID. Turning off this option sets the effective UID or GID to the real UID and
GID.

Note: The system does not support the -p option because the operating
system does not support setuid shell scripts.

-s
Sorts the positional parameters lexicographically.

-t
Exits after reading and executing one command.

Note: This flag is for backward compatibility with the Bourne shell only. Its
use is strongly discouraged.

-u
Treats unset parameters as errors when substituting.

-v
Prints shell input lines as they are read.

-x
Prints commands and their arguments as they are executed.

-
Turns off the -x and -v flags and stops examining arguments for flags.

—
Prevents any flags from being changed. This option is useful in setting the $1
parameter to a value beginning with -. If no arguments follow this flag, the
positional parameters are not set.

Preceding any of the set command flags with a + rather than a - turns
off the flag. You can use these flags when you invoke the shell. When
'set +o' is invoked without any arguments, it displays the current option
settings in a format that is suitable for re-input to the shell as commands
that achieve the same option setting. The current set of flags is found in the
$- parameter. Unless you specify the -A flag, the remaining arguments are
positional parameters and are assigned, in order, to $1, $2, ..., and so on. If no
arguments are given, the names and values of all named parameters are printed
to standard output.

236 AIX Version 7.2: Operating system management

Item Description

shift [n] Renames the positional parameters, beginning with $n+1 ... through $1
The default value of the n parameter is 1. The n parameter is any arithmetic
expression that evaluates to a nonnegative number less than or equal to the $#
parameter.

times Prints the accumulated user and system times for the shell and for processes
run from the shell.

trap [Command]
[Signal] ...

Runs the specified command when the shell receives the specified signal or
signals. The Command parameter is read once when the trap is set and once
when the trap is taken. The Signal parameter can be given as a number or as the
name of the signal. Trap commands are executed in order of signal number. Any
attempt to set a trap on a signal that was ignored on entry to the current shell is
ineffective.

If the command is -, all traps are reset to their original values. If you omit
the command and the first signal is a numeric signal number, then the ksh
command resets the value of the Signal parameter or parameters to the original
values.

Note: If you omit the command and the first signal is a symbolic name, the
signal is interpreted as a command.

If the value of the Signal parameter is the ERR signal, the specified command
is carried out whenever a command has a nonzero exit status. If the signal is
DEBUG, then the specified command is carried out after each command. If the
value of the Signal parameter is the 0 or EXIT signal and the trap command
is executed inside the body of a function, the specified command is carried out
after the function completes. If the Signal parameter is 0 or EXIT for a trap
command set outside any function, the specified command is carried out on exit
from the shell.

Note: If a script receives a SIGINT signal within a function, the EXIT signal
cannot be trapped when the shell exits.

The trap command with no arguments prints a list of commands associated
with each signal number. If the command specified is NULL, indicated as
"" (empty quotes), then the ksh command will ignore the signal. For more
information about how the Korn shell or the POSIX shell reads a character as a
regular character, see “Quotation of characters in the Korn shell or POSIX shell”
on page 216.

For a complete list of Signal parameter values used in the trap command
without the SIG prefix, see the sigaction, sigvec, or signal subroutine in
the Technical Reference: Base Operating System and Extensions, Volume 2.

Operating system management 237

Item Description

typeset
[+HLRZfilrtux [n]]
[Name[=Value]] ...

Sets attributes and values for shell parameters. When invoked inside a function,
a new instance of the Name parameter is created. The parameter value and type
are restored when the function completes. You can specify the following flags
with the typeset command:
-H

Provides AIX-to-host-file mapping on non-AIX machines.
-L

Left-justifies and removes leading blanks from the Value parameter. If the n
parameter has a nonzero value, it defines the width of the field; otherwise,
it is determined by the width of the value of its first assignment. When the
parameter is assigned, it is filled on the right with blanks or truncated, if
necessary, to fit into the field. Leading zeros are removed if the -Z flag is also
set. The -R flag is turned off.

-R
Right-justifies and fills with leading blanks. If the n parameter has a nonzero
value, it defines the width of the field; otherwise, it is determined by the
width of the value of its first assignment. The field remains filled with blanks
or is truncated from the end if the parameter is reassigned. The L flag is
turned off.

-Z
Right-justifies and fills with leading zeros if the first nonblank character is a
digit and the -L flag has not been set. If the n parameter has a nonzero value,
it defines the width of the field; otherwise, it is determined by the width of
the value of its first assignment.

-f
Indicates that the names refer to function names rather than parameter
names. No assignments can be made and the only other valid flags are -t, -u,
and -x . The -t flag turns on execution tracing for this function. The -u flag
causes this function to be marked undefined. The FPATH variable is searched
to find the function definition when the function is referenced. The -x flag
allows the function definition to remain in effect across shell scripts that are
not a separate invocation of the ksh command.

-i
Identifies the parameter as an integer, making arithmetic faster. If the
n parameter has a nonzero value, it defines the output arithmetic base;
otherwise, the first assignment determines the output base.

-l
Converts all uppercase characters to lowercase. The -u uppercase
conversion flag is turned off.

-r
Marks the names specified by the Name parameter as read-only. These
names cannot be changed by subsequent assignment.

238 AIX Version 7.2: Operating system management

Item Description

 -t
Tags the named parameters. Tags can be defined by the user and have no
special meaning to the shell.

-u
Converts all lowercase characters to uppercase characters. The -l lowercase
flag is turned off.

-x
Marks the name specified by the Name parameter for automatic export to
the environment of subsequently executed commands.

Using a + rather than a - turns off the typeset command flags. If you
do not specify Name parameters but do specify flags, a list of names (and
optionally the values) of the parameters that have these flags set is printed.
(Using a + rather than a - keeps the values from being printed.) If you do not
specify any names or flags, the names and attributes of all parameters are
printed.

unset [-fv] Name ... Unsets the values and attributes of the parameters given by the list of
names. If -v is specified, Name refers to a variable name, and the shell will
unset it and remove it from the environment. Read-only variables cannot be
unset. Unsetting the ERRNO, LINENO, MAILCHECK, OPTARG, OPTIND, RANDOM,
SECONDS, TMOUT, and underscore (_) variables removes their special meanings
even if they are subsequently assigned.

If the -f flag is set, then Name refers to a function name, and the shell will unset
the function definition.

Regular built-in command descriptions for the Korn shell or POSIX shell
The built-in commands for the Korn or POSIX shells are described here.

The Korn shell provides the following regular built-in commands:

 alias fg print ulimit
 bg getopts pwd umask
 cd jobs read unalias
 command kill setgroups wait
 echo let setsenv test whence
 fc

Item Description

alias [-t] [-
x] [AliasName[=
String]] ...

Creates or redefines alias definitions or writes existing alias definitions to standard
output.

For more information, see the alias command.

bg [JobID...] Puts each specified job into the background. The current job is put in the
background if a JobID parameter is not specified. See “Job control in the Korn
shell or POSIX shell” on page 243 for more information about job control.

For more information about running jobs in the background, see the bg command.

cd [Argument]

Operating system management 239

Item Description

cd Old New This command can be in either of two forms. In the first form, it changes the
current directory to the one specified by the Argument parameter. If the value of
the Argument parameter is a hyphen (-), the directory is changed to the previous
directory. The HOME shell variable is the default value of the Argument parameter.
The PWD variable is set to the current directory.

The CDPATH shell variable defines the search path for the directory containing
the value of the Argument parameter. Alternative directory names are separated
by a colon (:). The default path is null, specifying the current directory. The
current directory is specified by a null path name, which appears immediately after
the equal sign or between the colon delimiters anywhere in the path list. If the
specified argument begins with a slash (/), the search path is not used. Otherwise,
each directory in the path is searched for the argument.

The second form of the cd command substitutes the string specified by the New
variable for the string specified by the Old variable in the current directory name,
PWD, and tries to change to this new directory.

command [-p]
CommandName
[Argument ...]

command [-v | -V]
CommandName

Causes the shell to treat the specified command and arguments as a simple
command, suppressing shell-function lookup.

For more information, see the command command.

echo [String ...] Writes character strings to standard output. See the echo command for usage and
description. The -n flag is not supported.

fc [-r] [-e Editor]
[First [Last]]

fc -l [-n] [-r] [First
[Last]]

fc -s [Old= New]
[First]

Displays the contents of your command history file or invokes an editor to modify
and re-execute commands previously entered in the shell.

For more information, see the fc command.

fg [JobID] Brings each job specified into the foreground. If you do not specify any jobs, the
command brings the current job into the foreground.

For more information about running jobs in the foreground, see the fg command.

getopts
OptionString Name
[Argument ...]

Checks the Argument parameter for legal options.

For more information, see the getopts command.

jobs [-l | -n | -p]
[JobID ...]

Displays the status of jobs started in the current shell environment. If no specific
job is specified with the JobID parameter, status information for all active jobs is
displayed. If a job termination is reported, the shell removes that job's process ID
from the list of those known by the current shell environment.

For more information, see the jobs command.

240 AIX Version 7.2: Operating system management

Item Description

kill [-s
{ SignalName |
SignalNumber }]
ProcessID...

Sends a signal (by default, the SIGTERM signal) to a running process. This default
action normally stops processes. If you want to stop a process, specify the process
ID (PID) in the ProcessID variable. The shell reports the PID of each process that is
running in the background (unless you start more than one process in a pipeline, in
which case the shell reports the number of the last process). You can also use the
ps command to find the process ID number of commands.kill [-

SignalName |
-SignalNumber]
ProcessID...

kill -l
[ExitStatus]

Lists signal names.

For more information, see the kill command.

let Expression ... Evaluates specified arithmetic expressions. The exit status is 0 if the value of the
last expression is nonzero, and 1 otherwise. See “Arithmetic evaluation in the Korn
shell or POSIX shell” on page 211 for more information.

print [-Rnprsu
[n]] [Argument ...]

Prints shell output. If you do not specify any flags, or if you specify the hyphen
(-) or double hyphen (—) flags, the arguments are printed to standard output as
described by the echo command. The flags do the following:
-R

Prints in raw mode (the escape conventions of the echo command are ignored).
The -R flag prints all subsequent arguments and flags other than -n.

-n
Prevents a newline character from being added to the output.

-p
Writes the arguments to the pipe of the process run with |& instead of to
standard output.

-r
Prints in raw mode. The escape conventions of the echo command are ignored.

-s
Writes the arguments to the history file instead of to standard output.

-u
Specifies a one-digit file descriptor unit number, n, on which the output is
placed. The default is 1.

pwd Equivalent to print -r - $PWD.

Note: The internal Korn shell pwd command does not support symbolic
links.

read [-prsu [n]]
[Name?Prompt]
[Name...]

Takes shell input. One line is read and broken up into fields, using the characters in
the IFS variable as separators.

For more information, see the read command.

setgroups Executes the /usr/bin/setgroups command, which runs as a separate shell.
See the setgroups command for information on this command. There is one
difference, however. The setgroups built-in command invokes a subshell, but the
setgroups command replaces the currently executing shell. Because the built-
in command is supported only for compatibility, it is recommended that scripts
use the absolute path name /usr/bin/setgroups rather than the shell built-in
command.

setsenv Executes the /usr/bin/setsenv command, which replaces the currently
executing shell. See the setsenv command for information on this command.

Operating system management 241

Item Description

test Same as [expression]. See “Conditional expressions for the Korn shell or POSIX
shell” on page 214 for usage and description.

ulimit [-
HSacdfmst]
[Limit]

Sets or displays user-process resource limits as defined in the /etc/security/
limits file. This file contains the following default limits:

fsize = 2097151
core = 2048
cpu = 3600
data = 131072
rss = 65536
stack = 8192
threads = -1

These values are used as default settings when a user is added to the system. The
values are set with the mkuser command when the user is added to the system or
changed with the chuser command.

Limits are categorized as either soft or hard. Users might change their soft limits, up
to the maximum set by the hard limits, with the ulimit command. You must have
root user authority to change resource hard limits.

Many systems do not contain one or more of these limits. The limit for a specified
resource is set when the Limit parameter is specified. The value of the Limit
parameter can be a number in the unit specified with each resource or the value
unlimited. You can specify the following ulimit command flags:

-H
Specifies that the hard limit for the given resource is set. If you have root user
authority, you can increase the hard limit. Any user can decrease it.

-S
Specifies that the soft limit for the given resource is set. A soft limit can be
increased up to the value of the hard limit. If neither the -H or -S options are
specified, the limit applies to both.

-a
Lists all of the current resource limits.

-c
Specifies the number of 512-byte blocks on the size of core dumps.

-d
Specifies the size, in KB, of the data area.

-f
Specifies the number of 512-byte blocks for files written by child processes
(files of any size can be read).

-m
Specifies the number of KB for the size of physical memory.

-n
Specifies the limit on the number of file descriptors a process might have open.

-r
Specifies the limit on the number of threads per process.

-s
Specifies the number of KB for the size of the stack area.

-t
Specifies the number of seconds to be used by each process.

242 AIX Version 7.2: Operating system management

Item Description

 The current resource limit is printed when you omit the Limit variable. The soft limit
is printed unless you specify the -H flag. When you specify more than one resource,
the limit name and unit is printed before the value. If no option is given, the -f flag is
assumed. When you change the value, set both hard and soft limits to Limit unless
you specify -H or -S.

For more information about user and system resource limits, see the getrlimit,
setrlimit, or vlimit subroutine.

umask [-S] [Mask] Determines file permissions. This value, along with the permissions of the creating
process, determines a file's permissions when the file is created. The default is
022. If the Mask parameter is not specified, the umask command displays to
standard output the file-mode creation mask of the current shell environment.

For more information about file permissions, see the umask command.

unalias { -a |
AliasName... }

Removes the definition for each alias name specified, or removes all alias
definitions if the -a flag is used. Alias definitions are removed from the current
shell environment.

For more information, see the unalias command.

wait [ProcessID...] Waits for the specified job and terminates. If you do not specify a job, the command
waits for all currently active child processes. The exit status from this command is
that of the process for which it waits.

For more information, see the wait command.

whence [-pv]
Name ...

Indicates, for each name specified, how it would be interpreted if used as a
command name. When used without either flag, whence will display the absolute
path name, if any, that corresponds to each name.
-p

Performs a path search for the specified name or names even if these are
aliases, functions, or reserved words.

-v
Produces a more verbose report that specifies the type of each name.

Job control in the Korn shell or POSIX shell
The Korn shell, or POSIX shell, provides a facility to control command sequences, or jobs.

When you execute the set -m special command, the Korn shell associates a job with each pipeline. It
keeps a table of current jobs, printed by the jobs command, and assigns them small integer numbers.

When a job is started in the background with an ampersand (&), the shell prints a line that looks like the
following:

[1] 1234

This output indicates that the job, which was started in the background, was job number 1. It also shows
that the job had one (top-level) process with a process ID of 1234.

If you are running a job and want to do something else, use the Ctrl-Z key sequence. This key sequence
sends a STOP signal to the current job. The shell normally indicates that the job has been stopped and
then displays a shell prompt. You can then manipulate the state of this job (putting it in the background
with the bg command), run other commands, and then eventually return the job to the foreground with
the fg command. The Ctrl-Z key sequence takes effect immediately, and is like an interrupt in that the
shell discards pending output and unread input when you type the sequence.

Operating system management 243

A job being run in the background stops if it tries to read from the terminal. Background jobs are normally
allowed to produce output. You can disable this option by issuing the stty tostop command. If you set
this terminal option, then background jobs stop when they try to produce output or read input.

You can refer to jobs in the Korn shell in several ways. A job is referenced by the process ID of any of its
processes or in one of the following ways:

Item Description

%Number Specifies the job with the given number.

%String Specifies any job whose command line begins with the String variable.

%?String Specifies any job whose command line contains the String variable.

%% Specifies the current job.

%+ Equivalent to %%.

%- Specifies the previous job.

This shell immediately recognizes changes in the process state. It normally informs you whenever a job
becomes blocked so that no further progress is possible. The shell does this just before it prints a prompt
so that it does not otherwise disturb your work.

When the monitor mode is on, each completed background job triggers traps set for the CHLD signal.

If you try to leave the shell (either by typing exit or using the Ctrl-D key sequence) while jobs are
stopped or running, the system warns you with the message There are stopped (running) jobs.
Use the jobs command to see which jobs are affected. If you immediately try to exit again, the shell
terminates the stopped and running jobs without warning.

Signal handling
The SIGINT and SIGQUIT signals for an invoked command are ignored if the command is followed by an
ampersand (&) and the job monitor option is not active. Otherwise, signals have the values that the shell
inherits from its parent.

When a signal for which a trap has been set is received while the shell is waiting for the completion of a
foreground command, the trap associated with that signal will not be executed until after the foreground
command has completed. Therefore, a trap on a CHILD signal is not performed until the foreground job
terminates.

Inline editing in the Korn shell or POSIX shell
Normally, you type each command line from a terminal device and follow it by a newline character
(RETURN or LINE FEED). When you activate the emacs, gmacs, or vi inline editing option, you can edit the
command line.

The following commands enter edit modes:

Item Description

set -o emacs Enters emacs editing mode and initiates an emacs-style inline editor.

set -o gmacs Enters emacs editing mode and initiates a gmacs-style inline editor.

set -o vi Enters vi editing mode and initiates a vi-style inline editor.

An editing option is automatically selected each time the VISUAL or EDITOR variable is assigned a value
that ends in any of these option names.

Note: To use the editing features, your terminal must accept RETURN as a carriage return without line
feed. A space must overwrite the current character on the screen.

Each editing mode opens a window at the current line. The window width is the value of the COLUMNS
variable if it is defined; otherwise, the width is 80 character spaces. If the line is longer than the
window width minus two, the system notifies you by displaying a mark at the end of the window. As

244 AIX Version 7.2: Operating system management

the cursor moves and reaches the window boundaries, the window is centered about the cursor. The
marks displayed are as follows:

Item Description

> Indicates that the line extends on the right side of the window.

< Indicates that the line extends on the left side of the window.

* Indicates that the line extends on both sides of the window.

The search commands in each edit mode provide access to the Korn shell history file. Only strings are
matched. If the leading character in the string is a carat (^), the match must begin at the first character in
the line.

Related concepts
Korn shell or POSIX shell commands
The Korn shell is an interactive command interpreter and command programming language. It conforms
to the Portable Operating System Interface for Computer Environments (POSIX), an international
standard for operating systems.

emacs editing mode
The emacs editing mode is entered when you enable either the emacs or gmacs option. The only
difference between these two modes is the way each handles the Ctrl-T edit command.

To edit, move the cursor to the point needing correction and insert or delete characters or words, as
needed. All of the editing commands are control characters or escape sequences.

Edit commands operate from any place on a line (not only at the beginning). Do not press the Enter key or
line-feed (Down Arrow) key after edit commands, except as noted.

Item Description

Ctrl-F Moves the cursor forward (right) one character.

Esc-F Moves the cursor forward one word (a string of characters consisting of only
letters, digits, and underscores).

Ctrl-B Moves the cursor backward (left) one character.

Esc-B Moves the cursor backward one word.

Ctrl-A Moves the cursor to the beginning of the line.

Ctrl-E Moves the cursor to the end of the line.

Ctrl-] c Moves the cursor forward on the current line to the indicated character.

Esc-Ctrl-] c Moves the cursor backward on the current line to the indicated character.

Ctrl-X Ctrl-X Interchanges the cursor and the mark.

ERASE Deletes the previous character. (User-defined erase character as defined by the
stty command, usually the Ctrl-H key sequence.)

Ctrl-D Deletes the current character.

Esc-D Deletes the current word.

Esc-Backspace Deletes the previous word.

Esc-H Deletes the previous word.

Esc-Delete Deletes the previous word. If your interrupt character is the Delete key, this
command does not work.

Operating system management 245

Item Description

Ctrl-T Transposes the current character with the next character in emacs mode.
Transposes the two previous characters in gmacs mode.

Ctrl-C Capitalizes the current character.

Esc-C Capitalizes the current word.

Esc-L Changes the current word to lowercase.

Ctrl-K Deletes from the cursor to the end of the line. If preceded by a numeric parameter
whose value is less than the current cursor position, this editing command deletes
from the given position up to the cursor. If preceded by a numeric parameter
whose value is greater than the current cursor position, this editing command
deletes from the cursor up to the given cursor position.

Ctrl-W Deletes from the cursor to the mark.

Esc-P Pushes the region from the cursor to the mark on the stack.

KILL User-defined kill character as defined by the stty command, usually the Ctrl-G
key sequence or @. Kills the entire current line. If two kill characters are entered
in succession, all subsequent kill characters cause a line feed (useful when using
paper terminals).

Ctrl-Y Restores the last item removed from the line. (Yanks the item back to the line.)

Ctrl-L Line feeds and prints the current line.

Ctrl-@ (Null character) Sets a mark.

Esc-space Sets a mark.

Ctrl-J (New line) Executes the current line.

Ctrl-M (Return) Executes the current line.

EOF Processes the end-of-file character, normally the Ctrl-D key sequence, as an end-
of-file only if the current line is null.

Ctrl-P Fetches the previous command. Each time the Ctrl-P key sequence is entered, the
previous command back in time is accessed. Moves back one line when not on the
first line of a multiple-line command.

Esc-< Fetches the least recent (oldest) history line.

Esc-> Fetches the most recent (youngest) history line.

Ctrl-N Fetches the next command line. Each time the Ctrl-N key sequence is entered, the
next command line forward in time is accessed.

Ctrl-R String Reverses search history for a previous command line containing the string
specified by the String parameter. If a value of 0 is given, the search is forward.
The specified string is terminated by an Enter or newline character. If the string is
preceded by a carat (^), the matched line must begin with the String parameter.
If the String parameter is omitted, then the next command line containing the
most recent String parameter is accessed. In this case, a value of 0 reverses the
direction of the search.

Ctrl-O (Operate) Executes the current line and fetches the next line relative to the current
line from the history file.

246 AIX Version 7.2: Operating system management

Item Description

Esc Digits (Escape) Defines the numeric parameter. The digits are taken as a parameter to the
next command. The commands that accept a parameter are Ctrl-F, Ctrl-B, ERASE,
Ctrl-C, Ctrl-D, Ctrl-K, Ctrl-R, Ctrl-P, Ctrl-N, Ctrl-], Esc-., Esc-Ctrl-], Esc-_, Esc-B,
Esc-C, Esc-D, Esc-F, Esc-H, Esc-L, and Esc-Ctrl-H.

Esc Letter (Soft-key) Searches the alias list for an alias named _Letter. If an alias of this name
is defined, its value is placed into the input queue. The Letter parameter must not
specify one of the escape functions.

Esc-[Letter (Soft-key) Searches the alias list for an alias named double underscore Letter
(__Letter). If an alias of this name is defined, its value is placed into the input
queue. This command can be used to program function keys on many terminals.

Esc-. Inserts on the line the last word of the previous command. If preceded by a
numeric parameter, the value of this parameter determines which word to insert
rather than the last word.

Esc-_ Same as the Esc-. key sequence.

Esc-* Attempts file name substitution on the current word. An asterisk (*) is appended if
the word does not match any file or contain any special pattern characters.

Esc-Esc File name completion. Replaces the current word with the longest common prefix
of all file names that match the current word with an asterisk appended. If the
match is unique, a slash (/) is appended if the file is a directory and a space is
appended if the file is not a directory.

Esc-= Lists the files that match the current word pattern as if an asterisk (*) were
appended.

Ctrl-U Multiplies the parameter of the next command by 4.

\ Escapes the next character. Editing characters and the ERASE, KILL and
INTERRUPT (normally the Delete key) characters can be entered in a command
line or in a search string if preceded by a backslash (\). The backslash removes the
next character's editing features, if any.

Ctrl-V Displays the version of the shell.

Esc-# Inserts a pound sign (#) at the beginning of the line and then executes the line.
This causes a comment to be inserted in the history file.

vi editing mode
The vi editing mode has two typing modes.

The modes are:

• Input mode. When you enter a command, the vi editor is in input mode.
• Control mode. Press the Esc key to enter control mode.

Most control commands accept an optional repeat Count parameter prior to the command. When in vi
mode on most systems, canonical processing is initially enabled. The command is echoed again if one or
more of the following are true:

• The speed is 1200 baud or greater.
• The command contains any control characters.
• Less than one second has elapsed since the prompt was printed.

The Esc character terminates canonical processing for the remainder of the command, and you can then
modify the command line. This scheme has the advantages of canonical processing with the type-ahead
echoing of raw mode. If the viraw option is also set, canonical processing is always disabled. This mode

Operating system management 247

is implicit for systems that do not support two alternate end-of-line delimiters and might be helpful for
certain terminals.

Available vi edit commands are grouped into categories. The categories are as follows:

Input edit commands
The input edit commands for the Korn shell are described below.

Note: By default, the editor is in input mode.

Item Description

ERASE Deletes the previous character. (User-defined erase character as defined by the stty
command, usually Ctrl-H or #.)

Ctrl-W Deletes the previous blank separated word.

Ctrl-D Terminates the shell.

Ctrl-V Escapes the next character. Editing characters, such as the ERASE or KILL characters, can
be entered in a command line or in a search string if preceded by a Ctrl-V key sequence. The
Ctrl-V key sequence removes the next character's editing features (if any).

\ Escapes the next ERASE or KILL character.

Motion edit commands
The motion edit commands for the Korn shell are described below.

Motion edit commands move the cursor as follows:

Item Description

[Count]l Moves the cursor forward (right) one character.

[Count]w Moves the cursor forward one alphanumeric word.

[Count]W Moves the cursor to the beginning of the next word that follows a blank.

[Count]e Moves the cursor to the end of the current word.

[Count]E Moves the cursor to the end of the current blank-separated word.

[Count]h Moves the cursor backward (left) one character.

[Count]b Moves the cursor backward one word.

[Count]B Moves the cursor to the previous blank-separated word.

[Count]| Moves the cursor to the column specified by the Count parameter.

[Count]fc Finds the next character c in the current line.

[Count]Fc Finds the previous character c in the current line.

[Count]tc Equivalent to f followed by h.

[Count]Tc Equivalent to F followed by l.

[Count]; Repeats for the number of times specified by the Count parameter the last single-
character find command: f, F, t, or T.

[Count], Reverses the last single-character find command the number of times specified by the
Count parameter.

0 Moves the cursor to the start of a line.

^ Moves the cursor to the first nonblank character in a line.

$ Moves the cursor to the end of a line.

248 AIX Version 7.2: Operating system management

Search edit commands
Search edit commands access your command history as follows:

Item Description

[Count]k Fetches the previous command.

[Count]- Equivalent to the k command.

[Count]j Fetches the next command. Each time the j command is entered, the next command is
accessed.

[Count]+ Equivalent to the j command.

[Count]G Fetches the command whose number is specified by the Count parameter. The default is
the least recent history command.

/String Searches backward through history for a previous command containing the specified
string. The string is terminated by a RETURN or newline character. If the specified string
is preceded by a carat (^), the matched line must begin with the String parameter. If the
value of the String parameter is null, the previous string is used.

?String Same as /String except that the search is in the forward direction.

n Searches for the next match of the last pattern to /String or ? commands.

N Searches for the next match of the last pattern to /String or ? commands, but in
the opposite direction. Searches history for the string entered by the previous /String
command.

Text modification edit commands
Text-modification edit commands modify the line as follows:

Item Description

a Enters the input mode and enters text after the current character.

A Appends text to the end of the line. Equivalent to the $a command.

[Count]cMotion

c[Count]Motion Deletes the current character through the character to which the Motion
parameter specifies to move the cursor, and enters input mode. If the value
of the Motion parameter is c, the entire line is deleted and the input mode is
entered.

C Deletes the current character through the end of the line and enters input
mode. Equivalent to the c$ command.

S Equivalent to the cc command.

D Deletes the current character through the end of line. Equivalent to the d$
command.

Item Description

[Count]dMotion

d[Count]Motion

Deletes the current character up to and including the character specified by
the Motion parameter. If Motion is d, the entire line is deleted.

i Enters the input mode and inserts text before the current character.

I Inserts text before the beginning of the line. Equivalent to the 0i command.

[Count]P Places the previous text modification before the cursor.

Operating system management 249

Item Description

[Count]p Places the previous text modification after the cursor.

R Enters the input mode and types over the characters on the screen.

[Count]rc Replaces the number of characters specified by the Count parameter,
starting at the current cursor position, with the characters specified by the c
parameter. This command also advances the cursor after the characters are
replaced.

[Count]x Deletes the current character.

[Count]X Deletes the preceding character.

[Count]. Repeats the previous text-modification command.

[Count]~ Inverts the case of the number of characters specified by the Count
parameter, starting at the current cursor position, and advances the cursor.

[Count]_ Appends the word specified by the Count parameter of the previous
command and enters input mode. The last word is used if the Count
parameter is omitted.

* Appends an asterisk (*) to the current word and attempts file name
substitution. If no match is found, it rings the bell. Otherwise, the word
is replaced by the matching pattern and input mode is entered.

\ File name completion. Replaces the current word with the longest common
prefix of all file names matching the current word with an asterisk (*)
appended. If the match is unique, a slash / is appended if the file is a
directory. A space is appended if the file is not a directory.

Miscellaneous edit commands
The following edit commands are used commonly.

Item Description

[Count]yMotion

y[Count]Motion Yanks the current character up to and including the character marked by
the cursor position specified by the Motion parameter and puts all of these
characters into the delete buffer. The text and cursor are unchanged.

Y Yanks from the current position to the end of the line. Equivalent to the y$
command.

u Undoes the last text-modifying command.

U Undoes all the text-modifying commands performed on the line.

[Count]v Returns the command fc -e ${VISUAL:-${EDITOR:-vi}} Count in the
input buffer. If the Count parameter is omitted, then the current line is used.

Ctrl-L Line feeds and prints the current line. This command is effective only in control
mode.

Ctrl-J (New line) Executes the current line regardless of the mode.

Ctrl-M (Return) Executes the current line regardless of the mode.

250 AIX Version 7.2: Operating system management

Item Description

Sends the line after inserting a pound sign (#) in front of the line. Useful if you
want to insert the current line in the history without executing it.

If the command line contains a pipe or semicolon or newline character, then
additional pound signs (#) will be inserted in front of each of these symbols.
To delete all pound signs, retrieve the command line from history and enter
another pound sign (#).

= Lists the file names that match the current word as if an asterisk were
appended to it.

@Letter Searches the alias list for an alias named _Letter. If an alias of this name is
defined, its value is placed into the input queue for processing.

Korn shell or POSIX shell commands
The Korn shell is an interactive command interpreter and command programming language. It conforms
to the Portable Operating System Interface for Computer Environments (POSIX), an international
standard for operating systems.

POSIX is not an operating system, but is a standard aimed at portability of applications, at the source
level, across many systems. POSIX features are built on top of the Korn shell. The Korn shell (also known
as the POSIX shell) offers many of the same features as the Bourne and C shells, such as I/O redirection
capabilities, variable substitution, and file name substitution. It also includes several additional command
and programming language features:

Note: There is a restricted version of Korn shell available, called rksh. For more details, refer to the rksh
command.

Item Description

Arithmetic
evaluation

The Korn shell, or POSIX shell, can perform integer arithmetic using the built-in
let command, using any base from 2 to 36.

In order to enable recognition of numbers starting with 0 (Octal) and 0x
(Hexadecimal) in the Korn shell, run the following commands:

export XPG_SUS_ENV=ON
Exporting the XPG_SUS_ENV variable causes the commands that are run and
the libraries that they use to be completely POSIX-compliant.

Note: Because the entire library system becomes POSIX-compliant, a given
command's default expected behavior might change.

export OCTAL_CONST=ON
Exporting this variable causes the interpretation of constants declared in
the Korn shell to be POSIX-compliant as far as the recognition of octal and
hexadecimal constants is concerned.

Command history The Korn shell, or POSIX shell, stores a file that records all of the commands you
enter. You can use a text editor to alter a command in this history file and then
reissue the command.

Coprocess facility Enables you to run programs in the background and send and receive information
to these background processes.

Editing The Korn shell, or POSIX shell, offers inline editing options that enable you to edit
the command line. Editors similar to emacs, gmacs, and vi are available.

A Korn shell command is one of the following:

• Simple command
• Pipeline

Operating system management 251

• List
• Compound command
• Function

When you issue a command in the Korn shell or POSIX shell, the shell evaluates the command and does
the following:

• Makes all indicated substitutions.
• Determines whether the command contains a slash (/). If it does, the shell runs the program named by

the specified path name.

If the command does not contain a slash (/), the Korn shell or POSIX shell continues with the following
actions:

• Determines whether the command is a special built-in command. If it is, the shell runs the command
within the current shell process.

• Compares the command to user-defined functions. If the command matches a user-defined function,
then the positional parameters are saved and then reset to the arguments of the function call. When the
function completes or issues a return, the positional parameter list is restored, and any trap set on EXIT
within the function is carried out. The value of a function is the value of the last command executed. A
function is carried out in the current shell process.

• If the command name matches the name of a regular built-in command, then that regular built-in
command will be invoked.

• Creates a process and attempts to carry out the command by using the exec command (if the
command is neither a built-in command nor a user-defined function).

The Korn shell, or POSIX shell, searches each directory in a specified path for an executable file.
The PATH shell variable defines the search path for the directory containing the command. Alternative
directory names are separated with a colon (:). The default path is /usr/bin: (specifying the /usr/bin
directory, and the current directory, in that order). The current directory is specified by two or more
adjacent colons, or by a colon at the beginning or end of the path list.

If the file has execute permission but is not a directory or an a.out file, the shell assumes that it
contains shell commands. The current shell process creates a subshell to read the file. All nonexported
aliases, functions, and named parameters are removed from the file. If the shell command file has read
permission, or if the setuid or setgid bits are set on the file, then the shell runs an agent that sets up
the permissions and carries out the shell with the shell command file passed down as an open file. A
parenthesized command is run in a subshell without removing nonexported quantities.

Related concepts
Available shells
The following are the shells that are provided with AIX.
Coprocess facility
The Korn shell, or POSIX shell, allows you to run one or more commands as background processes. These
commands, run from within a shell script, are called coprocesses.
Inline editing in the Korn shell or POSIX shell
Normally, you type each command line from a terminal device and follow it by a newline character
(RETURN or LINE FEED). When you activate the emacs, gmacs, or vi inline editing option, you can edit the
command line.
Arithmetic evaluation in the Korn shell or POSIX shell
The Korn shell or POSIX shell regular built-in let command enables you to perform integer arithmetic.
Korn shell or POSIX shell built-in commands

252 AIX Version 7.2: Operating system management

Special commands are built in to the Korn shell and POSIX shell and executed in the shell process.

Korn shell compound commands
A compound command can be a list of simple commands or a pipeline, or it can begin with a reserved
word. Most of the time, you will use compound commands such as if, while, and for when you are
writing shell scripts.

The following is a list of list of Korn shell or POSIX shell compound commands:

Command syntax Description

for Identifier [in
Word ...] ;do List ;done

Each time a for command is executed, the Identifier parameter is set
to the next word taken from the in Word ... list. If the in Word ... command
is omitted, then the for command executes the do List command once for
each positional parameter that is set. Execution ends when there are no
more words in the list.

select Identifier [in
Word ...] ;do List ;done

A select command prints on standard error (file descriptor 2) the set of
words specified, each preceded by a number. If the in Word ... command is
omitted, then the positional parameters are used instead. The PS3 prompt
is printed and a line is read from the standard input. If this line consists
of the number of one of the listed words, then the value of the Identifier
parameter is set to the word corresponding to this number.

If the line read from standard input is empty, the selection list is printed
again. Otherwise, the value of the Identifier parameter is set to null. The
contents of the line read from standard input is saved in the REPLY
parameter. The List parameter is executed for each selection until a break or
an end-of-file character is encountered.

case Word in [[(] Pattern
[| Pattern] ...) List ;;] ...
esac

A case command executes the List parameter associated with the first
Pattern parameter that matches the Word parameter. The form of the
patterns is the same as that used for file name substitution.

if List ;then List [elif
List ;then List] ... [;else
List] ;fi

The List parameter specifies a list of commands to be run. The shell
executes the if List command first. If a zero exit status is returned, it
executes the then List command. Otherwise, the commands specified by
the List parameter following the elif command are executed.

If the value returned by the last command in the elif List command is
zero, the then List command is executed. If the value returned by the
last command in the then List command is zero, the else List command
is executed. If no commands specified by the List parameters are executed
for the else or then command, the if command returns a zero exit status.

while List ;do List ;done
until List ;do List ;done

The List parameter specifies a list of commands to be run. The while
command repeatedly executes the commands specified by the List
parameter. If the exit status of the last command in the while List command
is zero, the do List command is executed. If the exit status of the last
command in the while List command is not zero, the loop terminates. If no
commands in the do List command are executed, then the while command
returns a zero exit status. The until command might be used in place of the
while command to negate the loop termination test.

(List) The List parameter specifies a list of commands to run. The shell executes
the List parameter in a separate environment.

Note: If two adjacent open parentheses are needed for nesting, you must
insert a space between them to differentiate between the command and
arithmetic evaluation.

Operating system management 253

Command syntax Description

{ List;} The List parameter specifies a list of commands to run. The List parameter is
simply executed.

Note: Unlike the metacharacters (), { } denote reserved words (used for
special purposes, not as user-declared identifiers). To be recognized, these
reserved words must appear at the beginning of a line or after a semicolon
(;).

[[Expression]] Evaluates the Expression parameter. If the expression is true, then the
command returns a zero exit status.

function Identifier
{ List ;} or function
Identifier () {List ;}

Defines a function that is referred to by the Identifier parameter. The body
of the function is the specified list of commands enclosed by { }. The ()
consists of two operators, so mixing blank characters with the identifier,
(and) is permitted, but is not necessary.

time Pipeline Executes the Pipeline parameter. The elapsed time, user time, and system
time are printed to standard error.

Related concepts
Parameters in the Korn shell
Korn shell parameters are discussed below.

Shell startup
You can start the Korn shell with the ksh command, psh command (POSIX shell), or the exec command.

If the shell is started by the exec command, and the first character of zero argument ($0) is the hyphen
(-), then the shell is assumed to be a login shell. The shell first reads commands from the /etc/profile
file and then from either the .profile file in the current directory or from the $HOME/.profile
file, if either file exists. Next, the shell reads commands from the file named by performing parameter
substitution on the value of the ENV environment variable, if the file exists.

If you specify the File [Parameter] parameter when invoking the Korn shell or POSIX shell, the shell
runs the script file identified by the File parameter, including any parameters specified. The script file
specified must have read permission; any setuid and setgid settings are ignored. The shell then reads the
commands.

Note: Do not specify a script file with the -c or -s flags when invoking the Korn shell or POSIX
shell.

For more information on positional parameters, see “Parameters in the Korn shell” on page 224.

Related concepts
Parameters in the Korn shell
Korn shell parameters are discussed below.

Korn shell environment
All variables (with their associated values) known to a command at the beginning of its execution
constitute its environment.

This environment includes variables that a command inherits from its parent process and variables
specified as keyword parameters on the command line that calls the command. The shell interacts with
the environment in several ways. When it is started, the shell scans the environment and creates a
parameter for each name found, giving the parameter the corresponding value and marking it for export.
Executed commands inherit the environment.

If you modify the values of the shell parameters or create new ones using the export or typeset -x
commands, the parameters become part of the environment. The environment seen by any executed
command is therefore composed of any name-value pairs originally inherited by the shell, whose values
might be modified by the current shell, plus any additions that resulted from using the export or
typeset -x commands. The executed command (subshell) will see any modifications it makes to the

254 AIX Version 7.2: Operating system management

environment variables it has inherited, but for its child shells or processes to see the modified values, the
subshell must export these variables.

The environment for any simple command or function is changed by prefixing with one or more parameter
assignments. A parameter assignment argument is a word of the form Identifier=Value. Thus, the two
following expressions are equivalent (as far as the execution of the command is concerned):

TERM=450 Command arguments

(export TERM; TERM=450; Command arguments)

Korn shell functions
The function reserved word defines shell functions. The shell reads and stores functions internally. Alias
names are resolved when the function is read. The shell executes functions in the same manner as
commands, with the arguments passed as positional parameters.

The Korn shell or POSIX shell executes functions in the environment from which functions are invoked. All
of the following are shared by the function and the invoking script, and side effects can be produced:

• Variable values and attributes (unless you use typeset command within the function to declare a local
variable)

• Working directory
• Aliases, function definitions, and attributes
• Special parameter $
• Open files

The following are not shared between the function and the invoking script, and there are no side effects:

• Positional parameters
• Special parameter #
• Variables in a variable assignment list when the function is invoked
• Variables declared using typeset command within the function
• Options
• Traps. However, signals ignored by the invoking script will also be ignored by the function.

Note: In earlier versions of the Korn shell, traps other than EXIT and ERR were shared by the function as
well as the invoking script.

If trap on 0 or EXIT is executed inside the body of a function, then the action is executed after the
function completes, in the environment that called the function. If the trap is executed outside the body of
a function, then the action is executed upon exit from the Korn shell. In earlier versions of the Korn shell,
no trap on 0 or EXIT outside the body of a function was executed upon exit from the function.

When a function is executed, it has the same syntax-error and variable-assignment properties described
in Korn shell or POSIX shell built-in commands.

The compound command is executed whenever the function name is specified as the name of a simple
command. The operands to the command temporarily will become the positional parameters during the
execution of the compound command. The special parameter # will also change to reflect the number of
operands. The special parameter 0 will not change.

The return special command is used to return from function calls. Errors within functions return control
to the caller.

Function identifiers are listed with the -f or +f option of the typeset special command. The -f option also
lists the text of functions. Functions are undefined with the -f option of the unset special command.

Ordinarily, functions are unset when the shell executes a shell script. The -xf option of the typeset special
command allows a function to be exported to scripts that are executed without a separate invocation of

Operating system management 255

the shell. Functions that must be defined across separate invocations of the shell should be specified in
the ENV file with the -xf option of the typeset special command.

The exit status of a function definition is zero if the function was not successfully declared. Otherwise,
it will be greater than zero. The exit status of a function invocation is the exit status of the most recent
command executed by the function.

Related concepts
Parameters in the Korn shell
Korn shell parameters are discussed below.
Korn shell or POSIX shell built-in commands
Special commands are built in to the Korn shell and POSIX shell and executed in the shell process.

Korn shell or POSIX shell command history
The Korn shell or POSIX shell saves commands entered from your terminal device to a history file.

If set, the HISTFILE variable value is the name of the history file. If the HISTFILE variable is not set or
cannot be written, the history file used is $HOME/.sh_history. If the history file does not exist and the
Korn shell cannot create it, or if it does exist and the Korn shell does not have permission to append to
it, then the Korn shell uses a temporary file as the history file. The shell accesses the commands of all
interactive shells using the same named history file with appropriate permissions.

By default, the Korn shell or POSIX shell saves the text of the last 128 commands for nonroot users and
512 commands for the root user. The history file size (specified by the HISTSIZE variable) is not limited,
although a very large history file can cause the Korn shell to start slowly.

Command history substitution
Use the fc built-in command to list or edit portions of the history file. To select a portion of the file to edit
or list, specify the number or the first character or characters of the command.

You can specify a single command or range of commands.

If you do not specify an editor program as an argument to the fc regular built-in command, the editor
specified by the FCEDIT variable is used. If the FCEDIT variable is not defined, then the /usr/bin/ed file
is used. The edited command or commands are printed and run when you exit the editor.

The editor name hyphen (-) is used to skip the editing phase and run the command again. In this case,
a substitution parameter of the form Old=New can be used to modify the command before it is run. For
example, if r is aliased to fc -e -, then typing r bad=good c runs the most recent command that
starts with the letter c and replaces the first occurrence of the bad string with the good string.

Related tasks
Listing previously entered commands (history command)
Use the history command to list commands that you have previously entered.

Command aliasing in the Korn shell or POSIX shell
The Korn shell, or POSIX shell, allows you to create aliases to customize commands.

The alias command defines a word of the form Name=String as an alias. When you use an alias as the
first word of a command line, the Korn shell checks to see if it is already processing an alias with the same
name. If it is, the Korn shell does not replace the alias name. If an alias with the same name is not already
being processed, the Korn shell replaces the alias name by the value of the alias.

The first character of an alias name can be any printable character except the metacharacters. The
remaining characters must be the same as for a valid identifier. The replacement string can contain any
valid shell text, including the metacharacters.

If the last character of the alias value is a blank, the shell also checks the word following the alias for
alias substitution. You can use aliases to redefine special built-in commands but not to redefine reserved
words. Alias definitions are not inherited across invocations of ksh. However, if you specify alias -x,
the alias stays in effect for scripts invoked by name that do not invoke a separate shell. To export an alias
definition and to cause child processes to have access to them, you must specify alias -x and the alias
definition in your environment file.

256 AIX Version 7.2: Operating system management

Use the alias command to create, list, and export aliases.

Use the unalias command to remove aliases.

The format for creating an alias is as follows:

alias Name=String

where the Name parameter specifies the name of the alias, and the String parameter specifies the value
of the alias.

The following exported aliases are predefined by the Korn shell but can be unset or redefined. It is not
recommended that you change them, because this might later confuse anyone who expects the alias to
work as predefined by the Korn shell.

autoload='typeset -fu'
false='let 0'
functions='typeset -f'
hash='alias -t'
history='fc -l'
integer='typeset -i'
nohup='nohup '
r='fc -e -'
true=':'
type='whence -v'

Aliases are not supported on noninteractive invocations of the Korn shell (ksh); for example, in a shell
script, or with the -c option in ksh, as in the following:

ksh -c alias

Related tasks
Creating a command alias (alias shell command)
An alias lets you create a shortcut name for a command, file name, or any shell text. By using aliases, you
save a lot of time when doing tasks you do frequently. You can create a command alias.

Tracked aliases
Frequently, aliases are used as shorthand for full path names. One aliasing facility option allows you to
automatically set the value of an alias to the full path name of a corresponding command. This special
type of alias is a tracked alias.

Tracked aliases speed execution by eliminating the need for the shell to search the PATH variable for a full
path name.

The set -h command turns on command tracking so that each time a command is referenced, the shell
defines the value of a tracked alias. This value is undefined each time you reset the PATH variable.

These aliases remain tracked so that the next subsequent reference will redefine the value. Several
tracked aliases are compiled into the shell.

Tilde substitution
After the shell performs alias substitution, it checks each word to see if it begins with an unquoted tilde
(~). If it does, the shell checks the word, up to the first slash (/), to see if it matches a user name in
the /etc/passwd file. If the shell finds a match, it replaces the ~ character and the name with the login
directory of the matched user. This process is called tilde substitution.

The shell does not change the original text if it does not find a match. The Korn shell also makes special
replacements if the ~ character is the only character in the word or followed by plus sign (+) or hyphen (-):

Item Description

~ Replaced by the value of the HOME variable

~+ Replaced by the $PWD variable (the full path name of the current directory)

~- Replaced by the $OLDPWD variable (the full path name of the previous directory)

Operating system management 257

In addition, the shell attempts tilde substitution when the value of a variable assignment parameter
begins with a tilde ~ character.

Bourne shell
The Bourne shell is an interactive command interpreter and command programming language.

The bsh command runs the Bourne shell.

The Bourne shell can be run either as a login shell or as a subshell under the login shell. Only the login
command can call the Bourne shell as a login shell. It does this by using a special form of the bsh
command name: -bsh. When called with an initial hyphen (-), the shell first reads and runs commands
found in the system /etc/profile file and your $HOME/.profile, if one exists. The /etc/profile
file sets variables needed by all users. Finally, the shell is ready to read commands from your standard
input.

If the File [Parameter] parameter is specified when the Bourne shell is started, the shell runs the script
file identified by the File parameter, including any parameters specified. The script file specified must
have read permission; any setuid and setgid settings are ignored. The shell then reads the commands.
If either the -c or -s flag is used, do not specify a script.

Related concepts
Available shells
The following are the shells that are provided with AIX.

Bourne shell environment
All variables (with their associated values) known to a command at the beginning of its execution
constitute its environment. This environment includes variables that a command inherits from its parent
process and variables specified as keyword parameters on the command line that calls the command.

The shell passes to its child processes the variables named as arguments to the built-in export
command. This command places the named variables in the environments of both the shell and all its
future child processes.

Keyword parameters are variable-value pairs that appear in the form of assignments, normally before the
procedure name on a command line (but see also the flag for the set command). These variables are
placed in the environment of the procedure being called.

See the following examples:

• Consider the following procedure, which displays the values of two variables (saved in a command file
named key_command):

key_command
echo $a $b

The following command lines produce the output shown:

Input Output
a=key1 b=key2 key_command key1 key2
a=tom b=john key_command tom john

A procedure's keyword parameters are not included in the parameter count stored in $#.

A procedure can access the values of any variables in its environment. If it changes any of these values,
however, the changes are not reflected in the shell environment. The changes are local to the procedure
in question. To place the changes in the environment that the procedure passes to its child processes, you
must export the new values within that procedure.

See the following examples:

• To obtain a list of variables that are exportable from the current shell, type the following:

export

258 AIX Version 7.2: Operating system management

• To obtain a list of read-only variables from the current shell, type the following:

readonly

• To obtain a list of variable-value pairs in the current environment, type the following:

env

For more information about user environments, see “/etc/environment file” on page 320.

Conditional substitution in the Bourne shell
Normally, the shell replaces the expression $Variable with the string value assigned to the Variable
variable, if there is one. However, there is a special notation that allows conditional substitution,
depending on whether the variable is set or not null, or both.

By definition, a variable is set if it has ever been assigned a value. The value of a variable can be the null
string, which you can assign to a variable in any one of the following ways:

Item Description

A=

bcd=""

Efg='' Assigns the null string to the A, bcd, and Efg.

set '' "" Sets the first and second positional parameters to the null string and unsets all other
positional parameters.

The following is a list of the available expressions you can use to perform conditional substitution:

Item Description

${Variable- String} If the variable is set, substitute the Variable value in place of this
expression. Otherwise, replace this expression with the String value.

${Variable:-String} If the variable is set and not null, substitute the Variable value in place
of this expression. Otherwise, replace this expression with the String
value.

${Variable=String} If the variable is set, substitute the Variable value in place of this
expression. Otherwise, set the Variable value to the String value and
then substitute the Variable value in place of this expression. You
cannot assign values to positional parameters in this fashion.

${Variable:=String} If the variable is set and not null, substitute the Variable value in place
of this expression. Otherwise, set the Variable value to the String value
and then substitute the Variable value in place of this expression. You
cannot assign values to positional parameters in this fashion.

${Variable?String} If the variable is set, substitute the Variable value in place of this
expression. Otherwise, display a message of the following form:

Variable: String

and exit from the current shell (unless the shell is the login shell). If
you do not specify a value for the String variable, the shell displays the
following message:

Variable: parameter null or not set

Operating system management 259

Item Description

${Variable:?String} If the variable is set and not null, substitute the Variable value in place
of this expression. Otherwise, display a message of the following form:

Variable: String

and exit from the current shell (unless the shell is the login shell). If
you do not specify the String value, the shell displays the following
message:

Variable: parameter null or not set

${Variable+String} If the variable is set, substitute the String value in place of this
expression. Otherwise, substitute the null string.

${Variable:+String} If the variable is set and not null, substitute the String value in place of
this expression. Otherwise, substitute the null string.

In conditional substitution, the shell does not evaluate the String variable until the shell uses this variable
as a substituted string. Thus, in the following example, the shell executes the pwd command only if d is
not set or is null:

echo ${d:-`pwd`}

Related concepts
User-defined variables in the Bourne shell
The Bourne shell recognizes alphanumeric variables to which string values can be assigned.

Positional parameters in the Bourne shell
When you run a shell procedure, the shell implicitly creates positional parameters that reference each
word on the command line by its position on the command line.

The word in position 0 (the procedure name) is called $0, the next word (the first parameter) is called $1,
and so on, up to $9. To refer to command line parameters numbered higher than 9, use the built-in shift
command.

You can reset the values of the positional parameters explicitly by using the built-in set command.

Note: When an argument for a position is not specified, its positional parameter is set to null. Positional
parameters are global and can be passed to nested shell procedures.

Related concepts
User-defined variables in the Bourne shell
The Bourne shell recognizes alphanumeric variables to which string values can be assigned.
Related reference
Predefined special variables in the Bourne shell
Several variables have special meanings. The following variables are set only by the Bourne shell:

File name substitution in the Bourne shell
The Bourne shell permits you to perform file name substitutions.

Command parameters are often file names. You can automatically produce a list of file names as
parameters on a command line. To do this, specify a character that the shell recognizes as a pattern-
matching character. When a command includes such a character, the shell replaces it with the file names
in a directory.

Note: The Bourne shell does not support file name expansion based on equivalence classification of
characters.

260 AIX Version 7.2: Operating system management

Most characters in such a pattern match themselves, but you can also use some special pattern-matching
characters in your pattern. These special characters are as follows:

Item Description

* Matches any string, including the null string

? Matches any one character

[. . .] Matches any one of the characters enclosed in square brackets

[! . . .] Matches any character within square brackets other than one of the characters that
follow the exclamation mark

Within square brackets, a pair of characters separated by a hyphen (-) specifies the set of all characters
lexicographically within the inclusive range of that pair, according to the binary ordering of character
values.

Pattern matching has some restrictions. If the first character of a file name is a dot (.), it can be matched
only by a pattern that also begins with a dot. For example, * matches the file names myfile and yourfile but
not the file names .myfile and .yourfile. To match these files, use a pattern such as the following:

.*file

If a pattern does not match any file names, then the pattern itself is returned as the result of the
attempted match.

File and directory names should not contain the characters *, ?, [, or] because they can cause infinite
recursion (that is, infinite loops) during pattern-matching attempts.

Input and output redirection in the Bourne shell
There are redirection options that can be used in commands.

In general, most commands do not know whether their input or output is associated with the keyboard,
the display screen, or a file. Thus, a command can be used conveniently either at the keyboard or in a
pipeline.

The following redirection options can appear anywhere in a simple command. They can also precede or
follow a command, but are not passed to the command.

Item Description

<File Uses the specified file as standard input.

>File Uses the specified file as standard output. Creates the file if it does not exist;
otherwise, truncates it to zero length.

> >File Uses the specified file as standard output. Creates the file if it does not exist;
otherwise, adds the output to the end of the file.

<<[-]eofstr Reads as standard input all lines from the eofstr variable up to a line containing
only eofstr or up to an end-of-file character. If any character in the eofstr variable
is quoted, the shell does not expand or interpret any characters in the input lines.
Otherwise, it performs variable and command substitution and ignores a quoted
newline character (\newline). Use a backslash (\) to quote characters within the
eofstr variable or within the input lines.

If you add a hyphen (-) to the << redirection option, then all leading tabs are
stripped from the eofstr variable and from the input lines.

<&Digit Associates standard input with the file descriptor specified by the Digit variable.

>&Digit Associates standard output with the file descriptor specified by the Digit variable.

<&- Closes standard input.

Operating system management 261

Item Description

>&- Closes standard output.

Note: The restricted shell does not allow output redirection.

For more information about redirection, see “Input and output redirection” on page 349.

List of Bourne shell built-in commands
The following is a list of Bourne shell built-in commands.

Item Description

: Returns a zero exit value

. Reads and executes commands from a file parameter and then returns.

break Exits from the enclosing for, while, or until command loops, if any.

cd Changes the current directory to the specified directory.

continue Resumes the next iteration of the enclosing for, while, or until command loops.

echo Writes character strings to standard output.

eval Reads the arguments as input to the shell and executes the resulting command or
commands.

exec Executes the command specified by the Argument parameter, instead of this shell,
without creating a new process.

exit Exits the shell whose exit status is specified by the n parameter.

export Marks names for automatic export to the environment of subsequently executed
commands.

hash Finds and remembers the location in the search path of specified commands.

pwd Displays the current directory.

read Reads one line from standard input.

readonly Marks name specified by Name parameter as read-only.

return Causes a function to exit with a specified return value.

set Controls the display of various parameters to standard output.

shift Shifts command-line arguments to the left.

test Evaluates conditional expressions.

times Displays the accumulated user and system times for processes run from the shell.

trap Runs a specified command when the shell receives a specified signal or signals.

type Interprets how the shell would interpret a specified name as a command name.

ulimit Displays or adjusts allocated shell resources.

umask Determines file permissions.

unset Removes the variable or function corresponding to a specified name.

wait Waits for the specified child process to end and reports its termination status.

Related reference
Bourne shell built-in commands

262 AIX Version 7.2: Operating system management

Special commands are built into the Bourne shell and run in the shell process.

Bourne shell commands
You can issue commands in the Bourne shell.

When you issue a command in the Bourne shell, it first evaluates the command and makes all indicated
substitutions. It then runs the command provided that:

• The command name is a Bourne shell special built-in command.

OR
• The command name matches the name of a defined function. If this is the case, the shell sets the

positional parameters to the parameters of the function.

If the command name matches neither a built-in command nor the name of a defined function and the
command names an executable file that is a compiled (binary) program, the shell (as parent) creates
a new (child) process that immediately runs the program. If the file is marked executable but is not a
compiled program, the shell assumes that it is a shell procedure. In this case, the shell creates another
instance of itself (a subshell), to read the file and execute the commands included in it. The shell also runs
a parenthesized command in a subshell. To the user, a compiled program is run in exactly the same way
as a shell procedure. The shell normally searches for commands in file system directories in this order:

1. /usr/bin
2. /etc
3. /usr/sbin
4. /usr/ucb
5. $HOME/bin
6. /usr/bin/X11
7. /sbin
8. Current directory

The shell searches each directory, in turn, continuing with the next directory if it fails to find the
command.

Note: The PATH variable determines the order in which the shell searches directories. You can change the
particular sequence of directories searched by resetting the PATH variable.

If you give a specific path name when you run a command (for example, /usr/bin/sort), the shell does
not search any directories other than the one you specify. If the command name contains a slash (/), the
shell does not use the search path.

You can give a full path name that begins with the root directory (such as /usr/bin/sort). You can also
specify a path name relative to the current directory. If you specify, for example:

bin/myfile

the shell looks in the current directory for a directory named bin and in that directory for the file myfile.

Note: The restricted shell does not run commands containing a slash (/).

The shell remembers the location in the search path of each executed command (to avoid unnecessary
exec commands later). If it finds the command in a relative directory (one whose name does not begin
with /), the shell must redetermine the command's location whenever the current directory changes.
The shell forgets all remembered locations each time you change the PATH variable or run the hash -r
command.

Operating system management 263

Character quotation
Many characters have a special meaning to the shell. Sometimes you want to conceal that meaning.
Single (') and double (") quotation marks surrounding a string, or a backslash (\) before a single
character allow you to conceal the character's meaning.

All characters (except the enclosing single quotation marks) are taken literally, with any special meaning
removed. Thus, the command:

stuff='echo $? $*; ls * | wc'

assigns the literal string echo $? $*; ls * | wc to the variable stuff. The shell does not execute
the echo, ls, and wc commands or expand the $? and $* variables and the asterisk (*) special character.

Within double quotation marks, the special meaning of the dollar sign ($), backquote (`), and double
quotation (") characters remains in effect, while all other characters are taken literally. Thus, within
double quotation marks, command and variable substitution takes place. In addition, the quotation marks
do not affect the commands within a command substitution that is part of the quoted string, so characters
there retain their special meanings.

Consider the following sequence:

ls *
file1 file2 file3
message="This directory contains `ls * ` "
echo $message
This directory contains file1 file2 file3

This shows that the asterisk (*) special character inside the command substitution was expanded.

To hide the special meaning of the dollar sign ($), backquote (`), and double quotation (") characters
within double quotation marks, precede these characters with a backslash (\). When you do not use
double quotation marks, preceding a character with a backslash is equivalent to placing it within single
quotation marks. Therefore, a backslash immediately preceding a newline character (that is, a backslash
at the end of the line) hides the newline character and allows you to continue the command line on the
next physical line.

Signal handling
The shell ignores INTERRUPT and QUIT signals for an invoked command if the command is terminated
with an ampersand (&); that is, if it is running in the background. Otherwise, signals have the values
inherited by the shell from its parent, with the exception of the SEGMENTATION VIOLATION signal.

For more information, see the Bourne shell built-in trap command.

Bourne shell compound commands
A compound command is one of the following.

• Pipeline (one or more simple commands separated by the pipe (|) symbol)
• List of simple commands
• Command beginning with a reserved word
• Command beginning with the control operator left parenthesis (()

Unless otherwise stated, the value returned by a compound command is that of the last simple command
executed.

Reserved words
The following reserved words for the Bourne shell are recognized only when they appear without
quotation marks as the first word of a command.

for do done
case esac
if then fi
elif else
while until

264 AIX Version 7.2: Operating system management

{ }
()

Item Description

forIdentifier [inWord. . .]
doList done

Sets the Identifier parameter to the word or words specified by the Word
parameter (one at a time) and runs the commands specified in the List
parameter. If you omit in Word. . ., then the for command runs the List
parameter for each positional parameter that is set, and processing ends
when all positional parameters have been used.

case Word in Pattern [|
Pattern] . . .) List;; [Pattern
[|Pattern] . . .) List;;] . . .
esac

Runs the commands specified in the List parameter that are associated with
the first Pattern parameter that matches the value of the Word parameter.
Uses the same character-matching notation in patterns that are used for
file name substitution, except that a slash (/), leading dot (.), or a dot
immediately following a slash (/.) do not need to match explicitly.

if List then List [elif
List then List] . . . [else
List] fi

Runs the commands specified in the List parameter following the if
command. If the command returns a zero exit value, the shell runs the
List parameter following the first then command. Otherwise, it runs the List
parameter following the elif command (if it exists). If this exit value is
zero, the shell runs the List parameter following the next then command. If
the command returns a nonzero exit value, the shell runs the List parameter
following the else command (if it exists). If no else List or then List is
performed, the if command returns a zero exit value.

while List do List done Runs the commands specified in the List parameter following the while
command. If the exit value of the last command in the while List is zero,
the shell runs the List parameter following the do command. It continues
looping through the lists until the exit value of the last command in the
while List is nonzero. If no commands in the do List are performed, the
while command returns a zero exit value.

until List do List done Runs the commands specified in the List parameter following the until
command. If the exit value of the last command in the until List is
nonzero, runs the List following the do command. Continues looping through
the lists until the exit value of the last command in the until List is zero. If
no commands in the do List are performed, the until command returns a
zero exit value.

(List) Runs the commands in the List parameter in a subshell.

{ List; } Runs the commands in the List parameter in the current shell process and
does not start a subshell.

Name () { List } Defines a function that is referenced by the Name parameter. The body of
the function is the list of commands between the braces specified by the List
parameter.

Bourne shell built-in commands
Special commands are built into the Bourne shell and run in the shell process.

Unless otherwise indicated, output is written to file descriptor 1 (standard output) and the exit status is 0
(zero) if the command does not contain any syntax errors. Input and output redirection is permitted.

The following special commands are treated somewhat differently from other special built-in commands:

: (colon) exec shift
. (dot) exit times
break export trap
continue readonly wait
eval return

The Bourne shell processes these commands as follows:

Operating system management 265

• Keyword parameter assignment lists preceding the command remain in effect when the command
completes.

• I/O redirections are processed after parameter assignments.
• Errors in a shell script cause the script to stop processing.

Related reference
List of Bourne shell built-in commands
The following is a list of Bourne shell built-in commands.

Special command descriptions
The Bourne shell provides the following special built-in commands.

Item Description

: Returns a zero exit value.

. File Reads and runs commands from the File parameter and returns. Does not start a
subshell. The shell uses the search path specified by the PATH variable to find the
directory containing the specified file.

break [n] Exits from the enclosing for, while, or until command loops, if any. If you specify
the n variable, the break command breaks the number of levels specified by the n
variable.

continue [n] Resumes the next iteration of the enclosing for, while, or until command loops. If
you specify the n variable, the command resumes at the nth enclosing loop.

cd Directory] Changes the current directory to Directory. If you do not specify Directory, the value
of the HOME shell variable is used. The CDPATH shell variable defines the search
path for Directory. CDPATH is a colon-separated list of alternative directory names.
A null path name specifies the current directory (which is the default path). This
null path name appears immediately after the equal sign in the assignment or
between the colon delimiters anywhere else in the path list. If Directory begins with
a slash (/), the shell does not use the search path. Otherwise, the shell searches
each directory in the CDPATH shell variable.

Note: The restricted shell cannot run the cd shell command.

echo String . . .] Writes character strings to standard output. See the echo command for usage and
parameter information. The -n flag is not supported.

eval
[Argument . . .]

Reads arguments as input to the shell and runs the resulting command or
commands.

exec
[Argument . . .]

Runs the command specified by the Argument parameter in place of this shell
without creating a new process. Input and output arguments can appear, and if no
other arguments appear, cause the shell input or output to be modified. This is not
recommended for your login shell.

exit [n] Causes a shell to exit with the exit value specified by the n parameter. If you omit
this parameter, the exit value is that of the last command executed (the Ctrl-D key
sequence also causes a shell to exit). The value of the n parameter can be from 0 to
255, inclusive.

export
[Name . . .]

Marks the specified names for automatic export to the environments of
subsequently executed commands. If you do not specify the Name parameter, the
export command displays a list of all names that are exported in this shell. You
cannot export function names.

266 AIX Version 7.2: Operating system management

Item Description

hash [-r]
[Command . . .]

Finds and remembers the location in the search path of each Command specified.
The -r flag causes the shell to forget all locations. If you do not specify the flag or
any commands, the shell displays information about the remembered commands in
the following format:

Hits Cost Command

Hits indicates the number of times a command has been run by the shell process.
Cost is a measure of the work required to locate a command in the search path.
Command shows the path names of each specified command. Certain situations
require that the stored location of a command be recalculated; for example, the
location of a relative path name when the current directory changes. Commands
for which that might be done are indicated by an asterisk (*) next to the Hits
information. Cost is incremented when the recalculation is done.

pwd Displays the current directory. See the pwd command for a discussion of command
options.

read [Name . . .] Reads one line from standard input. Assigns the first word in the line to the first
Name parameter, the second word to the second Name parameter, and so on, with
leftover words assigned to the last Name parameter. This command returns a value
of 0 unless it encounters an end-of-file character.

readonly
[Name . . .]

Marks the name specified by the Name parameter as read-only. The value of the
name cannot be reset. If you do not specify any Name, the readonly command
displays a list of all read-only names.

return [n] Causes a function to exit with a return value of n. If you do not specify the n
variable, the function returns the status of the last command performed in that
function. This command is valid only when run within a shell function.

Operating system management 267

Item Description

set
[Flag [Argument] .
 . .]

Sets one or more of the following flags:
-a

Marks for export all variables to which an assignment is performed. If the
assignment precedes a command name, the export attribute is effective only for
that command execution environment, except when the assignment precedes
one of the special built-in commands. In this case, the export attribute persists
after the built-in command has completed. If the assignment does not precede
a command name, or if the assignment is a result of the operation of the
getopts or read commands, the export attribute persists until the variable is
unset.

-e
Exits immediately if all of the following conditions exist for a command:

• It exits with a return value greater than 0 (zero).
• It is not part of the compound list of a while, until, or if command.
• It is not being tested using AND or OR lists.
• It is not a pipeline preceded by the ! (exclamation point) reserved word.

-f
Disables file name substitution.

-h
Locates and remembers the commands called within functions as the functions
are defined. (Normally, these commands are located when the function is
performed; see the hash command.)

-k
Places all keyword parameters in the environment for a command, not just
those preceding the command name.

-n
Reads commands but does not run them. To check for shell script syntax errors,
use the -n flag.

-t
Exits after reading and executing one command.

-u
Treats an unset variable as an error and immediately exits when performing
variable substitution. An interactive shell does not exit.

-v
Displays shell input lines as they are read.

-x
Displays commands and their arguments before they are run.

—
Does not change any of the flags. This is useful in setting the $1 positional
parameter to a string beginning with a hyphen (-).

 Using a plus sign (+) rather than a hyphen (-) unsets flags. You can also specify
these flags on the shell command line. The $- special variable contains the current
set of flags.

Any Argument to the set command becomes a positional parameter and is
assigned, in order, to $1, $2, ..., and so on. If you do not specify a flag or
Argument, the set command displays all the names and values of the current shell
variables.

268 AIX Version 7.2: Operating system management

Item Description

shift [n] Shifts command line arguments to the left; that is, reassigns the value of the
positional parameters by discarding the current value of $1 and assigning the value
of $2 to $1, of $3 to $2, and so on. If there are more than 9 command line
arguments, the 10th is assigned to $9 and any that remain are still unassigned (until
after another shift). If there are 9 or fewer arguments, the shift command unsets
the highest-numbered positional parameter that has a value.

The $0 positional parameter is never shifted. The shift n command is a shorthand
notation specifying n number of consecutive shifts. The default value of the n
parameter is 1.

test Expression |
[Expression]

Evaluates conditional expressions. See the test command for a discussion of
command flags and parameters. The -h flag is not supported by the built-in test
command in bsh.

times Displays the accumulated user and system times for processes run from the shell.

trap [Command]
[n] . . .

Runs the command specified by the Command parameter when the shell receives
the signal or signals specified by the n parameter. The trap commands are run in
order of signal number. Any attempt to set a trap on a signal that was ignored on
entry to the current shell is ineffective.

Note: The shell scans the Command parameter once when the trap is set and again
when the trap is taken.

If you do not specify a command, then all traps specified by the n parameter
are reset to their current values. If you specify a null string, this signal is ignored
by the shell and by the commands it invokes. If the n parameter is zero (0), the
specified command is run when you exit from the shell. If you do not specify either
a command or a signal, the trap command displays a list of commands associated
with each signal number.

type [Name . . .] Indicates how the shell would interpret it as a command name for each Name
specified.

Operating system management 269

Item Description

ulimit [-HS] [-c |
-d | -f | -m | -r | -s |
-t |-u] [limit]

Displays or adjusts allocated shell resources. The shell resource settings can be
displayed either individually or as a group. The default mode is to display resources
set to the soft setting, or the lower bound, as a group.

The setting of shell resources depends on the effective user ID of the current shell.
The hard level of a resource can be set only if the effective user ID of the current
shell is root. You will get an error if you are not root user and you are attempting to
set the hard level of a resource. By default, the root user sets both the hard and soft
limits of a particular resource. The root user should therefore be careful in using the
-S, -H, or default flag usage of limit settings. Unless you are a root user, you can set
only the soft limit of a resource. After a limit has been decreased by a nonroot user,
it cannot be increased, even back to the original system limit.

To set a resource limit, select the appropriate flag and the limit value of the new
resource, which should be an integer. You can set only one resource limit at a
time. If more than one resource flag is specified, you receive undefined results. By
default, ulimit with only a new value on the command line sets the file size of the
shell. Use of the -f flag is optional.

You can specify the following ulimit command flags:

-c
Sets or displays core segment for shell.

-d
Sets or displays data segment for shell.

-f
Sets or displays file size for shell.

-H
Sets or displays hard resource limit (root user only).

-m
Sets or displays memory for shell.

-r
Sets or displays maximum number of threads per process.

-s
Sets or displays stack segment for shell.

-S
Sets or displays soft resource limit.

-t
Sets or displays CPU time maximum for shell.

-u
Sets or displays maximum number of processes per user.

umask [nnn] Determines file permissions. This value, along with the permissions of the creating
process, determines a file's permissions when the file is created. The default is
022. When no value is entered, umask displays the current value.

unset [Name . . .] Removes the corresponding variable or function for each name specified by the
Name parameter. The PATH, PS1, PS2, MAILCHECK, and IFS shell variables cannot
be unset.

wait [n] Waits for the child process whose process number is specified by the n parameter
to exit and then returns the exit status of that process. If you do not specify the
n parameter, the shell waits for all currently active child processes, and the return
value is 0.

270 AIX Version 7.2: Operating system management

Command substitution in the Bourne shell
Command substitution allows you to capture the output of any command as an argument to another
command.

When you place a command line within backquotes (``), the shell first runs the command or commands
and then replaces the entire expression, including the backquotes, with the output. This feature is often
used to give values to shell variables. For example, the statement:

today=`date`

assigns the string representing the current date to the today variable. The following assignment saves, in
the files variable, the number of files in the current directory:

files=`ls | wc -l`

You can perform command substitution on any command that writes to standard output.

To nest command substitutions, precede each of the nested backquotes with a backslash (\), as in:

logmsg=`echo Your login directory is \`pwd\``

You can also give values to shell variables indirectly by using the read special command. This command
takes a line from standard input (usually your keyboard) and assigns consecutive words on that line to any
variables named. For example:

read first init last

takes an input line of the form:

J. Q. Public

and has the same effect as if you had typed:

first=J. init=Q. last=Public

The read special command assigns any excess words to the last variable.

Variable substitution in the Bourne shell
The Bourne shell permits you to perform variable substitutions.

The Bourne shell has several mechanisms for creating variables (assigning a string value to a name).
Certain variables, positional parameters and keyword parameters are normally set only on a command
line. Other variables are simply names to which you or the shell can assign string values.

Related concepts
Unattended terminals
All systems are vulnerable if terminals are left logged in and unattended. The most serious problem
occurs when a system manager leaves a terminal unattended that has been enabled with root authority.
In general, users should log out anytime they leave their terminals.

User-defined variables in the Bourne shell
The Bourne shell recognizes alphanumeric variables to which string values can be assigned.

To assign a string value to a name, type the following:

Name=String

A name is a sequence of letters, digits, and underscores that begins with an underscore or a letter. To
use the value that you have assigned to a variable, add a dollar sign ($) to the beginning of its name.
Thus, the $Name variable yields the value specified by the String variable. Note that no spaces are on
either side of the equal sign (=) in an assignment statement. (Positional parameters cannot appear in an
assignment statement. You can put more than one assignment on a command line, but remember that the
shell performs the assignments from right to left.

Operating system management 271

If you enclose the String variable with double or single quotation marks (" or '), the shell does not treat
blanks, tabs, semicolons, and newline characters within the string as word delimiters, but it imbeds them
literally in the string.

If you enclose the String variable with double quotation marks ("), the shell still recognizes variable
names in the string and performs variable substitution; that is, it replaces references to positional
parameters and other variable names that are prefaced by dollar sign ($) with their corresponding values,
if any. The shell also performs command substitution within strings that are enclosed in double quotation
marks.

If you enclose the String variable with single quotation marks ('), the shell does not substitute variables
or commands within the string. The following sequence illustrates this difference:

You: num=875
 number1="Add $num"
 number2='Add $num'
 echo $number1
System: Add 875
You: echo $number2
System: Add $num

The shell does not reinterpret blanks in assignments after variable substitution. Thus, the following
assignments result in $first and $second having the same value:

first='a string with embedded blanks'
second=$first

When you reference a variable, you can enclose the variable name (or the digit designating a positional
parameter) in braces { } to delimit the variable name from any string following. In particular, if the
character immediately following the name is a letter, digit, or underscore, and the variable is not a
positional parameter, then the braces are required:

You: a='This is a'
 echo "${a}n example"
System: This is an example
You: echo "$a test"
System: This is a test

Related concepts
Positional parameters in the Bourne shell
When you run a shell procedure, the shell implicitly creates positional parameters that reference each
word on the command line by its position on the command line.
Related reference
Conditional substitution in the Bourne shell
Normally, the shell replaces the expression $Variable with the string value assigned to the Variable
variable, if there is one. However, there is a special notation that allows conditional substitution,
depending on whether the variable is set or not null, or both.

Variables used by the Bourne shell
The shell uses the following variables. Although the shell sets some of them, you can set or reset all of
them.

Item Description

CDPATH Specifies the search path for the cd (change directory) command.

HOME Indicates the name of your login directory, which is the directory that becomes the
current directory upon completion of a login. The login program initializes this
variable. The cd command uses the value of the $HOME variable as its default value.
Using this variable rather than an explicit path name in a shell procedure allows the
procedure to be run from a different directory without alterations.

272 AIX Version 7.2: Operating system management

Item Description

IFS The characters that are IFS (internal field separators), which are the characters that
the shell uses during blank interpretation. The shell initially sets the IFS variable to
include the blank, tab, and newline characters.

LANG Determines the locale to use for the locale categories when both the LC_ALL variable
and the corresponding environment variable (beginning with LC_) do not specify a
locale.

LC_ALL Determines the locale to be used to override any values for locale categories
specified by the settings of the LANG environment variable or any environment
variables beginning with LC_.

LC_COLLATE Defines the collating sequence to use when sorting names and when character
ranges occur in patterns.

LC_CTYPE Determines the locale for the interpretation of sequences of bytes of text data as
characters (that is, single versus multibyte characters in arguments and input files),
which characters are defined as letters (alpha character class), and the behavior of
character classes within pattern matching.

LC_MESSAGES Determines the language in which messages should be written.

LIBPATH Specifies the search path for shared libraries.

LOGNAME Specifies your login name, marked readonly in the /etc/profile file.

MAIL Indicates the path name of the file used by the mail system to detect the arrival of
new mail. If this variable is set, the shell periodically checks the modification time of
this file and displays the value of $MAILMSG if the time changes and the length of the
file is greater than 0. Set the MAIL variable in the .profile file. The value normally
assigned to it by users of the mail command is /usr/spool/mail/$LOGNAME.

MAILCHECK The number of seconds that the shell lets elapse before checking again for the arrival
of mail in the files specified by the MAILPATH or MAIL variables. The default value is
600 seconds (10 minutes). If you set the MAILCHECK variable to 0, the shell checks
before each prompt.

MAILMSG The mail notification message. If you explicitly set the MAILMSG variable to a null
string (MAILMSG=""), no message is displayed.

MAILPATH A list of file names separated by colons. If this variable is set, the shell informs you
of the arrival of mail in any of the files specified in the list. You can follow each file
name by a % and a message to be displayed when mail arrives. Otherwise, the shell
uses the value of the MAILMSG variable or, by default, the message [YOU HAVE NEW
MAIL].

Note: When the MAILPATH variable is set, these files are checked instead of the file
set by the MAIL variable. To check the files set by the MAILPATH variable and the file
set by the MAIL variable, specify the MAIL file in your list of MAILPATH files.

Operating system management 273

Item Description

PATH The search path for commands, which is an ordered list of directory path names
separated by colons. The shell searches these directories in the specified order when
it looks for commands. A null string anywhere in the list represents the current
directory.

The PATH variable is normally initialized in the /etc/environment file,
usually to /usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin. You
can reset this variable to suit your own needs. The PATH variable provided in
your .profile file also includes $HOME/bin and your current directory.

If you have a project-specific directory of commands, for example, /project/bin,
that you want searched before the standard system directories, set your PATH
variable as follows:

PATH=/project/bin:$PATH

The best place to set your PATH variable to a value other than the default value is in
your $HOME/.profile file. You cannot reset the PATH variable if you are executing
commands under the restricted shell.

PS1 The string to be used as the primary system prompt. An interactive shell displays
this prompt string when it expects input. The default value of the PS1 variable is $
followed by a blank space for nonroot users.

PS2 The value of the secondary prompt string. If the shell expects more input when it
encounters a newline character in its input, it prompts with the value of the PS2
variable. The default value of the PS2 variable is > followed by a blank space.

SHACCT The name of a file that you own. If this variable is set, the shell writes an accounting
record in the file for each shell script executed. You can use accounting programs
such as acctcom and acctcms to analyze the data collected.

SHELL The path name of the shell, which is kept in the environment. This variable should be
set and exported by the $HOME/.profile file of each restricted login.

TIMEOUT The number of minutes a shell remains inactive before it exits. If this variable is set
to a value greater than zero (0), the shell exits if a command is not entered within
the prescribed number of seconds after issuing the PS1 prompt. (Note that the shell
can be compiled with a maximum boundary that cannot be exceeded for this value.)
A value of zero indicates no time limit.

Related concepts
Blank interpretation
After the shell performs variable and command substitution, it scans the results for internal field
separators (those defined in the IFS shell variable).

Predefined special variables in the Bourne shell
Several variables have special meanings. The following variables are set only by the Bourne shell:

Ite
m

Description

$@ Expands the positional parameters, beginning with $1. Each parameter is separated by a space.

If you place double quotation marks (" ") around $@, the shell considers each positional
parameter a separate string. If no positional parameters exist, the Bourne shell expands the
statement to an unquoted null string.

274 AIX Version 7.2: Operating system management

Ite
m

Description

$* Expands the positional parameters, beginning with $1. The shell separates each parameter with
the first character of the IFS variable value.

If you place double quotation marks (" ") around $*, the shell includes the positional parameter
values, in double quotation marks. Each value is separated by the first character of the IFS variable.

$# Specifies the number of positional parameters passed to the shell, not counting the name of the
shell procedure itself. The $# variable thus yields the number of the highest-numbered positional
parameter that is set. One of the primary uses of this variable is to check for the presence of the
required number of arguments. Only positional parameters $0 through $9 are accessible through
the shell.

$? Specifies the exit value of the last command executed. Its value is a decimal string. Most
commands return a value of 0 to indicate successful completion. The shell itself returns the current
value of the $? variable as its exit value.

$$ Identifies the process number of the current process. Because process numbers are unique among
all existing processes, this string is often used to generate unique names for temporary files.

The following example illustrates the recommended practice of creating temporary files in a
directory used only for that purpose:

temp=/tmp/$$
ls >$temp
.
.
.
rm $temp

$! Specifies the process number of the last process run in the background using the & terminator.

$- A string consisting of the names of the execution flags currently set in the shell.

Related concepts
Positional parameters in the Bourne shell
When you run a shell procedure, the shell implicitly creates positional parameters that reference each
word on the command line by its position on the command line.

Blank interpretation
After the shell performs variable and command substitution, it scans the results for internal field
separators (those defined in the IFS shell variable).

The shell splits the line into distinct words at each place it finds one or more of these characters
separating each distinct word with a single space. It then retains explicit null arguments ("" or '') and
discards implicit null arguments (those resulting from parameters that have no values).

Related reference
Variables used by the Bourne shell
The shell uses the following variables. Although the shell sets some of them, you can set or reset all of
them.

C shell
The C shell is an interactive command interpreter and a command programming language. It uses syntax
that is similar to the C programming language.

The csh command starts the C shell.

When you log in, the csh command first searches the system-wide setup file /etc/csh.cshrc. If the
setup file exists, the C shell executes the commands stored in that file. Next, the C shell executes the
system-wide setup file /etc/csh.login if it is available. Then, it searches your home directory for

Operating system management 275

the .cshrc and .login files. If they exist, they contain any customized user information pertinent
to running the C shell. All variables set in the /etc/csh.cshrc and /etc/csh.login files might be
overridden by your .cshrc and .login files in your $HOME directory. Only the root user can modify
the /etc/csh.cshrc and /etc/csh.login files.

The /etc/csh.login and $HOME/.login files are executed only once at login time. These files are
generally used to hold environment variable definitions, commands that you want executed once at login,
or commands that set up terminal characteristics.

The /etc/csh.cshrc and $HOME/.cshrc files are executed at login time and every time the csh
command or a C shell script is invoked. They are generally used to define C shell characteristics, such as
aliases and C shell variables (for example, history, noclobber, or ignoreeof). It is recommended that you
only use the C shell built-in commands in the /etc/csh.cshrc and $HOME/.cshrc files because using
other commands increases the startup time for shell scripts.

Related reference
C shell built-in commands list
The following are C shell built-in commands.

C shell limitations
The following are limitations of the C shell.

• Words can be no longer than 1024 bytes.
• Argument lists are limited to ARG_MAX bytes. Values for the ARG_MAX variable are found in the /usr/
include/sys/limits.h file.

• The number of arguments to a command that involves file name expansion is limited to 1/6th the
number of bytes allowed in an argument list.

• Command substitutions can substitute no more bytes than are allowed in an argument list.
• To detect looping, the shell restricts the number of alias substitutions on a single line to 20.
• The csh command does not support file name expansion based on equivalence classification of

characters.
• File descriptors (other than standard in, standard out, and standard error) opened before csh executes

any application are not available to that application.

Alias substitution in the C shell
An alias is a name assigned to a command or command string. The C shell allows you to assign aliases
and use them as you would commands. The shell maintains a list of the aliases that you define.

After the shell scans the command line, it divides the commands into distinct words and checks the first
word of each command, left to right, to see if there is an alias. If an alias is found, the shell uses the
history mechanism to replace the text of the alias with the text of the command referenced by the alias.
The resulting words replace the command and argument list. If no reference is made to the history list,
the argument list is left unchanged.

The alias and unalias built-in commands establish, display, and modify the alias list. Use the alias
command in the following format:

alias [Name [WordList]]

The optional Name variable specifies the alias for the specified name. If you specify a word list with
the WordList variable, the command assigns it as the alias of the Name variable. If you run the alias
command without either optional variable, it displays all C shell aliases.

If the alias for the ls command is ls -l, the following command:

ls /usr

is replaced by the command:

ls -l /usr

276 AIX Version 7.2: Operating system management

The argument list is undisturbed because there is no reference to the history list in the command with an
alias. Similarly, if the alias for the lookup command is as follows:

grep \!^ /etc/passwd

then the shell replaces lookup bill with the following:

grep bill /etc/passwd

In this example, !^ refers to the history list, and the shell replaces it with the first argument in the input
line, in this case bill.

You can use special pattern-matching characters in an alias. The following command:

alias lprint 'pr &bslash2.!* >

> print'

creates a command that formats its arguments to the line printer. The ! character is protected from the
shell in the alias by use of single quotation marks so that the alias is not expanded until the pr command
runs.

If the shell locates an alias, it performs the word transformation of the input text and begins the alias
process again on the reformed input line. If the first word of the next text is the same as the previous text,
then looping is prevented by flagging the alias to terminate the alias process. Other subsequent loops are
detected and result in an error.

Related concepts
History substitution in the C shell
History substitution lets you modify individual words from previous commands to create new commands.
History substitution makes it easy to repeat commands, repeat the arguments of a previous command in
the current command, or fix spelling mistakes in the previous command with little typing.

Variable substitution in the C shell
The C shell maintains a set of variables, each of which has as its value a list of zero or more words. Some
of these variables are set by the shell or referred to by it. For example, the argv variable is an image of the
shell variable list, and words that comprise the value of this variable are referred to in special ways.

To change and display the values of variables, use the set and unset commands. Of the variables
referred to by the shell, a number are toggles (variables that turn something on and off). The shell does
not examine toggles for a value, only for whether they are set or unset. For example, the verbose shell
variable is a toggle that causes command input to be echoed. The setting of this variable results from
issuing the -v flag on the command line.

Other operations treat variables numerically. The @ command performs numeric calculations, and the
result is assigned to a variable. Variable values are, however, always represented as (zero or more) strings.
For numeric operations, the null string is considered to be zero, and the second and subsequent words of
multi-word values are ignored.

When you issue a command, the shell parses the input line and performs alias substitution. Next, before
running the command, it performs variable substitution. The $ character keys the substitution. It is,
however, passed unchanged if followed by a blank, tab, or newline character. Preceding the $ character
with a \ prevents this expansion, except in two cases:

• The command is enclosed in " ". In this case, the shell always performs the substitution.
• The command is enclosed in ' '. In this case, the shell never performs the substitution. Strings

enclosed in ' ' are interpreted for command substitution.

The shell recognizes input and output redirection before variable expansion and expands each separately.
Otherwise, the command name and complete argument list expand together. It is therefore possible for
the first (command) word to generate more than one word, the first of which becomes the command
name, and the rest of which become parameters.

Operating system management 277

Unless enclosed in " " or given the :q modifier, the results of variable substitution might eventually be
subject to command and file name substitution. When enclosed by double quotation marks, a variable
with a value that consists of multiple words expands to a single word or a portion of a single word, with
the words of the variable's value separated by blanks. When you apply the :q modifier to a substitution,
the variable expands to multiple words. Each word is separated by a blank and enclosed in double
quotation marks to prevent later command or file name substitution.

The following notations allow you to introduce variable values into the shell input. Except as noted, it is an
error to reference a variable that is not set with the set command.

You can apply the modifiers :gh, :gt, :gr, :h, :r, :q, and :x to the following substitutions. If { }
appear in the command form, then the modifiers must be placed within the braces. Only one : modifier is
permitted on each variable expansion.

Item Description

$Name

${Name} Replaced by the words assigned to the Name variable, each separated by a
blank. Braces insulate the Name variable from any following characters that would
otherwise be part of it. Shell variable names start with a letter and consist of up to
20 letters and digits, including the underline (_) character. If the Name variable does
not specify a shell variable but is set in the environment, then its value is returned.
The modifiers preceded by colons, as well as the other forms described here, are not
available in this case.

$Name[number]

${Name[number]} Selects only some of the words from the value of the Name variable. The number
is subjected to variable substitution and might consist of a single number or two
numbers separated by a hyphen (-). The first word of a variable's string value is
numbered 1. If the first number of a range is omitted, it defaults to 1. If the last
number of a range is omitted, it defaults to $#Name. The asterisk (*) symbol selects
all words. It is not an error for a range to be empty if the second argument is omitted
or is in a range.

$#Name

${#Name} Gives the number of words in the Name variable. This can be used in a [number] as
shown above. For example, $Name[$#Name].

$0 Substitutes the name of the file from which command input is being read. An error
occurs if the name is not known.

$number

${number} Equivalent to $argv[number].

$* Equivalent to $argv[*].

The following substitutions may not be changed with : modifiers:

Item Description

$?name

${?name} Substitutes the string 1 if the name variable is set, zero (0) if this variable is not set.

$?0 Substitutes 1 if the current input file name is known, zero (0) if the file name is not known.

$$ Substitutes the (decimal) process number of the parent shell.

$< Substitutes a line from standard input, without further interpretation. Use this substitution
to read from the keyboard in a shell procedure.

278 AIX Version 7.2: Operating system management

Related concepts
Command substitution in the C shell
In command substitution, the shell executes a specified command and replaces that command with its
output.

File name substitution in the C shell
The C Shell permits you to do file name substitutions.

The C shell provides several shortcuts to save time and keystrokes. If a word contains any of the
characters *, ?, [], or { }, or begins with a tilde (~), that word is a candidate for file name substitution.
The C shell regards the word as a pattern and replaces the word with an alphabetized list of file names
matching the pattern.

The current collating sequence is used, as specified by the LC_COLLATE or LANG environment variables.
In a list of words specifying file name substitution, an error results if no patterns match an existing file
name. However, it is not required that every pattern match. Only the character-matching symbols *, ?,
and [] indicate pattern-matching or file name expansion. The tilde (~) and { } characters indicate file
name abbreviation.

File name expansion in the C shell
The asterisk (*) character matches any string of characters, including the null string.

For example, in a directory containing the files:

a aa aax alice b bb c cc

the command echo a* prints all files names beginning with the character a:

a aa aax alice

Note: When file names are matched, the characters dot (.) and slash (/) must be matched explicitly.

The question mark (?) character matches any single character. The following command:

ls a?x

lists every file name beginning with the letter a, followed by a single character, and ending with the letter
x:

aax

To match a single character or a range of characters, enclose the character or characters inside of [].
The following command:

ls [abc]

lists all file names exactly matching one of the enclosed characters:

a b c

Within brackets, a lexical range of characters is indicated by [a-z]. The characters matching this pattern
are defined by the current collating sequence.

File name abbreviation in the C shell
The tilde (~) and { characters indicate file name abbreviation. A ~ at the beginning of a file name is
used to represent home directories. Standing alone, the ~ character expands to your home directory as
reflected in the value of the home shell variable.

For example, the following command:

ls ~

lists all files and directories located in your $HOME directory.

Operating system management 279

When the command is followed by a name consisting of letters, digits, and hyphen (-) characters, the
shell searches for a user with that name and substitutes that user's $HOME directory.

Note: If the ~ character is followed by a character other than a letter or slash (/), or appears anywhere
except at the beginning of a word, it does not expand.

To match characters in file names without typing the entire file name, use { } around the file names. The
pattern a{b,c,d}e is another way of writing abe ace ade. The shell preserves the left-to-right order
and separately stores the results of matches at a low level to preserve this order. This construct might be
nested. Thus, the following:

~source/s1/{oldls,ls}.c

expands to:

/usr/source/s1/oldls.c /usr/source/s1/ls.c

if the home directory for source is /usr/source. Similarly, the following:

../{memo,*box}

might expand to:

../memo ../box ../mbox

Note: memo is not sorted with the results of matching *box. As a special case, the {, }, and { }
characters are passed undisturbed.

Character classes in the C shell
You can use character classes to match file names within a range indication.

The following format instructs the system to match any single character belonging to the specified class:

[:charclass:]

The following classes correspond to ctype subroutines:

Character
Class

Definition

alnum Alphanumeric characters

alpha Uppercase and lowercase letters

cntrl Control characters

digit Digits

graph Graphic characters

lower Lowercase letters

print Printable characters

punct Punctuation character

space Space, horizontal tab, carriage return, newline, vertical tab, or form-feed character

upper Uppercase characters

xdigit Hexadecimal digits

Suppose that you are in a directory containing the following files:

a aa aax Alice b bb c cc

Type the following command at a C shell prompt:

280 AIX Version 7.2: Operating system management

 ls [:lower:]

The C shell lists all file names that begin with lowercase characters:

a aa aax b bb c cc

For more information about character class expressions, see the ed command.

Environment variables in the C shell
Certain variables have special meaning to the C shell. Of these, argv, cwd, home, path, prompt, shell, and
status are always set by the shell.

Except for the cwd and status variables, the action of being set by the shell occurs only at initialization. All
of the above variables maintain their settings unless you explicitly reset them.

The csh command copies the USER, TERM, HOME, and PATH environment variables into the csh variables,
user, term, home, and path, respectively. The values are copied back into the environment whenever the
normal shell variables are reset. The path variable cannot be set in other than in the .cshrc file because
csh subprocesses import the path definition from the environment and reexport it if changed.

The following variables have special meanings:

Item Description

argv Contains the arguments passed to shell scripts. Positional parameters are substituted
from this variable.

cdpath Specifies a list of alternate directories to be searched by the chdir or cd command to
find subdirectories.

cwd Specifies the full path name of the current directory.

echo Set when the -x command line flag is used; when set, causes each command and
its arguments to echo just before being run. For commands that are not built-in, all
expansions occur before echoing. Built-in commands are echoed before command and
file name substitution because these substitutions are then done selectively.

histchars Specifies a string value to change the characters used in history substitution. Use
the first character of its value as the history substitution character, this replaces the
default character, !. The second character of its value replaces the ^ character in quick
substitutions.

Note: Setting the histchars value to a character used in command or file names might
cause unintentional history substitution.

history Contains a numeric value to control the size of the history list. Any command that is
referenced within the number of events permitted is not discarded. Very large values of
the history variable might cause the shell to run out of memory. Regardless of whether
this variable is set, the C shell always saves the last command that ran on the history list.

home Indicates your home directory initialized from the environment. The file name expansion
of the tilde (~) character refers to this variable.

ignoreeof Specifies that the shell ignore an end-of-file character from input devices that are
workstations. This prevents shells from accidentally being killed when the shell reads
an end-of-file character (Ctrl-D).

mail Specifies the files where the shell checks for mail. This is done after each command
completion which results in a prompt if a specified time interval has elapsed. The shell
displays the message Mail in file if the file exists with an access time less than its
change time.

Operating system management 281

Item Description

 If the first word of the value of the mail variable is numeric, it specifies a different
mail-checking time interval (in seconds); the default is 600 (10 minutes). If you specify
multiple mail files, the shell displays the message New mail in file, when there is
mail in the specified file.

noclobber Places restrictions on output redirection to ensure that files are not accidentally
destroyed and that redirections append to existing files.

noglob Inhibits file name expansion. This is most useful in shell scripts that do not deal with
file names or when a list of file names has been obtained and further expansions are not
desirable.

nonomatch Specifies that no error results if a file name expansion does not match any existing files;
rather, the primitive pattern returns. It is still an error for the primitive pattern to be
malformed.

notify Specifies that the shell send asynchronous notification of changes in job status. The
default presents status changes just before displaying the shell prompt.

path Specifies directories in which commands are sought for execution. A null word specifies
the current directory. If there is no path variable set, then only full path names can
run. The default search path (from the /etc/environment file used during login) is as
follows:

/usr/bin /etc /usr/sbin /usr/ucb /usr/bin/X11 /sbin

 A shell given neither the -c nor the -t flag normally hashes the contents of the directories
in the path variable after reading the .cshrc and each time the path variable is reset.
If new commands are added to these directories while the shell is active, you must give
the rehash command. Otherwise, the commands might not be found.

prompt Specifies the string displayed before each command is read from an interactive
workstation input. If a ! appears in the string, it is replaced by the current event number.
If the ! character is in a quoted string enclosed by single or double quotation marks,
the ! character must be preceded by a \. The default prompt for users without root
authority is % . The default prompt for the user with root authority is #.

savehist Specifies a numeric value to control the number of entries of the history list that are
saved in the ~/.history file when you log out. Any command referenced in this
number of events is saved. During startup, the shell reads ~/.history into the history
list, enabling history to be saved across logins. Very large values of the savehist variable
slow down the shell startup.

shell Specifies the file in which the C shell resides. This is used in forking shells to interpret
files that have execute bits set, but which are not executable by the system. This is
initialized to the home of the C shell.

status Specifies the status returned by the last command. If the command ends abnormally,
0200 is added to the status. Built-in commands that are unsuccessful return an exit
status of 1. Successful built-in commands set status to a value of 0.

time Controls automatic timing of commands. If this variable is set, any command that takes
more than the specified number of CPU seconds will display a line of resources used at
the end of execution. For more information about the default outputs, see the built-in
time command.

verbose Set by the -v command line flag, this variable causes the words of each command to
display after history substitution.

282 AIX Version 7.2: Operating system management

Job control in the C shell
The shell associates a job number with each process. The shell keeps a table of current jobs and assigns
them small integer numbers.

When you start a job in the background with an ampersand (&) , the shell prints a line that looks like the
following:

[1] 1234

This line indicates that the job number is 1 and that the job is composed of a single process with a process
ID of 1234. Use the built-in jobs command to see the table of current jobs.

A job running in the background competes for input if it tries to read from the workstation. Background
jobs can also produce output for the workstation that gets interleaved with the output of other jobs.

You can refer to jobs in the shell in several ways. Use the percent (%) character to introduce a job name.
This name can be either the job number or the command name that started the job, if this name is unique.
For example, if a make process is running as job 1, you can refer to it as %1. You can also refer to it as
%make if there is only one suspended job with a name that begins with the string make. You can also use
the following:

%?String

to specify a job whose name contains the String variable, if there is only one such job.

The shell detects immediately whenever a process changes its state. If a job becomes blocked so that
further progress is impossible, the shell sends a message to the workstation. This message displays only
after you press the Enter key. If, however, the notify shell variable is set, the shell immediately issues a
message that indicates changes in the status of background jobs. Use the built-in notify command to
mark a single process so that its status changes are promptly reported. By default, the notify command
marks the current process.

C shell built-in commands list
The following are C shell built-in commands.

Item Description

@ Displays the value of specified shell variables.

alias Displays specified aliases or all aliases.

bg Puts the current or specified jobs into the background.

break Resumes running after the end of the nearest enclosing foreach or while command.

breaksw Breaks from a switch command.

case Defines a label in a switch command.

cd Changes the current directory to the specified directory.

chdir Changes the current directory to the specified directory.

continue Continues execution of the nearest enclosing foreach or while command.

default Labels the default case in a switch statement.

dirs Displays the directory stack.

echo Writes character strings to the standard output of the shell.

else Runs the commands that follow the second else in an if (Expression) then ...else
if (Expression2) then ... else ... endif command sequence.

end Signifies the end of a sequence of commands preceded by the foreach command.

endif Runs the commands that follow the second then statement in an if (Expression)
then ... else if (Expression2) then ... else ... endif command sequence.

Operating system management 283

Item Description

endsw Marks the end of a switch (String) case String : ... breaksw default: ... breaksw
endsw command sequence. This command sequence successively matches each case
label against the value of the String variable. Execution continues after the endsw
command if a breaksw command is executed or if no label matches and there is no
default.

eval Reads variable values as input to the shell and executes the resulting command or
commands in the context of the current shell.

exec Runs the specified command in place of the current shell.

exit Exits the shell with either the value of the status shell variable or the value of the specified
expression.

fg Brings the current or specified jobs into the foreground, continuing them if they are
stopped.

foreach Successively sets a Name variable for each member specified by the List variable and a
sequence of commands, until reaching an end command.

glob Displays list using history, variable, and file name expansion.

goto Continues to run after a specified line.

hashstat Displays statistics indicating how successful the hash table has been at locating
commands.

history Displays the history event list.

if Runs a specified command if a specified expression is true.

jobs Lists the active jobs.

kill Sends either the TERM (terminate) signal or the signal specified by the Signal variable to
the specified job or process.

limit Limits usage of a specified resource by the current process and each process it creates.

login Ends a login shell and replaces it with an instance of the /usr/sbin/login command.

logout Ends a login shell.

nice Sets the priority of commands run in the shell.

nohup Causes hangups to be ignored for the remainder of a procedure.

notify Causes the shell to notify you asynchronously when the status of the current or a specified
job changes.

onintr Controls the action of the shell on interrupts.

popd Pops the directory stack and returns to the new top directory.

pushd Exchanges elements of the directory stack.

rehash Causes recomputation of the internal hash table containing the contents of the directories
in the path shell variable.

repeat Runs the specified command, subject to the same restrictions as the if command, the
number of times specified.

set Shows the value of all shell variables.

setenv Modifies the value of the specified environment variable.

shift Shifts the specified variable to the left.

source Reads command specified by the Name variable.

stop Stops the current or specified jobs running in the background.

284 AIX Version 7.2: Operating system management

Item Description

suspend Stops the shell as if a STOP signal has been received.

switch Starts a switch (String) case String : ... breaksw default: ... breaksw endsw
command sequence. This command sequence successively matches each case label
against the value of the String variable. If none of the labels match before a default label is
found, the execution begins after the default label.

time Displays a summary of the time used by the shell and its child processes.

umask Determines file permissions.

unalias Discards all aliases with names that match the Pattern variable.

unhash Disables the use of the internal hash table to locate running programs.

unlimit Removes resource limitations.

unset Removes all variables having names that match the Pattern variable.

unsetenv Removes all variables from the environment whose names match the specified Pattern
variable.

wait Waits for all background jobs.

while Evaluates the commands between the while and the matching end command sequence
while an expression specified by the Expression variable evaluates nonzero.

The following is related information:

Korn shell

The ksh and stty commands.

The alias, cd, export, fc, getopts, read, set, and typeset Korn shell commands.

The /etc/passwd file.

Bourne shell

The bsh or Rsh command, login command.

The Bourne shell read special command.

The setuid subroutine, setgid subroutine.

The null special file.

The environment file, profile file format.

C shell

The csh command, ed command.

The alias, unalias, jobs, notify and set C Shell built-in commands.

Related concepts
C shell
The C shell is an interactive command interpreter and a command programming language. It uses syntax
that is similar to the C programming language.
C shell built-in commands

Operating system management 285

Built-in commands are run within the shell. If a built-in command occurs as any component of a pipeline,
except the last, the command runs in a subshell.

Signal handling in the C shell
The C shell normally ignores quit signals. Jobs running detached are not affected by signals generated
from the keyboard (INTERRUPT, QUIT, and HANGUP).

Other signals have the values the shell inherits from its parent. You can control the shell's handling
of INTERRUPT and TERMINATE signals in shell procedures with onintr. Login shells catch or ignore
TERMINATE signals depending on how they are set up. Shells other than login shells pass TERMINATE
signals on to the child processes. In no cases are INTERRUPT signals allowed when a login shell is
reading the .logout file.

C shell commands
A simple command is a sequence of words separated by blanks or tabs. A word is a sequence of
characters or numerals, or both, that does not contain blanks without quotation marks.

In addition, the following characters and doubled characters also form single words when used as
command separators or terminators:

& | ;
&& || << > >
< > ()

These special characters can be parts of other words. Preceding them with a backslash (\), however,
prevents the shell from interpreting them as special characters. Strings enclosed in ' ' or " " (matched
pairs of quotation characters) or backquotes can also form parts of words. Blanks, tab characters, and
special characters do not form separate words when they are enclosed in these marks. In addition, you
can enclose a newline character within these marks by preceding it with a backslash (\).

The first word in the simple command sequence (numbered 0) usually specifies the name of a command.
Any remaining words, with a few exceptions, are passed to that command. If the command specifies an
executable file that is a compiled program, the shell immediately runs that program. If the file is marked
executable but is not a compiled program, the shell assumes that it is a shell script. In this case, the shell
starts another instance of itself (a subshell) to read the file and execute the commands included in it.

C shell built-in commands
Built-in commands are run within the shell. If a built-in command occurs as any component of a pipeline,
except the last, the command runs in a subshell.

Note: If you enter a command from the C shell prompt, the system searches for a built-in command
first. If a built-in command does not exist, the system searches the directories specified by the path shell
variable for a system-level command. Some C shell built-in commands and operating system commands
have the same name. However, these commands do not necessarily work the same way. For more
information on how the command works, check the appropriate command description.

If you run a shell script from the shell, and the first line of the shell script begins with #!/
ShellPathname, the C shell runs the shell specified in the comment to process the script. Otherwise,
it runs the default shell (the shell linked to /usr/bin/sh). If run by the default shell, C shell built-
in commands might not be recognized. To run C shell commands, make the first line of the script
#!/usr/bin/csh.

Related reference
C shell built-in commands list

286 AIX Version 7.2: Operating system management

The following are C shell built-in commands.

C shell command descriptions
The C shell provides the following built-in commands.

Item Description

alias [Name [WordList]] Displays all aliases if you do not specify any parameters. Otherwise,
the command displays the alias for the specified Name. If WordList
is specified, this command assigns the value of WordList to the alias
Name. The specified alias Name cannot be alias or unalias.

bg [%Job ...] Puts the current job or job specified by Job into the background,
continuing the job if it was stopped.

break Resumes running after the end of the nearest enclosing foreach or
while command.

breaksw Breaks from a switch command; resumes after the endsw
command.

case Label: Defines a Label in a switch command.

cd[Name] Equivalent to the chdir command (see following description).

chdir [Name] Changes the current directory to that specified by the Name variable.
If you do not specify Name, the command changes to your home
directory. If the value of the Name variable is not a subdirectory of
the current directory and does not begin with /, ./, or ../, the shell
checks each component of the cdpath shell variable to see if it has
a subdirectory matching the Name variable. If the Name variable is a
shell variable with a value that begins with a slash (/), the shell tries
this to see if it is a directory. The chdir command is equivalent to the
cd command.

continue Continues execution at the end of the nearest enclosing while or
foreach command.

default: Labels the default case in a switch statement. The default
should come after all other case labels.

dirs Displays the directory stack.

echo Writes character strings to the standard output of the shell.

else Runs the commands that follow the second else in an if
(Expression) then ...else if (Expression2) then ... else ... endif
command sequence.

Note: The else statement is the csh built-in command when using the
if(expr) then ..else ...endif. If the (expr) is true, then the commands
up to the else statement is executed. If the (expr) is false, then
the commands between the else and endif statement are executed.
Anything in single quotes is taken literally and not interpreted.

Operating system management 287

Item Description

end Successively sets the Name variable to each member specified by
the List variable and runs the sequence of Commands between the
foreach and the matching end statements. The foreach and end
statements must appear alone on separate lines.

Uses the continue statement to continue the loop and the break
statement to end the loop prematurely. When the foreach command
is read from the terminal, the C shell prompts with a ? to allow
Commands to be entered. Commands within loops, prompted for
by ?, are not placed in the history list.

endif If the Expression variable is true, runs the Commands that follow the
first then statement. If the else if Expression2 is true, runs the
Commands that follow the second then statement. If the else if
Expression2 is false, runs the Commands that follow the else. Any
number of else if pairs are possible. Only one endif statement is
needed. The else segment is optional. The words else and endif
can be used only at the beginning of input lines. The if segment must
appear alone on its input line or after an else command.

endsw Successively matches each case label against the value of the string
variable. The string is command and file name expanded first. Use the
pattern-matching characters *, ?, and [. . .] in the case labels,
which are variable-expanded. If none of the labels match before a
default label is found, the execution begins after the default label.
The case label and the default label must appear at the beginning of
the line. The breaksw command causes execution to continue after
the endsw command. Otherwise, control might fall through the case
and default labels, as in the C programming language. If no label
matches and there is no default, execution continues after the endsw
command.

eval Parameter . . . Reads the value of the Parameter variable as input to the shell and
runs the resulting command or commands in the context of the
current shell. Use this command to run commands generated as the
result of command or variable substitution because parsing occurs
before these substitutions.

exec Command Runs the specified Command in place of the current shell.

exit (Expression) Exits the shell with either the value of the status shell variable (if no
Expression is specified) or with the value of the specified Expression.

fg [%Job ...] Brings the current job or job specified by Job into the foreground,
continuing the job if it was stopped.

foreach Name (List)
Command. . .

Successively sets a Name variable for each member specified by the
List variable and a sequence of commands, until reaching an end
command.

glob List Displays List using history, variable, and file name expansion. Puts a
null character between words and does not include a carriage return
at the end.

goto Word Continues to run after the line specified by the Word variable. The
specified Word is file name and command expanded to yield a string
of the form specified by the Label: variable. The shell rewinds its
input as much as possible and searches for a line of the form Label:,
possibly preceded by blanks or tabs.

288 AIX Version 7.2: Operating system management

Item Description

hashstat Displays statistics indicating how successful the hash table has been
at locating commands.

history [-r | -h] [n] Displays the history event list. The oldest events are displayed first.
If you specify a number n, only the specified number of the most
recent events are displayed. The -r flag reverses the order in which
the events are displayed so the most recent is displayed first. The
-h flag displays the history list without leading numbers. Use this
flag to produce files suitable for use with the -h flag of the source
command.

if (Expression) Command Runs the specified Command (including its arguments) if the specified
Expression is true. Variable substitution on the Command variable
happens early, at the same time as the rest of the if statement.
The specified Command must be a simple command (rather than a
pipeline, command list, or parenthesized command list).

Note: Input and output redirection occurs even if the Expression
variable is false and the Command is not executed.

jobs [-l] Lists the active jobs. With the -l (lowercase L) flag, the jobs
command lists process IDs in addition to the job number and name.

kill -l | [[-Signal] % Job...|
PID...]

Sends either the TERM (terminate) signal or the signal specified by
Signal to the specified Job or PID (process). Specify signals either by
number or by name (as given in the /usr/include/sys/signal.h
file, stripped of the SIG prefix). The -l (lowercase L) flag lists the
signal names.

Operating system management 289

Item Description

limit [-h] [Resource [Max-Use]] Limits the usage of the specified resource by the current process
and each process it creates. Process resource limits are defined in
the /etc/security/limits file. Controllable resources are the
central processing unit (CPU) time, file size, data size, core dump size,
and memory use. Maximum allowable values for these resources are
set with the mkuser command when the user is added to the system.
They are changed with the chuser command.

Limits are categorized as either soft or hard. Users may increase their
soft limits up to the ceiling imposed by the hard limits. You must have
root user authority to increase a soft limit above the hard limit, or to
change hard limits. The -h flag displays hard limits instead of the soft
limits.

If a Max-Use parameter is not specified, the limit command
displays the current limit of the specified resource. If the Resource
parameter is not specified, the limit command displays the current
limits of all resources. For more information about the resources
controlled by the limit subcommand, see the getrlimit,
setrlimit, or vlimit subroutine in the Technical Reference: Base
Operating System and Extensions, Volume 1.

The Max-Use parameter for CPU time is specified in the hh:mm:ss
format. The Max-Use parameter for other resources is specified
as a floating-point number or an integer optionally followed by a
scale factor. The scale factor is k or kilobytes (1024 bytes), m or
megabytes, or b or blocks (the units used by the ulimit subroutine
as explained in the Technical Reference: Base Operating System
and Extensions, Volume 2). If you do not specify a scale factor, k
is assumed for all resources. For both resource names and scale
factors, unambiguous prefixes of the names suffice.

Note: This command limits the physical memory (memory use)
available for a process only if there is contention for system memory
by other active processes.

login Ends a login shell and replaces it with an instance of the /usr/bin/
login command. This is one way to log out (included for
compatibility with the ksh and bsh commands).

logout Ends a login shell. This command must be used if the ignoreeof
option is set.

nice [+n] [Command] If no values are specified, sets the priority of commands run in
this shell to 24. If the +n flag is specified, sets the priority plus
the specified number. If the +n flag and Command are specified,
runs Command at priority 24 plus the specified number. If you have
root user authority, you can run the nice statement with a negative
number. The Command always runs in a subshell, and the restrictions
placed on commands in simple if statements apply.

290 AIX Version 7.2: Operating system management

Item Description

nohup [Command] Causes hangups to be ignored for the remainder of the script when
no Command is specified. If Command is specified, causes the
specified Command to be run with hangups ignored. To run a pipeline
or list of commands, put the pipeline or list in a shell script, give the
script execute permission, and use the shell script as the value of
the Command variable. All processes run in the background with an
ampersand (&) are effectively protected from being sent a hangup
signal when you log out. However, these processes are still subject to
explicitly sent hangups unless the nohup statement is used.

notify [%Job...] Causes the shell to notify you asynchronously when the status of the
current job or specified Job changes. Normally, the shell provides
notification just before it presents the shell prompt. This feature is
automatic if the notify shell variable is set.

onintr [- | Label] Controls the action of the shell on interrupts. If no arguments are
specified, restores the default action of the shell on interrupts,
which ends shell scripts or returns to the command input level. If
a - flag is specified, causes all interrupts to be ignored. If Label
is specified, causes the shell to run a goto Label statement when
the shell receives an interrupt or when a child process ends due
to an interruption. In any case, if the shell is running detached and
interrupts are being ignored, all forms of the onintr statement have
no meaning. Interrupts continue to be ignored by the shell and all
invoked commands.

popd [+n] Pops the directory stack and changes to the new top directory. If
you specify a +n variable, the command discards the nth entry in the
stack. The elements of the directory stack are numbered from the top,
starting at 0.

pushd [+n|Name] With no arguments, exchanges the top two elements of the directory
stack. With the Name variable, the command changes to the new
directory and pushes the old current directory (as given in the cwd
shell variable) onto the directory stack. If you specify a +n variable,
the command rotates the nth component of the directory stack around
to be the top element and changes to it. The members of the directory
stack are numbered from the top, starting at 0.

rehash Causes recomputation of the internal hash table of the contents of
the directories in the path shell variable. This action is needed if
new commands are added to directories in the path shell variable
while you are logged in. The rehash command is necessary only
if commands are added to one of the user's own directories or if
someone changes the contents of one of the system directories.

repeat Count Command Runs the specified Command, subject to the same restrictions as
commands in simple if statements, the number of times specified by
Count.

Note: I/O redirections occur exactly once, even if the Count variable
equals 0.

Operating system management 291

Item Description

set [[Name[n]] [= Word]] |
[Name = (List)]

Shows the value of all shell variables when used with no arguments.
Variables that have more than a single word as their value are
displayed as a parenthesized word list. If only Name is specified,
the C shell sets the Name variable to the null string. Otherwise, sets
Name to the value of the Word variable, or sets the Name variable to
the list of words specified by the List variable. When n is specified,
the nth component of the Name variable is set to the value of the
Word variable; the nth component must already exist. In all cases,
the value is command and file name expanded. These arguments
may be repeated to set multiple values in a single set command.
However, variable expansion happens for all arguments before any
setting occurs.

setenvName Value Sets the value of the environment variable specified by the
Name variable to Value, a single string. The most commonly
used environment variables, USER, TERM, HOME, and PATH, are
automatically imported to and exported from the C shell variables
user, term, home, and path. There is no need to use the setenv
statement for these.

shift [Variable] Shifts the members of the argv shell variable or the specified Variable
to the left. An error occurs if the argv shell variable or specified
Variable is not set or has less than one word as its value.

source[-h] Name Reads commands written in the Name file. You can nest the source
commands. However, if they are nested too deeply, the shell might
run out of file descriptors. An error in a source command at any level
ends all nested source commands. Normally, input during source
commands is not placed on the history list. The -h flag causes the
commands to be placed in the history list without executing them.

stop [%Job ...] Stops the current job or specified Job running in the background.

suspend Stops the shell as if a STOP signal had been received.

switch (string) Starts a switch (String) case String : ... breaksw default: ...
breaksw endsw command sequence. This command sequence
successively matches each case label against the value of the String
variable. If none of the labels match before a default label is found,
the execution begins after the default label.

292 AIX Version 7.2: Operating system management

Item Description

time [Command] The time command controls automatic timing of commands. If you
do not specify the Command variable, the time command displays
a summary of time used by this shell and its children. If you specify
a command with the Command variable, it is timed. The shell then
displays a time summary, as described under the time shell variable.
If necessary, an extra shell is created to display the time statistic
when the command completes.

The following example uses time with the sleep command:

time sleep

The output from this command looks similar to the following:

0.0u 0.0s 0:00 100% 44+4k 0+0io 0pf+0w

The output fields are as follows:

First
Number of seconds of CPU time devoted to the user process

Second
Number of seconds of CPU time consumed by the kernel on
behalf of the user process

Third
Elapsed (wall clock) time for the command

Fourth
Total user CPU Time plus system time, as a percentage of elapsed
time

Fifth
Average amount of shared memory used, plus average amount of
unshared data space used, in kilobytes

Sixth
Number of block input and output operations

Seventh
Page faults plus number of swaps

umask [Value] Determines file permissions. This Value, along with the permissions of
the creating process, determines a file's permissions when the file is
created. The default is 022. The current setting will be displayed if no
Value is specified.

unalias *|Pattern Discards all aliases with names that match the Pattern variable. All
aliases are removed by the unalias * command. The absence of
aliases does not cause an error.

unhash Disables the use of the internal hash table to locate running
programs.

unlimit [-h][Resource] Removes the limitation on the Resource variable. If no Resource
variable is specified, all resource limitations are removed. See the
description of the limit command for the list of Resource names.

The -h flag removes corresponding hard limits. Only a user with root
user authority can change hard limits.

Operating system management 293

Item Description

unset *|Pattern Removes all variables with names that match the Pattern variable.
Use unset * to remove all variables. If no variables are set, it does
not cause an error.

unsetenvPattern Removes all variables from the environment whose name matches
the specified Pattern. (See the setenv built-in command.)

wait Waits for all background jobs. If the shell is interactive, an
INTERRUPT (usually the Ctrl-C key sequence) disrupts the wait. The
shell then displays the names and job numbers of all jobs known to
be outstanding.

while (Expression)
Command. . . end

Evaluates the Commands between the while and the matching end
statements while the expression specified by the Expression variable
evaluates nonzero. You can use the break statement to end and the
continue statement to continue the loop prematurely. The while
and end statements must appear alone on their input lines. If the
input is from a terminal, prompts occur after the while (Expression)
similar to the foreach statement.

@ [Name[n] = Expression] Displays the values of all the shell variables when used with no
arguments. Otherwise, sets the name specified by the Name variable
to the value of the Expression variable. If the expression contains <, >,
&, or | characters, this part of the expression must be placed within
parentheses. When n is specified, the nth component of the Name
variable is set to the Expression variable. Both the Name variable and
its nth component must already exist.

C language operators, such as *= and +=, are available. The space
separating the Name variable from the assignment operator is
optional. Spaces are, however, required in separating components of
the Expression variable, which would otherwise be read as a single
word. Special suffix operators, double plus sign (++) and double
hyphen (--) increase and decrease, respectively, the value of the
Name variable.

C shell expressions and operators
The @ built-in command and the exit, if, and while statements accept expressions that include operators
similar to those of C language, with the same precedence.

The following operators are available:

Operator What it means

() change precedence

~ complement

! negation

*/ % multiply, divide, modulo

+ - add, subtract

<< > > left shift, right shift

<= >= < > relational operators

== != =~ !~ string comparison/pattern matching

& bitwise AND

^ bitwise exclusive OR

294 AIX Version 7.2: Operating system management

Operator What it means

| bitwise inclusive OR

&& logical AND

|| logical OR

In the previous list, precedence of the operators decreases down the list (left to right, top to bottom).

Note: The operators + and - are right-associative. For example, evaluation of a + b - c is performed as
follows:

a + (b - c)

and not as follows:

(a + b) - c

The ==, !=, =~, and !~ operators compare their arguments as strings; all others operate on numbers.
The =~ and !~ operators are similar to == and != , except that the rightmost side is a pattern against
which the leftmost operand is matched. This reduces the need for use of the switch statement in shell
procedures.

The logical operators or (||) and and (&&) are also available. They can be used to check for a range of
numbers, as in the following example:

if ($#argv > 2 && $#argv < 7) then

In the preceding example, the number of arguments must be greater than 2 and less than 7.

Strings beginning with zero (0) are considered octal numbers. Null or missing arguments are considered
0. All expressions result in strings representing decimal numbers. Note that two components of an
expression can appear in the same word. Except when next to components of expressions that are
syntactically significant to the parser (& | < > ()), expression components should be surrounded by
spaces.

Also available in expressions as primitive operands are command executions enclosed in parentheses
() and file inquiries of the form (-operator Filename), where operator is one of the following:

Ite
m

Description

r Read access

w Write access

x Execute access

e Existence

o Ownership

z Zero size

f Plain file

d Directory

The specified Filename is command and file name expanded and then tested to see if it has the specified
relationship to the real user. If Filename does not exist or is inaccessible, all inquiries return false(0).
If the command runs successfully, the inquiry returns a value of true(1). Otherwise, if the command
fails, the inquiry returns a value of false(0). If more detailed status information is required, run the
command outside an expression and then examine the status shell variable.

Operating system management 295

Command substitution in the C shell
In command substitution, the shell executes a specified command and replaces that command with its
output.

To perform command substitution in the C shell, enclose the command or command string in backquotes
(` `). The shell normally breaks the output from the command into separate words at blanks, tabs, and
newline characters. It then replaces the original command with this output.

In the following example, the backquotes (` `) around the date command indicate that the output of the
command will be substituted:

echo The current date and time is: `date`

The output from this command might look like the following:

The current date and time is: Wed Apr 8 13:52:14 CDT 1992

The C shell performs command substitution selectively on the arguments of built-in shell commands. This
means that it does not expand those parts of expressions that are not evaluated. For commands that are
not built-in, the shell substitutes the command name separately from the argument list. The substitution
occurs in a child of the main shell, but only after the shell performs input or output redirection.

If a command string is surrounded by " ", the shell treats only newline characters as word separators,
thus preserving blanks and tabs within the word. In all cases, the single final newline character does not
force a new word.

Related concepts
Variable substitution in the C shell
The C shell maintains a set of variables, each of which has as its value a list of zero or more words. Some
of these variables are set by the shell or referred to by it. For example, the argv variable is an image of the
shell variable list, and words that comprise the value of this variable are referred to in special ways.

Nonbuilt-in C shell command execution
When the C shell determines that a command is not a built-in shell command, it attempts to run the
command with the execv subroutine.

Each word in the path shell variable names a directory from which the shell attempts to run the command.
If given neither the -c nor -t flag, the shell hashes the names in these directories into an internal table.
The shell tries to call the execv subroutine on a directory only if there is a possibility that the command
resides there. If you turn off this mechanism with the unhash command or give the shell the -c or -t flag,
the shell concatenates with the given command name to form a path name of a file. The shell also does
this in any case for each directory component of the path variable that does not begin with a slash (/). The
shell then attempts to run the command.

Parenthesized commands always run in a subshell. For example:

(cd ; pwd) ; pwd

displays the home directory without changing the current directory location. However, the command:

cd ; pwd

changes the current directory location to the home directory. Parenthesized commands are most often
used to prevent the chdir command from affecting the current shell.

If the file has execute permission, but is not an executable binary to the system, then the shell assumes it
is a file containing shell commands and runs a new shell to read it.

If there is an alias for the shell, then the words of the alias are prefixed to the argument list to form the
shell command. The first word of the alias should be the full path name of the shell.

296 AIX Version 7.2: Operating system management

History substitution in the C shell
History substitution lets you modify individual words from previous commands to create new commands.
History substitution makes it easy to repeat commands, repeat the arguments of a previous command in
the current command, or fix spelling mistakes in the previous command with little typing.

History substitutions begin with the exclamation mark (!) character and can appear anywhere on the
command line, provided they do not nest (in other words, a history substitution cannot contain another
history substitution). You can precede the ! with a \ to cancel the exclamation point's special meaning.
In addition, if you place the ! before a blank, tab, newline character, =, or (, history substitution does not
occur.

History substitutions also occur when you begin an input line with a carat (^). The shell echoes any input
line containing history substitutions at the workstation before it executes that line.

Related concepts
Alias substitution in the C shell
An alias is a name assigned to a command or command string. The C shell allows you to assign aliases
and use them as you would commands. The shell maintains a list of the aliases that you define.

History lists for the C shell
The history list saves commands that the shell reads from the command line that consist of one or more
words. History substitution reintroduces sequences of words from these saved commands into the input
stream.

The history shell variable controls the size of the history list. You must set the history shell variable either
in the .cshrc file or on the command line with the built-in set command. The previous command is
always retained regardless of the value of the history variable. Commands in the history list are numbered
sequentially, beginning with 1. The built-in history command produces output similar to the following:

9 write michael
10 ed write.c
11 cat oldwrite.c
12 diff *write.c

The shell displays the command strings with their event numbers. The event number appears to the left
of the command and represent when the command was entered in relation to the other commands in the
history. It is not usually necessary to use event numbers to refer to events, but you can have the current
event number displayed as part of your system prompt by placing an exclamation mark (!) in the prompt
string assigned to the PROMPT environment variable.

A full history reference contains an event specification, a word designator, and one or more modifiers in
the following general format:

Event[.]Word:Modifier[:Modifier] . . .

Note: Only one word can be modified. A string that contains blanks is not allowed.

In the previous sample of history command output, the current event number is 13. Using this example,
the following refer to previous events:

Item Description

!10 Event number 10.

!-2 Event number 11 (the current event minus 2).

!d Command word beginning with d (event number 12).

!?mic? Command word containing the string mic (event number 9).

These forms, without further modification, simply reintroduce the words of the specified events, each
separated by a single blank. As a special case, !! refers to the previous command; the command !!
alone on an input line reruns the previous command.

Operating system management 297

Event specification for the C shell
To select words from an event, follow the event specification with a colon (:) and one of the following
word designators (the words of an input line are numbered sequentially starting from 0)

Ite
m

Description

0 First word (the command name)

n nth argument

^ First argument

$ Last argument

% Word matched by an immediately preceding ?string? search

x-y Range of words from the xth word to the yth word

-y Range of words from the first word (0) to the yth word

* First through the last argument, or nothing if there is only one word (the command name) in the
event

x* xth argument through the last argument

x- Same as x* but omitting the last argument

If the word designator begins with a ^, $, *, -, or %, you can omit the colon that separates the event
specification from the word designator. You can also place a sequence of the following modifiers after the
optional word designator, each preceded by a colon:

Item Description

h Removes a trailing path name extension, leaving the head.

r Removes a trailing .xxx component, leaving the root name.

e Removes all but the .xxx trailing extension.

s/OldWord/NewWord/ Substitutes the value of the NewWord variable for the value of the
OldWord variable.

The left side of a substitution is not a pattern in the sense of a string recognized by an editor; rather, it
is a word, a single unit without blanks. Normally, a slash (/) delimits the original word (OldWord) and its
replacement (NewWord). However, you can use any character as the delimiter. In the following example,
using the % as a delimiter allows a / to be included in the words:

s%/home/myfile%/home/yourfile%

The shell replaces an ampersand (&) with the OldWord text in the NewWord variable. In the following
example, /home/myfile becomes /temp/home/myfile.

s%/home/myfile%/temp&%

The shell replaces a null word in a substitution with either the last substitution or with the last string used
in the contextual scan !?String?. You can omit the trailing delimiter (/) if a newline character follows
immediately. Use the following modifiers to delimit the history list:

Item Description

t Removes all leading path name components, leaving the tail

& Repeats the previous substitution

g Applies the change globally; that is, all occurrences for each line

p Displays the new command, but does not run it

298 AIX Version 7.2: Operating system management

Item Description

q Quotes the substituted words, thus preventing further substitutions

x Acts like the q modifier, but breaks into words at blanks, tabs, and newline characters

When using the preceding modifiers, the change applies only to the first modifiable word unless the g
modifier precedes the selected modifier.

If you give a history reference without an event specification (for example, !$), the shell uses the previous
command as the event. If a previous history reference occurs on the same line, the shell repeats the
previous reference. Thus, the following sequence gives the first and last arguments of the command that
matches ?foo?.

!?foo?^ !$

A special abbreviation of a history reference occurs when the first nonblank character of an input line is a
carat (^). This is equivalent to !:s^, thus providing a convenient shorthand for substitutions on the text of
the previous line. The command ^ lb^ lib corrects the spelling of lib in the command.

If necessary, you can enclose a history substitution in braces { } to insulate it from the characters that
follow. For example, if you want to use a reference to the command:

ls -ld ~paul

to perform the command:

ls -ld ~paula

use the following construction:

!{l}a

In this example, !{l}a looks for a command starting with l and appends a to the end.

Quotation with single and double quotes
To prevent further interpretation of all or some of the substitutions, enclose strings in single and double
quotation marks.

Enclosing strings in ' ' prevents further interpretation, while enclosing strings in " " allows further
expansion. In both cases, the text that results becomes all or part of a single word.

Input and output redirection in the C shell
Before the C shell executes a command, it scans the command line for redirection characters. These
special notations direct the shell to redirect input and output.

You can redirect the standard input and output of a command with the following syntax statements:

Item Description

< File Opens the specified File (which is first variable, command, and file name expanded)
as the standard input.

<<Word Reads the shell input up to the line that matches the value of the Word variable.
The Word variable is not subjected to variable, file name, or command substitution.
Each input line is compared to the Word variable before any substitutions are done
on the line. Unless a quoting character (\, ", ' or `) appears in the Word variable,
the shell performs variable and command substitution on the intervening lines,
allowing the \ character to quote the $, \, and ` characters. Commands that are
substituted have all blanks, tabs, and newline characters preserved, except for
the final newline character, which is dropped. The resultant text is placed in an
anonymous temporary file, which is given to the command as standard input.

Operating system management 299

Item Description

> File

>!File

>& File

>&! File

Uses the specified File as standard output. If File does not exist, it is created.
If File exists, it is truncated, and its previous contents are lost. If the noclobber
shell variable is set, File must not exist or be a character special file, or an error
results. This helps prevent accidental destruction of files. In this case, use the
forms including a ! to suppress this check. File is expanded in the same way
as < input file names. The form >& redirects both standard output and standard
error to the specified File. The following example shows how to separately redirect
standard output to /dev/tty and standard error to /dev/null. The parentheses
are required to allow standard output and standard error to be separate.

% (find / -name vi -print > /dev/tty) >& /dev/null

> >File

> >!File

> >& File

> >&! File

Uses the specified File as standard output like >, but appends output to the end
of File. If the noclobber shell variable is set, an error results if File does not exist,
unless one of the forms including a ! is given. Otherwise, it is similar to >.

A command receives the environment in which the shell was invoked, as changed by the input/output
parameters and the presence of the command as a pipeline. Thus, unlike some previous shells,
commands that run from a shell script do not have access to the text of the commands by default.
Instead, they receive the original standard input of the shell. Use the << mechanism to present inline
data, which allows shell command files to function as components of pipelines and also lets the shell
block read its input. Note that the default standard input for a command run detached is not changed to
the empty /dev/null file. Instead, the standard input remains the original standard input of the shell.

To redirect the standard error through a pipe with the standard output, use the form |& rather than only
the |.

Flow control in the C shell
The shell contains commands that can be used to regulate the flow of control in command files (shell
scripts) and (in limited but useful ways) from shell command-line input. These commands all operate by
forcing the shell to repeat, or skip, in its input.

The foreach, switch, and while statements, and the if-then-else form of the if statement, require that
the major keywords appear in a single simple command on an input line.

If the shell input is not searchable, the shell buffers input whenever a loop is being read and searches the
internal buffer to do the re-reading implied by the loop. To the extent that this is allowed, backward gotos
succeed on inputs that you cannot search.

Operating system security
The goal of computer security is the protection of information stored on the computer system.

Information security is aimed at the following:

Item Description

Integrity The value of all information depends upon its accuracy. If unauthorized changes are
made to data, this data loses some or all of its value.

Privacy The value of much information depends upon its secrecy.

Availability Information must be readily available.

It is helpful to plan and implement your security policies before you begin using the system. Security
policies are very time-consuming to change later, so up-front planning can save a lot of time later.

300 AIX Version 7.2: Operating system management

Identification and authentication
Identification and authentication establish your identity.

You are required to log in to the system. You supply your user name and a password if the account has
one (in a secure system, all accounts should either have passwords or be invalidated). If the password is
correct, you are logged in to that account; you acquire the access rights and privileges of the account.

Because the password is the only protection for your account, select and guard your password
carefully. Many attempts to break into a system start with attempts to guess passwords. The operating
system provides significant password protection by storing user passwords separately from other user
information. The encrypted passwords and other security-relevant data for users are stored in the /etc/
security/passwd file. This file should be accessible only by the root user. With this restricted access
to the encrypted passwords, an attacker cannot decipher the password with a program that simply cycles
through all possible or likely passwords.

It is still possible to guess passwords by repeatedly attempting to log in to an account. If the password is
trivial or is infrequently changed, such attempts might easily succeed.

Login user IDs
The operating system can identify users by their login user ID.

The login user ID allows the system to trace all user actions to their source. After a user logs in to the
system and before the initial user program is run, the system sets the login ID of the process to the user
ID found in the user database. All subsequent processes during the login session are tagged with this ID.
These tags provide a trail of all activities performed by the login user ID.

You can reset the effective user ID, real user ID, effective group ID, real group ID, and supplementary group
ID during the session, but you cannot change the login user ID.

Unattended terminals
All systems are vulnerable if terminals are left logged in and unattended. The most serious problem
occurs when a system manager leaves a terminal unattended that has been enabled with root authority.
In general, users should log out anytime they leave their terminals.

You can force a terminal to log out after a period of inactivity by setting the TMOUT and TIMEOUT
parameters in the /etc/profile file. The TMOUT parameter works in the ksh (Korn) shell, and the
TIMEOUT parameter works in the bsh (Bourne) shell.

The following example, taken from a .profile file, forces the terminal to log out after an hour of
inactivity:

TO=3600
echo "Setting Autologout to $TO"
TIMEOUT=$TO
TMOUT=$TO
export TIMEOUT TMOUT

Note: You can override the TMOUT and TIMEOUT values in the /etc/profile file by specifying different
values in the .profile file in your home directory.

Related concepts
Variable substitution in the Bourne shell
The Bourne shell permits you to perform variable substitutions.
Related reference
Parameter substitution in the Korn shell or POSIX shell

Operating system management 301

The Korn shell, or POSIX shell, lets you perform parameter substitutions.

File ownership and user groups
Initially, a file's owner is identified by the user ID of the person who created the file.

The owner of a file determines who may read, write (modify), or execute the file. Ownership can be
changed with the chown command.

Every user ID is assigned to a group with a unique group ID. The system manager creates the groups of
users when setting up the system. When a new file is created, the operating system assigns permissions
to the user ID that created it, to the group ID containing the file owner, and to a group called others,
consisting of all other users. The id command shows your user ID (UID), group ID (GID), and the names
of all groups you belong to.

In file listings (such as the listings shown by the ls command), the groups of users are always
represented in the following order: user, group, and others. If you need to find out your group name,
the groups command shows all the groups for a user ID.

Changing file or directory ownership
Use the chown command to change the owner of your files.

When you specify the -R option, the chown command recursively descends through the directory
structure from the specified directory. When symbolic links are encountered, the ownership of the file
or directory pointed to by the link is changed; the ownership of the symbolic link is not changed.

Note: Only the root user can change the owner of another file. Errors are not displayed when the -f option
is specified.

For example, to change the owner of the program.c file, type the following:

chown jim program.c

The user-access permissions for the program.c file now apply to jim. As the owner, jim can use the
chmod command to permit or deny other users access to the program.c file.

See the chown command for the complete syntax.

File and directory access modes
Every file has an owner. For new files, the user who creates the file is the owner of that file. The owner
assigns an access mode to the file. Access modes grant other system users permission to read, modify, or
execute the file. Only the file's owner or users with root authority can change the access mode of a file.

There are the three classes of users: user/owner, group, and all others. Access is granted to these user
classes in some combination of three modes: read, write, or execute. When a new file is created, the
default permissions are read, write, and execute permission for the user who created the file. The other
two groups have read and execute permission. The following table illustrates the default file-access
modes for the three classes of user groups:

Item Description

Classes Read Write Execute

Owner Yes Yes Yes

Group Yes No Yes

Others Yes No Yes

The system determines who has permission and the level of permission they have for each of these
activities. Access modes are represented both symbolically and numerically in the operating system.

Related concepts
Types of files

302 AIX Version 7.2: Operating system management

The types of files recognized by the system are either regular, directory, or special. However, the
operating system uses many variations of these basic types.

Symbolic representation of access modes
Access modes are represented symbolically.

Ite
m

Description

r Indicates read permission, which allows users to view the contents of a file.

w Indicates write permission, which allows users to modify the contents of a file.

x Indicates execute permission. For executable files (ordinary files that contain programs), execute
permission means that the program can be run. For directories, execute permission means the
contents of the directory can be searched.

The access modes for files or directories are represented by nine characters. The first three characters
represent the current Owner permissions, the second sent of three characters represents the current
Group permissions, and the third set of three characters represents the current settings for the Other
permissions. A hyphen (-) in the nine-character set indicates that no permission is given. For example, a
file with the access modes set to rwxr-xr-x gives read and execute permission to all three groups and
write permission only to the owner of the file. This is the symbolic representation of the default setting.

The ls command, when used with the -l (lower case L) flag, gives a detailed listing of the current
directory. The first 10 characters in the ls -l listing show the file type and permissions for each of the
three groups. The ls -l command also lists the owner and group associated with each file and directory.

The first character indicates the type of file. The remaining nine characters contain the file permission
information for each of the three classes of users. The following symbols are used to represent the type of
file:

Ite
m

Description

- Regular files

d Directory

b Block special files

c Character special files

p Pipe special files

l Symbolic links

s Sockets

For example, this is a sample ls -l listing:

-rwxrwxr-x 2 janet acct 512 Mar 01 13:33 january

Here, the first hyphen (-) indicates a regular file. The next nine characters (rwxrwxr-x represent the
User, Group, and Other access modes, as discussed above. janet is the file owner, and acct is the name
of Janet's group. 512 is the file size in bytes, Mar 01 13:33 is the last date and time of modification, and
january is the file name. The 2 indicates how many links exist to the file.

Numeric representation of access modes
Numerically, read access is represented by a value of 4, write permission is represented by a value of 2,
and execute permission is represented by a value of 1. The total value between 1 and 7 represents the
access mode for each group (user, group, and other).

The following table illustrates the numeric values for each level of access:

Operating system management 303

Total Value Read Write Execute

0 - - -

1 - - 1

2 - 2 -

3 - 2 1

4 4 - -

5 4 - 1

6 4 2 -

7 4 2 1

When a file is created, the default file access mode is 755. This means the user has read, write, and
execute permissions (4+2+1=7), the group has read and execute permission (4+1=5), and all others
have read and execute permission (4+1=5). To change access permission modes for files you own, run
the chmod (change mode) command.

Displaying group information
Use the lsgroup command to display the attributes of all the groups on the system (or of specified
groups). If one or more attributes cannot be read, the lsgroup command lists as much information as
possible.

The attribute information displays as Attribute=Value definitions, each separated by a blank space.

1. To list all of the groups on the system, type the following:

lsgroup ALL

The system displays each group, group ID, and all of the users in the group in a list similar to the
following:

system 0 arne,pubs,ctw,geo,root,chucka,noer,su,dea,backup,build,janice,denise
staff 1 john,ryan,flynn,daveb,jzitt,glover,maple,ken,gordon,mbrady
bin 2 root,bin
sys 3 root,su,bin,sys

2. To display specific attributes for all groups, do either of the following:

• You can list attributes in the form Attribute=Value separated by a blank space. This is the default
style. For example, to list the ID and users for all of the groups on the system, type the following:

lsgroup -a id users ALL | pg

A list similar to the following is displayed:

system id=0 users=arne,pubs,ctw,geo,root,chucka,noer,su,dea,backup,build
staff id=1 users=john,ryan,flynn,daveb,jzitt,glover,maple,ken

• You can also list the information in stanza format. For example, to list the ID and users for all of the
groups on the system in stanza format, type the following:

lsgroup -a -f id users ALL | pg

A list similar to the following is displayed:

system:
 id=0
 users=pubs,ctw,geo,root,chucka,noer,su,dea,backup,build

staff:
 id=1
 users=john,ryan,flynn,daveb,jzitt,glover,maple,ken

304 AIX Version 7.2: Operating system management

bin:
 id=2
 users=root,bin

sys:
 id=3
 users=root,su,bin,sys

3. To display all attributes for a specific group, you can use one of two styles for listing specific attributes
for all groups:

• You can list each attribute in the form Attribute=Value separated by a blank space. This is the
default style. For example, to list all attributes for the group system, type the following:

lsgroup system

A list similar to the following is displayed:

system id=0 users=arne,pubs,ctw,geo,root,chucka,noer,su,dea,backup,build,janice,denise

• You can also list the information in stanza format. For example, to list all attributes for the group bin
in stanza format, type the following:

lsgroup -f system

A list similar to the following is displayed:

system:
 id=0 users=arne,pubs,ctw,geo,root,chucka,noer,su,dea,backup,build,janice,denise

4. To list specific attributes for a specific group, type the following:

lsgroup -a Attributes Group

For example, to list the ID and users for group bin, type the following:

lsgroup -a id users bin

A list similar to the following is displayed:

bin id=2 users=root,bin

See the lsgroup command for the complete syntax.

Changing file or directory permissions
Use the chmod command to change the permissions of your files.

1. To add a type of permission to the chap1 and chap2 files, type the following:

chmod g+w chap1 chap2

This adds write permission for group members to the files chap1 and chap2.
2. To make several permission changes at once to the mydir directory, type the following:

chmod go-w+x mydir

This denies (-) group members (g) and others (o) the permission to create or delete files (w) in the
mydir directory and allows (+) group members and others to search the mydir directory or use (x) it
in a path name. This is equivalent to the following command sequence:

chmod g-w mydir
chmod o-w mydir
chmod g+x mydir
chmod o+x mydir

3. To permit only the owner to use a shell procedure named cmd as a command, type the following:

Operating system management 305

chmod u=rwx,go= cmd

This gives read, write, and execute permission to the user who owns the file (u=rwx). It also denies the
group and others the permission to access cmd in any way (go=).

4. To use the numeric mode form of the chmod command to change the permissions of the text, file
type the following:

chmod 644 text

This sets read and write permission for the owner, and it sets read-only mode for the group and others.

See the chmod command for the complete syntax.

Access control lists
Access control consists of protected information resources that specify who can be granted access to
such resources.

The operating system allows for need-to-know or discretionary security. The owner of an information
resource can grant other users read or write access rights for that resource. A user who is granted access
rights to a resource can transfer those rights to other users. This security allows for user-controlled
information flow in the system; the owner of an information resource defines the access permissions to
the object.

Users have user-based access only to the objects that they own. Typically, users receive either the group
permissions or the default permissions for a resource. The major task in administering access control is to
define the group memberships of users, because these memberships determine the users' access rights
to the files that they do not own.

Access control lists for file system objects
File system objects are typically associated with an Access Control List (ACL), which normally consists of
series of Access Control Entries (ACEs). Each ACE defines the identity and its related access rights.

To maintain access control lists, use the aclget, acledit, aclput and aclconvert commands.

Note that ACL is typically stored and managed on the media by the physical file system (PFS). The AIX
operating system provides an infrastructure for physical file systems to support and manage multiple ACL
types. The JFS2 file system shipped with AIX supports two ACL types:

• AIXC
• NFS4

Earlier file systems supported only the AIXC ACL type as in the previous AIX releases. These ACL types
are discussed in detail in the Security.

AIXC access control list type
The AIXC (AIX Classic) ACL type provides for the ACL behavior as defined on previous releases of AIX.
This ACL type consists of the regular base mode bits and extended permissions (ACEs).

With extended permissions, you can permit or deny file access to specific individuals or groups without
changing the base permissions.

Note: The AIXC ACL for a file cannot exceed one memory page (approximately 4096 bytes) in size.

The chmod command in numeric mode (with octal notations) can set base permissions and attributes.
The chmod subroutine, which the command calls, disables extended permissions. Extended permissions
are disabled if you use the numeric mode of the chmod command on a file that has an ACL. The symbolic
mode of the chmod command does not disable extended permissions when the ACL associated is of type
AIXC. For more information on numeric and symbolic mode, refer to the chmod command. For information
about the chmod command, see chmod.

306 AIX Version 7.2: Operating system management

Base permissions

AIXC ACL specific base permissions are the traditional file-access modes assigned to the file owner,
file group, and other users. The access modes are read (r), write (w), and execute/search (x).

Note: AIXC ACL type Base Permissions will be same as the file mode bits stored in the file system
object's inode headers. That is, the information in base mode bits is same as the value returned by file
system when stat is performed on the file system object.

In an access control list, base permissions are in the following format, with the Mode parameter
expressed as rwx (with a hyphen (-) replacing each unspecified permission):

base permissions:
 owner(name): Mode
 group(group): Mode
 others: Mode

Attributes

Three attributes can be added to an access control list:
setuid (SUID)

Set-user-ID mode bit. This attribute sets the effective and saved user IDs of the process to the
owner ID of the file on execution.

setgid (SGID)
Set-group-ID mode bit. This attribute sets the effective and saved group IDs of the process to the
group ID of the file on execution.

savetext (SVTX)
Saves the text in a text file format.

The above attributes are added in the following format:

attributes: SUID, SGID, SVTX

Extended permissions

AIXC ACL extended permissions allow the owner of a file to more precisely define access to that
file. Extended permissions modify the base file permissions (owner, group, others) by permitting,
denying, or specifying access modes for specific individuals, groups, or user and group combinations.
Permissions are modified through the use of keywords.

The permit, deny, and specify keywords are defined as follows:
permit

Grants the user or group the specified access to the file
deny

Restricts the user or group from using the specified access to the file
specify

Precisely defines the file access for the user or group
If a user is denied a particular access by either a deny or a specify keyword, no other entry can
override that access denial.

The enabled keyword must be specified in the ACL for the extended permissions to take effect. The
default value is the disabled keyword.

In an AIXC ACL, extended permissions are in the following format:

extended permissions:
 enabled | disabled
 permit Mode UserInfo...:
 deny Mode UserInfo...:
 specify Mode UserInfo...:

Use a separate line for each permit, deny, or specify entry. The Mode parameter is expressed
as rwx (with a hyphen (-) replacing each unspecified permission). The UserInfo parameter is

Operating system management 307

expressed as u:UserName, or g:GroupName, or a comma-separated combination of u:UserName
and g:GroupName.

Note: If more than one user name is specified in an entry, that entry cannot be used in an access
control decision because a process has only one user ID.

NFS4 access control list type
JFS2 file system in AIX also supports NFS4 ACL type. This ACL implementation follows the ACL definition
as specified in NFS4 version 4 protocol related RFC.

This ACL provides much finer granular control over the access rights and also provides for features such
as inheritance. NFS4 ACL consists of an array of ACEs. Each ACE defines access rights for an identity. As
defined in the RFC, the main components of NFS4 ACE are as follows:

struct nfsace4 {

 acetype4 type;
 aceflag4 flag;
 acemask4 access_mask;
 utf8str_mixed who;
};

Where:
type

Bit mask that defines the type of the ACE. Details such as whether this ACE allows access or denies
access are defined here.

flag
Bit mask that describes the inheritance aspects of the ACE. Defines whether this ACE is applicable to
the file system object, or its children, or both.

access_mask
Bit mask that defines various access rights possible. Rights defined include, read, write, execute,
create, delete, create child, delete child, etc.

who
This null-terminated string defines the identity of the person to which this ACE will apply. Note that
per RFC, the size of this string is unlimited, and a loose definition allows for defining domains within
NFS version 4 networks to manage access control. Natively (most of the time) AIX does not interpret
this string, and each ACE is associated with an AIX-understood identity (such as uid or gid). It is
expected that the NFS version 4 file system will interpret these strings as necessary to convert them
to OS-understood user or group IDs. AIX only understands some of the special who strings defined in
the RFC.

In AIX, use the aclget, acledit, aclput and aclconvert commands to manage NFS4 ACLs.

Note: Any type of chmod command will erase the file's ACL.

Access control list example for AIXC
The following is an example of an AIXC access control list (ACL).

The following is an example of an AIXC ACL:

attributes: SUID
base permissions:
 owner(frank): rw-
 group(system): r-x
 others: ---
extended permissions:
 enabled
 permit rw- u:dhs
 deny r-- u:chas, g:system
 specify r-- u:john, g:gateway, g:mail
 permit rw- g:account, g:finance

The parts of the ACL and their meanings are as follows:

• The first line indicates that the setuid bit is turned on.

308 AIX Version 7.2: Operating system management

• The next line, which introduces the base permissions, is optional.
• The next three lines specify the base permissions. The owner and group names in parentheses are for

information only. Changing these names does not alter the file owner or file group. Only the chown
command and the chgrp command can change these file attributes. For more information about these
commands, see chown and chgrp.

• The next line, which introduces the extended permissions, is optional.
• The next line indicates that the extended permissions that follow are enabled.
• The last four lines are the extended entries.
• The first extended entry grants user dhs read (r) and write (w) permission on the file.
• The second extended entry denies read (r) access to user chas only when he is a member of the

system group.
• The third extended entry specifies that as long as user john is a member of both the gateway group

and the mail group, this user has read (r) access. If user john is not a member of both groups, this
extended permission does not apply.

• The last extended entry grants any user in both the account group and the finance group read (r)
and write (w) permission.

Note: More than one extended entry can be applied to a process, with restrictive modes taking
precedence over permissive modes.

For more information and a complete syntax, see the acledit command in the Commands Reference,
Volume 1.

Access control list access authorization
The owner of the information resource is responsible for managing access rights. Resources are protected
by permission bits, which are included in the mode of the object.

For AIXC ACL, the permission bits define the access permissions granted to the owner of the object, the
group of the object, and for the others default class. AIXC ACL type supports three different modes of
access (read, write, and execute) that can be granted separately.

When a user logs in to an account (using the login or su command), the user IDs and group IDs assigned
to that account are associated with the user's processes. These IDs determine the access rights of the
process.

For files, directories, named pipes, and devices (special files) with an associated AIX ACL, access is
authorized as follows:

• For each access control entry (ACE) in the access control list (ACL), the identifier list is compared to
the identifiers of the process. If there is a match, the process receives the permissions and restrictions
defined for that entry. The logical unions for both permissions and restrictions are computed for each
matching entry in the ACL. If the requesting process does not match any of the entries in the ACL, it
receives the permissions and restrictions of the default entry.

• If the requested access mode is permitted (included in the union of the permissions) and is not
restricted (included in the union of the restrictions), access is granted. Otherwise, access is denied.

Further, for an AIXC ACL type, the identifier list of an ACL matches a process if all identifiers in the list
match the corresponding type of effective identifier for the requesting process. A USER-type identifier
matched is equal to the effective user ID of the process, and a GROUP-type identifier matches if it is equal
to the effective group ID of the process or to one of the supplementary group IDs. For instance, an ACE
with an identifier list such as the following:

USER:fred, GROUP:philosophers, GROUP:software_programmer

would match a process with an effective user ID of fred and a group set of:

philosophers, philanthropists, software_programmer, doc_design

Operating system management 309

but would not match for a process with an effective user ID of fred and a group set of:

philosophers, iconoclasts, hardware_developer, graphic_design

Note that an ACE with an identifier list of the following would match for both processes:

USER:fred, GROUP:philosophers

In other words, the identifier list in the ACE functions is a set of conditions that must hold for the specified
access to be granted.

The discretionary access control mechanism allows for effective access control of information resources
and provides for separate protection of the confidentiality and integrity of the information. Owner-
controlled access control mechanisms are only as effective as users make them. All users must
understand how access permissions are granted and denied, and how these are set.

Note that file system objects with an associated NFS4 ACL type, access checks are based on various ACEs
that form the ACL as per the rules setup in the NFS version 4 protocol-related RFC. Identity matching is
done based on the user ID or group ID or special who strings defined in the ACE against the process's
credentials. If a match occurs, the access rights requested are checked against the access rights defined
in the ACE. If any of the access rights are allowed, those will be taken out, and the compare operation
continues on to the next ACE. This process is continued until either the ACL end is reached, or all the
access rights are met, or if any of the access rights requested are denied. The following steps capture the
access checking in the case of a file system object with an associated NFS4 ACL:

1. For each access control entry (ACE) in the access control list (ACL), the identifier list is compared to
the identifiers of the process. Identity checks include the user ID or group ID defined in the ACE. Also,
if the identity is defined as special with strings such as OWNER@, a match will occur if the calling
process is by the owner of the file. If there is a match, the process receives the access rights defined
for that entry. Else, continue to the next ACE.

2. Requested access rights are compared with the access rights retrieved from ACE entry. If any of the
access rights requested are explicitly denied by the ACE, then the access checking process is ended,
and the requesting process will be denied access.

3. If some of the requested access rights are met by the ACE, then those access rights will be taken out
from the requests access rights list, and the compare operation continues to the next ACE.

4. If all of the requested access rights are met by the ACEs, then the requested access is allowed.
5. If ACL end is reached before all of the requested access rights are resolved, then the access is denied.

Note that apart from the ACL type-based access checks, individual physical file systems might also
choose to provide for privilege-based access to the file system objects. For example, an owner might
always at least have the permission to modify the ACL, irrespective of the existing ACL access rights. A
process with a user ID of 0 is known as a root user process. These processes are generally allowed all
access permissions. However, if a root user process requests execute permission for a program, access is
granted only if execute permission is granted to at least one user.

All access permission checks for these objects are made at the system call level when the object is
first accessed. Because System V Interprocess Communication (SVIPC) objects are accessed statelessly,
checks are made for every access. However, it is possible that checks are made by the physical file
systems at open time of the file system object and not at the time of read or write operation. For objects
with file system names, it is necessary to be able to resolve the name of the actual object. Names are
resolved either relatively (to the process' working directory) or absolutely (to the process' root directory).
All name resolution begins by searching one of these.

Command for displaying access control information (aclget command)
The aclget command displays the access control information of a file. The information that you view
includes attributes, base permissions, and extended permissions.

For example, to display the access control information for the status file, type the following:

aclget status

310 AIX Version 7.2: Operating system management

The access control information that displays includes a list of attributes, base permissions, and extended
permissions.

See the aclget command in the Commands Reference, Volume 1 for the complete syntax.

Related concepts
Access control list example and description
The following is an example and description of access control lists (ACLs).

Setting access control information (aclput command)
To set the access control information for a file, use the aclput command.

Note: The access control list for a file cannot exceed one memory page (approximately 4096 bytes) in
size.

See the following examples:

For example, to set the access control information for the status file with the access control information
stored in the acldefs file, type the following:

aclput -i acldefs status

To set the access control information for the status file with the same information used for the plans file,
type the following:

aclget plans | aclput status

For more information and the complete syntax, see the aclput command in the Commands Reference,
Volume 1.

Access control list example and description
The following is an example and description of access control lists (ACLs).

The following is an example of an ACL:

attributes: SUID
base permissions:
 owner(frank): rw-
 group(system): r-x
 others: ---
extended permissions:
 enabled
 permit rw- u:dhs
 deny r-- u:chas, g:system
 specify r-- u:john, g:gateway, g:mail
 permit rw- g:account, g:finance

The parts of the ACL and their meanings are the following:

• The first line indicates that the setuid bit is turned on.
• The next line, which introduces the base permissions, is optional.
• The next three lines specify the base permissions. The owner and group names in parentheses are for

information only. Changing these names does not alter the file owner or file group. Only the chown
command and the chgrp command can change these file attributes. For more information about these
commands, see chown and chgrp.

• The next line, which introduces the extended permissions, is optional.
• The next line indicates that the extended permissions that follow are enabled.
• The last four lines are the extended entries. The first extended entry grants user dhs read (r) and write

(w) permission on the file.
• The second extended entry denies read (r) access to user chas only when he is a member of the
system group.

Operating system management 311

• The third extended entry specifies that as long as user john is a member of both the gateway group
and the mail group, has read (r) access. If user john is not a member of both groups, this extended
permission does not apply.

• The last extended entry grants any user in both the account group and the finance group read (r)
and write (w) permission.

Note: More than one extended entry can be applied to a process, with restrictive modes taking
precedence over permissive modes.

See the acledit command in the Commands Reference, Volume 1 for the complete syntax.

Related concepts
Command for displaying access control information (aclget command)
The aclget command displays the access control information of a file. The information that you view
includes attributes, base permissions, and extended permissions.
Related tasks
Editing access control information (acledit command)
Use the acledit command to change the access control information of a file. The command displays the
current access control information and lets the file owner change it.

Editing access control information (acledit command)
Use the acledit command to change the access control information of a file. The command displays the
current access control information and lets the file owner change it.

Before making any changes permanent, the command asks if you want to proceed. For information about
the acledit command, see acledit.

Note: The EDITOR environment variable must be specified with a complete path name; otherwise, the
acledit command will fail.

The access control information that displays is ACL type specific and includes a list of attributes, base
permissions, and extended permissions.

For example, to edit the access control information of the plans file, type the following:

acledit plans

See the acledit command in the Commands Reference, Volume 1 for the complete syntax.

Related concepts
Access control list example and description
The following is an example and description of access control lists (ACLs).

Locking your terminal (lock or xlock command)
Use the lock command to lock your terminal. The lock command requests your password, reads it, and
requests the password a second time to verify it.

In the interim, the command locks the terminal and does not relinquish it until the password is received
the second time. The timeout default value is 15 minutes, but this can be changed with the -Number flag.

Note: If your interface is AIXwindows, use the xlock command in the same manner.

For example, to lock your terminal under password control, type the following:

lock

You are prompted for the password twice so the system can verify it. If the password is not repeated
within 15 minutes, the command times out.

To reserve a terminal under password control with a timeout interval of 10 minutes, type the following:

lock -10

312 AIX Version 7.2: Operating system management

See the lock or the xlock command in Commands Reference for the complete syntax.

Authentication

The xlock command is a Pluggable Authentication Module (PAM) enabled X server command that
locks the X server until the user enters a password. It supports both local UNIX authentication and
PAM authentication for unlocking the X server.

You can set the system-wide configuration to use PAM for authentication by providing root user access
and by modifying the value of the auth_type attribute to PAM_AUTH in the usw stanza of the /etc/
security/login.cfg file.

The authentication mechanisms that are used when PAM is enabled are dependent on the
configuration of the login service in the /etc/pam.conf file. The xlock command requires
the /etc/pam.conf file entry for the auth, account, password, and session module types. The
following configuration is recommended for the /etc/pam.conf file entry in the xlock command:

xlock auth required pam_aix

xlock account required pam_aix

xlock password required pam_aix

xlock session required pam_aix

Command summary for file and system security
The following are commands for file system and security.

Item Description

acledit Edits the access control information of a file

aclget Displays the access control information of a file

aclput Sets the access control information of a file

chmod Changes permission modes

chown Changes the user associated with a file

lock Reserves a terminal

lsgroup Displays the attributes of groups

xlock Locks the local X display until a password is entered

User environment
Each login name has its own system environment.

The system environment is an area where information that is common to all processes running in a
session is stored. You can use several commands to display information about your system.

Operating system management 313

User environment files and customization procedures
These files and procedures help the user customize the system environment.

System startup files

Item Description

/etc/profile System file that contains commands that the system executes when
you log in.

/etc/environment System file that contains variables specifying the basic environment
for all processes.

$HOME/.profile File in your home directory that contains commands that override the
system /etc/profile when you log in. For more information, see .profile
file.

$HOME/.env File in your home directory that overrides the system /etc/
environment and contains variables specifying the basic environment
for all processes. For more information, see .env file.

AIXwindows startup files

Item Description

$HOME/.xinitrc File in your home directory that controls the windows and applications
that start up when you start AIXwindows. For more information,
see .xinitrc file.

$HOME/.Xdefaults File in your home directory that controls the visual or behavioral
aspect of AIXwindows resources. For more information, see
“.Xdefaults file” on page 323.

$HOME/.mwmrc File in your home directory that defines key bindings, mouse button
bindings, and menu definitions for your window manager. For more
information, see “.mwmrc file” on page 324.

Customization procedures

Item Description

PS1 Normal system prompt

PS2 More input system prompt

PS3 Root system prompt

chfont Changes the font used by a display at system restart

stty Sets, resets, and reports workstation operating parameters

System devices list (lscfg command)
To display the name, location, and description of each device found in the current configuration, use the
lscfg command. The list is sorted by device location.

For example, to list the devices configured in your system, at the prompt, type the following:

lscfg

The system displays output similar to the following:

INSTALLED RESOURCE LIST

The following resources are installed on your machine.

314 AIX Version 7.2: Operating system management

+/- = Added/Deleted from Diagnostic Test List.
* = NOT Supported by Diagnostics.

 Model Architecture: chrp
 Model Implementation: Multiple Processor, PCI bus

+ sysplanar0 00-00 CPU Planar
+ fpa0 00-00 Floating Point Processor
+ mem0 00-0A Memory Card
+ mem1 00-0B Memory Card
+ ioplanar0 00-00 I/O Planar
+ rs2320 00-01 RS232 Card
+ tty0 00-01-0-01 RS232 Card Port
- tty1 00-01-0-02 RS232 Card Port
 ..
 ..
 ..

The device list is not sorted by device location alone. It is sorted by the parent/child hierarchy. If the
parent has multiple children, the children are sorted by device location. If the children have the same
device location, they are displayed in the order in which they were obtained by the software. To display
information about a specific device, you can use the -l flag. For example, to list the information on device
sysplanar0, at the prompt, type the following:

lscfg -l sysplanar0

The system displays output similar to the following:

DEVICE LOCATION DESCRIPTION

sysplanar0 00-00 CPU Planar

You can also use the lscfg command to display vital product data (VPD), such as part numbers, serial
numbers, and engineering change levels. For some devices, the VPD is collected automatically and added
to the system configuration. For other devices, the VPD is typed manually. An ME preceding the data
indicates that the data was typed manually.

For example, to list VPD for devices configured in your system, at the prompt, type the following:

lscfg -v

The system displays output similar to the following:

INSTALLED RESOURCE LIST WITH VPD

The following resources are installed in your machine.

 Model Architecture: chrp
 Model Implementation: Multiple Processor, PCI bus

sysplanar0 00-00 CPU Planar

 Part Number.........342522
 EC Level............254921
 Serial Number.......353535

fpa0 00-00 Floating Point Processor
mem0 00-0A Memory Card

 EC Level............990221
.
.
.

See the lscfg command in the Commands Reference, Volume 3 for the complete syntax.

Operating system management 315

Displaying console names
To write the name of the current console device to standard output (usually your screen), use the lscons
command.

For example, at the prompt, type the following:

lscons

The system displays output similar to the following:

/dev/lft0

See the lscons command for the complete syntax.

Displaying the terminal name (tty command)
To display the name of your terminal, use the tty command.

For example, at the prompt, type the following:

tty

The system displays information similar to the following:

/dev/tty06

In this example, tty06 is the name of the terminal, and /dev/tty06 is the device file that contains the
interface to this terminal.

See the tty command in the Commands Reference, Volume 5 for the complete syntax.

Listing available displays (lsdisp command)
To list the displays currently available on your system, providing a display identification name, slot
number, display name, and description of each of the displays, use the lsdisp command.

For example, to list all available displays, type the following:

lsdisp

The following is an example of the output. The list displays in ascending order according to slot number.

Name Slot Name Description
ppr0 00-01 POWER_G4 Midrange Graphics Adapter
gda0 00-03 colorgda Color Graphics Display Adapter
ppr1 00-04 POWER_Gt3 Midrange Entry Graphics Adapter

See the lsdisp command in the Commands Reference, Volume 3 for the complete syntax.

Listing available fonts (lsfont command)
To display a list of the fonts available to your display, use the lsfont command.

For example, to list all fonts available to the display, type the following:

lsfont

The following is an example of the output, showing the font identifier, file name, glyph size, and font
encoding:

FONT FILE GLYPH FONT
ID NAME SIZE ENCODING
==== ============== ===== =========
0 Erg22.iso1.snf 12x30 ISO8859-1
1 Erg11.iso1.snf 8x15 ISO8859-1

316 AIX Version 7.2: Operating system management

See the lsfont command in the Commands Reference, Volume 3 for the complete syntax.

Listing the current software keyboard map (lskbd command)
To display the absolute path name of the current software keyboard map loaded into the system, use the
lskbd command.

For example, to list your current keyboard map, type the following:

lskbd

The following is an example of the listing displayed by the lskbd command:

The current software keyboard map = /usr/lib/nls/loc/C.lftkeymap

Listing available software products (lslpp command)
To display information about software products available on your system, use the lslpp command.

For example, to list all the software products in your system, at the system prompt, type the following:

lslpp -l -a

The following is an example of the output:

Fileset Level State Description
-------------------- ------- -------- -----------------
Path: /usr/lib/objrepos
 X11_3d.gl.dev.obj APPLIED AIXwindows/3D GL
 Development Utilities
Fonts
 X11fnt.oldX.fnt APPLIED AIXwindows Miscellaneous
 X Fonts
X11mEn_US.msg APPLIED AIXwindows NL Message
 files

.

.

.

If the listing is very long, the top portion may scroll off the screen. To display the listing one page (screen)
at a time, use the lslpp command piped to the pg command. At the prompt, type the following:

lslpp -l -a | pg

See the lslpp command in the Commands Reference, Volume 3 for the complete syntax.

List of control key assignments for your terminal (stty command)
To display your terminal settings, use the stty command. Note especially which keys your terminal uses
for control keys.

For example, at the prompt, type the following:

stty -a

The system displays information similar to the following:

.

.

Operating system management 317

.

intr = ^C; quit = ^\; erase = ^H; kill = ^U; eof = ^D;
eol = ^@ start = ^Q; stop = ^S; susp = ^Z; dsusp = ^Y;
reprint = ^R discard = ^O; werase = ^W; lnext = ^V

.

.

.

In this example, lines such as intr = ^C; quit = ^\; erase = ^H; display your control key
settings. The ^H key is the Backspace key, and it is set to perform the erase function.

If the listing is very long, the top portion may scroll off the screen. To display the listing one page (screen)
at a time, use the stty command piped to the pg command. At the prompt, type the following:

stty -a | pg

See the stty command in the Commands Reference, Volume 5 for the complete syntax.

Related concepts
Foreground process cancellation
If you start a foreground process and then decide that you do not want it to finish, you can cancel it by
pressing INTERRUPT. This is usually Ctrl-C or Ctrl-Backspace.

Listing environment variables (env command)
To display your current environment variables, use the env command. An environment variable that is
accessible to all your processes is called a global variable.

For example, to list all environment variables and their associated values, type the following:

env

The following is an example of the output:

TMPDIR=/usr/tmp
myid=denise
LANG=En_US
UNAME=barnard
PAGER=/bin/pg
VISUAL=vi
PATH=/usr/ucb:/usr/lpp/X11/bin:/bin:/usr/bin:/etc:/u/denise:/u/denise/bin:/u/bin1
MAILPATH=/usr/mail/denise?denise has mail !!!
MAILRECORD=/u/denise/.Outmail
EXINIT=set beautify noflash nomesg report=1 showmode showmatch
EDITOR=vi
PSCH=>
HISTFILE=/u/denise/.history
LOGNAME=denise
MAIL=/usr/mail/denise
PS1=denise@barnard:${PWD}>
PS3=#
PS2=>
epath=/usr/bin
USER=denise
SHELL=/bin/ksh
HISTSIZE=500
HOME=/u/denise
FCEDIT=vi
TERM=lft
MAILMSG=**YOU HAVE NEW MAIL. USE THE mail COMMAND TO SEE YOUR PWD=/u/denise
ENV=/u/denise/.env

318 AIX Version 7.2: Operating system management

If the listing is very long, the top portion scrolls off the screen. To display the listing one page (screen) at a
time, use the env command piped to the pg command. At the prompt, type the following:

env | pg

See the env command in the Commands Reference, Volume 2 for the complete syntax.

Displaying an environment variable value (printenv command)
To display the values of environment variables, use the printenv command.

If you specify the Name parameter, the system only prints the value associated with the variable you
requested. If you do not specify the Name parameter, the printenv command displays all current
environment variables, showing one Name =Value sequence per line.

For example, to find the current setting of the MAILMSG environment variable, type the following:

printenv MAILMSG

The command returns the value of the MAILMSG environment variable. For example:

YOU HAVE NEW MAIL

See the printenv command in the Commands Reference, Volume 4 for the complete syntax.

Bidirectional languages (aixterm command)
The aixterm command supports Arabic and Hebrew, which are bidirectional languages.

Bidirectional languages have the ability to be read and written in two directions: from left to right and from
right to left. You can work with Arabic and Hebrew applications by opening a window specifying an Arabic
or Hebrew locale.

See the aixterm command in the Commands Reference, Volume 1 for the complete syntax.

Command summary for user environment and system information
The following are commands for user environment and system information.

Item Description

aixterm Enables you work with bidirectional languages

env Displays the current environment or sets the environment for the execution of a
command

lscfg Displays diagnostic information about a device

lscons Displays the name of the current console

lsdisp Lists the displays currently available on the system

lsfont Lists the fonts available for use by the display

lskbd Lists the keyboard maps currently loaded in the system

lslpp Lists software products

printenv Displays the values of environment variables

stty Displays system settings

tty Displays the full path name of your terminal

Operating system management 319

User environment customization
The operating system provides various commands and initialization files that enable you to customize the
behavior and the appearance of your user environment.

You can also customize some of the default resources of the applications you use on your system.
Defaults are initiated by the program at startup. When you change the defaults, you must exit and then
restart the program for the new defaults take effect.

For information about customizing the behavior and appearance of the Common Desktop Environment,
see the Common Desktop Environment 1.0: Advanced User's and System Administrator's Guide.

System startup files
When you log in, the shell defines your user environment after reading the initialization files that you have
set up. The characteristics of your user environment are defined by the values given to your environment
variables. You maintain this environment until you log out of the system.

The shell uses two types of profile files when you log in to the operating system. It evaluates the
commands contained in the files and then executes the commands to set up your system environment.
The files have similar functions, except that the /etc/profile file controls profile variables for all users
on a system, whereas the .profile file allows you to customize your own environment.

The shell first runs the commands to set up your system environment in the /etc/environment file and
then evaluates the commands contained in the /etc/profile file. After these files are run, the system
then checks to see if you have a .profile file in your home directory. If the .profile file exists, the
system runs this file. The .profile file will specify if an environment file also exists. If an environment
file exists (usually named .env), the system then runs this file and sets up your environment variables.

The /etc/environment, /etc/profile, and .profile files are run once at login time. The .env file,
on the other hand, is run every time you open a new shell or a window.

/etc/environment file
The first file that the operating system uses at login time is the /etc/environment file. The /etc/
environment file contains variables specifying the basic environment for all processes.

When a new process begins, the exec subroutine makes an array of strings available that have the form
Name=Value. This array of strings is called the environment. Each name defined by one of the strings is
called an environment variable or shell variable. The exec subroutine allows the entire environment to be
set at one time.

When you log in, the system sets environment variables from the /etc/environment file before reading
your login profile, named .profile. The following variables make up the basic environment:

Item Description

HOME The full path name of the user's login or HOME directory. The login program
sets this to the name specified in the /etc/passwd file.

LANG The locale name currently in effect. The LANG variable is initially set in
the /etc/profile file at installation time.

NLSPATH The full path name for message catalogs.

LOCPATH The full path name of the location of National Language Support tables.

PATH The sequence of directories that commands, such as sh, time, nice and
nohup, search when looking for a command whose path name is incomplete.

TZ The time zone information. The TZ environment variable is initially set by
the /etc/profile file, the system login profile.

For detailed information about the /etc/environment file, see the Files Reference.

320 AIX Version 7.2: Operating system management

/etc/profile file
The second file that the operating system uses at login time is the /etc/profile file.

The /etc/profile file controls system-wide default variables, such as:

• Export variables
• File creation mask (umask)
• Terminal types
• Mail messages to indicate when new mail has arrived

The system administrator configures the /etc/profile file for all users on the system. Only the system
administrator can change this file.

The following example is a typical /etc/profile file:

#Set file creation mask
umask 022
#Tell me when new mail arrives
MAIL=/usr/mail/$LOGNAME
#Add my /bin directory to the shell search sequence
PATH=/usr/bin:/usr/sbin:/etc::
#Set terminal type
TERM=lft
#Make some environment variables global
export MAIL PATH TERM

For detailed information about the /etc/profile file, see the Files Reference .

.profile file
The .profile file is present in your home ($HOME) directory and lets you customize your individual
working environment.

Because the .profile file is hidden, use the ls -a command to list it.

After the login program adds the LOGNAME (login name) and HOME (login directory) variables to
the environment, the commands in the $HOME/.profile file are executed if the file is present.
The .profile file contains your individual profile that overrides the variables set in the /etc/profile
file. The .profile file is often used to set exported environment variables and terminal modes. You
can customize your environment by modifying the .profile file. Use the .profile file to control the
following defaults:

• Shells to open
• Prompt appearance
• Keyboard sound

The following example is a typical .profile file:

PATH=/usr/bin:/etc:/home/bin1:/usr/lpp/tps4.0/user::
epath=/home/gsc/e3:
export PATH epath
csh

This example has defined two path variables (PATH and epath), exported them, and opened a C shell
(csh).

You can also use the .profile file (or if it is not present, the /etc/profile file) to determine login
shell variables. You can also customize other shell environments. For example, use the .cshrc file
and .kshrc file to customize a C shell and a Korn shell, respectively, when each type of shell is started.

.env file
A fourth file that the operating system uses at login time is the .env file, if your .profile contains the
following line: export ENV=$HOME/.env

The .env file lets you customize your individual working environment variables. Because the .env
file is hidden, use the ls -a command to list it. For more information about the ls command, see

Operating system management 321

ls. The .env file contains the individual user environment variables that override the variables set in
the /etc/environment file. You can customize your environment variables as desired by modifying
your .env file.

The following example is a typical .env file:

export myid=`id | sed -n -e 's/).*$//' -e 's/^.*(//p'`
#set prompt: login & system name & path
if [$myid = root]
 then typeset -x PSCH='#:\${PWD}> '
 PS1="#:\${PWD}> "
 else typeset -x PSCH='>'
 PS1="$LOGNAME@$UNAME:\${PWD}> "
 PS2=">"
 PS3="#?"
fi
export PS1 PS2 PS3
#setup my command aliases
alias ls="/bin/ls -CF" \
 d="/bin/ls -Fal | pg" \
 rm="/bin/rm -i" \
 up="cd .."

Note: When modifying the .env file, ensure that newly created environment variables do not conflict with
standard variables such as MAIL, PS1, PS2, and IFS.

AIXwindows startup files
Different computer systems have different ways of starting the X Server and AIXwindows.

Because different computer systems have different ways of starting the X Server and AIXwindows,
consult with your system administrator to learn how to get started. Usually, the X Server and AIXwindows
are started from a shell script that runs automatically when you log in. You might, however, find that you
need to start the X Server or AIXwindows, or both.

If you log in and find that your display is functioning as a single terminal with no windows displayed, you
can start the X Server by typing the following:

xinit

Note: Before entering this command, make sure that the pointer rests within a window that has a system
prompt.

If this command does not start the X Server, check with your system administrator to ensure that your
search path contains the X11 directory containing executable programs. The appropriate path might differ
from one system to another.

If you log in and find one or more windows without frames, you can start AIXwindows Window Manager by
typing the following:

mwm &

Because AIXwindows permits customization both by programmers writing AIXwindows applications and
by users, you might find that mouse buttons or other functions do not operate as you might expect
from reading this documentation. You can reset your AIXwindows environment to the default behavior by
pressing and holding the following four keys:

Alt-Ctrl-Shift-!

You can return to the customized behavior by pressing this key sequence again. If your system does not
permit this combination of keystrokes, you can also restore default behavior from the default root menu.

.xinitrc file
The xinit command uses a customizable shell script file that lists the X Client programs to start.
The .xinitrc file in your home directory controls the windows and applications that start when you start
AIXwindows.

The xinit command works with shell scripts in the following order:

322 AIX Version 7.2: Operating system management

1. The xinit command first looks for the $XINITRC environment variable to start AIXwindows.
2. If the $XINITRC environment variable is not found, the xinit command looks for the
$HOME/.xinitrc shell script.

3. If the $HOME/.xinitrc shell script is not found, the xinit command starts
the /usr/lib/X11/$LANG/xinitrc shell script.

4. If /usr/lib/X11/$LANG/xinitrc is not found, it looks for the /usr/lpp/X11/defaults /
$LANG/xinitrc shell script. If that script is not found, it searches for the /usr/lpp/X11/
defaults/xinitrc shell script.

5. The xinitrc shell script starts commands, such as the mwm (AIXwindows Window Manager),
aixterm, and xclock commands.

The xinit command performs the following operations:

• Starts an X Server on the current display
• Sets up the $DISPLAY environment variable
• Runs the xinitrc file to start the X Client programs

The following example shows the part of the xinitrc file you can customize:

This script is invoked by /usr/lpp/X11/bin/xinit

.
.
.
#***
Start the X clients. Change the following lines to *
whatever command(s) you desire! *
The default clients are an analog clock (xclock), an lft *
terminal emulator (aixterm), and the Motif Window Manager *
(mwm). *
#**
exec mwm

.Xdefaults file
If you work in an AIXwindows interface, you can customize this interface with the .Xdefaults file.
AIXwindows allows you to specify your preferences for visual characteristics, such as colors and fonts.

Many aspects of Windows operating system based application's appearance and behavior are controlled
by sets of variables called resources. The visual or behavioral aspect of a resource is determined by its
assigned value. There are several different types of values for resources. For example, resources that
control color can be assigned predefined values such as DarkSlateBlue or Black. Resources that specify
dimensions are assigned numeric values. Some resources take Boolean values (True or False).

If you do not have a .Xdefaults file in your home directory, you can create one with any text editor.
After you have this file in your home directory, you can set resource values in it as you wish. A sample
default file called Xdefaults.tmpl is in the /usr/lpp/X11/defaults directory.

The following example shows part of a typical .Xdefaults file:

*AutoRaise: on
*DeIconifyWarp: on
*warp:on
*TitleFont:andysans12
*scrollBar: true
*font: Rom10.500
Mwm*menu*foreground: black
Mwm*menu*background: CornflowerBlue
Mwm*menu*RootMenu*foreground: black
Mwm*menu*RootMenu*background: CornflowerBlue
Mwm*icon*foreground: grey25
Mwm*icon*background: LightGray
Mwm*foreground: black
Mwm*background: LightSkyBlue
Mwm*bottomShadowColor: Blue1
Mwm*topShadowColor: CornflowerBlue
Mwm*activeForeground: white
Mwm*activeBackground: Blue1
Mwm*activeBottomShadowColor: black

Operating system management 323

Mwm*activeTopShadowColor: LightSkyBlue
Mwm*border: black
Mwm*highlight:white

aixterm.foreground: green
aixterm.background: black
aixterm.fullcursor: true
aixterm.ScrollKey: on
aixterm.autoRaise: true
aixterm.autoRaiseDelay: 2
aixterm.boldFont:Rom10.500
aixterm.geometry: 80x25
aixterm.iconFont: Rom8.500
aixterm.iconStartup: false
aixterm.jumpScroll: true
aixterm.reverseWrap: true
aixterm.saveLines: 500
aixterm.scrollInput: true
aixterm.scrollKey: false
aixterm.title: AIX

.mwmrc file
Most of the features that you want to customize can be set with resources in your .Xdefaults file.
However, key bindings, mouse button bindings, and menu definitions for your window manager are
specified in the supplementary .mwmrc file, which is referenced by resources in the .Xdefaults file.

If you do not have a .mwmrc file in your home directory, you can copy it as follows:

cp /usr/lib/X11/system.mwmrc .mwmrc

Because the .mwmrc file overrides the system-wide effects of the system.mwmrc file, your specifications
do not interfere with the specifications of other users.

The following example shows part of a typical system.mwmrc file:

DEFAULT mwm RESOURCE DESCRIPTION FILE (system.mwmrc)
#
menu pane descriptions
#
Root Menu Description

Menu RootMenu
{ "Root Menu" f.title
 no-label f.separator
 "New Window" f.exec "aixterm &"
 "Shuffle Up" f.circle_up
 "Shuffle Down" f.circle_down
 "Refresh" f.refresh
 no-label f.separator
 "Restart" f.restart
 "Quit" f.quit_mwm
}

Default Window Menu Description

Menu DefaultWindowMenu MwmWindowMenu
{ "Restore" _R Alt<Key>F5 f.normalize
 "Move" _M Alt<Key>F7 f.move
 "Size" _S Alt<Key>F8 f.resize
 "Minimize" _n Alt<Key>F9 f.minimize
 "Maximize" _x Alt<Key>F10 f.maximize
 "Lower" _L Alt<Key>F3 f.lower
 no-label f.separator
 "Close" _C Alt<Key>F4 f.kill
}

no acclerator window menu
Menu NoAccWindowMenu
{
 "Restore" _R f.normalize
 "Move" _M f.move
 "Size" _S f.resize
 "Minimize" _n f.minimize

324 AIX Version 7.2: Operating system management

 "Maximize" _x f.maximize
 "Lower" _L f.lower
 no-label f.separator
 "Close" _C f.kill
}

Keys DefaultKeyBindings
{
 Shift<Key>Escape icon|window f.post_wmenu
 Meta<Key>space icon|window f.post_wmenu
 Meta<Key>Tab root|icon|window f.next_key
 Meta Shift<Key>Tab root|icon|window f.prev_key
 Meta<Key>Escape root|icon|window f.next_key
 Meta Shift<Key>Escape root|icon|window f.prev_key
 Meta Ctrl Shift<Key>exclam root|icon|window f.set_behavior
}

#
button binding descriptions
#

Buttons DefaultButtonBindings
{
 <Btn1Down> frame|icon f.raise
 <Btn3Down> frame|icon f.post_wmenu
 <Btn1Down> root f.menu RootMenu
 <Btn3Down> root f.menu RootMenu
 Meta<Btn1Down> icon|window f.lower
 Meta<Btn2Down> window|icon f.resize
 Meta<Btn3Down> window f.move
}

Buttons PointerButtonBindings
{
 <Btn1Down> frame|icon f.raise
 <Btn2Down> frame|icon f.post_wmenu
 <Btn3Down> frame|icon f.lower
 <Btn1Down> root f.menu RootMenu
 Meta<Btn2Down> window|icon f.resize
 Meta<Btn3Down> window|icon f.move
}

#
END OF mwm RESOURCE DESCRIPTION FILE
#

Exporting shell variables (export shell command)
A local shell variable is a variable known only to the shell that created it. If you start a new shell, the old
shell's variables are unknown to it. If you want the new shells that you open to use the variables from an
old shell, export the variables to make them global.

You can use the export command to make local variables global. To make your local shell variables
global automatically, export them in your .profile file.

Note: Variables can be exported down to child shells but not exported up to parent shells.

See the following examples:

• To make the local shell variable PATH global, type the following:

export PATH

• To list all your exported variables, type the following:

export

The system displays information similar to the following:

DISPLAY=unix:0
EDITOR=vi
ENV=$HOME/.env

Operating system management 325

HISTFILE=/u/denise/.history
HISTSIZE=500
HOME=/u/denise
LANG=En_US
LOGNAME=denise
MAIL=/usr/mail/denise
MAILCHECK=0
MAILMSG=**YOU HAVE NEW MAIL.
USE THE mail COMMAND TO SEE YOUR MAILPATH=/usr/mail/denise?denise has mail !!!
MAILRECORD=/u/denise/.Outmail
PATH=/usr/ucb:/usr/lpp/X11/bin:/bin:/usr/bin:/etc:/u/denise:/u/denise/bin:/u/bin1
PWD=/u/denise
SHELL=/bin/ksh

Changing the default font (chfont command)
To change the default font at system startup, use the chfont or smit command. A font palette is a file
that the system uses to define and identify the fonts it has available.

Note: To run the chfont command, you must have root authority.

chfont command

See the following examples on how to use the chfont command:

• To change the active font to the fifth font in the font palette, type the following:

chfont -a5

• To change the font to an italic, roman, and bold face of the same size, type the following:

chfont -n /usr/lpp/fonts/It114.snf /usr/lpp/fonts/Bld14.snf /usr/lpp/fonts/Rom14.snf

See the chfont command in the Commands Reference, Volume 1 for the complete syntax.

smit command

The chfont command can also be run using smit.

To select the active font, type the following:

smit chfont

To select the font palette, type the following:

smit chfontpl

Changing control keys (stty command)
To change the keys that your terminal uses for control keys, use the stty command.

Your changes to control keys remain in effect until you log out. To make your changes permanent, place
them in your .profile file.

See the following examples:

• To assign Ctrl-Z as the interrupt key, type the following:

stty intr ^Z

Be sure to place a space character between intr and ^Z.
• To reset all control keys to their default values, type the following:

stty sane

• To display your current settings, type the following:

stty -a

See the stty command in the Commands Reference, Volume 5 for the complete syntax.

326 AIX Version 7.2: Operating system management

Changing your system prompt
You can change your system prompt.

Your shell uses the following prompt variables:

Item Description

PS1 Prompt used as the normal system prompt

PS2 Prompt used when the shell expects more input

PS3 Prompt used when you have root authority

You can change any of your prompt characters by changing the value of its shell variable. Your prompt
changes remain in effect until you log out. To make your changes permanent, place them in your .env file.

See the following examples:

• To display the current value of the PS1 variable, type the following:

echo "prompt is $PS1"

The system displays information similar to the following:

prompt is $

• To change your prompt to Ready>, type the following:

PS1="Ready> "

• To change your continuation prompt to Enter more->, type the following:

PS2="Enter more->"

• To change your root prompt to Root->, type the following:

PS3="Root-> "

BSD systems reference
This appendix is for system administrators who are familiar with 4.3 BSD UNIX or System V operating
systems. This information explains the differences and the similarities between those systems and AIX.

Topics discussed in this appendix are:

BSD concepts
Before you start working with Berkeley Software Distribution (BSD) you need to understand some of the
difference between BSD and AIX.

Introduction to AIX for BSD system managers
The following are tips to help Berkeley Software Distribution (BSD) system managers get started
managing AIX.

• Start by logging in as root at the graphics console.

• Perform system management from the system console until you become experienced with the system.
It is easier to work from the system console than a remote terminal. Once you are experienced with the
system, you can work remotely from an xterm or an ASCII terminal.

• Take advantage of the several AIX facilities for system management tasks. They include:

– System Management Interface Tool (SMIT). SMIT provides an interface between system managers
and configuration and management commands. SMIT can help system managers perform most
system administration tasks.

Operating system management 327

– The Object Data Manager (ODM). The ODM provides routines that access objects from the ODM
databases. The ODM databases contain device configuration information

– The System Resource Controller (SRC). The SRC provides access and control of daemons and other
system resources through a single interface.

Related concepts
System Resource Controller
The System Resource Controller (SRC) provides a set of commands and subroutines to make it easier for
the system manager and programmer to create and control subsystems.
Related information
Configuration of a large number of devices

Major differences between 4.3 BSD and AIX
The following is a summary of the major differences between AIX and 4.3 BSD systems.

On AIX, the network daemons are started from the /etc/rc.tcpip file, not the /etc/rc.local file.
The /etc/rc.tcpip shell script is invoked from the /etc/inittab file, not the /etc/rc file.

If the System Resource Controller (SRC) is running, the TCP/IP daemons run under SRC control. If you do
not want the TCP/IP daemons running under SRC control, use the smit setbootup_option fast path to
change the system to BSD-style rc configuration.

These network management functions available on 4.3 BSD are supported by AIX:

• Kernel-level SYSLOG logging facilities
• Access rights for UNIX domain sockets.

Configuration data storage

4.3 BSD usually stores configuration data in ASCII files. Related pieces of information are kept on
the same line and record processing (sorting and searching) can be done on the ASCII file itself.
Records can vary in length and are terminated by a line feed. 4.3 BSD provides tools to convert some
potentially large ASCII files to a database (dbm) format. Relevant library functions search the pair of
dbm files if they exist, but search the original ASCII file if the dbm files are not found.

Some configuration data for AIX is stored in ASCII files, but often in a stanza format. A stanza is a set
of related pieces of information stored in a group of several lines. Each piece of information has a label
to make the contents of the file more understandable.

AIX also supports dbm versions of password and user information. Furthermore, the /etc/
passwd, /etc/group, and /etc/inittab files are examples of files for AIX where the information
is stored in traditional form rather than in stanza form.

Other configuration data for AIX are stored in files maintained by the Object Data Manager (ODM).
System Management Interface Tool (SMIT) can manipulate and display information in ODM files.
Alternatively, you can use the ODM commands directly to view these files. To query the ODM files, use
the following commands:

• odmget
• odmshow.

The following ODM commands alter ODM files:

• odmadd
• odmcreate
• odmdrop
• odmchange
• odmdelete.

328 AIX Version 7.2: Operating system management

Attention: Altering ODM files incorrectly can cause the system to fail, and might prevent you
from successfully restarting the system. Only use ODM commands directly on ODM files when
task-specific commands, such as those generated by SMIT, is unsuccessful.

Configuration management

When a system running AIX starts up, a set of configuration-specific commands are invoked by the
Configuration Manager. These configuration-specific commands are called methods. Methods identify
the devices on the system and update the appropriate ODM files in the /etc/objrepos directory.

Device special files in the /dev directly are not preinstalled. Some special files, such as those for hard
disks, are created automatically during the startup configuration process. Other special files, such as
those for ASCII terminals, must be created by the system administrator by using the SMIT Devices
menu. This information is retained in the ODM for later use by the system.

Disk management

In AIX, disk drives are referred to as physical volumes. Partitions are referred to as logical volumes.
As in 4.3 BSD, a single physical volume can have multiple logical volumes. However, unlike 4.3 BSD,
a single logical volume in AIX can span multiple physical volumes. To do this, you must make several
physical volumes into a volume group and create logical volumes on the volume group.

Commands in AIX used for file system and volume management include:

• crfs
• varyonvg
• varyoffvg
• lsvg
• importvg
• exportvg.

The following 4.3 BSD commands are also available:

• mkfs
• fsck
• fsdb
• mount
• umount.

Differences between these commands for 4.3 BSD and for AIX are discussed in “File systems for BSD
4.3 system managers” on page 347.

4.3 BSD maintains a list of file systems in the /etc/fstab file. AIX maintains a stanza for each file
system in the /etc/filesystems file.

The tn3270 command

The tn3270 command is a link to the telnet command, but it uses the /etc/map3270 file and
the current TERM environment variable value to provide 3270 keyboard mappings. Thus, the tn3270
command operates exactly like the BSD version.

If you want to change the escape sequences from the defaults used by the tn3270, telnet, or tn
commands, set the TNESC environment variable before starting these commands.

New commands
To handle new configuration and disk management systems, AIX has about 150 commands that are
new to 4.3 BSD administrators.

Startup
AIX supports automatic identification and configuration of devices. Consequently, the startup process
is very different from 4.3 BSD systems. In addition to the kernel, an image of a boot file system
and the previous base device configuration information is loaded to a RAM disk. In the first phase
of startup, sufficient configuration information is loaded and checked to permit accessing logical

Operating system management 329

volumes. The paging space device is identified to the kernel and the hard disk root file system is
checked. At this time, the operating system changes the root file system from the RAM disk to the
hard disk and completes the startup procedure, including configuring other devices.

User authorization

4.3 BSD, and versions of AT&T UNIX operating systems before SVR4, store all user authentication
information, including encrypted passwords, in the /etc/passwd file. Traditionally, the /etc/
passwd file could be read by all.

On SVR4 systems, encrypted passwords are removed from the /etc/passwd file and stored in
the /etc/shadow file. Only users with root authority and trusted programs (such as the /bin/login
program) can read the /etc/shadow file.

AIX stores encrypted passwords in the /etc/security/passwd file. Other files in the /etc/
security directory are the user and limits files. These three files define the way a user is allowed
to access the system (such as using the rlogin or telnet commands) and the user's resource limits
(such as file size and address space).

Printing

Most 4.3 BSD printing commands are supported with minor differences. One difference is that
the /etc/qconfig file is the configuration file in AIX.

The line printing system for AIX can interoperate with the 4.3 BSD line printing system, both for
submitting print jobs to 4.3 BSD systems and for printing jobs submitted from a 4.3 BSD system.

Shells

AIX supports the Bourne shell, C shell and Korn shell. The full path name for the Bourne shell program
is /bin/bsh. The /bin/sh file is a hard link to the /bin/ksh file. This file can be changed by the
administrator.

AIX does not support setuid or setgid for shell scripts in any shell.

Note:

1. AIX has no shell scripts that rely on the /bin/sh. However, many shell scripts from other systems
rely on /bin/sh being the Bourne shell.

2. Although the Bourne shell and Korn shell are similar, the Korn shell is not a perfect superset of the
Bourne shell.

Related reference
Commands for system administration for BSD 4.3 system managers
This list contains commands that are specifically for administering the environment for AIX.

File comparison table for 4.3 BSD, SVR4, and AIX
The following table compares file names and functions between 4.3 BSD, SVR4, and AIX.

Table 61. File Comparison Table

4.3 BSD File SVR4 File File for AIX Database Type (odm/
dbm)

L-Devices Devices Devices no

L-dialcodes Dialcodes Dialcodes no

L.cmds Permissions Permissions no

L.sys Systems Systems no

USERFILE Permissions Permissions no

aliases mail/
namefiles

aliases aliasesDB/DB dbm

330 AIX Version 7.2: Operating system management

Table 61. File Comparison Table (continued)

4.3 BSD File SVR4 File File for AIX Database Type (odm/
dbm)

fstab vfstab filesystems no

ftpusers ftpusers ftpusers no

gettytab N/A

group group group no

hosts hosts hosts no

hosts.equiv hosts.equiv hosts.equiv no

inetd.conf inetd.conf inetd.conf no

map3270 N/A map3270 no

motd motd motd no

mtab mnttab N/A no

named.boot named.boot named.boot no

named.ca named.ca no

named.hosts named.data (See note) no

named.local named.local no

named.pid named.pid named.pid no

named.rev named.rev no

networks networks networks no

passwd passwd passwd no

printcap qconfig qconfig

protocols protocols no

remote remote remote no

resolv.conf resolv.conf resolv.conf no

sendmail.cf sendmail.cf sendmail.cf sendmail.cfDB neither

services services no

shells shells N/A

stab N/A

syslog.conf syslog.conf no

syslog.pid syslog.pid no

termcap terminfo terminfo

ttys ttys N/A yes odm

types N/A

utmp utmp utmp

vfont N/A

vgrindefs vgrindefs

Operating system management 331

Table 61. File Comparison Table (continued)

4.3 BSD File SVR4 File File for AIX Database Type (odm/
dbm)

wtmp wtmp wtmp

Note: The file names named.ca, named.hosts, named.local, and named.rev are user definable in
the named.boot file. However, these are the names used for these files in the documentation for AIX.

Name and address resolution
The gethostbyname and gethostbyaddr subroutines in the libc library provide support for Domain
Name Service, Network Information Services (NIS, formerly called Yellow Pages), and the /etc/hosts
database.

If the /etc/resolv.conf file exists, the name server is always checked first. If the name is not resolved
and NIS is running, NIS is checked. If NIS is not running, the /etc/hosts file is checked.

Online documentation and man command for BSD 4.3 system managers
AIX supports the man-k, apropos, and whatis commands, but the database used by these commands
must first be created with the catman-w command.

The man command first searches for flat text pages in the /usr/man/cat? files. Next, it searches
nroff-formatted pages in /usr/man/man? files. New man pages can be added in flat text or nroff
form.

Note:

• The man command text pages are not provided with the system. The catman command creates the
database from these text pages. These pages can be either flat text pages stored in the /usr/man/
cat? files or nroff-formatted pages stored the in /usr/man/man? files.

• The Text Formatting licensed program must be installed for the nroff command to be available for the
man command to read nroff-formatted man pages.

For more information about these commands, see man, apropos, whatis, and catman.

NFS and NIS (formerly Yellow Pages) for BSD 4.3 system managers
The following describes NFS and NIS for BSD 4.3 system managers.

Network File System (NFS) and Network Information Services (NIS) daemons are started from the /etc/
rc.nfs file. However, before the NFS and NIS daemons can be started, the portmap daemon must
be started in the /etc/rc.tcpip file. By default, the /etc/rc.nfs file is not invoked by the /etc/
inittab file. If you add a line in the /etc/inittab file to invoke the /etc/rc.nfs script, it should be
invoked after the /etc/rc.tcpip script.

If NIS is active, include a root entry prior to the +:: (plus sign, colon, colon) entry in the /etc/passwd
file and a system entry prior to the +:: entry in the /etc/group file. This allows a system administrator
to log in as root and make changes if the system is unable to communicate with the NIS server.

NFS can be configured by using the SMIT fast path, smit nfs. The and SMIT menus refer to
NIS (formerly Yellow Pages) as NIS. Many of the NFS and NIS commands are found in the /etc
and /usr/etc directory.

Some NFS environments use an arch command to identify machine families and types of machines. For
example if you are using the IBM RS/6000, specify the power identifier for family (CPU), and the ibm6000
identifier for type (machine).

332 AIX Version 7.2: Operating system management

User passwords for BSD 4.3 system managers
When you use the /bin/passwd command for AIX as the root user, you are prompted for the current root
user password.

An example of using the /bin/passwd command follows:

passwd cslater
Changing password for "cslater"
Enter root's Password or
cslater's Old password:
cslater's New password:
Re-enter cslater's
new password:
#

The 4.3 BSD version does not prompt for the current root user password. An example of the 4.3 BSD
version follows:

passwd cslater
New password:
Retype new password:
#

Administering BSD
There are multiple commands for BSD you can use to measure performance, print, and manage your
system.

Accounting for BSD 4.3 system managers
The accounting files in the /usr/lib/acct directory and the system activity reporting tools in
the /usr/lib/sa directory for AIX are identical to those available with AT&T System V Release 4 (SVR4)
with the addition of 4.3 BSD accounting utilities.

Many of the accounting commands are in the /usr/lib/acct directory. To begin system accounting,
use the /usr/lib/acct/startup command. If accounting is not started, commands such as
lastcomm(1) cannot return information.

AIX provides these 4.3 BSD accounting facilities:

Item Description

last(1) Indicates last logins of users and terminals

lastcomm(1) Shows in reverse order the last commands executed

acct(3) Enables and disables process accounting

ac(8) Login accounting

accton(8) Turns system accounting on or off

sa(8) Generally maintains system accounting files.

AIX also provides these System V Interface Definition (SVID) Issue II accounting commands and library
functions:

Item Description

acctcms(1) Produces command usage summaries from accounting records

acctcom(1) Displays selected process-accounting record summaries

acctcon1(1) Converts login/logoff records to session records

acctcon2(1) Converts login/logoff records to total accounting records

acctdisk(1) Generates total accounting records from diskusg(1) command output

Operating system management 333

Item Description

acctmerg(1) Merges total accounting files into an intermediary file

accton(1) Turns on accounting

acctprc1(1) Processes accounting information from acct(3) command

acctprc2(1) Processes output of acctprc1(1) command into total accounting records

acctwtmp(1) Manipulates connect-time accounting records

chargefee(1) Charges to login name

ckpacct(1) Checks size of /usr/adm/pacct file

diskusg(1) Generates disk accounting information

dodisk(1) Performs disk accounting

fwtmp(1) Converts binary records (wtmp file) to formatted ASCII.

Note: The wtmp file is in the /var/adm directory.

lastlogin(1) Updates last date on which each person logged in

monacct(1) Creates monthly summary files

prctmp(1) Prints session record file produced by acctcon1(1) command

prdaily(1) Formats a report of yesterday's accounting information

prtacct(1) Formats and prints any total accounting file

runacct(1) Runs daily accounting

shutacct(1) Called by system shutdown to stop accounting and log the reason

startup(1) Called by system initialization to start accounting

turnacct(1) Turns process accounting on or off

wtmpfix(1) Corrects time/date stamps in a file using wtmp format

Backup for BSD 4.3 system managers
BSD 4.3 system managers can back up data.

The tar and cpio commands can move data between systems. The tar command for AIX is not fully
compatible with the 4.3 BSD tar command. The tar command for AIX requires the -B flag (blocking
input) if it is reading from a pipe. The AT&T cpio command is compatible with this version.

AIX can read and write in dump and restore command format. For example, the backup command for
AIX with the syntax:

backup -0uf Device Filesystemname

is the same as the 4.3 BSD dump command with the syntax:

dump 0uf Device Filesystemname

Similarly, the restore command for AIX with the syntax:

restore -mivf Device

is the same as the 4.3 BSD restore command with the syntax:

restore ivf Device

334 AIX Version 7.2: Operating system management

AIX also has the 4.3 BSD rdump and rrestore commands. The only difference in the two versions is that
for AIX, each argument must be preceded by a - (dash). For example, the following command:

rdump -0 -f orca:/dev/rmt0 /dev/hd2

is equivalent to the 4.3 BSD command:

rdump 0f orca:/dev/rmt0 /dev/hd2

The backup command for AIX with the following syntax:

backup -0f /dev/rmt0 /dev/hd2

is equivalent to the 4.3 BSD dump command with this syntax:

dump 0f /dev/rmt0 /dev/hd2

Non-IBM SCSI tape support

AIX does not directly support non-IBM SCSI tape drives. However, you can add your own header and
interface that use the IBM SCSI driver.

Related concepts
System backup
Once your system is in use, your next consideration should be to back up the file systems, directories,
and files. If you back up your file systems, you can restore files or file systems in the event of a hard disk
crash. There are different methods for backing up information.
Related information
Adding an Unsupported Device to the System

Startup for BSD 4.3 system managers
The following discusses AIX system startup for BSD 4.3 system managers.

On 4.3 BSD systems, the init program is the last step in the startup procedure. The main role of the
init program is to create processes for each available terminal port. The available terminal ports are
found by reading the /etc/ttys file.

On System V, the init program is started at system initialization. The init process starts processes
according to entries in the /etc/inittab file.

AIX follows the System V initialization procedure. You can edit the /etc/inittab file by directly editing
the file, using the telinit command, or by using the following commands:

Item Description

chitab(1) Changes records in the /etc/inittab file

lsitab(1) Lists records in the /etc/inittab file

mkitab(1) Makes records in the /etc/inittab file

rmitab(1) Removes records in the /etc/inittab file

Changes made to the /etc/inittab file take effect the next time the system is rebooted, or when the
telinit q command is run.

Finding and examining files for BSD 4.3 system managers
The following is a list of the BSD file commands that AIX supports.

AIX supports the following 4.3 BSD file commands:

• which
• whereis

Operating system management 335

• what
• file.

AIX does not support the 4.3 BSD fast find syntax of the find command. At this time, there is no
replacement function. The following ffind shell script can be used to simulate the functionality:

#!/bin/bsh
PATH=/bin
for dir in /bin /etc /lib /usr
do
find $dir -print | egrep $1
done

The syntax for the ffind script is:

ffind Filename

Paging space for BSD 4.3 system managers
The following commands assist in managing paging space (also known as swap space).

Item Description

chps(1) Changes attributes of a paging space

lsps(1) List attributes of a paging space

mkps(1) Add an additional paging space to the system

rmps(1) Removes a paging space from the system

swapoff(1) Deactivates one or more paging spaces

swapon(1) Specifies additional devices for paging and swapping

If a large paging space is required, place one paging logical volume for each hard disk. This allows
scheduling of paging across multiple disk drives.

Changing the default startup to permit 4.3 BSD ASCII configuration
You can administer network interfaces for AIX through the SMIT and ODM files, or through 4.3 BSD ASCII
configuration files.

To administer network interfaces through 4.3 BSD ASCII configuration files, uncomment the commands in
the /etc/rc.net file below the heading:

Part II - Traditional
Configuration

Then if you want flat file configuration and SRC support, edit the /etc/rc.net file and uncomment the
hostname, ifconfig, and route commands with the appropriate parameters.

If you want flat file configuration without SRC support, use the smit setbootup_option fast path to
change the system to BSD-style rc configuration. This option configures the system to use the /etc/
rc.bsdnet file at startup. You also have to edit the /etc/rc.bsdnet file and uncomment the
hostname, ifconfig, and route commands with the appropriate parameters.

Additional options for ifconfig and netstat commands
The following is a list of additional options for the ifconfig and netstat commands.

The ifconfig command for AIX has the following additional options:

mtu
The mtu variable specifies the maximum transmission unit (MTU) used on the local network (and local
subnets) and the MTU used for remote networks. To maximize compatibility with Ethernet and other
networks, set both the Token-Ring and Ethernet default mtu value to 1500.

336 AIX Version 7.2: Operating system management

allcast
The allcast flag sets the Token-Ring broadcast strategy. Setting the allcast flag optimizes connectivity
through Token-Ring bridges. Clearing the allcast flag (by specifying -allcast) minimizes excess
traffic on the ring.

The netstat command for AIX has the -v flag. The netstat -v command prints driver statistics such
as transmit byte count, transmit error count, receive byte count, and receive error count. For more
information about the ifconfig and netstat commands, see ifconfig and netstat.

Additional network management commands
The following additional commands are supported on AIX.

Item Description

securetcpip The securetcpip shell script enables controlled access mode, which
provides enhanced network security. It disallows the running of several
unsecured TCP/IP programs, such as the tftp, rcp, rlogin, and rsh
programs. It also restricts the use of the .netrc file.

gated The gated command provides MIB support for SNMP.

no The no command sets network options that include:
dogticks

Sets timer granularity for ifwatchdog routines
subnetsarelocal

Determines if packet address is on the local network
ipsendredirects

Specifies whether the kernel should send redirect signals
ipforwarding

Specifies whether the kernel should forward packets
tcp_ttl

Specifies the time-to-live for Transmission Control Protocol (TCP) packets
udp_ttl

Specifies the time-to-live for User Datagram Protocol (UDP) packets
maxttl

Specifies the time-to-live for Routing Information Protocol (RIP) packets
ipfragttl

Specifies the time-to-live for Internet Protocol (IP) fragments
lowclust

Specifies a low water mark for cluster mbuf pool
lowmbuf

Specifies a low water mark for the mbuf pool
thewall

Specifies the maximum amount of memory that is allocated to the mbuf
and cluster mbuf pool

arpt_killc
Specifies the time in minutes before an inactive complete Address
Resolution Protocol (ARP) entry is deleted

iptrace The iptrace command provides interface-level packet tracing for Internet
protocols.

Operating system management 337

Item Description

ipreport The ipreport command formats the trace into human-readable form. An
example of using this command is the following:

iptrace -i en0 /tmp/iptrace.log
kill iptrace daemon
kill `ps ax | grep iptrace | awk '{ print $1 }'`
ipreport /tmp/iptrace.log | more

Importing a BSD 4.3 password file
You can import a BSD 4.3 password file into AIX.

To import a BSD 4.3 password file, perform the following steps:

1. Copy the BSD 4.3 password file to the /etc/passwd file and enter:

pwdck -y ALL

2. Update the /etc/security/limits file with a null stanza for any new users.
The usrck command does this, but using the usrck command can cause problems unless the /etc/
group file is imported with the /etc/passwd file. For more information about the usrck command,
see usrck.

Attention: If the /etc/security/limits file is modified, the stack must not exceed 65,536
bytes. If it does, running the usrck command can cause problems. Change the stack size to
65,536 and run usrck command again.

3. Run the grpck and usrck commands to verify group and user attributes.

Editing the password file for BSD 4.3 system managers
The following explains how to change entries in the password file and how to administer passwords on
AIX in a BSD 4.3 manner.

In AIX, the lsuser, mkuser, chuser, and rmuser commands are provided for managing passwords. All
of these commands can be used by running SMIT. However, all of these commands deal with only one
user at a time.

For more information about these commands, see lsuser, mkuser, chuser, and rmuser.

Note: Using an editor to change several user name entries at one time requires editing of several
files simultaneously, because passwords are stored in the /etc/security/passwd file, authorization
information is stored in the /etc/security/user file, and the remaining user data is stored in
the /etc/passwd file.

AIX does not support the vipw command but does support the mkpasswd command. However, you can
still administer passwords in AIX in a BSD 4.3 manner. Use the following procedure:

1. Put a BSD 4.3 password file in the /etc/shadow file.
2. Change the permissions to the file by entering:

chmod 000 /etc/shadow

3. Place the following vipw shell script in the /etc directory:

#!/bin/bsh
#
vipw. Uses pwdck for now. May use usrck someday
#
PATH=/bin:/usr/bin:/etc:/usr/ucb # Add to this if your editor is
 # some place else
if [-f /etc/ptmp] ; then
 echo "/etc/ptmp exists. Is someone else using vipw?"
 exit 1
fi

338 AIX Version 7.2: Operating system management

if [! -f /`which "$EDITOR" | awk '{ print $1 }'`] ; then
 EDITOR=vi
fi
cp /etc/shadow /etc/ptmp
if (cmp /etc/shadow /etc/ptmp) ; then
 $EDITOR /etc/ptmp
else
 echo cannot copy shadow to ptmp
 exit 1
fi
if (egrep "^root:" /etc/ptmp >/dev/null) ; then
 cp /etc/ptmp /etc/shadow ; cp /etc/ptmp /etc/passwd
 chmod 000 /etc/passwd /etc/shadow
 pwdck -y ALL 2>1 >/dev/null # return code 114 may change
 rc=$?
 if [$rc -eq 114]; then
 chmod 644 /etc/passwd
 rm -f /etc/passwd.dir /etc/passwd.pag
 mkpasswd /etc/passwd
 # update /etc/security/limits, or ftp
 # will fail
 else
 pwdck -y ALL
 fi
else
 echo bad entry for root in ptmp
fi
rm /etc/ptmp

4. If you use the vipw shell script or the mkpasswd command, be aware that SMIT, and the mkuser,
chuser, and rmuser commands do not use the mkpasswd command. You must run:

mkpasswd /etc/passwd

to update the /etc/passwd.dir and /etc/passwd.pag files.

Attention: Initialization of the IFS variable and the trap statements guard against some of the
common methods used to exploit security holes inherent in the setuid feature. However,
the vipw and passwd shell scripts are intended for relatively open environments where
compatibility is an important consideration. If you want a more secure environment, use only
the standard commands for AIX.

5. Put the following passwd shell script in the /usr/ucb directory:

#!/bin/ksh
#
matches changes to /etc/security/passwd file with changes to
#/etc/shadow
#
IFS=" "
PATH=/bin
trap "exit 2" 1 2 3 4 5 6 7 8 10 12 13 14 15 16 17 18 21 22 \
 23 24 25 27 28 29 30 31 32 33 34 35 36 60 61 62
if [-n "$1"]; then
 USERNAME=$1
else
 USERNAME=$LOGNAME
fi
if [-f /etc/ptmp]; then
 echo password file busy
 exit 1
fi
 trap "rm /etc/ptmp; exit 3" 1 2 3 4 5 6 7 8 10 12 13 \
 14 15 16 17 18 21 22 23 24 25 27 28 29 30 31 \
 32 33 34 35 36 60 61 62
if (cp /etc/security/passwd /etc/ptmp) ; then
 chmod 000 /etc/ptmp else
 rm -f /etc/ptmp exit 1
fi
if (/bin/passwd $USERNAME) ; then
 PW=` awk ' BEGIN { RS = "" }
 $1 == user { print $4 } ' user="$USERNAME:" \
/etc/security/passwd `
else
 rm -f /etc/ptmp

Operating system management 339

 exit 1
fi
rm -f /etc/ptmp
awk -F: '$1 == user { print $1":"pw":"$3 ":"$4":"$5":"$6":"$7 }
 $1 != user { print $0 }' user="$USERNAME" pw="$PW" \
 /etc/shadow > /etc/ptmp
chmod 000 /etc/ptmp
mv -f /etc/ptmp /etc/shadow

6. Change the permissions to the passwd script by entering:

chmod 4711 /usr/ucb/passwd

7. Ensure that each user PATH environmental variable specifies that the /usr/ucb directory be searched
before the /bin directory.

Performance measurement and tuning for BSD 4.3 system managers
Thie following discusses AIX device attributes and performance measurement and tuning.

All devices on AIX have attributes associated with them. To view device attributes, enter:

lsattr -E -l devicename

Any attributes with the value True can be modified with the command:

chdev -l devicename -a attr=value

Attention: Changing device parameters incorrectly can damage your system.

By default, the maximum number of processes per user is 40. The default value might be too low for users
who have many windows open simultaneously. The following command can be used to change the value
systemwide:

hdev -l sys0 -a maxuproc=100

This example changes the maximum number to 100. The new value is set once the system has restarted.

To view the current setting of this and other system attributes, type:

lsattr -E -l sys0

The maxmbuf attribute is not currently supported by the mbuf services.

AIX supports the vmstat and iostat commands, but not the systat command or load averages. For
more information about these commands, see vmstat and iostat.

Printers for BSD 4.3 system managers
The AIX operating system supports two printing subsystems: 4.3 BSD and System V.

The System V style of printing subsystem uses System V Release 4 commands, queues, and files and is
administered the same way. The following paragraphs describe what you need to know to manage the
4.3 BSD style of printing subsystem. You control which subsystem is made active through SMIT. Only one
subsystem can be active at a time.

Printing is managed by programs and configurations in the /usr/lpd directory. The design, configuration,
queueing mechanism, and daemon processes of the 4.3 BSD and printer subsystems for AIX are different.
However, they both use the lpd protocol for remote printing. Both systems use /etc/hosts.lpd, if
it exists, or /etc/host.equiv otherwise. The printer subsystem for AIX offers a gateway to 4.3 BSD
printer subsystems, so systems using AIX can submit print jobs to 4.3 BSD systems and accept print jobs
submitted by 4.3 BSD systems.

340 AIX Version 7.2: Operating system management

The /etc/printcap file of 4.3 BSD does not exist in AIX. This file is a combination of spooler
configuration and printer capability database. Users need to understand the format and keywords of
the printcap file to set up a printer correctly.

The /etc/qconfig file of AIX contains only the spooler configuration information. The printer capability
is defined in the ODM predefined or customized database. You can use the mkvirprt (make virtual
printer) command to define to the system the capabilities of a particular printer.

To make printer lp0 available to print on the remote host viking, put the following in a 4.3 BSD
system /etc/printcap file:

lp0|Print on remote printer attached to
viking:Z
:lp=:rm=viking:rp=lp:st=/usr/spool/lp0d

To do the same in AIX, put the following in the /etc/qconfig file:

lp0:
 device = dlp0
 host = viking
 rq = lp
dlp0:
 backend = /usr/lib/lpd/rembak

AIX supports the following printer commands and library functions:

Item Description

cancel(1) Cancels requests to a line printer

chquedev(1) Changes the printer or plotter queue device names

chvirprt(1) Changes the attribute values of a virtual printer

disable(1) Disables a printer queue

enable(1) Enables a printer queue

hplj(1) Postprocesses troff output for HP LaserJetII with the K cartridge

ibm3812(1) Postprocesses troff output for IBM 3812 Mod 2 Pageprinter

ibm3816(1) Postprocesses troff output for IBM 3816 Pageprinter

ibm5587G(1) Postprocesses troff output for IBM 5587G with 32x32/24x24 cartridge

lp(1) Sends requests to a line printer

lpr(1) Enqueues print jobs

lprm(1) Removes jobs from the line printer spooling queue

lpstat(1) Displays line printer status information

lptest(1) Generates the line printer ripple pattern

lsallqdev(1) Lists all configured printer queue device names within a queue

lsvirprt(1) Displays the attribute values of a virtual printer

mkque(1) Adds a printer queue to the system

mkquedev(1) Adds a printer queue device to the system

mkvirprt(1) Makes a virtual printer

pac(1) Prepares printer/plotter accounting records

piobe(1) Print Job Manager for the printer backend

pioburst(1) Generates burst pages (header and trailer pages) for printer output

piocmdout(3) Subroutine that outputs an attribute string for a printer formatter

Operating system management 341

Item Description

piodigest(1) Digests attribute values for a virtual printer definition and stores

pioexit(3) Subroutine that exits from a printer formatter

pioformat(1) Drives a printer formatter

piofquote(1) Converts certain control characters destined for PostScript printers

piogetstr(3) Subroutine that retrieves an attribute string for a printer formatter

piogetvals(3) Subroutine that initializes Printer Attribute database variables for printer
formatter

piomsgout(3) Subroutine that sends a message from a printer formatter

pioout(1) Printer backend's device driver interface program

piopredef(1) Creates a predefined printer data stream definition

proff(1) Formats text for printers with personal printer data streams

qadm(1) Performs system administration for the printer spooling system

qconfig(4) Configures a printer queueing system

qstatus(1) Provides printer status for the print spooling system

restore(3) Restores the printer to its default state

rmque(1) Removes a printer queue from the system

rmquedev(1) Removes a printer or plotter queue device from the system

rmvirprt(1) Removes a virtual printer

splp(1) Changes or displays printer driver settings

xpr(1) Formats a window dump file for output to a printer

Related information
Printer Overview for System Management

Commands for system administration for BSD 4.3 system managers
This list contains commands that are specifically for administering the environment for AIX.

Item Description

bosboot(1) Initializes a boot device.

bootlist(1) Alters the list of boot devices (or the ordering of these devices in the list)
available to the system.

cfgmgr(1) Configures devices by running the programs in /etc/methods directory.

chcons(1) Redirects the system console to device or file, effective next startup

chdev(1) Changes the characteristics of a device

chdisp(1) Changes the display used by the low-function terminal (LFT) subsystem.

checkcw(1) Prepares constant-width text for the troff command.

checkeq(1) Checks documents formatted with memorandum macros.

checkmm(1) Checks documents formatted with memorandum macros.

checknr(1) Checks nroff and troff files.

chfont(1) Changes the default font selected at boot time.

342 AIX Version 7.2: Operating system management

Item Description

chfs(1) Changes attributes of a file system.

chgroup(1) Changes attributes for groups.

chgrpmem(1) Changes the administrators or members of a group.

chhwkbd(1) Changes the low function terminal (LFT) keyboard attributes stored in the
Object Data Manager (ODM) database.

chitab(1) Changes records in the /etc/inittab file.

chkbd(1) Changes the default keyboard map used by the low-function terminal (LFT) at
system startup.

chkey(1) Changes your encryption key.

chlang Sets LANG environment variable in the /etc/environment file for the next
login.

chlicense(1) There are two types of user licensing, fixed and floating. Fixed licensing is
always enabled, and the number of licenses can be changed through the -u
flag. Floating licensing can be enabled or disabled (on or off) through the -f
flag

chlv(1) Changes the characteristics of a logical volume

chnamsv(1) Changes TCP/IP-based name service configuration on a host

chprtsv(1) Changes a print service configuration on a client or server machine

chps(1) Changes attributes of a paging space.

chpv(1) Changes the characteristics of a physical volume in a volume group.

chque(1) Changes the queue name.

chquedev(1) Changes the printer or plotter queue device names.

chssys(1) Changes a subsystem definition in the subsystem object class.

chtcb(1) Changes or queries the trusted computing base attribute of a file.

chtz Changes the system time zone information.

chuser(1) Changes attributes for the specified user.

chvfs(1) Changes entries in the /etc/vfs file.

chvg(1) Sets the characteristics of a volume group.

chvirprt(1) Changes the attribute values of a virtual printer.

crfs(1) Adds a file system.

crvfs(1) Creates entries in the /etc/vfs file.

exportvg(1) Exports the definition of a volume group from a set of physical volumes.

extendvg(1) Adds physical volumes to a volume group.

grpck(1) Verifies the correctness of a group definition.

importvg(1) Imports a new volume group definition from a set of physical volumes.

lsallq(1) Lists the names of all configured queues.

lsallqdev(1) Lists all configured printer and plotter queue device names within a specified
queue.

lsdisp(1) Lists the displays currently available on the system.

lsfont(1) Lists the fonts available for use by the display.

Operating system management 343

Item Description

lsfs(1) Displays the characteristics of file systems.

lsgroup(1) Displays the attributes of groups.

lsitab(1) Lists the records in the /etc/inittab file.

lskbd(1) Lists the keyboard maps currently available to the low-function terminal (LFT)
subsystem.

lslicense(1) Displays the number of fixed licenses and the status of floating licensing.

lslpp(1) Lists optional program products.

lsnamsv(1) Shows name service information stored in the database.

lsprtsv(1) Shows print service information stored in the database.

lsps Lists paging space and attributes.

lsque(1) Displays the queue stanza name.

lsquedev(1) Displays the device stanza name.

lssrc(1) Gets the status of a subsystem, a group of subsystems, or a subserver.

lsuser(1) Displays attributes of user accounts.

lsvfs(1) Lists entries in the /etc/vfs file.

mkcatdefs(1) Preprocesses a message source file.

runcat(1) Pipes the output data from the mkcatdefs command to the gencat
command.

mkdev(1) Adds a device to the system.

mkfont(1) Adds the font code associated with a display to the system.

mkfontdir(1) Creates a fonts.dir file from a directory of font files.

mkgroup(1) Creates a new group.

mkitab(1) Makes records in the /etc/inittab file.

mklv(1) Creates a logical volume.

mklvcopy(1) Adds copies to a logical volume.

mknamsv(1) Configures TCP/IP-based name service on a host for a client.

mknotify(1) Adds a notify method definition to the notify object class.

mkprtsv(1) Configures TCP/IP-based print service on a host.

mkps(1) Add an additional paging space to the system.

mkque(1) Adds a printer queue to the system.

mkquedev(1) Adds a printer queue device to the system.

mkserver(1) Adds a subserver definition to the subserver object class.

mkssys(1) Adds a subsystem definition to the subsystem object class.

mksysb Backs up mounted file systems in the rootvg volume group for subsequent
reinstallation.

mkszfile Records size of mounted file systems in the rootvg volume group for
reinstallation.

mktcpip(1) Sets the required values for starting TCP/IP on a host.

mkuser(1) Creates a new user account.

344 AIX Version 7.2: Operating system management

Item Description

mkuser.sys(1) Customizes a new user account.

mkvg(1) Creates a volume group.

mkvirprt(1) Makes a virtual printer.

odmadd(1) Adds objects to created object classes.

odmchange(1) Changes the contents of a selected object in the specified object class.

odmcreate(1) Produces the .c (source) and .h (include) files necessary for ODM application
development and creates empty object classes.

odmdelete(1) Deletes selected objects from a specified object class.

odmdrop(1) Removes an object class.

odmget(1) Retrieves objects from the specified object classes and places them into an
odmadd input file.

odmshow(1) Displays an object class definition on the screen.

pwdck(1) Verifies the correctness of local authentication information.

redefinevg Redefines the set of physical volumes of the given volume group in the device
configuration database.

reducevg(1) Removes physical volumes from a volume group. When all physical volumes
are removed from the volume group, the volume group is deleted.

reorgvg(1) Reorganizes the physical partition allocation for a volume group.

restbase(1) Restores customized information from the boot image.

rmdel(1) Removes a delta from a Source Code Control System (SCCS) file.

rmdev(1) Removes a device from the system.

rmf(1) Removes folders and the messages they contain.

rmfs(1) Removes a file system.

rmgroup(1) Removes a group.

rmitab(1) Removes records in the /etc/inittab file.

rmlv(1) Removes logical volumes from a volume group.

rmlvcopy(1) Removes copies from a logical volume.

rmm(1) Removes messages.

rmnamsv(1) Unconfigures TCP/IP-based name service on a host.

rmnotify(1) Removes a notify method definition from the notify object class.

rmprtsv(1) Unconfigures a print service on a client or server machine.

rmps(1) Removes a paging space from the system.

rmque(1) Removes a printer queue from the system.

rmquedev(1) Removes a printer or plotter queue device from the system.

rmserver(1) Removes a subserver definition from the subserver object class.

rmssys(1) Removes a subsystem definition from the subsystem object class.

rmuser(1) Removes a user account.

rmvfs(1) Removes entries in the /etc/vfs file.

rmvirprt(1) Removes a virtual printer.

Operating system management 345

Item Description

savebase(1) Saves base customized device data in the ODM onto the boot device.

swapoff(1) Deactivates one or more paging space.

swapon(1) Specifies additional devices for paging and swapping.

syncvg(1) Synchronizes logical volume copies that are not current.

usrck(1) Verifies the correctness of a user definition.

varyoffvg(1) Deactivates a volume group.

varyonvg(1) Activates a volume group.

Related concepts
Major differences between 4.3 BSD and AIX
The following is a summary of the major differences between AIX and 4.3 BSD systems.

Cron for BSD 4.3 system managers
The cron daemon for this operating system is similar to the System V Release 2 cron daemon.

An entry in the /etc/inittab file starts the cron daemon.

Devices for BSD 4.3 system managers
The following discusses devices for BSD 4.3 system managers.

A device on a 4.3 BSD system is accessible to an application only when:

• The device is physically installed and functioning.
• The driver for the device is in the kernel.
• The device special files for the device exist in the /dev directory.

A device on AIX is accessible to an application only when:

• The device is physically installed and functioning.
• The driver for the device is in the kernel or in a loaded kernel extension.
• The device special files for the device exist in the /dev directory.
• The object database in the /etc/objrepos directory contains entries for the device that match the

physical configuration.

The device specific programs called methods, found in the /etc/methods directory, maintain the
object database. The methods are invoked by the Configuration Manager (accessed through the cfgmgr
command) and other commands.

If a device can no longer be accessed by an application program, it can mean that the hardware is faulty
or it can mean that the configuration database in the /etc/objrepos directory is damaged.

The cfgmgr command processes the configuration database in the /etc/objrepos directory and is
processed at startup time by the cfgmgr command (the Configuration Manager).

The pseudocode below shows the Configuration Manager logic:

/* Main */
While there are rules in the Config_Rules database
 {
 Get the next rule and execute it
 Capture stdout from the last execution
 Parse_Output(stdout)
 }
/* Parse Output Routine */
/* stdout will contain a list of devices found */
Parse_OutPut(stdout)
 {

346 AIX Version 7.2: Operating system management

 While there are devices left in the list
 {
 Lookup the device in the database
 if (!defined)
 Get define method from database and execute
 if (! configured)
 {
 Get config method from database and execute
 Parse_Output(stdout)
 }
 }
 }

UUCP for BSD 4.3 system managers
The following table lists the UUCP commands and files.

Item Description

Dialers(4) Lists modems used for BNU remote communications links

Maxuuxqts(4) Limits the number of instances of the BNU uuxqt daemons that can run

Permissions(4) Specifies BNU command permissions for remote systems

Poll(4) Specifies when the BNU program should poll remote systems

Systems(4) Lists remote computers with which the local system can communicate

rmail(1) Handles remote mail received through BNU

uucheck(1) Checks for files and directories required by BNU

uuclean(1) Removes files from the BNU spool directory

uucleanup(1) Deletes selected files from the BNU spooling directory

uucpadm(1) Enters basic BNU configuration information

uudemon.admin(1) Provides periodic information on the status of BNU file transfers

uudemon.cleanu(1) Cleans up BNU spooling directories and log files

uudemon.hour(1) Initiates file transport calls to remote systems using the BNU program

uudemon.poll(1) Polls the systems listed in the BNU Poll file

uulog(1) Provides information about BNU file-transfer activities on a system

uupoll(1) Forces a poll of a remote BNU system

uuq(1) Displays the BNU job queue and deletes specified jobs from the queue

uusnap(1) Displays the status of BNU contacts with remote systems

uustat(1) Reports the status of and provides limited control over BNU operations

AIX also provides the 4.3 BSD uuencode and uudecode commands. The HDB uugetty command is not
supported. For information about these commands, see uuencode and uudecode.

Related information
BNU file and directory structure

File systems for BSD 4.3 system managers
Similar commands are used to mount and unmount file systems.

AIX uses the /etc/filesystem file to list file system device information, and has similar commands for
mounting and unmounting file systems.

Operating system management 347

/etc/filesystems file and /etc/fstab file
4.3 BSD systems store lists of block devices and mount points in the /etc/fstab file. SVR4 systems
store block devices and mount point information in /etc/vfstab file. AIX stores block device and mount
points information in /etc/filesystems file.

The crfs, chfs, and rmfs commands update the /etc/filesystems file.

4.3 BSD system administrators might be interested in the check variable in the /etc/filesystems file.
The check variable can be set to the value True, False, or to a number. For example, you can specify
check=2 in the /etc/filesystems file. The number specifies the pass of the fsck command that will
check this file system. The check parameter corresponds to the fifth field in an /etc/fstab file record.

There is no dump frequency parameter in the /etc/filesystems file.

File system support on AIX
AIX supports various file systems.

AIX supports disk quotas.

AIX does not allow mounting of diskettes as file systems.

The syntax of the mount and umount commands for AIX differs from 4.3 BSD and from SVR4 versions of
these commands. The commands to mount and unmount all file systems at once are shown for all three
systems in the following table:

mount and unmount Commands

Function Syntax for this operating system 4.3 BSD Syntax SVR4
Syntax

mount all file systems mount all mount -a mountall

unmount all file systems umount all umount -a umountall

See ../devicemanagement/file_sys.dita#file_sys for more information.

Terminals for BSD 4.3 system managers
The following discusses terminals for BSD 4.3 system managers.

Traditionally, 4.3 BSD system managers enable or disable terminal ports by modifying the /etc/ttys file
and sending a HUP signal to the init program.

AIX stores terminal port information in the ODM and starts terminals when the init program reads
the /etc/inittab file. In AIX, use the SMIT interface to configure terminal ports.

There is no fixed mapping between the port and the device special file name in the /dev directory.
Consequently, it is confusing to system managers who are new to AIX which port is to be configured.
When using SMIT, the first planar serial port (physically labeled s1) is referred to as location 00-00-S1,
adapter sa0, and port s1 in the SMIT menus. The second planar serial port (physically labeled s2) is
referred to as location 00-00-S2, adapter sa1, and port s2.

Use the penable and pdisable commands to enable and disable a port.

termcap and terminfo
Like System V, this operating system uses terminfo entries in /usr/lib/terminfo/?/* files.

Users with 4.3 BSD Systems might find the following commands helpful:

captoinfo(1)
Converts a termcap file to a terminfo file

tic(1)
Translates the terminfo files from source to compiled format.

348 AIX Version 7.2: Operating system management

This operating system includes source for many terminfo entries. Some of these might need to be
compiled with the tic command. The termcap file is provided in /lib/libtermcap/termcap.src
file.

Input and output redirection
The AIX operating system allows you to manipulate the input and output (I/O) of data to and from your
system by using specific I/O commands and symbols.

You can control input by specifying the location from which to gather data. For example, you can specify
to read input while data is entered on the keyboard (standard input) or to read input from a file. You can
control output by specifying where to display or store data. You can specify to write output data to the
screen (standard output) or to write it to a file.

Because AIX is a multitasking operating system, it is designed to handle processes in combination with
each other.

Related concepts
Commands for displaying file contents (pg, more, page, and cat commands)
The pg, more, and page commands allow you to view the contents of a file and control the speed at which
your files are displayed.
Input and output redirection in the Korn shell or POSIX shell
Before the Korn shell executes a command, it scans the command line for redirection characters. These
special notations direct the shell to redirect input and output.

Standard input, standard output, and standard error files
When a command begins running, it usually expects that the following files are already open: standard
input, standard output, and standard error (sometimes called error output or diagnostic output).

A number, called a file descriptor, is associated with each of these files, as follows:

Item Description

File descriptor 0 Standard input

File descriptor 1 Standard output

File descriptor 2 Standard error (diagnostic) output

A child process normally inherits these files from its parent. All three files are initially assigned to the
workstation (0 to the keyboard, 1 and 2 to the display). The shell permits them to be redirected elsewhere
before control is passed to a command.

When you enter a command, if no file name is given, your keyboard is the standard input, sometimes
denoted as stdin. When a command finishes, the results are displayed on your screen.

Your screen is the standard output, sometimes denoted as stdout. By default, commands take input from
the standard input and send the results to standard output.

Error messages are directed to standard error, sometimes denoted as stderr. By default, this is your
screen.

These default actions of input and output can be varied. You can use a file as input and write results of a
command to a file. This is called input/output redirection.

The output from a command, which normally goes to the display device, can be redirected to a file
instead. This is known as output redirection. This is useful when you have a lot of output that is difficult to
read on the screen or when you want to put files together to create a larger file.

Though not used as much as output redirection, the input for a command, which normally comes from the
keyboard, can also be redirected from a file. This is known as input redirection. Redirection of input lets
you prepare a file in advance and then have the command read the file.

Operating system management 349

Standard output redirection
When the notation >filename is added to the end of a command, the output of the command is written
to the specified file name. The > symbol is known as the output redirection operator.

Any command that outputs its results to the screen can have its output redirected to a file.

Redirecting output to a file
The output of a process can be redirected to a file by typing the command followed by the output
redirection operator and file name.

For example, to redirect the results of the who command to a file named users, type the following:

who > users

Note: If the users file already exists, it is deleted and replaced, unless the noclobber option of the set
built-in ksh (Korn shell) or csh (C shell) command is specified.

To see the contents of the users file, type the following:

cat users

A list similar to the following is displayed:

denise lft/0 May 13 08:05
marta pts/1 May 13 08:10
endrica pts/2 May 13 09:33

Redirecting output to append to a file
When the notation >> filename is added to the end of a command, the output of the command is
appended to the specified file name, rather than writing over any existing data. The >> symbol is known as
the append redirection operator.

For example, to append file2 to file1, type the following:

cat file2 >> file1

Note: If the file1 file does not exist, it is created, unless the noclobber option of the set built-in ksh
(Korn shell) or csh (C shell) command is specified.

Creating a text file with redirection from the keyboard
Used alone, the cat command uses whatever you type at the keyboard as input. You can redirect this
input to a file.

Press Ctrl-D on a new line to signal the end of the text.

At the system prompt, type the following:

cat > filename
This is a test.
^D

Text file concatenation
You can combine multiple files into one file. Combining various files into one file is known as
concatenation.

The following example creates file4, which consists of file1, file2, and file3, appended in the
order below.

See the following examples:

350 AIX Version 7.2: Operating system management

• At the system prompt, type the following:

cat file1 file2 file3 > file4

• The following example shows a common error when concatenating files:

cat file1 file2 file3 > file1

Attention: In this example, you might expect the cat command to append the contents of
file1, file2, and file3 into file1. The cat command creates the output file first, so it
actually erases the contents of file1 and then appends file2 and file3 to it.

Standard input redirection
When the notation < filename is added to the end of a command, the input of the command is read
from the specified file name. The < symbol is known as the input redirection operator.

Note: Only commands that normally take their input from the keyboard can have their input redirected.

For example, to send the file letter1 as a message to user denise with the mail command, type the
following:

mail denise < letter1

Discarding output with the /dev/null file
The /dev/null file is a special file. This file has a unique property: it is always empty. Any data sent
to /dev/null is discarded. This is a useful feature when you run a program or command that generates
output that you want to ignore.

For example, you have a program named myprog that accepts input from the screen and generates
messages while it is running that you would rather not see on your screen. To read input from the file
myscript and discard the standard output messages, type the following:

myprog < myscript >/dev/null

In this example, myprog uses the file myscript as input, and all standard output is discarded.

Standard error and other output redirection
In addition to the standard input and standard output, commands often produce other types of output,
such as error or status messages known as diagnostic output. Like standard output, standard error output
is written to the screen unless it is redirected.

To redirect standard error or other output, use a file descriptor. A file descriptor is a number associated
with each of the I/O files that a command ordinarily uses. File descriptors can also be specified to redirect
standard input and standard output. The following numbers are associated with standard input, output,
and error:

Ite
m

Description

0 Standard input (keyboard)

1 Standard output (display)

2 Standard error (display)

To redirect standard error output, type the file descriptor number 2 in front of the output or append
redirection symbols (> or > >) and a file name after the symbol. For example, the following command
takes the standard error output from the cc command where it is used to compile the testfile.c file
and appends it to the end of the ERRORS file:

Operating system management 351

cc testfile.c 2>> ERRORS

Other types of output can also be redirected using the file descriptors from 0 through 9. For example, if
the cmd command writes output to file descriptor 9, you can redirect that output to the savedata file
with the following command:

cmd 9> savedata

If a command writes to more than one output, you can independently redirect each one. Suppose that a
command directs its standard output to file descriptor 1, directs its standard error output to file descriptor
2, and builds a data file on file descriptor 9. The following command line redirects each of these outputs
to a different file:

command > standard 2> error 9> data

Redirecting output to inline input (here) documents
You can redirect output to inline input (here) documents.

If a command is in the following form:

command << eofstring

and eofstring is any string that does not contain pattern-matching characters, then the shell takes the
subsequent lines as the standard input of command until the shell reads a line consisting of only eofstring
(possibly preceded by one or more tab characters). The lines between the first eofstring and the second
are frequently referred to as an inline input document, or a here document. If a hyphen (-) immediately
follows the << redirection characters, the shell strips leading tab characters from each line of the here
document before it passes the line to command.

The shell creates a temporary file containing the here document and performs variable and command
substitution on the contents before passing the file to the command. It performs pattern matching on file
names that are part of command lines in command substitutions. To prohibit all substitutions, quote any
character of the eofstring:

command << \eofstring

The here document is especially useful for a small amount of input data that is more conveniently placed
in the shell procedure rather than kept in a separate file (such as editor scripts). For example, you could
type the following:

cat <<- xyz
 This message will be shown on the
 display with leading tabs removed.
 xyz

Related concepts
Input and output redirection in the Korn shell or POSIX shell
Before the Korn shell executes a command, it scans the command line for redirection characters. These
special notations direct the shell to redirect input and output.

Redirecting output using pipes and filters
You can connect two or more commands so that the standard output of one command is used as the
standard input of another command. A set of commands connected this way is known as a pipeline.

The connection that joins the commands is known as a pipe. Pipes are useful because they let you
tie many single-purpose commands into one powerful command. You can direct the output from one
command to become the input for another command using a pipeline. The commands are connected by a
pipe (|) symbol.

352 AIX Version 7.2: Operating system management

When a command takes its input from another command, modifies it, and sends its results to standard
output, it is known as a filter. Filters can be used alone, but they are especially useful in pipelines. The
most common filters are as follows:

• sort
• more
• pg

See the following examples:

• The ls command writes the contents of the current directory to the screen in one scrolling data stream.
When more than one screen of information is presented, some data is lost from view. To control the
output so the contents display screen by screen, you can use a pipeline to direct the output of the ls
command to the pg command, which controls the format of output to the screen. For example, type the
following:

ls | pg

In this example, the output of the ls command becomes the input for the pg command. Press Enter to
continue to the next screen.

Pipelines operate in one direction only (left to right). Each command in a pipeline runs as a separate
process, and all processes can run at the same time. A process pauses when it has no input to read or
when the pipe to the next process is full.

• Another example of using pipes is with the grep command. The grep command searches a file for lines
that contain strings of a certain pattern. To display all your files created or modified in July, type the
following:

ls -l | grep Jul

In this example, the output of the ls command becomes the input for the grep command.

Displaying program output and copying to a file (tee command)
The tee command, used with a pipe, reads standard input, then writes the output of a program to
standard output and simultaneously copies it into the specified file or files. Use the tee command to view
your output immediately and at the same time, store it for future use.

For example, type the following:

ps -ef | tee program.ps

This displays the standard output of the ps -ef command on the display device, and at the same time,
saves a copy of it in the program.ps file. If the program.ps file already exists, it is deleted and replaced
unless the noclobber option of the set built-in command is specified.

For example, to view and save the output from a command to an existing file:

ls -l | tee -a program.ls

This displays the standard output of ls -l at the display device and at the same time appends a copy of
it to the end of the program.ls file.

The system displays information similar to the following, and the program.ls file contains the same
information:

-rw-rw-rw- 1 jones staff 2301 Sep 19 08:53 161414
-rw-rw-rw- 1 jones staff 6317 Aug 31 13:17 def.rpt
-rw-rw-rw- 1 jones staff 5550 Sep 10 14:13 try.doc

See the tee command in the Commands Reference, Volume 5 for the complete syntax.

Operating system management 353

Clearing your screen (clear command)
Use the clear command to empty the screen of messages and keyboard input.

At the prompt, type the following:

clear

The system clears the screen and displays the prompt.

Sending a message to standard output
Use the echo command to display messages on the screen.

For example, to write a message to standard output, at the prompt, type the following:

echo Please insert diskette . . .

The following message is displayed:

Please insert diskette . . .

For example, to use the echo command with pattern-matching characters, at the prompt, type the
following:

echo The back-up files are: *.bak

The system displays the message The back-up files are: followed by the file names in the current
directory ending with .bak.

Appending a single line of text to a file (echo command)
Use the echo command, used with the append redirection operator, to add a single line of text to a file.

For example, at the prompt, type the following:

echo Remember to back up mail files by end of week.>>notes

This adds the message Remember to back up mail files by end of week. to the end of the file
notes.

Copying your screen to a file (capture and script commands)
Use the capture command, which emulates a VT100 terminal, to copy everything printed on your
terminal to a file that you specify. Use the script command to copy everything printed on your terminal
to a file that you specify, without emulating a VT100 terminal.

Both commands are useful for printing records of terminal dialogs.

For example, to capture the screen of a terminal while emulating a VT100, at the prompt, type the
following:

capture screen.01

The system displays information similar to the following:

Capture command is started. The file is screen.01.
Use ^P to dump screen to file screen.01.
You are now emulating a vt100 terminal.
Press Any Key to continue.

354 AIX Version 7.2: Operating system management

After entering data and dumping the screen contents, stop the capture command by pressing Ctrl-D or
typing exit and pressing Enter. The system displays information similar to the following:

Capture command is complete. The file is screen.01.
You are NO LONGER emulating a vt100 terminal.

Use the cat command to display the contents of your file.

For example, to capture the screen of a terminal, at the prompt, type the following:

script

The system displays information similar to the following:

Script command is started. The file is typescript.

Everything displayed on the screen is now copied to the typescript file.

To stop the script command, press Ctrl-D or type exit and press Enter. The system displays
information similar to the following:

Script command is complete. The file is typescript.

Use the cat command to display the contents of your file.

See the capture and script commands in Commands Reference for the complete syntax.

Command to display text in large letters on your screen (banner command)
The banner command displays ASCII characters to your screen in large letters.

Each line in the output can be up to 10 digits (or uppercase or lowercase characters) in length.

For example, at the prompt, type the following:

banner GOODBYE!

The system displays GOODBYE! in large letters on your screen.

Command summary for input and output redirection
The following are commands for input and output redirection.

Item Description

> “Standard output redirection” on page 350

< “Standard input redirection” on page 351

> > “Redirecting output to append to a file” on page 350

| “Redirecting output using pipes and filters” on page 352

banner Writes ASCII character strings in large letters to standard output

capture Allows terminal screens to be dumped to a file

clear Clears the terminal screen

echo Writes character strings to standard output

script Allows terminal input and output to be copied to a file

tee Displays the standard output of a program and copies it into a file

Operating system management 355

AIX kernel recovery
Beginning with AIX 6.1, the kernel can optionally recover from errors in selected routines, avoiding an
unplanned system outage.

Kernel recovery is disabled by default. If kernel recovery is enabled, the system might pause for a short
time during a kernel recovery action. This time is generally less than two seconds. The following actions
occur immediately after a kernel recovery action:

• The system console displays the following message:

 A kernel error recovery action has occurred. A recovery log
 has been logged in the system error log.

• AIX adds an entry into the error log. You can send the error log data to IBM for service, similar to
sending data from a full system termination. The following is a sample recovery error log entry:

LABEL: RECOVERY
Date/Time: Fri Feb 16 14:04:17 CST 2007
Type: INFO
Resource Name: RMGR
Description
Kernel Recovery Action
Detail Data
Live Dump Base Name
RECOV_20070216200417_0000
Function Name
w_clear
FRR Name
w_init_clear_frr
Symptom String
273
EEEE00009627A072
F10001001B18BBC0
w_clear+D0
wdog0030+288
test_index+4C
Recovery Log Data
0001 0000 0000 0000 F000 0000 2FFC AEB0 0000 0111 0000 0000 0000 0000 0021 25BC
8000 0000 0002 9032 EEEE 0000 9627 A072 F100 0100 1B18 BBC0 0000 0000 0000 0000
0000 0001 0000 0000 0006 0057 D2FF 8C00 0001 0148 0500 0000 8000 0000 0002 9032
.....

• AIX generates a live dump. The data from a live dump is located by default in the /var/adm/ras/
livedump directory and the file is named RECOV_timestamp_sequence, where timestamp specifies the
time of the kernel recovery occurrence, and sequence specifies the number of times that kernel recovery
has been invoked. You can send live dump data to IBM for service, similar to sending data from a full
system termination. For more information about live dumps, see live dumps in Kernel Extensions and
Device Support Programming Concepts.

Attention: Some functions might be lost after a kernel recovery, but the operating system remains in a
stable state. If necessary, shut down and restart your system to restore the lost functions.

Memory and processor considerations
AIX maintains data on the status of kernel recovery during mainline kernel operations. When kernel
recovery is enabled, additional processor instructions are required to maintain the data and additional
memory is required to save the data. The impact to processor usage is minimal. Additional memory
consumption can be determined by the following equation, where maxthread is the maximum number of
threads running on the system and procnum is the number of processors:

memory required = 4 KB x maxthread + 128 KB x procnum

As show in the following example, a system with 16 processors and a maximum of 1000 threads
consumes an additional 6304 KB:

356 AIX Version 7.2: Operating system management

4 x 1000 + 128 x 16 = 6304 KB

Enabling and disabling kernel recovery
You can enable or disable kernel recovery from the SMIT path interface.

To enable, or disable kernel recovery, use the following SMIT path:

Problem Determination > Kernel Recovery > Change Kernel Recovery State > Change Next Boot
Kernel Recovery State

You can also display the current kernel recovery state by using the following SMIT path:

Problem Determination > Kernel Recovery > Show Kernel Recovery State

AIX Event Infrastructure for AIX and AIX clusters-AHAFS
AIX Event Infrastructure for AIX and AIX clusters comprise an event monitoring framework for monitoring
predefined and user-defined events.

Introduction to the AIX Event Infrastructure
The AIX Event Infrastructure is an event monitoring framework for monitoring predefined and user-
defined events.

In the AIX Event Infrastructure, an event is defined as any change of a state or a value that can
be detected by the kernel or a kernel extension at the time the change occurs. The events that can
be monitored are represented as files in a pseudo file system. Some advantages of the AIX Event
infrastructure are:

• There is no need for constant polling. Users monitoring the events are notified when those events occur.
• Detailed information about an event (such as stack trace and user and process information) is provided

to the user monitoring the event.
• Existing file system interfaces are used so that there is no need for a new application programming

interface (API).
• Control is handed to the AIX Event Infrastructure at the exact time the event occurs.

AIX Event Infrastructure components
The AIX Event Infrastructure is made up of the following four components:

• The kernel extension implementing the pseudo file system.
• The event consumers that consume the events.
• The event producers that produce events.
• The kernel component that serve as an interface between the kernel extension and the event producers.

Operating system management 357

AIX Event Infrastructure kernel extension
The AIX Event Infrastructure kernel extension implements the pseudo file system.

All events are represented as files in this file system. There are four file object types:

• .list files: There is only one .list file in the pseudo file system evProds.list. This is a special file which
when read, will return the names of all currently defined event producers.

• .monFactory directories: Monitor factories are a special type of directory. These are directory
representations of the event producers. Monitor factory directories and their parent subdirectories are
automatically created for the user.

• subdirectories: Sub directories are used both for ease of management and to represent full path names
for monitor files (see .mon files).

• .mon files: The monitor files represent the events that can be monitored. The full pathname of a
monitor file from its parent monitor factory, minus the .mon extension is the full representation of the
event being monitored. For example, the file /aha/fs/modFile.monFactory/etc/password.mon is used
to monitor the modifications to the /etc/passwd file. Monitor files can only exist underneath a monitor
factory.

No other regular files can be created in this pseudo file system. Since the AIX Event Infrastructure file
system is an in-memory file system, there is a maximum of 32 KB of inodes that may exist. The number of
inodes used will be displayed in the df command output.

An example of the layout of an AIX Event Infrastructure file system is shown below:

358 AIX Version 7.2: Operating system management

Note:

The evProds.list file exists directly under the root of the file system, and contains the list of event
producers that are defined and usable under this operating system instance.

Using the LFS interface, the AIX Event Infrastructure will translate text input written to monitor files
into specifications on how the user wants to be notified of event occurrences. Once a user has issued a
select() or a blocking read() call to signify the beginning of their monitoring, the AIX Event Infrastructure
will notify the corresponding event producer to start monitoring the specified event.

When an event occurrence is detected, the AIX Event Infrastructure will notify all waiting consumers
whose monitoring criteria have been met.

Event consumers
Event consumers are user space processes that are waiting on events to occur.

Consumers set up event monitoring by writing information to a monitor file specifying how and when they
should be notified. Consumers may wait for event notification in a select() call or a blocking read() call.

The AIX Event Infrastructure is not thread safe. Processes should not use multiple threads to monitor the
same event.

Event producers
Event producers are sections of code within the kernel or a kernel extension that can detect an event.

When a monitored event occurs, the event producer notifies the AIX Event Infrastructure kernel extension
and sends any associated information about the event to pass on to the consumer.

Currently, there are two main classes of event producers:

• Those that monitor for a state change
• Those that monitor for a value exceeding user-specified thresholds

Operating system management 359

ahafs_evprods kernel service
The ahafs_evprods kernel service facilitates communication between the AIX Event Infrastructure kernel
extension and event producers.

To facilitate communication between the AIX Event Infrastructure kernel extension and event producers,
the ahafs_evprods kernel service is exported. Inside the kernel, a list of registered event producers is
used to look up event producers and to pass information between appropriate event producers and the
kernel extension.

Setting up the AIX Event Infrastructure
Steps required for setting up the AIX Event Infrastructure.

The only steps necessary to set up the AIX Event Infrastructure are:

1. Install the bos.ahafs fileset.
2. Create the directory for the desired mount point.
3. Run the following command:

mount –v ahafs <mount point> <mount point>

Example

mkdir /aha
mount -v ahafs /aha /aha

Mounting an AIX Event Infrastructure file system will automatically load the kernel extension and
create all monitor factories. Only one instance of an AIX Event Infrastructure file system may be
mounted at a time. An AIX Event Infrastructure file system may be mounted on any regular directory,
but it is suggested that users use /aha.

High-level view of how the AIX Event Infrastructure works
A consumer may monitor multiple events, and multiple consumers may monitor the same event. Each
consumer may monitor value-based events with a different threshold value. To handle this, the AIX Event
Infrastructure kernel extension keeps a list of each consumer's information including:

• Specified wait type (WAIT_IN_READ or WAIT_IN_SELECT)
• Level of information requested
• Threshold (s) for which to monitor (if monitoring a threshold value event)
• A buffer used to hold information about event occurrences.

Event information is stored per-process so that different processes monitoring the same event do not
alter the event data. When a consumer process reads from a monitor file, it will only read its own copy of
the event data.

Typical flow of monitoring an event
The steps in monitoring an event is described in this topic.

1. A process attempts to open or create a monitor file.
2. AIX Event Infrastructure passes the pathname of the monitor file to the appropriate event producer.

The event producer verifies that the monitor file represents a valid event and that the process has
access to monitor the event.

3. The process writes information to the file specifying:

a. The wait type (WAIT_TYPE=WAIT_IN_READ or WAIT_TYPE=WAIT_IN_SELECT). The default
wait type is WAIT_IN_SELECT.

360 AIX Version 7.2: Operating system management

b. When to be notified. For state change events, the user must specify CHANGED=YES. For
threshold value events, the user may specify THRESH_HI=<value>, THRESH_LO=<value>, or
both, depending on the capabilities of the associated event producer. There is no default for this
specification, and CHANGED=YES and THRESH_*=<value> may not both be specified.

4. AIX Event Infrastructure will then allocate the per-process block to store this information if one does
not already exist for this process and fill it with the information written by the user.

5. The process issues select() or a blocking read() on the monitor file
6. AIX Event Infrastructure will call ahafs_evprods to check that the thresholds specified are valid for

this particular event. For example, the utilFs event producer does not allow values of > 100%. If the
threshold is not valid, the select() or read() call will return RC_FROM_EVPROD and upon a read of
the monitor file will be EINVAL returned.

7. For threshold value event producers, only one value is sent to the event producer for each threshold
(hi or lo) for monitoring. At select() or blocking read() time, AIX Event Infrastructure will register this
new threshold with the event producer if one of the following is true:

a. If no other process is monitoring this event, the threshold (s) specified by this consumer are
registered with the event producer.

b. If there are other processes monitoring this event, then if the THRESH_LO specified by the
consumer is higher than the currently monitored low threshold OR if the THRESH_HI specified by
the consumer is lower than the currently monitored high threshold AIX Event Infrastructure calls
into the ahafs_evprods kernel service to update the currently monitored threshold.

8. Upon return from ahafs_evprods kernel service, the actual value of the event is returned (in some
cases). If the actual value returned has already met or exceeded either threshold, the read() or
select() call will return immediately and the RC_FROM_EVPROD logged in the event buffer will be
EALREADY. The read() or select() calls will return 0.

9. For state change event producers, the ahafs_evprods function is always called to register the event.
10. Upon a successful registration, AIX Event Infrastructure sets up notification. For consumers waiting

in select(), the notification is set up through selreg(). For consumers blocking in a read() call, the
thread is put to sleep with e_sleep_thread().

11. Once an event producer detects that an event has occurred, it will notify AIX Event Infrastructure
with information regarding the event (i.e. information about the process triggering the event, the
current value, the return code, etc.).

12. During this callback from the event producer, AIX Event Infrastructure will:

a. Determine the ahaNode corresponding to the event
b. Search the list of waiting consumers to determine whose thresholds have been met or exceeded

to notify with the selnotify() or e_wakeup() call. All consumers waiting on a state change event
will be notified.

13. Once the process is notified of the event, it reads from the monitor file to obtain event data. An
example of output from an event is below.

An example output for a state change event producer who has specified that a stack trace should be
taken:

BEGIN_EVENT_INFO
TIME_tvsec=1269377315
TIME_tvnsec=955475223
SEQUENCE_NUM=0
PID=2490594
UID=0
UID_LOGIN=0
GID=0
PROG_NAME=cat
RC_FROM_EVPROD=1000
END_EVENT_INFO

Operating system management 361

An example for a threshold value event:

BEGIN_EVENT_INFO
TIME_tvsec=1269378095
TIME_tvnsec=959865951
SEQUENCE_NUM=0
CURRENT_VALUE=2
RC_FROM_EVPROD=1000
END_EVENT_INFO

Note: Due to the asynchronous nature of process notification, the current value returned may be stale by
the time a process reads the monitor file. Users are notified when the threshold is first met or exceeded,
but other operations which may alter the values being monitored will not be blocked.

Using the AIX Event Infrastructure
All directories in the AIX Event Infrastructure file system have an access mode of 1777 and all files have
access mode of 0666.

Currently, all directories in the AIX Event Infrastructure file system have a mode of 1777 and all files
have a mode of 0666. These modes cannot be changed, but the ownership of files and directories may be
changed. Access control for monitoring events is done at the event producer level. Creation / modification
times are not maintained and are always returned as the current time when issuing stat () on a file object
within the pseudo file system. Any attempt to modify these times will return an error.

Monitoring events

Creating the monitor file
The monitor file corresponding to the event must be created to monitor an event.

Before monitoring an event, the monitor file corresponding to the event must be created. The AIX Event
Infrastructure does support open() with the O_CREAT flag. As an example, we will follow the steps
required to monitor the file system /filesys/clj-fs for a utilization of 90%.

• The necessary subdirectories must also be created:

mkdir /aha/fs/utilFs.monFactory/filesys

• Open the file /aha/fs/utilFs.monFactory/filesys/clj-fs.mon.

Before a monitor file can be created, the AIX Event Infrastructure kernel extension will call the event
producer to determine if the event being requested is valid and to determine if the user has sufficient
authority to monitor the specified event. Here are some of the common errors which can be returned from
a monitor file create or open:

Table 62. Return Codes

Return Code Details

ENODEV There is no event corresponding to the path
specified.

Note: An ENODEV error may still be returned when
trying to open an existing monitor file when the
event no longer exists.

EPERM User does not have permission to monitor the
specified event.

ENOTSUP The event specified does not support monitoring by
AIX Event Infrastructure.

362 AIX Version 7.2: Operating system management

Writing to the monitor file
The consumer process writes to the monitor file to specify how and when it should be notified of events.

Once the monitor file desired is created and opened, the consumer process will write to the monitor file to
specify how and when it should be notified of events. This data is written in <key>=<value> pairs which
may be separated by a ; or whitespace. The acceptable <key>=<value> pairs are as follows:

Table 63. Acceptable <key>=<value> pairs

Key Acceptable Values Details

CHANGED YES Specifies that the event
to be monitored is
of AHAFS_THRESHOLD_STATE
type and that the consumer
should be notified when the state
of the event changes.

THRESH_HI Unsigned, 64 bit integer,
specified in decimal

This key specifies the high
threshold for the event. Once
the event has reached this
threshold (equal to or greater),
the consumer will be notified.

Note: While this is a 64 bit
integer, some event producers
may have limits on what values
can actually be monitored. For
example, acceptable values for
THRESH_HI for the utilFs event
producer are between 1 and
100, inclusive. The validity of the
threshold for the event producer
is not checked at write time,
but rather at select() or blocking
read() time.

THRESH_LO Unsigned, 64 bit integer,
specified in decimal

This key specifies the low
threshold for the event. Once the
event has reached this threshold
(equal to or less than), the
consumer will be notified.

Note: While this is a 64 bit
integer, some event producers
may have limits on what values
can actually be monitored. For
example, acceptable values for
THRESH_LO for the utilFs event
producer are between 1 and
100, inclusive. The validity of the
threshold for the event producer
is not checked at write time,
but rather at select() or blocking
read() time.

Operating system management 363

Table 63. Acceptable <key>=<value> pairs (continued)

Key Acceptable Values Details

WAIT_TYPE WAIT_IN_SELECT (default),
WAIT_IN_READ

Specifies how the consumer
will wait for the event.
If the consumer wishes to
block for the event in a
select() call, they should
specify WAIT_IN_SELECT. If the
consumer wishes to block for the
event in a read() call, they should
specify WAIT_IN_READ.

INFO_LVL 1, 2 (default), or 3 Specifies what event data should
be logged in the user's buffer:

• INFO_LVL=1 will log the
timestamp of the event,
sequence number, event
producer return code,
user information*, process
information*, program name*,
and current value of the event
(if applicable).

• INFO_LVL=2 will log all data
from level 1, plus the message
from the event producer, if
applicable.

• INFO_LVL=3 will log all data
from level 2, plus the stack of
the event if applicable.

Note: The user information,
process information, program
name and stack trace are only
available for event producers
which have specified the
AHAFS_STKTRACE_AVAILABLE
flag. Not all event producers
pass messages. See the event
producer documentation to
determine what info is available.
Examples of the event output
are shown in the “Reading Event
Data” on page 368 section.

364 AIX Version 7.2: Operating system management

Table 63. Acceptable <key>=<value> pairs (continued)

Key Acceptable Values Details

NOTIFY_CNT -1 (default), or any value
between 1 and 32767, inclusive

The NOTIFY_CNT specifies how
many times the event should
occur before the process is
notified. If the -1 value is
specified, the consumer will be
notified upon every occurrence
of the event and every event
occurrence will be logged in
the user buffer. If the consumer
specifies a positive, non zero
value, the consumer will be
blocked until the event has
occurred the specified number
of times. Once the event has
occurred the specified number
of times, no more events will be
logged until the consumer blocks
in another select() or blocking
read() call. See the “Waiting on
events” on page 366 section for
more information.

CLUSTER YES If the system is part of a
cluster and the cluster is active,
consumers may specify this key
to be notified of occurrences of
this event on other nodes in the
cluster. Not all event producers
support cluster-wide monitoring.
This feature is off by default. See
the “Cluster events” on page 388
section for more information.

BUF_SIZE A positive integer, up to 1048576 This key specifies the size of the
buffer which should be used to
record event data, specified in
bytes. The default size is 2048,
and the smallest size allocated
will be 1024 bytes, even if the
consumer requests a smaller
size.

Writing information to the monitor file only prepares for a subsequent select() or blocking read() call.
Monitoring does not start until a select() or blocking read() is done.

For example, to monitor the file system /filesys/clj-fs for the first occurrence of a utilization of 90% in a
blocking read() call, the following string is written to the /aha/fs/utilFs.monFactory/filesys/clj-fs.mon
file:

WAIT_TYPE=WAIT_IN_READ THRESH_HI=90 NOTIFY_CNT=1

Possible return codes from a write() call to a monitor file:

Operating system management 365

Table 64. Return Codes

Return Code Details

EINVAL If an invalid value is given for any of the above
keys, the write to the monitor file will fail with
EINVAL. In addition, if the notify parameters
(CHANGED or THRESH_HI/LO) specified do not
match with the capabilities of the event producer,
the write will fail with EINVAL. For example, if
the consumer specifies CHANGED=YES for the
utilFs event producer (which only monitors for
THRESH_HI/LO), the write call will return EINVAL.
Specifying CLUSTER=YES without an active cluster
will also result in EINVAL.

EBUSY If there is another thread in the process which
is currently waiting on the event, a write to the
monitor file by any other thread will return EBUSY.

ESTALE The monitor file has been deleted. In order to
monitor this event, the file descriptor will need to
be closed, then reopened with O_CREAT

ENOMEM Unable to allocate temporary memory or memory
for the event buffer.

ENOSPC A maximum of 512 processes may monitor a
monitor file. If there are already 512 processes
with this file open who have written to it, the write
will fail with ENOSPC.

Waiting on events
Monitoring specifications are written to the monitor file.

Once monitoring specifications are successfully written to the monitor file, the consumer process will
block for an event occurrence using select() or read(). Consumers are only notified of events that occur
once they block in select() or read(). There are three ways that the process can return from select() or a
blocking read():

1. The event has occurred the specified number of times.

• Non-error case. Consumer should read event data to determine how to handle the event.
2. There was a problem when setting up the event inside the AIX Event Infrastructure kernel extension.

Errors may occur before the event is registered for monitoring with the event producer:

• read()

– If there is another thread waiting in read, the read will fail with EBUSY
– If there was no write done before this read, the read will just return 0, with 0 bytes read.

• select()

Note:

Due to the implementation of the select system call, in order for select() to return an error, the
underlying file system operations must return EBADF. As a result, if any of the following conditions
are met, select() will return EBADF.

– Another thread is attempting a select

366 AIX Version 7.2: Operating system management

– The monitor file has been deleted
– There was no write done specifying monitoring specifications
– There was an error when registering with the IOS subsystem

In these cases, there will be no event data to read.
3. There was a problem setting up the event with the event producer.

If an attempt is made to register the event with the event producer, an entry will be logged into the
buffer for the consumer to read. To determine what error occurred, the RC_FROM_EVPROD returned
in the event data should be referenced in the event producer's documentation. Note that the event
output for this case will only contain the timestamp, sequence number and return code from the event
producer, regardless of what INFO_LVL has been specified. See “Reading Event Data” on page 368 for
an example.

In this case, select() will return EBADF, but read() will return the return code from the underlying
uio_move operation.

If the consumer process has specified a NOTIFY_CNT greater than 1, information about each event
occurrence will be logged in the consumer's buffer until the number of events request have occurred. The
consumer process will only be woken up if the event has occurred the requested number of times, or an
unavailable event has occurred. Once the consumer process is woken up, it will no longer be monitoring
the event until it re-issues a select() or blocking read() call for the monitor file.

If a consumer has specified a NOTIFY_CNT of -1, the consumer process will be woken up after each
occurrence of the event, and any event which occurs after the initial successful select() or blocking read()
will be logged in the consumer buffer.

The select() and read() calls will not block if there is unread event data in the buffer.

Unavailable Event Occurrences
For some event producers, there may be event occurrences that cause the monitored event to become
invalid.

Some examples are:

• The death of a process for processMon and pidProcessMon .
• The unmounting of a file system containing monitored files for modDir and modFile .
• The unmounting of a file system which is being monitored by utilFs .
• The removal or renaming of a file which is being monitored by modDir or modFile
• The removal of an event producer which is currently being used to monitor events (The

RC_FROM_EVPROD will be ENODEV in this case).

Once an unavailable event occurrence has been triggered, the consumers may not continue to monitor for
that event until it becomes valid again. Examples of events becoming valid again:

• The remounting of a monitored file system.
• The recreation of a monitored file that was deleted.
• The recreation of a process that was being monitored.

When a local unavailable event is triggered, the AIX Event Infrastructure kernel extension will remove
the monitor file(s) affected. When a monitor file is deleted, consumers who still have the file open will
be able to read their event data, but will not be able to write or block waiting for an event occurrence
on that monitor file. When an unavailable event occurrence is encountered by the consumer, they should
take the appropriate action (which will presumably cause the event to become valid again), close the file
descriptor for the monitor file, and re-open the monitor file with the O_CREAT flag.

Local unavailable event occurrences will also cause select() and read() to unblock before the requested
number of events occurrences have been triggered if the consumer has specified a NOTIFY_CNT > 1.
For example, if a consumer is monitoring file /foo with a NOTIFY_CNT=3, the consumer will return from
select() or read() if /foo is removed even if it is the first occurrence of an event with /foo.

Operating system management 367

Using AIX Event Infrastructure for polling
AIX Event Infrastructure does not require that event producers always maintain the current value of
events which may be monitored.

This is to allow for greater performance since event producers do not have the overhead of maintaining
this value if no one is monitoring for occurrences of the event.

This creates a problem when using synchronous polling. Since it is not always possible to obtain the
current value of an event at every point in time, poll() or synchronous select() calls are handled in the
following way:

• When a process issues select() or poll() on a monitor file for the first time, the AIX Event Infrastructure
kernel extension will register that event for monitoring with the event producer.

– For threshold value event producers who do maintain the current value, the current value will be
returned to the AIX Event Infrastructure kernel extension upon event registration. This value will
be checked against the consumer threshold value at this time. If the consumer's threshold has
been exceeded, the select() or poll() will indicate that the event has occurred and will have an
RC_FROM_EVPROD of EALREADY.

• POLLSYNC flags are ignored. An event remains registered with the event producer until the event occurs
the specified number of times, or until the user closes the file.

• Subsequent poll() calls will have the following behavior:

– If the event has not yet occurred, the call will return with no return events
– If the event has occurred the specified number of times since the last poll() call, return events will be

set to indicate that the event has occurred.

Reading Event Data
Event data in AIX Event Infrastructure consists of keyword-value pairs.

Event data may only be read once and no more than one event occurrence worth of data will be returned
in a single read() call. For example, say that two events have occurred before the consumer reads from
the monitor file and each event has 256 bytes worth of data. If the consumer calls read() for 4096 bytes,
only the 256 bytes of the first event will be returned to the user. A second read() call will need to be
performed to obtain the data from the second event. Any offset given will be ignored and data will be read
starting from the last unread byte.

Event data will be at the most 4096 bytes, although most events will be much smaller (< 512 bytes). It is
recommended that when reading events, a large enough buffer should be used so as to avoid only reading
part of an event.

Event data in AHAFS consists of keyword = value pairs, with the exception of
BUF_WRAP, EVENT_OVERFLOW, BEGIN_EVENT_INFO, END_EVENT_INFO, BEGIN_EVPROD_INFO,
END_EVPROD_INFO and STACK_TRACE which are special keywords without any values. Here are the
keywords you may see in event data:

368 AIX Version 7.2: Operating system management

Table 65. Keywords

Key Value Details

BUF_WRAP None The consumer buffer is handled
like a circular buffer. If any
unread data is overwritten by the
latest event data, this keyword
will be the next string returned
by the read() call even if the
consumer has partially read the
previous entry. The subsequent
call to read() will return the next
whole event.

EVENT_OVERFLOW None If the event data is too large to
fit inside the consumer's event
data buffer, this keyword will be
returned from the first read().
A subsequent read() will return
what event data was able to fit
inside the buffer.

Note: If EVENT_OVERFLOW is
encountered, the end string
END_EVENT_INFO will not be
present.

BEGIN_EVENT_INFO None This keyword signifies the
beginning of the data for an event
occurrence.

END_EVENT_INFO None This keyword signifies the end of
the data for this specific event
occurrence.

TIME_tvsec TIME_tvnsec Integer These two fields record
the timestamp of the event
occurrence as seconds and nano-
seconds since the Epoch.

SEQUENCE_NUM Integer This field records the number
of times the event has occurred
since the first successful select()
or blocking read(). This number
is reset to 0 if the select() or
blocking read() call fails, or if the
consumer ceases to monitor the
event (through overwriting of the
event monitoring specifications,
or through reaching an event
occurrence count equal to the
NOTIFY_CNT specified).

Operating system management 369

Table 65. Keywords (continued)

Key Value Details

PID Integer Process ID of the process which
triggered the event occurrence.
Only available with an event
producer who has specified the
AHAFS_STKTRACE_AVAILABLE
capability, but not the
AHAFS_CALLBACK_INTRCNTX
capability.

UID Integer Effective user ID of the user who
triggered the event occurrence.
Only available with an event
producer who has specified the
AHAFS_STKTRACE_AVAILABLE
capability, but not the
AHAFS_CALLBACK_INTRCNTX
capability.

UID_LOGIN Integer Login user ID of the user who
triggered the event occurrence.
Only available with an event
producer who has specified the
AHAFS_STKTRACE_AVAILABLE
capability, but not the
AHAFS_CALLBACK_INTRCNTX
capability.

GID Integer Effective group ID of the
user who triggered the event
occurrence. Only available
with an event producer
who has specified the
AHAFS_STKTRACE_AVAILABLE
capability, but not the
AHAFS_CALLBACK_INTRCNTX
capability.

PROG_NAME String Name of the process which
triggered the event occurrence.
Only available with an event
producer who has specified the
AHAFS_STKTRACE_AVAILABLE
capability, but not the
AHAFS_CALLBACK_INTRCNTX
capability.

370 AIX Version 7.2: Operating system management

Table 65. Keywords (continued)

Key Value Details

CURRENT_VALUE 64 bit unsigned integer, in
decimal

This key is only for
AHAFS_THRESHOLD_VALUE
event producers and will return
the current value of the event
at the time the event occurrence
was detected. Note that due to
delay between the time a process
is notified and the time they read
the event data, the actual current
value of the event may have
changed.

RC_FROM_EVPROD 32 bit integer, in decimal This return code comes from
the event producer either as the
result of an error when trying
to set up the event, or as the
result of an event occurrence.
Generally, return codes less than
256 indicate an error when
attempting to register the event
with the event producer. Some
event producers will return codes
greater than 256 to provide
more information about the
event occurrence. These return
codes are documented in sys/
ahafs_evProds.h

BEGIN_EVPROD_INFO
END_EVPROD_INFO

String* These two keywords mark the
beginning and end of the string
returned by the event producer.
There will always be a newline
after BEGIN_EVPROD_INFO and
before END_EVPROD_INFO. For
consumers who have specified
CLUSTER=YES, this is where
node information will be given.

STACK_TRACE String* For consumers who
have specified INFO_LVL=3
with an event producer
who has specified the
AHAFS_STKTRACE_AVAILABLE
capability, but not the
AHAFS_CALLBACK_INTRCNTX
capability, the stack trace
of the event occurrence will
be provided. The keyword
STACK_TRACE indicates that the
remaining event data, until the
string END_EVENT_INFO is the
stack of the event occurrence.

Operating system management 371

Table 65. Keywords (continued)

Key Value Details

NUM_EVDROPS_INTRCNTX Integer This keyword represents the
number of interrupt-context
event occurrences that are
dropped since the time that is
specified by the TIME0_tvsec
and TIME0_tvnsec keywords
in the report. The event
occurrences are dropped only
when the frequency of the event
occurrence is high.

TIME0_tvsec

TIME0_tvnsec

Integer These keywords record the
time stamp of the first
event-occurrence drop in
seconds and nano-seconds since
the Epoch. These keywords
are reported along with
the NUM_EVDROPS_INTRCNTX
keyword.

Duplicate Event Consolidation
If the same event occurs multiple times before the consumer has read the data, the duplicate entries
will be consolidated into one entry. This consolidation is indicated by non sequential sequence numbers
without a corresponding BUF_WRAP keyword. The timestamp and sequence numbers will reflect the
most recent occurrence of the event.

Example Event Data

For an event producer which has specified AHAFS_THRESHOLD_STATE and
AHAFS_STKTRACE_AVAILABLE, and will pass a message to event consumers, the three levels of output
look like this:

372 AIX Version 7.2: Operating system management

INFO_LVL=1 INFO_LVL=2 INFO_LVL=3

BEGIN_EVENT_INFO
TIME_tvsec=1269863383
TIME_tvnsec=455993143
SEQUENCE_NUM=0
PID=6947038
UID=0
UID_LOGIN=0
GID=0
PROG_NAME=cat
RC_FROM_EVPROD=1000
END_EVENT_INFO

BEGIN_EVENT_INFO
TIME_tvsec=1269863383
TIME_tvnsec=455993143
SEQUENCE_NUM=0
PID=6947038
UID=0
UID_LOGIN=0
GID=0
PROG_NAME=cat
RC_FROM_EVPROD=1000
BEGIN_EVPROD_INFO
event producer message here
END_EVPROD_INFO
END_EVENT_INFO

BEGIN_EVENT_INFO
TIME_tvsec=1269863383
TIME_tvnsec=455993143
SEQUENCE_NUM=0
PID=6947038
UID=0
UID_LOGIN=0
GID=0
PROG_NAME=cat
RC_FROM_EVPROD=1000
BEGIN_EVPROD_INFO
event producer message here
END_EVPROD_INFO
STACK_TRACE
ahafs_prod_callback+3C4
ahafs_cbfn_wrapper+30
ahafs_vn_write+204
vnop_rdwr+7E4
vno_rw+B4
rwuio+12C
rdwr+184
kewrite+16C
.svc_instr
write+1A4
_xwrite+6C
_xflsbuf+B0
__flsbuf+9C
copyopt_ascii+2C0
scat+388
main+11C
__start+68
END_EVENT_INFO

For an event producer which has specified AHAFS_THRESHOLD_VALUE_HI and has not specified
AHAFS_STKTRACE_AVAILABLE, and will pass a message to event consumers, the three levels of output
look like this:

INFO_LVL=1 INFO_LVL=2 INFO_LVL=3

BEGIN_EVENT_INFO
TIME_tvsec=1269866715
TIME_tvnsec=16678418
SEQUENCE_NUM=0
CURRENT_VALUE=3
RC_FROM_EVPROD=1000
END_EVENT_INFO

BEGIN_EVENT_INFO
TIME_tvsec=1269866715
TIME_tvnsec=16678418
SEQUENCE_NUM=0
CURRENT_VALUE=3
RC_FROM_EVPROD=1000
BEGIN_EVPROD_INFO
event producer message here
END_EVPROD_INFO
END_EVENT_INFO

BEGIN_EVENT_INFO
TIME_tvsec=1269866715
TIME_tvnsec=16678418
SEQUENCE_NUM=0
CURRENT_VALUE=3
RC_FROM_EVPROD=1000
BEGIN_EVPROD_INFO
event producer message here
END_EVPROD_INFO
END_EVENT_INFO

Error format
If there is an error from the event producer, all event producers will have the following format for all
INFO_LVL:

BEGIN_EVENT_INFO
TIME_tvsec=1269868036
TIME_tvnsec=966708948
SEQUENCE_NUM=0
RC_FROM_EVPROD=20
END_EVENT_INFO

If a consumer is monitoring a AHAFS_THRESHOLD_VALUE event and the current value already exceeds
the requested threshold, the error format will also be used to record this EALREADY event:

BEGIN_EVENT_INFO
TIME_tvsec=1269868036
TIME_tvnsec=966708948
SEQUENCE_NUM=0

Operating system management 373

CURRENT_VALUE=1
RC_FROM_EVPROD=56
END_EVENT_INFO

BUF_WRAP and EVENT_OVERFLOW
If unread data is overwritten by data from a new event occurrence, the keyword BUF_WRAP will be
the first output from a read() on the monitor file. If there is a buffer wrap AND an event overflow, the
BUF_WRAP will always come first, followed by the EVENT_OVERFLOW. Here is an example output from
read() in the case where we have both a buffer wrap and an event overflow:

First read() will return:

BUF_WRAP

Second read() will return:

EVENT_OVERFLOW

Third read() will return the event data that was able to fit inside the buffer:

BEGIN_EVENT_INFO
TIME_tvsec=1269863383
TIME_tvnsec=455993143
SEQUENCE_NUM=0
PID=6947038
UID=0
UID_LOGIN=0
GID=0
PROG_NAME=cat
RC_FROM_EVPROD=1000
BEGIN_EVPROD_INFO
event producer message here
END_EVPROD_INFO
STACK_TRACE
ahafs_prod_callback+3C4
ahafs_cbfn_wrapper+30
ahafs_vn_write+204
vnop_rdwr+7E4
vno_rw+B4
rwuio+12C
rdwr+184
kewrite+16C
.svc_instr
write+1A4
_xwri

If event information is coming fast enough, it is possible to receive two BUF_WRAP entries in a row. If you
are seeing BUF_WRAP, increase the size of the buffer (using BUF_SIZE when writing to the monitor file).

NUM_EVDROPS_INTRCNTX
If any interrupt-context event occurrence is dropped because of a high frequency of event-
occurrences, the output from a read() call on the event file, representing that event, contains the
NUM_EVDROPS_INTRCNTX keyword just after the line that contains the BEGIN_EVENT_INFO keyword.

The following example represents an output from a read() call:

BEGIN_EVENT_INFO
BEGIN_EVENT_INFO
NUM_EVDROPS_INTRCNTX=5508
TIME0_tvsec=1353437661
TIME0_tvnsec=75494625
TIME_tvsec=1353437661
TIME_tvnsec=741365037
SEQUENCE_NUM=6663
RC_FROM_EVPROD=0
BEGIN_EVPROD_INFO
...msg from event-producer...
END_EVPROD_INFO
END_EVENT_INFO

374 AIX Version 7.2: Operating system management

This example output contains the following sets of information:

• The NUM_EVDROPS_INTRCNTX=5508 value is the number of dropped interrupt-context event-
occurrences since the time that is specified by the TIME0_tvsec and TIME0_tvnsec fields.

• The remaining information (that is, SEQUENCE_NUM=6663, RC_FROM_EVPROD=0, ...msg from
event-producer..., and so on) is about the event that occurred at the time that is specified by
the TIME_tvsec and TIME_tvnsec fields.

Pre-defined event producers

modFile
The modFile event producer monitors for modifications to the contents of a file.
Overview

The modFile event producer resides under the fs directory and monitors for modifications to a
file. The following vnode operations are monitored: vnop_rdwr(), vnop_map_lloff(), vnop_remove(),
vnop_ftrunc(), vnop_fclear() and vnop_rename(). Modifications which do not go through the LFS
layer cannot be monitored (that is writes to mapped files).

Files may not be monitored if:

• They are in a remote file system.
• They are in file system of type ahafs, procfs or namefs.
• They are a symbolic link.
• They reside under a directory which ends with an AIX Event Infrastructure extension

(.mon, .list, .monFactory).
• Monitor files with a full path name larger than MAXPATHLEN in the AIX Event Infrastructure pseudo
file system cannot be monitored.

Capabilities

AHAFS_THRESHOLD_STATE
AHAFS_STKTRACE_AVAILABLE
AHAFS_REMOTE_EVENT_ENABLED

Return codes

The modFile event producer uses return codes which are defined in <sys/ahafs_evProds.h>.

These return codes are used to indicate how the contents of the monitored directory were modified:

AHAFS_MODFILE_WRITE
The monitored file was written to.

AHAFS_MODFILE_UNMOUNT
The file system containing the monitored file was unmounted. This is an unavailable event.

AHAFS_MODFILE_MAP
A process has mapped a portion of the monitored file for writing.

AHAFS_MODFILE_REMOVE
The monitored file has been removed. This is an unavailable event.

AHAFS_MODFILE_RENAME
The monitored file has been renamed. This is an unavailable event.

AHAFS_MODFILE_FCLEAR
A process has issued an fclear for the monitored file.

AHAFS_MODFILE_FTRUNC
A process has issued an ftrunc for the monitored file.

AHAFS_MODFILE_OVERMOUNT
The monitored file has been over mounted.

Operating system management 375

Event producer message

This event producer does not pass any messages as part of its event data.

Acceptable monitor files

To monitor for file modifications, a monitor file with the same path as the file you wish to monitor
should be created under the modFile.monFactory directory. For example, to monitor /etc/passwd,
the monitor file /aha/fs/modFile.monFactory/etc/passwd.mon would be used.

Example event data

The following event data was generated from a process writing to a monitored file. This is the output
seen with an INFO_LVL of 3:

BEGIN_EVENT_INFO
TIME_tvsec=1271703118
TIME_tvnsec=409201093
SEQUENCE_NUM=0
PID=5701678
UID=0
UID_LOGIN=0
GID=0
PROG_NAME=cat
RC_FROM_EVPROD=1000
STACK_TRACE
aha_cbfn_wrapper+30
ahafs_evprods+510
aha_vn_write+154
vnop_rdwr+7E8
vno_rw+B4
rwuio+100
rdwr+188
kewrite+104
.svc_instr
write+1A4
_xwrite+6C
_xflsbuf+A8
__flsbuf+C0
copyopt+2E8
scat+22C
main+11C
__start+68
END_EVENT_INFO

modFileAttr
The modFileAttr event producer monitors for modifications to the attributes of a file.
Overview

The modFileAttr event producer resides under the fs directory and monitors for modifications to
the attributes of a file or directory (mode, ownership and ACLs). The following vnode operations are
monitored: vnop_setattr() (only for V_OWN and V_MODE operations), vnop_setacl(), vnop_setxacl(),
vnop_remove(), vnop_rename() and vnop_rmdir().

Files or directories may not be monitored if:

• They are in a remote file system
• They are in file system of type ahafs, procfs or namefs
• They reside under a directory which ends with an AIX Event Infrastructure extension

(.mon, .list, .monFactory)
• Monitor files with a full path name larger than MAXPATHLEN in the AIX Event Infrastructure pseudo
file system cannot be monitored.

Capabilities

AHAFS_THRESHOLD_STATE

AHAFS_STKTRACE_AVAILABLE

376 AIX Version 7.2: Operating system management

AHAFS_REMOTE_EVENT_ENABLED

Return codes

The modFileAttr event producer uses return codes which are defined in <sys/ahafs_evProds.h>.

These return codes are used to indicate how the contents of the monitored directory were modified:

AHAFS_MODFILEATTR_UNMOUNT
The filesystem containing the monitored file or directory was unmounted. This is an unavailable
event.

AHAFS_MODFILEATTR_REMOVE
The monitored file or directory has been removed. This is an unavailable event.

AHAFS_MODFILEATTR_RENAME
The monitored file or directory has been renamed. This is an unavailable event.

AHAFS_MODFILEATTR_OVERMOUNT
The monitored file or directory has been over mounted. This is an unavailable event.

AHAFS_MODFILEATTR_SETACL
The ACLs of the monitored file or directory were modified.

AHAFS_MODFILEATTR_SETOWN
The ownership of the monitored file or directory was modified.

AHAFS_MODFILEATTR_SETMODE
The mode of the monitored file or directory was modified.

Event producer message

This event producer does not pass any messages as part of its event data.

Acceptable monitor files

To monitor for file modifications, a monitor file with the same path as the file you wish to monitor
should be created under the modFileAttr.monFactory directory. For example, to monitor /etc/
passwd, the monitor file /aha/fs/modFileAttr.monFactory/etc/passwd.mon would be used.

Example event data

The following event data was generated from a process changing the mode of a monitored file. This is
the output seen with an INFO_LVL of 3:

BEGIN_EVENT_INFO
TIME_tvsec=1291994430
TIME_tvnsec=760097298
SEQUENCE_NUM=0
PID=5767216
UID=0
UID_LOGIN=0
GID=0
PROG_NAME=chmod
RC_FROM_EVPROD=1010
STACK_TRACE
ahafs_evprods+70C
aha_process_attr+120
vnop_setattr+21C
vsetattr@AF13_1+20
setnameattr+B4
chmod+110
.svc_instr
change+3C8
main+190
__start+68
END_EVENT_INFO

Operating system management 377

modDir
The modDir event producer monitors for modifications to the contents of a directory.
Overview

The modDir event producer resides under the fs directory and monitors for modifications to the
contents of a directory. The following vnode operations are monitored: vnop_create(), vnop_link(),
vnop_symlink(), vnop_remove(), vnop_rename(), vnop_mkdir(), and vnop_rmdir().

Directories may not be monitored if:

• They are in a remote file system
• They are in file system of type ahafs, procfs or namefs
• They are a symbolic link
• They reside under a directory which ends with an AIX Event Infrastructure extension

(.mon, .list, .monFactory)
• Monitor files with a full path name larger than MAXPATHLEN in the AIX Event Infrastructure pseudo
file system cannot be monitored.

The modDir event producer does not recursively monitor for directory modifications. Only
modifications to the specified directory are monitored.

Capabilities

AHAFS_THRESHOLD_STATE
AHAFS_STKTRACE_AVAILABLE
AHAFS_REMOTE_EVENT_ENABLED

Return codes

The modDir event producer uses return codes which are defined in <sys/ahafs_evProds.h>.

These return codes are used to indicate how the contents of the monitored directory were modified:

AHAFS_MODDIR_CREATE
A new file system object has been created under the monitored directory.

AHAFS_MODDIR_UNMOUNT
The file system containing the monitored directory has been unmounted. This is an unavailable
event.

AHAFS_MODDIR_REMOVE
A file system object within the monitored directory has been removed.

AHAFS_MODDIR_REMOVE_SELF
The monitored directory itself has been removed or renamed. This is an unavailable event.

Event producer message

The name of the file system object which triggered the event is included in the event data.

Acceptable monitor files

To monitor for modifications to the contents of a directory, a monitor file with the same path
as the directory you wish to monitor should be created under the modDir.monFactory directory.
For example, to monitor the directory /home/cheryl for modifications, the monitor file /aha/fs/
modDir.monFactory/home/cheryl.mon would be used.

Example event data

The following event data was generated from a new file named file1 being created in a monitored
directory. This is the output seen with an INFO_LVL of 3:

BEGIN_EVENT_INFO
TIME_tvsec=1271780397
TIME_tvnsec=24369022
SEQUENCE_NUM=0
PID=6095102

378 AIX Version 7.2: Operating system management

UID=0
UID_LOGIN=0
GID=0
PROG_NAME=touch
RC_FROM_EVPROD=1000
BEGIN_EVPROD_INFO
file1
END_EVPROD_INFO
STACK_TRACE
aha_cbfn_wrapper+30
ahafs_evprods+510
aha_process_vnop+138
vnop_create_attr+4AC
openpnp+418
openpath+100
copen+294
kopen+1C
.svc_instr
open+F8
creat64+1C
main+1EC
__start+68
END_EVENT_INFO

utilFs
The utilFs event producer monitors the utilization of a file system.
Overview

The utilFs event producer monitors the utilization of a file system as a percentage. It resides under
the fs directory. Currently, only JFS2 file systems support utilFs monitoring. Upon every file write, file
creation and file deletion, the utilization of the file system is checked to see if it meets or exceeds the
given threshold. There may be some file system specific operations which can affect the utilization of
the file system, but utilFs may not be able to detect them until the next file write, creation or deletion.
Thresholds which are exceeded due to the result of a file object deletion will not be notified until the
next file write, create or deletion.

File systems with a monitor file path name larger than MAXPATHLEN in AHAFS cannot be monitored.

To avoid a flood of event notifications and potential performance impacts, it is highly recommended
that utilFs events are monitored with a NOTIFY_CNT of 1.

Capabilities

AHAFS_THRESHOLD_VALUE_HIGH
AHAFS_THRESHOLD_VALUE_LOW
AHAFS_REMOTE_EVENT_ENABLED

Thresholds specified must be between 1 and 100, inclusive.

Return codes

The utilFs event producer uses return codes which are defined in <sys/ahafs_evProds.h>.

These return codes are used to indicate how the contents of the monitored directory were modified:

AHAFS_UTILFS_THRESH_HIT
The file system being monitored has reached the threshold specified.

AHAFS_UTILFS_UNMOUNT
The file system being monitored has been unmounted. This is an unavailable event.

Event producer message

This event producer does not pass any messages as part of its event data.

Acceptable monitor files

To monitor for file system utilization, a monitor file with the same path as the mount point of the file
system to be monitored should be created under the utilFs.monFactory directory. For example, to

Operating system management 379

monitor the file system /data/fs1, the monitor file /aha/fs/utilFs.monFactory/data/fs1.mon would
be used.

Example event data

The following is event data from an AHAFS_UTILFS_THRESH_HIT event for an INFO_LVL of 3:

BEGIN_EVENT_INFO
TIME_tvsec=1271705858
TIME_tvnsec=704241888
SEQUENCE_NUM=0
CURRENT_VALUE=10
RC_FROM_EVPROD=1000
END_EVENT_INFO

waitTmCPU
The waitTmCPU event producer monitors the average wait time of runnable threads.
Overview

The waitTmCPU event producer monitors the average wait time of runnable threads waiting to get
CPU time in one second intervals, measured in milliseconds. The waitTmCPU resides under the cpu
directory.

Capabilities

AHAFS_THRESHOLD_VALUE_HIGH
AHAFS_CALLBACK_INTRCNTX
AHAFS_REMOTE_EVENT_ENABLED

Thresholds specified must be greater than 0.

Return codes

This event producer always returns 0 when the event occurs.

Event producer message
This event producer does not pass any messages as part of its event data.

Acceptable monitor files
To monitor this event, the following monitor file should be used:

/aha/cpu/waitTmCPU.monFactory/waitTmCPU.mon

No other monitor files may be created in this directory.

Example event data

The following is event data from a waitTmCPU event with an INFO_LVL of 3:

BEGIN_EVENT_INFO
TIME_tvsec=1271779504
TIME_tvnsec=18056777
SEQUENCE_NUM=0
CURRENT_VALUE=4
RC_FROM_EVPROD=0
END_EVENT_INFO

waitersFreePg
The waitersFreePg event producer monitors the number of threads waiting for a free frame.
Overview

The waitersFreePg event producer monitors the number of threads waiting for a free frame over one
second intervals. The waitersFreePg resides under the mem subdirectory.

380 AIX Version 7.2: Operating system management

Capabilities

AHAFS_THRESHOLD_VALUE_HIGH
AHAFS_CALLBACK_INTRCNTX
AHAFS_REMOTE_EVENT_ENABLED

Thresholds specified must be greater than 0.

Return codes
This event producer always returns 0 when the event occurs.

Event producer message
This event producer does not pass any messages as part of its event data.

Acceptable monitor files

To monitor this event, the following monitor file should be used:

/aha/mem/waitersFreePg.monFactory/waitersFreePg.mon

No other monitor files may be created in this directory.

Example event data

The following is event data from a waitersFreePg event with an INFO_LVL of 3:

BEGIN_EVENT_INFO
TIME_tvsec=1271779680
TIME_tvnsec=347233732
SEQUENCE_NUM=0
CURRENT_VALUE=19843
RC_FROM_EVPROD=0
END_EVENT_INFO

waitTmPgInOut
The waitTmPgInOut event producer monitors for the average wait time in milliseconds for threads
waiting for a page in or page out operations.
Overview

The waitTmPgInOut event producer monitors for the average wait time in milliseconds for threads
waiting for page in or page out operations to complete over a one second period. The waitTmPgInOut
event producer resides under the mem directory.

Capabilities

AHAFS_THRESHOLD_VALUE_HIGH
AHAFS_CALLBACK_INTRCNTX
AHAFS_REMOTE_EVENT_ENABLED

Thresholds specified must be greater than 0.

Return codes
This event producer always returns 0 when the event occurs.

Event producer message
This event producer does not pass any messages as part of its event data.

Acceptable monitor files

To monitor this event, the following monitor file should be used:

/aha/mem/waitTmPgInOut.monFactory/waitTmPgInOut.mon

No other monitor files may be created in this directory.

Operating system management 381

Example event data

The following is event data from a waitTmPgInOut event with an INFO_LVL of 3:

BEGIN_EVENT_INFO
TIME_tvsec=1271779359
TIME_tvnsec=941699413
SEQUENCE_NUM=0
CURRENT_VALUE=12
RC_FROM_EVPROD=0
END_EVENT_INFO

vmo
The vmo event producer monitors for changes to the vmo tunable parameters.
Overview

The vmo event producer resides under the mem directory and monitors for changes to the following
vmo tunables.

Note: The vmo command is a self documenting command. Some of the tunable parameters listed in
the following list might not be supported.

• npskill
• npswarn
• force_relalias_lite
• low_ps_handling
• maxpin% (should be monitored as maxpin_pct.mon file)
• nokilluid
• relalias_percentage
• vmm_default_pspa
• npsrpgmin
• npsrpgmax
• npsscrubmin
• npsscrubmax
• scrubclean
• rpgcontrol
• rpgclean
• vm_modlist_threshold
• vmm_fork_policy
• lru_poll_interval

Capabilities

AHAFS_THRESHOLD_STATE
AHAFS_STKTRACE_AVAILABLE
AHAFS_REMOTE_EVENT_ENABLED

Return codes
This event producer always returns 0 when the event occurs.

Event producer message
This event producer does not pass any messages as part of its event data.

382 AIX Version 7.2: Operating system management

Acceptable monitor files

To monitor any of the above tunables, monitor files of the following format should be used:

/aha/mem/vmo.monFactory/<tunable>.mon

Files which do not correspond to the above events cannot be created under this directory.

Example event data

The following is event data from the modification of a monitored tunable, with an INFO_LVL of 3.

BEGIN_EVENT_INFO
TIME_tvsec=1271770698
TIME_tvnsec=787565808
SEQUENCE_NUM=0
PID=5701808
UID=0
UID_LOGIN=0
GID=0
PROG_NAME=vmo
RC_FROM_EVPROD=0
STACK_TRACE
aha_cbfn_wrapper+30
ahafs_evprods+510
vm_mon_tunable+B0
vm_chk_mod_tun+5CC
_vmgetinfo+53C
vmgetinfo+48
.svc_instr
vmo_write_vmsetkervars+134
vmo_write_dynamic_values+404
main+BC
__start+70
END_EVENT_INFO

schedo
This event producer monitors for changes to schedo tunables.
Overview

Currently, only the vpm_xvcpus tunable may be monitored. This event producer will return a stack
trace and user information when the event occurs. This event producer resides under the cpu
directory.

Capabilities

AHAFS_THRESHOLD_STATE
AHAFS_STKTRACE_AVAILABLE
AHAFS_REMOTE_EVENT_ENABLED

Return codes
This event producer always returns 0 when the event occurs.

Event producer message
This event producer does not pass any messages as part of its event data.

Acceptable monitor files

The monitor file used to monitor this tunable is:

/aha/cpu/schedo.monFactory/vpm_xvcpus.mon

No other monitor files may be created in this directory.

Example event data

The following is event data from the modification of the vpm_xvcpus tunable with an INFO_LVL of 3:

BEGIN_EVENT_INFO
TIME_tvsec=1271771009
TIME_tvnsec=251723285

Operating system management 383

SEQUENCE_NUM=0
PID=7143474
UID=0
UID_LOGIN=0
GID=0
PROG_NAME=schedo
RC_FROM_EVPROD=0
STACK_TRACE
aha_cbfn_wrapper+30
ahafs_evprods+510
schedtune+394
.svc_instr
schedo_write_schedparams+94
schedo_write_dynamic_values+6F0
main+1B0
__start+68
END_EVENT_INFO

pidProcessMon
The pidProcessMon event producer monitors for process death, based on PID.
Overview

The pidProcessMon event producer resides under the cpu directory and monitors for process death,
based on PID.

Capabilities

AHAFS_THRESHOLD_STATE
AHAFS_CALLBACK_INTRCNTX

Return codes
The pidProcessMon event producer returns only a single return code 0.

Event producer message
This event producer passes PROCESS_DOWN message as part of its event data.

Acceptable monitor files

To monitor for process deaths, a monitor file should be created under the
pidProcessMon.monFactory directory. A monitor file name with the format

/aha/cpu/pidProcessMon.monFactory/<process_PID>.mon

has to be used.

Example event data

The following event data was generated from the death of a monitored process. This is the output
seen with the default INFO_LVL.

BEGIN_EVENT_INFO
TIME_tvsec=1272348759
TIME_tvnsec=379259175
SEQUENCE_NUM=0
RC_FROM_EVPROD=0
BEGIN_EVPROD_INFO
EVENT_TYPE=PROCESS_DOWN
END_EVPROD_INFO
END_EVENT_INFO

processMon
The processMon event producer monitors for process death.
Overview

The processMon event producer resides under the cpu directory and monitors for process death,
based on process name. Only the parent process for a given process with same name is monitored.
That means if we have a process tree abc (pid 123)->xyz (pid 345)->xyz (pid 567) and some one
requests to monitor the xyz process then (pid = 345) actually gets monitored.

384 AIX Version 7.2: Operating system management

Capabilities

AHAFS_THRESHOLD_STATE
AHAFS_REMOTE_EVENT_ENABLED
AHAFS_CALLBACK_INTRCNTX

Return codes
The processMon event producer returns only a single return code 0.

Event producer message
This event producer passes PROCESS_DOWN message as part of its event data.

Acceptable monitor files
To monitor for process deaths, a monitor file with the same path as the one used to start the process,
should be created under the processMon.monFactory directory. For example, to monitor a process
named test which is placed under the directory /usr/samples/ahafs, the monitor file /aha/cpu/
processMon.monFactory/usr/samples/ahafs/test.mon would be used.

Example event data

The following event data was generated from the death of a monitored process. This is the output
seen with the default INFO_LVL.

BEGIN_EVENT_INFO
TIME_tvsec=1272348909
TIME_tvnsec=482502597
SEQUENCE_NUM=0
RC_FROM_EVPROD=0
BEGIN_EVPROD_INFO
EVENT_TYPE=PROCESS_DOWN
END_EVPROD_INFO
END_EVENT_INFO

inetsock
The inetsock event producer monitors Transmission Control Protocol (TCP) and User Datagram Protocol
(UDP) socket operations.
Overview

The inetsock event producer is placed under the net directory and monitors socket operations.

The following socket operations are monitored for TCP:

• Creating a socket
• Binding a port or address to the socket
• Listening on the socket
• Accepting and establishing a connection on the socket
• Connecting to a socket
• Disconnecting from a socket
• Closing the socket

The following socket operations are monitored for UDP:

• Creating a socket
• Binding a port or address to the socket
• Closing the socket

Capabilities

AHAFS_THRESHOLD_STATE
AHAFS_CALLBACK_INTRCNTX
AHAFS_REMOTE_EVENT_ENABLED

Operating system management 385

Event producer message
This event producer passes information that is available in the protocol control block and socket as a
part of its event data.

The following data is passed for the TCP socket operations:

Socket operation Data

PRU_ATTACH Common information:

• PROG_NAME
• SO_FAMILY
• SO_PID
• SO_PROTO
• SO_TYPE
• SO_UID

PRU_BIND Common information plus the following items:

• SO_LADDR
• SO_LPORT

PRU_LISTEN Common information plus the following items:

• SO_LADDR
• SO_LPORT

PRU_ACCEPT Common information plus the following items:

• SO_FADDR
• SO_FPORT
• SO_LADDR
• SO_LPORT

PRU_CONNECT Common information plus the following items:

• SO_FADDR
• SO_FPORT
• SO_LADDR
• SO_LPORT

PRU_DISCONNECT Common information plus the following items:

• SO_FADDR
• SO_FPORT
• SO_LADDR
• SO_LPORT

PRU_DETACH,
PRU_ABORT

Common information plus the following items:

• SO_LADDR
• SO_LPORT
• SO_FADDR
• SO_FPORT

The following data is passed for the UDP socket operations:

386 AIX Version 7.2: Operating system management

Socket operation Data

PRU_ATTACH Common information:

• PROG_NAME
• SO_FAMILY
• SO_PID
• SO_PROTO
• SO_TYPE
• SO_UID

PRU_BIND,
PRU_DYNBIND

Common information plus the following items:

• SO_LADDR
• SO_LPORT

PRU_DETACH,
PRU_ABORT

Common information plus the following items:

• SO_LADDR
• SO_LPORT

Acceptable monitor files
To monitor the socket operations, a monitor file that has the name of the socket operation that you
want to monitor must be created in the inetsock.monFactory directory. For example, to monitor
the TCP socket creation, the /aha/net/inetsock.monFactory/streamCreate.mon monitor
file is used. Similarly, to monitor UDP socket creation, the /aha/net/inetsock.monFactory/
dgramCreate.mon monitor file is used.

The following files are used for all the Autonomic Health Advisor File System (AHAFS)-monitorable
TCP socket operations:

• /aha/net/inetsock.monFactory/streamCreate.mon
• /aha/net/inetsock.monFactory/streamBind.mon
• /aha/net/inetsock.monFactory/streamListen.mon
• /aha/net/inetsock.monFactory/streamAccept.mon
• /aha/net/inetsock.monFactory/streamConnect.mon
• /aha/net/inetsock.monFactory/streamDisconnect.mon
• /aha/net/inetsock.monFactory/streamClose.mon

The following files are used for all the AHAFS-monitorable UDP socket operations:

• /aha/net/inetsock.monFactory/dgramCreate.mon
• /aha/net/inetsock.monFactory/dgramBind.mon
• /aha/net/inetsock.monFactory/dgramClose.mon

Example event data
The following event data was generated from a process when a socket is created. The following
example is the output that is displayed with an output level of 2 (INFO_LVL=2):

AHAFS event: /aha/net/inetsock.monFactory/streamCreate.mon

BEGIN_EVENT_INFO
Time : Mon Jan 23 23:04:06 2012
Sequence Num: 1
RC_FROM_EVPROD=0
BEGIN_EVPROD_INFO
PROG_NAME=xmtopas
SO_FAMILY=2
SO_TYPE=1

Operating system management 387

SO_PROTO=6
SO_UID=0
SO_PID=5243048
END_EVPROD_INFO
END_EVENT_INFO

Cluster events
When a system is part of a cluster, it can receive notifications for events occurring on other nodes that
are part of the same cluster. Event producers which specify the AHAFS_REMOTE_EVENT_ENABLED
capability support cluster wide monitoring. All the AIX Event Infrastructure event producers except the
pidProcessMon and diskState can provide such remote notifications.

Behaviour of mkcluster command with the AIX Event Infrastructure:

If the AIX Event Infrastructure is not loaded on a system and the mkcluster command is run then the
AIX Event Infrastructure pseudo filesystem will be mounted on the /aha directory and the monitor file
names will start from the /aha directory. If the AIX Event Infrastructure is already loaded on a system and
mkcluster command is run then the AIX Event Infrastructure pseudo filesystem will not be remounted
and the monitor file names will start from the directory over which the AIX Event Infrastructure pseudo
filesystem has been mounted. Consumer applications must check where the AIX Event Infrastructure
pseudo filesystem has been mounted, to get the monitor file paths.

In order to receive cluster events, consumer processes must specify CLUSTER=YES when writing to
the monitor file representing the event to monitor in the cluster. In order for the remote events to be
detected, a consumer process must be monitoring the event on each node with CLUSTER=YES specified.

Events received from a remote node do not include user or process information, or stack trace, even if the
event producer supports it.

For events received on a remote node stack trace is not provided, even if the event producer supports it.

The cluster information NODE_NUMBER, NODE_ID and CLUSTER_ID will be available between
BEGIN_EVPROD_INFO and END_EVPROD_INFO delimiters for all cluster events. This helps the
monitoring program to identify on which node the event occurred. The information that is returned
from the lscluster -m command output in the fields: Cluster shorthand id for node, uuid for node and
cluster uuids is returned in the AIX Event Infrastructure event output in the NODE_NUMBER, NODE_ID,
CLUSTER_ID fields respectively.

Below is example output from both a local and remote occurrence of an event with an INFO_LVL of 2, and
an event producer which specifies the AHAFS_STKTRACE_AVAILABLE capability.

Local Event Data Remote Event Data

BEGIN_EVENT_INFO
TIME_tvsec=1262670289
TIME_tvnsec=453840229
SEQUENCE_NUM=0
PID=4194474
UID=0
UID_LOGIN=0
GID=0
PROG_NAME=rpc.statd
RC_FROM_EVPROD=0
BEGIN_EVPROD_INFO
NODE_NUMBER=1
NODE_ID=0xF079E8C801C11DF
CLUSTER_ID=0x6EA7B08888D811DFB918BEB25635B404

EVENT_TYPE=PROCESS_DOWN
END_EVPROD_INFO
END_EVENT_INFO

BEGIN_EVENT_INFO
TIME_tvsec=1262670289
TIME_tvnsec=248144872
SEQUENCE_NUM=0
RC_FROM_EVPROD=0
BEGIN_EVPROD_INFO
EVENT_TYPE=PROCESS_DOWN
NODE_NUMBER=1
NODE_ID=0xF079E8C801C11DF
CLUSTER_ID=0x6EA7B08888D811DFB918BEB25635B404
END_EVPROD_INFO
END_EVENT_INFO

388 AIX Version 7.2: Operating system management

Pre-defined event producers for a Cluster Aware AIX instance
These event producers are only available when the system is part of an active cluster.

nodeList
The nodeList event producer monitors changes in cluster membership.
Overview

The nodeList event producer resides under the cluster directory and monitors for nodes added or
removed from the cluster. This event producer is available only when the system is part of a cluster.
This event is generated when a node is added or removed from the cluster (for example, via the
chcluster command).

Capabilities

AHAFS_THRESHOLD_STATE
AHAFS_REMOTE_EVENT_ENABLED
AHAFS_CALLBACK_INTRCNTX

Return codes
The nodeList returns 0 as the return code. Only if the cluster is removed then
AHAFS_CLUSTER_REMOVE (-1) is returned.

Event producer message
This event producer passes NODE_ADD and NODE_DELETE messages as part of its event data. Also,
as it is a cluster event producer it will additionally pass NODE_NUMBER, NODE_ID and CLUSTER_ID
information.

Acceptable monitor files
To monitor for changes in the list of nodes, a monitor file should be created under the
nodeList.monFactory directory. The monitor file name

/aha/cluster/nodeList.monFactory/nodeListEvent.mon

has to be used. No other monitor files may be created in this directory.
Example event data

The following is event data from a nodeList event with the default INFO_LVL.

BEGIN_EVENT_INFO
TIME_tvsec=1271922590
TIME_tvnsec=886742634
SEQUENCE_NUM=1
RC_FROM_EVPROD=0
BEGIN_EVPROD_INFO
EVENT_TYPE=NODE_ADD
NODE_NUMBER=1
NODE_ID=0xF079E8C801C11DF
CLUSTER_ID=0x6EA7B08888D811DFB918BEB25635B404
END_EVPROD_INFO
END_EVENT_INFO

clDiskList
The clDiskList event producer monitors changes in cluster membership.
Overview

The clDiskList event producer resides under the disk directory and monitors for disks added or
removed from the cluster. This event producer is available only when the system is part of a cluster.
This event is generated when a disk is added or removed from the cluster (for example, using the
chcluster command).

Operating system management 389

Capabilities

AHAFS_THRESHOLD_STATE
AHAFS_REMOTE_EVENT_ENABLED
AHAFS_CALLBACK_INTRCNTX

Return codes
The clDiskList returns 0 as the return code. Only if the cluster is removed AHAFS_CLUSTER_REMOVE
(-1) is returned.

Event producer message
This event producer passes the DISK_ADD and DISK_DELETE messages as part of its event data in
the EVENT_TYPE field. It will pass the DISK_NAME and the DISK_UID of the concerned disk. Also,
as it is part of a cluster event producer it will additionally pass the NODE_NUMBER, NODE_ID and
CLUSTER_ID information.

Acceptable monitor files
To monitor for changes in the list of disks, a monitor file should be created under the
clDiskList.monFactory directory. The monitor file name

/aha/disk/clDiskList.monFactory/clDiskListEvent.mon

has to be used. No other monitor files may be created in this directory.
Example event data

The following is event data from a clDiskList event with the default INFO_LVL.

BEGIN_EVENT_INFO
TIME_tvsec=1271927983
TIME_tvnsec=696543410
SEQUENCE_NUM=0
RC_FROM_EVPROD=0
BEGIN_EVPROD_INFO
EVENT_TYPE=DISK_ADD
DISK_NAME=cldisk1
DISK_UID=3E213600A0B800016726C000000FF4B8677C80F1724-100 FAStT03IBMfcp
NODE_NUMBER=2
NODE_ID=0xF079E8C801C11DF
CLUSTER_ID=0x6EA7B08888D811DFB918BEB25635B404
END_EVPROD_INFO
END_EVENT_INFO

linkedCl
The linkedCl event producer is generated when a cluster is linked or unlinked with another cluster.
Overview

The linkedCl event producer resides under the cluster directory and monitors for link status changes.
This event producer is available only when the system is part of a cluster. This event is generated
when a cluster is linked or unlinked with another cluster.

Capabilities

AHAFS_THRESHOLD_STATE
AHAFS_REMOTE_EVENT_ENABLED
AHAFS_CALLBACK_INTRCNTX

Return codes
The linkedCl returns 0 as the return code. Only if the cluster is removed AHAFS_CLUSTER_REMOVE
(-1) is returned.

Event producer message
This event producer passes LINK_UP or LINK_DOWN messages as part of its event data. It will
pass the LINK_ID information. Also, as it is a cluster event producer it will additionally pass
NODE_NUMBER, NODE_ID and CLUSTER_ID information.

390 AIX Version 7.2: Operating system management

Acceptable monitor files
To monitor for changes in the list of nodes, a monitor file should be created under the
linkedCl.monFactory directory. The monitor file name

/aha/cluster/linkedCl.monFactory/linkedClEvent.mon

has to be used. No other monitor files may be created in this directory.
Example event data

The following is event data from a linkedCl event with the default INFO_LVL.

BEGIN_EVENT_INFO
TIME_tvsec=1271224025
TIME_tvnsec=795042625
SEQUENCE_NUM=0
RC_FROM_EVPROD=0
BEGIN_EVPROD_INFO
EVENT_TYPE=LINK_DOWN
LINK_ID=0x7BE9C1BD
NODE_NUMBER=1
NODE_ID=0xF079E8C801C11DF
CLUSTER_ID=0x6EA7B08888D811DFB918BEB25635B404
END_EVPROD_INFO
END_EVENT_INFO

nodeContact
The nodeContact event producer monitors the last contact status of the node in a cluster.
Overview

The nodeContact event producer resides under the cluster directory and monitors the last contact
status of the node in the cluster. This event producer is available only when the system is part of a
cluster.

Capabilities

AHAFS_THRESHOLD_STATE
AHAFS_REMOTE_EVENT_ENABLED
AHAFS_CALLBACK_INTRCNTX

Return codes
The nodeContact returns 0 as the return code. Only if the cluster is removed
AHAFS_CLUSTER_REMOVE (-1) is returned.

Event producer message
This event producer passes the CONNECT_UP and CONNECT_DOWN messages as part of its event
data. It will pass the concerned INTERFACE_NAME. Also, as it is a cluster event producer it will
additionally pass the NODE_NUMBER, NODE_ID and CLUSTER_ID information.

Acceptable monitor files
To monitor for changes in the list of nodes, a monitor file should be created under the
nodeContact.monFactory directory. The monitor file name

/aha/cluster/nodeContact.monFactory/nodeContactEvent.mon

has to be used. No other monitor files may be created in this directory.
Example event data

The following is event data from a nodeContact event with the default INFO_LVL.

BEGIN_EVENT_INFO
TIME_tvsec=1271921874
TIME_tvnsec=666770128
SEQUENCE_NUM=0
RC_FROM_EVPROD=0
BEGIN_EVPROD_INFO
EVENT_TYPE=CONNECT_DOWN
INTERFACE_NAME=en0
NODE_NUMBER=2

Operating system management 391

NODE_ID=0xF079E8C801C11DF
CLUSTER_ID=0x6EA7B08888D811DFB918BEB25635B404
END_EVPROD_INFO
END_EVENT_INFO

nodeState
The nodeState event producer monitors for the state of a node in the cluster.
Overview

The nodeState event producer resides under the cluster directory and monitors for the state of a node
in the cluster. This event producer is available only when the system is part of a cluster. This event is
generated, for example, when a node crashes or is shutdown.

Capabilities

AHAFS_THRESHOLD_STATE
AHAFS_REMOTE_EVENT_ENABLED
AHAFS_CALLBACK_INTRCNTX

Return codes
The nodeState returns 0 as the return code. Only if the cluster is removed
AHAFS_CLUSTER_REMOVE (-1) is returned.

Event producer message
This event producer passes NODE_UP and NODE_DOWN messages as part of its event data. Also,
as it is a cluster event producer and it will additionally pass the NODE_NUMBER, NODE_ID and
CLUSTER_ID information.

Acceptable monitor files
To monitor for changes in the status of nodes, a monitor file should be created under the
nodeState.monFactory directory. The monitor file name

/aha/cluster/nodeState.monFactory/nodeStateEvent.mon

has to be used. No other monitor files may be created in this directory.
Example event data

The following is event data from a nodeState event with the default INFO_LVL.

BEGIN_EVENT_INFO
TIME_tvsec=1271921536
TIME_tvnsec=68254861
SEQUENCE_NUM=1
RC_FROM_EVPROD=0
BEGIN_EVPROD_INFO
EVENT_TYPE=NODE_UP
NODE_NUMBER=2
NODE_ID=0xF079E8C801C11DF
CLUSTER_ID=0x6EA7B08888D811DFB918BEB25635B404
END_EVPROD_INFO
END_EVENT_INFO

nodeAddress
The nodeAddress event producer monitors the network address of the node.
Overview

The nodeAddress event producer resides under the cluster directory and monitors the network
address of the node. This event producer is available only when the system is part of a cluster. This
event is generated for example, when an alias is added or removed from a network interface.

Capabilities

AHAFS_THRESHOLD_STATE
AHAFS_REMOTE_EVENT_ENABLED
AHAFS_CALLBACK_INTRCNTX

392 AIX Version 7.2: Operating system management

Return codes
The nodeAddress returns 0 as the return code. Only if the cluster is removed
AHAFS_CLUSTER_REMOVE (-1) is returned.

Event producer message
This event producer passes ADDRESS_ADD and ADDRESS_DELETE messages as part of its event
data. It will pass the INTERFACE_NAME, of the concerned interface and the FAMILY, ADDRESS
and NETMASK of the IP address. Also, as it is a cluster event producer it will additionally pass the
NODE_NUMBER, NODE_ID and CLUSTER_ID information.

Acceptable monitor files
To monitor for changes in the list of nodes, a monitor file should be created under the
nodeAddress.monFactory directory. The monitor file name

/aha/cluster/nodeAddress.monFactory/nodeAddressEvent.mon

has to be used. No other monitor files may be created in this directory.
Example event data

The following is event data from a nodeAddress event with the default INFO_LVL.

BEGIN_EVENT_INFO
TIME_tvsec=1271922254
TIME_tvnsec=9053410
SEQUENCE_NUM=0
RC_FROM_EVPROD=0
BEGIN_EVPROD_INFO
EVENT_TYPE=ADDRESS_ADD
INTERFACE_NAME=et0
FAMILY=2
ADDRESS=0x0A0A0A0A
NETMASK=0xFF000000
NODE_NUMBER=2
NODE_ID=0xF079E8C801C11DF
CLUSTER_ID=0x6EA7B08888D811DFB918BEB25635B404
END_EVPROD_INFO
END_EVENT_INFO

networkAdapterState
The networkAdapterState event producer monitors the network interface of a node in the cluster.
Overview

The networkAdapterState event producer resides under the cluster directory and monitors the
network interface of a node in the cluster. This event producer is available only when the system is
part of a cluster. This event is generated when a network interface goes down or comes up.

Capabilities

AHAFS_THRESHOLD_STATE
AHAFS_REMOTE_EVENT_ENABLED
AHAFS_CALLBACK_INTRCNTX

Return codes
The networkAdapterState returns 0 as the return code. Only if the cluster is removed
AHAFS_CLUSTER_REMOVE (-1) is returned.

Event producer message
This event producer passes the ADAPTER_UP, ADAPTER_DOWN, ADAPTER_ADD and
ADAPTER_DEL messages as part of its event data. It will pass the concerned INTERFACE_NAME.
Also, as it is a cluster event producer it will additionally pass NODE_NUMBER, NODE_ID and
CLUSTER_ID information.

Acceptable monitor files
To monitor for changes in the list of nodes, a monitor file should be created under the
networkAdapterState.monFactory directory. The monitor file name

/aha/cluster/networkAdapterState.monFactory/networkAdapterStateEvent.mon

Operating system management 393

has to be used. No other monitor files may be created in this directory.
Example event data

The following is event data from a networkAdapterState event with the default INFO_LVL.

BEGIN_EVENT_INFO
TIME_tvsec=1271920539
TIME_tvnsec=399378269
SEQUENCE_NUM=1
RC_FROM_EVPROD=0
BEGIN_EVPROD_INFO
EVENT_TYPE=ADAPTER_UP
INTERFACE_NAME=en0
NODE_NUMBER=2
NODE_ID=0xF079E8C801C11DF
CLUSTER_ID=0x6EA7B08888D811DFB918BEB25635B404
END_EVPROD_INFO
END_EVENT_INFO

clDiskState
The clDiskState event producer monitors cluster disks.
Overview

The clDiskState event producer resides under the disk directory and monitors cluster disks. This
event producer is available only when the system is part of a cluster. This event is generated when a
cluster disk goes down or comes up.

Capabilities

AHAFS_THRESHOLD_STATE
AHAFS_REMOTE_EVENT_ENABLED
AHAFS_CALLBACK_INTRCNTX

Return codes
The clDiskState returns 0 as the return code. Only if the cluster is
removedAHAFS_CLUSTER_REMOVE (-1) is returned.

Event producer message
This event producer passes the DISK_UP and DISK_DOWN messages as part of its event data in the
EVENT_TYPE field along with the concerned cluster disk name. Also, as it is a cluster event producer it
will additionally pass the NODE_NUMBER, NODE_ID and CLUSTER_ID information.

Acceptable monitor files
To monitor cluster disks, a monitor file should be created under the clDiskState.monFactory
directory. The monitor file name

/aha/disk/clDiskState.monFactory/clDiskStateEvent.mon

has to be used. No other monitor files may be created in this directory.
Example event data

The following is event data from a clDiskState event with the default INFO_LVL.

BEGIN_EVENT_INFO
TIME_tvsec=1271935734
TIME_tvnsec=265210314
SEQUENCE_NUM=1
RC_FROM_EVPROD=0
BEGIN_EVPROD_INFO
EVENT_TYPE=DISK_DOWN
DISK_NAME=cldisk1
NODE_NUMBER=2
NODE_ID=0xF079E8C801C11DF
CLUSTER_ID=0x6EA7B08888D811DFB918BEB25635B404
END_EVPROD_INFO
END_EVENT_INFO

394 AIX Version 7.2: Operating system management

repDiskState
The repDiskState event producer monitors for repository disks.
Overview

The repDiskState event producer resides under the disk directory and monitors for repository disk.
This event producer is available only when the system is part of a cluster. This event is generated
when a repository disk goes down or comes up.

Capabilities

AHAFS_THRESHOLD_STATE
AHAFS_REMOTE_EVENT_ENABLED
AHAFS_CALLBACK_INTRCNTX

Return codes
The repDiskState returns 0 as the return code. Only if the cluster is removed then
AHAFS_CLUSTER_REMOVE (-1) is returned.

Event producer message
This event producer passes REP_UP and REP_DOWN messages as part of its event data in the
EVENT_TYPE field, along with the disk name of the concerned repository disk. Also, as since it is
a cluster event producer it will additionally pass NODE_NUMBER, NODE_ID and the CLUSTER_ID
information.

Acceptable monitor files
To monitor repository disks, a monitor file should be created under the repDiskState.monFactory
directory. The monitor file name

/aha/disk/ repDiskState.monFactory/repDiskStateEvent.mon

has to be used. No other monitor files may be created in this directory.
Example event data

The following is event data from a repDiskState event with the default INFO_LVL.

BEGIN_EVENT_INFO
TIME_tvsec=1271933757
TIME_tvnsec=134003703
SEQUENCE_NUM=1
RC_FROM_EVPROD=0
BEGIN_EVPROD_INFO
EVENT_TYPE=REP_UP
DISK_NAME=hdisk2
NODE_NUMBER=2
NODE_ID=0xF079E8C801C11DF
CLUSTER_ID=0x6EA7B08888D811DFB918BEB25635B404
END_EVPROD_INFO
END_EVENT_INFO

diskState
The diskstate event producer monitors for local disk changes.
Overview

The diskState event producer resides under the disk directory and monitors for local disk changes.
This event producer is available only when the system is part of a cluster. This event is generated
when a local disk goes down or comes up. This event will be notified only for disks that are supported
by the storage framework.

Capabilities

AHAFS_THRESHOLD_STATE
AHAFS_CALLBACK_INTRCNTX

Return codes
The diskState returns 0 as the return code. The AHAFS_CLUSTER_REMOVE (-1) is returned only if
the cluster is removed.

Operating system management 395

Event producer message
This event producer passes LOCAL_UP and LOCAL_DOWN messages along with the concerned
local disk name as part of its event data. Also, as a cluster event producer it will additionally pass
NODE_NUMBER, NODE_ID and CLUSTER_ID information.

Acceptable monitor files
To monitor local disks, a monitor file should be created under the diskState.monFactory directory.
The monitor file name of the format

/aha/disk/diskState.monFactory/<hdiskn>.mon

must be used, with the name of the local disk that has to be monitored.
Example event data

The following is event data from a diskState event with the default INFO_LVL.

BEGIN_EVENT_INFO
TIME_tvsec=1271935029
TIME_tvnsec=958362343
SEQUENCE_NUM=1
RC_FROM_EVPROD=0
BEGIN_EVPROD_INFO
EVENT_TYPE=LOCAL_UP
DISK_NAME=hdisk4
NODE_NUMBER=2
NODE_ID=0xF079E8C801C11DF
CLUSTER_ID=0x6EA7B08888D811DFB918BEB25635B404
END_EVPROD_INFO
END_EVENT_INFO

vgState
The vgstate event producer can verify the status of the VG on a disk.
Overview

The vgState event producer resides under the disk directory. This event producer is available only
when the system is part of a cluster. Whenever a local (registered with diskState) or cluster disk up or
down event happens a corresponding VG_UP and VG_DOWN event is triggered for the volume group
residing on that disk. Using this event producer, an application can verify the status of a VG on the
disk, with the LVM subsystem.

Capabilities

AHAFS_THRESHOLD_STATE
AHAFS_REMOTE_EVENT_ENABLED
AHAFS_CALLBACK_INTRCNTX

Return codes
The vgState returns 0 as the return code. The AHAFS_CLUSTER_REMOVE (-1) is returned only if the
cluster is removed.

Event producer message
This event producer passes VG_UP and VG_DOWN messages, as part of its event data. It will pass
the concerned disk name and volume group name. Also, as this is a cluster event producer it will
additionally pass NODE_NUMBER, NODE_ID and CLUSTER_ID information.

Acceptable monitor files
To monitor for changes in the list of nodes, a monitor file should be created under the
vgState.monFactory directory. The monitor file name

/aha/disk/vgState.monFactory/vgStateEvent.mon

has to be used. No other monitor files may be created in this directory.

396 AIX Version 7.2: Operating system management

Example event data

The following is event data from a vgstate event with the default INFO_LVL.

BEGIN_EVENT_INFO
TIME_tvsec=1271915408
TIME_tvnsec=699408296
SEQUENCE_NUM=0
RC_FROM_EVPROD=0
BEGIN_EVPROD_INFO
EVENT_TYPE=VG_UP
DISK_NAME=hdisk3
VG_NAME=myvg
NODE_NUMBER=2
NODE_ID=0xF079E8C801C11DF
CLUSTER_ID=0x6EA7B08888D811DFB918BEB25635B404
END_EVPROD_INFO
END_EVENT_INFO

Operating system management 397

398 AIX Version 7.2: Operating system management

Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 2010, 2018 399

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as follows:
© (your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as the customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

400 Notices

For more information about the use of various technologies, including cookies, for these purposes,
see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies”
and the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Windows is a trademark of Microsoft Corporation in the United States, other countries, or both.

Notices 401

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/us/en/copytrade.shtml

402 AIX Version 7.2: Operating system management

Index

Special Characters
: built-in command

Bourne shell 266
Korn or POSIX shell 232

. built-in command
Bourne shell 266
Korn or POSIX shell 232

.env file 321

.mwmrc file 324

.profile file 48, 321

.Xdefaults file 323

.xinitrc file 322
@ built-in command

C shell 287
/dev/null file 351
/etc/environment file 320
/etc/hosts 17
/etc/inittab file

changing 7
/etc/passwd file 200
/etc/profile file 48, 321
/etc/security/passwd file 301
/usr/bin/ksh93 219
/usr/bin/psh command 200
/usr/bin/sh command 200

Numerics
64-bit mode

filesets 50

A
access control

displaying information 310
editing information 312
setting information 311

access control lists
example 311
example for AIXC ACL 308
for file system objects 306
maintaining 306

access modes
controlling 302
directories 302
displaying group information 304
files 302
numeric representation of 303
symbolic representation of 303
user classes 302

accessing a system that will not boot 19
accounting system

BSD System Managers 333
commands

overview 156
running automatically 156

accounting system (continued)
commands (continued)

running from the keyboard 157
connect-time data

collecting 169
displaying 167
reporting 154

CPU usage
displaying 166

disk-usage data
displaying 167
reporting 155

failure
recovering from 159

fees
charging 171
reporting 155

files
data files 158
formats 161
overview 158
report and summary files 158
runacct command files 160

holidays file
updating 168

overview 151
printer-usage data

displaying 168
problems

fixing bad times 173
fixing incorrect file permissions 173
fixing out-of-date holidays file 168
fixing runacct errors 174

process data
collecting 170
reporting 170

reporting data
overview 151

reports
daily 152
fiscal 155
monthly 153, 154

runacct command
restarting 159
starting 159

setting up 162
summarizing records 153
system activity data

displaying 164
displaying while running a command 165
reporting 155

tacct errors
fixing 171

wtmp errors
fixing 172

ACL Type
AIXC 306

Index 403

ACL Type (continued)
NFS4 308

acledit command 306, 312
aclget command 306, 310
aclput command 306, 311
ACLs

example 311
example for AIXC ACL 308
for file system objects 306
maintaining 306

ahafs_evprods
definition 360

AIX
overview for BSD system managers

paging space 336
AIX Event Infrastructure (AHAFS) 357
AIX Event Infrastructure Components

definition 357, 368
AIX Event Infrastructure kernel extension 358
AIX Runtime Expert 60
aixterm command 319
AIXwindows

starting Window Manager 322
startup files 322

alias built-in command
C shell 287
Korn or POSIX shell 239, 256

alias command 129
alias substitution

C shell 276
aliases

creating 256
exporting 256
listing 256
not supported 256
r 127, 128
removing 256
tracked 257

aliasing
Korn or POSIX shell 256

append redirection operator 350
apropos command 133
arguments

in commands 124
arithmetic

factoring numbers 133
arithmetic evaluation

Korn or POSIX shell 211
assigning

values and attributes 224
at command 138–140
atq command 139, 140
attributes

supported by Korn or POSIX shell 224
authentication 301
authorization 309
awk command 185

B
background processes 134
backup

BSD system managers 334
commands, list of 19

backup (continued)
compressing files 35
compressing files before 35
files 19
implementing with scripts 41
media 22
methods 19
overview 19
performing regularly scheduled 41
policy 21
procedure for system and user data 23
procedure for user file systems 25
replicating a system (cloning) 24
restoring data 26
restoring files 29
strategy for managing

guidelines for 21
planning 23

user file systems 25
user files 25
user-defined volume group 38
using smit command 47

backup command 22, 46
banner command 355
batch processes 138
bg built-in command

C shell 287
Korn or POSIX shell 239

bidirectional languages 319
binding a process to a processor 149
blanks

definition 201
interpretation of 275

boot images
creating 12

boot processing
phases of 16

booting
BSD System Managers 335
crashed system 6
diagnosing problems 19
from hard disk for maintenance 5
rebooting a running system 4
understanding

maintenance mode 17
overview 15
RAM file system 18
system boot processing 16

Bourne shell
built-in commands 265
character classes 205
command substitution 271
commands 263
compound commands 264
conditional substitution 259
environment 258
file name substitution 260
list of built-in commands 262
pattern matching 260
positional parameters 260
predefined variables 274
quoting characters 264
redirecting input and output 261
reserved words 264

404 AIX Version 7.2: Operating system management

Bourne shell (continued)
signal handling 264
starting 258
user-defined variables 271
variable substitution 271
variables 272

break built-in command
Bourne shell 266
C shell 287
Korn or POSIX shell 232

breaksw built-in command
C shell 287

BSD
comparison for system managers

accounting 333
backup 334
boot and startup 335
commands 342
cron 346
devices 346
file comparison 330
file systems 347
finding and examining files 335
networking 328, 332, 336, 337
performance 340
printers 340
UUCP 347

comparison to AIX for system managers
paging space 336

comparison to system managers
NFS and NIS (formerly Yellow Pages 332

online documentation and man command 332
bsh command 200, 206, 218, 258
buf_wrap 374
built-in commands

: 232, 266
. 232, 266
@ 287
alias 239, 256, 287
bg 239, 287
Bourne shell 262, 265
break 232, 266, 287
breaksw 287
C shell 286, 287
case 287
cd 239, 266, 287
chdir 287
command 239
continue 232, 266, 287
default 287
definition 201
dirs 287
echo 239, 266, 287
else 287
end 287
endif 287
endsw 287
eval 232, 266, 287
exec 232, 254, 266, 287
exit 232, 266, 287
export 231, 232, 254, 266
fc 128, 239, 256
fg 239, 287
foreach 287

built-in commands (continued)
getopts 239
glob 287
goto 287
hangups 287
hash 266
hashstat 287
history 287
if 287
jobs 239, 283, 287
kill 239, 287
Korn or POSIX shell 231
let 211, 239
limit 287
login 287
logout 287
newgrp 232
nice 287
notify 287
onintr 287
popd 287
print 239
pushd 287
pwd 239, 266
read 239, 266, 271
readonly 231, 232, 266
regular 231, 239, 265
rehash 287
repeat 287
return 232, 266
set 232, 260, 266, 287
setenv 287
setgroups 239
setsenv 239
shift 232, 260, 266, 287
source 287
special 231, 232, 265, 266
stop 287
suspend 287
switch 287
test 239, 266
time 287
times 232, 266
trap 232, 266
type 266
typeset 211, 224, 231, 232, 254
ulimit 239, 266
umask 239, 266, 287
unalias 239, 256, 287
unhash 287
unlimit 287
unset 232, 266, 287
unsetenv 287
wait 239, 266, 287
whence 239
while 287

bytes
counting number of 192

C
C shell

alias substitution 276
built-in commands 286, 287

Index 405

C shell (continued)
command execution 296
command substitution 296
commands 286
environment variables 281
expressions 294
file name substitution 279
history lists 297
history substitution 297
job control 283
limitations 276
list of built-in commands 283
operators 294
redirecting input and output 299
signal handling 286
starting 275
startup files 275
variable substitution 277

cal command 131
calendar

displaying 131
canceling

foreground processes 137
capture command 354
case built-in command

C shell 287
cat command 190, 195, 350, 354
cd built-in command

Bourne shell 266
C shell 287
Korn or POSIX shell 239

CDPATH variable 208
changing

control keys 326
default font 326
defaults 323
permissions 305
priority of processes 137
system prompt 327

character classes
Bourne shell 205

characters
quoting in Korn or POSIX shell 216

chdir built-in command
C shell 287

checking
integrity of tapes 45
process status 135

chfont command 326
chgrp command 311
chmod command 303, 305, 306
chown command 302, 311
classes

user 302
clDiskList 389
clDiskState 394
clear command 354
clearing your screen 354
clock

resetting 57
clock battery 57
Cluster Events 388
colrm command 194
COLUMNS variable 208

combining commands 122
command aliasing

Korn or POSIX shell 256
tilde substitution 257

command built-in command
Korn or POSIX shell 239

command flags 122
command history

editing 128
Korn or POSIX shell 256
substitution 256

command substitution
Bourne shell 271
C shell 296
Korn or POSIX shell 210

command summaries
backup files 24
file security 313
files 198
I/O redirection 355
storage media 24
system information 319
system security 313
user environment 319

commands
/usr/bin/psh 200
/usr/bin/sh 200
< 351
> 350
>> 350
| 352
acledit 306, 312
aclget 306, 310
aclput 306, 311
aixterm 319
alias 129
at 138–140
atq 139, 140
awk 185
backup 22, 46
banner 355
Bourne shell 263
Bourne shell built-in 265
bsh 200, 206, 218, 258
C shell 286
C shell built-in 286, 287
capture 354
cat 190, 195, 350, 354
chfont 326
chgrp 311
chmod 303, 305, 306
chown 302, 311
clear 354
colrm 194
combining 122
compound Korn shell 253
compress 35, 36
cp 187
cpio 22
cpio -i 44
cpio -o 44
creating shortcut names 129
csh 200, 275
cut 193

406 AIX Version 7.2: Operating system management

commands (continued)
date 58
definition 201
del 197
diag 57
diff 191
dosdel 198
dosdir 198
dosread 197
doswrite 197
echo 354
env 318
export 325
fdformat 42
file 188
find 46, 188
flags 123
flcopy 43
for BSD System Managers 342
format 42
fsck 21, 43
grep 9, 190, 352
groups 302
head 192
history 126
id 302
kill 9, 140, 149
Korn or POSIX shell 251
Korn or POSIX shell built-in 231
ksh 44, 200, 254
ln 195, 196
lock 312
login 309
ls 302, 303
lscfg 314
lscons 316
lsdisp 316
lsfont 316
lsgroup 304
lskbd 317
lslpp 317
man 125
more 189
mv 186
mwm 322
names 123
nice 136
nl 194
overview 122
pack 35, 36
page 189
parameters 124
paste 193
pg 149, 189, 195
piping 122
printenv 319
ps 9, 135, 149, 239
psh 200, 254
r 127, 128
renice 137, 149
repeating entered 127
restore 26, 46, 47
rm 186, 197
rsh 200

commands (continued)
Rsh 200, 206, 218
saving entered 126
script 354
setclock 58
sh 200
shutdown 125
smit 26, 47, 326
smit rmat 140
sort 190
stty 317, 326
su 309
substituting strings 128
syntax 123
tail 192
tapechk 21, 45
tar 22, 35, 45
tcopy 45
tee 353
text formatting 130
tn 9
tsh 200
tty 316
uncompress 35–37
unpack 35–37
usage statements 124
wc 192
whatis 126
whereis 125
who 149
xinit 322
xlock 312
zcat 37

commands list
apropos 133
cal 131
factor 133
for Bourne shell 262
for C shell 283
for Korn or POSIX shell 213, 214
leave 133

comments
definition 201

comparing files 191
compound commands

Bourne shell 264
compress command 35, 36
compressing

files 35
concatenating

text files 350
conditional substitution

Bourne shell 259
connect-time accounting 169
console

displaying name 316
continue built-in command

Bourne shell 266
C shell 287
Korn or POSIX shell 232

control keys
changing 326
displaying settings 317

control mode 247

Index 407

converting
DOS files 197

coprocess facility
Korn or POSIX shell 230

copying
base operating system files 197
DOS files 197
files 187
files from tape or disk 44
files to tape or disk 44
screen to file 354
to or from diskettes 43
to or from tape 45

counting
bytes 192
lines 192
words 192

cp command 187
cpio -i command 44
cpio -o command 44
cpio command 22
CPU usage

displaying 166
creating

aliases 256
command alias 129
shell scripts 206

Creating the monitor file
definition 362

cron
for BSD System Managers 346

cron daemon
generating data with 169

csh command 200, 275
Ctrl-C sequence 9
customizing

colors and fonts 323
key bindings 324
menu definitions 324
mouse button bindings 324
system environment 325–327

cut command 193
cutting

sections of text files 193

D
daemon processes 134
date command 58
default built-in command

C shell 287
default shell 200
defaults

changing 323
del command 197
deleting

DOS files 198
files 186

device
for BSD System Managers 346

devices
displaying information about 314

diag command 57
diagnosing boot problems

diagnosing boot problems (continued)
accessing a system that will not boot 19
rebooting a system with planar graphics 7

diagnostic output 349
diff command 191
directories

access modes 302
changing ownership 302
changing permissions 305
linking 195
listing DOS files 198
permissions 302

dirs built-in command
C shell 287

discarding output 351
disk-usage accounting 170
diskettes

copying to or from 43
formatting 42
handling 22
using as backup medium 22

diskState 395
displaying

access control information 310
available displays 316
calendar 131
console name 316
control key assignments 317
DOS directory contents 198
environment variables 318
file contents 189
file types 188
first lines of files 192
fonts available 316
group information 304
keyboard maps 317
last lines of files 192
one screen at a time 189
software products 317
system devices 314
terminal name 316
text in large letters on screen 355
values of environment variables 319

displays
listing currently available on system 316

DOS files
converting 197
copying 197
deleting 198
listing contents 198

dosdel command 198
dosdir command 198
dosread command 197
doswrite command 197
duplicate event consolidation 372
Dynamic Processor Deallocation 50, 52

E
echo built-in command

Bourne shell 266
C shell 287
Korn or POSIX shell 239

echo command 354

408 AIX Version 7.2: Operating system management

ed editor 185
editing

access control information 312
command history 128
inline in Korn or POSIX shell 244

EDITOR variable 208
editors

ed 185
emacs 244, 245
gmacs 244, 245
inline editing 244
vi 185, 244

else built-in command
C shell 287

emacs editor
inline editing 244, 245

emergency
shutting down in an 48

end built-in command
C shell 287

endif built-in command
C shell 287

endsw built-in command
C shell 287

enhanced Korn shell
arithmetic enhancements 219
associative arrays 219
built-in commands 219
command return values 219
compound assignments 219
compound variables 219
description 219
discipline functions 219
function environments 219
parameter expansions 219
PATH search rules 219
shell history 219
variable name references 219
variables 219

env command 318
ENV variable 208
environment

displaying current 318
file 320
setting 320
system 313

environment variables
C shell 281
displaying values 319

ERRNO variable 207
Error Format 373
error output 349
eval built-in command

Bourne shell 266
C shell 287
Korn or POSIX shell 232

Event consumers 359
Event producers

definition 359
exec built-in command

Bourne shell 266
C shell 287
Korn or POSIX shell 232, 254

exit built-in command

exit built-in command (continued)
Bourne shell 266
C shell 287
Korn or POSIX shell 232

exit status
Korn or POSIX shell 223

expanding
files 36, 37

export built-in command
Bourne shell 266
Korn or POSIX shell 232, 254

export command 325
exporting

aliases 256
shell variables 325

expressions
C shell 294
conditional 214
finding files with matching 188

F
factor command 133
factoring numbers

factor command 133
fc built-in command

Korn or POSIX shell 239
FCEDIT variable 208
fdformat command 42
fee accounting 171
fg built-in command

C shell 287
Korn or POSIX shell 239

field splitting
Korn or POSIX shell 212

file
command 188
descriptor 349, 351

file name substitution
Bourne shell 260
C shell 279
Korn or POSIX shell 227

file systems
backing up user file systems 25
backing up with scripts 41
checking for consistency 43
conducting interactive repairs 43
example 184
for BSD System Managers 347

file types
binary 182
directory 182
text 182

files
.env file 321
.mwmrc 324
.profile 321
.Xdefaults 323
.xinitrc 322
/dev/null 351
/etc/environment 320
/etc/passwd 200
/etc/profile 321
/etc/security/passwd 301

Index 409

files (continued)
access modes 302
appending single line of text 354
archiving 45
ASCII 182
backing up 46
binary 182
changing ownership 302
changing permissions 305
comparing 191
compressing 35
concatenating 350
copying 187
copying from DOS 197
copying from screen 354
copying from tape or disk 44
copying to DOS 197
creating with redirection from keyboard 350
cutting selected fields from 193
deleting 186
deleting DOS 198
displaying contents 189
displaying first lines 192
displaying last lines 192
displaying types 188
environment 320
executable 182
expanding 37
for BSD System Managers 330, 335
formatting for display 189
handling 185
HISTFILE 256
identifying type 188
joining 350
linking 195, 196
locating sections 125
matching expressions 188
merging the lines of several 193
metacharacters 185
moving 186
naming conventions 183
numbering lines 194
overview 182
ownership 302
packing 35
pasting text 193
path names 184
permissions 182, 302
regular expressions 185
removing 186
removing columns 194
removing linked 197
renaming 186
restoring 26, 29, 47
retrieving from storage 45
searching for a string 190
sorting text 190
uncompressing 37
unpacking 37
writing to output 192

filters 352
find command 46, 188
finding

files 188

finding (continued)
text strings within files 190

flags
in commands 123

flat network 17
flcopy command 43
Flow of monitoring an event 360
fonts

changing 326
listing available for use 316

foreach built-in command
C shell 287

foreground processes 134
format command 42
formatting

diskettes 42
FPATH variable 208
fsck command 21, 43

G
getopts built-in command

Korn or POSIX shell 239
glob built-in command

C shell 287
gmacs editor

inline editing 244, 245
goto built-in command

C shell 287
grep command 9, 190, 352
groups command 302

H
hangups built-in command

C shell 287
hash built-in command

Bourne shell 266
hashstat built-in command

C shell 287
head command 192
here document 228, 352
hierarchical network 17
High-level view of the AIX Event Infrastructure

definition 360
HISTFILE

file 256
variable 208

history
editing 128
lists in C shell 297
substitution in C shell 297

history built-in command
C shell 287

history command 126
HISTSIZE variable 208, 256
HOME variable 208

I
i-node number 182, 195
I/O redirection

Bourne shell 261

410 AIX Version 7.2: Operating system management

I/O redirection (continued)
C shell 299
Korn or POSIX shell 228
standard 349

id command 302
idbgen 49
identifier

definition 201
IDs

user 302
if built-in command

C shell 287
IFS variable 208
inactive system

checking hardware 9
checking processes 9
restarting the system 11

inetsock 385
inittab file

srcmstr daemon in 179
inline editing

emacs editing mode 245
gmacs editing mode 245
Korn or POSIX shell 244
vi editing mode 247–250

inline input documents 352
inoperable system

checking hardware 9
checking processes 9
restarting the system 11

input
redirection 349
redirection operator 351

input mode
definition 247
input edit commands 248

integer arithmetic 211
international character support

text formatting 130
interpreting

blanks 275

J
job control

C shell 283
Korn or POSIX shell 243

jobs
listing scheduled 139
removing from schedule 140
scheduling 138

jobs built-in command
C shell 283, 287
Korn or POSIX shell 239

K
key bindings 324
keyboard

changing attributes
using chhwkbd command 342

keyboard maps
listing currently available 317

keyword search
apropos command 133

kill built-in command
C shell 287
Korn or POSIX shell 239

kill command 9, 140, 149
Korn shell or POSIX shell

arithmetic evaluation 211
built-in commands 231
command aliasing 256
command history 256
command substitution 210
compound commands 253
conditional expressions 214
coprocess facility 230
editing 244
enhanced 219
environment 254
exit status 223
field splitting 212
file name substitution 227
functions 255
job control 243
list of regular built-in commands 214
list of special built-in commands 213
parameter substitution 224, 225
pattern matching 227
predefined parameters 226
predefined variables 207
quote removal 228
quoting 216
redirecting input and output 228
redirecting input and output from coprocesses 231
reserved words 218
signal handling 244
starting 254
tilde substitution 257
user-defined variables 208
using commands 251

ksh command 44, 200, 254
ksh93

arithmetic enhancements 219
associative arrays 219
built-in commands 219
command return values 219
compound assignments 219
compound variables 219
description 219
discipline functions 219
function environments 219
parameter expansions 219
PATH search rules 219
shell history 219
variable name references 219
variables 219

L
LANG variable 208
languages

bidirectional 319
LC_ALL variable 208
LC_COLLATE variable 208
LC_CTYPE variable 208

Index 411

LC_MESSAGES variable 208
leave command 133
let built-in command

Korn or POSIX shell 211, 239
limit built-in command

C shell 287
line of text

appending to file 354
LINENO variable 207
lines

counting number of 192
LINES variable 208
linked files

removing 197
linkedCl 390
linking

directories 195
files 195, 196

links
creating 196
hard 195
overview 195
removing 197
symbolic 195
types 195

listing
aliases 256
scheduled processes 139

lists
definition 201

ln command 195, 196
lock command 312
locking

your terminal 312
login

shell 200
user ID 301

login built-in command
C shell 287

login command 309
login files

.env file 321

.profile 321

.profile file 48
/etc/environment
320
/etc/profile 321
/etc/profile file 48

logout built-in command
C shell 287

ls command 302, 303
lscfg command 314
lscons command 316
lsdisp command 316
lsfont command 316
lsgroup command 304
lskbd command 317
lslpp command 317
lssrc command 181

M
MAIL variable 208
MAILCHECK variable 208

MAILPATH variable 208
maintaining

access control lists 306
ACLs 306

man command
BSD System Managers 332

man pages
finding with keyword searches 133

maps
keyboard 317

menu definitions 324
message of the day

changing 59
messages

displaying on screen 354
sending to standard output 354

messages, screen, responding to 150
metacharacters

definition 201
quoting in Korn or POSIX shell 216

moddir 378
modDir 385
modfile 375, 376
modFile 385
monitoring processes 144
more command 189
motd file 59
mouse button bindings 324
multibyte character support

enter characters 131
text formatting 131

multiuser systems
changing run levels on 14

mv command 186
mwm command 322

N
named parameters 224
naming conventions

files 183
network

for BSD System Managers 328, 332, 336, 337
network planning

TCP/IP 17
networkAdapterState 393
newgrp built-in command

Korn or POSIX shell 232
NFS and NIS

BSD System Managers 332
nice built-in command

C shell 287
nice command 136
NIS 332
nl command 194
NLSPATH variable 208
nodeAddress 392
nodeContact 391
nodeList 389
nodeState 392
notify built-in command

C shell 287
NUM_EVDROPS_INTRCNTX 374
numbering

412 AIX Version 7.2: Operating system management

numbering (continued)
lines in text files 194

O
OLDPWD variable 207
onintr built-in command

C shell 287
operands

in commands 124
operating system

loading 11
shutting down 125

operators
C shell 294

OPTARG variable 207
OPTIND variable 207
options

in commands 123
output

discarding with /dev/null file
351
redirecting to a file 350
redirection 349
redirection operator 350

P
pack command 35, 36
page command 189
paging space

AIX for BSD System Managers 336
parameter assignment lists

definition 201
parameter substitution

Korn or POSIX shell 225
parameters

in commands 124
Korn or POSIX shell 224, 226
named 224
positional 224
predefined 226
special 224, 226

paste command 193
pasting

sections of text files 193
path names

absolute 184
files 184

PATH variable 208
pattern matching

Bourne shell 260
Korn or POSIX shell 227

performance
BSD System Managers 340

permissions
directory 305
file 305

pg command 149, 189, 195
PID number 134
pidProcessMon 384, 385
pipelines

definition 201, 352

pipes 352
piping 122
popd built-in command

C shell 287
positional parameters

Bourne shell 260
PPID variable 207
predefined variables

Bourne shell 274
Korn or POSIX shell 207

print built-in command
Korn or POSIX shell 239

printenv command 319
printer

for BSD System Managers 340
printer-usage accounting 171
priority of processes 147
process identification number 134
process summaries 141
processes

background 134
batch 138
binding of to a processor 149
canceling foreground processes 137
changing priority 137
checking status 135
collecting accounting data on 170
daemon 134
description 134
displaying all active 135
displaying CPU usage 166
foreground 134
generating accounting reports 170
listing scheduled 139
management of 144
monitoring of 144
priority alteration of 147
removing background processes 140
removing from schedule 140
restarting stopped 137
scheduling for later operation 138
setting initial priority 136
starting 134
stopping foreground processes 137
termination of 148
zombie 134

processMon 384, 385
profile

files 48
overview 48

profile files 320
program

copying output into a file 353
prompt

changing 327
ps command 9, 135, 149, 239
PS1 variable 208
PS2 variable 208
PS3 variable 208
PS4 variable 208
psh command 200, 254
pushd built-in command

C shell 287
pwd built-in command

Index 413

pwd built-in command (continued)
Bourne shell 266
Korn or POSIX shell 239

PWD variable 207

Q
quote removal

Korn or POSIX shell 228
quoting characters

Bourne shell 264
Korn or POSIX shell 216

R
r alias 127, 128
r command 127, 128
RANDOM variable 207
read built-in command

Bourne shell 266, 271
Korn or POSIX shell 239

Reading Event Data 368
readonly built-in command

Bourne shell 266
Korn or POSIX shell 232

rebooting a system with planar graphics 7
recovery procedures

accessing a system that will not boot 19
rebooting a system with planar graphics 7

redirecting
input and output from coprocesses 231
input and output in Bourne shell 261
input and output in Korn or POSIX shell 228
output to a file 350
standard error output 351
standard input 351
standard output 350

refresh command 181
regular built-in commands

Korn or POSIX shell 214, 239
regular expressions 185
rehash built-in command

C shell 287
remote

shell 200
removing

aliases 256
background processes 140
columns in text files 194
linked files 197
processes from schedule 140

renaming
files 186

renice command 137, 149
repDiskState 395
repeat built-in command

C shell 287
REPLY variable 207
reserved words

Bourne shell 264
Korn or POSIX shell 218

resource files
modifying 323, 324

restart the system 11
restarting

stopped processes 137
restore command 26, 46, 47
restoring

files 26, 47
Restricted Korn Shell

starting 218
restricted shell

starting 206
Restricted shell 200
return built-in command

Bourne shell 266
Korn or POSIX shell 232

rm command 186, 197
rsh command 200
Rsh command 200, 206, 218
run level

displaying history 14
identifying 14

runacct command
restarting 159
starting 159

running
shell scripts 206

S
schedo 383, 385
scheduling

processes 138
screen messages, responding to 150
screens

clearing 354
copying display to a file 353
copying to file 354
displaying text in large letters 355
displaying text one screen at a time 189

script command 354
searching

keywords 133
SECONDS variable 207
security

/etc/security/passwd file
301
authentication 301
file 300
identification 301
login user ID 301
system 300
unattended terminals 301

set built-in command
Bourne shell 266
C shell 287
Korn or POSIX shell 232

setclock command 58
setenv built-in command

C shell 287
setgroups built-in command

Korn or POSIX shell 239
setsenv built-in command

Korn or POSIX shell 239
setting

access control information 311

414 AIX Version 7.2: Operating system management

setting (continued)
initial priority of processes 136

sh command 200
shell commands

fc 128
history 126
r alias 127, 128

shell environments
customizing 48

shell procedures 122
shell scripts

creating 206
specifying a shell 203

SHELL variable 208
shell variables

definition 201
exporting 325
local 325

shells
alias substitution in C shell 276
Bourne 200
Bourne built-in commands 265
Bourne command substitution 271
Bourne environment 258
Bourne I/O redirection 261
Bourne list of built-in commands 262
Bourne predefined variables 274
Bourne user-defined variables 271
Bourne variable substitution 271
C 200
C built-in commands 286, 287
character classes in Bourne 205
command execution in C shell 296
command substitution in C shell 296
conditional substitution in Bourne 259
creating shell scripts 206
default 200
environment variables in C shell 281
features 204
file name substitution in Bourne 260
file name substitution in C shell 279
history lists in C shell 297
history substitution in C shell 297
job control in C shell 283
Korn 200
Korn or POSIX arithmetic evaluation 211
Korn or POSIX built-in commands 231
Korn or POSIX command aliasing 256
Korn or POSIX command history 256
Korn or POSIX command substitution 210
Korn or POSIX compound commands 253
Korn or POSIX conditional expressions 214
Korn or POSIX coprocess facility 230
Korn or POSIX environment 254
Korn or POSIX exit status 223
Korn or POSIX file name substitution 227
Korn or POSIX I/O redirection 228
Korn or POSIX inline editing 244
Korn or POSIX job control 243
Korn or POSIX list of regular built-in commands 214
Korn or POSIX list of special built-in commands 213
Korn or POSIX reserved words 218
Korn or POSIX signal handling 244
login 200

shells (continued)
overview 200
parameters 224
positional parameters in Bourne 260
POSIX 200
quoting in Korn or POSIX 216
redirecting input and output in C shell 299
remote 200
Restricted 200
signal handling in C shell 286
standard 200
starting Bourne shell 258
starting C shell 275
starting Korn or POSIX 254
starting restricted 206, 218
terminology 201
trusted 200
types 200
using Korn or POSIX commands 251
variable substitution in C shell 277
variables used by Bourne 272

shift built-in command
Bourne shell 266
C shell 287
Korn or POSIX shell 232

shortcut name for commands
creating 129

shutdown
emergency 48
to single-user mode 48
understanding 47
without rebooting 47

shutdown command 125
shutting down the operating system 125
shutting down the system 47
SIGINT signal 244
signal handling

Bourne shell 264
C shell 286
Korn or POSIX shell 244

signals
SIGINT 244
SIGQUIT 244

SIGQUIT signal 244
simple commands

definition 201
single-user mode 48
single-user systems

changing run levels on 14
smit command

restoring files 26
smit rmat command 140
software products

displaying information about 317
sort command 190
sorting

text files 190
source built-in command

C shell 287
special built-in commands

Bourne shell 266
Korn or POSIX shell 213, 232

special parameters 224
srcmstr command 181

Index 415

srcmstr daemon 179
standard error 349
standard error output

redirecting 351
standard input

copying to a file 353
redirecting 351

standard output
appending to a file 350
redirecting 350

standard shell
conditional expressions 214

starting
AIXwindows Window Manager 322
Bourne shell 258
C shell 275
Korn or POSIX shell 254
processes 134
Restricted Korn Shell 218
restricted shell 206

startsrc command 180
startup

controlling windows and applications 322
startup files

AIXwindows 322
C shell 275
system 320
X Server 322

stderr 349
stdin 349
stdout 349
stop built-in command

C shell 287
stopping

foreground processes 137
stopsrc command 180
storage media 19
strings

finding in text files 190
stty command 317, 326
su command 309
subserver

description of 178
displaying status 181
starting 180
stopping 180
turning off tracing 182
turning on tracing 182

subshells
definition 201

subsystem
displaying status 181
properties of 178
refreshing 181
starting 180
stopping 180
turning off tracing 182
turning on tracing 182

subsystem group
description of 178
displaying status 181
refreshing 181
starting 180
stopping 180

subsystem group (continued)
turning off tracing 182
turning on tracing 182

summaries
AIXwindows startup files 314
commands 355
customizing system environment 314
for commands 141
for processes 141
system startup files 314

suspend built-in command
C shell 287

switch built-in command
C shell 287

switches
in commands 123

system
changing prompt 327
customizing environment 325–327
default variables 321
environment 313
security 300
starting the 4
startup files 320

system accounting
commands

running automatically 156
running from the keyboard 157

connect-time data 154, 167, 169
CPU usage

displaying 166
disk-usage data

collecting 170
failure

recovering from 159
fees

charging 171
reporting 155

files
data files 158
formats 161
overview 158
report and summary files 158
runnact command files 160

holidays file
updating 168

overview 151
printer-usage data

collecting 171
reporting 155

problems
fixing bad times 173
fixing incorrect file permissions 173
fixing runacct errors 174
fixing-out-of-date holidays file 168

process data
collecting 170
reporting 170

reporting data
overview 151

reports
daily 152
fiscal 155
monthly 153, 154

416 AIX Version 7.2: Operating system management

system accounting (continued)
runnacct command

restarting 159
starting 159

setting up 162
summarizing records 153
system activity

data 155
system activity data

displaying 164
displaying while running a command 165

tacct errors
fixing 171

wtmp errors
fixing 172

system activity
tracking 155

system battery 57
system clock

resetting 57
testing the battery 57

system environment
64-bit mode 50
Dynamic Processor Deallocation 50, 52
message of the day 59
profile 48
time data manipulation services 49

system failure
checking hardware 9
checking processes 9
restarting the system 11

System Resource Controller
commands

list of 179
functions of 177
starting 179

system run level 14

T
tacct errors

fixing 171
tail command 192
tapechk command 21, 45
tapes

checking integrity 45
copying to or from 45
using as backup medium 22

tar command 22, 35, 45
tcopy command 45
TCP/IP

/etc/hosts 17
naming

flat network 17
hierarchical network 17

network planning 17
tee command 353
terminal problems

stopping stalled processes 149
terminal, locked up 149
terminals

displaying control key assignments 317
displaying name 316
displaying settings 319

terminals (continued)
for BSD System Managers 348
locking 312
unattended 301

terminology
for shells 201

test built-in command
Bourne shell 266
Korn or POSIX shell 239

text
appending to a file 354
displaying in large letters 355

text files
concatenating 350
creating from keyboard input 350
cutting sections 193
finding strings 190
numbering lines 194
pasting sections 193
removing columns 194
sorting 190

text formatting
commands 130
extended single-byte characters 130
international character support 130
multibyte character support 131

tilde substitution
aliasing commands 257

time built-in command
C shell 287

time management
calendar command 131
creating reminders 133
reminder messages 131
writing reminder messages 131

times built-in command
Bourne shell 266
Korn or POSIX shell 232

TMOUT variable 208
tn3270 command 328
tracesoff command 182
traceson command 182
tracked aliases 257
Transmission Control Protocol/Internet Protocol 17
trap built-in command

Bourne shell 266
Korn or POSIX shell 232

trusted shell 200
tsh command 200
tty command 316
type built-in command

Bourne shell 266
typeset built-in command

Korn or POSIX shell 211, 224, 232, 254

U
ulimit built-in command

Bourne shell 266
Korn or POSIX shell 239

umask built-in command
Bourne shell 266
C shell 287
Korn or POSIX shell 239

Index 417

unalias built-in command
C shell 287
Korn or POSIX shell 239, 256

Unavailable Event Occurrences
definition 367

uncompress command 35–37
uncompressing

files 37
underscore variable 207
unhash built-in command

C shell 287
unlimit built-in command

C shell 287
unpack command 35–37
unpacking

files 37
unset built-in command

Bourne shell 266
C shell 287
Korn or POSIX shell 232

unsetenv built-in command 287
usage statements

for commands 124
user

classes 302
displaying group information 304
groups 302

user environments
customizing 48

user ID
login 301

user-defined variables
Bourne shell 271

utilFs 379, 385
UUCP

BSD System Managers 347

V
variable substitution

Bourne shell 271
C shell 277
Korn or POSIX shell 207

variables
Bourne shell 272, 274
Bourne shell user-defined 271
C shell environment 281
CDPATH 208
COLUMNS 208
EDITOR 208
ENV 208
ERRNO 207
exporting 325
FCEDIT 208
FPATH 208
HISTFILE 208
HISTSIZE 208, 256
HOME 208
IFS 208
Korn or POSIX shell 207, 208
LANG 208
LC_ALL 208
LC_COLLATE 208
LC_CTYPE 208

variables (continued)
LC_MESSAGES 208
LINENO 207
LINES 208
MAIL 208
MAILCHECK 208
MAILPATH 208
NLSPATH 208
OLDPWD 207
OPTARG 207
OPTIND 207
PATH 208
PPID 207
predefined 207
PS1 208
PS2 208
PS3 208
PS4 208
PWD 207
RANDOM 207
REPLY 207
SECONDS 207
SHELL 208
SHELL PROMPT variable 208
TMOUT 208
underscore 207
user-defined 208
variables

SHELL PROMPT 208
VISUAL 208

vgState 396
vi editor

commonly used edit commands 250
control mode 247
cursor movement 248
inline editing 244, 247–250
input edit commands 248
input mode 247, 248
miscellaneous edit commands 250
motion edit commands 248
search edit commands 249
text-modification edit commands 249

VISUAL variable 208
vmo 382, 385

W
wait built-in command

Bourne shell 266
C shell 287
Korn or POSIX shell 239

waitersFreePg 380, 385
Waiting on events

definition 366
waitTmCPU 380, 385
waitTmPgInOut 381, 385
wc command 192
whatis command 126
whence built-in command

Korn or POSIX shell 239
whereis command 125
while built-in command

C shell 287
who command 149

418 AIX Version 7.2: Operating system management

wildcard characters
asterisk 184
definition 201
question mark 184

words
counting number of 192
definition 201
reserved in Korn or POSIX shell 218

Writing to the monitor file
definition 363

wtmp errors
fixing 172

X
X Server

startup files 322
xinit command 322
xlock command 312

Y
Yellow Pages

BSD System Managers 332

Z
zcat command 37
zombie processes 134

Index 419

420 AIX Version 7.2: Operating system management

IBM®

	Contents
	About this document
	Highlighting
	Case-sensitivity in AIX
	ISO 9000

	Operating system management
	What's new
	Operating system administration
	Available system management interfaces
	Software vital product data
	Operating system updates
	System startup
	Administering system startup
	Rebooting a running system
	Rebooting a unresponsive system remotely
	Booting from hard disk for maintenance
	Booting a system that has crashed
	Resetting an unknown root password
	Booting systems with planar graphics
	Deploying run level script execution
	Modifying the /etc/inittab file
	Reactivation of an inactive system
	Hardware check
	Checking the processes
	Restarting the system

	Creating boot images
	Creating a boot image on a boot logical volume
	Creating boot images for network devices

	System run level
	Identifying the system run level
	Displaying a history of previous run levels

	Configuring run levels on multiuser systems
	Configuring run levels on single-user systems

	Boot process
	Processing the system boot
	Firmware phase
	Base device configuration phase
	Booting the system

	Maintenance boot process
	RAM file system

	Troubleshooting system startup
	Systems that will not boot
	Boot problem diagnostics

	System backup
	Backup concepts
	Backup policies
	Backup media
	Backup strategy
	System data versus user data
	Backups
	System replication (cloning)
	Command summary for backup files and storage media

	Administering system backups
	Backing up user files or file systems
	Restoring backed-up files
	Creating a remote archive
	Restoring user files from a backup image
	Restoring access to an unlinked or deleted system library
	Restoring a deleted symbolic link
	Restoring a deleted system library file
	Recreating a corrupted boot image
	Making an online backup of a JFS
	Making and backing up a snapshot of a JFS2
	Making and backing up an external snapshot of a JFS2
	Making and backing up an internal snapshot of a JFS2
	Compressing files (compress and pack commands)
	Compressing files using the compress command
	Compressing files using the pack command
	Expanding compressed files (uncompress and unpack commands)

	System image and user-defined volume groups backup
	Backing up the system image and user-defined volume groups
	Pre-backup configuration
	File system mounts and unmounts
	Security considerations for backups
	Backup image restoration
	Implementing scheduled backups
	Backing up file systems using the cron command
	Backup of files on a DMAPI-managed JFS2 file system
	Formatting diskettes (format or fdformat command)
	Checking the integrity of a file system (fsck command)
	Copying to or from diskettes (flcopy command)
	Copying files to tape or disk (cpio -o command)
	Copying files from tape or disk (cpio -i command)
	Copying to or from tapes (tcopy command)
	Checking the integrity of a tape (tapechk command)
	Archiving files (tar command)

	File backup
	Backing up files using the backup command
	Backing up files using the smit command

	Shutting down the system
	Shutting down the system without rebooting
	Shutting down the system to single-user mode
	Shutting down the system in an emergency

	System environment
	Profiles
	Time data manipulation services
	Filesets and hardware needed for 64-bit mode
	Hardware required for 64-bit mode
	32-bit and 64-bit performance comparisons
	Dynamic Processor Deallocation
	Processor deallocation impacts to applications
	Processor deallocation process
	Enabling Dynamic Processor Deallocation
	Methods of turning processor deallocation on and off
	Restarting an aborted processor deallocation
	Processor state considerations
	Deallocation error log entries

	System environment variable setup
	Testing the system battery
	Setting up the system clock
	date command
	setclock command

	Olson time zone support and setup
	Message of the day setup

	AIX Usage Metric (SLM tags) for ILMT
	AIX Runtime Expert
	AIX Runtime Expert concepts
	AIX Runtime Expert profiles
	AIX Runtime Expert catalogs
	AIX Runtime Expert and LDAP
	AIX Runtime Expert and RBAC

	Administering AIX Runtime Expert
	Configuring AIX Runtime Expert
	Creating AIX Runtime Expert profiles
	Modifying AIX Runtime Expert profiles
	Combining AIX Runtime Expert profiles
	Finding AIX Runtime Expert profiles
	Getting AIX Runtime Expert profile values
	Applying AIX Runtime Expert profiles
	Rolling back AIX Runtime Expert profiles
	Comparing AIX Runtime Expert profiles

	Writing AIX Runtime Expert profiles
	Concepts in writing AIX Runtime Expert profile
	Profile locations
	Profile naming
	Profile process

	AIX Runtime Expert profile elements
	<Profile> element
	<Description> and <ShortDescription> elements
	<Catalog> element
	<SubCat> element
	<Parameter> element
	Parameter values

	<Property> element
	<Seed> element
	<Target> element

	Writing AIX Runtime Expert catalogs
	AIX Runtime Expert catalog concepts
	Catalog location
	Catalog process

	AIX Runtime Expert catalog elements
	<Catalog> element
	Version attribute

	<Description> and <ShortDescription> elements
	Globalization support
	<SubCat> element
	<ParameterDef> element
	name attribute

	<ConstraintDef> element
	<CfgMethod> element
	<Get> element
	<Set> element
	<Diff> element
	<Discover> element
	<Command> element
	<Argument> element
	<Stdin> element
	<Filter> element
	<Mask> element
	<SeedDef> element
	<Prereq> element
	<PrereqDef> element
	<Property> element
	<PropertyDef> element

	Command-line generation
	Expansion of command line elements

	Commands and processes
	Commands
	Command syntax and command names
	Command flags
	Command parameters

	Usage statements
	Shutdown command
	Locating another command or program (whereis command)
	Displaying information about a command (man command)
	Displaying the function of a command (whatis command)
	Listing previously entered commands (history command)
	Repeating commands using the r alias
	String substitution using the r alias
	Editing the command history
	Creating a command alias (alias shell command)
	International character support in text formatting
	Text formatting with extended single-byte characters
	Multibyte character support in text formatting
	Displaying a Calendar
	Displaying reminder messages
	Factoring a Number
	Locating a command by keyword
	Setting up a reminder to leave

	Processes
	Process startup
	Command to check the process status (ps command)
	Setting the initial priority of a process (nice command)
	Changing the priority of a running process (renice command)
	Foreground process cancellation
	Keyboard command to stop a foreground process
	Restarting a stopped process
	Scheduling a process for later operation
	Listing all scheduled processes (at or atq command)
	Removing a process from the schedule
	Removing a background process (kill command)

	Command summary for commands and processes

	Managing system hang
	Configuring system hang detection
	Priority hang detection
	Lost I/O hang detection

	Process management
	Process monitoring
	Process priority alteration
	Process termination
	Binding or unbinding a process
	Fixes for stalled or unwanted processes
	Freeing a terminal taken over by processes
	Responding to screen messages

	Running multiple queues using environment variables RT_MPC and RT_GRQ

	System accounting
	Accounting data reports
	Daily accounting reports
	Daily report
	Daily Usage accounting report
	Daily Command Summary accounting report
	Monthly Total Command Summary accounting report
	Last login
	Accounting report summary
	Monthly report
	Connect-time reports
	Disk-usage accounting report
	Printer-Usage accounting report
	Fee accounting report
	Fiscal accounting reports
	Accounting system activity reports
	Greater than eight character username support

	Accounting commands
	Commands that run automatically
	Keyboard commands

	Accounting files
	Accounting data files
	Accounting report and summary files
	Starting the runacct command for accounting
	Restarting the runacct command for Accounting
	runacct command files
	Files in the /var/adm/acct/nite(x) directory
	Files in the /var/adm/acct/sum(x) directory
	Files in the /var/adm/acct/fiscal(x) directory
	Accounting file formats

	Administering system accounting
	Setting up an accounting system
	Displaying Accounting system activity
	Showing Accounting system activity while running a command
	Displaying the process time of active Accounting processes
	Displaying the process time of finished Accounting processes
	Showing the CPU usage for each accounting process
	Showing the CPU accounting usage for each user
	Displaying connect time usage for accounting
	Displaying disk space utilization for accounting
	Displaying printer or plotter usage accounting records
	Updating the holidays file

	Collecting accounting data
	System data collection and reporting
	Connect-time accounting data
	Process accounting data
	Process accounting reports
	Disk-usage accounting data
	Printer-usage accounting data
	Fee accounting data

	Troubleshooting system accounting
	Fixing tacct errors
	Fixing wtmp errors
	Fixing incorrect Accounting file permissions
	Fixing Accounting errors
	Accounting errors encountered when running the runacct command

	System Resource Controller
	Subsystem components
	SRC hierarchy
	SRC administration commands
	Starting the System Resource Controller
	Starting or stopping a subsystem, subsystem group, or subserver
	Displaying status of a subsystem or subsystems
	Refreshing a subsystem or subsystem group
	Subsystem control

	Operating system files
	Types of files
	File naming conventions
	File path names
	Pattern matching with wildcards and metacharacters
	Pattern matching using the * wildcard character
	Pattern matching using the ? wildcard character
	Pattern matching using [] shell metacharacters

	Pattern matching versus regular expressions

	Administering files
	Deleting files (rm command)
	Moving and renaming files (mv command)
	Copying files (cp command)
	Finding files (find command)
	Displaying the file type (file command)
	Commands for displaying file contents (pg, more, page, and cat commands)
	Using the pg command
	Using the more or page commands
	cat command

	Finding text strings within files (grep command)
	Sorting text files (sort command)
	Comparing files (diff command)
	Counting words, lines, and bytes in files (wc command)
	Displaying the first lines of files (head command)
	Displaying the last lines of files (tail command)
	Cutting sections of text files (cut command)
	Pasting sections of text files (paste command)
	Numbering lines in text files (nl command)
	Removing columns in text files (colrm command)

	File and directory links
	Types of links
	Linking files (ln command)
	Command for removing linked files

	DOS files
	Copying DOS files to base operating system files
	Copying base operating system files to DOS files
	Deleting DOS files
	Displaying contents of a DOS directory

	Command summary for files

	Operating system shells
	Shell concepts
	Available shells
	Shells terminology
	Specifying a shell for a script file
	Shell features
	Character classes
	Restricted shell
	Creating and running a shell script

	Korn shell
	Variables set by the Korn shell or POSIX shell
	Variables used by the Korn shell or POSIX shell
	Command substitution in the Korn shell or POSIX shell
	Arithmetic evaluation in the Korn shell or POSIX shell
	Field splitting in the Korn shell or POSIX shell
	List of Korn shell or POSIX shell special built-in commands
	Korn shell or POSIX shell regular built-in commands
	Conditional expressions for the Korn shell or POSIX shell
	Quotation of characters in the Korn shell or POSIX shell
	Restricted Korn shell
	Reserved words in the Korn shell or POSIX shell
	Enhanced Korn shell (ksh93)
	Exit status in the Korn shell or POSIX shell
	Parameters in the Korn shell
	Parameter substitution in the Korn shell or POSIX shell
	Predefined special parameters in the Korn shell or POSIX shell

	File name substitution in the Korn shell or POSIX shell
	Quote removal

	Input and output redirection in the Korn shell or POSIX shell
	Coprocess facility
	Redirection of coprocess input and output

	Korn shell or POSIX shell built-in commands
	Special built-in command descriptions for the Korn shell or POSIX shell
	Regular built-in command descriptions for the Korn shell or POSIX shell

	Job control in the Korn shell or POSIX shell
	Signal handling

	Inline editing in the Korn shell or POSIX shell
	emacs editing mode
	vi editing mode
	Input edit commands
	Motion edit commands
	Search edit commands
	Text modification edit commands
	Miscellaneous edit commands

	Korn shell or POSIX shell commands
	Korn shell compound commands
	Shell startup
	Korn shell environment
	Korn shell functions
	Korn shell or POSIX shell command history
	Command history substitution

	Command aliasing in the Korn shell or POSIX shell
	Tracked aliases
	Tilde substitution

	Bourne shell
	Bourne shell environment
	Conditional substitution in the Bourne shell
	Positional parameters in the Bourne shell
	File name substitution in the Bourne shell
	Input and output redirection in the Bourne shell
	List of Bourne shell built-in commands
	Bourne shell commands
	Character quotation
	Signal handling
	Bourne shell compound commands
	Reserved words
	Bourne shell built-in commands
	Special command descriptions
	Command substitution in the Bourne shell
	Variable substitution in the Bourne shell

	User-defined variables in the Bourne shell
	Variables used by the Bourne shell
	Predefined special variables in the Bourne shell
	Blank interpretation

	C shell
	C shell limitations
	Alias substitution in the C shell
	Variable substitution in the C shell
	File name substitution in the C shell
	File name expansion in the C shell
	File name abbreviation in the C shell
	Character classes in the C shell
	Environment variables in the C shell
	Job control in the C shell
	C shell built-in commands list
	Signal handling in the C shell
	C shell commands
	C shell built-in commands
	C shell command descriptions
	C shell expressions and operators
	Command substitution in the C shell
	Nonbuilt-in C shell command execution

	History substitution in the C shell
	History lists for the C shell
	Event specification for the C shell
	Quotation with single and double quotes

	Input and output redirection in the C shell
	Flow control in the C shell

	Operating system security
	Identification and authentication
	Login user IDs
	Unattended terminals
	File ownership and user groups
	Changing file or directory ownership
	File and directory access modes
	Symbolic representation of access modes
	Numeric representation of access modes

	Displaying group information
	Changing file or directory permissions

	Access control lists
	Access control lists for file system objects
	AIXC access control list type
	NFS4 access control list type

	Access control list example for AIXC
	Access control list access authorization
	Command for displaying access control information (aclget command)
	Setting access control information (aclput command)
	Access control list example and description
	Editing access control information (acledit command)

	Locking your terminal (lock or xlock command)
	Command summary for file and system security

	User environment
	User environment files and customization procedures
	System devices list (lscfg command)
	Displaying console names
	Displaying the terminal name (tty command)
	Listing available displays (lsdisp command)
	Listing available fonts (lsfont command)
	Listing the current software keyboard map (lskbd command)
	Listing available software products (lslpp command)
	List of control key assignments for your terminal (stty command)
	Listing environment variables (env command)
	Displaying an environment variable value (printenv command)
	Bidirectional languages (aixterm command)
	Command summary for user environment and system information
	User environment customization
	System startup files
	/etc/environment file
	/etc/profile file
	.profile file
	.env file

	AIXwindows startup files
	.xinitrc file
	.Xdefaults file
	.mwmrc file

	Exporting shell variables (export shell command)
	Changing the default font (chfont command)
	Changing control keys (stty command)
	Changing your system prompt

	BSD systems reference
	BSD concepts
	Introduction to AIX for BSD system managers
	Major differences between 4.3 BSD and AIX
	File comparison table for 4.3 BSD, SVR4, and AIX
	Name and address resolution
	Online documentation and man command for BSD 4.3 system managers
	NFS and NIS (formerly Yellow Pages) for BSD 4.3 system managers
	User passwords for BSD 4.3 system managers

	Administering BSD
	Accounting for BSD 4.3 system managers
	Backup for BSD 4.3 system managers
	Startup for BSD 4.3 system managers
	Finding and examining files for BSD 4.3 system managers
	Paging space for BSD 4.3 system managers
	Changing the default startup to permit 4.3 BSD ASCII configuration
	Additional options for ifconfig and netstat commands
	Additional network management commands
	Importing a BSD 4.3 password file
	Editing the password file for BSD 4.3 system managers

	Performance measurement and tuning for BSD 4.3 system managers
	Printers for BSD 4.3 system managers
	Commands for system administration for BSD 4.3 system managers
	Cron for BSD 4.3 system managers
	Devices for BSD 4.3 system managers
	UUCP for BSD 4.3 system managers
	File systems for BSD 4.3 system managers
	/etc/filesystems file and /etc/fstab file
	File system support on AIX

	Terminals for BSD 4.3 system managers
	termcap and terminfo

	Input and output redirection
	Standard input, standard output, and standard error files
	Standard output redirection
	Redirecting output to a file
	Redirecting output to append to a file
	Creating a text file with redirection from the keyboard
	Text file concatenation
	Standard input redirection
	Discarding output with the /dev/null file
	Standard error and other output redirection
	Redirecting output to inline input (here) documents
	Redirecting output using pipes and filters
	Displaying program output and copying to a file (tee command)
	Clearing your screen (clear command)
	Sending a message to standard output
	Appending a single line of text to a file (echo command)
	Copying your screen to a file (capture and script commands)
	Command to display text in large letters on your screen (banner command)
	Command summary for input and output redirection

	AIX kernel recovery
	Enabling and disabling kernel recovery

	AIX Event Infrastructure for AIX and AIX clusters-AHAFS
	Introduction to the AIX Event Infrastructure
	AIX Event Infrastructure components
	AIX Event Infrastructure kernel extension
	Event consumers
	Event producers
	ahafs_evprods kernel service

	Setting up the AIX Event Infrastructure
	High-level view of how the AIX Event Infrastructure works
	Typical flow of monitoring an event

	Using the AIX Event Infrastructure
	Monitoring events
	Creating the monitor file
	Writing to the monitor file
	Waiting on events
	Unavailable Event Occurrences
	Using AIX Event Infrastructure for polling
	Reading Event Data
	Duplicate Event Consolidation

	Example Event Data
	Error format
	BUF_WRAP and EVENT_OVERFLOW
	NUM_EVDROPS_INTRCNTX

	Pre-defined event producers
	modFile
	modFileAttr
	modDir
	utilFs
	waitTmCPU
	waitersFreePg
	waitTmPgInOut
	vmo
	schedo
	pidProcessMon
	processMon
	inetsock

	Cluster events
	Pre-defined event producers for a Cluster Aware AIX instance
	nodeList
	clDiskList
	linkedCl
	nodeContact
	nodeState
	nodeAddress
	networkAdapterState
	clDiskState
	repDiskState
	diskState
	vgState

	Notices
	Privacy policy considerations
	Trademarks

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

