
AIX Version 7.1

Technical Reference

Kernel Services and Subsystem
Operations

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
951 .

This edition applies to AIX Version 7.1 and to all subsequent releases and modifications until otherwise indicated in new
editions.
© Copyright International Business Machines Corporation 2015, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this document..vii
Highlighting...vii
Case sensitivity in AIX.. vii
ISO 9000...vii

Kernel Services and Subsystem Operations.. 1
What's new... 1
Kernel Services...1

a...1
b.. 26
c.. 38
d.. 62
e.. 116
f...144
g.. 189
h.. 210
i... 216
k.. 249
l... 345
m...373
n.. 396
p.. 418
q.. 445
r...446
s.. 483
t...502
u.. 526
v.. 555
w... 608
x.. 616

Device Driver Operations...640
Standard Parameters to Device Driver Entry Points... 640
buf Structure.. 641
bufx Structure...644
Character Lists Structure... 646
ddclose Device Driver Entry Point... 647
ddconfig Device Driver Entry Point.. 649
dddump Device Driver Entry Point...651
ddioctl Device Driver Entry Point... 653
ddmpx Device Driver Entry Point... 655
ddopen Device Driver Entry Point..657
ddread Device Driver Entry Point...658
ddrevoke Device Driver Entry Point... 660
ddselect Device Driver Entry Point.. 661
ddstrategy Device Driver Entry Point...663
ddwrite Device Driver Entry Point..664
Select/Poll Logic for ddwrite and ddread Routines...666
uio Structure...666

Virtual File System Operations..668
vfs_aclxcntl Entry Point..670

 iii

vfs_cntl Entry Point.. 672
vfs_hold or vfs_unhold Kernel Service.. 673
vfs_init Entry Point... 674
vfs_mount Entry Point..674
vfs_root Entry Point..676
vfs_search Kernel Service..677
vfs_statfs Entry Point... 678
vfs_sync Entry Point... 679
vfs_umount Entry Point..679
vfs_vget Entry Point..681
vnop_access Entry Point.. 682
vnop_close Entry Point...684
vnop_create Entry Point... 685
vnop_create_attr Entry Point... 686
vnop_fclear Entry Point..687
vnop_fid Entry Point... 688
vnop_finfo Entry Point..689
vnop_fsync, vnop_fsync_range Entry Points... 690
vnop_ftrunc Entry Point... 691
vnop_getacl Entry Point... 692
vnop_getattr Entry Point.. 693
vnop_getxacl Entry Point... 694
vnop_hold Entry Point..696
vnop_ioctl Entry Point.. 696
vnop_link Entry Point... 697
vnop_lockctl Entry Point.. 698
vnop_lookup Entry Point.. 700
vnop_map Entry Point..702
vnop_map_lloff Entry Point..703
vnop_memcntl Entry Point...704
vnop_mkdir Entry Point..705
vnop_mknod Entry Point..706
vnop_open Entry Point... 707
vnop_rdwr, vnop_rdwr_attr Entry Points... 708
vnop_readdir Entry Point... 709
vnop_readdir_eofp Entry Point.. 710
vnop_readlink Entry Point..711
vnop_rele Entry Point...712
vnop_remove Entry Point...713
vnop_rename Entry Point...714
vnop_revoke Entry Point.. 715
vnop_rmdir Entry Point.. 716
vnop_seek Entry Point..717
vnop_select Entry Point... 718
vnop_setacl Entry Point... 719
vnop_setattr Entry Point.. 720
vnop_setxacl Entry Point..722
vnop_strategy Entry Point..723
vnop_symlink Entry Point...724
vnop_unmap Entry Point..725

Configuration Subsystem.. 726
Adapter-Specific Considerations for the Predefined Attribute (PdAt) Object Class........................ 726
Adapter-Specific Considerations for the Predefined Devices (PdDv) Object Class......................... 729
attrval Device Configuration Subroutine..729
busresolve Device Configuration Subroutine.. 730
Configuration Rules (Config_Rules) Object Class... 732
Customized Attribute (CuAt) Object Class.. 734
Customized Dependency (CuDep) Object Class..735

iv

Customized Device Driver (CuDvDr) Object Class...736
Customized Devices (CuDv) Object Class..737
Customized VPD (CuVPD) Object Class... 740
Device Methods for Adapter Cards: Guidelines.. 740
genmajor Device Configuration Subroutine...741
genminor Device Configuration Subroutine.. 742
genseq Device Configuration Subroutine.. 743
getattr Device Configuration Subroutine... 744
getminor Device Configuration Subroutine... 745
How Device Methods Return Errors...746
loadext Device Configuration Subroutine..746
Loading a Device Driver..747
Machine Device Driver ...748
ODM Device Configuration Object Classes.. 755
Predefined Attribute (PdAt) Object Class.. 756
Predefined Attribute Extended (PdAtXtd) Object Class ...761
Predefined Connection (PdCn) Object Class... 763
Predefined Devices (PdDv) Object Class... 764
putattr Device Configuration Subroutine...769
reldevno Device Configuration Subroutine..770
relmajor Device Configuration Subroutine.. 771
Writing a Change Method...772
Writing a Configure Method... 774
Writing a Define Method...778
Writing an Unconfigure Method... 780
Writing an Undefine Method.. 782
Writing Optional Start and Stop Methods..784

SCSI Subsystem...784
IOCINFO (Device Information) tmscsi Device Driver ioctl Operation...784
Parallel SCSI Adapter Device Driver.. 785
scdisk SCSI Device Driver.. 795
SCIOCMD SCSI Adapter Device Driver ioctl Operation... 818
SCIODIAG (Diagnostic) SCSI Adapter Device Driver ioctl Operation... 820
SCIODNLD (Download) SCSI Adapter Device Driver ioctl Operation... 821
SCIOEVENT (Event) SCSI Adapter Device Driver ioctl Operation...822
SCIOGTHW (Gathered Write) SCSI Adapter Device Driver ioctl Operation...................................... 824
SCIOHALT (Halt) SCSI Adapter Device Driver ioctl Operation.. 824
SCIOINQU (Inquiry) SCSI Adapter Device Driver ioctl Operation.. 825
SCIOREAD (Read) SCSI Adapter Device Driver ioctl Operation..827
SCIORESET (Reset) SCSI Adapter Device Driver ioctl Operation... 828
SCIOSTART (Start SCSI) Adapter Device Driver ioctl Operation...830
SCIOSTARTTGT (Start Target) SCSI Adapter Device Driver ioctl Operation.....................................830
SCIOSTOP (Stop) Device SCSI Adapter Device Driver ioctl Operation... 832
SCIOSTOPTGT (Stop Target) SCSI Adapter Device Driver ioctl Operation....................................... 832
SCIOSTUNIT (Start Unit) SCSI Adapter Device Driver ioctl Operation...833
SCIOTRAM (Diagnostic) SCSI Adapter Device Driver ioctl Operation.. 835
SCIOTUR (Test Unit Ready) SCSI Adapter Device Driver ioctl Operation...836
scsesdd SCSI Device Driver... 837
scsidisk SAM Device Driver.. 839
scsisesdd SAM Device Driver...860
sctape FC Device Driver... 862
tape SCSI Device Driver... 870
TMCHGIMPARM (Change Parameters) tmscsi Device Driver ioctl Operation.................................. 876
TMGETSENS (Request Sense) tmscsi Device Driver ioctl Operation..877
TMIOASYNC (Async) tmscsi Device Driver ioctl Operation...878
TMIOCMD (Direct) tmscsi Device Driver ioctl Operation.. 878
TMIOEVNT (Event) tmscsi Device Driver ioctl Operation..879
TMIORESET (Reset Device) tmscsi Device Driver ioctl Operation..881

 v

TMIOSTAT (Status) tmscsi Device Driver ioctl Operation... 881
tmscsi SCSI Device Driver..882

NVMe Subsystem...888
NVMe storage (hdisk) device driver...888
NVMe controller device driver... 889

USB Subsystem..890
Extensible Host Controller Adapter Device Driver.. 890
Enhanced Host Controller Adapter Device Driver... 895
Open Host Controller Adapter Device Driver...898
HCD_REGISTER_HC...900
USB Audio Device Driver.. 900
USB Keyboard Client Device Driver... 902
USB Mass Storage Client Device Driver... 904
USB Mouse Client Device Driver.. 924
USB Tape Client Device Driver... 925
USBD Protocol Driver... 937
USBLIBDD Passthru Driver.. 945

Notices..951
Privacy policy considerations.. 952
Trademarks.. 953

Index.. 955

vi

About this document

This topic collection is part of the six-volume technical reference set that provides information about
system calls, kernel extension calls, and subroutines.

Highlighting
The following highlighting conventions are used in this document:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other
items whose names are predefined by the system. Bold highlighting also identifies
graphical objects, such as buttons, labels, and icons that the you select.

Italics Identifies parameters for actual names or values that you supply.

Monospace
Identifies examples of specific data values, examples of text similar to what you
might see displayed, examples of portions of program code similar to what you might
write as a programmer, messages from the system, or text that you must type.

Case sensitivity in AIX
Everything in the AIX® operating system is case sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS,
the system responds that the command is not found. Likewise, FILEA, FiLea, and filea are three
distinct file names, even if they reside in the same directory. To avoid causing undesirable actions to be
performed, always ensure that you use the correct case.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 2015, 2018 vii

viii AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Kernel Services and Subsystem Operations
This topic collection provides information about kernel services, device driver operations, virtual file
system operations, configuration subsystem, SCSI subsystem, NVMe Subsystem, and USB subsystem.

The AIX operating system is designed to support The Open Group's Single UNIX Specification Version 3
(UNIX 03) for portability of operating systems based on the UNIX operating system. Many new interfaces,
and some current ones, have been added or enhanced to meet this specification. To determine the correct
way to develop a UNIX 03 portable application, see The Open Group's UNIX 03 specification on The UNIX
System website (http://www.unix.org).

What's new in Technical Reference: Kernel and Subsystems
Read about new or significantly changed information for the Technical Reference: Kernel and Subsystems
topic collection.

How to see what's new or changed
To help you see where technical changes have been made, the information center uses:

• The image to mark where new or changed information begins.

• The image to mark where new or changed information ends.

February 2018
The following information is a summary of the updates that are made to this topic collection:

• Added information about “NVMe subsystem” on page 888 topic.
• Added information about “NVMe storage (hdisk) device driver” on page 888 topic.
• Added information about “NVMe controller device driver” on page 889 topic.

Kernel Services
The following kernel services begin with the with the letter a - x.

a
The following kernel services begin with the with the letter a.

acct_add_LL or acct_zero_LL Kernel Service

Purpose
Increments counters for advanced accounting.

Syntax
unsigned long long acct_add_LL(ptr, incr)
unsigned long long *ptr;
unsigned int incr;

unsigned long long acct_zero_LL(ptr)
unsigned long long *ptr;

© Copyright IBM Corp. 2015, 2018 1

http://www.unix.org

Parameters
Item Description

ptr Address of statistic to be incremented.

incr Increment to be applied.

Description
These kernel services are special atomic increment and clear services that are designed to allow
machine-independent updating of unsigned long long values. The increment service only performs an
increment if advanced accounting is enabled.

The acct_add_LL kernel service adds the value associated with the incr parameter to the 64-bit counter
at the address designated by the ptr parameter. The acct_zero_LL kernel service atomically zeroes the
64-bit counter.

Both routines return the previous value of the 64-bit counter. This way, the acct_zero_LL kernel service
can be used to atomically get the most recent value and set the counter to NULL. Because only delta
statistics are reported each interval, this capability is required by interval accounting when the accounting
record is being built for a report.

Execution Environment
These kernel services can be called from either the interrupt environment or the process environment.

Return Values
These subroutines return the previous value of the location designated by the ptr parameter.

Related reference
acct_interval_register or acct_interval_unregister Kernel Service
acct_put Kernel Service

acct_get_projid Kernel Service

Purpose
Gets the project identifier for the current process.

Syntax
projid_t acct_get_projid(void)

Description
The acct_get_projid kernel service returns the project identifier for the current process.

Execution Environment
The acct_get_projid kernel service can be called from the process environment only.

Return Values
The acct_get_projid kernel service returns the current project identifier.

acct_get_usage Kernel Service

2 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Allows kernel extensions to measure the resource utilization of transactions.

Syntax
#include <sys/types.h>
#include <sys/aacct.h>

unsigned long long acct_get_usage(usage)
struct tusage *usage;

Parameters
Item Description

usage Resource utilization structure.

Description
This routine is used to measure the resource utilization of a client transaction, so that the cost of
the transaction can be included within the accounting record that identifies the client transaction. This
accounting record is then used for chargeback purposes.

The acct_get_usage kernel service is designed to be called twice: once at the start of a transaction and
a second time at the end of a transaction. Each time that the routine is called, it returns the resource
utilization for the calling thread from creation using the usage parameter. Therefore, this routine can be
called multiple times to determine the resource utilization of a code fragment by subtracting start and end
values.

The following macros are provided for manipulating the usage parameter:
TUSAGE_ZERO(TU)

Initializes the tusage structure
TUSAGE_ADD(TU1, TU2)

Adds tusage structures (T1 = T1 + T2)
TUSAGE_SUB(TU1, TU2)

Subtracts tusage structures (T1 = T1 – T2)

The usage parameter provides thread-specific information, so the caller must ensure that this routine is
called from the same thread context when measuring the utilization of a transaction. The return value
identifies the calling thread context.

The acct_get_usage kernel service returns a token that identifies the calling context. This token can be
logically compared with other tokens returned by this routine to ensure that start and stop invocations
were made from the same thread. The scope of the token depends on the context of the calling program.
If this routine is called under a pthread, then it returns a token representing the currently executing
pthread. Otherwise, the acct_get_usage kernel service returns a token representing the currently
executing kernel thread. In the former case, the token has process-wide scope; in the latter case, the
token has system-wide scope.

Execution Environment
The acct_get_usage kernel service can only be called from the process environment.

Return Values
Upon successful completion, the acct_get_usage kernel service returns a token that identifies the calling
thread context.

Kernel Services and Subsystem Operations 3

Related reference
acct_get_projid Kernel Service
acct_interval_register or acct_interval_unregister Kernel Service
acct_put Kernel Service

acct_interval_register or acct_interval_unregister Kernel Service

Purpose
Registers or unregisters an advanced accounting handler.

Syntax
#include <sys/aacct.h>

int acct_interval_register(trid, cmds, handler, arg, reg_token, reg_name)
int trid;
int cmds;
int (*handler)(int trid, int cmds, void *arg);
void *arg;
unsigned long *reg_token;
char *reg_name;

int acct_interval_unregister(reg_token)
unsigned long reg_token;

Parameters
Item Description

trid Transaction identifier

cmds Invocations supported by the advanced accounting handler

handler Function descriptor for the handler

arg Identifies the instance of the kernel extension

reg_token Token that is returned to caller naming the instance of the registration

reg_name Identifies the transaction using a string

Description
The acct_interval_register kernel service registers accounting records that are produced by the kernel
extension with the advanced accounting subsystem. These accounting records are named through
accounting transaction identifiers, which are provided by the caller. Transaction identifiers are persistent
in nature, because they are used by report and analysis utilities to interpret transaction-specific
accounting data. The transaction identifier is implicitly mapped to a template.

Transaction identifiers (and associated templates) used by AIX are defined in the sys/aacct.h file.
Identifiers in the range of 0 – 127 are reserved for AIX. Vendors can choose any value in the range
128 – 256 for their accounting records. If two vendors choose the same value, report and analysis
programs must reference other fields in the accounting record header to uniquely identify the source
of the transaction; that way, they can apply the appropriate template. The subproject field (which
specifies the command name of the logger) and length field can be used to identify the source of the
transaction. Collisions are very unlikely to occur. The transaction identifier and the transaction name,
which is provided by the reg_name field, are presented to the system administrator. Vendors should
choose representative names for their transactions. The maximum length of a transaction name is 15
bytes.

4 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Administrators can enable and disable transactions, and thereby drive callouts to the kernel extension. A
function descriptor for the advanced accounting handler is provided through the handler parameter. The
interface of this handler is:

int handler(int trid, int cmd, void *arg);

The trid parameter is the transaction being acted on. The cmd parameter describes the action. The arg
parameter is a value that was specified at registration for this particular instance of the handler. The arg
parameter is specific to the kernel extension.

The following cmd values are supported:

Item Description

ACCT_CMD_ENABLE The transaction is being enabled; start collecting.

ACCT_CMD_DISABLE The transaction is being disabled; stop collecting.

ACCT_CMD_INTERVAL The system interval has expired; provide accounting data.

ACCT_CMD_FSWITCH The active accounting file has changed; provide meta data.

The handler is invoked in the process environment from a dedicated kernel-only thread that is part of the
advanced accounting subsystem. The kernel extension registers for the callouts that should be made by
logically ORing cmd values. The cmds parameter to the acct_interval_register kernel service is provided
for this purpose.

When a transaction is enabled, the kernel extension should allocate accounting structures and start
collecting statistics. When a transaction is disabled, the kernel extension should quit collecting statistics
and free accounting structures. If a transaction is not enabled, the kernel subsystem should not collect
statistics for the transaction. The kernel extension relies on the callout mechanism to provide notification
when a transaction is enabled. This way, accounting records that are not required for the report are not
collected and the accounting overhead is minimized.

If the kernel extension registers for interval accounting, the extension is called when the system
interval expires. The handler should record its data using the acct_put kernel service and should
reset its counters so that only delta statistics are produced in the next interval. The acct_zero_LL and
acct_add_LL kernel services are provided so that statistics can be reported and zeroed atomically. When
the system interval is disabled, the system automatically generates an interval callout to collect the last
round of statistics.

The file switch callout is provided, so that subsystems can record accounting data in each accounting file.
Most subsystems are not expected to use this option.

Execution Environment
The acct_interval_register kernel service can be called from the process environment only.

The acct_interval_unregister kernel service can be called from either the interrupt environment or the
process environment.

Return Values
Upon successful completion, 0 is returned. If unsuccessful, errno is set to a value that explains the error.

Related reference
acct_add_LL or acct_zero_LL Kernel Service
acct_put Kernel Service

acct_put Kernel Service

Kernel Services and Subsystem Operations 5

Purpose
Writes an accounting record.

Syntax
#include <sys/aacct.h>

void acct_put(trid, flags, projid, usage, trdata, tr_len);
int trid;
int flags;
projid_t projid;
struct tusage *usage;
void *trdata;
int tr_len;

Parameters
Item Description

trid Transaction identifier.

flags Flags associated with the transaction or the production of the transaction. The following
value is defined:
ACCT_PUT_DIRECT

Overrides aggregate transaction

projid Project identifier, associated with the transaction, that identifies the billable entity. The
following values are defined:
PROJID_SYSTEM

This identifier is typically associated with system overhead and is often used for
shared devices, such as disks and network adapters.

PROJID_UNKNOWN
This identifier is used when the billable entity is unknown to the caller. In this
case, the system calculates the project identifier using the project assignment policy
specified by the system administrator.

project identifier
If the project identifier is known, it should be specified.

usage Identifies the resource usage values associated with the transaction.

trdata Transaction-specific information.

tr_len Size of the transaction-specific data in bytes.

Description
The acct_put kernel service provides accounting data to the advanced accounting subsystem. This
service builds the accounting record header from its parameters and values associated with the calling
context. The transaction-specific data specified by the caller is copied after the header. This data is
internally buffered so that it can be written efficiently to the accounting data file some time later.

The trid parameter identifies the type of transaction that is being provided and implicitly identifies the
format of the transaction-specific data. This identifier is included within the accounting header and is
used by report and analysis commands to infer the right template that can interpret transaction-specific
data. Vendors are encouraged to document their transaction identifiers and record templates so that
report and analysis tools can be produced to interpret this data.

Accounting transaction identifiers are defined in the following range:

6 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

0-127 AIX accounting transaction identifiers

128-255 Vendor accounting transaction identifiers

The ACCT_PUT_DIRECT flag is provided as an override to the aggregation of accounting records, which
is an optional feature of the advanced accounting subsystem. By default, the system does not aggregate
accounting data. Aggregation is designed to reduce the volume of data that is written to the accounting
file. It is transparent to applications and middleware. When aggregation is enabled, the system throws
out the transaction-specific data and produces statistics about the occurrence of the transaction and the
aggregate resource utilization. The data is produced along project boundaries, so the ability to perform
chargeback is not lost, although the data that is produced is different. Statistical information about the
transaction is captured in the accounting file in lieu of the transaction.

Because aggregation might not be desirable in some cases, the ACCT_PUT_DIRECT flag is provided to
override this feature. For example, because the significance of a transaction that describes the shared use
of a disk is bound up in the transaction-specific data, the transaction cannot be effectively aggregated.
The significance of the transaction is thrown out in the course of aggregation. In effect, the statistic has
already been aggregated by the producer, so it should be written directly to the file instead of being
aggregated again by the accounting subsystem.

The usage values pointed to by the usage parameter is calculated using the acct_get_usage kernel
service. The usage parameter is optional. A value of NULL can be specified to signify no usage information.
Aggregation uses this field to accumulate resource utilization. If this information is calculated for the
transaction, it should be passed as a parameter to this routine, instead of just including it within the
transaction-specific data section. The advanced accounting subsystem does not know the format of this
section and cannot aggregate it. In such a case, this section would be thrown out when aggregation is
enabled.

The trdata parameter contains the address of a buffer containing transaction-specific data, and the tr_len
parameter identifies the number of bytes in this buffer that should be copied to the accounting file. A
maximum of 16 KB of data can be written.

Execution Environment
The acct_put kernel service can be started from either the process or interrupt environment. However,
aggregation of the transaction is only supported when the acct_put service is started from the process
environment.

Return Values
The acct_put kernel service does not return a value.

Related reference
acct_add_LL or acct_zero_LL Kernel Service
acct_get_usage Kernel Service
Related information
acctctl Command

add_domain_af Kernel Service

Purpose
Adds an address family to the Address Family domain switch table.

Kernel Services and Subsystem Operations 7

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <sys/domain.h> int add_domain_af
(domain) struct domain *domain;

Parameter

Item Description

domain Specifies the domain of the address family.

Description
The add_domain_af kernel service adds an address family domain to the Address Family domain switch
table.

Execution Environment
The add_domain_af kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

0 Indicates that the address family was successfully added.

EEXIST Indicates that the address family was already added.

EINVAL Indicates that the address family number to be added is out of range.

Example
To add an address family to the Address Family domain switch table, invoke the add_domain_af kernel
service as follows:

add_domain_af(&inetdomain);

In this example, the family to be added is inetdomain.

Related reference
del_domain_af Kernel Service
Related information
Network Kernel Services

add_input_type Kernel Service

Purpose
Adds a new input type to the Network Input table.

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <net/if.h> #include <net/netisr.h> int
add_input_type (type, service_level, isr, ifq, af) u_short type; u_short service_level; int (* isr) (); struct
ifqueue * ifq; u_short af;

8 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

type Specifies which type of protocol a packet contains. A value of x'FFFF' indicates
that this input type is a wildcard type and matches all input packets.

service_level Determines the processing level at which the protocol input handler is called. If
the service_level parameter is set to NET_OFF_LEVEL, the input handler specified
by the isr parameter is called directly. Setting the service_level parameter
to NET_KPROC schedules a network dispatcher. This dispatcher calls the
subroutine identified by the isr parameter.

isr Identifies the routine that serves as the input handler for an input packet type.

ifq Specifies an input queue for holding input buffers. If this parameter has a
non-null value, an input buffer (mbuf) is enqueued. The ifq parameter must
be specified if the processing level specified by the service_level parameter is
NET_KPROC. Specifying null for this parameter generates a call to the input
handler specified by the isr parameter, as in the following:

af Specifies the address family of the calling protocol. The af parameter must be
specified if the ifq parameter is not a null character. This parameter must be
greater than or equal to 0 and less than NETISR_MAX. Refer to netisr.h for the
range of values of af that are already in use. Also, other kernel extensions that are
not AIX and that use network ISRs currently running on the system can make use
of additional values not mentioned in netisr.h.

(*isr)(CommonPortion,Buffer);

In this example, CommonPortion points to the network common portion (the
arpcom structure) of a network interface and Buffer is a pointer to a buffer
(mbuf) containing an input packet.

Description
To enable the reception of packets, an address family calls the add_input_type kernel service to register
a packet type in the Network Input table. Multiple packet types require multiple calls to Kernel Extensions
and Device Support Programming Concepts the add_input_type kernel service.

Execution Environment
The add_input_type kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

0 Indicates that the type was successfully added.

EEXIST Indicates that the type was previously added to the Network Input table.

ENOSPC Indicates that no free slots are left in the table.

EINVAL Indicates that an error occurred in the input parameters.

Examples
1. To register an Internet packet type (TYPE_IP), invoke the add_input_type service as follows:

add_input_type(TYPE_IP, NET_KPROC, ipintr, &ipintrq, AF_INET);

Kernel Services and Subsystem Operations 9

This packet is processed through the network kproc. The input handler is ipintr. The input queue is
ipintrq.

2. To specify the input handler for ARP packets, invoke the add_input_type service as follows:

add_input_type(TYPE_ARP, NET_OFF_LEVEL, arpinput, NULL, NULL);

Packets are not queued and the arpinput subroutine is called directly.

Related reference
del_input_type Kernel Service
find_input_type Kernel Service
Related information
Network Kernel Services

add_netisr Kernel Service

Purpose
Adds a network software interrupt service to the Network Interrupt table.

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <net/netisr.h> int add_netisr
(soft_intr_level, service_level, isr) u_short soft_intr_level; u_short service_level; int (*isr) ();

Parameters

Item Description

soft_intr_level Specifies the software interrupt level to add. This parameter must be greater
than or equal to 0 and less than NETISR_MAX. Refer to netisr.h for the
range of values of soft_intr_level that are already in use. Also, other kernel
extensions that are not AIX and that use network ISRs currently running on
the system can make use of additional values not mentioned in netisr.h.

service_level Specifies the processing level of the network software interrupt.

isr Specifies the interrupt service routine to add.

Description
The add_netisr kernel service adds the software-interrupt level specified by the soft_intr_level parameter
to the Network Software Interrupt table.

The processing level of a network software interrupt is specified by the service_level parameter. If
the interrupt level specified by the service_level parameter equals NET_KPROC, a network interrupt
scheduler calls the function specified by the isr parameter. If you set the service_level parameter to
NET_OFF_LEVEL, the schednetisr service calls the interrupt service routine directly.

Execution Environment
The add_netisr kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

0 Indicates that the interrupt service routine was successfully added.

10 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

EEXIST Indicates that the interrupt service routine was previously added to the table.

EINVAL Indicates that the value specified for the soft_intr_level parameter is out of range or at a
service level that is not valid.

Related reference
del_netisr Kernel Service
Related information
Network Kernel Services

add_netopt Macro

Purpose
Adds a network option structure to the list of network options.

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <net/netopt.h> add_netopt
(option_name_symbol, print_format) option_name_symbol; char *print_format;

Parameters

Item Description

option_name_symbol Specifies the symbol name used to construct the netopt structure and
default names.

print_format Specifies the string representing the print format for the network option.

Description
The add_netopt macro adds a network option to the linked list of network options. The no command can
then be used to show or alter the variable's value.

The add_netopt macro has no return values.

Execution Environment
The add_netopt macro can be called from either the process or interrupt environment.

Related reference
del_netopt Macro
Related information
no Command
Network Kernel Services

as_att64 Kernel Service

Purpose
Allocates and maps a specified region in the current user address space.

Kernel Services and Subsystem Operations 11

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <sys/vmuser.h> #include <sys/adspace.h>
unsigned long long as_att64 (vmhandle, offset) vmhandle_t vmhandle; int offset;

Parameters

Item Description

vmhandle Describes the virtual memory object being made addressable in the address space.

offset Specifies the offset in the virtual memory object. The upper 4-bits of this offset are
ignored.

Description

Item Description

The as_att64 kernel service: Selects an unallocated region within the current user address
space.

 Allocates the region.

 Maps the virtual memory object selected by the vmhandle
parameter with the access permission specified in the
handle.

 Constructs the address of the offset specified by the offset
parameter within the user-address space.

The as_att64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for
kernel processes (kprocs).

Note: This service only operates on the current process's address space. It is not allowed to operate on
another address space.

Execution Environment
The as_att64 kernel service can be called from the process environment only.

Return Values
On successful completion, this service returns the base address plus the input offset (offset) into the
allocated region.

Item Description

NULL An error occurred and ernno indicates the cause:

EINVAL Address specified is out of range, or

ENOMEM Could not allocate due to insufficient resources.

Related reference
as_seth64 Kernel Service
as_geth64 Kernel Service
as_getsrval64 Kernel Service

as_det64 Kernel Service

12 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Unmaps and deallocates a region in the current user address space that was mapped with the as_att64
kernel service.

Syntax
#include <sys/errno.h> #include <sys/adspace.h> int as_det64 (addr64) unsigned long long addr64;

Parameters

Item Description

addr64 Specifies an effective address within the region to be deallocated.

Description
The as_det64 kernel service unmaps the virtual memory object from the region containing the specified
effective address (specified by the addr64 parameter).

The as_det64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service should not be used to deallocate a base kernel region, process text, process private or an
unallocated region. An EINVAL return code will result.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for
kernel processes (kprocs).

Note: This service only operates on the current process's address space. It is not allowed to operate on
another address space.

Execution Environment
The as_det64 kernel service can be called from the process environment only.

Return Values

Item Description

0 The region was successfully unmapped and deallocated.

EINVAL An attempt was made to deallocate a region that should not have been deallocated (that is, a
base kernel region, process text region, process private region, or unallocated region).

EINVAL Input address out of range.

Related reference
as_seth64 Kernel Service
as_geth64 Kernel Service
as_getsrval64 Kernel Service

as_geth Kernel Service

Purpose
Obtains a handle to the virtual memory object for the specified address given in the specified address
space.

Kernel Services and Subsystem Operations 13

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <sys/vmuser.h> #include <sys/adspace.h>
vmhandle_t as_geth (Adspacep, Addr) adspace_t *Adspacep; caddr_t Addr;

Parameters

Item Description

Adspacep Points to the address space structure to obtain the virtual memory object handle from.

Addr Specifies the virtual memory address that should be used to determine the virtual memory
object handle for the specified address space.

Description
The as_geth kernel service is used to obtain a handle to the virtual memory object corresponding to a
virtual memory address in a particular address space. This handle can then be used with the vm_att
kernel service to make the object addressable in another address space.

This service can also be called from the interrupt environment.

Execution Environment
The as_geth kernel service can be called from the process environment only.

Return Values
The as_geth kernel service always succeeds and returns the appropriate handle.

as_geth64 Kernel Service

Purpose
Obtains a handle to the virtual memory object for the specified address.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/adspace.h>

vmhandle_t as_geth64 (addr64)
unsigned long long addr64;

Parameter

Item Description

addr64 Specifies the virtual memory address for which the corresponding handle should be returned.

Description
The as_geth64 kernel service is used to obtain a handle to the virtual memory object corresponding to
the input address (addr64). This handle can then be used with the as_att64 or vm_att kernel service to
make the object addressable at a different location.

14 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

After the last use of the handle and after it is detached accordingly, the as_puth64 kernel service must be
used to indicate this fact. Failure to call the as_puth64 service may result in resources being permanently
unavailable for re-use.

If the handle returned refers to a virtual memory segment, then that segment is protected from deletion
until the as_puth64 kernel service is called.

If, for some reason, it is known that the virtual memory object cannot be deleted, then the as_getsrval64
kernel service may be used instead of the as_geth64 service.

The as_geth64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for
kernel processes (kprocs).

Note: This service only operates on the current process's address space. It is not allowed to operate on
another address space.

Execution Environment
The as_geth64 kernel service can be called from the process environment only.

Return Values
On successful completion, this routine returns the appropriate handle.

On error, this routine returns the value INVLSID defined in sys/seg.h. This is caused by an address out of
range.

Errors include: Input address out of range.

Related reference
as_seth64 Kernel Service
as_getsrval64 Kernel Service
as_puth64 Kernel Service

as_getsrval64 Kernel Service

Purpose
Obtains a handle to the virtual memory object for the specified address.

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <sys/vmuser.h> #include <sys/adspace.h>
vmhandle_t as_getsrval64 (addr64) unsigned long long addr64;

Parameters

Item Description

addr64 Specifies the virtual memory address for which the corresponding handle should be returned.

Description
The as_getsrval64 kernel service is used to obtain a handle to the virtual memory object corresponding
to the input address(addr64). This handle can then be used with the as_att64 or vm_att kernel services
to make the object addressable at a different location.

This service should only be used when it is known that the virtual memory object cannot be deleted,
otherwise the as_geth64 kernel service must be used.

Kernel Services and Subsystem Operations 15

The as_puth64 kernel service must not be called for handles returned by the as_getsrval64 kernel
service.

The as_getsrval64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for
kernel processes (kprocs).

Note: This service only operates on the current process's address space. It is not allowed to operate on
another address space.

Execution Environment
The as_getsrval64 kernel service can be called from the process environment only when the current user
address space is 64-bits. If the current user address space is 32-bits, or is a kproc, then as_getsrval64
may be called from an interrupt environment.

Return Values
On successful completion this routine returns the appropriate handle.

On error, this routine returns the value INVLSID defined in sys/seg.h. This is caused by an address out of
range.

Errors include: Input address out of range.

Related reference
as_geth64 Kernel Service
as_puth64 Kernel Service
as_seth64 Kernel Service

as_lw_att64 Kernel Service

Purpose
Allocates and maps a specified region in the current user address space. Part of the lightweight kernel
service subsystem, which must be initialized with the as_lw_pool_init kernel service before it can be
used.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sysvmuser.h>
#include <sys/adspace.h>
#include <sys/mem.h>

int as_lw_att64 (dp, offset, length, addr)
xmem* dp;
size_t offset;
size_t length;
ptr64* addr;

Parameters
Item Description

dp Pointer to a cross memory descriptor that describes the virtual memory object that is being
made addressable in the address space.

offset Specifies the byte offset in the virtual memory object.

length Specifies the number of bytes to map in the virtual memory object.

16 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

addr Pointer to the location where the address will be returned.

Description
The as_lw_att64 kernel service does the following:

• Allocates a region from the process' address space for the mapping.
• Maps the virtual memory object selected by the dp parameter.
• Constructs the address of the offset specified by the offset parameter within the user-address space.

Note: The as_lw_att64 kernel service should be used with caution. Be sure to read the documentation
for this and the other lightweight services (as_lw_det64 and as_lw_pool_init) carefully before doing so.
There is a risk of illegal data access and cross-process data corruption if these services are not used
correctly.

In order to use this service, the cross memory descriptor pointed to by the dp parameter must be
initialized by using the xmattach kernel service with the LW_XMATTACH flag set. The lw_pool_init kernel
service must also have been successfully called by the current process.

The service will map an area length bytes long into the caller's address space from the memory
represented by the descriptor, starting at the number of bytes specified in the offset parameter. It is
illegal for any thread other than the caller of this service to address the attached region.

This service will operate correctly only in 64-bit user address spaces. It will not work for kernel processes
(kprocs).

Note: This service only operates on the current process's address space. It is not allowed to operate on
another address space.

Execution Environment
The as_lw_att64 kernel service can be called from the process environment only.

Return Values
On successful completion, this service sets the value of addr to the address of the allocated region and
returns 0.

Item Description

NULL An error occurred and errno indicates the cause.

EINVAL Cross memory descriptor is in an invalid state, length is zero or offset plus length goes
past the end of the virtual memory object.

ENODEV The as_lw_pool_init kernel service has not been called to initialize the pool settings
for this process.

ENOSYS Called by a 32-bit process.

ENOSPC Resources allocated to do lightweight services for this thread expended. Either the
region to be attached is too large (the as_lw_pool_init kernel service was called with
too small a pool_size) or there are outstanding attaches which need to release their
lightweight resources using the as_lw_det64 kernel service before this attach can be
completed.

EIO Indicates a failure of the lightweight subsystem, process should discontinue use of
lightweight kernel services.

EPERM Called by a user thread that is not 1:1 with a kernel thread.

ENOMEM Could not allocate system resources for lightweight services for this thread.

Kernel Services and Subsystem Operations 17

Implementation Specifics
The as_lw_att64 kernel service is part of Base Operating System (BOS) Runtime.

Related reference
as_lw_det64 Kernel Service
as_lw_pool_init Kernel Service

as_lw_det64 Kernel Service

Purpose
Unmaps and deallocates a region in the current user address space that was mapped using the
as_lw_att64 kernel service.

Syntax
#include <sys/errno.h>
#include <sys/adspace.h>
#include <sys/xmem.h>
int as_lw_det64 (dp, addr, length)
xmem* dp;
void* addr;
size_t length;

Parameters
Item Description

dp The cross memory descriptor describing the attached virtual memory.

addr Specifies the first effective address of the region to be deallocated.

length Specifies the length of the region to be deallocated.

Description
Note: The as_lw_det64 kernel service should be used with caution. Read the documentation for this and
the other lightweight services (as_lw_att64 and as_lw_pool_init) carefully before doing so. There is a risk
that illegal data accesses will be allowed if these services are not used correctly.

The as_lw_det64 kernel service unmaps the virtual memory from the region starting at the specified
effective address, which is specified by the addr parameter. This service (and only this service) must
be used to unmap regions mapped by the as_lw_att64 kernel service. It must be called by the same
thread that called the as_lw_att64 kernel service. The addr parameter must be the value returned by the
as_lw_att64 kernel service, and the dp parameter and the length parameter must be the same dp and
length passed to it. The xmdetach kernel service must not be called to release the dp parameter until any
outstanding attaches of the dp parameter using the as_lw_att64 kernel service have been detached using
the as_lw_det64 kernel service.

The as_lw_det64 kernel service cannot be used to detach a region not mapped by the as_lw_att64 kernel
service.

The as_lw_det64 kernel service will operate correctly only for 64-bit user address spaces. It will not work
for kernel processes (kprocs).

Note: This service only operates on the current process's address space. It is not allowed to operate on
another address space.

Execution Environment
The as_lw_det64 kernel service can be called from the process environment only.

18 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values
Item Description

0 The region was successfully unmapped and deallocated.

EINVAL An attempt was made to deallocate a region that should not have been deallocated.

ENOSYS The service was called by a 32-bit process.

ENOMEM No lightweight resources allocated to this thread.

EIO Indicates a failure of the lightweight subsystem, process should discontinue use of
lightweight kernel services.

EPERM Called by a user thread that is not 1:1 with a kernel thread.

Implementation Specifics
The as_lw_det64 kernel service is part of Base Operating System (BOS) Runtime.

Related reference
as_lw_att64 Kernel Service
as_lw_pool_init Kernel Service

as_lw_pool_init Kernel Service

Purpose
Initializes lightweight attach and detach subsystem for the current process with the given settings.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/adspace.h>

int as_lw_pool_init (pool_size, flags)
size_t pool_size;
uint flags;

Parameters
Item Description

pool_size Specifies the maximum number of bytes that can be attached by lightweight
services at one time by each thread of this process.

flags Specifies flag options for this kernel service. Valid values are 0 and LW_DEBUG.

Description
Note: The as_lw_pool_init kernel service should be used with caution. Read the documentation for this
and the other lightweight services (as_lw_att64 and as_lw_det64) carefully before doing so. There is a
risk that illegal data accesses will be allowed if these services are not used correctly.

The as_lw_pool_init kernel service initializes the lightweight pool size and flag settings for the current
process. Once it has been called, these settings are fixed and cannot be changed for the process.

If LW_DEBUG is set in the flags parameter, the risk of illegal data access will be removed from calls to
the as_lw_att64 kernel service and the as_lw_det64 kernel service. This setting allows users to debug
problems that are caused by incorrect use of these services.

Kernel Services and Subsystem Operations 19

Processes that have called the as_lw_pool_init kernel service can use the other lightweight kernel
services (as_lw_att64 and as_lw_det64) to attach and detach virtual memory regions represented by
a cross memory descriptor. These kernel services are used on a per-thread basis, that is if one thread
uses the as_lw_att64 kernel service to attach virtual memory to a region of its address space, that region
cannot be addressed by any other thread, and it must be detached by the same thread by using the
as_lw_det64 kernel service.

This service will operate correctly only for 64-bit user address spaces. It will not work for kernel
processes (kprocs).

Execution Environment
The as_lw_pool_init kernel service can be called from a 64-bit process environment only.

Return Values
On successful completion, this service returns 0.

Item Description

ENOSYS The service was called by a 32-bit process.

EEXIST The as_lw_pool_init kernel service has already been successfully completed for
this process.

EINVAL Invalid flag settings or the pool_size parameter is 0.

EPERM Called by a user thread that is not 1:1 with a kernel thread.

Implementation Specifics
The as_lw_pool_init kernel service is part of Base Operating System (BOS) Runtime.

Related reference
as_lw_att64 Kernel Service
as_lw_det64 Kernel Service

as_puth64 Kernel Service

Purpose
Indicates that no more references will be made to a virtual memory object obtained using the as_geth64
kernel service.

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <sys/vmuser.h> #include <sys/adspace.h>
int as_puth64 (addr64, vmhandle) unsigned long long addr64; vmhandle_t vmhandle;

Parameters

Item Description

addr64 Specifies the virtual memory address that the virtual memory object handle was obtained
from. This must be the same address that was given to the as_geth64 kernel service
previously.

vmhandle Describes the virtual memory object that will no longer be referenced. This handle must
have been returned by the as_geth64 kernel service.

20 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The as_puth64 kernel service is used to indicate that no more references will be made to the virtual
memory object returned by a call to the as_geth64 kernel service. The virtual memory object must be
detached from the address space already, using either as_det64 or vm_det service.

Failure to call the as_puth64 kernel service may result in resources being permanently unavailable for
re-use.

If, for some reason, it is known that the virtual memory object cannot be deleted, the as_getsrval64
kernel service may be used instead of the as_geth64 kernel service. This kernel service does not require
that the as_puth64 kernel service be used.

The as_puth64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for
kernel processes (kprocs).

Note: This service only operates on the current process's address space. It is not allowed to operate on
another address space.

Execution Environment
The as_puth64 kernel service can be called from the process environment only.

Return Values

Item Description

0 Successful completion.

EINVAL Input address out of range.

Related reference
as_getsrval64 Kernel Service
as_geth64 Kernel Service
as_seth64 Kernel Service

as_seth64 Kernel Service

Purpose
Maps a specified region for the specified virtual memory object.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/adspace.h>

int as_seth64 (addr64,vmhandle)
unsigned long long addr64;
vmhandle_t vmhandle;

Parameters

Item Description

addr64 The region covering this input virtual memory address will be mapped.

Kernel Services and Subsystem Operations 21

Item Description

vmhandle Describes the virtual memory object being made addressable within a region of the
address space.

Description
The as_seth64 kernel service maps the region covering the input addr64 parameter. Any virtual memory
object previously mapped within this region is unmapped.

The virtual memory object specified with the vmhandle parameter is then mapped with the access
permission specified in the handle.

The as_seth64 kernel service should only be used when it is necessary to map a virtual memory object at
a fixed address. The as_att64 kernel service should be used when it is not absolutely necessary to map
the virtual memory object at a fixed address.

The as_seth64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for
kernel processes (kprocs).

Note: This service only operates on the current process's address space. It is not allowed to operate on
another address space.

Execution Environment
The as_seth64 kernel service can be called from the process environment only.

Return Values

Item Description

0 Successful completion.

EINVAL Input address out of range.

Related reference
as_det64 Kernel Service
as_geth64 Kernel Service
as_puth64 Kernel Service

attach Device Queue Management Routine

Purpose
Provides a means for performing device-specific processing when the attchq kernel service is called.

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <sys/deviceq.h> int attach (dev_parms,
path_id) caddr_t dev_parms; cba_id path_id;

Parameters

Item Description

dev_parms Passed to the creatd kernel service when the attach routine is defined.

path_id Specifies the path identifier for the queue being attached to.

22 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The attach routine is part of the Device Queue Management kernel extension. Each device queue can
have an attach routine. This routine is optional and must be specified when the creatd kernel service
defines the device queue. The attchq service calls the attach routine each time a new path is created to
the owning device queue. The processing performed by this routine is dependent on the server function.

The attach routine executes under the process under which the attchq kernel service is called. The kernel
does not serialize the execution of this service with the execution of any other server routines.

Execution Environment
The attach-device routine can be called from the process environment only.

Return Values

Item Description

RC_GOOD Indicates a successful completion.

RC_NONE Indicates that resources such as pinned memory are unavailable.

RC_MAX Indicates that the server already has the maximum number of users
that it supports.

Greater than or equal to
RC_DEVICE

Indicates device-specific errors.

audit_svcbcopy Kernel Service

Purpose
Appends event information to the current audit event buffer.

Syntax
#include <sys/types.h> #include <sys/errno.h> int audit_svcbcopy (buf, len) char *buf; int len;

Parameters

Ite
m

Description

buf Specifies the information to append to the current audit event record buffer.

len Specifies the number of bytes in the buffer.

Description
The audit_svcbcopy kernel service appends the specified buffer to the event-specific information for
the current switched virtual circuit (SVC). System calls should initialize auditing with the audit_svcstart
kernel service, which creates a record buffer for the named event.

The audit_svcbcopy kernel service can then be used to add additional information to that buffer. This
information usually consists of system call parameters passed by reference.

If auditing is enabled, the information is written by the audit_svcfinis kernel service after the record
buffer is complete.

Kernel Services and Subsystem Operations 23

Execution Environment
The audit_svcbcopy kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

ENOMEM Indicates that the kernel service is unable to allocate space for the new buffer.

Related reference
audit_svcfinis Kernel Service
audit_svcstart Kernel Service
Related information
Security Kernel Services

audit_svcfinis Kernel Service

Purpose
Writes an audit record for a kernel service.

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <sys/audit.h> int audit_svcfinis ()

Description
The audit_svcfinis kernel service completes an audit record begun earlier by the audit_svcstart kernel
service and writes it to the kernel audit logger. Any space allocated for the record and associated buffers
is freed.

If the system call terminates without calling the audit_svcfinis service, the switched virtual circuit
(SVC) handler exit routine writes the records. This exit routine calls the audit_svcfinis kernel service
to complete the records.

Execution Environment
The audit_svcfinis kernel service can be called from the process environment only.

Return Values
The audit_svcfinis kernel service always returns a value of 0.

Related reference
audit_svcbcopy Kernel Service
audit_svcstart Kernel Service
Related information
Security Kernel Services

audit_svcstart Kernel Service

Purpose
Initiates an audit record for a system call.

24 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <sys/audit.h>
int audit_svcstart (eventnam , eventnum, numargs, arg1, arg2, ...) char * eventnam; int * eventnum;
int numargs; int arg1; int arg2; ...

Parameters

Item Description

eventnam Specifies the name of the event. In the current implementation, event names
must be less than 17 characters, including the trailing null character. Longer
names are truncated.

eventnum Specifies the number of the event. This is an internal table index meaningful
only to the kernel audit logger. The system call should initialize this parameter
to 0. The first time the audit_svcstart kernel service is called, this parameter
is set to the actual table index. The system call should not reset the
parameter. The parameter should be declared a static.

numargs Specifies the number of parameters to be included in the buffer for this
record. These parameters are normally zero or more of the system call
parameters, although this is not a requirement.

arg1, arg2, ... Specifies the parameters to be included in the buffer.

Description
The audit_svcstart kernel service initiates auditing for a system call event. It dynamically allocates a
buffer to contain event information. The arguments to the system call (which should be specified as
parameters to this kernel service) are automatically added to the buffer, as is the internal number of the
event. You can use the audit_svcbcopy service to add additional information that cannot be passed by
value.

The system call commits this record with the audit_svcfinis kernel service. The system call should call
the audit_svcfinis kernel service before calling another system call.

Execution Environment
The audit_svcstart kernel service can be called from the process environment only.

Return Values

Item Description

Nonzero Indicates that auditing is on for this routine.

0 Indicates that auditing is off for this routine.

Example

svccrash(int x, int y, int z)
{
 static int eventnum;
 if (audit_svcstart("crashed", &eventnum, 2, x, y))
 {
 audit_svcfinis();
 }
 body of svccrash
}

The preceding example allocates an audit event record buffer for the crashed event and copies the first
and second arguments into it. The third argument is unnecessary and not copied.

Kernel Services and Subsystem Operations 25

Related reference
audit_svcbcopy Kernel Service
audit_svcfinis Kernel Service
Related information
Security Kernel Services

b
The following kernel services begin with the with the letter b.

bawrite Kernel Service

Purpose
Writes the specified buffer data without waiting for I/O to complete.

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <sys/buf.h> int bawrite (bp) struct buf *bp;

Parameter

Ite
m

Description

bp Specifies the address of the buffer structure.

On a platform that supports storage keys, the passed in bp parameter must be in the
KKEY_PUBLIC or KKEY_BLOCK_DEV protection domain.

Description
The bawrite kernel service sets the asynchronous flag in the specified buffer and calls the bwrite kernel
service to write the buffer.

Execution Environment
The bawrite kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates successful completion.

ERRN
O

Returns an error number from the /usr/include/sys/errno.h file on error.

Related reference
bwrite Kernel Service
Related information
Block I/O buffer cache kernel services overview
I/O Kernel Services

bdwrite Kernel Service

26 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Releases the specified buffer after marking it for delayed write.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

void bdwrite (bp)
struct buf *bp;

Parameter

Ite
m

Description

bp Specifies the address of the buffer structure for the buffer to be written.

On a platform that supports storage keys, the passed in bp parameter must be in the
KKEY_PUBLIC or KKEY_BLOCK_DEV protection domain.

Description
The bdwrite kernel service marks the specified buffer so that the block is written to the device when the
buffer is stolen. The bdwrite service marks the specified buffer as delayed write and then releases it (that
is, puts the buffer on the free list). When this buffer is reassigned or reclaimed, it is written to the device.

Execution Environment
The bdwrite kernel service can be called from the process environment only.

Return Values
The bdwrite kernel service has no return values.

Related reference
brelse Kernel Service
Related information
Block I/O Buffer Cache Kernel Services: Overview
I/O Kernel Services

bflush Kernel Service

Purpose
Flushes all write-behind blocks on the specified device from the buffer cache.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

void bflush (dev)
dev_t dev;

Kernel Services and Subsystem Operations 27

Parameter

Ite
m

Description

dev Specifies which device to flush. A value of NODEVICE flushes all devices.

Description
The bflush kernel service runs the free list of buffers. It notes as busy or writing any dirty buffer whose
block is on the specified device. When a value of NODEVICE is specified, the bflush service flushes all
write-behind blocks for all devices. The bflush service has no return values.

Execution Environment
The bflush kernel service can be called from the process environment only.

Related reference
bwrite Kernel Service
Related information
Block I/O Buffer Cache Kernel Services: Overview
I/O Kernel Services

bindprocessor Kernel Service

Purpose
Binds or unbinds kernel threads to a processor.

Syntax

#include <sys/processor.h>

int bindprocessor (What, Who, Where)
int What;
int Who;
cpu_t Where;

Parameters

Item Description

What Specifies whether a process or a kernel thread is being bound to a processor. The What
parameter can take one of the following values:
BINDPROCESS

A process is being bound to a processor.
BINDTHREAD

A kernel thread is being bound to a processor.

Who Indicates a process or kernel thread identifier, as appropriate for the What parameter,
specifying the process or kernel thread which is to be bound to a processor.

Where If the Where parameter is in the range 0-n (where n is the number of online processors in
the system), it represents a bind CPU identifier to which the process or kernel thread is to be
bound. Otherwise, it represents a processor class, from which a processor will be selected. A
value of PROCESSOR_CLASS_ANY unbinds the specified process or kernel thread, which will
then be able to run on any processor.

28 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The bindprocessor kernel service binds a single kernel thread, or all kernel threads in a process, to a
processor, forcing the bound threads to be scheduled to run on that processor only. It is important to
understand that a process itself is not bound, but rather its kernel threads are bound. Once kernel threads
are bound, they are always scheduled to run on the chosen processor, unless they are later unbound.
When a new thread is created using the thread_create kernel service, it has the same bind properties as
its creator.

Programs that use processor bindings must be aware of Dynamic Logical Partitioning (DLPAR).

Return Values
On successful completion, the bindprocessor kernel service returns 0. Otherwise, a value of -1 is
returned and the error code can be checked by calling the getuerror kernel service.

Error Codes
The bindprocessor kernel service is unsuccessful if one of the following is true:

Item Description

EINVAL The What parameter is invalid, or the Where parameter indicates an invalid processor number
or a processor class which is not currently available.

ESRCH The specified process or thread does not exist.

EPERM The caller does not have root user authority, and the Who parameter specifies either a
process, or a thread belonging to a process, having a real or effective user ID different from
that of the calling process.

Execution Environment
The bindprocessor kernel service can be called from the process environment only.

Related information
bindprocessor command
fork subroutine
sysconf subroutine
Dynamic Logical Partitioning

binval Kernel Service

Purpose
Makes nonreclaimable all blocks in the buffer cache of a specified device.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

void binval (dev)
dev_t dev;

Kernel Services and Subsystem Operations 29

Parameter

Ite
m

Description

dev Specifies the device to be purged.

Description
The binval kernel service makes nonreclaimable all blocks in the buffer cache of a specified device.
Before removing the device from the system, use the binval service to remove the blocks.

All of blocks of the device to be removed need to be flushed before you call the binval service. Typically,
these blocks are flushed after the last close of the device.

Execution Environment
The binval kernel service can be called from the process environment only.

Return Values
The binval service has no return values.

Related reference
bflush Kernel Service
Related information
Block I/O Buffer Cache Kernel Services Overview
I/O Kernel Services

blkflush Kernel Service

Purpose
Flushes the specified block if it is in the buffer cache.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

int blkflush (dev, blkno)
dev_t dev;
daddr_t blkno;

Parameters

Item Description

dev Specifies the device containing the block to be flushed.

blkno Specifies the block to be flushed.

Description
The blkflush kernel service checks to see if the specified buffer is in the buffer cache. If the buffer is not
in the cache, then the blkflush service returns a value of 0. If the buffer is in the cache, but is busy, the

30 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

blkflush service calls the e_sleep service to wait until the buffer is no longer in use. Upon waking, the
blkflush service tries again to access the buffer.

If the buffer is in the cache and is not busy, but is dirty, then it is removed from the free list. The buffer is
then marked as busy and synchronously written to the device. If the buffer is in the cache and is neither
busy nor dirty (that is, the buffer is already clean and therefore does not need to be flushed), the blkflush
service returns a value of 0.

Execution Environment
The blkflush kernel service can be called from the process environment only.

Return Values

Ite
m

Description

1 Indicates that the block was successfully flushed.

0 Indicates that the block was not flushed. The specified buffer is either not in the buffer cache or is
in the buffer cache but neither busy nor dirty.

Related reference
bwrite Kernel Service
Related information
Block I/O Buffer Cache Kernel Services: Overview
I/O Kernel Services

bread Kernel Service

Purpose
Reads the specified block data into a buffer.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

struct buf *bread (dev, blkno)
dev_t dev;
daddr_t blkno;

Parameters

Item Description

dev Specifies the device containing the block to be read.

blkno Specifies the block to be read.

Description
The bread kernel service assigns a buffer to the given block. If the specified block is already in the buffer
cache, then the block buffer header is returned. Otherwise, a free buffer is assigned to the specified block
and the data is read into the buffer. The bread service waits for I/O to complete to return the buffer
header.

Kernel Services and Subsystem Operations 31

The buffer is allocated to the caller and marked as busy.

Execution Environment
The bread kernel service can be called from the process environment only.

Return Values
The bread service returns the address of the selected buffer's header. A nonzero value for B_ERROR in
the b_flags field of the buffer's header (buf structure) indicates an error. If this occurs, the caller should
release the buffer associated with the block using the brelse kernel service.

On a platform that supports storage keys, the buffer header is allocated from the storage protected by the
KKEY_BLOCK_DEV kernel key.

Related reference
iowait Kernel Service
Related information
Block I/O Buffer Cache Kernel Services: Overview
I/O Kernel Services

breada Kernel Service

Purpose
Reads in the specified block and then starts I/O on the read-ahead block.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

struct buf *breada (dev, blkno, rablkno)
dev_t dev;
daddr_t blkno;
daddr_t rablkno;

Parameters

Item Description

dev Specifies the device containing the block to be read.

blkno Specifies the block to be read.

rablkno Specifies the read-ahead block to be read.

Description
The breada kernel service assigns a buffer to the given block. If the specified block is already in the buffer
cache, then the bread service is called to:

• Obtain the block.
• Return the buffer header.

Otherwise, the getblk service is called to assign a free buffer to the specified block and to read the data
into the buffer. The breada service waits for I/O to complete and then returns the buffer header.

32 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

I/O is also started on the specified read-ahead block if the free list is not empty and the block is not
already in the cache. However, the breada service does not wait for I/O to complete on this read-ahead
block.

Execution Environment
The breada kernel service can be called from the process environment only.

Return Values
The breada service returns the address of the selected buffer's header. A nonzero value for B_ERROR in
the b_flags field of the buffer header (buf structure) indicates an error. If this occurs, the caller should
release the buffer associated with the block using the brelse kernel service.

On a platform that supports storage keys, the buffer header is allocated from the storage protected by the
KKEY_BLOCK_DEV kernel key.

Related reference
bread Kernel Service
iowait Kernel Service
Related information
Block I/O Buffer Cache Kernel Services: Overview

brelse Kernel Service

Purpose
Frees the specified buffer.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

void brelse (bp)
struct buf *bp;

Parameter

Ite
m

Description

bp Specifies the address of the buf structure to be freed.

On a platform that supports storage keys, the passed in bp parameter must be in the
KKEY_PUBLIC or KKEY_BLOCK_DEV protection domain.

Description
The brelse kernel service frees the buffer to which the bp parameter points.

The brelse kernel service awakens any processes waiting for this buffer or for another free buffer. The
buffer is then put on the list of available buffers. The buffer is also marked as not busy so that it can either
be reclaimed or reallocated.

The brelse service has no return values.

Kernel Services and Subsystem Operations 33

Execution Environment
The brelse kernel service can be called from either the process or interrupt environment.

Related reference
geteblk Kernel Service
buf Structure
Related information
I/O Kernel Services

bsr_alloc Kernel Service

Purpose
Allocates a Barrier Synchronization Register (BSR) resource, and retrieves mapping information.

Syntax
#include <sys/adspace.h>

int bsr_alloc (
 int bsr_bytes,
 struct io_map * bsr_map,
 int *bsr_stride,
 int *bsr_id)

Parameters
Item Description

bsr_bytes Number of BSR bytes wanted.

bsr_map Mapping information for the BSR facility

bsr_stride Stride at which the BSR bytes repeat within the mapping

bsr_id An opaque identifier for the allocated BSR resource

Description
The bsr_alloc service can be used to allocate and reserve all or a portion of the BSR facility. The
requested number of BSR bytes to allocate is communicated through the bsr_bytes parameter. The
requested number of bytes must correspond to a supported window size, as communicated by the
supported_window_mask parameter of the bsr_query service. If the requested number of bytes is
available, the bytes are reserved and the I/O mapping information for accessing the allocated facility is
written to the bsr_map structure. In addition, the stride within the mapping that the allocated BSR bytes
repeat is recorded in the bsr_stride field. The bsr_id field is written with a unique identifier to be used with
the bsr_free call.

If multiple granules or windows are to be used, they must be allocated with independent calls to
bsr_alloc. this is because I/O mappings for multiple granules might not be contiguous, and strides
are only applicable within the granule.

The resulting bsr_map information can then be used as input to rmmap_create for establishing
addressability to the BSR resource within the current process address space.

Execution Environment
The bsr_alloc service can only be called from the process environment.

34 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values
If successful, bsr_alloc returns 0 and modifies the bsr_map structure so that it contains the mapping
information for the newly allocated resource, modifies the bsr_stride field displays the stride on which the
BSR bytes repeat within the mapping, and modifies the bsr_id field so that it displays a unique identifier
for the newly allocated BSR resource. If unsuccessful, one of the following values is returned:

Item Description

ENODEV The BSR facility does not exist.

EINVAL Unsupported number of bytes requested.

EBUSY Requested BSR bytes or mappable BSR windows are currently in use.

Related reference
bsr_free Kernel Service
bsr_query Kernel Service
rmmap_create Kernel Service

bsr_free Kernel Service

Purpose
Frees a Barrier Synchronization Register (BSR) resource previously allocated with the bsr_alloc kernel
service.

Syntax
#include <sys/adspace.h>

int bsr_free (
 int bsr_id,

Parameters
Item Description

bsr_id BSR resource identifier as returned in the bsr_id field of the bsr_alloc
call.

Description
The bsr_free service releases a BSR allocation. The specific BSR resource being freed is identified by
the unique identifier bsr_id from the corresponding bsr_alloc call.

It is the caller's responsibility to ensure that all prior attachments to the BSR resource, through
rmmap_create calls, have been detached with corresponding rmmap_remove calls prior to freeing the
BSR resource.

Execution Environment
The bsr_free service can only be called from the process environment.

Return Values
Item Description

0 A successful operation.

Kernel Services and Subsystem Operations 35

Item Description

ENODEV The BSR facility is not present.

EINVAL BSR resource corresponding to bsr_id is invalid or not currently allocated.

Related reference
bsr_alloc Kernel Service
bsr_query Kernel Service
rmmap_remove Kernel Service

bsr_query Kernel Service

Purpose
Queries the existence of the Barrier Synchronization Register facility, and, if it exists, its size and
allocation granule.

Syntax
#include <sys/adspace.h>

int bsr_query (
 int *total_bytes,
 uint * supported_window_mask,
 int *free_bytes,
 uint *free_window_mask)

Parameters
Item Description

total_bytes Total bytes of the BSR facility currently present within the system or logical
partition

supported_window_mask Bit mask representing supported power-of-2-sized windows that can be
allocated

free_bytes Number of BSR bytes currently available (not allocated)

free_window_mask Bit mask representing available (not allocated) power-of-2-sized windows

Description
The bsr_query service can be used to detect the presence and capabilities of the Barrier
Synchronization Register (BSR) facility on a given system or logical partition. If the BSR facility is present
on a system or within a logical partition, a value of 0 is returned, and the parameters, passed by reference,
are written with the appropriate information.

The total_bytes field is written with the total number of BSR bytes currently present in the system or
logical partition. The supported_window_mask field is written with a bitmask, where each bit set indicates
the various power-of-2 window sizes that the total_bytes can be allocated and accessed. For example,
a mask of 0x58 would indicate that windows of size 64 (0x40), 16 (0x10), and 8 (0x8) bytes were
supported.

The free_bytes field is written with the number of BSR bytes within the system or logical partition that are
currently unallocated. The free_window_mask field is written with a bitmask, where each bit set indicates
the power-of-2 window sizes that are available for allocating and accessing the remaining free_bytes.

Note: Due to dynamic reconfiguration, the information returned by this query service might become stale.

36 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The bsr_query service can only be called from the process environment.

Return Values
Item Description

0 The BSR facility exists and information is provided.

ENODEV The BSR facility does not exist.

Related reference
bsr_alloc Kernel Service
bsr_free Kernel Service

bwrite Kernel Service

Purpose
Writes the specified buffer data.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

int bwrite (bp)
struct buf *bp;

Parameter

Ite
m

Description

bp Specifies the address of the buffer structure for the buffer to be written.

On a platform that supports storage keys, the passed in bp parameter must be in the
KKEY_PUBLIC or KKEY_BLOCK_DEV protection domain.

Description
The bwrite kernel service writes the specified buffer data. If this is a synchronous request, the bwrite
service waits for the I/O to complete.

"Block I/O Buffer Cache Kernel Services: Overview" in Kernel Extensions and Device Support Programming
Concepts describes how the three buffer-cache write routines work.

Execution Environment
The bwrite kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

Kernel Services and Subsystem Operations 37

Item Description

ERRN
O

Returns an error number from the /usr/include/sys/errno.h file on error.

Related reference
brelse Kernel Service
iowait Kernel Service
Related information
I/O Kernel Services

c
The following kernel services begin with the with the letter c.

cancel Device Queue Management Routine

Purpose
Provides a means for cleaning up queue element-related resources when a pending queue element is
eliminated from the queue.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

void cancel (ptr)
struct req_qe *ptr;

Parameter

Ite
m

Description

ptr Specifies the address of the queue element.

Description
The kernel calls the cancel routine to clean up resources associated with a queue element. Each device
queue can have a cancel routine. This routine is optional and must be specified when the device queue is
created with the creatq service.

The cancel routine is called when a pending queue element is eliminated from the queue. This occurs
when the path is destroyed or when the canclq service is called. The device manager should unpin any
data and detach any cross-memory descriptor.

Any operations started as a result of examining the queue with the peekq service must be stopped.

The cancel routine is also called when a queue is destroyed to get rid of any pending or active queue
elements.

Execution Environment
The cancel-queue-element routine can be called from the process environment only.

cfgnadd Kernel Service

38 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Registers a notification routine to be called when system-configurable variables are changed.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/sysconfig.h>

void cfgnadd
(cbp)
struct cfgncb *cbp;

Parameter

Ite
m

Description

cbp Points to a cfgncb configuration notification control block.

On a platform that supports storage keys, the passed in cbp parameter must only be in the
KKEY_PUBLIC domain.

Description
The cfgnadd kernel service adds a cfgncb control block to the list of cfgncb structures that the kernel
maintains. A cfgncb control block contains the address of a notification routine (in its cfgncb.func field)
to be called when a configurable variable is being changed.

The SYS_SETPARMS sysconfig operation allows a user with sufficient authority to change the values of
configurable system parameters. The cfgnadd service allows kernel routines and extensions to register
the notification routine that is called whenever these configurable system variables have been changed.

This notification routine is called in a two-pass process. The first pass performs validity checks on
the proposed changes to the system parameters. During the second pass invocation, the notification
routine performs whatever processing is needed to make these changes to the parameters. This two-pass
procedure ensures that variables used by more than one kernel extension are correctly handled.

To use the cfgnadd service, the caller must define a cfgncb control block using the structure found in
the /usr/include/sys/sysconfig.h file.

Execution Environment
The cfgnadd kernel service can be called from the process environment only.

The cfgncb.func notification routine is called in a process environment only.

Related reference
cfgndel Kernel Service
Related information
sysconfig subroutine
Kernel Extension and Device Driver Management Kernel Services

cfgncb Configuration Notification Control Block

Purpose
Contains the address of a notification routine that is invoked each time the sysconfig subroutine is called
with the SYS_SETPARMS command.

Kernel Services and Subsystem Operations 39

Syntax

int func (cmd, cur, new)
int cmd;
struct var *cur;
struct var *new;

Parameters

Ite
m

Description

cm
d

Indicates the current operation type. Possible values are CFGV_PREPARE and CFGV_COMMIT, as
defined in the /usr/include/sys/sysconfig.h file.

cur Points to a var structure representing the current values of system-configurable variables.

ne
w

Points to a var structure representing the new or proposed values of system-configurable
variables.

The cur and new var structures are both in the system address space.

Description
The configuration notification control block contains the address of a notification routine. This structure is
intended to be used as a list element in a list of similar control blocks maintained by the kernel.

Each control block has the following definition:

struct cfgncb {
 struct cfgncb *cbnext; /* next block on chain */
 struct cfgncb *cbprev; /* prev control block on chain */
 int (*func)(); /* notification function */
 };

The cfgndel or cfgnadd kernel service can be used to add or delete a cfgncb control block from the
cfgncb list. To use either of these kernel services, the calling routine must define the cfgncb control
block. This definition can be done using the /usr/include/sys/sysconfig.h file.

Every time a SYS_SETPARMS sysconfig command is issued, the sysconfig subroutine iterates through
the kernel list of cfgncb blocks, invoking each notification routine with a CFGV_PREPARE command. This
call represents the first pass of what is for the notification routine a two-pass process.

On a CFGV_PREPARE command, the cfgncb.func notification routine should determine if any values of
interest have changed. All changed values should be checked for validity. If the values are valid, a return
code of 0 should be returned. Otherwise, a return value indicating the byte offset of the first field in error
in the new var structure should be returned.

If all registered notification routines create a return code of 0, then no value errors have been detected
during validity checking. In this case, the sysconfig subroutine issues its second pass call to the
cfgncb.func routine and sends the same parameters, although the cmd parameter contains a value of
CFGV_COMMIT. This indicates that the new values go into effect at the earliest opportunity.

An example of notification routine processing might be the following. Suppose the user wishes to increase
the size of the block I/O buffer cache. On a CFGV_PREPARE command, the block I/O notification routine
would verify that the proposed new size for the cache is legal. On a CFGV_COMMIT command, the
notification routine would then make the additional buffers available to the user by chaining more buffers
onto the existing list of buffers.

Related reference
cfgndel Kernel Service

40 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

https://www.ibm.com/docs/en/aix/7.2?topic=s-sys-setparms-sysconfig-operation

Related information
SYS_SETPARMS subroutine
Kernel Extension and Device Driver Management Kernel Services

cfgndel Kernel Service

Purpose
Removes a notification routine for receiving broadcasts of changes to configurable system variables.

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <sys/sysconfig.h> void cfgndel (cbp) struct
cfgncb *cbp;

Parameter

Ite
m

Description

cbp Points to a cfgncb configuration notification control block.

On a platform that supports storage keys, the passed in cbp parameter must only be in the
KKEY_PUBLIC domain.

Description
The cfgndel kernel service removes a previously registered cfgncb configuration notification control block
from the list of cfgncb structures maintained by the kernel. This service thus allows kernel routines and
extensions to remove their notification routines from the list of those called when a configurable system
variable has been changed.

The address of the cfgncb structure passed to the cfgndel kernel service must be the same address used
to call the cfgnadd service when the structure was originally added to the list. The /usr/include/sys/
sysconfig.h file contains a definition of the cfgncb structure.

Execution Environment
The cfgndel kernel service can be called from the process environment only.

Return Values
The cfgndel service has no return values.

Related reference
cfgnadd Kernel Service
Related information
sysconfig subroutine
Kernel Extension and Device Driver Management Kernel Services

check Device Queue Management Routine

Purpose
Provides a means for performing device-specific validity checking for parameters included in request
queue elements.

Kernel Services and Subsystem Operations 41

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

int check (type, ptr, length)
int type;
struct req_qe *ptr;
int length;

Parameters

Item Description

type Specifies the type of call. The following values are used when the kernel calls the check
routine:
CHECK_PARMS + SEND_CMD

Send command queue element.
CHECK_PARMS + START_IO

Start I/O CCB queue element.
CHECK_PARMS + GEN_PURPOSE

General purpose queue element.

ptr Specifies the address of the queue element.

length Specifies the length of the queue element.

Description
The check routine is part of the Device Queue Management Kernel extension. Each device queue can have
a check routine. This routine is optional and must be specified when the device queue is created with the
creatq service. The enque service calls the check routine before a request queue element is put on the
device queue. The kernel uses the routine's return value to determine whether to put the queue element
on the device queue or to stop the request.

The kernel does not call the check routine when an acknowledgment or control queue element is sent.
Therefore, the check routine is only called while executing within a process.

The address of the actual queue element is passed to this routine. In the check routine, take care to alter
only the fields that were meant to be altered. This routine does not need to be serialized with the rest of
the server's routines, because it is only checking the parameters in the queue element.

The check routine can check the request before the request queue element is placed on the device
queue. The advantage of using this routine is that you can filter out unacceptable commands before they
are put on the device queue.

The routine looks at the queue element and returns RC_GOOD if the request is acceptable. If the return
code is not RC_GOOD, the kernel does not place the queue element in a device queue.

Execution Environment
The check routine executes under the process environment of the requester. Therefore, access to data
areas must be handled as if the routine were in an interrupt handler environment. There is, however, no
requirement to pin the code and data as in a normal interrupt handler environment.

42 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values

Item Description

RC_GOOD Indicates successful completion.

All other return values are device-specific.

clrbuf Kernel Service

Purpose
Sets the memory for the specified buffer structure's buffer to all zeros.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

void clrbuf (bp)
struct buf *bp;

Parameter

Ite
m

Description

bp Specifies the address of the buffer structure for the buffer to be cleared.

On a platform that supports storage keys, the passed in bp parameter must be in the
KKEY_PUBLIC or KKEY_BLOCK_DEV protection domain.

Description
The clrbuf kernel service clears the buffer associated with the specified buffer structure. The clrbuf
service does this by setting to 0 the memory for the buffer that contains the specified buffer structure.

Execution Environment
The clrbuf kernel service can be called from either the process or interrupt environment.

Return Values
The clrbuf service has no return values.

Related information
Block I/O Buffer Cache Kernel Services: Overview
I/O Kernel Services

clrjmpx Kernel Service

Purpose
Removes a saved context by popping the last saved jump buffer from the list of saved contexts.

Kernel Services and Subsystem Operations 43

Syntax

#include <sys/types.h>
#include <sys/errno.h>

void clrjmpx (jump_buffer)
label_t *jump_buffer;

Parameter

Item Description

jump_buffer Specifies the address of the caller-supplied jump buffer that was specified on the call
to the setjmpx service.

Description
The clrjmpx kernel service pops the most recent context saved by a call to the setjmpx kernel service.
Since each longjmpx call automatically pops the jump buffer for the context to resume, the clrjmpx
kernel service should be called only following:

• A normal return from the setjmpx service when the saved context is no longer needed
• Any code to be run that requires the saved context to be correct

The clrjmpx service takes the address of the jump buffer passed in the corresponding setjmpx service.

Execution Environment
The clrjmpx kernel service can be called from either the process or interrupt environment.

Return Values
The clrjmpx service has no return values.

Related reference
setjmpx Kernel Service
Related information
Process and Exception Management Kernel Services
Understanding Exception Handling

common_reclock Kernel Service

Purpose
Implements a generic interface to the record locking functions.

Syntax

#include <sys/types.h>
#include <sys/flock.h>

common_reclock(gp, size, offset,
lckdat, cmd, retray_fcn, retry_id, lock_fcn,
rele_fcn)
struct gnode *gp;
offset_t size;
offset_t offset;
struct eflock *lckdat;
int cmd;
int (*retry_fcn)();

44 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

ulong *retry_id;
int (*lock_fcn)();
int (*rele_fcn)();

Parameters

Item Description

gp Points to the gnode that represents the file to lock.

size Identifies the current size of the file in bytes.

offset Specifies the current file offset. The system uses the offset parameter to establish where
the lock region is to begin.

lckdat Points to an eflock structure that describes the lock operation to perform.

cmd Defines the type of operation the kernel service performs. This parameter is a bit mask
consisting of the following bits:
SETFLCK

If set, the system sets or clears a lock. If not set, the lock information is returned.
SLPFLCK

If the lock cannot be granted immediately, wait for it. This is only valid when
SETFLCK flag is set.

INOFLCK
The caller is holding a lock on the object referred to by the gnode. The
common_reclock kernel service calls the release function before sleeping, and the
lock function on return from sleep.

When the cmd parameter is set to SLPFLCK, it indicates that if the lock cannot be
granted immediately, the service should wait for it. If the retry_fcn parameter contains
a valid pointer, the common_reclock kernel service does not sleep, regardless of the
SLPFLCK flag.

retry_fcn Points to a retry function. This function is called when the lock is retried. The retry
function is not used if the lock is granted immediately. When the requested lock is
blocked by an existing lock, a sleeping lock is established with the retry function address
stored in it. The common_reclock kernel service then returns a correlating ID (see the
retry_id parameter) to the calling routine, along with an exit value of EAGAIN. When the
sleeping lock is awakened, the retry function is called with the correlating ID as its ID
argument.

If this argument is not NULL, then the common_ reclock kernel service does not sleep,
regardless of the SLPFLCK command flag.

retry_id Points to location to store the correlating ID. This ID is used to correlate a retry
operation with a specific lock or set of locks. This parameter is used only in conjunction
with retry function. The value stored in this location is an opaque value. The caller
should not use this value for any purpose other than lock correlation.

lock_fcn Points to a lock function. This function is invoked by the common_ reclock kernel
service to lock a data structure used by the caller. Typically this is the data structure
containing the gnode to lock. This function is necessary to serialize access to the object
to lock. When the common_reclock kernel service invokes the lock function, it is passed
the private data pointer from the gnode as its only argument.

rele_fcn Points to a release function. This function releases the lock acquired with the lock
function. When the release function is invoked, it is passed the private data pointer from
the gnode as its only argument.

Kernel Services and Subsystem Operations 45

Description
The common_reclock routine implements a generic interface to the record-locking functions. This service
allows distributed file systems to use byte-range locking. The kernel service does the following when a
requested lock is blocked by an existing lock:

• Establishes a sleeping lock with the retry function in the lock structure. The address of the retry
function is specified by the retry_fcn parameter.

• Returns a correlating ID value to the caller along with an exit value of EAGAIN. The ID is stored in the
retry_id parameter.

• Calls the retry function when the sleeping lock is later awakened, the retry function is called with the
retry_id parameter as its argument.

Note: Before a call to the common_ reclock subroutine, the eflock structure must be completely filled
in. The lckdat parameter points to the eflock structure.

The caller can hold a serialization lock on the data object pointed to by the gnode. However, if the caller
expects to sleep for a blocking-file lock and is holding the object lock, the caller must specify a lock
function with the lock_fcn parameter and a release function with the rele_fcn parameter.

The lock is described by a eflock structure. This structure is identified by the lckdat parameter. If a read
lock (F_RDLCK) or write lock (F_WRLCK) is set with a length of 0, the entire file is locked. Similarly, if
unlock (F_UNLCK) is set starting at 0 for 0 length, all locks on this file are unlocked. This method is how
locks are removed when a file is closed.

To allow the common_reclock kernel service to update the per-gnode lock list, the service takes a
GN_RECLK_LOCK lock during processing.

Execution Environment
The common_reclock kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates successful completion.

EAGAIN Indicates a lock cannot be granted because of a blocking lock and the caller did not request
that the operation sleep.

ERRNO Indicates an error. Refer to the fcntl system call for the list of possible values.

Related information
fcntl subroutine
flock.h subroutine

compare_and_swap Kernel Services

Purpose
Conditionally updates or returns a variable atomically.

Syntax

#include <sys/atomic_op.h>

boolean_t compare_and_swap (addr, old_val_addr, new_val)
atomic_p addr;

46 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

int * old_val_addr;
int new_val;

boolean_t compare_and_swaplp (addr, old_val_addr, new_val)
atomic_l addr;
long * old_val_addr;
long new_val;

Parameters

Item Description

addr Specifies the address of the variable.

old_val_addr Specifies the address of the old value to be checked against (and conditionally
updated with) the value of the variable.

new_val Specifies the new value to be conditionally assigned to the variable.

Description
The compare_and_swap kernel services performs an atomic (uninterruptible) operation which compares
the contents of a variable with a stored old value; if equal, a new value is stored in the variable, and TRUE
is returned, otherwise the old value is set to the current value of the variable, and FALSE is returned.

The compare_and_swap kernel service operates on a single word (32 bit) variable while the
compare_and_swaplp kernel service operates on a double word (64 bit) variable.

The compare_and_swap kernel services are particularly useful in operations on singly linked lists, where
a list pointer must not be updated if it has been changed by another thread since it was read.

Note:

• The single word variable passed to the compare_and_swap kernel service must be aligned on a full
word (32 bit) boundary.

• The double word variable passed to the compare_and_swaplp kernel service must be aligned on a
double word (64 bit) boundary.

Execution Environment
The compare_and_swap kernel services can be called from either the process or interrupt environment.

Return Values

Item Description

TRUE Indicates that the variable was equal to the old value, and has been set to the new value.

FALSE Indicates that the variable was not equal to the old value, and that its current value has been
returned in the location where the old value was stored.

Related reference
fetch_and_add Kernel Services
fetch_and_and or fetch_and_or Kernel Services
Related information
Locking Kernel Services

coprocessor_user_register Kernel Service

Kernel Services and Subsystem Operations 47

Purpose
Registers the current process as a coprocessor user.

Syntax

#include <sys/coprocessor.h>
kerrno_t coprocessor_user_register (int coprocessor_type, unsigned int * phandle)

Parameters

Item Description

coprocessor_type Numeric value in the [0..63] range

phandle Pointer to an unsigned 32 bit integer where a handle identifying this process is
returned.

Description
This kernel service allows a kernel extension to register the current process as a user of the coprocessor
type passed as the first argument. When successful, the service sets up values in the process context that
allow the current process to access coprocessors of the specified type in user mode.

Execution Environment
This kernel service can be called in the process environment only.

Return Values
When the call is successful, the kernel service returns a value of zero. Otherwise, a negative value is
returned to indicate an error.

Error Values
Possible errors are:

• Coprocessors not supported (supported only on POWER7® and newer processors)
• Invalid coprocessor type (must be in the range 0-63).
• Bad address passed as the second argument.
• The current process is already registered for this coprocessor type.
• The service is being called in interrupt context.
• The service could not allocate a value for the handle.

coprocessor_user_unregister Kernel Service

Purpose
Unregisters the current process as a coprocessor user.

Syntax

#include <sys/coprocessor.h>
kerrno_t coprocessor_user_unregister (int coprocessor_type)

48 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

coprocessor_type Numeric value in the range [0..63] which identifies a coprocessor type.

Description
This kernel service allows a kernel extension to unregister the current process that was previously
registered as a coprocessor user. When successful, further accesses by the process to the coprocessor
type passed as an argument in user mode will fail with a privileged operation exception.

Execution Environment
This kernel service can be called in the process environment only.

Return Values
When the call is successful, the kernel service returns a value of zero. Otherwise, a negative value is
returned to indicate an error.

Error Values
Possible errors are:

• Coprocessors not supported (supported only on POWER7 and newer processors).
• Invalid coprocessor type (must be in the range 0-63).
• The current process is not registered for this coprocessor type.
• The service is being called in interrupt context.

copyin Kernel Service

Purpose
Copies data between user and kernel memory.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int copyin (uaddr, kaddr, count)
char *uaddr;
char *kaddr;
int count;

Parameters

Item Description

uaddr Specifies the address of user data.

kaddr Specifies the address of kernel data.

count Specifies the number of bytes to copy.

Kernel Services and Subsystem Operations 49

Description
The copyin kernel service copies the specified number of bytes from user memory to kernel memory. This
service is provided so that system calls and device driver top half routines can safely access user data.
The copyin service ensures that the user has the appropriate authority to access the data. It also provides
recovery from paging I/O errors that would otherwise cause the system to crash.

The copyin service should be called only while executing in kernel mode in the user process.

Execution Environment
The copyin kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

EFAULT Indicates that the user has insufficient authority to access the data, or the
address specified in the uaddr parameter is not valid.

EIO Indicates that a permanent I/O error occurred while referencing data.

ENOMEM Indicates insufficient memory for the required paging operation.

ENOSPC Indicates insufficient file system or paging space.

Related reference
copyinstr Kernel Service
copyout Kernel Service
Related information
Accessing User-Mode Data While in Kernel Mode

copyinstr Kernel Service

Purpose
Copies a character string (including the terminating null character) from user to kernel space.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

On the 32-bit kernel, the syntax for the copyinstr Kernel Service is:

int copyinstr (from, to, max, actual)
caddr_t from;
caddr_t to;
uint max;
uint *actual;

On the 64-bit kernel, the syntax for the copyinstr subroutine is:

int copyinstr (from, to, max, actual)
void *from;
void *to;
size_t max;
size_t *actual;

50 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

from Specifies the address of the character string to copy.

to Specifies the address to which the character string is to be copied.

max Specifies the number of characters to be copied.

actual Specifies a parameter, passed by reference, that is updated by the copyinstr service with the
actual number of characters copied.

Description
The copyinstr kernel service permits a user to copy character data from one location to another. The
source location must be in user space or can be in kernel space if the caller is a kernel process. The
destination is in kernel space.

Execution Environment
The copyinstr kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

E2BIG Indicates insufficient space to complete the copy.

EIO Indicates that a permanent I/O error occurred while referencing data.

ENOSPC Indicates insufficient file system or paging space.

EFAULT Indicates that the user has insufficient authority to access the data or the address specified in
the uaddr parameter is not valid.

Related information
Accessing User-Mode Data While in Kernel Mode
Memory Kernel Services

copyout Kernel Service

Purpose
Copies data between user and kernel memory.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int copyout (kaddr, uaddr, count)
char *kaddr;
char *uaddr;
int count;

Kernel Services and Subsystem Operations 51

Parameters

Item Description

kaddr Specifies the address of kernel data.

uaddr Specifies the address of user data.

count Specifies the number of bytes to copy.

Description
The copyout service copies the specified number of bytes from kernel memory to user memory. It is
provided so that system calls and device driver top half routines can safely access user data. The copyout
service ensures that the user has the appropriate authority to access the data. This service also provides
recovery from paging I/O errors that would otherwise cause the system to crash.

The copyout service should be called only while executing in kernel mode in the user process.

Execution Environment
The copyout kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

EFAULT Indicates that the user has insufficient authority to access the data or the
address specified in the uaddr parameter is not valid.

EIO Indicates that a permanent I/O error occurred while referencing data.

ENOMEM Indicates insufficient memory for the required paging operation.

ENOSPC Indicates insufficient file system or paging space.

Related reference
copyin Kernel Service
copyinstr Kernel Service
Related information
Memory Kernel Services

cpu_speculation_barrier kernel service

Purpose
Provides protection against speculative execution side-channel attacks.

Syntax

#include <sys/processor.h>

void cpu_speculation_barrier (void)

Description
The cpu_speculation_barrier kernel service provides kernel extensions with processor-
model-dependent mitigation against known speculative-execution vulnerabilities. The

52 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

cpu_speculation_barrier kernel service can be used to protect against side-channel
attacks within the kernel environment. Kernel extensions should be carefully vetted when the
cpu_speculation_barrier kernel service is used.

Note: Kernel performance might reduce when the cpu_speculation_barrier kernel service is used.

The cpu_speculation_barrier kernel service must be called before storage is accessed by using
addresses that are computed from an untrusted source. Therefore, only kernel extensions that reference
user-mode data directly without using cross-privilege domain access services, such as the copyin
service, can use the cpu_speculation_barrier kernel service.

Execution Environment
The cpu_speculation_barrier kernel service can be called from either the process environment or
the interrupt environment.

Example
The following example shows an ioctl device driver handler that directly references user-mode data:

int
dd_ioctl(dev_t devno, int cmd, void *arg, ulong devflag, chan_t chan, int ext)
{
 int index;
 char val;
 vector_t *uvec = NULL;
 extern int max_kdata_index;
 extern char kdata[];

 if (cmd == 0xC1C2) {
 /* Select kernel data from user input */
 uvec = (vector_t *)arg;
 index = uvec->index;

 if (index < max_kdata_index) {
 cpu_speculation_barrier();
 val = kdata[index];
 uvec->data[val]++;
 }
 }
}

Return Values
The cpu_speculation_barrier kernel service does not return any value.

Related information
Accessing User-Mode Data While in Kernel Mode

crcopy Kernel Service

Purpose
Copies a credentials structure to a new one and frees the old one.

Syntax

#include <sys/cred.h>

struct ucred * crcopy (cr)
struct ucred * cr;

Kernel Services and Subsystem Operations 53

Parameter

Item Description

cr Pointer to the credentials structure that is to be copied and then freed.

Description
The crcopy kernel service allocates a new credentials structure that is initialized from the contents of the
cr parameter. The reference to cr is then freed and a pointer to the new structure returned to the caller.

Note: The cr parameter must have been obtained by an earlier call to the crcopy kernel service, crdup
kernel service, crget kernel service, or the crref kernel service.

Execution Environment
The crcopy kernel service can be called from the process environment only.

Return Values

Item Description

Nonzero value A pointer to a newly allocated and initialized credentials structure.

Zero value An error occurred when the kernel service was attempting to allocate
pinned memory for the credentials structure.

Related information
Security Kernel Services

crdup Kernel Service

Purpose
Copies a credentials structure to a new one.

Syntax

#include <sys/cred.h>

struct ucred * crdup (cr)
struct ucred * cr;

Parameter

Item Description

cr Pointer to the credentials structure that is to be copied.

Description
The crdup kernel service allocates a new credentials structure that is initialized from the contents of the
cr parameter.

54 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The crdup kernel service can be called from the process environment only.

Return Values

Item Description

Nonzero value A pointer to a newly allocated and initialized credentials structure.

Zero value An error occurred when the kernel service was attempting to allocate pinned
memory for the credentials structure.

Related information
Security Kernel Services

creatp Kernel Service

Purpose
Creates a new kernel process.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

pid_t creatp()

Description
The creatp kernel service creates a kernel process. It also allocates and initializes a process block for the
new process. Initialization involves these three tasks:

• Assigning an identifier to the kernel process.
• Setting the process state to idle.
• Initializing its parent, child, and sibling relationships.

"Using Kernel Processes" in Kernel Extensions and Device Support Programming Concepts has a more
detailed discussion of how the creatp kernel service creates and initializes kernel processes.

The process calling the creatp service must subsequently call the initp kernel service to complete the
process initialization. The initp service also makes the newly created process runnable.

Execution Environment
The creatp kernel service can be called from the process environment only.

Return Values

Ite
m

Description

-1 Indicates an error.

Upon successful completion, the creatp kernel service returns the process identifier for the new kernel
process.

Kernel Services and Subsystem Operations 55

Related reference
initp Kernel Service
Related information
Process and Exception Management Kernel Services
Using Kernel Processes

CRED_GETEUID, CRED_GETRUID, CRED_GETSUID, CRED_GETLUID,
CRED_GETEGID, CRED_GETRGID, CRED_GETSGID and CRED_GETNGRPS
Macros

Purpose
Credentials structure field accessing macros.

Syntax
#include <sys/cred.h>

uid_t CRED_GETEUID (crp)
uid_t CRED_GETRUID (crp)
uid_t CRED_GETSUID (crp)
uid_t CRED_GETLUID (crp)
gid_t CRED_GETEGID (crp)
gid_t CRED_GETRGID (crp)
gid_t CRED_GETSGID (crp)
int CRED_GETNGRPS (crp)

Parameter
Item Description

crp Pointer to a credentials structure

Description
These macros provide a means for accessing the user and group identifier fields within a credentials
structure. The fields within a ucred structure should not be accessed directly as the field names and their
locations are subject to change.

The CRED_GETEUID macro returns the effective user ID field from the credentials structure referenced
by crp.

The CRED_GETRUID macro returns the real user ID field from the credentials structure referenced by crp.

The CRED_GETSUID macro returns the saved user ID field from the credentials structure referenced by
crp.

The CRED_GETLUID macro returns the login user ID field from the credentials structure referenced by
crp.

The CRED_GETEUID macro returns the effective group ID field from the credentials structure referenced
by crp.

The CRED_GETRUID macro returns the real group ID field from the credentials structure referenced by
crp.

The CRED_GETSUID macro returns the saved group ID field from the credentials structure referenced by
crp.

The CRED_GETNGRPS macro returns the number of concurrent group ID values stored within the
credentials structure referenced by crp.

56 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

These macros are defined in the system header file <sys/cred.h>.

Execution Environment
The credentials macros called with any valid credentials pointer.

Related information
Security Kernel Services

crexport Kernel Service

Purpose
Copies an internal format credentials structure to an external format credentials structure.

Syntax
#include <sys/cred.h>

void crexport (src, dst)
struct ucred * src;
struct ucred_ext * dst;

Parameter
Item Description

src Pointer to the internal credentials structure.

dst Pointer to the external credentials structure.

Description
The crexport kernel service copies from the internal credentials structure referenced by src into the
external credentials structure referenced by dst. The external credentials structure is guaranteed to be
compatible between releases. Fields within a ucred structure must not be referenced directly as the field
names and locations within that structure are subject to change.

Execution Environment
The crexport kernel service can be called from the process environment only.

Return Values
This kernel service does not have a return value.

Related information
Security Kernel Services

crfree Kernel Service

Purpose
Releases a reference count on a credentials structure.

Kernel Services and Subsystem Operations 57

Syntax

#include <sys/cred.h>

void crfree (cr)
struct ucred * cr;

Parameter

Item Description

cr Pointer to the credentials structure that is to have a reference freed.

Description
The crfree kernel service deallocates a reference to a credentials structure. The credentials structure is
deallocated when no references remain.

Note: The cr parameter must have been obtained by an earlier call to the crcopy kernel service, crdup
kernel service, crget kernel service, or the crref kernel service.

Execution Environment
The crfree kernel service can be called from the process environment only.

Return Values
No value is returned by this kernel service.

Related information
Security Kernel Services

crget Kernel Service

Purpose
Allocates a new, uninitialized credentials structure to a new one and frees the old one.

Syntax

#include <sys/cred.h>

struct ucred * crget (void)

Parameter
This kernel service does not require any parameters.

Description
The crget kernel service allocates a new credentials structure. The structure is initialized to all zero
values, and the reference count is set to 1.

58 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The crget kernel service can be called from the process environment only.

Return Values

Item Description

Nonzero value A pointer to a newly allocated and initialized credentials structure.

Zero value An error occurred when the kernel service was attempting to allocate
pinned memory for the credentials structure.

Related information
Security Kernel Services

crhold Kernel Service

Purpose
Increments the reference count for a credentials structure.

Syntax

#include <sys/cred.h>

void crhold (cr)
struct ucred * cr;

Parameter

Item Description

cr Pointer to the credentials structure that will have its reference count incremented.

Description
The crhold kernel service increments the reference count of a credentials structure.

Note: Reference counts that are incremented with the crhold kernel service must be decremented with
the crfree kernel service.

Execution Environment
The crhold kernel service can be called from the process environment only.

Return Values
No value is returned by this kernel service.

Related information
Security Kernel Services

crref Kernel Service

Kernel Services and Subsystem Operations 59

Purpose
Increments the reference count for the current credentials structure.

Syntax

#include <sys/cred.h>

struct ucred * crref (void)

Parameter
This kernel service does not require any parameters.

Description
The crref kernel service increments the reference count of the current credentials structure and returns a
pointer to the current credentials structure to the invoker.

Note: References that are allocated with the crref kernel service must be released with the crfree kernel
service.

Execution Environment
The crref kernel service can be called from the process environment only.

Return Values

Item Description

Nonzero value A pointer to the current credentials structure.

Related information
Security Kernel Services

crset Kernel Service

Purpose
Sets the current security credentials.

Syntax

#include <sys/cred.h>

void crset (cr)
struct ucred * cr;

Parameter

Item Description

cr Pointer to the credentials structure that will become the new, current security credentials.

60 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The crset kernel service replaces the current security credentials with the supplied value. The existing
structure will be deallocated.

Note: The cr parameter must have been obtained by an earlier call to the crcopy kernel service, crdup
kernel service, crget kernel service, or the crref kernel service.

Execution Environment
The crset kernel service can be called from the process environment only.

Return Values
No value is returned by this kernel service.

Related information
Security Kernel Services

curtime Kernel Service

Purpose
Reads the current time into a time structure.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/time.h>

void curtime (timestruct)
struct timestruc_t *timestruct;

Parameter

Item Description

timestruct Points to a timestruc_t time structure defined in the /usr/include/sys/time.h file. The
curtime kernel service updates the fields in this structure with the current time.

Description
The curtime kernel service reads the current time into a time structure defined in the /usr/include/sys/
time.h file. This service updates the tv_sec and tv_nsec fields in the time structure, pointed to by
the timestruct parameter, from the hardware real-time clock. The kernel also maintains and updates a
memory-mapped time tod structure. This structure is updated with each clock tick.

The kernel also maintains two other in-memory time values: the lbolt and time values. The three in-
memory time values that the kernel maintains (the tod, lbolt, and time values) are available to kernel
extensions. The lbolt in-memory time value is the number of timer ticks that have occurred since the
system was booted. This value is updated once per timer tick. The time in-memory time value is the
number of seconds since Epoch. The kernel updates the value once per second.

Note: POSIX 1003.1 defines "seconds since Epoch" as a "value interpreted as the number of seconds
between a specified time and the Epoch". It further specifies that a "Coordinated Universal Time name
specified in terms of seconds (tm_sec), minutes (tm_min), hours (tm_hour), and days since January 1 of
the year (tm_yday), and calendar year minus 1900 (tm_year) is related to a time represented as seconds
since the Epoch, according to the following expression: tm_sec + tm_min * 60 tm_hour*3600 + tm_yday

Kernel Services and Subsystem Operations 61

* 86400 + (tm_year - 70) * 31536000 ((tm_year - 69) / 4) * 86400 if the year is greater than or equal to
1970, otherwise it is undefined."

The curtime kernel service does not page-fault if a pinned stack and input time structure are used. Also,
accessing the lbolt, time, and tod in-memory time values does not cause a page fault since they are in
pinned memory.

Execution Environment
The curtime kernel service can be called from either the process or interrupt environment.

The tod, time, and lbolt memory-mapped time values can also be read from the process or interrupt
handler environment. The timestruct parameter and stack must be pinned when the curtime service is
called in an interrupt handler environment.

Return Values
The curtime kernel service has no return values.

Related information
Timer and Time-of-Day Kernel Services

d
The following kernel services begin with the with the letter d.

d_align Kernel Service

Purpose
Provides needed information to align a buffer with a processor cache line.

Library
Kernel Extension Runtime Routines Library (libsys.a)

Syntax

int d_align()

Description
To maintain cache consistency with system memory, buffers must be aligned. The d_align kernel service
helps provide that function by returning the maximum processor cache-line size. The cache-line size is
returned in log2 form.

Execution Environment
The d_align service can be called from either the process or interrupt environment.

Related reference
d_cflush Kernel Service
d_roundup Kernel Service
Related information
Understanding Direct Memory Access (DMA) Transfer

d_alloc_dmamem Kernel Service

62 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Allocates an area of "dma-able" memory.

Syntax

void *
 d_alloc_dmamem(d_handle_t device_handle, size_t size,int align)

Description
Exported, documented kernel service supported on PCI-based systems only. The d_alloc_dmamem
kernel service allocates an area of "dma-able" memory which satisfies the constraints associated with
a DMA handle, specified via the device_handle parameter. The constraints (such as need for contiguous
physical pages or need for 32-bit physical address) are intended to guarantee that a given adapter will
be able to access the physical pages associated with the allocated memory. A driver associates such
constraints with a dma handle via the flags parameter on its d_map_init call.

The area to be allocated is the number of bytes in length specified by the size parameter, and is aligned on
the byte boundary specified by the align parameter. The align parameter is actually the log base 2 of the
desired address boundary. For example, an align value of 12 requests that the allocated area be aligned
on a 4096 byte boundary.

d_alloc_dmamem is appropriate to be used for long-term mappings. Depending on the system
configuration and the constraints encoded in the device_handle, the underlying storage will come from
either the real_heap (rmalloc service) or pinned_heap (xmalloc service).

Note:

1. The d_free_dmamem service should be called to free allocation from a previous d_alloc_dmamem
call.

2. The d_alloc_dmamem kernel service can be called from the process environment only.

Parameters

Item Description

device_handle Indicates the dma handle.

align Specifies alignment characteristics.

size_t size Specifies number of bytes to allocate.

Return Values

Item Description

Address of
allocated area

Indicates that d_alloc_dmamem was successful.

NULL Requested memory could not be allocated.

Related reference
d_free_dmamem Kernel Service
d_map_init Kernel Service
rmalloc Kernel Service

d_cflush Kernel Service

Kernel Services and Subsystem Operations 63

Purpose
Flushes the processor and I/O channel controller (IOCC) data caches when mapping bus device DMA with
the long-term DMA_WRITE_ONLY option.

Syntax
int d_cflush (channel_id, baddr, count, daddr)
int channel_id;
caddr_t baddr;
size_t count;
caddr_t daddr;

Parameters

Item Description

channel_id Specifies the DMA channel ID returned by the d_init kernel service.

baddr Designates the address of the memory buffer.

count Specifies the length of the memory buffer transfer in bytes.

daddr Designates the address of the device corresponding to the transfer.

Description
The d_cflush kernel service should be called after data has been modified in a buffer that will undergo
direct memory access (DMA) processing. Through DMA processing, this data is sent to a device where the
d_master kernel service with the DMA_WRITE_ONLY option has already mapped the buffer for device
DMA. The d_cflush kernel service is not required if the DMA_WRITE_ONLY option is not used or if the
buffer is mapped before each DMA operation by calling the d_master kernel service.

The d_cflush kernel service flushes the processor cache for the involved cache lines and invalidates any
previously retrieved data that may be in the IOCC buffers for the designated channel. This most frequently
occurs when using long-term buffer mapping for DMA support to or from a device.

Long-Term DMA Buffer Mapping

The long-term DMA buffer mapping approach is frequently used when a pool of buffers is defined for
sending commands and obtaining responses from an adapter using bus master DMA. This approach is
also used frequently in the communications field where buffers can come from a common pool such as
the mbuf pool or a pool used for protocol headers.

When using a fixed pool of buffers, the d_master kernel service is used only once to map the pool's
address and range. The device driver then modifies the data in the buffers. It must also flush the data
from the processor and invalidate the IOCC data cache involved in transfers with the device. The IOCC
cache must be invalidated because the data in the IOCC data cache may be stale due to the last DMA
operation to or from the buffer area that has just been modified for the next operation.

The d_cflush kernel service permits the flushing of the processor cache and making the required IOCC
cache not valid. The device driver should use this service after modifying the data in the buffer and before
sending the command to the device to start the DMA operation.

Once DMA processing has been completed, the device driver should call the d_complete service to check
for errors and ensure that any data read from the device has been flushed to memory.

Note: The d_cflush kernel service is not supported on the 64-bit kernel.

Execution Environment
The d_cflush kernel service can be called from either the process or interrupt environment.

64 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values

Item Description

0 Indicates that the transfer was successfully completed.

EINVAL Indicates the presence of an invalid parameter.

Related information
I/O Kernel Services
Understanding Direct Memory Access (DMA) Transfer

delay Kernel Service

Purpose
Suspends the calling process for the specified number of timer ticks.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

void delay
(ticks)
int ticks;

Parameter

Item Description

ticks Specifies the number of timer ticks that must occur before the process is reactivated. Many
timer ticks can occur per second.

Description
The delay kernel service suspends the calling process for the number of timer ticks specified by the ticks
parameter.

The HZ value in the /usr/include/sys/m_param.h file can be used to determine the number of ticks per
second.

Execution Environment
The delay kernel service can be called from the process environment only.

Return Values
The delay service has no return values.

Related information
Timer and Time-of-Day Kernel Services

del_domain_af Kernel Service

Purpose
Deletes an address family from the Address Family domain switch table.

Kernel Services and Subsystem Operations 65

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/domain.h>

int
del_domain_af (domain)
struct domain *domain;

Parameter

Item Description

domain Specifies the address family.

Description
The del_domain_af kernel service deletes the address family specified by the domain parameter from the
Address Family domain switch table.

Execution Environment
The del_domain_af kernel service can be called from either the process or interrupt environment.

Return Value

Item Description

EINVAL Indicates that the specified address is not found in the Address Family domain switch table.

Example
To delete an address family from the Address Family domain switch table, invoke the del_domain_af
kernel service as follows:

del_domain_af(&inetdomain);

In this example, the family to be deleted is inetdomain.

Related reference
add_domain_af Kernel Service
Related information
Network Kernel Services

del_input_type Kernel Service

Purpose
Deletes an input type from the Network Input table.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>

66 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

int del_input_type
(type)
u_short type;

Parameter

Item Description

type Specifies which type of protocol the packet contains. This parameter is a field in a packet.

Description
The del_input_type kernel service deletes an input type from the Network Input table to disable the
reception of the specified packet type.

Execution Environment
The del_input_type kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

0 Indicates that the type was successfully deleted.

ENOENT Indicates that the del_input_type service could not find the type in the Network Input table.

Examples
1. To delete an input type from the Network Input table, invoke the del_input_type kernel service as

follows:

del_input_type(ETHERTYPE_IP);

In this example, ETHERTYPE_IP specifies that Ethernet IP packets should no longer be processed.
2. To delete an input type from the Network Input table, invoke the del_input_type kernel service as

follows:

del_input_type(ETHERTYPE_ARP);

In this example, ETHERTYPE_ARP specifies that Ethernet ARP packets should no longer be processed.

Related reference
add_input_type Kernel Service
find_input_type Kernel Service
Related information
Network Kernel Services

del_netisr Kernel Service

Purpose
Deletes a network software interrupt service routine from the Network Interrupt table.

Kernel Services and Subsystem Operations 67

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <net/netisr.h>

int del_netisr (soft_intr_level)
u_short soft_intr_level;

Parameter

Item Description

soft_intr_level Specifies the software interrupt level to delete. This parameter must be
greater than or equal to 0 and less than NETISR_MAX. Refer to netisr.h for
the range of values of soft_intr_level that are already in use. Also, other kernel
extensions that are not AIX and that use network ISRs currently running on
the system can make use of additional values not mentioned in netisr.h.

Description
The del_netisr kernel service deletes the network software interrupt service routine specified by the
soft_intr_level parameter from the Network Software Interrupt table.

Execution Environment
The del_netisr kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

0 Indicates that the software interrupt service was successfully deleted.

ENOENT Indicates that the software interrupt service was not found in the Network Software Interrupt
table.

Example
To delete a software interrupt service from the Network Software Interrupt table, invoke the kernel
service as follows:

del_netisr(NETISR_IP);

In this example, the software interrupt routine to be deleted is NETISR_IP.

Related reference
add_netisr Kernel Service
Related information
Network Kernel Services

del_netopt Macro

Purpose
Deletes a network option structure from the list of network options.

68 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <net/netopt.h>

del_netopt (option_name_symbol)
option_name_symbol;

Parameter

Item Description

option_name_symbol Specifies the symbol name used to construct the netopt structure and
default names.

Description
The del_netopt macro deletes a network option from the linked list of network options. After the
del_netopt service is called, the option is no longer available to the no command.

Execution Environment
The del_netopt macro can be called from either the process or interrupt environment.

Return Values
The del_netopt macro has no return values.

Related reference
add_netopt Macro
Related information
no command
Network Kernel Services

detach Device Queue Management Routine

Purpose
Provides a means for performing device-specific processing when the detchq kernel service is called.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

int detach(dev_parms, path_id)
caddr_t dev_parms;
cba_id path_id;

Parameters

Item Description

dev_parms Passed to creatd service when the detach routine is defined.

Kernel Services and Subsystem Operations 69

Item Description

path_id Specifies the path identifier for the queue that is being detached from.

Description
The detach routine is part of the Device Queue Management kernel extension. Each device queue can
have a detach routine. This routine is optional and must be specified when the device queue is defined
with the creatd service. The detchq service calls the detach routine each time a path to the device queue
is removed.

To ensure that the detach routine is not called while a queue element from this client is still in the device
queue, the kernel puts a detach control queue element at the end of the device queue. The server knows
by convention that a detach control queue element signifies completion of all pending queue elements for
that path. The kernel calls the detach routine after the detach control queue element is processed.

The detach routine executes under the process under which the detchq service is called. The kernel does
not serialize the execution of this service with the execution of any of the other server routines.

Execution Environment
The detach routine can be called from the process environment only.

Return Values

Item Description

RC_GOOD Indicates successful completion.

A return value other than RC_GOOD indicates an irrecoverable condition causing system failure.

devdump Kernel Service

Purpose
Calls a device driver dump-to-device routine.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int devdump
(devno, uiop, cmd, arg, chan, ext)
dev_t devno;
struct uio * uiop;
int cmd, arg, ext;

Parameters

Item Description

devno Specifies the major and minor device numbers.

uiop Points to the uio structure containing write parameters.

cmd Specifies which dump command to perform.

arg Specifies a parameter or address to a parameter block for the specified command.

70 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

chan Specifies the channel ID.

ext Specifies the extended system call parameter.

Description
The kernel or kernel extension calls the devdump kernel service to initiate a memory dump to a device
when writing dump data and then to terminate the dump to the target device.

The devdump service calls the device driver's dddump routine, which is found in the device switch table
for the device driver associated with the specified device number. If the device number (specified by
the devno parameter) is not valid or if the associated device driver does not have a dddump routine, an
ENODEV return value is returned.

If the device number is valid and the specified device driver has a dddump routine, the routine is called.

If the device driver's dddump routine is successfully called, the return value for the devdump service is
set to the return value provided by the device's dddump routine.

Execution Environment
The devdump kernel service can be called in either the process or interrupt environment, as described
under the conditions described in the dddump routine.

Return Values

Item Description

0 Indicates a successful operation.

ENODEV Indicates that the device number is not valid or that no dddump routine is registered for this
device.

The dddump device driver routine provides other return values.

Related reference
dddump Device Driver Entry Point
Related information
Kernel Extension and Device Driver Management Kernel Services

devstrat Kernel Service

Purpose
Calls a block device driver's strategy routine.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int devstrat (bp)
struct buf *bp;

Kernel Services and Subsystem Operations 71

Parameter

Ite
m

Description

bp Points to the buf structure specifying the block transfer parameters.

Description
The kernel or kernel extension calls the devstrat kernel service to request a block data transfer to or
from the device with the specified device number. This device number is found in the buf structure. The
devstrat service can only be used for the block class of device drivers.

The devstrat service calls the device driver's ddstrategy routine. This routine is found in the device
switch table for the device driver associated with the specified device number found in the b_dev field.
The b_dev field is found in the buf structure pointed to by the bp parameter. The caller of the devstrat
service must have an iodone routine specified in the b_iodone field of the buf structure. Following the
return from the device driver's ddstrategy routine, the devstrat service returns without waiting for the I/O
to be performed.

On multiprocessor systems, all iodone routines run by default on the first processor started when the
system was booted. This ensures compatibility with uniprocessor device drivers. If the iodone routine
has been designed to be multiprocessor-safe, set the B_MPSAFE flag in the b_flags field of the
buf structure passed to the devstrat kernel service. The iodone routine will then run on any available
processor.

If the device major number is not valid or the specified device is not a block device driver, the devstrat
service returns the ENODEV return code. If the device number is valid, the device driver's ddstrategy
routine is called with the pointer to the buf structure (specified by the bp parameter).

Execution Environment
The devstrat kernel service can be called from either the process or interrupt environment.

Note: The devstrat kernel service can be called in the interrupt environment only if its priority level is
INTIODONE or lower.

Return Values

Item Description

0 Indicates a successful operation.

ENODEV Indicates that the device number is not valid or that no ddstrategy routine registered. This
value is also returned when the specified device is not a block device driver. If this error
occurs, the devstrat service can cause a page fault.

Related reference
ddstrategy Device Driver Entry Point
buf Structure
Related information
Kernel Extension and Device Driver Management Kernel Services

devswadd Kernel Service

Purpose
Adds a device entry to the device switch table.

72 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/device.h>

int devswadd (devno, dswptr)
dev_t devno;
struct devsw *dswptr;

Parameters

Item Description

devno Specifies the major and minor device numbers to be associated with the specified entry in the
device switch table.

dswptr Points to the device switch structure to be added to the device switch table.

Description
The devswadd kernel service is typically called by a device driver's ddconfig routine to add or replace the
device driver's entry points in the device switch table. The device switch table is a table of device switch
(devsw) structures indexed by the device driver's major device number. This table of structures is used by
the device driver interface services in the kernel to facilitate calling device driver routines.

The major device number portion of the devno parameter is used to specify the index in the device switch
table where the devswadd service must place the specified device switch entry. Before this service
copies the device switch structure into the device switch table, it checks the existing entry to determine
if any opened device is using it. If an opened device is currently occupying the entry to be replaced, the
devswadd service does not perform the update. Instead, it returns an EEXIST error value. If the update is
successful, it returns a value of 0.

Entry points in the device switch structure that are not supported by the device driver must be handled in
one of two ways. If a call to an unsupported entry point should result in the return of an error code, then
the entry point must be set to the nodev routine in the structure. As a result, any call to this entry point
automatically invokes the nodev routine, which returns an ENODEV error code. The kernel provides the
nodev routine.

Otherwise, a call to an unsupported entry point should be treated as a no-operation function. Then
the corresponding entry point should be set to the nulldev routine. The nulldev routine, which is also
provided by the kernel, performs no operation if called and returns a 0 return code.

On multiprocessor systems, all device driver routines run by default on the first processor started when
the system was booted. This ensures compatibility with uniprocessor device drivers. If the device driver
being added has been designed to be multiprocessor-safe, set the DEV_MPSAFE flag in the d_opts field
of the devsw structure passed to the devswadd kernel service. The device driver routines will then run on
any available processor.

All other fields within the structure that are not used should be set to 0. Some fields in the structure are
for kernel use; the devswadd service does not copy these fields into the device switch table. These fields
are documented in the /usr/include/device.h file.

Execution Environment
The devswadd kernel service can be called from the process environment only.

Kernel Services and Subsystem Operations 73

Return Values

Item Description

0 Indicates a successful operation.

EEXIST Indicates that the specified device switch entry is in use and cannot be replaced.

ENOME
M

Indicates that the entry cannot be pinned due to insufficient real memory.

EINVAL Indicates that the major device number portion of the devno parameter exceeds the
maximum permitted number of device switch entries.

Related reference
devswdel Kernel Service
ddconfig Device Driver Entry Point
Related information
Kernel Extension and Device Driver Management Kernel Services

devswchg Kernel Service

Purpose
Alters a device switch entry point in the device switch table.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/device.h>

int devswchg (devno, type, newfunc, oldfunc);
dev_t devno;
int type;
int (*newfunc) ();
int (**oldfunc)();

Parameters

Item Description

devno Specifies the major and minor device numbers of the device to be changed.

74 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

type Specifies the device switch entry point to alter. The type parameter can have one of the
following values:
DSW_BLOCK

Alters the ddstrategy entry point.
DSW_CONFIG

Alters the ddconfig entry point.
DSW_CREAD

Alters the ddread entry point.
DSW_CWRITE

Alters the ddwrite entry point.
DSW_DUMP

Alters the dddump entry point.
DSW_MPX

Alters the ddmpx entry point.
DSW_SELECT

Alters the ddselect entry point.
DSW_TCPATH

Alters the ddrevoke entry point.

newfunc Specifies the new value for the device switch entry point.

oldfunc Specifies that the old value of the device switch entry point be returned here.

Description
The devswchg kernel service alters the value of a device switch entry point (function pointer) after a
device switch table entry has been added by the devswadd kernel service. The device switch entry
point specified by the type parameter is set to the value of the newfunc parameter. Its previous value is
returned in the memory addressed by the oldfunc parameter. Only one device switch entry can be altered
per call.

If the devswchg kernel service is unsuccessful, the value referenced by the oldfunc parameter is not
defined.

Execution Environment
The devswchg kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

EINVAL Indicates the Type command was not valid.

ENODEV Indicates the device switch entry specified by the devno parameter is not defined.

Related reference
devswadd Kernel Service
Related information
List of Kernel Extension and Device Driver Management Kernel Services

devswdel Kernel Service

Kernel Services and Subsystem Operations 75

Purpose
Deletes a device driver entry from the device switch table.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/device.h>

int devswdel
(devno)
dev_t devno;

Parameter

Item Description

devno Specifies the major and minor device numbers of the device to be deleted.

Description
The devswdel kernel service is typically called by a device driver's ddconfig routine on termination to
remove the device driver's entry points from the device switch table.The device switch table is a table of
device switch (devsw) structures indexed by the device driver's major device number. The device driver
interface services use this table of structures in the kernel to facilitate calling device driver routines.

The major device number portion of the devno parameter is used to specify the index into the device
switch table for the entry to be removed. Before the device switch structure is removed, the existing entry
is checked to determine if any opened device is using it.

If an opened device is currently occupying the entry to be removed, the devswdel service does not
perform the update. Instead, it returns an EEXIST return code. If the removal is successful, a return code
of 0 is set.

The devswdel service removes a device switch structure entry from the table by marking the entry as
undefined and setting all of the entry point fields within the structure to a nodev value. As a result, any
callers of the removed device driver return an ENODEV error code. If the specified entry is already marked
undefined, the devswdel service returns an ENODEV error code.

Execution Environment
The devswdel kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

EEXIST Indicates that the specified device switch entry is in use and cannot be removed.

ENODEV Indicates that the specified device switch entry is not defined.

EINVAL Indicates that the major device number portion of the devno parameter exceeds the
maximum permitted number of device switch entries.

Related reference
devswchg Kernel Service
devswqry Kernel Service

76 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related information
Kernel Extension and Device Driver Management Kernel Services

devswqry Kernel Service

Purpose
Checks the status of a device switch entry in the device switch table.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/device.h>int devswqry (devno, status, dsdptr)
dev_t devno;
uint *status;
caddr_t *dsdptr;

Parameters

Item Description

devno Specifies the major and minor device numbers of the device to be queried.

status Points to the status of the specified device entry in the device switch table. This parameter is
passed by reference.

dsdptr Points to device-dependent information for the specified device entry in the device switch
table. This parameter is passed by reference.

Description
The devswqry kernel service returns the status of a specified device entry in the device switch table. The
entry in the table to query is determined by the major portion of the device number specified in the devno
parameter. The status of the entry is returned in the status parameter that is passed by reference on the
call. If this pointer is null on entry to the devswqry service, then the status is not returned to the caller.

The devswqry service also returns the address of device-dependent information for the specified device
entry in the device switch table. This address is taken from the d_dsdptr field for the entry and returned
in the dsdptr parameter, which is passed by reference. If this pointer is null on entry to the devswqry
service, then the service does not return the address from the d_dsdptr field to the caller.

Status Parameter Flags

The status parameter comprises a set of flags that can indicate the following conditions:

Item Description

DSW_BLOCK Device switch entry is defined by a block device driver. This flag is set when the
device driver has a ddstrategy entry point.

DSW_CONFIG Device driver in this device switch entry provides an entry point for configuration.

DSW_CREAD Device driver in this device switch entry is providing a routine for character reads
or raw input. This flag is set when the device driver has a ddread entry point.

DSW_CWRITE Device driver in this device switch entry is providing a routine for character writes
or raw output. This flag is set when the device driver has a ddwrite entry point.

DSW_DEFINED Device switch entry is defined.

Kernel Services and Subsystem Operations 77

Item Description

DSW_DUMP Device driver defined by this device switch entry provides the capability to
support one or more of its devices as targets for a kernel dump. This flag is set
when the device driver has provided a dddump entry point.

DSW_MPX Device switch entry is defined by a multiplexed device driver. This flag is set when
the device driver has a ddmpx entry point.

DSW_OPENED Device switch entry is in use and the device has outstanding opens. This flag is
set when the device driver has at least one outstanding open.

DSW_SELECT Device driver in this device switch entry provides a routine for handling the
select or poll subroutines. This flag is set when the device driver has provided a
ddselect entry point.

DSW_TCPATH Device driver in this device switch entry supports devices that are considered to
be in the trusted computing path and provide support for the revoke function.
This flag is set when the device driver has provided a ddrevoke entry point.

DSW_TTY Device switch entry is in use by a tty device driver. This flag is set when the
pointer to the d_ttys structure is not a null character.

DSW_UNDEFINED Device switch entry is not defined.

The status parameter is set to the DSW_UNDEFINED flag when a device switch entry is not in use. This is
the case if either of the following are true:

• The entry has never been used. (No previous call to the devswadd service was made.)
• The entry has been used but was later deleted. (A call to the devswadd service was issued, followed by

a call to the devswdel service.)

No other flags are set when the DSW_UNDEFINED flag is set.

Note: The status parameter must be a null character if called from the interrupt environment.

Execution Environment
The devswqry kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

0 Indicates a successful operation.

EINVAL Indicates that the major device number portion of the devno parameter exceeds the
maximum permitted number of device switch entries.

Related reference
devswadd Kernel Service
devswchg Kernel Service
Related information
Kernel Extension and Device Driver Management Kernel Services

d_free_dmamem Kernel Service

Purpose
Frees an area of memory.

78 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

int d_free_dmamem(d_handle_t device_handle, void * addr, size_t size)

Description
Exported, documented kernel service supported on PCI-based systems only. The d_free_dmamem kernel
service frees the area of memory pointed to by the addr parameter. This area of memory must be
allocated with the d_alloc_dmamem kernel service using the same device_handle, and the addr must be
the address returned from the corresponding d_alloc_dmamem call. Also, the size must be the same size
that was used on the corresponding d_alloc_dmamem call.

Note:

1. Any memory allocated in a prior d_alloc_dmamem call must be explicitly freed with a
d_free_dmamem call.

2. This service can be called from the process environment only.

Parameters

Item Description

device_handle Indicates the dma handle.

size_t size Specifies size of area to free.

void * addr Specifies address of area to free.

Return Values

Item Description

0 Indicates successful completion.

–1 Indicates underlying free service (xmfree or rmalloc) failed.

disable_lock Kernel Service

Purpose
Raises the interrupt priority, and locks a simple lock if necessary.

Syntax

#include <sys/lock_def.h>

int disable_lock (int_pri, lock_addr)
int int_pri;
simple_lock_t lock_addr;

Parameters

Item Description

int_pri Specifies the interrupt priority to set.

lock_addr Specifies the address of the lock word to lock.

Kernel Services and Subsystem Operations 79

Description
The disable_lock kernel service raises the interrupt priority, and locks a simple lock if necessary, in order
to provide optimized thread-interrupt critical section protection for the system on which it is executing.
On a multiprocessor system, calling the disable_lock kernel service is equivalent to calling the i_disable
and simple_lock kernel services. On a uniprocessor system, the call to the simple_lock service is not
necessary, and is omitted. However, you should still pass a valid lock address to the disable_lock kernel
service. Never pass a NULL lock address.

Execution Environment
The disable_lock kernel service can be called from either the process or interrupt environment.

Return Values
The disable_lock kernel service returns the previous interrupt priority.

Related reference
i_disable Kernel Service
simple_lock_init Kernel Service
Related information
Understanding Locking

disablement_checking_resume Kernel Service

Purpose
Indicates the end of a disabled code path that was exempted from detection of excessive interrupt
disablement.

Syntax
#include <sys/intr.h>

void disablement_checking_resume(long prev_state)

Parameters
Item Description

prev_state Specifies the disablement detection state
to be restored. This value is returned by
the disablement_checking_suspend kernel
service.

Description
The disablement_checking_resume service restores the disablement detection state to the value
passed as prev_state. This service must be called after reenabling interrupts at the end of an INTMAX
critical section, not within it. This is because, in the case of an INTMAX critical section, the tick counting
will have been deferred by the total disablement until the moment of enablement.

This service must be used in conjunction with the disablement_checking_suspend kernel service,
which temporarily stops disablement detection.

Note: Error checking, including that for excessive interrupt disablement, can be enabled or disabled by
the errctrl command.

80 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The disablement_checking_resume service can be called from either the process or the interrupt
environments.

Related reference
disablement_checking_suspend Kernel Service
Related information
errctrl command

disablement_checking_suspend Kernel Service

Purpose
Indicates the start of a disabled code path that is exempt from detection of excessive interrupt
disablement.

Syntax
#include <sys/intr.h>

long disablement_checking_suspend(void)

Description
A call to the disablement_checking_suspend service temporarily disables the detection of excessive
disablement for the duration of a portion of a critical section. For base level code, insert this call at
the beginning of the exempt critical section immediately after it disables, or as soon as possible within
interrupt handling code.

This service must be used in conjunction with the disablement_checking_resume kernel service,
which resumes the prior disablement checking state.

Note: Error checking, including that for excessive interrupt disablement, can be enabled or disabled by
the errctrl command.

Execution Environment
The disablement_checking_suspend service can be called from either the process or the interrupt
environments. Interrupts should be at least partially disabled at the time of the call.

Return Values
The disablement_checking_suspend service returns the previous suspension state to the caller. This
value must be passed later to the resume function, which restores that state. This enables nesting of
exempt critical sections.

Related reference
disablement_checking_resume Kernel Service
Related information
errctrl command

d_map_attr Kernel Service

Purpose
Changes the attributes associated with a DMA handle.

Kernel Services and Subsystem Operations 81

Syntax

#include <sys/dma.h>

kerrno_t d_map_attr (handle, cmd, attr, attr_size)
d_handle_t handle;
ulong cmd;
void * attr;
size_t attr_size;

Parameters

Item Description

handle Indicates the unique handle returned by the d_map_init_ext kernel service.

cmd Specifies one of the following flags:
D_ATTR_SET_MIN_MAPMEM

Sets the minimum amount of I/O mappable memory. This is the logical memory
change and not the DMA bus memory change.

D_ATTR_SET_DES_MAPMEM
Sets the desired amount of I/O mappable memory. This is the logical memory
change and not the DMA bus memory change.

attr You must set this parameter to the value of size64_t *. This parameter sets the
minimum or the desired amount of I/O mappable memory depending on the specified
value of the cmd parameter.

attr_size You must set this parameter to the value of sizeof(size64_t). This parameter sets the
minimum or the desired amount of I/O mappable memory depending on the specified
value of the cmd parameter.

Description
The d_map_attr kernel service can change certain attributes of the d_handle_t structure in case the
needs of a device driver change during runtime. For example, if a device driver needs more DMA space
at runtime, it can call the d_map_attr kernel service to request an increase in the map space. The
d_map_attr kernel service is not an exported kernel service, but a bus specific utility routine determined
by the d_map_init_ext kernel service and provided to the caller through the d_handle structure.

Execution Environment
The d_map_attr kernel service can be called from the process environment at INTBASE. Serialization
with other DMA services like the d_map_page service and the d_unmap_page service is the caller’s
responsibility.

Return Values

Item Description

DMA_SUCC Indicates a successful completion.

EINVAL_D_MAP_ATTR Indicates that the specified cmd parameter is not valid.

ENOMEM_D_MAP_ATTR Indicates that it is unable to change the minimum or desired I/O mappable
memory.

d_map_clear Kernel Service

82 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Deallocates resources previously allocated on a d_map_init call.

Syntax

#include <sys/dma.h>

void d_map_clear (*handle)
struct d_handle *handle

Parameters

Item Description

handle Indicates the unique handle returned by the d_map_init kernel service.

Description
The d_map_clear kernel service is a bus-specific utility routine determined by the d_map_init service
that deallocates resources previously allocated on a d_map_init call. This includes freeing the d_handle
structure that was allocated by d_map_init.

Note: You can use the D_MAP_CLEAR macro provided in the /usr/include/sys/dma.h file to code calls to
the d_map_clear kernel service.

d_map_disable Kernel Service

Purpose
Disables DMA for the specified handle.

Syntax

#include <sys/dma.h>

int d_map_disable(*handle)
struct d_handle *handle;

Parameters

Item Description

handle Indicates the unique handle returned by d_map_init.

Description
The d_map_disable kernel service is a bus-specific utility routine determined by the d_map_init kernel
service that disables DMA for the specified handle with respect to the platform.

Note: You can use the D_MAP_DISABLE macro provided in the /usr/include/sys/dma.h file to code calls
to the d_map_disable kernel service.

Return Values

Item Description

DMA_SUCC Indicates the DMA is successfully disabled.

Kernel Services and Subsystem Operations 83

Item Description

DMA_FAIL Indicates the DMA could not be explicitly disabled for this device or bus.

d_map_enable Kernel Service

Purpose
Enables DMA for the specified handle.

Syntax

#include <sys/dma.h>

int d_map_enable(*handle)
struct d_handle *handle;

Parameters

Item Description

handle Indicates the unique handle returned by d_map_init.

Description
The d_map_enable kernel service is a bus-specific utility routine determined by the d_map_init kernel
service that enables DMA for the specified handle with respect to the platform.

Note: You can use the D_MAP_ENABLE macro provided in the /usr/include/sys/dma.h file to code calls
to the d_map_enable kernel service.

Return Values

Item Description

DMA_SUCC Indicates the DMA is successfully enabled.

DMA_FAIL Indicates the DMA could not be explicitly enabled for this device or bus.

d_map_init Kernel Service

Purpose
Allocates and initializes resources for performing DMA with PCI and ISA devices.

Syntax

#include <sys/dma.h>

struct d_handle* d_map_init (bid, flags, bus_flags, channel)
int bid;
int flags;
int bus_flags;
uint channel;

84 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

bid Specifies the bus identifier.

flags Describes the mapping.

bus_flags Specifies the target bus flags.

channel Indicates the channel assignment specific to the bus.

Description
The d_map_init kernel service allocates and initializes resources needed for managing DMA operations
and returns a unique handle to be used on subsequent DMA service calls. The handle is a pointer to a
d_handle structure allocated by d_map_init from the pinned heap for the device. The device driver uses
the function addresses provided in the handle for accessing the DMA services specific to its host bus. The
d_map_init service returns a DMA_FAIL error when resources are unavailable or cannot be allocated.

The channel parameter is the assigned channel number for the device, if any. Some devices and or buses
might not have the concept of channels. For example, an ISA device driver would pass in its assigned DMA
channel in the channel parameter.

Note: The possible flag values for the flags parameter can be found in /usr/include/sys/dma.h. These
flags can be logically ORed together to reflect the desired characteristics.

Execution Environment
The d_map_init kernel service should only be called from the process environment.

Return Values

Item Description

DMA_FAIL Indicates that the resources are unavailable. No registration was
completed.

struct d_handle * Indicates successful completion.

Related reference
d_unmap_page Kernel Service
d_map_list Kernel Service
d_map_disable Kernel Service

d_map_init_ext Kernel Service

Purpose
Allocates and initializes resources for performing DMA with PCI and VDEVICE devices.

Syntax

#include <sys/types.h>
#include <sys/dma.h>
#include <sys/kerrno.h>

kerrno_t d_map_init_ext (dma_input, info_size, handle_ptr)
d_info_t * dma_input;
size_t info_size;
d_handle_t * handle_ptr;

Kernel Services and Subsystem Operations 85

Parameters

Item Description

dma_input Contains information like the bus identifier, flags, and so on.

info_size Specifies the size of the dma_input parameter in bytes.

handle_ptr Contains the DMA handle returned upon success.

Description
The d_map_init_ext kernel service is very similar to the d_map_init kernel service. Unlike the
d_map_init kernel service, the input argument list of the d_map_init_ext kernel service is not limited and
can be extended without breaking binary compatibility. Also, the d_map_init_ext kernel service returns a
kerrno_t type return code which contains more RAS information rather than just the DMA_FAIL value.

The caller of the d_map_init_ext kernel service initializes the d_info_t structure and passes it into the
d_map_init_ext kernel service by reference. The size of the d_info_t type must match the info_size
parameter. This allows future expansion of the d_info_t type safely. If there is a size mismatch, the
d_map_init_ext kernel service fails. The d_map_init_ext kernel service also creates a new private pool
of I/O memory entitlement that can be used for DMA. The private pool is created by carving out a
chunk of total I/O memory entitlement for the AIX partition. Thus, in order to create a d_handle_t type
successfully, there must be sufficient DMA PCI space and I/O memory entitlement.

The following structure is defined in the sys/dma.h file:

#define DMA_MAX_MAPPER_NAME 32
typedef struct d_info
{
 uint64_t di_bid;
 uint64_t di_flags;
 uint64_t di_bus_flags;
 uint64_t di_channel;
 uint64_t di_min_mapmem;
 uint64_t di_des_mapmem;
 uint64_t di_max_mapmem;
 char di_mapper_name[DMA_MAX_MAPPER_NAME];
} d_info_t;

Note: The first four fields of the d_info_t type match the four arguments of the d_map_init kernel service.
Therefore, all flags and bus_flags on the d_map_init kernel service are honored by the d_map_init_ext
kernel service except the DMA_MAXMIN_* flags. The DMA_MAXMIN_* flags are replaced with the
di_min_mapmem, di_des_mapmem, and di_max_mapmem fields. They not only specify the required
amount of DMA space, but also the necessary I/O memory entitlement for the device.

The di_min_mapmem parameter is the minimum amount of memory that the driver must be able to map
for DMA in order to ensure the forward progress. The d_map_init_ext kernel service fails if the minimum
I/O memory entitlement requirement cannot be satisfied.

The di_des_mapmem parameter is the required amount of memory that the driver wants to be able to I/O
map in order to have good throughput. In most cases, this is a value that a driver specifies through the
DMA_MAXMIN_* flag.

The di_max_mapmem parameter is the maximum amount of memory that the driver can ever map for
DMA. This is the amount of DMA space that the d_map_init_ext kernel service can allocate.

Note: While the I/O memory entitlement for a d_handle_t type can be changed at runtime through the
d_map_attr kernel service, the DMA space cannot be changed dynamically.

The di_mapper_name parameter contains the name of the device instance using the DMA resources (for
example, ent0, scsi1, and so on).

Execution Environment
The d_map_init_ext kernel service can be called from the process environment only.

86 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values

Item Description

0 Indicates a successful completion.

struct d_handle * Indicates a successful completion.

ENOMEM_D_MAP_INIT_EXT_1 Indicates that the memory allocation failed. An AIX error is
logged.

ENOMEM_D_MAP_INIT_EXT_2 Cannot reserve I/O memory entitlement with the least amount
specified by the di_min_mapmem parameter. An AIX error is
logged.

ENOMEM_D_MAP_INIT_EXT_3 Cannot allocate enough DMA space. An AIX error is logged.

EINVAL_D_MAP_INIT_EXT_1 Indicates that some input argument is not valid. An AIX error is
logged in some cases.

EINVAL_D_MAP_INIT_EXT_2 Indicates that the combination of input arguments and system
configuration is not valid. No AIX error is logged.

EINVAL_D_MAP_INIT_EXT_3 Indicates that the RAS initialization failed. No AIX error is
logged.

Related reference
d_map_clear Kernel Service
d_unmap_page Kernel Service
d_map_list Kernel Service

d_map_list Kernel Service

Purpose
Performs platform-specific DMA mapping for a list of virtual addresses.

Syntax

#include <sys/dma.h>

int d_map_list (*handle, flags, minxfer, *virt_list, *bus_list)
struct d_handle *handle;
int flags;
int minxfer;
struct dio *virt_list;
struct dio *bus_list;

Note: The following is the interface definition for d_map_list when the DMA_ADDRESS_64 and
DMA_ENABLE_64 flags are set on the d_map_init call.

int d_map_list (*handle, flags, minxfer, *virt_list, *bus_list)
struct d_handle *handle;
int flags;
int minxfer;
struct dio_64 *virt_list;
struct dio_64 *bus_list;

Parameters

Item Description

handle Indicates the unique handle returned by the d_map_init kernel service.

Kernel Services and Subsystem Operations 87

Item Description

flags Specifies one of the following flags:
DMA_READ

Transfers from a device to memory.
BUS_DMA

Transfers from one device to another device.
DMA_BYPASS

Do not check page access.
DMA_STMAP

Indicates a short-term mapping.

minxfer Specifies the minimum transfer size for the device.

virt_list Specifies a list of virtual buffer addresses and lengths.

bus_list Specifies a list of bus addresses and lengths.

Description
The d_map_list kernel service is a bus-specific utility routine determined by the d_map_init kernel
service that accepts a list of virtual addresses and sizes and provides the resulting list of bus addresses.
This service fills out the corresponding bus address list for use by the device in performing the DMA
transfer. This service allows for scatter/gather capability of a device and also allows the device to
combine multiple requests that are contiguous with respect to the device. The lists are passed via the
dio structure. If the d_map_list service is unable to complete the mapping due to exhausting the capacity
of the provided dio structure, the DMA_DIOFULL error is returned. If the d_map_list service is unable
to complete the mapping due to exhausting resources required for the mapping, the DMA_NORES error
is returned. In both of these cases, the bytes_done field of the dio virtual list is set to the number of
bytes successfully mapped. This byte count is a multiple of the minxfer size for the device as provided on
the call to d_map_list. The resid_iov field is set to the index of the remaining d_iovec fields in the list.
Unless the DMA_BYPASS flag is set, this service verifies access permissions to each page. If an access
violation is encountered on a page with the list, the DMA_NOACC error is returned, and the bytes_done
field is set to the number of bytes preceding the faulting iovec. If the mapping is for short term (that is, it is
unmapped as soon as the I/O is complete), you must set the DMA_STMAP flag.

Note:

1. When the DMA_NOACC return value is received, no mapping is done, and the bus list is undefined. In
this case, the resid_iov field is set to the index of the d_iovec that encountered the access violation.

2. You can use the D_MAP_LIST macro provided in the /usr/include/sys/dma.h file to code calls to the
d_map_list kernel service.

Return Values

Item Description

DMA_NORES Indicates that resources were exhausted during mapping.

Note: d_map_list possible partial transfer was mapped. Device driver may continue with partial transfer
and submit the remainer on a subsequent d_map_list call, or call d_unmap_list to undo the partial
mapping. If a partial transfer is issued, then the driver must call d_unmap_list when the I/O is complete.

Item Description

DMA_DIOFULL Indicates that the target bus list is full.

88 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Note: d_map_list possible partial transfer was mapped. Device driver may continue with partial transfer
and submit the remainder on a subsequent d_map_list call, or call d_unmap_list to undo the partial
mapping. If a partial transfer is issued, then the driver must call d_unmap_list when the I/O is complete.

Item Description

DMA_NOACC Indicates no access permission to a page in the list.

.

Note: d_map_list no mapping was performed. No need for the device driver to call d_unmap_list, but the
driver must fail the faulting I/O request, and resubmit any remainder in a subsequent d_map_list call.

Item Description

DMA_SUCC Indicates that the entire transfer successfully mapped.

Note: d_map_list successful mapping was performed. Device driver must call d_unmap_list when the I/O
is complete. In the case of a long-term mapping, the driver must call d_unmap_list when the long-term
mapping is no longer needed.

Related reference
d_map_init Kernel Service
d_map_init_ext Kernel Service

d_map_page Kernel Service

Purpose
Performs platform-specific DMA mapping for a single page.

Syntax

#include <sys/dma.h>
#include <sys/xmem.h>

int d_map_page(*handle, flags, baddr, *busaddr, *xmp)
struct d_handle *handle;
int flags;
caddr_t baddr;
uint *busaddr;
struct xmem *xmp;

Note: The following is the interface definition for d_map_page when the DMA_ADDRESS_64 and
DMA_ENABLE_64 flags are set on the d_map_init call.

int d_map_page(*handle, flags, baddr, *busaddr, *xmp)
struct d_handle *handle;
int flags;
unsigned long long baddr;
unsigned long long *busaddr;
struct xmem *xmp;

Parameters

Item Description

handle Indicates the unique handle returned by the d_map_init kernel service.

Kernel Services and Subsystem Operations 89

Item Description

flags Specifies one of the following flags:
DMA_READ

Transfers from a device to memory.
BUS_DMA

Transfers from one device to another device.
DMA_BYPASS

Do not check page access.
DMA_STMAP

Indicates a short-term mapping.

baddr Specifies the buffer address.

busaddr Points to the busaddr field.

xmp Cross-memory descriptor for the buffer.

Description
The d_map_page kernel service is a bus-specific utility routine determined by the d_map_init or
d_map_init_ext kernel service that performs platform specific mapping of a single 4KB or less transfer
for DMA master devices. The d_map_page kernel service is a fast-path version of the d_map_list service.
The entire transfer amount must fit within a single page in order to use this service. This service accepts
a virtual address and completes the appropriate bus address for the device to use in the DMA transfer.
Unless the DMA_BYPASS flag is set, this service also verifies access permissions to the page. If the
mapping is for short term (that is, it is unmapped as soon as the I/O is complete), you must set the
DMA_STMAP flag.

If the buffer is a global kernel space buffer, the cross-memory descriptor can be set to point to the
exported GLOBAL cross-memory descriptor, xmem_global.

If the transfer is unable to be mapped due to resource restrictions, the d_map_page service returns
DMA_NORES. If the transfer is unable to be mapped due to page access violations, this service returns
DMA_NOACC.

Note: You can use the D_MAP_PAGE macro provided in the /usr/include/sys/dma.h file to code calls to
the d_map_page kernel service.

Return Values

Item Description

DMA_NORES Indicates that resources are unavailable.

Note: d_map_page no mapping is done, device driver must wait until resources are freed and attempt the
d_map_page call again.

Item Description

DMA_NOACC Indicates no access permission to the page.

Note: d_map_page no mapping is done, device driver must fail the corresponding I/O request.

Item Description

DMA_SUCC Indicates that the busaddr parameter contains the bus address to use for the device
transfer.

Note: d_map_page successful mapping was done, device driver must call d_unmap_page when I/O is
complete, or when device driver is finished with the mapped area in the case of a long-term mapping.

90 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related reference
d_alloc_dmamem Kernel Service
d_map_init Kernel Service
d_map_list Kernel Service

d_map_query Kernel Service

Purpose
Queries the amount of direct memory access (DMA) space or DMA windows available on the partition
end point. To use full 64-bit DMA all device drivers must call the d_map_query kernel service before
attempting to initialize a new DMA window or before attempting to allocate DMA space within an existing
DMA window by using the d_map_init_ext kernel service. Device drivers that do not use full 64-bit DMA
should not call this service.

Syntax

#include <sys/types.h>
#include <sys/dma.h>
#include <sys/kerrno.h>

kerrno_t d_map_query(bid, slot, flags, cmd, dq_info)
uint64_t bid;
uint64_t slot;
uint64_t flags;
uint64_t cmd;
void * dq_info;

Parameter
Item Description

bid Specifies the bus identifier.

slot Specifies the slot on the parent bus. This is the same as the connwhere
property in the CuDv object class for the device.

flags Specifies flags for the d_map_query kernel service. For future support,
this parameter must be set to 0.

cmd Specifies the type of query that the d_map_query kernel service will
execute.

dq_info Specifies the dq_ddw_resources_t or dq_dma_available_t structure
based on which cmd parameter was defined.

Description
The d_map_query kernel service allows the device driver to determine the amount of DMA space
available within the DMA window or the amount of DMA windows available for a particular partition end
point.

The d_map_query kernel service Dynamic DMA Windows Query (DDW_QUERY) option is supported only
on partition end points that support the dynamic DMA windows (DDW_QUERY) option. The d_map_query
kernel service can also be used to determine the dynamic DMA windows capability of a particular partition
endpoint. When a slot is initialized on a reboot or power-on operation of the partition or on a DR isolate
operation that encompasses the partition endpoint, a default DMA window is always allocated for less
than 4 GB. After the first call to the d_map_query kernel service with the DDW_QUERY option, the
default DMA window is removed. This leaves no usable DMA window on the partition endpoint until the
d_map_init_ext kernel service is called to initialize a new DMA window.

Kernel Services and Subsystem Operations 91

Note: The DDW_QUERY option should only be used by device drivers that fully support the 64-bit DMA.

The caller of the d_map_query kernel service must pass the desired command to the cmd parameter and
have the appropriate dq_info parameter initialized.

The options available for the cmd parameter are defined in the <sys/dma.h> header file, and are
described as follows:

DDW_QUERY
Returns the number of additional DMA windows available for a partition endpoint. The
dq_ddw_resources_t structure must be passed to the dq_info parameter for this command. The
dqdr_version field in the structure should be assigned as DQDR_VERSION.

DMA_QUERY
Returns the maximum amount of contiguous pages available for a given page size in all existing
DMA windows. The dq_dma_available_t structure must be passed to the dq_info parameter for this
command. The dqda_version field in the structure should be assigned as DQDA_VERSION and the
corresponding I/O page size for the query must be specified. The supported I/O page size for the
DMA operation can be obtained from the d_map_query kernel service by running the DDW_QUERY
command.

The dq_ddw_resources_t and dq_dma_available_t structures are defined in the <sys/dma.h> as
follows:

typedef struct dq_ddw_resources
 { /* input by caller */
 uint64_t dqdr_version;
 /* returned to caller */
 uint64_t dqdr_supported_page_sizes;
 uint64_t dqdr_windows_avail;
 /* Amount of dynamic DMA windows available.
 * If DDW_QUERY, is not available
 * 0 will be returned.
 */
 uint64_t dqdr_max_pages; /* Largest number of contiguous pages available.*/
 uint64_t dqdr_rsvd1; /* reserved for future use */
 uint64_t dqdr_rsvd2; /* reserved for future use */
 uint64_t dqdr_rsvd3; /* reserved for future use */
 uint64_t dqdr_rsvd4; /* reserved for future use */
 } dq_ddw_resources_t;
 /*
 * The dq_dma_available structure is to be used in d_map_querywith the
 * DMA_QUERY cmd specified
 */
 typedef struct dq_dma_available
 {
 /*input by caller */
 uint64_t dqda_version;
 uint64_t dqda_io_page_size;
 /* Page size in bytes, should only be equal to the supported pagesize */
 /* returned to caller for DMA_Query*/
 uint64_t dqda_pages_available;
 uint64_t dqda_rsvd1; /* reserved for future use */
 uint64_t dqda_rsvd2; /* reserved for future use */
 uint64_t dqda_rsvd3; /* reserved for future use */
 uint64_t dqda_rsvd4; /* reserved for future use */
 } dq_dma_available_t;

Execution Environment
The d_map_query kernel service can be called from the process environment only.

Return Values

Item Description

0 Success

Kerrno Error occurred

92 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related reference
d_map_clear Kernel Service
d_map_list Kernel Service
d_unmap_list Kernel Service

d_map_slave Kernel Service

Purpose
Accepts a list of virtual addresses and sizes and sets up the slave DMA controller.

Syntax

#include <sys/dma.h>

int d_map_slave (*handle, flags, minxfer, *vlist, chan_flag)
struct d_handle *handle;
int flags;
int minxfer;
struct dio *vlist;
uint chan_flag;

Parameters

Item Description

handle Indicates the unique handle returned by the d_map_init kernel service.

flags Specifies one of the following flags:
DMA_READ

Transfers from a device to memory.
BUS_DMA

Transfers from one device to another device.
DMA_BYPASS

Do not check page access.

minxfer Specifies the minimum transfer size for the device.

vlist Specifies a list of buffer addresses and lengths.

chan_flag Specifies the device and bus specific flags for the transfer.

Description
The d_map_slave kernel service accepts a list of virtual buffer addresses and sizes and sets up the slave
DMA controller for the requested DMA transfer. This includes setting up the system address generation
hardware for a specific slave channel to indicate the specified data buffers, and enabling the specific
hardware channel. The d_map_slave kernel service is not an exported kernel service, but a bus-specific
utility routine determined by the d_map_init kernel service and provided to the caller through the
d_handle structure.

This service allows for scatter/gather capability of the slave DMA controller and also allows the device
driver to coalesce multiple requests that are contiguous with respect to the device. The list is passed
with the dio structure. If the d_map_slave kernel service is unable to complete the mapping due to
resource, an error, DMA_NORES is returned, and the bytes_done field of the dio list is set to the number
of bytes that were successfully mapped. This byte count is guaranteed to be a multiple of the minxfer
parameter size of the device as provided to d_map_slave. Also, the resid_iov field is set to the index of
the remaining d_iovec that could not be mapped. Unless the DMA_BYPASS flag is set, this service will

Kernel Services and Subsystem Operations 93

verify access permissions to each page. If an access violation is encountered on a page within the list, an
error, DMA_NOACC is returned and no mapping is done. The bytes_done field of the virtual list is set to the
number of bytes preceding the faulting iovec. Also in this case, the resid_iov field is set to the index of the
d_iovec entry that encountered the access violation.

The virtual addresses provided in the vlist parameter can be within multiple address spaces, distinguished
by the cross-memory structure pointed to for each element of the dio list. Each cross-memory pointer can
point to the same cross-memory descriptor for multiple buffers in the same address space, and for global
space buffers, the pointers can be set to the address of the exported GLOBAL cross-memory descriptor,
xmem_global.

The minxfer parameter specifies the absolute minimum data transfer supported by the device(the device
blocking factor). If the device supports a minimum transfer of 512 bytes (floppy and disks, for example),
the minxfer parameter would be set to 512. This allows the underlying services to map partial transfers to
a correct multiple of the device block size.

Note:

1. The d_map_slave kernel service does not support more than one outstanding DMA transfer per
channel. Attempts to do multiple slave mappings on a single channel will corrupt the previous
mappings.

2. You can use the D_MAP_SLAVE macro provided in the /usr/include/sys/dma.h file to code calls to the
d_map_clear kernel service.

3. The possible flag values for the chan_flag parameter can be found in /usr/include/sys/dma.h. These
flags can be logically ORed together to reflect the desired characteristics of the device and channel.

4. If the CH_AUTOINIT flag is used then the transfer described by the vlist pointer is limited to a single
buffer address with a length no greater than 4K bytes.

Return Values

Item Description

DMA_NORES Indicates that resources were exhausted during the mapping.

DMA_NOACC Indicates no access permission to a page in the list.

DMA_BAD_MODE Indicates that the mode specified by the chan_flag parameter is not supported.

Related reference
d_map_init Kernel Service

dmp_add Kernel Service

Purpose
Specifies data to be included in a system dump by adding an entry to the master dump table. Callers
should use the “dmp_ctl Kernel Service” on page 99. This service is provided for compatibility purposes.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dump.h>

int dmp_add
(cdt_func)
struct cdt * ((*cdt_func) ());

94 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
Kernel extensions use the dmp_add service to register data areas to be included in a system dump. The
dmp_add service adds an entry to the master dump table. A master dump table entry is a pointer to a
function provided by the kernel extension that will be called by the kernel dump routine when a system
dump occurs. The function must return a pointer to a component dump table structure.

When a dump occurs, the kernel dump routine calls the function specified by the cdt_func parameter
twice. On the first call, an argument of 1 indicates that the kernel dump routine is starting to dump
the data specified by the component dump table. On the second call, an argument of 2 indicates that
the kernel dump routine has finished dumping the data specified by the component dump table. Kernel
extensions should allocate and pin their component dump tables and call the dmp_add service during
initialization. The entries in the component dump table can be filled in later. The cdt_func routine must
not attempt to allocate memory when it is called.

Note: In AIX Version 7.1, this function automatically serializes CDT functions with I/O during dump time.
The need for this function is device specific. Only the developer of the device can determine if this routine
needs to be used. It is only recommended for devices that can be on the dump I/O path. Serializing I/O
during dump time might degrade dump performance. Devices that are not on the dump path must either
use the dmp_ctl routine or the RAS system dump interface.

The Component Dump Table

The component dump table structure specifies memory areas to be included in the system dump. The
structure type (struct cdt) is defined in the /usr/include/sys/dump.h file. A cdt structure consists
of a fixed-length header (cdt_head structure) and an array of one or more cdt_entry structures. The
cdt_head structure contains a component name field, which should be filled in with the name of the
kernel extension, and the length of the component dump table. Each cdt_entry structure describes a
contiguous data area, giving a pointer to the data area, its length, a segment register, and a name for the
data area.

Use of the Formatting Routine

Each kernel extension that includes data in the system dump can install a unique formatting routine in
the /var/adm/ras/dmprtns directory.The name of the formatting routine must match the component
name field of the corresponding component dump table.

The dump image file includes a copy of each component dump table used to dump memory.A sample
dump formatter is shipped with bos.sysmgt.serv_aid in the /usr/samples/dumpfmt directory.

Organization of the Dump Image File

Memory dumped for each kernel extension is laid out as follows in the dump image file. The component
dump table is followed by a bitmap for the first data area, then the first data area itself, then a bitmap for
the next data area, the next data area itself, and so on.

The bitmap for a specific data area indicates which pages of the data area are present in the dump image
and which are not. Pages that were not in memory when the dump occurred were not dumped. The least
significant bit of the first byte of the bitmap is set to 1 (one) if the first page is present. The next least
significant bit indicates the presence or absence of the second page and so on.

A macro for determining the size of a bitmap is provided in the /usr/include/sys/dump.h file.

Parameters

Item Description

cdt_func Specifies a function that returns a pointer to a component dump table entry. The
function and the component dump table entry both must reside in pinned global
memory.

Kernel Services and Subsystem Operations 95

Execution Environment
The dmp_add kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

-1 Indicates that the function pointer to be added is already present in the master
dump table.

Related reference
dmp_ctl Kernel Service
Related information
exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine
RAS Kernel Services

dmp_compspec and dmp_compext Kernel Services

Purpose
Specifies a component and callback parameters to be included in the dump.

Syntax

#include <sys/livedump.h>

kerrno_t dmp_compspec (flags, comp, anchor, extid, p1, p2, ..., NULL)
long flags;
long comp;
void *anchor;
dmp_extid_t *extid;
char *p1;
char *p2;
...

kerrno_t dmp_compext (extid, p1, p2, ..., NULL)
dmp_extid_t extid;
char *p1;
char *p2;
...

Parameters

Item Description

anchor Points to the associated ldmp_parms_t data structure or to an ldmp_prepare_t data
structure.

comp Specifies the component, specified as indicated by the flags.

96 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

extid Points to an item of dmp_extid_t type, for the dmp_compspec kernel service, where an
identifier is returned, if you use the dmp_compext kernel service to provide additional
parameters for the component being dumped. This identifier might then be specified to
add additional parameters to the component using the dmp_compext kernel service.
The extid parameter can be NULL.

flags You can specify the following values:
DCF_FAILING

Indicates that this is the failing component. You can only specify one failing
component.

DCF_FIRST
Indicates that this component is to be dumped first. Normally components are
dumped in the order specified.

Note:

• The DCF_FIRST value is only valid when the anchor refers to an ldmp_parms_t
data item. It is not valid when the callback receives the RASCD_LDMP_PREPARE
command.

• The last component specified to be dumped first is the one dumped first.

DCF_LEVEL0 - DCF_LEVEL9
Indicates the detail level, 0 through 9, to dump this component. If none of these
flags are set, the component is dumped at its current level.

DCF_MINIMAL
Indicates the DCF_LEVEL1 level.

DCF_NORMAL
Indicates the DCF_LEVEL3 level.

DCF_DETAIL
Indicates the DCF_LEVEL7 level.

DCF_LONG
Indicates that the parameters are two parameters of long type. Rather than passing
in an unlimited number of strings, a component can be passed in two long data
items, as in the case with pseudo-components.

One and only one of the following component specification flags must be given. They
specify how the component is specified in the dc_component field:
DCF_BYPNAME

Indicates that the component is specified by path name.
DCF_BYLNAME

Indicates that the component is specified by logical alias.
DCF_BYTYPE

Indicates that the component is specified by type.
DCF_BYCB

Indicates that the component is specified by ras_block_t.

Kernel Services and Subsystem Operations 97

Item Description

p1, p2 ... Specifies the component's parameters, the last of which must be NULL. If keyword
parameters are being specified, The parameters must be strings, and contain the
keyword and its values. If multiple keyword and value pairs appear in a single parameter,
they are separated with blanks. For example, the p1 parameter can be foo=1234, and
the p2 parameter can be bar=5678,16. Also, the p1 parameter can be foo=1234
bar=5678.

If the DCF_LONG flag is set, two parameters of long type are passed in. In this case, the
p1 and p2 parameters contain the values of long type, and no more parameters can be
specified.

Description
The dmp_compspec and dmp_compext kernel services provide components and their callback
parameters for a dump. You can only use these kernel services in a live dump.

The dmp_compspec kernel service is used before you start a live dump with the livedump kernel service.
You can also use this kernel service when a component's callback wants to include another component in
a live dump, that is, when the callback receives the RASCD_LDMP_PREPARE command.

Multiple components can be included in a live dump.

The dmp_compext function is used to provide additional parameters for a component.

Return Values
Item Description

0 Indicates a successful completion.

EINVAL_RAS_DMP_COMPSPEC_FLAGS Indicates that the flags specification is not valid.

EINVAL_RAS_DMP_COMPSPEC_COMP Indicates that the component specification is not valid.

EINVAL_RAS_DMP_COMPSPEC_NOTAWARE Indicates that the specified component must support live dump.

EINVAL_RAS_DMP_COMPSPEC_ANCHOR Indicates that the anchor specification is not valid.

EFAULT_RAS_DMP_COMPSPEC_ANCHOR Indicates that the storage the anchor parameter refers to is not valid.

EFAULT_RAS_DMP_COMPSPEC_EXTID Indicates that the storage the extid parameter refers to is not valid.

EFAULT_RAS_DMP_COMPSPEC_PARMS Indicates that a parameter address is not valid.

EINVAL_RAS_LDMP_ESTIMATE Indicates that the anchor parameter indicates a dump size estimate
request, but the dmp_compspec call was not made from the process
environment.

EINVAL_RAS_DMP_COMPSPEC_NOADD Indicates that components cannot be added to this dump, that is,
the dump type flags, ldpr_flags, have the LDT_NOADD bit set.

EINVAL_RAS_DMP_COMPSPEC_FAILING Indicates that the failing component has already been specified.

ENOMEM_RAS_DMP_COMPSPEC Indicates that no storage is available.

EINVAL_RAS_DMP_COMPEXT_EXTID Indicates that the extid parameter does not refer to a valid
component.

EFAULT_RAS_DMP_COMPEXT_EXTID Indicates that the storage the extid parameter refers to is not valid.

EFAULT_RAS_DMP_COMPEXT_PARMS Indicates that the storage a parameter refers to is not valid.

EBUSY_RAS_DMP_COMPEXT Indicates that the specification of this component is complete,
and no more parameters can be added. This happens if the
component the extid parameter referred to has already completed
its RASCD_LDMP_PREPARE processing.

ENOMEM_RAS_DMP_COMPEXT Indicates that no storage is available.

98 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related reference
livedump Kernel Service
ldmp_setupparms Kernel Service
ras_ret_query_parms Kernel Service

dmp_ctl Kernel Service

Purpose
Adds and removes entries to the master dump table.

Syntax
#include <sys/types.h>
 #include <errno.h>
 #include <sys/dump.h>

 int dmp_ctl(op, parmp)
 int op;
 struct dmpctl_data *parmp;

Description
The dmp_ctl kernel service is used to manage dump routines. It replaces the dmp_add and dmp_del
kernel services which are still supported for compatibility reasons. The major differences between
routines added with the dmp_add() command and those added with the dmp_ctl() command are:

• The routines are invoked differently from routines added with the dmp_add kernel service. Routines
added using the dmp_ctl kernel service return a void pointer, to a dump table or to a dump size
estimate.

• Routines added with the dmp_ctl kernel service are expected to ignore functions they don't support. For
example, they should not trap if they receive an unrecognized request. This allows future functionality
to be added without all users needing to change.

The dmp_ctl kernel service is used to request that an amount of memory be set aside in a global buffer.
This will then be used by the routine to store data not resident in memory. An example of such data
is dump data provided by an adapter. Without a global buffer, the data would need to be placed into a
pinned buffer allocated at configuration time. Each component would need to allocate its own pinned
buffer.

The system dump facility maintains a global buffer for such data. This buffer is allocated when it is first
requested, with the requested size. Another dump routine requesting more data causes the buffer to be
reallocated with the larger size. Since this buffer must be maintained in pinned storage for the life of
the system, only ask for as much memory as is required. Asking for an excessive amount of storage will
compromise system performance by reserving too much pinned storage.

Any dump routine using the global buffer is called whenever dump data is required. Routines are only
called once to provide such data. Their dump table addresses are saved and used if the dump is restarted.

Note: The dmp_ctl kernel service can also be used by a dump routine to report a routine failure. This may
be necessary if the routine detects that it can't dump what needs to be dumped for some reason such as
corruption of a data structure.

Note: Beginning with AIX Version 6.1 with the 6100-02 Technology Level, the dmp_ctl kernel service
supports that DMPFUNC_SERIALIO operation flag.

Dump Tables

A dump routine returns a component dump table that begins with DMP_MAGIC, which is the magic
number for the 32- or 64-bit dump table. If the unlimited sized dump table is used, the magic number is
DMP_MAGIC_U and the cdt_u structure is used. If this is the case, the dump routine is called repeatedly

Kernel Services and Subsystem Operations 99

until it returns a null cdt_u pointer. The purpose of the unlimited size dump table is to provide a way
to dump an unknown number of data areas without having to preallocate the largest possible array of
cdt_entry elements as is required for the classic dump table. The definitions for dump tables are in the
sys/dump.h include file.

Parameters
dmp_ctl operations and the dmpctl_data structure are defined in the dump.h text file.

Item Description

op Specifies the operation to perform.

parmp Points to a dmpctl_data structure containing values for the specified operation. The dmpctl_data
structure is defined in the /usr/include/sys/dump.h file as follows:

/* Dump Routine failures data. */
struct __rtnf {
 int rv; /* error code. */
 ulong vaddr; /* address. */
 vmhandle_t handle; /* handle */
};

typedef void *((*__CDTFUNCENH)(int op, void *buf));
struct dmpctl_data {
 int dmpc_magic; /* magic number */
 int dmpc_flags; /* dump routine flags. */
 __CDTFUNCENH dmpc_func;
 union {
 u_longlong_t bsize; /* Global buffer size requested. */
 struct __rtnf rtnf;
 } dmpc_u;
};
#define DMPC_MAGIC1 0xdcdcdc01
#define DMPC_MAGIC DMPC_MAGIC1
#define dmpc_bsize dmpc_u.bsize
#define dmpcf_rv dmpc_u.rtnf.rv
#define dmpcf_vaddr dmpc_u.rtnf.vaddr
#define dmpcf_handle dmpc_u.rtnf.handle

The supported operations and their associated data are:

Item Description

DMPCTL_ADD Adds the specified dump routine to the master dump table. This requires a
pointer to the function and function type flags. Supported type flags are:
DMPFUNC_CALL_ON_RESTART

Calls this function again if the dump is restarted. A dump function is
only called once to provide dump data. If the function must be called
and the dump is restarted on the secondary dump device, then this
flag must be set. The DMPFUNC_CALL_ON_RESTART flag must be set
if this function uses the global dump buffer. It also must be set if the
function uses an unlimited size dump table, a table with DMP_MAGIC_U
as the magic number.

DMPFUNC_GLOBAL_BUFFER
This function uses the global dump buffer. The size is specified using
the dmpc_bsize field.

DMPFUNC_SERIALIO
Enables serialized I/O during dump time. The need for this flag is device
specific. Only the developer of the device can determine if this flag
needs to be set. It is only recommended for devices that can be on
the dump I/O path. Serializing I/O during dump time can degrade dump
performance. The default, without this flag, is to allow I/O to occur in
parallel with CDT function calls.

100 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

DMPCTL_DEL Deletes the specified dump function from the master dump table.

DMPCTL_RTNFAILURE Reports an inability to dump required data. The routine must set the
dmpc_func, dmpcf_rV, dmpcf_vaddr, and dmpcf_handle fields.

Dump function invocation parameters:

Item Description

operation code Specifies the operation the routine is to perform. Operation codes are:
DMPRTN_START

The dump is starting for this dump table. Provide data.
DMPRTN_DONE

The dump is finished. This call is provided so that a dump routine can do any cleanup
required after a dump. This is specific to a device for which information was gathered.
It does not free memory, since such memory must be allocated before the dump is
taken.

DMPRTN_AGAIN
Provide more data for this unlimited dump table. The routine must have first passed
back a dump table beginning with DMP_MAGIC_U. When finished, the function must
return a NULL.

DMPRTN_ESTIMATE
Provide a size estimate. The function must return a pointer to an item of type
dmp_sizeest_t. See the examples later in this article.

buffer pointer This is a pointer to the global buffer, or NULL if no global buffer space was requested.

Return Values
Item Description

0 Returned if successful.

EINVAL Returned if one or more parameter values are invalid.

ENOMEM Returned if the global buffer request can't be satisfied.

EEXIST Returned if the dump function has already been added.

Examples
1. To add a dump routine (dmprtn) that can be called once to provide data, type:

void *dmprtn(int op, void *buf);
 struct cdt cdt;
 dmp_sizeest_t estimate;

 config()
 {
 struct dmpctl_data parm;
 ...

 parm.dmpc_magic = DMPC_MAGIC1;
 parm.dmpc_func = dmprtn;
 parm.dmpc_flags = 0;
 ret = dmp_ctl(DMPCTL_ADD, &parm);

 ...
 }

 /*
 * Dump routine.

Kernel Services and Subsystem Operations 101

 *
 * input:
 * op - dump routine operation.
 * buf - NULL since no global buffer is used.
 *
 * returns:
 * A pointer to the component dump table.
 */
 void *
 dmprtn(int op, void *buf)
 {
 void *ret;

 switch(op) {
 case DMPRTN_START: /* Provide dump data. */
 ...
 ret = (void *)&cdt;
 break;
 case DMPRTN_ESTIMATE:
 ret = (void *)&estimate;
 break;
 default:
 break;
 }

 return(ret);
 }

2. To add a dump routine (dmprtn) that requests 16 kb of global buffer space, type:

...
 #define BSIZ 16*1024
 dmp_sizeest_t estimate;

 config()
 {
 ...
 parm.dmpc_magic = DMPC_MAGIC1;
 parm.dmpc_func = dmprtn;
 parm.dmpc_flags = DMPFUNC_CALL_ON_RESTART|DMPC_GLOBAL_BUFFER;
 parm.dmpc_bsize = BSIZ;
 ret = dmp_ctl(DMPCTL_ADD, &parm);
 ...
 }

 /*
 * Dump routine.
 *
 * input:
 * op - dump routine operation.
 * buf - points to the global buffer.
 *
 * output:
 * Return a pointer to the dump table or to the estimate.
 */
 void *
 dmprtn(int op, void *buf)
 {
 void *ret;

 switch(op) {
 case DMPRTN_START: /* Provide dump data. */
 ...
 (Put data in buffer at buf.)
 ret = (void *)&cdt;
 break;
 case DMPRTN_ESTIMATE:
 ret = (void *)&estimate;
 break;
 default:
 break;
 }

 return(ret);
 }

Related reference
dmp_del Kernel Service

102 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related information
Dump Special File
System Dump Facility

dmp_del Kernel Service

Purpose
Deletes an entry from the master dump table. Callers should use the “dmp_ctl Kernel Service” on page
99. This service is provided for compatibility purposes.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dump.h>

dmp_del (cdt_func_ptr)
struct cdt * ((*cdt_func_ptr) ());

Description
Kernel extensions use the dmp_del kernel service to unregister data areas previously registered for
inclusion in a system dump. A kernel extension that uses the “dmp_add Kernel Service” on page 94 to
register such a data area can use the dmp_del service to remove this entry from the master dump table.

Parameters

Item Description

cdt_func_ptr Specifies a function that returns a pointer to a component dump table.
The function and the component dump table must both reside in pinned
global memory.

Execution Environment
The dmp_del kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

-1 Indicates that the function pointer to be deleted is not in the master dump table.

Related reference
dmp_add Kernel Service
dmp_ctl Kernel Service
Related information
RAS Kernel Services

Kernel Services and Subsystem Operations 103

dmp_eaddr, dmp_context, dmp_tid, dmp_pid, dmp_errbuf, dmp_mtrc,
dmp_systrace, and dmp_ct Kernel Services

Purpose
Provides functions for common dump tasks.

Syntax

#include <sys/dump.h>

kerrno_t dmp_eaddr (flags, anchor, name, addr, sz)
long flags;
void *anchor;
char *name;
long addr;
long sz;

kerrno_t dmp_context (flags, anchor, name, ctx_type, p2)
long flags;
void *anchor;
char *name;
long ctx_type;
long p2;

kerrno_t dmp_tid (flags, anchor, name, tid, unused)
long flags;
void *anchor;
char *name;
tid_t tid;
void *unused;

kerrno_t dmp_pid (flags, anchor, name, pid, unused)
long flags;
void *anchor;
char *name;
pid_t pid;
void *unused;

kerrno_t dmp_errbuf (flags, anchor, name, erridx, unused)
long flags;
void *anchor;
char *name;
ulong erridx;
long unused;

kerrno_t dmp_mtrc (flags, anchor, name, com_sz, rare_sz)
long flags;
void *anchor;
char *name;
size_t com_sz;
size_t rare_sz;

104 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

kerrno_t dmp_systrace (flags, anchor, name, sz, unused)
long flags;
void *anchor;
char *name;
long sz;
long unused;

kerrno_t dmp_ct (flags, anchor, name, rasb, sz)
long flags;
void *anchor;
char *name;
ras_block_t rasb;
size_t sz;

Parameters

Item Description

anchor Points to the associated ldmp_parms_t data structure or to an
ldmp_prepare_t data structure.

flags The flags parameter can be one or more of the following values:
DCF_FIRST

Specifies that this component is to be dumped first. Normally components
are dumped in the order specified.

Note: The last component specified to be dumped first is the one dumped
first.

DCF_LEVEL0 - DCF_LEVEL9
Dumps the component at the specified detail level, 0 through 9. If none of
these flags are set, the component is dumped at CD_LVL_NORMAL, detail
level 3.

name Specifies the name of the pseudo-component's dump table in the dump. The
name parameter is only valid for the dmp_eaddr kernel service. You must
specify the name parameter to NULL for the dmp_context, dmp_tid, dmp_pid,
dmp_errbuf, dmp_mtrc, dmp_systrace, and dmp_ct kernel services.

unused You must specify this parameter to NULL or 0.

The remaining
parameters are
pseudo-component
dependent:
dmp_eaddraddr

Specifies the effective address of the memory to be dumped.

sz Specifies the length of the memory in bytes.

Kernel Services and Subsystem Operations 105

Item Description

dmp_contextctx_type Specifies the context to dump. It can be one of the following values:
DMP_CTX_CUR

To dump the current context.
DMP_CTX_PREV

To dump the previous context.
DMP_CTX_SPEC

To dump the context specified by the p2 parameter. The p2 parameter
must contain the address of the ksmtsave structure for the context.

DMP_CTX_RWA
To dump the context from the supplied recovery work area. The p2
parameter must contain the address of the recovery work area, rwa.

DMP_CTX_BID or DMP_CTX_LCPUID
To dump the context for the processor specified by the p2 parameter. You
can specify the processor either by the bind ID or by the logical ID.

DMP_CTX_TID
To dump the context of the thread specified by the p2 parameter, which
must contain the thread ID.

p2 Specifies the address of the context, the logical processor ID, the bind ID, or
the thread ID dependent on the value of the ctx_type parameter.

dmp_tidtid Specifies the ID of the thread to dump.

dmp_pidpid Specifies the ID of the process to dump.

dmp_errbuferridx Specifies the kernel workload partition (WPAR) ID of the partition's error
logging buffer to dump. The value of 0 stands for the global buffer.

dmp_mtrccom_sz Specifies the amount of common to dump.

rare_sz Specifies the amount of rare data to dump.

dmp_systracesz Specifies the amount of system trace data to dump.If the sz parameter is set to
0, all the buffered trace data is dumped, up to the amount allowed by the detail
level.

dmp_ctrasb Specifies the ras_block_t of the component whose component trace is to be
dumped.

sz Specifies the amount of data to dump. If the sz parameter is set to 0, all the
components' trace data is dumped, up to the limit for the detail level.

Description
The dmp_eaddr kernel service dumps memory by effective address.

The dmp_context kernel service dumps the specified thread context.

The dmp_tid kernel service dumps the kernel data for a thread.

The dmp_pid kernel service dumps the kernel data for a process.

The dmp_errbuf kernel service dumps the error logging buffer for the specified partition.

The dmp_mtrc kernel service dumps entries from the lightweight memory trace buffers.

The dmp_systrace dumps entries from the system trace buffers.

The dmp_ct dumps component trace entries.

106 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The dmp_eaddr, dmp_context, dmp_tid, dmp_pid, dmp_errbuf, dmp_mtrc, dmp_systrace, and dmp_ct
kernel services can be called from either the process or interrupt environment.

Return Values
Item Description

0 Indicates a successful completion.

EINVAL_DMP_PSEUDO Indicates that the name parameter is not valid.

EINVAL_DMP_CHECK_ANCHOR Indicates that no anchor was specified, or the anchor parameter does not point to
an area of ldmp_parms_t or ldmp_prepare_t type.

EFAULT_DMP_CHECK_ANCHOR Indicates that the storage specified by the anchor parameter is not valid.

EINVAL_RAS_DMP_COMPSPEC_FLAGS Indicates that the flags specification is not valid. This error also occurs if the
DCF_FIRST flag is specified when the anchor is an ldmp_prepare_t data item.

EINVAL_RAS_DMP_COMPSPEC_NOADD Indicates that components cannot be added to this dump.

ENOMEM_RAS_DMP_COMPSPEC Indicates that the storage is not sufficient.

EINVAL_RAS_DMP_EADDR Indicates that the flags parameter is not valid.

EINVAL_RAS_DMP_CONTEXT Indicates that the parameter of the dmp_context kernel service is not valid. This is
also returned if the p2 parameter is not used, but is not NULL.

ENOENT_RAS_DMP_CONTEXT_CTX_NOTFOUND Indicates that the specified context was not found.

EFAULT_RAS_DMP_CONTEXT Indicates that the storage the specified context pointer points to is not valid.

EINVAL_RAS_DMP_TID Indicates that the parameter of the dmp_tid kernel service is not valid.

EINVAL_RAS_DMP_PID Indicates that the parameter of the dmp_pid kernel service is not valid.

EINVAL_RAS_DMP_ERRBUF Indicates that the parameter of the dmp_errbuf kernel service is not valid.

ECHRNG_RAS_DMP_ERRBUF Indicates that the erridx parameter is out of range.

EINVAL_RAS_DMP_MTRC Indicates that the parameter of the dmp_mtrc kernel service is not valid.

ENOENT_RAS_DMP_MTRC Indicates that the lightweight memory trace is not active.

EINVAL_RAS_DMP_SYSTRACE Indicates that the parameter of the dmp_systrace kernel service is not valid.

ENOENT_RAS_DMP_SYSTRACE Indicates that the system trace is not active.

EINVAL_RAS_DMP_CT Indicates that the parameter of the dmp_ct kernel service is not valid.

ENOMEM_RAS_DMP_CT Indicates that the storage is not sufficient.

EINVAL_RAS_DMP_CT_GETPATH Indicates that the specified component is not valid.

EINVAL_RAS_DMP_CT_LOOKUP Indicates that an error occurred while this component was being validated.

ENOTSUP_RAS_DMP_CT Indicates that the specified component does not have a component trace.

Related Information
The livedump kernel service and dmp_kernext kernel service.

Related reference
livedump Kernel Service
dmp_kernext Kernel Service

dmp_kernext Kernel Service

Purpose
Causes the specified kernel extension to be shipped with the live dump for symbol resolution.

Syntax

#include <sys/dump.h>

Kernel Services and Subsystem Operations 107

kerrno_t dmp_kernext (anchor, ptr)void *anchor;
void *ptr;

Parameters

Item Description

anchor Points to either an ldmp_parms_t or ldmp_prepare_t structure.

ptr Specifies an address within the kernel extension. If the value is 0, the dump includes
information for all loaded kernel extensions.

Description
The dmp_kernext kernel service causes snap to package the specified kernel extension with the current
live dump. This also includes loader information for the extension in the dump. You can specify the
extension by setting the ptr parameter to a text or data address within the extension. The extension's file
name is noted in the dump, and snap can be used to cause this file to be bundled with the snap data when
the dump is collected for sending to IBM®.

Execution Environment
The dmp_kernext kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

0 Indicates a successful completion.

EINVAL_RAS_DMP_KERNEXT Indicates that the anchor parameter is not valid.

Related reference
livedump Kernel Service
Related information
snap subroutine

d_roundup Kernel Service

Purpose
Rounds the value length up to a given number of cache lines.

Syntax

int d_roundup(length)

int length;

Parameter

Item Description

length Specifies the size in bytes to be rounded.

108 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
To maintain cache consistency, buffers must occupy entire cache lines. The d_roundup service helps
provide that function by rounding the value length up to a given number in integer form.

Execution Environment
The d_roundup service can be called from either the process or interrupt environment.

Related reference
d_align Kernel Service
d_cflush Kernel Service
Related information
Understanding Direct Memory Access (DMA) Transfers

d_sync_mem Kernel Service

Purpose
Allows a device driver to indicate that previously mapped buffers may need to be refreshed.

Syntax

int d_sync_mem(d_handle_t handle, dio_t blist)

Description
The d_sync_mem service allows a device driver to indicate that previously mapped buffers may need
to be refreshed, either because a new DMA is about to start or a previous DMA has now completed.
d_sync_mem is not an exported kernel service, but a bus-specific utility determined by d_map_init based
on platform characteristics and provided to the caller through the d_handle structure. d_sync_mem
allows the driver to identify additional coherency points beyond those of the initial mapping (d_map_list)
and termination of the mapping (d_unmap_list). Thus d_sync_mem provides a way to long-term map
buffers and still handle potential data consistency problems.

The blist parameter is a pointer to the dio structure that describes the initial mapping, as returned by
d_map_list. Note that for bounce buffering, the data direction is also implicitly defined by this initial
mapping.

• If the map_list call describes a transfer from system memory to a device, subsequent d_sync_mem
calls using the corresponding blist will synchronize the memory view. This assumes that the original
system memory pages contain the correct data.

• If the map_list call describes a transfer from a device to system memory, then subsequent
d_sync_mem calls will synchronize the memory view. This assumes that the bounce pages the device
directly accessed contained the correct data.

Note: You can use the D_SYNC_MEM macro provided in the /usr/include/sys/dma.h file to code calls to
the d_sync_mem kernel service.

Parameters

Item Description

d_handle_t Indicates the unique dma handle returned by d_map_init.

dio_t blist List of vectors returned by original d_map_list.

Kernel Services and Subsystem Operations 109

Return Values

Item Description

DMA_SUCC Buffers described by the blist have been synchronized.

DMA_FAIL Buffers could not be synchronized.

Related reference
d_alloc_dmamem Kernel Service
d_map_list Kernel Service
d_unmap_list Kernel Service

DTOM Macro for mbuf Kernel Services

Purpose
Converts an address anywhere within an mbuf structure to the head of that mbuf structure.

Syntax

#include <sys/mbuf.h>

DTOM (bp);

Parameter

Ite
m

Description

bp Points to an address within an mbuf structure.

Description
The DTOM macro converts an address anywhere within an mbuf structure to the head of that mbuf
structure. This macro is valid only for mbuf structures without an external buffer (that is, with the M_EXT
flag not set).

This macro can be viewed as the opposite of the MTOD macro, which converts the address of an mbuf
structure into the address of the actual data contained in the buffer. However, the DTOM macro is more
general than this view implies. That is, the input parameter can point to any address within the mbuf
structure, not merely the address of the actual data.

Example
The DTOM macro can be used as follows:

char *bp;
struct mbuf *m;
m = DTOM(bp);

Related reference
MTOD Macro for mbuf Kernel Services
Related information
I/O Kernel Services

d_unmap_list Kernel Service

110 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Deallocates resources previously allocated on a d_map_list call.

Syntax

#include <sys/dma.h>

void d_unmap_list (*handle, *bus_list)
struct d_handle *handle
struct dio *bus_list

Note: The following is the interface definition for d_unmap_list when the DMA_ADDRESS_64 and
DMA_ENABLE_64 flags are set on the d_map_init call.

void d_unmap_list (*handle,
*bus_list)
struct d_handle *handle;
struct dio_64 *bus_list;

Parameters

Item Description

handle Indicates the unique handle returned by the d_map_init kernel service.

bus_list Specifies a list of bus addresses and lengths.

Description
The d_unmap_list kernel service is a bus-specific utility routine determined by the d_map_init kernel
service that deallocates resources previously allocated on a d_map_list call.

The d_unmap_list kernel service must be called after I/O completion involving the area mapped by the
prior d_map_list call. Some device drivers might choose to leave pages mapped for a long-term mapping
of certain memory buffers. In this case, the driver must call d_unmap_list when it no longer needs the
long-term mapping.

Note: You can use the D_UNMAP_LIST macro provided in the /usr/include/sys/dma.h file to code calls
to the d_unmap_list kernel service. If not, you must ensure that the d_unmap_list function pointer is
non-NULL before attempting the call. Not all platforms require the unmapping service.

Related reference
d_map_init Kernel Service
d_map_list Kernel Service

d_unmap_slave Kernel Service

Purpose
Deallocates resources previously allocated on a d_map_slave call.

Syntax

#include <sys/dma.h>

int d_unmap_slave (*handle)
struct d_handle *handle;

Kernel Services and Subsystem Operations 111

Parameters

Item Description

handle Indicates the unique handle returned by the d_map_init kernel service.

Description
The d_unmap_slave kernel service deallocates resources previously allocated on a d_map_slave call,
disables the physical DMA channel, and returns error and status information following the DMA transfer.
The d_unmap_slave kernel service is not an exported kernel service, but a bus-specific utility routine
that is determined by the d_map_init kernel service and provided to the caller through the d_handle
structure.

Note: You can use the D_UNMAP_SLAVE macro provided in the /usr/include/sys/dma.h file to code calls
to the d_unmap_slave kernel service. If not, you must ensure that the d_unmap_slave function pointer is
non-NULL before attempting to call. No all platforms require the unmapping service.

The device driver must call d_unmap_slave when the I/O is complete involving a prior mapping by the
d_map_slave kernel service.

Note: The d_unmap_slave kernel should be paired with a previous d_map_slave call. Multiple
outstanding slave DMA transfers are not supported. This kernel service assumes that there is no DMA
in progress on the affected channel and deallocates the current channel mapping.

Return Values
Item Description

DMA_SUCC Indicates successful transfer. The DMA controller did not report any errors and that the Terminal Count was reached.

DMA_TC_NOTREACHED Indicates a successful partial transfer. The DMA controller reported the Terminal Count reached for the intended transfer as set up by the
d_map_slave call. Block devices consider this an erro; however, for variable length devices this may not be an error.

DMA_FAIL Indicates that the transfer failed. The DMA controller reported an error. The device driver assumes the transfer was unsuccessful.

d_unmap_page Kernel Service

Purpose
Deallocates resources previously allocated on a d_unmap_page call.

Syntax

#include <sys/dma.h>

void d_unmap_page (*handle, *busaddr)
struct d_handle *handle
uint *busaddr

Note: The following is the interface definition for d_unmap_page when the DMA_ADDRESS_64 and
DMA_ENABLE_64 flags are set on the d_map_init call.

int d_unmap_page(*handle,
*busaddr)
struct d_handle *handle;
unsigned long long *busaddr;

Parameters

Item Description

handle Indicates the unique handle returned by the d_map_init kernel service.

112 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

busaddr Points to the busaddr field.

Description
The d_unmap_page kernel service is a bus-specific utility routine determined by the d_map_init kernel
service that deallocates resources previously allocated on a d_map_page call for a DMA master device.

The d_unmap_page service must be called after I/O completion involving the area mapped by the prior
d_map_page call. Some device drivers might choose to leave pages mapped for a long-term mapping of
certain memory buffers. In this case, the driver must call d_unmap_page when it no longer needs the
long-term mapping.

Note: You can use the D_UNMAP_PAGE macro provided in the /usr/include/sys/dma.h file to code calls
to the d_unmap_page kernel service. If not, you must ensure that the d_unmap_page function pointer is
non-NULL before attempting the call. Not all platforms require the unmapping service.

dr_reconfig System Call

Purpose
Determines the nature of the DLPAR request.

Syntax
#include <sys/dr.h>

int dr_reconfig (flags, dr_info)
int flags;
dr_info_t *dr_info;

Description
The dr_reconfig system call is used by DLPAR-aware applications to adjust their use of resources in
relation to a DLPAR request. Applications are notified about the usage through the SIGRECONFIG signal,
which is generated three times for each DLPAR event.

The first time is to check with the application whether the DLPAR event should be continued. Using
the DR_EVENT_FAIL flag, an application can indicate that the operation should be aborted, if it is not
DLPAR-safe and its operation is considered vital to the system.

The application is notified the second time before the resource is added or removed, and the third time
afterwards. Applications must attempt to control their scheduling priority and policy to guarantee timely
delivery of signals. The system does not guarantee that every signal that is sent is delivered before
advancing to the next step in the algorithm.

The dr_reconfig system call can also be used to notify applications about the changes to the workload
partition that they are running. Applications are notified about changes to the CPU, memory capacity, and
resources set.

The dr_reconfig interface is signal-handler safe and can be used by multi-threaded programs.

The dr_info structure is declared within the address space of the application. The kernel fills out data
in this structure relative to the current DLPAR request. The user passes this structure identifying the
current DLPAR request, as a parameter to the kernel when the DR_RECONFIG_DONE flag is used. The
DR_RECONFIG_DONE flag is used by the application to notify the kernel that necessary action to adjust
their use of resources has been taken in response to the SIGRECONFIG signal sent to them. It is
expected that the signal handler associated with the SIGRECONFIG signal calls the interface with the
DR_QUERY flag to identify the phase of the DLPAR event, takes the appropriate action, and calls the
interface with the DR_RECONFIG_DONE flag to indicate to the kernel that the signal has been handled.

Kernel Services and Subsystem Operations 113

This type of acknowledgment to the kernel in each of the DLPAR phases enables a DLPAR event to
perform efficiently.

With the addition of new fields to the dr_info structure, DR-aware applications can support the Micro-
Partitioning® feature.

The bindproc, softpset, and hardpset bits are only set, if the request is to remove a cpu. If the bindproc
is set, the process or one of its threads has a bindprocessor attachment, which must be resolved. If the
softpset bit is set, the process has a Workload Manager (WLM) attachment, which can be changed by
calling the appropriate WLM interface or by invoking the appropriate WLM command. If the hardpset bit is
set, the appropriate pset API must be used.

Note: The bcpu and lcpu fields identify the cpu being removed and do not necessarily indicate that the
process has a dependency that must be resolved. The bindproc, softpset, and hardpset bits are provided
for that purpose.

The plock and pshm bits are only set, if the request is to remove memory and the process has plock
memory or is attached to a pinned shared memory segment. If the plock bit is set, the process callsplock
to unpin itself. If the pshm bit is set, the application has pinned shared memory segments, which may
need to be detached. The memory remove request can succeed in any case, if there is enough pinnable
memory in the system, so an action in this case is not necessarily required. The field sys_pinnable_frames
provides this information, however, this value and other statistical values are just approximations. They
reflect the state of the system at the time of the request. They are not updated during the request. The
current size of physical memory can be determined by referencing the _system_configuration.physmem
field.

To provide support for virtual real memory related DR operations, a new field, dr_op, has been added to
the dr_info structure. The dr_op field provides information about the current DR operation. Additionally,
all future DR operations use this field and the previously used resource bits will no longer be extended.

dr_wlm_info Structure

typedef struct dr_wlm_info {
 unsigned int cpu_add : 1; // cpu wlm resource add for the WPAR
 unsigned int cpu_rem : 1; // cpu wlm resource remove for the WPAR
 unsigned int mem_add : 1; // memory wlm resource add for the WPAR
 unsigned int mem_rem : 1; // memory wlm resource remove for the WPAR
 unsigned int rs_cpu : 1; // wlm cpu rset change for the WPAR
 unsigned int rs_mem : 1; // wlm memory rset change for the WPAR
 unsigned int pad1 : 2; // un-used
 unsigned int cpu_cap : 8; // percentage of cpu capacity of the WPAR
 unsigned int mem_cap : 8; // percentage of the memory capacity of the WPAR
 unsigned int pad2 : 8; // un-used
} dr_wlm_info_t;

dr_info Structure

typedef struct dr_info {
 unsigned int add : 1; // add request
 rem : 1; // remove request
 cpu : 1; // target resource is a cpu
 mem : 1; // target resource is memory
 check : 1; // check phase in effect
 pre : 1; // pre phase in effect
 post : 1; // post phase in effect
 posterror : 1; // post error phase in effect
 force : 1; // force option is in effect
 bindproc : 1; // process has bindprocessor dependency
 softpset : 1; // process has WLM software partition dependency
 hardpset : 1; // process has processor set API dependency
 plock : 1; // process has plock'd memory
 pshm : 1; // process has pinned shared memory
 ent_cap : 1; // target resource:entitled capacity
 var_wgt : 1; // target resource:variable weight
 splpar_capable : 1; // 1/0 partition is/not splpar capable
 splpar_shared : 1; // 1/0 partition shared/dedicated mode
 splpar_capped : 1; // 1/0 partition capped/uncapped mode
 splpar_constrained : 1; // Set to 1 if requested capacity
 update is constrained by PHYP to
 be within partition capacity bounds.
 //

114 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

 unsigned int migrate : 1; // migration operation
 unsigned int hibernate : 1; // hibernation operation
 unsigned int partition : 1; // resource is partition
 unsigned int topology_update : 1; // topology update

 // The following fields are filled out for cpu based requests
 int lcpu; // logical cpu ID being added or removed
 int bcpu; // bind cpu ID being added or removed

 // The following fields are filled out for memory based requests
 size64_t req_memsz_change; // User request size in bytes
 size64_t sys_memsz; // System Memory size at time of request
 rpn64_t sys_free_frames; // Number of free frames in the system
 rpn64_t sys_pinnable_frames; // Number of pinnable frames in system
 rpn64_t sys_total_frames; // Total number of frames in system

 // SPLPAR parameters.
 uint64_t capacity; // partition current entitled capacity
 if ent_cap bit is set, partition's
 current variable capacity weight
 if var_wgt bit is set.
 //

 int delta_cap; // delta capacity added/removed to
 current value depending on add/rem
 bit flag value above
 //
 dr_wlm_info_t dr_wlm; // DR info for the WPAR
 ushort dr_op; // type of DR operation

 ushort dr_pad; // reserved pad field
 size64_t mem_capacity; // partition’s entitled
I/O memory or variable capacity.
 ssize64_t delta_mem_capacity; // amount of I/O being added/removed

 int reserved[2];

} dr_info_t;

Parameters
Item Description

flags The following values are supported:
DR_QUERY

Identifies the current DLPAR request and the
actions that the application must take to
comply with the current DLPAR request. This
information is returned to the caller in the
structure identified by the dr_info parameter.

DR_EVENT_FAIL
Fail the current DLPAR event. Root authority is
required.

DR_RECONFIG_DONE
This flag is used with the DR_QUERY flag.
The application notifies the kernel that the
actions it took to comply with the current
DLPAR request are now complete. The dr_info
structure identifying the DLPAR request that
was returned is passed as an input parameter.

dr_info Contains the address of a dr_info structure,
which is declared with the address space of the
application.

Kernel Services and Subsystem Operations 115

Return Values
Upon success, the dr_reconfig system call returns a zero. If unsuccessful, it returns negative one and sets
the errno variable to the appropriate error value.

Error Codes
Item Description

EINVAL Invalid flags.

ENXIO No DLPAR event in progress.

EPERM Root authority required for DR_EVENT_FAIL.

EINPROGRESS Cancellation of DLPAR event may only occur in the
check phase.

Related information
Making Programs DLPAR-Aware Using DLPAR APIs

e
The following kernel services begin with the with the letter e.

e_assert_wait Kernel Service

Purpose
Asserts that the calling kernel thread is going to sleep.

Syntax

#include <sys/sleep.h>

void e_assert_wait (event_word, interruptible)
tid_t *event_word;
boolean_t interruptible;

Parameters

Item Description

event_word Specifies the shared event word. The kernel uses the event_word parameter as
the anchor to the list of threads waiting on this shared event.

interruptible Specifies if the sleep is interruptible.

Description
The e_assert_wait kernel service asserts that the calling kernel thread is about to be placed on the event
list anchored by the event_word parameter. The interruptible parameter indicates wether the sleep can be
interrupted.

This kernel service gives the caller the opportunity to release multiple locks and sleep atomically without
losing the event should it occur. This call is typically followed by a call to either the e_clear_wait or
e_block_thread kernel service. If only a single lock needs to be released, then the e_sleep_thread kernel
service should be used instead.

The e_assert_wait kernel service has no return values.

116 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The e_assert_wait kernel service can be called from the process environment only.

Related reference
e_clear_wait Kernel Service
e_sleep_thread Kernel Service
Related information
Process and Exception Management Kernel Services

e_block_thread Kernel Service

Purpose
Blocks the calling kernel thread.

Syntax

#include <sys/sleep.h>

int e_block_thread ()

Description
The e_block_thread kernel service blocks the calling kernel thread. The thread must have issued a
request to sleep (by calling the e_assert_wait kernel service). If it has been removed from its event list, it
remains runnable.

Execution Environment
The e_block_thread kernel service can be called from the process environment only.

Return Values
The e_block_thread kernel service return a value that indicate how the thread was awakened. The
following values are defined:

Item Description

THREAD_AWAKENED Denotes a normal wakeup; the event occurred.

THREAD_INTERRUPTED Denotes an interruption by a signal.

THREAD_TIMED_OUT Denotes a timeout expiration.

THREAD_OTHER Delineates the predefined system codes from those that need to be
defined at the subsystem level. Subsystem should define their own
values greater than or equal to this value.

Related reference
e_assert_wait Kernel Service
Related information
Process and Exception Management Kernel Services

e_clear_wait Kernel Service

Kernel Services and Subsystem Operations 117

Purpose
Clears the wait condition for a kernel thread.

Syntax

#include <sys/sleep.h>

void e_clear_wait (tid, result)
tid_t tid;
int result;

Parameters

Item Description

tid Specifies the kernel thread to be awakened.

result Specifies the value returned to the awakened kernel thread. The following values can be used:
THREAD_AWAKENED

Usually generated by the e_wakeup or e_wakeup_one kernel service to indicate a normal
wakeup.

THREAD_INTERRUPTED
Indicates an interrupted sleep. This value is usually generated by a signal delivery when
the INTERRUPTIBLE flag is set.

THREAD_TIMED_OUT
Indicates a timeout expiration.

THREAD_OTHER
Delineates the predefined system codes from those that need to be defined at the
subsystem level. Subsystem should define their own values greater than or equal to this
value.

Description
The e_clear_wait kernel service clears the wait condition for the kernel thread specified by the tid
parameter, and the thread is made runnable.

This kernel service differs from the e_wakeup, e_wakeup_one, and e_wakeup_w_result kernel services
in the fact that it assumes the identity of the thread to be awakened. This kernel service should be used
to handle exceptional cases, where a special action needs to be taken. The result parameter is used
to specify the value returned to the awakened thread by the e_block_thread or e_sleep_thread kernel
service.

The e_clear_wait kernel service has no return values.

Execution Environment
The e_clear_wait kernel service can be called from either the process environment or the interrupt
environment.

Related reference
e_wakeup, e_wakeup_one, or e_wakeup_w_result Kernel Service
e_block_thread Kernel Service
Related information
Process and Exception Management Kernel Services

e_sleep Kernel Service

118 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Forces the calling kernel thread to wait for the occurrence of a shared event.

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <sys/sleep.h> int e_sleep (event_word,
flags) tid_t *event_word; int flags;

Parameters

Item Description

event_word Specifies the shared event word. The kernel uses the event_word parameter to anchor
the list of processes sleeping on this event. The event_word parameter must be
initialized to EVENT_NULL before its first use.

flags Specifies the flags that control action on occurrence of signals. These flags can be
found in the /usr/include/sys/sleep.h file. The flags parameter is used to control how
signals affect waiting for an event. The following flags are available to the e_sleep
service:
EVENT_SIGRET

Indicates the termination of the wait for the event by an unmasked signal. The
return value is set to EVENT_SIG.

EVENT_SIGWAKE
Indicates the termination of the event by an unmasked signal. This flag results in
the transfer of control to the return from the last setjmpx service with the return
value set to EINTR.

EVENT_SHORT
Prohibits the wait from being terminated by a signal. This flag should only be used
for short, guaranteed-to-wakeup sleeps.

Description
The e_sleep kernel service is used to wait for the specified shared event to occur. The kernel places the
current kernel thread on the list anchored by the event_word parameter. This list is used by the e_wakeup
service to wake up all threads waiting for the event to occur.

The anchor for the event list, the event_word parameter, must be initialized to EVENT_NULL before its first
use. Kernel extensions must not alter this anchor while it is in use.

The e_wakeup service does not wake up a thread that is not currently sleeping in the e_sleep function.
That is, if an e_wakeup operation for an event is issued before the process calls the e_sleep service for
the event, the thread still sleeps, waiting on the next e_wakeup service for the event. This implies that
routines using this capability must ensure that no timing window exists in which events could be missed
due to the e_wakeup service being called before the e_sleep operation for the event has been called.

Note: The e_sleep service can be called with interrupts disabled only if the event or lock word is pinned.

Execution Environment
The e_sleep kernel service can be called from the process environment only.

Return Values

Item Description

EVENT_SUCC Indicates a successful operation.

Kernel Services and Subsystem Operations 119

Item Description

EVENT_SIG Indicates that the EVENT_SIGRET flag is set and the wait is terminated by a signal.

Related reference
e_sleepl Kernel Service
e_wakeup, e_wakeup_one, or e_wakeup_w_result Kernel Service
Related information
Process and Exception Management Kernel Services

e_sleepl Kernel Service

Purpose
Forces the calling kernel thread to wait for the occurrence of a shared event.

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <sys/sleep.h> int e_sleepl (lock_word,
event_word, flags) int *lock_word; tid_t *event_word; int flags;

Parameters

Item Description

lock_word Specifies the lock word for a conventional process lock.

event_word Specifies the shared event word. The kernel uses this word to anchor the list of kernel
threads sleeping on this event. This event word must be initialized to EVENT_NULL
before its first use.

flags Specifies the flags that control action on occurrence of a signal. These flags are found
in the /usr/include/sys/sleep.h file.

Description
Note: The e_sleepl kernel service is provided for porting old applications written for previous versions of
the operating system. Use the e_sleep_thread kernel service when writing new applications.

The e_sleepl kernel service waits for the specified shared event to occur. The kernel places the current
kernel thread on the list anchored by the event_word parameter. The e_wakeup service wakes up all
threads on the list.

The e_wakeup service does not wake up a thread that is not currently sleeping in the e_sleepl function.
That is, if an e_wakeup operation for an event is issued before the thread calls the e_sleepl service for
the event, the thread still sleeps, waiting on the next e_wakeup operation for the event. This implies that
routines using this capability must ensure that no timing window exists in which events could be missed
due to the e_wakeup service being called before the e_sleepl service for the event has been called.

The e_sleepl service also unlocks the conventional lock specified by the lock_word parameter before
putting the thread to sleep. It also reacquires the lock when the thread wakes up.

The anchor for the event list, specified by the event_word parameter, must be initialized to EVENT_NULL
before its first use. Kernel extensions must not alter this anchor while it is in use.

Note: The e_sleepl service can be called with interrupts disabled, only if the event or lock word is pinned.

Values for the flags Parameter

The flags parameter controls how signals affect waiting for an event. There are three flags available to the
e_sleepl service:

120 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

EVENT_SIGRET Indicates the termination of the wait for the event by an unmasked signal. The
return value is set to EVENT_SIG.

EVENT_SIGWAKE Indicates the termination of the event by an unmasked signal. This flag also
indicates the transfer of control to the return from the last setjmpx service with
the return value set to EINTR.

EVENT_SHORT Indicates that signals cannot terminate the wait. Use the EVENT_SHORT flag for
only short, guaranteed-to-wakeup sleeps.

Note: The EVENT_SIGRET flag overrides the EVENT_SIGWAKE flag.

Execution Environment
The e_sleepl kernel service can be called from the process environment only.

Return Values

Item Description

EVENT_SUCC Indicates successful completion.

EVENT_SIG Indicates that the EVENT_SIGRET flag is set and the wait is terminated by a signal.

Related reference
e_sleep Kernel Service
e_wakeup, e_wakeup_one, or e_wakeup_w_result Kernel Service
Related information
Interrupt Environment

e_sleep_thread Kernel Service

Purpose
Forces the calling kernel thread to wait for the occurrence of a shared event.

Syntax

#include <sys/sleep.h>

int e_sleep_thread (event_word, lock_word, flags)
tid_t *event_word;
void *lock_word;
int flags;

Parameters

Item Description

event_word Specifies the shared event word. The kernel uses the event_word parameter as the
anchor to the list of threads waiting on this shared event.

lock_word Specifies simple or complex lock to unlock.

flags Specifies lock and signal handling options.

Kernel Services and Subsystem Operations 121

Description
The e_sleep_thread kernel service forces the calling thread to wait until a shared event occurs. The kernel
places the calling thread on the event list anchored by the event_word parameter. This list is used by
the e_wakeup, e_wakeup_one, and e_wakeup_w_result kernel services to wakeup some or all threads
waiting for the event to occur.

A lock can be specified; it will be unlocked when the kernel service is entered, just before the thread
blocks. This lock can be a simple or a complex lock, as specified by the flags parameter. When the kernel
service exits, the lock is re-acquired.

Flags
The flags parameter specifies options for the kernel service. Several flags can be combined with the
bitwise OR operator. They are described below.

The four following flags specify the lock type. If the lock_word parameter is not NULL, exactly one of
these flags must be used.

Flag Description

LOCK_HANDLER lock_word specifies a simple lock protecting a thread-interrupt or interrupt-
interrupt critical section.

LOCK_SIMPLE lock_word specifies a simple lock protecting a thread-thread critical section.

LOCK_READ lock_word specifies a complex lock in shared-read mode.

LOCK_WRITE lock_word specifies a complex lock in exclusive write mode.

The following flag specify the signal handling. By default, while the thread sleeps, signals are held
pending until it wakes up.

Item Description

INTERRUPTIBLE The signals must be checked while the kernel thread is sleeping. If a signal needs
to be delivered, the thread is awakened.

Return Values
The e_sleep_thread kernel service return a value that indicate how the kernel thread was awakened. The
following values are defined:

Item Description

THREAD_AWAKENED Denotes a normal wakeup; the event occurred.

THREAD_INTERRUPTED Denotes an interruption by a signal. This value can be returned even if
the INTERRUPTIBLE flag is not set since it may be also generated by
the e_clear_wait or e_wakeup_w_result kernel services.

THREAD_TIMED_OUT Denotes a timeout expiration. The e_sleep_thread has no timeout.
However, the e_clear_wait or e_wakeup_w_result kernel services may
generate this return value.

THREAD_OTHER Delineates the predefined system codes from those that need to be
defined at the subsystem level. Subsystem should define their own
values greater than or equal to this value.

Execution Environment
The e_sleep_thread kernel service can be called from the process environment only.

122 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related reference
e_wakeup, e_wakeup_one, or e_wakeup_w_result Kernel Service
e_block_thread Kernel Service
Related information
Locking Kernel Services

et_post Kernel Service

Purpose
Notifies a kernel thread of the occurrence of one or more events.

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <sys/sleep.h> void et_post (events, tid)
unsigned long events; tid_t tid;

Parameters

Item Description

events Identifies the masks of events to be posted.

tid Specifies the thread identifier of the kernel thread to be notified.

Description
The et_post kernel service is used to notify a kernel thread that one or more events occurred.

The et_post service provides the fastest method of interprocess communication, although only the event
numbers are passed.

The event numbers must be known by the cooperating components, either through programming
convention or the passing of initialization parameters.

The et_post service is performed automatically when sending a request to a device queue serviced by a
kernel thread or when sending an acknowledgment.

The EVENT_KERNEL mask defines the event bits reserved for use by the kernel. For example, a bit with
a value of 1 indicates an event bit reserved for the kernel. Kernel extensions should assign their events
starting with the most significant bits and working down. If threads using the et_post service are also
using the device queue management kernel extensions, care must be taken not to use the event bits
registered for device queue management.

The et_wait service does not sleep but returns immediately if a specified event has already been posted
by the et_post service.

Execution Environment
The et_post kernel service can be called from either the process or interrupt environment.

Return Values
The et_post service has no return values.

Related reference
et_wait Kernel Service
Related information
Process and Exception Management Kernel Services

Kernel Services and Subsystem Operations 123

et_wait Kernel Service

Purpose
Forces the calling kernel thread to wait for the occurrence of an event.

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <sys/sleep.h> unsigned long et_wait
(wait_mask, clear_mask, flags) unsigned long wait_mask; unsigned long clear_mask; int flags;

Parameters

Item Description

wait_mask Specifies the mask of events to await.

clear_mask Specifies the mask of events to clear.

flags Specifies the flags controling actions on occurrence of a signal.

The flags parameter is used to control how signals affect waiting for an event. There
are two flag values:

EVENT_SIGRET
Causes the wait for the event to be ended by an unmasked signal and the return
value set to EVENT_SIG.

EVENT_SIGWAKE
Causes the event to be ended by an unmasked signal and control transferred to the
return from the last setjmpx call, with the return value set to EXSIG.

EVENT_SHORT
Prohibits the wait from being terminated by a signal. This flag should only be used
for short, guaranteed-to-wakeup sleeps.

Note: The EVENT_SIGRET flag overrides the EVENT_SIGWAKE flag.

Description
The et_wait kernel service forces the calling kernel thread to wait for specified events to occur.

The wait_mask parameter indicates a mask, where each bit set equal to 1 represents an event for which
the thread must wait. The clear_mask parameter indicates a mask of events that must clear when the wait
is complete. Subsequent calls to the et_wait service return immediately unless you clear the bits, which
ends the wait.

Note: The et_wait service can be called with interrupts disabled only if the event or lock word is pinned.

Strategies for Using et_wait

Calling the et_wait kernel service with the EVENT_SIGRET flag clears the the pending events field when
the signal is received. If et_wait is called again by the same kernel thread, the thread waits indefinitely
for an event that has already occurred. When this happens, the thread does not run to completion. This
problem occurs only if the event and signal are posted at the same time.

To avoid this problem, use one of the following programming methods:

• Use the EVENT_SHORT flag to prevent signals from waking the thread up.
• Mask signals prior to the call of et_wait by using the limit_sigs kernel service. Then call et_wait. Invoke

the sigprocmask call to restore the signal mask by using the mask returned previously by limit_sigs.

The et_wait service is also used to clear events without waiting for them to occur. This is accomplished by
doing one of the following:

124 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

• Set the wait_mask parameter to EVENT_NDELAY.
• Set the bits in the clear_mask parameter that correspond with the events to be cleared to 1.

Because the et_wait service returns an event mask indicating those events that were actually cleared,
these methods can be used to poll the events.

Execution Environment
The et_wait kernel service can be called from the process environment only.

Return Values
Upon successful completion, the et_wait service returns an event mask indicating the events that
terminated the wait. If an EVENT_NDELAY value is specified, the returned event mask indicates the
pending events that were cleared by this call. Otherwise, it returns the following error code:

Item Description

EVENT_SIG Indicates that the EVENT_SIGRET flag is set and the wait is terminated by a signal.

Related reference
et_post Kernel Service
setjmpx Kernel Service
Related information
Process and Exception Management Kernel Services

e_wakeup, e_wakeup_one, or e_wakeup_w_result Kernel Service

Purpose
Notifies kernel threads waiting on a shared event of the event's occurrence.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/sleep.h>

void e_wakeup (event_word)
tid_t *event_word;

void e_wakeup_one (event_word)
tid_t *event_word;

void e_wakeup_w_result (event_word, result)
tid_t *event_word;
int result;

Parameters

Item Description

event_word Specifies the shared event designator. The kernel uses the event_word parameter as
the anchor to the list of threads waiting on this shared event.

Kernel Services and Subsystem Operations 125

Item Description

result Specifies the value returned to the awakened kernel thread. The following values can
be used:
THREAD_AWAKENED

Indicates a normal wakeup. This is the value automatically generated by the
e_wakeup or e_wakeup_one kernel services.

THREAD_INTERRUPTED
Indicates an interrupted sleep. This value is usually generated by a signal delivery
when the INTERRUPTIBLE flag is set.

THREAD_TIMED_OUT
Indicates a timeout expiration.

THREAD_OTHER
Delineates the predefined system codes from those that need to be defined at the
subsystem level. Subsystem should define their own values greater than or equal
to this value.

Description
The e_wakeup and e_wakeup_w_result kernel services wake up all kernel threads sleeping on the event
list anchored by the event_word parameter. The e_wakeup_one kernel service wakes up only the most
favored thread sleeping on the event list anchored by the event_word parameter.

When threads are awakened, they return from a call to either the e_block_thread or e_sleep_thread
kernel service. The return value depends on the kernel service called to wake up the threads (the wake-up
kernel service):

• THREAD_AWAKENED is returned if the e_wakeup or e_wakeup_one kernel service is called
• The value of the result parameter is returned if the e_wakeup_w_result kernel service is called.

If a signal is delivered to a thread being awakened by one of the wake-up kernel services, and if the
thread specified the INTERRUPTIBLE flag, the signal delivery takes precedence. The thread is awakened
with a return value of THREAD_INTERRUPTED, regardless of the called wake-up kernel service.

The e_wakeup and e_wakeup_w_result kernel services set the event_word parameter to EVENT_NULL.

The e_wakeup, e_wakeup_one, and e_wakeup_w_result kernel services have no return values.

Execution Environment
The e_wakeup, e_wakeup_one, and e_wakeup_w_result kernel services can be called from either the
process environment or the interrupt environment.

When called by an interrupt handler, the event_word parameter must be located in pinned memory.

Related reference
e_clear_wait Kernel Service
e_sleep_thread Kernel Service
Related information
Process and Exception Management Kernel Services

e_wakeup_w_sig Kernel Service

Purpose
Posts a signal to sleeping kernel threads.

126 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/sleep.h>

void e_wakeup_w_sig (event_word, sig)
tid_t *event_word;
int sig;

Parameters

Item Description

event_word Specifies the shared event word. The kernel uses the event_word parameter as the
anchor to the list of threads waiting on this shared event.

sig Specifies the signal number to post.

Description
The e_wakeup_w_sig kernel service posts the signal sig to each kernel thread sleeping interruptible on
the event list anchored by the event_word parameter.

The e_wakeup_w_sig kernel service has no return values.

Execution Environment
The e_wakeup_w_sig kernel service can be called from either the process environment or the interrupt
environment.

Related reference
e_block_thread Kernel Service
e_clear_wait Kernel Service
Related information
Process and Exception Management Kernel Services

eeh_broadcast Kernel Service

Purpose
This service is provided for device drivers to coordinate activities during an EEH event.

Syntax
void eeh_broadcast(handle, message)
eeh_handle_t handle;
unsigned long long message;

Parameters
Item Description

handle EEH handle obtained from eeh_init or eeh_init_multifunc

message User- or kernel-defined message

Kernel Services and Subsystem Operations 127

Description
Because single-function drivers do not have a need for coordination, this service is intended for
multifunction drivers only. If a single-function driver calls it, it is a NOP. There are two kinds of
messages that can be sent among the drivers: kernel-defined messages (such as EEH_DD_SUSPEND and
EEH_DD_DEAD) and the user-defined messages. See sys/eeh.h for help on how to define user messages.
Kernel messages have a higher priority than user messages. Therefore, if user messages and kernel
messages are both pending, the kernel messages are sent out before the user messages.

Note: Device drivers should only broadcast their own messages (that is, the user-defined message) and
not the kernel messages.

Within the kernel messages, EEH_DD_DEAD has the highest priority. Multiple messages of the same kind
may or may not be coalesced depending upon the relative timing. Messages are sent by invoking the
callback routines. The callback routines are invoked sequentially but not in any specific order except
that the last driver to receive a message will have the EEH_MASTER flag set to indicate that all other
drivers have finished processing the message. Only one message is broadcast at a time—that is, all
registered callback routines are called sequentially with the same message before moving on to the next
message. Finally, they are invoked asynchronously at INTIODONE priority. Because they are broadcast
asynchronously, a device driver must not assume on a specific timeout within which the message would
arrive.

The macro EEH_BROADCAST(handle, message) is provided for device drivers to call this service.

Execution Environment
This kernel service can be called from the process or interrupt environment.

Return Values
This service has no return value.

Related reference
eeh_enable_slot Kernel Service
eeh_init_multifunc Kernel Service
eeh_slot_error Kernel Service

eeh_clear Kernel Service

Purpose
This service unregisters a slot for an EEH function and removes resources allocated by the eeh_init or
eeh_init_multifunc kernel service.

Syntax
#include <sys/eeh.h>

void eeh_clear(handle)
eeh_handle_t handle;

Parameters
Item Description

handle EEH handle obtained from theeeh_init or eeh_init_multifunc kernel services

128 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
Single-function Drivers: This service disables EEH function on the slot and frees its eeh_handle.

Multifunction Drivers: For a multifunction adapter driver, this service removes the driver from a list of
registered drivers under the same parent bus. This service also disables EEH function on the slot if this is
the last driver to unregister and the state of the slot is NORMAL.

All device drivers are required to call eeh_clear before being removed from the system, so that there are
no hot plug conflicts. A subsequent adapter might fail in eeh_init_multifunc() on the slot if the eeh_clear
kernel service has not cleared the prior device drivers on that slot. A driver can unregister at unconfigure/
unload time. The kernel checks the state of the slot when this service is called. If the slot state is neither
NORMAL nor DEAD, eeh_clear sleeps until the state returns to one of them.

The macro EEH_CLEAR(handle) is provided for device drivers to call this service. This service is called by
a function pointer in the EEH handle.

Execution Environment
This kernel service can only be called from the process environment.

Return Values
This service has no return values.

Related reference
eeh_broadcast Kernel Service
eeh_enable_slot Kernel Service
eeh_init Kernel Service

eeh_disable_slot Kernel Service

Purpose
This service disables a slot for the EEH operations.

Syntax
#include <sys/eeh.h>

long eeh_disable_slot(handle)
eeh_handle_t handle;

Parameters
Item Description

handle EEH handle obtained from theeeh_init kernel service

Description
This service disables EEH operation on a slot.

CAUTION: CAUTION: Disabling EEH operation on a slot is highly discouraged, because it can cause
system crash or worse, data corruption.

This service can only be called by the single-function adapter drivers. If the service fails for a hardware or
firmware reason, an error is logged.

Kernel Services and Subsystem Operations 129

Multifunction drivers call this service indirectly via eeh_clear(). It fails with EEH_FAIL if called directly by
a multifunction driver.

The macro EEH_DISABLE_SLOT(handle) is provided for device drivers to call this service.

Execution Environment
This kernel service can be called from the process or interrupt environment.

Return Values
Item Description

EEH_SUCC Slot successfully disabled

EEH_FAIL Unable to disable the slot

Related reference
eeh_enable_slot Kernel Service
eeh_read_slot_state Kernel Service
eeh_slot_error Kernel Service

eeh_enable_dma Kernel Service

Purpose
This service enables DMA operations to an adapter after an EEH event.

Syntax
#include <sys/eeh.h>

long eeh_enable_dma(handle)
eeh_handle_t handle;

Parameters
Item Description

handle EEH handle obtained from theeeh_init or eeh_init_multifunc kernel services

Description
When an EEH event occurs on a slot, all Direct Memory Access (DMA) operations on the slot are inhibited.
This service should be called to re-enable DMA after an EEH event. This service can only be called from
the dump context (that is, when the dump is in progress).

Single-function Drivers: This service enables the DMA operations on a slot. If this call fails with
EEH_FAIL, an error is logged by the kernel.

Multifunction Drivers: On the multifunction adapters, the slot state must be either SUSPEND or DEBUG,
and the caller must be an EEH_MASTER. This service is called only from a dump context. While a system
dump is in progress, all callbacks and broadcasts are suspended, and a multifunction adapter is treated
like a single-function adapter, because the system can no longer support the EEH multifunction kernel
services. If the service fails, EEH_FAIL is returned. If the failure is due to hardware or firmware, an error is
logged.

There are cases when this kernel service cannot succeed because of the platform state restrictions.
In such a case, if a driver calls it, the service would return EEH_FAIL. This causes the slot to be

130 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

marked permanently unavailable, which is not correct because the slot can be recovered. To avoid
receiving EEH_FAIL from this service, the driver should supply the EEH_ENABLE_NO_SUPPORT_RC flag at
eeh_init_multifunc() time. If the EEH_ENABLE_NO_SUPPORT_RC flag is supplied, eeh_enable_dma()
returns EEH_NO_SUPPORT, indicating to the drivers that they cannot collect debug data but must
continue with the next step in recovery.

The macro EEH_ENABLE_DMA(handle) is provided for device drivers to call this service.

Execution Environment
This kernel service can only be called from a process or interrupt environment.

Return Values
This kernel service has no return values.

Related reference
eeh_disable_slot Kernel Service
eeh_enable_pio Kernel Service
eeh_enable_slot Kernel Service

eeh_enable_pio Kernel Service

Purpose
This kernel service enables programmed I/O (PIO or MMIO) to an adapter after an EEH event.

Syntax
#include <sys/eeh.h>

long eeh_enable_pio(handle)
eeh_handle_t handle;

Parameters
Item Description

handle EEH handle obtained from the eeh_init or eeh_init_multifunc kernel services

Description
When an EEH event occurs on a slot, all load and store operations (such as PIO) are inhibited. This kernel
service should be called to re-enable PIO after an EEH event.

Single-function Drivers: This kernel service enables the load and store operations on a slot. If this call
fails with EEH_FAIL, an error is logged by the kernel.

Multifunction Drivers: On the multifunction adapters, the state of the slot is checked for either SUSPEND
or DEBUG. The caller must be an EEH_MASTER. If the state is SUSPEND, a series of device driver callback
routines is executed with a command option of EEH_DD_DEBUG and flag set to EEH_DD_PIO_ENABLED.
The callbacks inform device drivers that PIO has been enabled and that further debug procedures can
be executed (such as reading command and status register). This service can be called as a result of the
EEH_DD_SUSPEND or EEH_DD_DEBUG callback message as many times as needed by the EEH_MASTER.
Additional calls to this service trigger a new set of callbacks. If this service fails, EEH_FAIL is returned. If
the failure is due to hardware or firmware, an error is logged.

There are cases when this kernel service cannot succeed due to the platform state restrictions.
In such a case, if a driver calls it, the kernel service would return EEH_FAIL followed by a

Kernel Services and Subsystem Operations 131

EEH_DD_DEAD message. This causes the slot to be marked permanently unavailable, which is not
correct because the slot can be recovered. To avoid receiving EEH_FAIL from this service, the
driver should supply the EEH_ENABLE_NO_SUPPORT_RC flag at eeh_init_multifunc() time. If the
EEH_ENABLE_NO_SUPPORT_RC flag is supplied, eeh_enable_pio() returns EEH_NO_SUPPORT, indicating
to the drivers that they cannot collect debug data but must continue with the next step in recovery.

The macro EEH_CLEAR(handle) is provided for device drivers to call this service. This service is called via
a function pointer in the EEH handle.

Note: Enabling PIO is not the same as recovering the slot. In fact, this is an optional step in the recovery
procedure.

Execution Environment
This kernel service can be called from the process or interrupt environment.

Return Values
Item Description

EEH_SUCC PIO successfully enabled.

EEH_FAIL Invalid call or could not enable PIO.

EEH_NO_SUPPORT Call is valid according to AIX EEH state, but current platform state
precludes normal completion.

Related reference
eeh_disable_slot Kernel Service
eeh_enable_dma Kernel Service
eeh_enable_slot Kernel Service

eeh_enable_slot Kernel Service

Purpose
This service enables a slot for the EEH operations.

Syntax
#include <sys/eeh.h>

long eeh_enable_slot(handle)
eeh_handle_t handle;

Parameters
Item Description

handle EEH handle obtained from theeeh_init kernel service

Description
This service enables EEH operation on a slot so that when certain errors occur on a PCI bus, the slot will
freeze (that is, PIO and DMA are disabled, which prevents potential system crash, data corruption, and so
on). This service can only be called by the single-function adapter drivers. If the service fails for hardware
or firmware reasons, an error is logged.

132 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Multifunction drivers call this service indirectly via eeh_init_multifunc(). It fails with EEH_FAIL if called
directly by a multifunction driver.

The macro EEH_ENABLE_SLOT(handle) is provided for device drivers to call this service.

Execution Environment
This kernel service can be called from the process or interrupt environment.

Return Values
Item Description

EEH_SUCC Slot successfully enabled

EEH_FAIL Unable to enable the slot

Related reference
eeh_disable_slot Kernel Service
eeh_enable_dma Kernel Service
eeh_enable_pio Kernel Service

eeh_init Kernel Service

Purpose
This service registers a single-function adapter slot on a PCI/PCI-E bus for EEH function.

Syntax
#include <sys/eeh.h>

eeh_handle_t eeh_init(pbid, slot, flag)
long pbid;
long slot;
long flag;

Parameters
Item Description

pbid AIX parent bus identifier

slot device slot (device*8+function). This is same as "connwhere" property in CuDv.

flag flag that enables eeh

Description
The pbid argument identifies a bus type and number. The bus type is IO_PCI in the case of PCI and
PCI-X bus. If the bus type is IO_PCIE, the device is on PCI-E (PCI Express) bus. The bus number is a
unique identifier determined during bus configuration. The BID_VAL macro defined in ioacc.h is used
to generate the bid. The slot argument is the device/function combination ((device*8) + function) as in
the PCI addressing scheme. The flag argument of EEH_ENABLE enables the slot. The flag argument of
EEH_DISABLE does not enable the slot but still allocates an EEH handle. This service should be called
only by the single-function adapter drivers.

Kernel Services and Subsystem Operations 133

The macro EEH_INIT(pbid, slot, flag) is provided for the device drivers to call this service. The
eeh_handle is defined as follows in <sys/eeh.h>:

/*
 * This is the eeh_handle structure for the eeh_* services
 */
typedef struct eeh_handle * eeh_handle_t;
struct eeh_handle {
 struct eeh_handle *next;
 long bid; /* bus id passed to eeh_init */
 long slot; /* slot passed to eeh_init */
 long flag; /* flag passed to eeh_init */
 int config_addr; /* Configuration Space Address */
 int eeh_mode; /* Indicates safe mode */
 uint retry_delay; /* re-read the slot state after *
 * these many seconds. */
 int reserved1;
 int reserved2;
 int reserved3;
 long long PHB_Unit_ID; /* /pci@ */
 void (*eeh_clear)(eeh_handle_t);
 long (*eeh_enable_pio)(eeh_handle_t);
 long (*eeh_enable_dma)(eeh_handle_t);
 long (*eeh_reset_slot)(eeh_handle_t, int);
 long (*eeh_enable_slot)(eeh_handle_t);
 long (*eeh_disable_slot)(eeh_handle_t);
 long (*eeh_read_slot_state)(eeh_handle_t, long *, long *);
 long (*eeh_slot_error)(eeh_handle_t, int, char *, long);
 struct eeh_shared_domain *parent_sd; /* point back to the parent
 * shared domain structure if
 * in shared domain, NULL if singlefunc.
 */
 void (*eeh_configure_bridge)(eeh_handle_t);
 void (*eeh_broadcast)(eeh_handle_t, unsigned long long);
};

This is an exported kernel service.

Execution Environment
This service can only be called from the process environment.

Return Values
Item Description

EEH_FAIL Unable to allocate EEH handle.

EEH_NO_SUPPORT EEH not supported on this system, no handle allocated.

struct eeh_handle * If successful.

Related reference
eeh_broadcast Kernel Service
eeh_clear Kernel Service
eeh_enable_slot Kernel Service

eeh_init_multifunc Kernel Service

Purpose
This kernel service registers a multifunction adapter slot on a PCI/PCI-E bus for EEH function.

Syntax
#include <sys/eeh.h>

134 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

eeh_handle_t eeh_init_multifunc(gpbid, pbid, slot, flag, delay_seconds,
 callback_ptr, dds_ptr)
long gpbid;
long pbid;
long slot;
long flag;
long delay_seconds;
long (*callback_ptr)();
void *dds_ptr;

Parameters
Item Description

gpbid Bus identifier of grandparent bus.

pbid Bus identifier of parent bus.

slot Slot on the parent bus (device*8+function). This is same as "connwhere"
property in CuDv for the device.

flag Flag that enables eeh, checks if the slot is already taken, etc.

delay_seconds Time delay after a reset (in seconds).

callback_ptr Device driver callback routine.

dds_ptr Cookie to a target device driver that is usually a pointer to the adapter
structure.

Description
This kernel service is provided for systems that support shared EEH domain, where one or more PCI
functions in one or more adapters could belong to the same EEH recovery domain. In the past, this
was called "multifunction adapter". The shared EEH domain is a more general concept than just a
multifunction adapter. It is also recommended that single function adapters use the shared EEH model.
All PCI-E devices, single or multifunction have to use the shared EEH model and hence this kernel service
to register for EEH (instead of eeh_init()). In a shared EEH domain, multiple instances of device drivers
may be operating. The instances are independent of each other and hence oblivious to each other's
existence. Therefore, when recovering a slot from an EEH event, there is a need to coordinate the recovery
procedure among them. As with eeh_init(), this service also returns an eeh_handle to the calling device
driver.

There are two kinds of adapters: bridged and non-bridged. A bridged adapter has a bridge on the card
such as PCI-to-PCI or PCIX-to-PCIX or PCI-E switch. For PCI and PCI-X bridged-adapters, pbid is the
bus ID of the parent bus, and gpbid is the bus ID of the grandparent bus. The parent bus for a bridged
adapter is the bus generated by the bridge/switch on the adapter. A bid identifies a bus number and type.
The bus type is IO_PCI in the case of PCI and PCI-X bus, and IO_PCIE in the case of PCI-E bus. The bus
number is a unique identifier determined during bus configuration. The BID_VAL macro defined in ioacc.h
is used to generate the bid. For non-bridged adapters, pbid and gpbid are the same and are the bus IDs
of the parent bus. Thus, when pbid and gpbid have different values for a PCI or PCI-X device, the kernel
knows that this is a bridged adapter and needs to the bridge recovered as part of EEH recovery. It is not
necessary to know if a PCI-E device is bridged or not for the purposes of EEH. Therefore, pbid and gpbid
must be same and equal to the parent bus bid.

In summary, there are the following cases:

1. PCI/PCI-X non-bridged adapters and all PCI-E adapters: gpbid and pbid are same and equal to the
parent bus bid.

2. PCI/PCI-X bridged adapters, gpbid is grandparent bus bid, and pbid is parent bus bid.

The slot argument is the device/function combination ((device* 8) + function) as in the PCI addressing
scheme. This is the same as the connwhere ODM value of the device.

The following flag values are legal:

Kernel Services and Subsystem Operations 135

Item Description

EEH_ENABLE_FLAG/EEH_DISABLE_FLAG The slot is always enabled for EEH when this
service is called by the first driver on that slot.
All subsequent requests to enable the slot via the
EEH_ENABLE flag are ignored. Therefore, the flag
argument of EEH_ENABLE is optional, and a flag of
EEH_DISABLE is ignored.

EEH_CHECK_SLOT The flag argument of EEH_CHECK_SLOT verifies
whether a given slot is already registered. A value
of either EEH_SLOT_ACTIVE or EEH_SLOT_FREE
is returned. No registration occurs with the
EEH_CHECK_SLOT flag, and it supersedes all other
flags. This flag simply checks the slot and returns
without any other action.

EEH_ENABLE_NO_SUPPORT_RC If the flag is set
to EEH_ENABLE_NO_SUPPORT_RC,
eeh_enable_pio() and eeh_enable_dma() return
EEH_NO_SUPPORT under certain conditions. See
“eeh_enable_dma Kernel Service” on page 130 and
“eeh_enable_pio Kernel Service” on page 131 for
more information.

Multiple flags can be logically ORed together.

The slot is always enabled for EEH when this service is called by the first driver on that slot. All
subsequent requests to enable the slot via the EEH_ENABLE flag are ignored. Therefore, the flag
argument of EEH_ENABLE is optional, and a flag of EEH_DISABLE is ignored. The flag argument of
EEH_CHECK_SLOT verifies whether a given slot is already registered. A value of either EEH_SLOT_ACTIVE
or EEH_SLOT_FREE is returned. No registration will occur with the EEH_CHECK_SLOT flag, and it
supersedes all other flags. This flag just checks the slot and returns without any other action. If
the flag is set to EEH_ENABLE_NO_SUPPORT_RC, eeh_enable_pio() and eeh_enable_dma() returns
EEH_NO_SUPPORT under certain conditions. See eeh_enable_pio() and eeh_enable_dma() for more
information. It is allowed to logically OR multiple flags together.

The delay_seconds argument allows the device driver to set a time delay between completion of PCI reset
and configuration of the bridge on the adapter. The delay is enforced even if the adapter is non-bridged.
If a value of 0 is specified for delay_seconds, a default delay time of 1 second is set. When several drivers
register on the same pbid (under a shared EEH domain), the highest delay time among all registered
drivers is used.

The callback_ptr argument is a function pointer to an EEH callback routine. The handler is defined by
the device driver and is called by the kernel in order to coordinate recovery among different drivers on
the same slot. The driver handles a variety of messages from the kernel in its callback routine. These
messages trigger the next step in recovery. The callback routines are called sequentially at INTIODONE
interrupt level.

The dds_ptr argument is a cookie that is passed to the driver when the callback routine is invoked. Drivers
normally specify a pointer to the device driver's adapter structure.

EEH_SAFE mode: A bridged adapter needs to have its bridge reconfigured at the end of PCI reset.
However, if the platform firmware does not support reconfiguration of the bridge, the adapter is marked as
EEH_SAFE by the kernel. An EEH_SAFE adapter cannot finish error recovery after an EEH event because
of the unsatisfied firmware dependency. See eeh_reset_slot for information on how the error recovery is
handled in EEH_SAFE mode.

The macro EEH_INIT_MULTIFUNC(gpbid, pbid, slot, flag, delay_seconds, callback_ptr, dds_ptr) is
provided for the device drivers in order to call this service. This is an exported kernel service.

136 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
This kernel service can only be called from the process environment.

Return Values
Item Description

EEH_FAIL Unable to allocate EEH handle.

EEH_NO_SUPPORT EEH is not supported on this system, no handle allocated.

EEH_SLOT_ACTIVE Given slot is already registered.

EEH_SLOT_FREE Given slot free.

EEH_BUSY Unable to continue, because the slot is in the middle of error
recovery.

struct eeh_handle * Upon Success.

Related reference
eeh_broadcast Kernel Service
eeh_clear Kernel Service

eeh_read_slot_state Kernel Service

Purpose
This service returns state and capabilities of a slot with respect to EEH operation.

Syntax
long eeh_read_slot_state(handle, state, support)
eeh_handle_t handle;
long *state;
long *support;

Parameters
Item Description

handle EEH handle obtained from eeh_init or eeh_init_multifunc

state State of a slot with respect to EEH

support Indicates if EEH is supported by this slot

Description
This service is used to query the hardware state of a slot and to determine whether a given slot supports
EEH. It should be called to confirm an EEH event if the driver suspects that the PIO data is invalid (for
example, getting all Fs from reading a register). This service returns the hardware state in state and
indicates whether the slot supports EEH in support. The state and support parameters are integer values
as shown below:

Valid state values are as follows:

Item Description

EEH_NSTOPPED_RST_DEA Reset deactivated and adapter is not in stopped state.

Kernel Services and Subsystem Operations 137

Item Description

EEH_NSTOPPED_RST_ACT Reset activated and adapter is not in stopped state.

EEH_STOPPED_LS_DIS Adapter in stopped state with reset signal deactivated
and Load/Store disabled.

EEH_STOPPED_LS_ENA Adapter in stopped state with reset signal deactivated
and Load/Store enabled.

EEH_UNAVAILABLE Adapter is either permanently or temporarily
unavailable.

Valid support values are as follows:

Item Description

0 EEH not supported.

1 EEH supported.

The driver should call this service and check for EEH_STOPPED_LS_DIS and EEH_STOPPED_LS_ENA as
the state values if it suspects an EEH event on the adapter. If the state is either of those values, the slot is
said to be frozen.

Single-function Driver: A single-function adapter driver calls this service to query the state of the slot.
If the service fails due to hardware or firmware reasons, an error is logged. If the service fails, state and
support values are undefined, and EEH_FAIL is returned.

Multifunction Driver: For a multifunction adapter driver, this service analyzes the state to determine if:

• The state is frozen, or
• it is permanently unavailable (that is, the slot is unusable from hereon), or
• it is temporarily unavailable.

If the slot is in either a frozen or temporarily unavailable state, the EEH_DD_SUSPEND message is
broadcast to all registered drivers on this slot. If the slot is permanently unavailable (that is, dead), the
EEH_DD_DEAD message is broadcast. Upon receiving this message, the drivers are expected to suspend
all further DMA, PIO, interrupt, configuration cycles, and so on until the slot is recovered. If the service
fails due to hardware or firmware reasons, an error is logged, EEH_DD_DEAD is broadcast, and EEH_FAIL
is returned.

Temporarily versus permanently unavailable state

In addition to state and support, this service also returns a valid retry_delay value in the eeh_handle
structure if the state is EEH_UNAVAILABLE. If retry_delay is 0, it is permanently unavailable. If retry_delay
is non-zero, it is temporarily unavailable. A permanently unavailable state means that the slot is unusable
until a hot-plug operation or partition reboot is performed. Therefore, the drivers mark their adapters as
unusable when they receive an EEH_UNAVAILABLE message (single-function) or when they receive an
EEH_DD_DEAD message (multifunction). A temporarily unavailable state means that the current state of
a slot is transient and might take a few minutes to settle down. Until that time, the device driver cannot
begin recovery because it does not know what the final state will be. The temporarily unavailable state is
handled differently by the single-function and multifunction drivers as follows:

Single-function Driver: Because a single-function driver drives its own recovery, it needs to check for
retry_delay if the state is set to EEH_UNAVAILABLE. If retry_delay is non-zero, it represents the number of
seconds that the driver should wait before calling this kernel service again. It continues to call this service
repeatedly as long as the state is EEH_UNAVAILABLE and retry_delay is non-zero. Eventually, the state will
end up in one of the following:

• EEH_NSTOPPED_RST_ACT
• EEH_STOPPED_LS_DIS
• EEH_UNAVAILABLE w/ "retry_delay" set to 0 (i.e. permanently unavailable)

138 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

At that point, the driver can continue with its normal course of action for a given state.

Multifunction Driver: A multifunction driver does not need to check for the retry_delay field when the
state is EEH_UNAVAILABLE, because EEH_UNAVAILABLE would only mean permanently unavailable.
In the case of temporarily unavailable, a multifunction driver would receive the EEH_DD_SUSPEND or
EEH_DD_DEAD message after some time, depending upon the final state of the slot. If the final state
was EEH_NSTOPPED_RST_ACT or EEH_STOPPED_LS_DIS, then EEH_DD_SUSPEND is broadcast; if it was
EEH_UNAVAILABLE, then EEH_DD_DEAD is broadcast. Thus, from the point-of-view of a multifunction
driver, there is no difference between frozen and temporarily unavailable.

The macro EEH_READ_SLOT_STATE(handle, state, support) is provided for device drivers to call this
service.

Execution Environment
This kernel service can be called from the process or interrupt environment.

Return Values
Item Description

EEH_SUCC Successfully read the slot state and capabilities

EEH_FAIL Unable to read the slot state and capabilities

Related reference
eeh_enable_slot Kernel Service
eeh_init Kernel Service
eeh_slot_error Kernel Service

eeh_reset_slot Kernel Service

Purpose
This service activates, deactivates, or toggles the reset line of a PCI slot.

Syntax
#include <sys/eeh.h>

long eeh_reset_slot(handle, flag)
eeh_handle_t handle;
long flag;

Parameters
Item Description

handle EEH handle obtained from theeeh_init or eeh_init_multifunc kernel services

flag Flag can be either EEH_ACTIVE or EEH_DEACTIVE.

Description
Single-function Drivers: This service activates and deactivates the reset line between the Terminal
Bridge and the adapter. The flag argument specifies whether to activate (EEH_ACTIVE) or deactivate
(EEH_DEACTIVE) depending upon the required action. To do the reset of a slot, the reset line should
be toggled by calling this service twice: once with EEH_ACTIVE followed by a second call with
EEH_DEACTIVE. There should be a minimum of 100 milliseconds delay between the activation and

Kernel Services and Subsystem Operations 139

deactivation of the signal. The minimum delay is specified by the PCI System Architecture and should be
enforced by the single-function driver.

Multifunction Drivers: On a multifunction adapter, the EEH_MASTER for the slot drives error recovery.
Therefore, only the EEH_MASTER can call this service. Unlike the single-function driver, the master calls
this service only once with the EEH_ACTIVE flag.

For the multi-function drivers, the service first activates and then deactivates the reset signal on the
slot. It enforces a 100–millisecond delay between the activation and deactivation as mandated by the
PCI System Architecture. After the reset signal is deactivated, the service attempts to reconfigure the
bridge on the adpater, if there is one (only applies to the bridged-adapters), after dd_trb_timer seconds
specified in eeh_init_multifunc(). At the end of a successful reset and optional bridge recovery, an
EEH_DD_RESUME message is broadcast to the slot's multifunction drivers notifying them to resume
normal operation. If this service fails, the EEH_DD_DEAD message is broadcast. If failure is due to
hardware or firmware, an error is logged.

EEH_SAFE mode: If an EEH_SAFE adapter calls this service, the reset signal is activated but is never
deactivated, thereby leaving the adapter in a "permanently unavailable" state. Such an adapter becomes
available again if either the PCI hot-plug operation is performed on it or if the partition is rebooted. This
service returns EEH_FAIL for an EEH_SAFE driver.

The macro EEH_RESET_SLOT(handle, flag) is provided for device drivers to call this service.

Execution Environment
This kernel service can be called from the process or interrupt environment.

Return Values
Item Description

EEH_SUCC Slot reset activate/deactivate succeeded

EEH_FAIL Failed to activate/deactivate the reset line, nonmaster called the service, or
EEH_SAFE mode is active

EEH_BUSY Recovery is already in progress

Related reference
eeh_enable_slot Kernel Service
eeh_read_slot_state Kernel Service
eeh_slot_error Kernel Service

eeh_slot_error Kernel Service

Purpose
This service logs a temporary or permanent error and optionally marks the slot permanently unavailable.

Syntax
#include <sys/eeh.h>

long eeh_slot_error(handle, flag, dd_buf, dd_buf_length)
eeh_handle_t handle;
int flag;
char *dd_buf;
long dd_buf_length;

140 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters
Item Description

handle EEH handle obtained from eeh_init or eeh_init_multifunc

flag EEH_RESET_TEMP or EEH_RESET_PERM

dd_buf Address of the device driver's error log buffer

dd_buf_length Length of device driver's error log buffer in bytes

Description
This service performs a number of tasks:

• It collects hardware data to help in understanding the nature and source of an EEH event
• It combines the device-driver-supplied debug data log with the hardware data log and creates an entry

in the error log
• It optionally marks the slot permanently unavailable so that subsequent eeh_read_slot_state() calls

return EEH_UNAVAILABLE with a retry_delay value of 0

The behavior of this kernel service is controlled by two flag values:

Item Description

EEH_RESET_TEMP This flag performs only the first two of the preceding tasks.

EEH_RESET_PERM This flag performs all three tasks.

Depending on the hardware state of the slot, this service might not be able to collect the hardware data.
Thus, the service succeeds but logs no data. If EEH_RESET_PERM was supplied, it still marks the slot
permanently unavailable.

The dd_buf and dd_buf_length parameters are used to combine the device driver error log with the
hardware log. The dd_buf argument is the address of an error log buffer that contains the device driver's
data. The dd_buf_length argument is the length of this buffer. If the length exceeds MAX_DD_LOG_SIZE
bytes, the driver's log data is truncated. If dd_buf is NULL, the error log contains only hardware data, if
any.

Single-function driver: The kernel service works as in the preceding description. If it fails because of
hardware or firmware reasons, EEH_FAIL is returned and an error is logged.

Multifunction driver: For the multifunction drivers, this service works as in the preceding description,
except that if EEH_RESET_PERM was supplied, the EEH_DD_DEAD message is broadcast.

The macro EEH_SLOT_ERROR(handle, flag, dd_buf, dd_buf_length) is provided for device drivers to call
this service.

Execution Environment
This kernel service can be called from the process or interrupt environment.

Return Values
Item Description

EEH_SUCC Successfully logged error

EEH_FAIL Failed to log the error and optionally mark the slot permanently unavailable

Related reference
eeh_read_slot_state Kernel Service

Kernel Services and Subsystem Operations 141

eeh_reset_slot Kernel Service

enque Kernel Service

Purpose
Sends a request queue element to a device queue.

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <sys/deviceq.h> int enque (qe) struct
req_qe *qe;

Parameter

Ite
m

Description

qe Specifies the address of the request queue element.

Description
The enque kernel service is not part of the base kernel, but is provided by the device queue management
kernel extension. This queue management kernel extension must be loaded into the kernel before loading
any kernel extensions referencing these services.

The enque service places the queue element into a specified device queue. It is used for simple process-
to-process communication within the kernel. The requester builds a copy of the queue element, indicated
by the qe parameter, and passes this copy to the enque service. The kernel copies this queue element
into a queue element in pinned global memory and then enqueues it on the target device queue.

The path identifier in the request queue element indicates the device queue into which the element is
placed.

The enque service supports the sending of the following types of queue elements:

Queue Element Description

SEND_CMD Send command.

START_IO Start I/O.

GEN_PURPOSE General purpose.

For simple interprocess communication, general purpose queue elements are used.

The queue element priority value can range from QE_BEST_PRTY to QE_WORST_PRTY. This value is
limited to the value specified when the queue was created.

The operation options in the queue element control how the queue element is processed. There are five
standard operation options:

Operation Option Description

ACK_COMPLETE Acknowledge completion in all cases.

ACK_ERRORS Acknowledge completion if the operation results in an error.

SYNC_REQUEST Synchronous request.

CHAINED Chained control blocks.

CONTROL_OPT Kernel control operation.

142 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Note: Only one of ACK_COMPLETE, ACK_ERRORS, or SYNC_REQUEST can be specified. Also, all of these
options are ignored if the path specifies that no acknowledgment (NO_ACK) should be sent.

With the SYNC_REQUEST synchronous request option, control does not return from the enque service
until the request queue element is acknowledged. This performs in one step what can also be achieved by
sending a queue element with the ACK_COMPLETE flag on, and then calling either the et_wait or waitq
kernel services.

The kernel calls the server's check routine, if one is defined, before a queue element is placed on the
device queue. This routine can stop the operation if it detects an error.

The kernel notifies the device queue's server, if necessary, after a queue element is placed on the device
queue. This is done by posting the server process (using the et_post kernel service) with an event control
bit.

Execution Environment
The enque kernel service can be called from the process environment only.

Return Values

Item Description

RC_GOOD Indicates a successful operation.

RC_ID Indicates a path identifier that is not valid.

All other error values represent errors returned by the server.

Related reference
et_post Kernel Service
et_wait Kernel Service
waitq Kernel Service

errresume Kernel Service

Purpose
Resumes error logging after an errlast command was issued.

Syntax
void errresume()

Description
When an error is logged with the errlast command, no more error logging will happen on the system until
an errresume call is issued.

Execution Environment
This can be called from either the process or an interrupt level.

Related reference
errsave or errlast Kernel Service
Related information
Error-Logging Facility

Kernel Services and Subsystem Operations 143

errsave or errlast Kernel Service

Purpose
Allows the kernel and kernel extensions to write to the error log.

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <sys/errids.h> void errsave (buf, cnt) char
*buf; unsigned int cnt; void errlast (buf, cnt) char *buf unsigned int cnt;

Parameters

Ite
m

Description

buf Points to a buffer that contains an error record as described in the /usr/include/sys/err_rec.h file.

cnt Specifies the number of bytes in the error record contained in the buffer pointed to by the buf
parameter.

Description
The errsave kernel service allows the kernel and kernel extensions to write error log entries to the error
device driver. The error record pointed to by the buf parameter includes the error ID resource name and
detailed data.

In addition, the errlast kernel service disables any future error logging, thus any error logged with errlast
will stay on NVRAM. This service is only for use prior to a pending system crash or stop. The errlast
service should only be used in extreme circumstances where the system can not continue, such as the
occurance of a machine check.

Execution Environment
The errsave kernel service can be called from either the process or interrupt environment.

Return Values
The errsave service has no return values.

Related information
errlog subroutine
Error Logging Special Files
RAS Kernel Services

f
The following kernel services begin with the with the letter f.

fetch_and_add Kernel Services

Purpose
Increments a variable atomically.

144 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/atomic_op.h>

int fetch_and_add (addr, value)
atomic_p addr;
int value;

long fetch_and_addlp (addr, value)
atomic_l addr;
long value;

Parameters

Item Description

addr Specifies the address of the variable to be incremented.

value Specifies the value to be added to the variable.

Description
The fetch_and_add kernel services atomically increment a variable.

The fetch_and_add kernel service operates on a single word (32 bit) variable while the fetch_and_addlp
kernel service operates on a double word (64 bit) variable.

These operations are useful when a counter variable is shared between several kernel threads, because it
ensures that the fetch, update, and store operations used to increment the counter occur atomically (are
not interruptible).

Note:

• The single word variable for the fetch_and_add kernel service must be aligned on a word (32 bit)
boundary.

• The double word variable for the fetch_and_addlp kernel service must be aligned on a double word (64
bit) boundary.

Execution Environment
The fetch_and_add kernel services can be called from either the process or interrupt environment.

Return Values
The fetch_and_add kernel services return the original value of the variable.

Related reference
fetch_and_and or fetch_and_or Kernel Services
compare_and_swap Kernel Services
Related information
Locking Kernel Services

fetch_and_and or fetch_and_or Kernel Services

Purpose
Clears and sets bits in a variable atomically.

Kernel Services and Subsystem Operations 145

Syntax

#include <sys/atomic_op.h>

uint fetch_and_and (addr, mask)
atomic_p addr;uint mask;

ulong fetch_and_andlp (addr, mask)
atomic_l addr;
ulong mask;

uint fetch_and_or (addr, mask)
atomic_p addr;
uint mask;

ulong fetch_and_orlp (addr, mask)
atomic_l addr;
ulong mask;

Parameters

Item Description

addr Specifies the address of the variable whose bits are to be cleared or set.

mask Specifies the bit mask which is to be applied to the variable.

Description
The fetch_and_and and fetch_and_or kernel services respectively clear and set bits in a variable,
according to a bit mask, as a single atomic operation. The fetch_and_and service clears bits in the
variable which correspond to clear bits in the bit mask, and the fetch_and_or service sets bits in the
variable which correspond to set bits in the bit mask.

The fetch_and_add and fetch_and_or kernel services operate on a single word (32 bit) variable while the
fetch_and_addlp and fetch_and_orlp kernel services operate on a double word (64 bit) variable.

These operations are useful when a variable containing bit flags is shared between several kernel threads,
because they ensure that the fetch, update, and store operations used to clear or set a bit in the variable
occur atomically (are not interruptible).

Note:

• For the fetch_and_and and fetch_and_or kernel services, the single word containing the bit flags must
be aligned on a full word (32 bit) boundary.

• For the fetch_and_addlp and fetch_and_orlp kernel services, the double word containing the bit flags
must be aligned on a double word (64 bit) boundary.

Execution Environment
The fetch_and_and and fetch_and_or kernel services can be called from either the process or interrupt
environment.

Return Values
The fetch_and_and and fetch_and_or kernel services return the original value of the variable.

146 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related reference
fetch_and_add Kernel Services
compare_and_swap Kernel Services
Related information
Locking Kernel Services

fidtovp Kernel Service

Purpose
Maps a file system structure to a file ID.

Maps a file identifier to a mode.

Syntax
#include <sys/types.h> #include <sys/vnode.h> int fidtovp(fsid, fid, vpp) fsid_t *fsid; struct fileid *fid;
struct vnode **vpp;

Parameters

Item Description

fsid Points to a file system ID structure. The system uses this structure to determine which virtual file
system (VFS) contains the requested file.

fid Points to a file ID structure. The system uses this pointer to locate the specific file within the VFS.

vpp Points to a location to store the file's vnode pointer upon successful return of the fidtovp kernel
service.

Description
The fidtovp kernel service returns a pointer to a vnode for the file identified by fsid and fid, and
increments the count on the vnode so the file is not removed. Subroutines that call the fidtovp kernel
service must call VNOP_RELE to release the vnode pointer.

This kernel service is designed for use by the server side of distributed file systems.

Execution Environment
The fidtovp kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates successful completion.

ESTALE Indicates the requested file or file system was removed or recreated since last access with
the given file system ID or file ID.

find_input_type Kernel Service

Purpose
Finds the given packet type in the Network Input Interface switch table and distributes the input packet
according to the table entry for that type.

Kernel Services and Subsystem Operations 147

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <net/if.h> int find_input_type (type, m, ac,
header_pointer) ushort type; struct mbuf * m; struct arpcom * ac; caddr_t header_pointer;

Parameters

Item Description

type Specifies the protocol type.

m Points to the mbuf buffer containing the packet to distribute.

ac Points to the network common portion (arpcom) of the network interface on
which the packet was received. This common portion is defined as follows:

in net/if_arp.h

header_pointer Points to the buffer containing the input packet header.

Description
The find_input_type kernel service finds the given packet type in the Network Input table and distributes
the input packet contained in the mbuf buffer pointed to by the m value. The ac parameter is passed to
services that do not have a queued interface.

Execution Environment
The find_input_type kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

0 Indicates that the protocol type was successfully found.

ENOENT Indicates that the service could not find the type in the Network Input table.

Related reference
add_input_type Kernel Service
del_input_type Kernel Service
Related information
Network Kernel Services

fp_access Kernel Service

Purpose
Checks for access permission to an open file.

Syntax
#include <sys/types.h> #include <sys/errno.h> int fp_access (fp, perm) struct file *fp; int perm;

148 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

fp Points to a file structure returned by the fp_open or fp_opendev kernel service.

perm Indicates which read, write, and execute permissions are to be checked. The /usr/include/sys/
mode.h file contains pertinent values (IREAD, IWRITE, IEXEC).

Description
The fp_access kernel service is used to see if either the read, write, or exec bit is set anywhere in a file's
permissions mode. Set perm to one of the following constants from mode.h:

IREAD IWRITE IEXEC

Execution Environment
The fp_access kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates that the calling process has the requested permission.

EACCES Indicates all other conditions.

Related information
access subroutine
Logical File System Kernel Services

fp_close Kernel Service

Purpose
Closes a file.

Syntax
#include <sys/types.h> #include <sys/errno.h> int fp_close (fp) struct file *fp;

Parameter

Ite
m

Description

fp Points to a file structure returned by the fp_open, fp_getf, or fp_opendev kernel service.

Description
The fp_close kernel service is a common service for closing files used by both the file system and routines
outside the file system.

Execution Environment
The fp_close kernel service can be called from the process environment only.

Kernel Services and Subsystem Operations 149

Return Values

Item Description

0 Indicates a successful operation.

non-zero The underlying file system implementation might report one of the values from the /usr/
include/errno.h file, which is returned to the caller as a return value. However, the file is still
closed.

Related information
close subroutine
Logical File System Kernel Services

fp_close Kernel Service for Data Link Control (DLC) Devices

Purpose
Allows kernel to close the generic data link control (GDLC) device manager using a file pointer.

Syntax
int fp_close(fp)

Parameters

Item Description

fp Specifies the file pointer of the GDLC being closed.

Description
The fp_close kernel service disables a GDLC channel. If this is the last channel to close on a port, the
GDLC device manager resets to an idle state on that port and the communications device handler is
closed. The fp_close kernel service may be called from the process environment only.

Return Values

Item Description

0 Indicates a successful completion.

ENXIO Indicates an invalid file pointer. This value is
defined in the /usr/include/sys/errno.h file.

Related reference
fp_close Kernel Service
fp_open Kernel Service for Data Link Control (DLC) Devices
Related information
Generic Data Link Control (GDLC) Environment Overview

fp_fstat Kernel Service

Purpose
Gets the attributes of an open file.

150 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax
#include <sys/types.h> #include <sys/errno.h> int fp_fstat (fp, statp, len, seg) struct file* fp; struct
stat *statp; int len; int seg;

Parameters

Item Description

fp Points to a file structure returned by the fp_open kernel service.

statp Points to a buffer defined to be of stat or fullstat type structure. The statsz
parameter indicates the buffer type.

len Indicates the size of the stat or fullstat structure to be returned. The /usr/
include/sys/stat.h file contains information about the stat structure.

seg Specifies the flag indicating where the information represented by the
statbuf parameter is located:
SYS_ADSPACE

Buffer is in kernel memory.
USER_ADSPACE

Buffer is in user memory.

Description
The fp_fstat kernel service is an internal interface to the function provided by the fstatx subroutine.

Execution Environment
The fp_fstat kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned.

Related information
fstatx subroutine
Logical File System Kernel Services

fp_fsync Kernel Service

Purpose
Writes changes for a specified range of a file to permanent storage.

Syntax
#include <sys/fp_io.h>

int fp_fsync (fp, how, off, len)
struct file *fp;
int how;
offset_t off;
offset_t len;

Kernel Services and Subsystem Operations 151

Description
The fp_fsync kernel service is an internal interface to the function provided by the fsync_range
subroutine.

Parameters
Item Description

fp Points to a file structure returned by the fp_open kernel service.

how Specifies the following handling characteristics of the operation:
FDATASYNC

The changed data in the range specified by the off and len parameters is written to
the storage. If the metadata for the file is changed and this changed metadata must
read the data, the metadata is also written to the storage. Otherwise, the metadata is
not updated.

FFILESYNC
The changed data in the range specified by the off and len parameters is written to
the storage. If any metadata is changed, all of the changed user data is written to the
storage. Metadata changes and file attributes including time stamps are also written to
the storage.

off Specifies the starting offset value of the data in the file to be written to the storage.

len Specifies the length of the file range to be written to the storage. If you specify the value
as zero, all cached data is written to the storage.

Execution Environment
The fp_fsync kernel service can be called from the process environment only.

Return Values
Item Description

0 Indicates a successful operation.

ERRNO Returns an error number from the /usr/
include/sys/errno.h file on failure.

Related information
fsync or fsync_range Subroutine
Logical File System Kernel Services

fp_getdevno Kernel Service

Purpose
Gets the device number or channel number for a device.

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <sys/file.h> int fp_getdevno (fp, devp,
chanp) struct file *fp; dev_t *devp; chan_t *chanp;

152 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

fp Points to a file structure returned by the fp_open or fp_opendev service.

devp Points to a location where the device number is to be returned.

chanp Points to a location where the channel number is to be returned.

Description
The fp_getdevno service finds the device number and channel number for an open device that is
associated with the file pointer specified by the fp parameter. If the value of either devp or chanp
parameter is null, this service does not attempt to return any value for the argument.

Execution Environment
The fp_getdevno kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

EINVAL Indicates that the pointer specified by the fp parameter does not point to a file structure for
an open device.

Related information
Logical File System Kernel Services

fp_getea Kernel Service

Purpose
Reads the value of an extended attribute value.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
int fp_getea (fp,name, value, size, countp, segflag)
struct file * fp;
const char * name;
void * value;
size_t size;
ssize_t * countp;
int segflag;

Parameters

Item Description

fp Specifies the file structure returned by the fp_open kernel service.

name Specifies the name of the extended attribute. An extended attribute name is a
NULL-terminated string.

Kernel Services and Subsystem Operations 153

Item Description

value Specifies the pointer to a buffer in which the attribute is stored. The value of an
extended attribute is an opaque byte stream of specified length.

size Specifies the size of the value buffer. If size is 0, fp_getea returns the current
size of the named extended attribute, which can be used to estimate whether
the size of a buffer is sufficiently large to hold the value associated with the
extended attribute.

countp Specifies the actual size of the content in the value buffer.

segflag Specifies the flag indicating where the pointer specified by the path parameter
is located:

SYS_ADSPACE
The pointers specified by the name and value parameters are stored in
kernel memory.

USER_ADSPACE
The pointers specified by the name and value parameters are stored in
application memory.

Description
The fp_getea kernel service provides a common service used by:

• The file system for the implementation of the fgetea subroutine.
• Kernel routines outside the file system that set extended attribute values.

Execution Environment
The fp_getea kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

ERRNO Indicates a failed operation. Returns an error number from the /usr/
include/sys/errno.h file on failure.

Related information
fgetea subroutine
fp_open subroutine
Logical File System Kernel Services

fp_getf Kernel Service

Purpose
Retrieves a pointer to a file structure.

Syntax
#include <sys/types.h> #include <sys/errno.h> int fp_getf (fd, fpp) int fd; struct file **fpp;

154 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Ite
m

Description

fd Specifies a file descriptor.

fpp Points to the location where the file pointer is to be returned.

Description
A process calls the fp_getf kernel service when it has a file descriptor for an open file, but needs a file
pointer to use other Logical File System services.

The fp_getf kernel service uses the file descriptor as an index into the process's open file table. From this
table it extracts a pointer to the associated file structure.

As a side effect of the call to the fp_getf kernel service, the reference count on the file descriptor is
incremented. This count must be decremented when the caller has completed its use of the returned file
pointer. The file descriptor reference count is decremented by a call to the ufdrele kernel service.

Execution Environment
The fp_getf kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

EBADF Indicates that either the file descriptor is invalid or not currently used in the process.

Related reference
ufdhold and ufdrele Kernel Service
Related information
Logical File System Kernel Services

fp_get_path Kernel Service

Purpose
Returns the full path name of the file referenced by the fp parameter.

Syntax

 #include <sys/types.h>
 #include <sys/errno.h>

 int
 fp_get_path(struct file *fp,
 int flags,
 char *path,
 size_t size)

Parameters
fp

Points to a file structure that is returned by the fp_open or fp_opendev kernel service.
flags

No flags are defined; this parameter must be 0.

Kernel Services and Subsystem Operations 155

path
Points to a buffer where the file name is returned.

size
Specifies the size of the path buffer.

Description
The fp_get_path kernel service provides a method to find a path name from a file structure pointer.

Execution environment
The fp_get_path kernel service can be called only from the process environment.

Return values
0

Indicates a successful operation.
EINVAL

Invalid fp or path argument, or the fp parameter does not refer to a DTYPE_VNODE file structure.

fp_hold Kernel Service

Purpose
Increments the open count for a specified file pointer.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

void fp_hold (fp)
struct file *fp;

Parameter

Ite
m

Description

fp Points to a file structure previously obtained by calling the fp_open, fp_getf, or fp_opendev kernel
service.

Description
The fp_hold kernel service increments the use count in the file structure specified by the fp parameter.
This results in the associated file remaining opened even when the original open is closed.

If this function is used, and access to the file associated with the pointer specified by the fp parameter is
no longer required, the fp_close kernel service should be called to decrement the use count and close the
file as required.

Execution Environment
The fp_hold kernel service can be called from the process environment only.

156 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related information
Logical File System Kernel Services

fp_ioctl Kernel Service

Purpose
Issues a control command to an open device or file.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int fp_ioctl (fp, cmd, arg, ext)
struct file * fp;
unsigned longcmd;
caddr_targ;
intext;

Parameters

Item Description

fp Points to a file structure returned by the fp_open or fp_opendev kernel
service.

cmd Specifies the specific control command requested.

arg Indicates the data required for the command.

ext Specifies an extension argument required by some device drivers. Its
content, form, and use are determined by the individual driver.

Description
The fp_ioctl kernel service is an internal interface to the function provided by the ioctl subroutine.

Execution Environment
The fp_ioctl kernel service can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates a successful operation.

If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned. The ioctl
subroutine contains valid errno values.

Related information
ioctl subroutine
Logical File System Kernel Services

fp_ioctl Kernel Service for Data Link Control (DLC) Devices

Kernel Services and Subsystem Operations 157

Purpose
Transfers special commands from the kernel to generic data link control (GDLC) using a file pointer.

Syntax

#include <sys/gdlextcb.h>
#include <fcntl.h>

int fp_ioctl (fp, cmd, arg, ext)

Parameters

Item Description

fp Specifies the file pointer of the target GDLC.

cmd Specifies the operation to be performed by GDLC.

arg Specifies the address of the parameter block. The
argument for this parameter must be in the kernel
space.

ext Specifies the extension parameter. This parameter
is ignored by GDLC.

Description
Various GDLC functions can be initiated using the fp_ioctl kernel service, such as changing configuration
parameters, contacting the remote, and testing a link. Most of these operations can be completed before
returning to the user synchronously. Some operations take longer, so asynchronous results are returned
much later using the exception function handler. GDLC calls the kernel user's exception handler to
complete these results. Each GDLC supports the fp_ioctl kernel service. The fp_ioctl kernel service may
be called from the process environment only.

Note: The DLC_GET_EXCEP ioctl operation is not used since all exception conditions are passed to the
kernel user through the exception handler.

Return Values

Item Description

0 Indicates a successful completion.

ENXIO Indicates an invalid file pointer.

EINVAL Indicates an invalid value.

ENOMEM Indicates insufficient resources to satisfy the ioctl
subroutine.

These return values are defined in the /usr/include/sys/errno.h file.

Related reference
fp_ioctl Kernel Service
Related information
ioctl subroutine
Generic Data Link Control (GDLC) Environment Overview

fp_ioctlx Kernel Service

158 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Issues a control command to an open device.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <fcntl.h>

int fp_ioctlx (fp, cmd, arg, ext, flags, retval)
struct file *fp;
unsigned long cmd;
caddr_t arg;
ext_t ext;
unsigned long flags;
long *retval;

Description
The fp_ioctlx kernel service is an internal interface to the function provided by the ioctl subroutine.

The fp_ioctlx kernel service issues a control command to an open device. Some drivers need the return
value that is returned by the kernel service if there is no error. This value is not available through the
fp_ioctl kernel service. The fp_ioctlx kernel service allows this data to be passed.

Parameters
Item Description

fp Points to a file structure returned by the fp_open or fp_opendev kernel service.

cmd Specifies the specific control command requested.

arg Indicates the data required for the command.

ext Specifies an extension argument required by some device drivers. Its content,
form, and use are determined by the individual driver.

flags Indicates the address space of arg parameter. If the arg value is in kernel address
space, flags should be specified as FKERNEL. Otherwise, it should be zero (drivers
pass data that is in user space).

retval Points to the location where the return value will be stored on successful return
from the call.

Execution Environment
The fp_ioctlx kernel service can be called only from the process environment.

Return Values
Upon successful completion, the fp_ioctlx kernel service returns 0. If unsuccessful, one of the values
from the /usr/include/sys/errno.h file is returned. The ioctl subroutine contains valid errno values. This
value will be stored in the retval parameter.

Related reference
fp_ioctl Kernel Service
Related information
ioctl, ioctlx, ioctl32, or ioctl32x Subroutine

fp_listea Kernel Service

Kernel Services and Subsystem Operations 159

Purpose
Lists the extended attributes associated with a file.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
int fp_listea (fp, list, size, countp, segflag)
struct file * fp;
const char * list;
size_t size;
ssize_t * countp;
int segflag;

Parameters

Item Description

fp Specifies the file structure returned by the fp_open kernel service.

list Specifies a pointer to a buffer in which the list of attributes will be
stored.

size Specifies the size of the list buffer.

countp Specifies the actual size of the content in the list buffer.

segflag Specifies the flags indicating where the pointer specified by the path
parameter is located:

SYS_ADSPACE
The pointer specified by the list parameter is stored in kernel
memory.

USER_ADSPACE
The pointer specified by the list parameter is stored in application
memory.

Description
The fp_listea kernel service provides a common service used by:

• File system for the implementation of the flistea subroutine.
• Kernel routines outside the file system that set extend attribute values.

Execution Environment
The fp_listea kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

ERRNO Indicates a failed operation. Returns an error number from the /usr/
include/sys/errno.h file on failure.

Related information
flistea subroutine
fp_open subroutine

160 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Logical File System Kernel Services

fp_lseek, fp_llseek Kernel Service

Purpose
Changes the current offset in an open file.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int fp_lseek (fp, offset, whence)
struct file *fp;
off_t offset;
int whence;

int fp_llseek
(fp, offset, whence)
struct file *fp
offset_t offset;
int whence;

Parameters

Item Description

fp Points to a file structure returned by the fp_open kernel service.

offset Specifies the number of bytes (positive or negative) to move the file pointer.

whence Indicates how to use the offset value:
SEEK_SET

Sets file pointer equal to the number of bytes specified by the offset parameter.
SEEK_CUR

Adds the number of bytes specified by the offset parameter to current file pointer.
SEEK_END

Adds the number of bytes specified by the offset parameter to current end of file.

Description
The fp_lseek and fp_llseek kernel services are internal interfaces to the function provided by the lseek
and llseek subroutines.

Execution Environment
The fp_lseek and fp_llseek kernel services can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

ERRN
O

Returns an error number from the /usr/include/sys/errno.h file on failure.

Kernel Services and Subsystem Operations 161

Related information
lseek subroutine
Logical File System Kernel Services

fp_open Kernel Service

Purpose
Opens special and regular files or directories.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int fp_open (path,oflags,mode,ext,segflag,fpp)
char * path;
long oflags;
int mode;
ext_t ext;
int segflag;
struct file ** fpp;

Parameters

Item Description

path Points to the file name of the file to be opened.

oflags Specifies open mode flags as described in the open
subroutine.

mode Specifies the mode (permissions) value to be given to the file
if the file is to be created.

ext Specifies an extension argument required by some device
drivers. Individual drivers determine its content, form, and
use.

segflag Specifies the flag indicating where the pointer specified by
the path parameter is located:
SYS_ADSPACE

The pointer specified by the path parameter is stored in
kernel memory.

USER_ADSPACE
The pointer specified by the path parameter is stored in
application memory.

fpp Points to the location where the file structure pointer is to be
returned by the fp_open service.

Description
The fp_open kernel service provides a common service used by:

162 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

• The file system for the implementation of the open subroutine
• Kernel routines outside the file system that must open files

Execution Environment
The fp_open kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

Also, the fpp parameter points to an open file structure that is valid for use with the other Logical File
System services. If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned.
The discussion of the open subroutine contains possible errno values.

Related information
open subroutine
Logical File System Kernel Services

fp_open Kernel Service for Data Link Control (DLC) Devices

Purpose
Allows kernel to open the generic data link control (GDLC) device manager by its device name.

Syntax

#include <sys/gdlextcb.h>
#include <fcntl.h>

fp_open (path, oflags, cmode, ext, segflag, fpp)

Parameters

Item Description

path Consists of a character string containing the /dev
special file name of the GDLC device manager, with
the name of the communications device handler
appended. The format is shown in the following
example:

/dev/dlcether/ent0

oflags Specifies a value to set the file status flag. The
GDLC device manager ignores all but the following
values:
O_RDWR

Open for reading and writing. This must be set
for GDLC or the open will not be successful.

O_NDELAY, O_NONBLOCK
Subsequent writes return immediately if no
resources are available. The calling process is
not put to sleep.

Kernel Services and Subsystem Operations 163

Item Description

cmode Specifies the O_CREAT mode parameter. This is
ignored by GDLC.

ext Specifies the extended kernel service parameter.
This is a pointer to the dlc_open_ext extended I/O
structure for open subroutines. The argument for
this parameter must be in the kernel space.

segflag Specifies the segment flag indicating where the
path parameter is located:
FP_SYS

The path parameter is stored in kernel memory.
FP_USR

The path parameter is stored in application
memory.

fpp Specifies the returned file pointer. This parameter
is passed by reference and updated by the file
I/O subsystem to be the file pointer for this open
subroutine.

Description
The fp_open kernel service allows the kernel user to open a GDLC device manager by specifying the
special file names of both the DLC and the communications device handler. Since the GDLC device
manager is multiplexed, more than one process can open it (or the same process multiple times) and still
have unique channel identifications.

Each open carries the communications device handler's special file name so that the DLC knows which
port to transfer data on.

The kernel user must also provide functional entry addresses in order to obtain receive data and
exception conditions. Each GDLC supports the fp_open kernel service. The fp_open kernel service may
be called from the process environment only. Using GDLC Special Kernel Services provides additional
information.

Return Values
Upon successful completion, this service returns a value of 0 and a valid file pointer in the fpp parameter.

Item Description

ECHILD Indicates that the service cannot create a kernel
process.

EINVAL Indicates an invalid value.

ENODEV Indicates that no such device handler is present.

ENOMEM Indicates insufficient resources to satisfy the open.

EFAULT Indicates that the kernel service, such as the
copyin or initp service, has failed.

These return values are defined in the /usr/include/sys/errno.h file.

Related reference
fp_open Kernel Service
fp_close Kernel Service for Data Link Control (DLC) Devices

164 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related information
Generic Data Link Control (GDLC) Environment Overview

fp_opendev Kernel Service

Purpose
Opens a device special file.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int fp_opendev (devno,flags,cname, ext, fpp)
dev_tdevno;
int flags;
caddr_t cname;
ext_t ext;
struct file** fpp;

Parameters

Item Description

devno Specifies the major and minor device number of device driver to
open.

flag Specifies one of the following values:
DREAD

The device is being opened for reading only.
DWRITE

The device is being opened for writing.
DNDELAY

The device is being opened in nonblocking mode.

cname Points to a channel specifying a character string or a null value.

ext Specifies an extension argument required by some device drivers.
Its content, form, and use are determined by the individual driver.

fpp Specifies the returned file pointer. This parameter is passed by
reference and is updated by the fp_opendev service to be the file
pointer for this open instance. This file pointer is used as input to
other Logical File System services to specify the open instance.

Description
The kernel or kernel extension calls the fp_opendev kernel service to open a device by specifying its
device major and minor number. The fp_opendev kernel service provides the correct semantics for
opening the character or multiplexed class of device drivers.

If the specified device driver is non-multiplexed:

• An in-core i-node is found or created for this device.
• The i-node reference count is increment by 1.
• The device driver's ddopen entry point is called with the devno, devflag, and ext parameters. The

unused chan parameter on the call to the ddopen routine is set to 0.

Kernel Services and Subsystem Operations 165

If the device driver is a multiplexed character device driver (that is, its ddmpx entry point is defined), an
in-core i-node is created for this channel. The device driver's ddmpx routine is also called with the cname
pointer to the channel identification string if non-null. If the cname pointer is null, the ddmpx device
driver routine is called with the pointer to a null character string.

If the device driver can allocate the channel, the ddmpx routine returns a channel ID, represented by the
chan parameter. If the device driver cannot allocate a channel, the fpopendev kernel service returns an
ENXIO error code. If successful, the i-node reference count is increment by 1. The device driver ddopen
routine is also called with the devno, flag, chan (provided by ddmpx routine), and ext parameters.

If the return value from the specified device driver ddopen routine is nonzero, it is returned as the return
code for the fp_opendev kernel service. If the return code from the device driver ddopen routine is 0, the
fp_opendev service returns the file pointer corresponding to this open of the device.

The fp_opendev kernel service can only be called in the process environment or device driver top half.
Interrupt handlers cannot call it. It is assumed that all arguments to the fp_opendev kernel service are in
kernel space.

The file pointer (fpp) returned by the fp_opendev kernel service is only valid for use with a subset of the
Logical File System services. These nine services can be called:

• fp_close
• fp_ioctl
• fp_poll
• fp_select
• fp_read
• fp_readv
• fp_rwuio
• fp_write
• fp_writev

Other services return an EINVAL return value if called.

Execution Environment
The fp_opendev kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

The *fpp field also points to an open file structure that is valid for use with the other Logical File
System services. If an error occurs, one of the following values from the /usr/include/sys/errno.h file is
returned:

Item Description

EINVAL Indicates that the major portion of the devno parameter exceeds
the maximum number allowed, or the flags parameter is not
valid.

ENODEV Indicates that the device does not exist.

EINTR Indicates that the signal was caught while processing the
fp_opendev request.

ENFILE Indicates that the system file table is full.

166 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

ENXIO Indicates that the device is multiplexed and unable to allocate
the channel.

The fp_opendev service also returns any nonzero return code returned from a device driver ddopen
routine.

Related reference
ddopen Device Driver Entry Point
fp_close Kernel Service
Related information
Logical File System Kernel Services

fp_poll Kernel Service

Purpose
Checks the I/O status of multiple file pointers, file descriptors, and message queues.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/poll.h>

int fp_poll (listptr, nfdsmsgs, timeout, flags)
void * listptr;
unsigned long nfdsmsgs;
long timeout;
uint flags;

Parameters

Item Description

listptr Points to an array of pollfd or pollmsg structures, or to a single pollist structure. Each
structure specifies a file pointer, file descriptor, or message queue ID. The events of
interest for this file or message queue are also specified.

nfdsmsgs Specifies the number of files and message queues to check. The low-order 16 bits give the
number of elements present in the array of pollfd structures. The high-order 16 bits give
the number of elements present in the array of pollmsg structures. If either half of the
nfdsmsgs parameter is equal to 0, then the corresponding array is presumed abse1e.

timeout Specifies how long the service waits for a specified event to occur. If the value of this
parameter is -1, the fp_poll kernel service does not return until at least one of the
specified events has occurred. If the time-out value is 0, the fp_poll kernel service does
not wait for an event to occur. Instead, the service returns immediately even if none of the
specified events have occurred. For any other value of the timeout parameter, the fp_poll
kernel service specifies the maximum length of time (in milliseconds) to wait for at least
one of the specified events to occur.

Kernel Services and Subsystem Operations 167

Item Description

flags Specifies the type of data in the listptr parameter:
POLL_FDMSG

Input is a file descriptor and/or message queue.
0

Input is a file pointer.

Description
Note: The fp_poll service applies only to character devices, pipes, message queues, and sockets. Not all
character device drivers support the fp_poll service.

The fp_poll kernel service checks the specified file pointers/descriptors and message queues to see if
they are ready for reading or writing, or if they have an exceptional condition pending.

The pollfd, pollmsg, and pollist structures are defined in the /usr/include/sys/poll.h file. These are
the same structures described for the poll subroutine. One difference is that the fd field in the pollfd
structure contains a file pointer when the flags parameter on the fp_poll kernel service equals 0 (zero). If
the flags parameter is set to a POLL_FDMSG value, the field is taken as a file descriptor in all processed
pollfd structures. If either the fd or msgid fields in their respective structures has a negative value, the
processing for that structure is skipped.

When performing a poll operation on both files and message queues, the listptr parameter points to a
pollist structure, which can specify both files and message queues. To construct a pollist structure, use
the POLLIST macro as described in the poll subroutine.

If the number of pollfd elements in the nfdsmsgs parameter is 0, then the listptr parameter must point to
an array of pollmsg structures.

If the number of pollmsg elements in the nfdsmsgs parameter is 0, then the listptr parameter must point
to an array of pollfd structures.

If the number of pollmsg and pollfd elements are both nonzero in the nfdsmsgs parameter, the listptr
parameter must point to a pollist structure as previously defined.

Execution Environment
The fp_poll kernel service can be called from the process environment only.

Return Values
Upon successful completion, the fp_poll kernel service returns a value that indicates the total number of
files and message queues that satisfy the selection criteria. The return value is similar to the nfdsmsgs
parameter in the following ways:

• The low-order 16 bits give the number of files.
• The high-order 16 bits give the number of message queue identifiers that have nonzero revents values.

Use the NFDS and NMSGS macros to separate these two values from the return value. A return code of 0
(zero) indicates that:

• The call has timed out.
• None of the specified files or message queues indicates the presence of an event.

In other words, all revents fields are 0 (zero).

When the return code from the fp_poll kernel service is negative, it is set to the following value:

Item Description

EINTR Indicates that a signal was caught during the fp_poll kernel service.

168 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related reference
selreg Kernel Service
Related information
poll subroutine
Logical File System Kernel Services

fp_read Kernel Service

Purpose
Performs a read on an open file with arguments passed.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int fp_read (fp, buf, nbytes, ext, segflag, countp)
struct file * fp;
char * buf;
ssize_t nbytes;
ext_t ext;
int segflag;
ssize_t * countp;

Parameters

Item Description

fp Points to a file structure returned by the fp_open or fp_opendev
kernel service.

buf Points to the buffer where data read from the file is to be stored.

nbytes Specifies the number of bytes to be read from the file into the
buffer.

ext Specifies an extension argument required by some device drivers.
Its content, form, and use are determined by the individual driver.

segflag Indicates in which part of memory the buffer specified by the buf
parameter is located:
SYS_ADSPACE

The buffer specified by the buf parameter is in kernel memory.
USER_ADSPACE

The buffer specified by the buf parameter is in application
memory.

countp Points to the location where the count of bytes actually read from
the file is to be returned.

Description
The fp_read kernel service is an internal interface to the function provided by the read subroutine.

Kernel Services and Subsystem Operations 169

Execution Environment
The fp_read kernel service can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates successful completion.

If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned.

Related information
read subroutine
Logical File System Kernel Services

fp_readv Kernel Service

Purpose
Performs a read operation on an open file with arguments passed in iovec elements.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int fp_readv
(fp, iov, iovcnt, ext,
seg, countp)
struct file * fp;
struct iovec * iov;
ssize_t iovcnt;
ext_t ext;
int seg;
ssize_t countp;

Parameters

Item Description

fp Points to a file structure returned by the fp_open kernel
service.

iov Points to an array of iovec elements. Each iovec element
describes a buffer where data to be read from the file is to be
stored.

iovcnt Specifies the number of iovec elements in the array pointed
to by the iov parameter.

ext Specifies an extension argument required by some device
drivers. Its content, form, and use are determined by the
individual driver.

170 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

seg Indicates in which part of memory the array specified by the
iov parameter is located:
SYS_ADSPACE

The array specified by the iov parameter is in kernel
memory.

USER_ADSPACE
The array specified by the iov parameter is in application
memory.

countp Points to the location where the count of bytes actually read
from the file is to be returned.

Description
The fp_readv kernel service is an internal interface to the function provided by the readv subroutine.

Execution Environment
The fp_readv kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned.

Related information
readv subroutine
Logical File System Kernel Services

fp_removeea Kernel Service

Purpose
Removes an extended attribute.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
int fp_removeea (fp, name, segflag)
struct file * fp;
const char * name;
int segflag;

Parameters

Item Description

fp Specifies a file structure returned by the fp_open kernel service.

name Specifies the name of the extended attribute. An extended attribute name is a NULL-
terminated string.

Kernel Services and Subsystem Operations 171

Item Description

segflag Specifies the flag indicating where the pointer specified by the path parameter is
located:

SYS_ADSPACE
The pointer specified by the name parameter is stored in kernel memory.

USER_ADSPACE
The pointer specified by the name parameter is stored in application memory.

Description
The fp_removeea kernel service provides a common service used by:

• The file system for the implementation of the fremoveea subroutine
• Kernel routines outside the file system that set extended attribute values

Execution Environment
The fp_removeea kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

ERRNO Indicates a failed operation. Returns an error number from the /usr/include/sys/
errno.h file on failure.

Related information
fremoveea subroutine
fp_open subroutine
Logical File System Kernel Services

fp_rwuio Kernel Service

Purpose
Performs read and write on an open file with arguments passed in a uio structure.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int fp_rwuio
(fp, rw, uiop, ext)
struct file *fp;
enum uio_rw rw;
struct uio *uiop;
ext_t ext;

172 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

fp Points to a file structure returned by the fp_open or fp_opendev
kernel service.

rw Indicates whether this is a read operation or a write operation. It has a
value of UIO_READ or UIO_WRITE.

uiop Points to a uio structure, which contains information such as where to
move data and how much to move.

ext Specifies an extension argument required by some device drivers. Its
content, form, and use are determined by the individual driver.

Description
The fp_rwuio kernel service is not the preferred interface for read and write operations. The fp_rwuio
kernel service should only be used if the calling routine has been passed a uio structure. If the calling
routine has not been passed a uio structure, it should not attempt to construct one and call the fp_rwuio
kernel service with it. Rather, it should pass the requisite uio components to the fp_read or fp_write
kernel services.

Execution Environment
The fp_rwuio kernel service can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates a successful operation.

If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned.

Related reference
uio Structure
Related information
Logical File System Kernel Services

fp_select Kernel Service

Purpose
Provides for cascaded, or redirected, support of the select or poll request.

Syntax
#include <sys/types.h> #include <sys/errno.h> int fp_select (fp, events, rtneventp, notify) struct file
*fp; ushort events; ushort *rtneventp; void (*notify)();

Parameters

Item Description

fp Points to the open instance of the device driver, socket, or pipe for which the low-level
select operation is intended.

Kernel Services and Subsystem Operations 173

Item Description

events Identifies the events that are to be checked. There are three standard event flags
defined for the poll and select functions and one informational flag. The /usr/
include/sys/poll.h file details the event bit definition. The four basic indicators are:
POLLIN

Input is present for the specified object.
POLLOUT

The specified file object is capable of accepting output.
POLLPRI

An exception condition has occurred on the specified object.
POLLSYNC

This is a synchronous request only. If none of the requested events are true, the
selected routine should not remember this request as pending. That is, the routine
does not need to call the selnotify service because of this request.

rtneventp Indicates the returned events pointer. This parameter, passed by reference, is used to
indicate which selected events are true at the current time. The returned event bits
include the requested events plus an additional error event indicator:
POLLERR

An error condition was indicated by the object's select routine. If this flag is set,
the nonzero return code from the specified object's select routine is returned as the
return code from the fp_select kernel service.

notify Points to a routine to be called when the specified object invokes the selnotify kernel
service for an outstanding asynchronous select or poll event request. If no routine is to
be called, this parameter must be NULL.

Description
The fp_select kernel service is a low-level service used by kernel extensions to perform a select operation
for an open device, socket, or named pipe. The fp_select kernel service can be used for both synchronous
and asynchronous select requests. Synchronous requests report on the current state of a device, and
asynchronous requests allow the caller to be notified of future events on a device.

Invocation from a Device Driver's ddselect Routine

A device driver's ddselect routine can call the fp_select kernel service to pass select/poll requests to
other device drivers. The ddselect routine for one device invokes the fp_select kernel service, which calls
the ddselect routine for a second device, and so on. This is required when event information for the
original device depends upon events occurring on other devices. A cascaded chain of select requests can
be initiated that involves more than two devices, or a single device can issue fp_select calls to several
other devices.

Each ddselect routine should preserve, in its call to the fp_select kernel service, the same POLLSYNC
indicator that it received when previously called by the fp_select kernel service.

Invocation from Outside a Device Driver's ddselect Routine

If the fp_select kernel service is invoked outside of the device driver's ddselect routine, the fp_select
kernel service sets the POLLSYNC flag, always making the request synchronous. In this case, no
notification of future events for the specified device occurs, nor is a notify routine called, if specified.
The fp_select kernel service can be used in this manner (unrelated to a poll or select request in progress)
to check an object's current status.

Asynchronous Processing and the Use of the notify Routine

174 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

For asynchronous requests, the fp_select kernel service allows its callers to register a notify routine to
be called by the kernel when specified events become true. When the relevant device driver detects that
one or more pending events have become true, it invokes the selnotify kernel service. The selnotify
kernel service then calls the notify routine, if one has been registered. Thus, the notify routine is called at
interrupt time and must be programmed to run in an interrupt environment.

Use of a notify routine affects both the calling sequence at interrupt time and how the requested
information is actually reported. Generalized asynchronous processing entails the following sequence of
events:

1. A select request is initiated on a device and passed on (by multiple fp_select kernel service
invocations) to further devices. Eventually, a device driver's ddselect routine that is not dependent
on other devices for information is reached. This ddselect routine finds that none of the requested
events are true, but remembers the asynchronous request, and returns to the caller. In this way, the
entire chain of calls is backed out, until the origin of the select request is reached. The kernel then puts
the originating process to sleep.

2. Later, one or more events become true for the device remembering the asynchronous request. The
device driver routine (possibly an interrupt handler) calls the selnotify kernel service.

3. If the events are still being waited on, the selnotify kernel service responds in one of two ways. If
no notify routine was registered when the select request was made for the device, then all processes
waiting for events on this device are awakened. If a notify routine exists for the device, then this
routine is called. The notify routine determines whether the original requested event should be
reported as true, and if so, calls the selnotify kernel service on its own.

The following example details a cascaded scenario involving several devices. Suppose that a request has
been made for Device A, and Device A depends on Device B, which depends on Device C. When specified
events become true at Device C, the selnotify kernel service called from Device C's device driver performs
differently depending on whether a notify routine was registered at the time of the request.

Cascaded Processing without the Use of notify Routines

If no notify routine was registered from Device B, then the selnotify kernel service determines that the
specified events are to be considered true for the device driver at the head of the cascading chain. (The
head of the chain, in this case Device A, is the first device driver to issue the fp_select kernel service
from its select routine.) The selnotify kernel service awakens all processes waiting for events that have
occurred on Device A.

It is important to note that when no notify routine is used, any device driver in the calling chain that
reports an event with the selnotify kernel service causes that event to appear true for the first device
in the chain. As a result, any processes waiting for events that have occurred on that first device are
awakened.

Cascaded Processing with notify Routines

If, on the other hand, notify routines have been registered throughout the chain, then each interrupting
device (by calling the selnotify kernel service) invokes the notify routine for the device above it in the
calling chain. Thus in the preceding example, the selnotify kernel service for Device C calls the notify
routine registered when Device B's ddselect routine invoked the fp_select kernel service. Device B's
notify routine must then decide whether to again call the selnotify kernel service to alert Device A's
notify routine. If so, then Device A's notify routine is called, and makes its own determination whether to
call another selnotify routine. If it does, the selnotify kernel service wakes up all the processes waiting
on occurred events for Device A.

A variation on this scenario involves a cascaded chain in which only some device drivers have registered
notify routines. In this case, the selnotify kernel service at each level calls the notify routine for the level
above, until a level is encountered for which no notify routine was registered. At this point, all events of
interest are determined to be true for the device driver at the head of the cascading chain. If any notify
routines were registered in levels above the current level, they are never called.

Kernel Services and Subsystem Operations 175

Returning from the fp_select Kernel Service

The fp_select kernel service does not wait for any selected events to become true, but returns
immediately after the call to the object's ddselect routine has completed.

If the object's select routine is successfully called, the return code for the fp_select kernel service is set
to the return code provided by the object's ddselect routine.

Execution Environment
The fp_select kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates successful completion.

EAGAIN Indicates that the allocation of internal data structures failed. The rtneventp parameter is not
updated.

EINVAL Indicates that the fp parameter is not a valid file pointer. The rtneventp parameter has the
POLLNVAL flag set.

The fp_select kernel service can also be set to the nonzero return code from the specified object's
ddselect routine. The rtneventp parameter has the POLLERR flag set.

Related reference
fp_poll Kernel Service
fp_select Kernel Service notify Routine
Related information
select subroutine

fp_select Kernel Service notify Routine

Purpose
Registers the notify routine.

Syntax
#include <sys/types.h> #include <sys/errno.h> void notify (id, sub_id, rtnevents, pid) int id; int
sub_id ; ushort rtnevents ; pid_t pid;

Parameters

Item Description

id Indicates the selected function ID specified by the routine that made the call to the
selnotify kernel service to indicate the occurrence of an outstanding event. For device
drivers, this parameter is equivalent to the devno (device major and minor number)
parameter.

sub_id Indicates the unique ID specified by the routine that made the call to the selnotify
kernel service to indicate the occurrence of an outstanding event. For device drivers, this
parameter is equivalent to the chan parameter: channel for multiplexed drivers; 0 for
nonmultiplexed drivers.

176 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

rtnevents Specifies the rtnevents parameter supplied by the routine that made the call to the
selnotify service indicating which events are designated as true.

pid Specifies the process ID of a process waiting for the event corresponding to this call of
the notify routine.

When a notify routine is provided for a cascaded function, the selnotify kernel service calls the specified
notify routine instead of posting the process that was waiting on the event. It is up to this notify routine to
determine if another selnotify call should be made to notify the waiting process of an event.

The notify routine is not called if the request is synchronous (that is, if the POLLSYNC flag is set in the
events parameter) or if the original poll or select request is no longer outstanding.

Note: When more than one process has requested notification of an event and the fp_select kernel
service is used with a notify routine specified, the notification of the event causes the notify routine to be
called once for each process that is currently waiting on one or more of the occurring events.

Description
The fp_select kernel service notify routine is registered by the caller of the fp_select kernel service to
be called by the kernel when specified events become true. The option to register this notify routine is
available in a cascaded environment. The notify routine can be called at interrupt time.

Execution Environment
The fp_select kernel service notify routine can be called from either the process or interrupt
environment.

Related reference
fp_select Kernel Service
selnotify Kernel Service
Related information
Logical File System Kernel Services

fp_setea Kernel Service

Purpose
Sets an extended attribute value.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
int fp_setea (fp, name, value, size, flags, segflag)
struct file *fp;
const char * name;
void * value;
size_t size;
intflags
int segflag;

Parameters

Item Description

fp Specifies a file structure returned by the fp_open kernel service.

Kernel Services and Subsystem Operations 177

Item Description

name Specifies the name of the extended attribute. An extended attribute name is a
NULL terminated string.

value Specifies a pointer to the value of an attribute. The value of an extended
attribute is an opaque byte stream of specified length.

size Specifies the length of the value.

flags None of the flags are defined at this time.

segflag Specifies the flag indicating where the pointer specified by the path parameter
is located:

SYS_ADSPACE
The pointers specified by the name and value parameters are stored in
kernel memory.

USER_ADSPACE
The pointers specified by the name and value parameters are stored in
application memory.

Description
The fp_setea kernel service provides a common service used by the following routines:

• The file system for the implementation of the fsetea subroutine
• Kernel routines outside the file system that set extended attribute values

Execution Environment
The fp_setea kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

ERRNO Indicates a failed operation. Returns an error number from the /usr/
include/sys/errno.h file on failure.

Related information
fsetea subroutine
fp_open subroutine
Logical File System Kernel Services

fp_statea Kernel Service

Purpose
Provides information on an extended attribute.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
int fp_statea (fp, name, buffer, segflag)

178 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

struct file * fp;
const char * name;
struct stat64x * buffer;
int segflag;

Parameters

Item Description

fp Specifies a file structure returned by the fp_open kernel service.

name Specifies the name of the extended attribute. An extended attribute name is a
NULL terminated string.

buffer Specifies a pointer to the stat structure in which information is returned.

segflag Specifies the flag indicating the location of the pointer stored by the path
parameter is located:

SYS_ADSPACE
The pointers specified by the name and value parameters are stored in
kernel memory.

USER_ADSPACE
The pointers specified by the name and value parameters are stored in
application memory.

Description
The fp_statea kernel service provides a common service used by the following routines:

• The file system for the implementation of the fstatea subroutine
• Kernel routines outside the file system that set extended attribute values.

Execution Environment
The fp_statea kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

ERRNO Indicates a failed operation. Returns an error number from the /usr/include/sys/
errno.h file on failure.

Related information
fstatea subroutine
Logical File System Kernel Services

fp_write Kernel Service

Purpose
Performs a write operation on an open file with arguments passed.

Kernel Services and Subsystem Operations 179

Syntax
#include <sys/types.h> #include <sys/errno.h> int fp_write (fp, buf, nbytes, ext, seg, countp) struct file
* fp; char * buf; ssize_t nbytes, ext_t ext; int seg; ssize_t * countp;

Parameters

Item Description

fp Points to a file structure returned by the fp_open or fp_opendev kernel
service.

buf Points to the buffer where data to be written to a file is located.

nbytes Indicates the number of bytes to be written to the file.

ext Specifies an extension argument required by some device drivers. Its
content, form, and use are determined by the individual driver.

seg Indicates in which part of memory the buffer specified by the buf parameter
is located:
SYS_ADSPACE

The buffer specified by the buf parameter is in kernel memory.
USER_ADSPACE

The buffer specified by the buf parameter is in application memory.

countp Points to the location where count of bytes actually written to the file is to
be returned.

Description
The fp_write kernel service is an internal interface to the function provided by the write subroutine.

Execution Environment
The fp_write kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

ERRN
O

Returns an error number from the /usr/include/sys/errno.h file on failure.

Related information
write subroutine
Logical File System Kernel Services

fp_write Kernel Service for Data Link Control (DLC) Devices

Purpose
Allows kernel data to be sent using a file pointer.

Syntax
#include <sys/gdlextcb.h> #include <sys/fp_io.h> int fp_write (fp, buf, nbytes, ext, segflag, countp)

180 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

fp Specifies file pointer returned from the fp_open
kernel service.

buf Points to a kernel mbuf structure.

nbytes Contains the byte length of the write data. It is
not necessary to set this field to the actual length
of write data, however, since the mbuf contains a
length field. Instead, this field can be set to any
non-negative value (generally set to 0).

ext Specifies the extended kernel service parameter.
This is a pointer to the dlc_io_ext extended
I/O structure for writes. The argument for this
parameter must be in the kernel space.

segflag Specifies the segment flag indicating where the
path parameter is located. The only valid value is:
FP_SYS

The path parameter is stored in kernel memory.

countp Points to the location where a count of bytes
actually written is to be returned (must be in kernel
space). GDLC does not provide this information for
a kernel user since mbufs are used, but the file
system requires a valid address and writes a copy
of the nbytes parameter to that location.

Description
Four types of data can be sent to generic data link control (GDLC). Network data can be sent to a service
access point (SAP), and normal, exchange identification (XID) or datagram data can be sent to a link
station (LS).

Kernel users pass a communications memory buffer (mbuf) directly to GDLC on the fp_write kernel
service. In this case, a uiomove kernel service is not required, and maximum performance can be
achieved by merely passing the buffer pointer to GDLC. Each write buffer is required to have the proper
buffer header information and enough space for the data link headers to be inserted. A write data offset is
passed back to the kernel user at start LS completion for this purpose.

All data must fit into a single packet for each write call. That is, GDLC does not separate the user's
write data area into multiple transmit packets. A maximum write data size is passed back to the user at
DLC_ENABLE_SAP completion and at DLC_START_LS completion for this purpose.

Normally, a write subroutine can be satisfied immediately by GDLC by completing the data link headers
and sending the transmit packet down to the device handler. In some cases, however, transmit packets
can be blocked by the particular protocol's flow control or a resource outage. GDLC reacts to this
differently, based on the system blocked/nonblocked file status flags (set by the file system and based
on the O_NDELAY and O_NONBLOCKED values passed on the fp_open kernel service). Nonblocked write
subroutines that cannot get enough resources to queue the communications memory buffer (mbuf)
return an error indication. Blocked write subroutines put the calling process to sleep until the resources
free up or an error occurs. Each GDLC supports the fp_write kernel service via its dlcwrite entry point.
The fp_write kernel service may be called from the process environment only.

Kernel Services and Subsystem Operations 181

Return Values

Item Description

0 Indicates a successful operation.

EAGAIN Indicates that transmit is temporarily blocked, and
the calling process cannot be put to sleep.

Item Description

EINTR Indicates that a signal interrupted the kernel
service before it could complete successfully.

EINVAL Indicates an invalid argument, such as too much
data for a single packet.

ENXIO Indicates an invalid file pointer.

These return values are defined in the /usr/include/sys/errno.h file.

Related reference
fp_write Kernel Service
Related information
Generic Data Link Control (GDLC) Environment Overview

fp_writev Kernel Service

Purpose
Performs a write operation on an open file with arguments passed in iovec elements.

Syntax
#include <sys/types.h> #include <sys/errno.h> int fp_writev (fp, iov, iovcnt, ext, seg, countp) struct file
* fp; struct iovec * iov; ssize_t iovcnt; ext_t ext; int seg; ssize_t * countp;

Parameters

Item Description

fp Points to a file structure returned by the fp_open kernel service.

iov Points to an array of iovec elements. Each iovec element describes a buffer containing data
to be written to the file.

iovcnt Specifies the number of iovec elements in an array pointed to by the iov parameter.

ext Specifies an extension argument required by some device drivers. Its content, form, and use
are determined by the individual driver.

segflag Indicates which part of memory the information designated by the iov parameter is located
in:
SYS_ADSPACE

The information designated by the iov parameter is in kernel memory.
USER_ADSPACE

The information designated by the iov parameter is in application memory.

countp Points to the location where the count of bytes actually written to the file is to be returned.

182 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The fp_writev kernel service is an internal interface to the function provided by the writev subroutine.

Execution Environment
The fp_writev kernel service can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates a successful operation.

If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned.

Related information
writev subroutine
Logical File System Kernel Services

fskv_reg Kernel Service

Purpose
Registers callout handlers for validation of file system operations.

Syntax

 #include <sys/xfops.h>

 int fskv_reg(fskv_t *fs_kv, ulong options);

 typedef struct fskv {
 int version_number;
 int (*kv_open)(struct xfid *xfp,
 long flags,
 cred_ext_t *crxp);
 int (*kv_setattr)(struct xfid *xfp,
 long op,
 long arg1,
 long arg2,
 long arg3,
 cred_ext_t *crxp);
 } fskv_t;

Parameters
fs_kv

Specifies an array of callout functions that are called to validate file system operations in the kernel.
options

Specifies a bit mask of registration options. The options parameter is not defined currently. The
caller must set the options parameter to 0.

Description
The fskv_reg kernel service registers an array of functions that are called before the execution of file
system-specific operations.

After a callout handler is registered, each of the affected operations is preceded by a call to the
corresponding validation routine.

Kernel Services and Subsystem Operations 183

Only one callout array can be registered. After a callout array is registered with the fskv_reg
kernel service, the subsequent invocation of the fskv_reg kernel service does not succeed until the
fskv_unreg kernel service is called. The caller of the fskv_reg kernel service must have root authority.

Execution environment
The fskv_reg kernel service can be called only from the process environment.

Return values
On successful completion, the fskv_reg kernel service returns a value of 0.

The following error codes can be returned on failure:

EEXIST
The callout array is already registered.

EPERM
The caller does not have permission to invoke this function.

EINVAL
A parameter is invalid.

Callout handlers
Callouts can be specified for the open, chmod, chown, and utimes system calls. The chmod, chown, and
utimes system calls are handled in a single operation in the kernel with the setattr call.

If the validation callout routine returns a nonzero value, the file system operation is stopped and the
system call returns the EPERM value.

The validation routines are called only for local physical file systems (JFS2 and JFS) and network file
system (NFS)-mounted file systems. The callout functions accept the following arguments. The xfid
argument uniquely identifies the file within the current running system.

 typedef struct xfid {
 fsid_t x_fsid;
 fid_t x_fid;
 } xfid_t;

kv_open() callout function
The kv_open callout function contains the information that is available to the open routines of the file
system to track and validate open calls.

Syntax

#include <sys/file.h>
#include <sys/cred.h>

int (*kv_open)(struct xfid *xfp,
 long flags,
 void *nrp,
 cred_ext_t *crxp);

Parameters

xfp
Pointer to an xfid structure that identifies the file system and object.

nrp
Name resolution information. If the xfidToName kernel service is called, this parameter must be
passed to it. This pointer is not valid after it is returned from the callout function.

flags
Open flags that are passed by the application.

184 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

crxp
Pointer to the credentials for the calling process.

Return values

Zero
Indicates that the validation completed successfully.

Nonzero
Indicates that the validation failed.

kv_setattr() callout function
The kv_setattr callout function contains the information that is available to the system call that
initiated this function. The setattr function is called by the chown, chmod, and utimes system calls
and the variants of those system calls (for example, fchown, fchmod, and futimens system calls).

Syntax

#include <sys/vattr.h>
#include <sys/cred.h>

int (*kv_setattr)(struct xfid *xfp,
 long op,
 long arg1,
 long arg2,
 long arg3,
 void *nrp,
 cred_ext_t *crxp);

Parameters

xfp
Pointer to an xfid structure that identifies the file system and object.

op
Specifies one of the following operations:
V_OWN

Sets file ownership.
V_MODE

Sets file mode.
V_UTIME

Sets the file time specified by the user.
V_STIME

Sets the file time requested by the system.
argn

Specifies the following values for each of the listed operations.

Table 1. kv_setattr() callout function: argn parameter values

Operations arg1 arg2 arg3

V_OWN flag:

T_OWNER_AS_IS
T_GROUP_AS_IS

(For information about
the file ownership
changes, see chownx
subroutine.)

uid_t newuid gid_t newgid

V_MODE mode_t newmode Unused Unused

Kernel Services and Subsystem Operations 185

Table 1. kv_setattr() callout function: argn parameter values (continued)

Operations arg1 arg2 arg3

V_UTIME flag:

V_SETTIME

Ignore arguments and
set time to the current
time.

timestruct_t *atime

Set the access time.

timestruct_t *mtime

Set the modification
time.

V_STIME NULL or

timestruct_t *atime

Set the access time.

NULL or

timestruct_t *mtime

Set the modification
time.

NULL or

timestruct_t *ctime

Set the change time.

nrp
Indicates the name resolution information. If the xfidToName kernel service is called, this parameter
must be passed to it. This parameter is a pointer to temporary information that is not valid after it is
returned from the validation routine.

crxp
Pointer to credentials for the calling process.

Return values

Zero
Indicates that the validation completed successfully.

Nonzero
Indicates that the validation failed.

Related reference
nameToXfid() Kernel Service
xfidToName() Kernel Service

fskv_unreg Kernel Service

Purpose
Unregisters callout handlers for validation of file system operations.

Syntax

 #include <sys/xfops.h>

 int fskv_unreg(ulong options);

Parameters
options

Specifies a bit mask of registration options. The options parameter is not defined currently. The
caller must set the options parameter to 0.

Description
The fskv_unreg kernel service removes the registration of the functions to be called before the
execution of file system operations. After this service completes, the callout handlers are not executed.

186 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The caller of the fskv_unreg kernel service must have root authority.

Execution environment
The fskv_unreg kernel service can be called only from the process environment.

Return values
On successful completion, the fskv_unreg kernel service returns a value of 0.

The following error codes are returned on failure:

EPERM
The caller does not have permission to invoke this function.

EINVAL
A parameter is invalid.

fubyte Kernel Service

Purpose
Retrieves a byte of data from user memory.

Syntax
#include <sys/types.h> #include <sys/errno.h> int fubyte (uaddr) uchar *uaddr;

Parameter

Item Description

uaddr Specifies the address of the user data.

Description
The fubyte kernel service fetches, or retrieves, a byte of data from the specified address in user memory.
It is provided so that system calls and device heads can safely access user data. The fubyte service
ensures that the user has the appropriate authority to:

• Access the data.
• Protect the operating system from paging I/O errors on user data.

The fubyte service should be called only while executing in kernel mode in the user process.

Execution Environment
The fubyte kernel service can be called from the process environment only.

Return Values
When successful, the fubyte service returns the specified byte.

Ite
m

Description

-1 Indicates a uaddr parameter that is not valid.

The access is not valid under the following circumstances:

• The user does not have sufficient authority to access the data.

Kernel Services and Subsystem Operations 187

• The address is not valid.
• An I/O error occurs while referencing the user data.

Related reference
fuword Kernel Service
subyte Kernel Service
Related information
Accessing User-Mode Data while in Kernel Mode

fuword Kernel Service

Purpose

Retrieves a word of data from user memory.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int fuword (uaddr)
int *uaddr;

Parameter

Item Description

uaddr Specifies the address of user data.

Description
The fuword kernel service retrieves a word of data from the specified address in user memory. It is
provided so that system calls and device heads can safely access user data. The fuword service ensures
that the user had the appropriate authority to:

• Access the data.
• Protect the operating system from paging I/O errors on user data.

The fuword service should be called only while executing in kernel mode in the user process.

Execution Environment
The fuword kernel service can be called from the process environment only.

Return Values
When successful, the fuword service returns the specified word of data.

Ite
m

Description

-1 Indicates a uaddr parameter that is not valid.

The access is not valid under the following circumstances:

• The user does not have sufficient authority to access the data.

188 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

• The address is not valid.
• An I/O error occurred while referencing the user data.

For the fuword service, a retrieved value of -1 and a return code of -1 are indistinguishable.

Related reference
fubyte Kernel Service
subyte Kernel Service
Related information
Accessing User-Mode Data while in Kernel Mode

g
The following kernel services begin with the with the letter g.

getblk Kernel Service

Purpose
Assigns a buffer to the specified block.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

struct buf *getblk
(dev, blkno)
dev_t dev;
daddr_t blkno;

Parameters

Item Description

dev Specifies the device that contains the block to be allocated.

blkno Specifies the block to be allocated.

Description
The getblk kernel service first checks whether the specified buffer is in the buffer cache. If the buffer
resides there, but is in use, the e_sleep service is called to wait until the buffer is no longer in use. Upon
waking, the getblk service tries again to access the buffer. If the buffer is in the cache and not in use, it
is removed from the free list and marked as busy. Its buffer header is then returned. If the buffer is not in
the buffer cache, another buffer is taken from the free list and returned.

Execution Environment
The getblk kernel service can be called from the process environment only.

Return Values
The getblk service returns a pointer to the buffer header. A nonzero value for B_ERROR in the b_flags
field of the buffer header (bufstructure) indicates an error. If this occurs, the caller should release the
block's buffer using the brelse kernel service.

Kernel Services and Subsystem Operations 189

On a platform that supports storage keys, the buffer header is allocated from the storage that is protected
by the KKEY_BLOCK_DEV kernel key.

Related reference
bread Kernel Service
Related information
Block I/O Buffer Cache Kernel Services: Overview
I/O Kernel Services

getc Kernel Service

Purpose
Retrieves a character from a character list.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

int getc (header)
struct clist *header;

Parameter

Item Description

header Specifies the address of the clist structure that describes the character list.

Description
Attention: The caller of the getc service must ensure that the character list is pinned. This
includes the clist header and all the cblock character buffers. Otherwise, the system may crash.

The getc kernel service returns the character at the front of the character list. After returning the last
character in the buffer, the getc service frees that buffer.

Execution Environment
The getc kernel service can be called from either the process or interrupt environment.

Return Values

Ite
m

Description

-1 Indicates that the character list is empty.

Related information
I/O Kernel Services

getcb Kernel Service

Purpose
Removes the first buffer from a character list and returns the address of the removed buffer.

190 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

struct cblock *getcb
(header)
struct clist *header;

Parameter

Item Description

header Specifies the address of the clist structure that describes the character list.

Description
Attention: The caller of the getcb service must ensure that the character list is pinned. This
includes the clist header and all the cblock character buffers. Character buffers acquired from
the getcf service are pinned. Otherwise, the system may crash.

The getcb kernel service returns the address of the character buffer at the start of the character list and
removes that buffer from the character list. The user must free the buffer with the putcf service when
finished with it.

Execution Environment
The getcb kernel service can be called from either the process or interrupt environment.

Return Values
A null address indicates the character list is empty.

The getcb service returns the address of the character buffer at the start of the character list when the
character list is not empty.

Related reference
getcf Kernel Service
Related information
I/O Kernel Services

getcbp Kernel Service

Purpose
Retrieves multiple characters from a character buffer and places them at a designated address.

Syntax

#include <cblock.h>

int getcbp (header, dest, n)
struct clist *header;
char *dest;
int n;

Kernel Services and Subsystem Operations 191

Parameters

Item Description

header Specifies the address of the clist structure that describes the character list.

dest Specifies the address where the characters obtained from the character list are to be placed.

n Specifies the number of characters to be read from the character list.

Description
Attention: The caller of the getcbp services must ensure that the character list is pinned. This
includes the clist header and all the cblock character buffers. Character buffers acquired from
the getcf service are pinned. Otherwise, the system may crash.

The getcbp kernel service retrieves as many as possible of the n characters requested from the character
buffer at the start of the character list. The getcbp service then places them at the address pointed to by
the dest parameter.

Execution Environment
The getcbp kernel service can be called from either the process or interrupt environment.

Return Values
The getcbp service returns the number of characters retrieved from the character buffer.

Related reference
getcf Kernel Service
Related information
I/O Kernel Services

getcf Kernel Service

Purpose
Retrieves a free character buffer.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h

struct cblock *getcf ()

Description
The getcf kernel service retrieves a character buffer from the list of available ones and returns that
buffer's address. The returned character buffer is pinned. If you use the getcf service to get a character
buffer, be sure to free the space when you have finished using it. The buffers received from the getcf
service should be freed by using the putcf kernel service.

Before starting the getcf service, the caller should request enough clist resources by using the pincf
kernel service. The proper use of the getcf service ensures that there are sufficient pinned buffers
available to the caller.

If the getcf service indicates that there is no available character buffer, the waitcfree service can be
called to wait until a character buffer becomes available.

192 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The getcf service has no parameters.

Execution Environment
The getcf kernel service can be called from either the process or interrupt environment.

Return Values
Upon successful completion, the getcf service returns the address of the allocated character buffer.

A null pointer indicates no buffers are available.

Related reference
pincf Kernel Service
putcf Kernel Service
Related information
I/O Kernel Services

getcx Kernel Service

Purpose
Returns the character at the end of a designated list.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

int getcx (header)
struct clist *header;

Parameter

Item Description

header Specifies the address of the clist structure that describes the character list.

Description
Attention: The caller of the getcx service must ensure that the character list is pinned. This
includes the clist header and all the cblock character buffers. Character buffers acquired from
the getcf service are pinned.

The getcx kernel service is identical to the getc service, except that the getcx service returns the
character at the end of the list instead of the character at the front of the list. The character at the end of
the list is the last character in the first buffer, not in the last buffer.

Execution Environment
The getcx kernel service can be called from either the process or interrupt environment.

Return Values
The getcx service returns the character at the end of the list instead of the character at the front of the
list.

Kernel Services and Subsystem Operations 193

Related reference
getcf Kernel Service
Related information
I/O Kernel Services

geteblk Kernel Service

Purpose
Allocates a free buffer.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

struct buf *geteblk ()

Description
Attention: The use of the geteblk service by character device drivers is strongly discouraged. As
an alternative, character device drivers can use the xmalloc service to allocate the memory space
directly, or the character I/O kernel services such as the getcb or getcf services.

The geteblk kernel service allocates a buffer and buffer header and returns the address of the buffer
header. If no free buffers are available, then the geteblk service waits for one to become available. Block
device drivers can retrieve buffers using the geteblk service.

In the header, the b_forw, b_back, b_flags, b_bcount, b_dev, and b_un fields are used by the
system and cannot be modified by the driver. The av_forw and av_back fields are available to the user
of the geteblk service for keeping a chain of buffers by the user of the geteblk service. (This user could be
the kernel file system or a device driver.) The b_blkno and b_resid fields can be used for any purpose.

The brelse service is used to free this type of buffer.

The geteblk service has no parameters.

Execution Environment
The geteblk kernel service can be called from the process environment only.

Return Values
The geteblk service returns a pointer to the buffer header. There are no error codes because the geteblk
service waits until a buffer header becomes available.

On a platform that supports storage keys, the buffer header is allocated from the storage protected by the
KKEY_BLOCK_DEV kernel key.

Related reference
xmalloc Kernel Service
buf Structure
Related information
Block I/O Buffer Cache Kernel Services: Overview

geterror Kernel Service

194 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Determines the completion status of the buffer.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

int geterror (bp)
struct buf *bp;

Parameter

Ite
m

Description

bp Specifies the address of the buffer structure whose status is to be checked.

On a platform that supports storage keys, the passed in bp parameter must be in the
KKEY_PUBLIC or KKEY_BLOCK_DEV protection domain.

Description
The geterror kernel service checks the specified buffer to see if the b_error flag is set. If that flag is not
set, the geterror service returns 0. Otherwise, it returns the nonzero B_ERROR value or the EIO value (if
b_error is 0).

Execution Environment
The geterror kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

0 Indicates that no I/O error occurred on the buffer.

b_error value Indicates that an I/O error occurred on the buffer.

EIO Indicates that an unknown I/O error occurred on the buffer.

Related information
Block I/O Buffer Cache Kernel Services: Overview
I/O Kernel Services

getexcept Kernel Service

Purpose
Allows kernel exception handlers to retrieve additional exception information.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/except.h>

Kernel Services and Subsystem Operations 195

void getexcept
(exceptp)
struct except *exceptp;

Parameter

Item Description

exceptp Specifies the address of an except structure, as defined in the /usr/include/sys/except.h
file. The getexcept service copies detailed exception data from the current machine-state
save area into this caller-supplied structure.

Description
The getexcept kernel service provides exception handlers the capability to retrieve additional information
concerning the exception from the machine-state save area.

The getexcept service should only be used by exception handlers when called to handle an exception.
The contents of the structure pointed at by the exceptp parameter is platform-specific, but is described in
the /usr/include/sys/except.h file for each type of exception that provides additional data. This data is
typically included in any error logging data for the exception. It can be also used to attempt to handle or
recover from the exception.

Execution Environment
The getexcept kernel service can be called from either the process or interrupt environment. It should be
called only when handling an exception.

Return Values
The getexcept service has no return values.

Related information
Kernel Extension and Device Driver Management Kernel Services and

getfslimit Kernel Service

Purpose
Returns the maximum file size limit of the current process.

Syntax
#include <sys/types.h> offset_t getfslimit (void)

Description
The getfslimit kernel service returns the file size limit of the current process as a 64 bit integer. This can
be used by file systems to implement the checks needed to enforce limits. The getfslimit kernel service is
called from the process environment.

Return Values
The getfslimit kernel service returns the the file size limit, there are no error values.

Related information
ulimit subroutine
getrlimit subroutine

196 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

ulimit subroutine

get_pag or get_pag64 Kernel Service

Purpose
Retrieves a Process Authentication Group (PAG) value for the current process.

Syntax
#include <sys/cred.h>

int get_pag (type, pag)
int type;
int *pag;

int get_pag64 (type, pag)
int type;
uint64_t *pag;

Parameters
Item Description

type PAG type to retrieve

pag Pointer to buffer where operating system returns the PAG

Description
The get_pag and get_pag64 kernel services copy the requested PAG from the current process into pag.
The value of type must be a defined PAG ID. The PAG ID for the Distributed Computing Environment (DCE)
is 0.

Execution Environment
The get_pag and get_pag64 kernel services can be called from the process environment only.

Return Values
A value of 0 is returned upon successful completion. If unsuccessful, errno is set to a value that explains
the error.

Error Codes
The get_pag kernel service fails if one or both of the following conditions are true:

Item Description

EINVAL Invalid PAG specification

EOVERFLOW PAG value is 64-bit (should be using get_pag64)

The get_pag64 kernel service fails if the following condition is true:

Item Description

EINVAL Invalid PAG specification

Related information
Security Kernel Services

Kernel Services and Subsystem Operations 197

getpid Kernel Service

Purpose
Gets the process ID of the current process.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

pid_t getpid ()

Description
The getpid kernel service returns the process ID of the calling process.

The getpid service can also be used to check the environment that the routine is being executed in. If the
caller is executing in the interrupt environment, the getpid service returns a process ID of -1. If a routine
is executing in a process environment, the getpid service obtains the current process ID.

Execution Environment
The getpid kernel service can be called from either the process or interrupt environment.

Return Values

Ite
m

Description

-1 Indicates that the getpid service was called from an interrupt environment.

The getpid service returns the process ID of the current process if called from a process environment.

Related information
Process and Exception Management Kernel Services
Understanding Execution Environments

getppidx Kernel Service

Purpose
Gets the parent process ID of the specified process.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

pid_t getppidx (ProcessID)
pid_t ProcessID;

Parameter

Item Description

ProcessID Specifies the process ID. If this parameter is 0, then the parent process ID of the calling
process is returned.

198 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The getppidx() kernel service accepts a process ID as an input. If the input process ID is 0, the
getppidx() subroutine returns the process ID of the calling process' parent process. If the input
process ID is nonzero and a valid value, the parent ID of the input process ID is returned. If the input
process ID is invalid, the getppidx() kernel service returns -1.

Execution Environment
The getppidx() kernel service can be called from the process environment only.

Return Values

Ite
m

Description

-1 Indicates that the ProcessID parameter is invalid.

Related reference
getpid Kernel Service
Related information
Process and Exception Management Kernel Services
Understanding Execution Environments

getuerror Kernel Service

Purpose
Allows kernel extensions to read the ut_error field for the current thread.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int getuerror ()

Description
The getuerror kernel service allows a kernel extension in a process environment to retrieve the current
value of the current thread's ut_error field. Kernel extensions can use the getuerror service when using
system calls or other kernel services that return error information in the ut_error field.

For system calls, the system call handler copies the value of the ut_error field in the per thread uthread
structure to the errno global variable before returning to the caller. However, when kernel services use
available system calls, the system call handler is bypassed. The getuerror service must then be used to
obtain error information.

Execution Environment
The getuerror kernel service can be called from the process environment only.

Kernel Services and Subsystem Operations 199

Return Values

Ite
m

Description

0 Indicates a successful operation.

When an error occurs, the getuerror kernel service returns the current value of the ut_error field in the
per thread uthread structure. Possible return values for this field are defined in the /usr/include/sys/
errno.h file.

Related reference
setuerror Kernel Service
Related information
Kernel Extension and Device Driver Management Kernel Services
Understanding System Call Execution

getufdflags and setufdflags Kernel Services

Purpose
Queries and sets file-descriptor flags.

Syntax
#include <sys/user.h> int getufdflags(fd, flagsp) int fd; int *flagsp; #include <sys/user.h> int
setufdflags(fd, flags) int fd; int flags;

Parameters

Item Description

fd Identifies the file descriptor.

flags Sets attribute flags for the specified file descriptor. Refer to the sys/user.h file for the list of
valid flags.

flagsp Points to an integer field where the flags associated with the file descriptor are stored on
successful return.

Description
The setufdflags and getufdflags kernel services set and query the file descriptor flags. The file descriptor
flags are listed in fontl.h.

Execution Environment
These kernel services can be called from the process environment only.

Return Values

Item Description

0 Indicates successful completion.

EBADF Indicates that the fd parameter is not a file descriptor for an open file.

get_umask Kernel Service

200 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Queries the file mode creation mask.

Syntax

int get_umask(void)

Description
The get_umask service gets the value of the file mode creation mask currently set for the process.

Note: There is no corresponding kernel service to set the umask because kernel routines that need to set
the umask can call the umask subroutine.

Execution Environment
The get_umask kernel service can be called from the process environment only.

Return Values
The get_umask kernel service always completes successfully. Its return value is the current value of the
umask.

gfsadd Kernel Service

Purpose
Adds a file system type to the gfs table.

Syntax
#include <sys/types.h> #include <sys/errno.h> int gfsadd (gfsno, gfsp) int gfsno; struct gfs *gfsp;

Parameters

Item Description

gfsno Specifies the file system number. This small integer value is either defined in the /usr/
include/sys/vmount.h file or a user-defined number of the same order.

gfsp Points to the file system description structure.

Description
The gfsadd kernel service is used during configuration of a file system. The configuration routine for a file
system invokes the gfsadd kernel service with a gfs structure. This structure describes the file system
type.

The gfs structure type is defined in the /usr/include/sys/gfs.h file. The gfs structure must have the
following fields filled in:

Field Description

gfs_type Specifies the integer type value. The predefined types are listed in the /usr/
include/sys/vmount.h file.

gfs_name Specifies the character string name of the file system. The maximum length of this field
is 16 bytes. Shorter names must be null-padded.

Kernel Services and Subsystem Operations 201

Field Description

gfs_flags Specifies the flags that define the capabilities of the file system. The following flag
values are defined:
GFS_AHAFS_INFO

GFS supports AHAFS FS monitoring.
GFS_AIX_FLOCK

Uses common_reclock() to manage advisory locks.
GFS_DIROP

Call parent vnop instead of obj.
GFS_FASTPATH

GFS supports AIO fast path.
GFS_FUMNT

File system supports forced unmount.
GFS_INIT

GFS has been initialized
GFS_MEMCNTL

New memcntl vnode operation
GFS_MLS

GFS supports MLS.
GFS_NAMED_OPEN

File system supports named open.
GFS_NO_ACCT

Do not do file system account on this file system.
GFS_NOEXPORT

GFS cannot be exported by NFS.
GFS_NOUMASK

File system does not apply umask when creating new objects.
GFS_OFLAGS64

GFS supports 64 bit open flags.
GFS_REMNT

File system supports remount of a mounted file system.

202 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Field Description

GFS_REMOTE
File system is remote (ie. NFS).

GFS_STATFSVP
File system supports vfs_statfsvp VFS interface. (new vfs operation: vfs_statfsvp)

GFS_SYS5DIR
File system that uses the System V-type directory structure.

GFS_SYNCVFS
The syncvfs vnode operation.

GFS_VERSION4
File system supports AIX Version 4 V-node interface.

GFS_VERSION42
File system supports AIX 4.2 V-node interface. (new vnode operation: vnop_seek)

GFS_VERSION421
File system supports AIX 4.2.1 V-node interface.(new vnode
operations: vnop_sync_range, vnop_create_attr, vnop_finfo, vnop_map_lloff,
vnop_readdir_eofp, vnop_rdwr_attr)

GFS_VERSION43
File system supports AIX 4.3 V-node interface. (new file flag for
vnop_sync_range:FMSYNC)

GFS_VERSION53
File system supports AIX 5.3 V-node interface (new vnode operations: vnop_getxacl,
vnop_setxacl) and AIX 5.3 VFS interface. (new vfs operation: vfs_aclxcntl)

GFS_VREGSEL
GFS wants to select vnode operation called for VREG files.

gfs_ops Specifies the array of pointers to vfs operation implementations.

gn_ops Specifies the array of pointers to v-node operation implementations.

The file system description structure can also specify:

Item Description

gfs_init Points to an initialization routine to be called by the gfsadd kernel service. This field must
be null if no initialization routine is to be called.

gfs_data Points to file system private data.

Execution Environment
The gfsadd kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates successful completion.

EBUSY Indicates that the file system type has already been installed.

EINVAL Indicates that the gfsno value is larger than the system-defined maximum. The system-
defined maximum is indicated in the /usr/include/sys/vmount.h file.

Related reference
vfs_init Entry Point

Kernel Services and Subsystem Operations 203

gfsdel Kernel Service

Purpose
Removes a file system type from the gfs table.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int gfsdel (gfsno)
int gfsno;

Parameter

Item Description

gfsno Specifies the file system number. This value identifies the type of the file system to be deleted.

Description
The gfsdel kernel service is called to delete a file system type. It is not valid to mount any file system of
the given type after that type has been deleted.

Execution Environment
The gfsdel kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates successful completion.

ENOENT Indicates that the indicated file system type was not installed.

EINVAL Indicates that the gfsno value is larger than the system-defined maximum. The system-
defined maximum is indicated in the /usr/include/sys/vmount.h file.

EBUSY Indicates that there are active vfs structures for the file system type being deleted.

Related reference
gfsadd Kernel Service
Related information
Virtual File System Overview
Virtual File System Kernel Services

gn_closecnt Subroutine

Purpose
Maintains the using count on a gnode structure.

204 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/vnode.h>
#include <sys/fcntl.h>

void gn_closecnt (gnode, flags)
struct gnode *gnode;
long flags;

Parameters

Item Description

gnode Points to a gnode structure.

flags Specifies the open mode (FREAD, FWRITE, FEXEC, FRSHARE) from the open file
flags.

Description
The gn_closecnt subroutine uses the passed in flags value to determine the appropriate using counts
to decrease in the gnode structure. For example, if the FREAD flag is set, the gn_closecnt subroutine
decreases the gn_rdcnt field. The following table shows the mapping of the flags value to the counts field
in the gnode structure:

Item Description

FREAD gn_rdcnt

FWRITE gn_wrcnt

FEXEC gn_excnt

FRSHARE gn_rshcnt

Return Values
The gn_closecnt subroutine returns no return values.

Error Codes
The gn_closecnt subroutine returns no error codes.

Related information
Understanding Data Structures and Header Files for Virtual File Systems

gn_common_memcntl Subroutine

Purpose
Changes or queries the physical attachment of a file.

Syntax

#include <sys/vnode.h>
#include <sys/fcntl.h>

int gn_common_memcntl (gnode, cmd, arg)
struct gnode * gnode;

Kernel Services and Subsystem Operations 205

int cmd;
void * arg;

Parameters

Item Description

gnode Points to a gnode structure.

cmd Specifies the operation to be performed. The cmd parameter can be one of the
following values:

• F_ATTACH
• F_DETACH
• F_ATTINFO

arg Points to a structure containing information for the specified cmd parameter.

F_ATTACH attach_desc_t

F_DETACH detach_desc_t

F_ATTINFO attinfo_desc_t

Description
The gn_common_memcntl subroutine is to be called by file system vnop_memcntl implementations.
It performs the normal function of such operations. If the cmd parameter is set to F_ATTACH, the
gn_common_memcntl subroutine attaches the segment specified by the gn_seg field in the gnode
structure. If the cmd parameter is set to F_DETACH, the gn_common_memcntl subroutine detaches
the segment. If the cmd parameter is set to F_ATTINFO, the gn_common_memcntl subroutine returns
information about the current state of attachment.

Return Values

Item Description

0 Success.

non-zero Failure.

Error Codes

Item Description

EINVAL The cmd parameter is not valid.

ENOMEM Resources are not available to attach the memory segment.

gn_mapcnt Subroutine

Purpose
Maintains the mapping count in a gnode structure.

Syntax

#include <sys/vnode.h>
#include <sys/shm.h>

206 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

void gn_mapcnt (gnode, flags)
struct gnode * gnode;
long flags;

Parameters

Item Description

gnode Points to a gnode structure.

flags Specifies the following mapping flag:
SHM_RDONLY

Only read access is required.

Description
The gn_mapcnt subroutine uses the passed in flags value to determine the appropriate mapping count to
increase in the gnode structure. If the SHM_RDONLY flag is set, the gn_mapcnt subroutine increases the
gn_mrdcnt field. Otherwise, the gn_mapcnt subroutine increases the gn_mwrcnt field.

Return Values
The gn_mapcnt subroutine returns no return values.

Error Codes
The gn_mapcnt subroutine returns no error codes.

Related information
mmap subroutine
shmat subroutine

gn_opencnt Subroutine

Purpose
Maintains the using count on a gnode structure.

Syntax

#include <sys/vnode.h>
#include <sys/fcntl.h>

void gn_opencnt (gnode, flags)
struct gnode * gnode;
long flags;

Parameters

Item Description

gnode Points to a gnode structure.

flags Specifies the open mode (FREAD, FWRITE, FEXEC, FRSHARE) from the open file
flags.

Kernel Services and Subsystem Operations 207

Description
The gn_opencnt subroutine uses the passed in flags value to determine the appropriate using counts to
increase in the gnode structure. The following table shows the mapping of the flags value to the counts
field in the gnode structure:

Item Description

FREAD gn_rdcnt

FWRITE gn_wrcnt

FEXEC gn_excnt

FRSHARE gn_rshcnt

Return Values
The gn_opencnt subroutine returns no return values.

Error Codes
The gn_opencnt subroutine returns no error codes.

Related information
Understanding Data Structures and Header Files for Virtual File Systems

gn_unmapcnt Subroutine

Purpose
Maintains the mapping count in a gnode structure.

Syntax

#include <sys/vnode.h>
#include <sys/shm.h>

void gn_unmapcnt (gnode, flags)
struct gnode * gnode;
long flags;

Parameters

Item Description

gnode Points to a gnode structure.

flags Specifies the following mapping flag:
SHM_RDONLY

Only read access is required.

Description
The gn_unmapcnt subroutine uses the passed in flags value to determine the appropriate mapping
count to decrease in the gnode structure. If the SHM_RDONLY flag is set, the gn_unmapcnt subroutine
decreases the gn_mrdcnt field. Otherwise, the gn_unmapcnt subroutine decreases the gn_mwrcnt field.

208 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values
The gn_unmapcnt subroutine returns no return values.

Error Codes
The gn_unmapcnt subroutine returns no error codes.

Related information
mmap subroutine
shmat subroutine

groupmember, groupmember_cr Subroutines

Purpose
Determines if the named group is a member of a credential group set.

Syntax

#include <sys/types.h>
#include <sys/cred.h>

int groupmember (gid)
gid_t gid;

int groupmember_cr (gid, cred)
gid_t gid;
cred_t * cred;

Parameters

Item Description

gid Specifies an identifier for a group.

cred Points to a ucred structure.

Description
The groupmember subroutines determine if a group is included in the group set of a credential
structure. The groupmember subroutine queries the credential associated with the current thread. The
groupmember_cr subroutine checks for the group within the specified ucred structure.

Return Values
The groupmember subroutines return TRUE if the ucred structure contains the specified gid parameter or
if the specified gid parameter is the current effective group ID for the thread. Otherwise, these routines
return FALSE.

Error Codes
The groupmember subroutines return no error codes.

Related information
Security Kernel Services

Kernel Services and Subsystem Operations 209

h
The following kernel services begin with the with the letter h.

heap_create Kernel Service

Purpose
Initializes a new heap to be used with kernel memory management services. The heap_create kernel
service replaces the init_heap kernel service. It returns a heap handle that can be used with the xmalloc
and the xmfree kernel services.

Syntax

#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/skeys.h>
#include <sys/kerrno.h>

kerrno_t heap_create (heapattr_t * heapattr, heapaddr_t * heapptr);

Parameters

Item Description

heapattr Points to an initialized heap attribute structure. See the sys/malloc.h file.
This structure is initialized by the caller of heap_create.

heapptr Points to an external heap descriptor. The caller must initialize this parameter
to the HPA_INVALID_HEAP value.

The heapattr structure contains the following fields:

Item Description

eye_catch8b_t hpa_eyec Must be initialized to the EYEC_HEAPATTR value.

short hpa_version Must be initialized to the HPA_VERSION value.

long hpa_flags The following flags describe heap properties:
HPA_PAGED

The heap returns pageable memory.
HPA_PINNED

The heap returns pinned memory.
HPA_SHARED

The returned descriptor is backed by a common sub-heap.
HPA_PRIVATE

The returned descriptor is backed by isolated storage.

void * hpa_heapaddr Must be set to NULL (reserved).

size_t hpa_heapsize Heap size in bytes. It is only used for private heaps.

size_t hpa_limit Usage barrier independent from size. Limits the amount available from a
private heap that is less than or equal to the actual size of the private heap.

long hpa_debug_level Heap debug level. The HPA_DEFAULT_DEBUG value gives the heap the
system debug level.

uint hpa_kkey Kernel key requested for the storage allocated.

210 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The heap_create service is a replacement for the init_heap service. It can be used to create private
heaps, and to create shared sub-heaps. After this service creates a private heap or a handle to a shared
sub-heap, the returned heapaddr_t value can be used with the xmalloc service or the xmfree service to
allocate or free memory from that heap.

The most common usage for the heap_create service is to get a handle to a shared sub-heap. This is done
by setting the HPA_SHARED flag in the input attribute structure. See the sys_malloc.h file.

Private heaps can be created by specifying the HPA_PRIVATE flag. This allows the heap_create service
to initialize and manage an area of virtual memory as a private heap. The hpa_heapaddr field must be
set to zero. The heap_create service provides the storage but this field is reserved for future use. The
hpa_size field indicates the size of the private heap in bytes.

Private heaps can make use of the hpa_limit field. Use the hpa_size field to reserve a maximum effective
address space. Then use the hpa_limit field to alter and control the amount of effective address space
that is in use. The value of the hpa_limit field must be less than or equal to the value of the hpa_size field.

The hpa_debug and hpa_kkey fields are required for shared and private heaps. The hpa_debug level
allows a component run-time debug level to be applied to allocations using the returned heap handle. The
hpa_kkey field associates a kernel key with a sub-heap that can limit the kernel accessibility.

On a successful completion, the heapattr field contains the address of a heap structure. This can be used
as a parameter to the xmalloc and the xmfree kernel services. The memory returned by these services
and the internal heap structures are protected by the hpa_kkey field. When calling the xmalloc and the
xmfree heap services, the caller must hold the key that was used when creating the heap.

Execution Environment
The heap_create kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful completion. A descriptor is returned in the
heapptr parameter.

Kernel Services and Subsystem Operations 211

Item Description

EINVAL_HEAP_CREATE Indicates one or more of the following inputs that were not valid:

• heapattr is NULL.
• *heapptr != HPA_INVALID_HEAP.
• heapattr->hpa_eyec != EYEC_HEAPATTR.
• heapattr->hpa_version != HPA_VERSION.
• Flags: Both the HPA_SHARED and the HPA_PRIVATE flags are
specified.

• Flags: Neither the HPA_SHARED nor the HPA_PRIVATE flag is
specified.

• Flags: Both the HPA_PINNED and the HPA_PAGED flags are
specified.

• Flags: Neither the HPA_PINNED nor the HPA_PAGED flag is
specified.

• Keys: kernel key specified is not valid.
• Other: Size is specified with a shared heap.
• Other: Limit is specified with a shared heap.
• Other: Address specified is not NULL.
• Other: Limit > size for private heap.
• Other: Private heap size is too small (less than 8M).

ENOMEM_HEAP_CREATE Indicates insufficient memory available to complete the request.

Related reference
heap_modify Kernel Service
heap_destroy Kernel Service

heap_destroy Kernel Service

Purpose
Removes a heap.

Syntax

#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/kerrno.h>

kerrno_t heap_destroy (heapattr_t heap, long flags);

Parameters

Item Description

heap The heap to destroy.

flags Must be zero.

212 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
This service removes a heap and its internal resources from the system. There must be no outstanding
allocations when a heap is destroyed.

Execution Environment
The heap_destroy kernel service can be called from the process environment only.

Return Values

Item Description

EINVAL_HEAP_DESTROY The heap parameter is not recognizable.

EBUSY_HEAP_DESTROY The heap is still in use.

Related reference
heap_create Kernel Service
heap_modify Kernel Service

heap_modify Kernel Service

Purpose
Modifies the attributes of a heap.

Syntax

#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/kerrno.h>

kerrno_t heap_modify (heapattr_t heap, long command, long argument);

Parameters

Item Description

heap The heap handle returned from the heap_create kernel service.

command Specifies the operation to perform. The following values are supported:
HPA_SET_LIMIT

Modifies the limit value of a private heap.
HPA_SET_DEBUG

Modifies the debug level. Debug levels from 0 to 9 are supported.

argument Command specific data (new limit or debug level).

Description
The heap_modify kernel service is used to alter the heap characteristics at run time.

Execution Environment
The heap_modify kernel service can be called from the process environment only with interrupts
enabled.

Kernel Services and Subsystem Operations 213

Return Values

Item Description

0 Success.

EINVAL_HEAP_MODIFY The command or the execution environment is not valid.

ERANGE_HEAP_MODIFY Heap property is outside the supported range.

Related reference
heap_create Kernel Service
heap_destroy Kernel Service

hkeyset_add, hkeyset_replace, hkeyset_restore, or hkeyset_get Kernel
Service

Purpose
Manipulates the protection domain (page access as controlled by storage keys) in use for code execution
in the kernel environment.

Syntax

#include <sys/skeys.h>

hkeyset_t hkeyset_add (hkeyset_t keyset);
hkeyset_t hkeyset_replace (hkeyset_t keyset);
void hkeyset_restore (hkeyset_t keyset);
hkeyset_t hkeyset_get (void);

Parameters
Item Description

keyset The hardware keyset to be activated.

Description
If storage protection keys are enabled, every memory page has a hardware storage protection key
associated with it. A keyset is a representation of the access rights to a set of storage protection keys. To
access a memory page, a hardware keyset containing the storage key associated with the memory page
must be active.

The hkeyset_add kernel service updates the protection domain by adding the hardware keyset specified
by the keyset parameter to the currently addressable hardware keyset. The previous hardware keyset is
returned.

The hkeyset_replace kernel service updates the protection domain by loading the hardware keyset
specified by the keyset parameter as the currently addressable storage set. The previous hardware keyset
is returned.

The hkeyset_restore kernel service restores a caller's hardware keyset when returning from a module
entry point. It does not return any value.

The hkeyset_get kernel service reads the current hardware keyset without altering it.

214 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The hkeyset_add, hkeyset_replace, hkeyset_restore, or hkeyset_get kernel service can be called from
either the process environment or the interrupt environment.

Return Values
The hkeyset_add, hkeyset_replace, and hkeyset_get kernel services return the keyset value that was
active before the call. The hkeyset_restore kernel service does not return any value.

hkeyset_restore_userkeys Kernel Service

Purpose
Restores the previous user-memory access.

Syntax

#include <sys/skeys.h>

kerrno_t hkeyset_restore_userkeys (oldset)
hkeyset_t oldset;

Parameters

Item Description

oldset Specifies the previous hardware keyset returned by the hkeyset_update_userkeys
kernel service.

Description
The hkeyset_restore_userkeys kernel service is a specialized protection gate that restores only the
user-mode portion of the current hardware keyset. This is normally done by the kernel after this kernel
service accesses user memory.

Execution Environment
The hkeyset_restore_userkeys kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful completion.

EINVAL_HKEYSET_RESTORE_USERKEYS Indicates that the execution environment is not valid.

hkeyset_update_userkeys Kernel Service

Purpose
Establishes accessibility to user memory.

Kernel Services and Subsystem Operations 215

Syntax

#include <sys/skeys.h>

kerrno_t hkeyset_update_userkeys (oldset)
hkeyset_t *oldset;

Parameters

Item Description

oldset Contains the returned previous hardware keyset. The valid parameter must be an 8-byte
aligned address.

Description
The hkeyset_update_userkeys kernel service is a specialized protection gate that alters only the user-
mode portion of the current hardware keyset. The user-mode storage keys for the currently running
thread is placed into the current hardware keyset. This is normally done by the kernel when this kernel
service accesses user memory.

The previous hardware keyset is returned in the memory specified by the oldset parameter. You can
use the hkeyset_restore_userkeys kernel service to remove the user accessibility when it is no longer
needed.

Important: Kernel services such as xmemin, xmemout, uiomove, copyin, and coypout are the suggested
ways to access user memory from the kernel. If possible, avoid using kernel code to directly access user
memory.

Execution Environment
The hkeyset_update_userkeys kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful completion.

EINVAL_HKEYSET_UPDATE_USERKEYS Indicates that the parameter or execution environment
is not valid.

Related reference
hkeyset_restore_userkeys Kernel Service
xmemin Kernel Service
uiomove Kernel Service

i
The following kernel services begin with the with the letter i.

i_clear Kernel Service

Purpose
Removes an interrupt handler.

216 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/intr.h>

void i_clear (handler)
struct intr *handler;

Parameter

Item Description

handler Specifies the address of the interrupt handler structure passed to the i_init service.

Description
The i_clear service removes the interrupt handler specified by the handler parameter from the set of
interrupt handlers that the kernel knows about. "Coding an Interrupt Handler" in Kernel Extensions and
Device Support Programming Concepts contains a brief description of interrupt handlers.

The i_mask service is called by the i_clear service to disable the interrupt handler's bus interrupt level
when this is the last interrupt handler for the bus interrupt level. The i_clear service removes the interrupt
handler structure from the list of interrupt handlers. The kernel maintains this list for that bus interrupt
level.

Execution Environment
The i_clear kernel service can be called from the process environment only.

Return Values
The i_clear service has no return values.

Related reference
i_init Kernel Service
Related information
I/O Kernel Services
Understanding Interrupts

i_disable Kernel Service

Purpose
Disables interrupt priorities.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/intr.h>

int i_disable (new)
int new;

Kernel Services and Subsystem Operations 217

Parameter

Ite
m

Description

ne
w

Specifies the new interrupt priority.

Description
Attention: The i_disable service has two side effects that result from the replaceable and
pageable nature of the kernel. First, it prevents process dispatching. Second, it ensures, within
limits, that the caller's stack is in memory. Page faults that occur while the interrupt priority is
not equal to INTBASE crash the system.

Note: The i_disable service is very similar to the standard UNIX spl service.

The i_disable service sets the interrupt priority to a more favored interrupt priority. The interrupt priority
is used to control which interrupts are allowed.

A value of INTMAX is the most favored priority and disables all interrupts. A value of INTBASE is the least
favored and disables only interrupts not in use. The /usr/include/sys/intr.h file defines valid interrupt
priorities.

The interrupt priority is changed only to serialize code executing in more than one environment (that is,
process and interrupt environments).

For example, a device driver typically links requests in a list while executing under the calling process. The
device driver's interrupt handler typically uses this list to initiate the next request. Therefore, the device
driver must serialize updating this list with device interrupts. The i_disable and i_enable services provide
this ability. The I_init kernel service contains a brief description of interrupt handlers.

Note: When serializing such code in a multiprocessor-safe kernel extension, locking must be used as
well as interrupt control. For this reason, new code should call the disable_lock kernel service instead of
i_disable. The disable_lock service performs locking only on multiprocessor systems, and helps ensure
that code is portable between uniprocessor and multiprocessor systems.

The i_disable service must always be used with the i_enable service. A routine must always return with
the interrupt priority restored to the value that it had upon entry.

The i_mask service can be used when a routine must disable its device across a return.

Because of these side effects, the caller of the i_disable service should ensure that:

• The reference parameters are pinned.
• The code executed during the disable operation is pinned.
• The amount of stack used during the disable operation is less than 1KB.
• The called programs use less than 1KB of stack.

In general, the caller of the i_disable service should also call only services that can be called by interrupt
handlers. However, processes that call the i_disable service can call the e_sleep, e_wait, e_sleepl, lockl,
and unlockl services as long as the event word or lockword is pinned.

The kernel's first-level interrupt handler sets the interrupt priority for an interrupt handler before calling
the interrupt handler. The interrupt priority for a process is set to INTBASE when the process is created
and is part of each process's state. The dispatcher sets the interrupt priority to the value associated with
the process to be executed.

Execution Environment
The i_disable kernel service can be called from either the process or interrupt environment.

218 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Value
The i_disable service returns the current interrupt priority that is subsequently used with the i_enable
service.

Related reference
disable_lock Kernel Service
i_enable Kernel Service
Related information
Understanding Interrupts

i_enable Kernel Service

Purpose
Enables interrupt priorities.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/intr.h>

void i_enable (old)
int old;

Parameter

Ite
m

Description

old Specifies the interrupt priority returned by the i_disable service.

Description
The i_enable service restores the interrupt priority to a less-favored value. This value should be the value
that was in effect before the corresponding call to the i_disable service.

Note: When serializing a thread with an interrupt handler in a multiprocessor-safe kernel extension,
locking must be used as well as interrupt control. For this reason, new code should call the
unlock_enable kernel service instead of i_enable. The unlock_enable service performs locking
only on multiprocessor systems, and helps ensure that code is portable between uniprocessor and
multiprocessor systems.

Execution Environment
The i_enable kernel service can be called from either the process or interrupt environment.

Return Values
The i_enable service has no return values.

Related reference
i_disable Kernel Service
unlock_enable Kernel Service
Related information
Understanding Interrupts

Kernel Services and Subsystem Operations 219

i_eoi Kernel Service

Purpose
Issues an End of Interrupt (EOI) for a given handler.

Syntax
int i_eoi(struct intr *handler)

Description
The i_eoi kernel service allows a device driver to issue an End of Interrupt (EOI) for its device explicitly.
For level-triggered interrupts, after the second level interrupt handler (SLIH) has completed, the kernel
issues an EOI on behalf of the device driver. For ISA (8259) edge-triggered interrupts, the kernel
issues the EOI on behalf of the device driver before calling the SLIH. However, in the case of some
edge-triggered interrupts (for example, PCI and PCI-E style edge-triggered interrupt), it is desirable that
the device driver checks for pending work before the EOI is issued, and the driver is required to check for
any additional work after the EOI is issued. The i_eoi kernel service facilitates such operations and issues
an EOI for an edge-triggered interrupt source. The i_eoi kernel service fails if called for a level-triggered
interrupt source.

Parameters
Item Description

handler Pointer to the interrupt handler

Execution Environment
The i_eoi kernel service can be called from process or interrupt environment.

Return Values
INTR_SUCC if successful

INTR_FAIL if unsuccessful (the INTR_EDGE flag was not set on i_init()).

Virtual device drivers' interrupt services are similar to the PCI interrupt services. Interrupts are registered
with a bus_type of BUS_BID. The primary difference is that the edge flag should be set for vdevices. For
example:

Parent CuDv "bus_id" VDEVICE bus BID
Device CuAt "bus_intr_lvl" Adapter interrupt level

intr.flags |= INTR_EDGE
intr.bus_type = BUS_BID
intr.bid = Parent_CuDv.bus_id
intr.level = Device_CuAt.bus_intr_lvl

PCI-E interrupts are Message Signalled Interrupts, and hence, they are edge-triggered. Therefore,
INTR_EDGE flag should be specified.

ifa_ifwithaddr Kernel Service

Purpose
Locates an interface based on a complete address.

220 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/af.h>

struct ifaddr * ifa_ifwithaddr (addr)
struct sockaddr *addr;

Parameter

Item Description

addr Specifies a complete address.

Description
The ifa_ifwithaddr kernel service is passed a complete address and locates the corresponding interface.
If successful, the ifa_ifwithaddr service returns the ifaddr structure associated with that address.

Execution Environment
The ifa_ifwithaddr kernel service can be called from either the process or interrupt environment.

Return Values
If successful, the ifa_ifwithaddr service returns the corresponding ifaddr structure associated with the
address it is passed. If no interface is found, the ifa_ifwithaddr service returns a null pointer.

Example
To locate an interface based on a complete address, invoke the ifa_ifwithaddr kernel service as follows:

ifa_ifwithaddr((struct sockaddr *)&ipaddr);

Related reference
ifa_ifwithdstaddr Kernel Service
ifa_ifwithnet Kernel Service
Related information
Network Kernel Services

ifa_ifwithdstaddr Kernel Service

Purpose
Locates the point-to-point interface with a given destination address.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/socket.h>
#include <net/if.h>

struct ifaddr * ifa_ifwithdstaddr (addr)
struct sockaddr *addr;

Kernel Services and Subsystem Operations 221

Parameter

Item Description

addr Specifies a destination address.

Description
The ifa_ifwithdstaddr kernel service searches the list of point-to-point addresses per interface and
locates the connection with the destination address specified by the addr parameter.

Execution Environment
The ifa_withdstaddr kernel service can be called from either the process or interrupt environment.

Return Values
If successful, the ifa_ifwithdstaddr service returns the corresponding ifaddr structure associated with
the point-to-point interface. If no interface is found, the ifa_ifwithdstaddr service returns a null pointer.

Example
To locate the point-to-point interface with a given destination address, invoke the ifa_ifwithdstaddr
kernel service as follows:

ifa_ifwithdstaddr((struct sockaddr *)&ipaddr);

Related reference
ifa_ifwithaddr Kernel Service
ifa_ifwithnet Kernel Service
Related information
Network Kernel Services

ifa_ifwithnet Kernel Service

Purpose
Locates an interface on a specific network.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/socket.h>
#include <net/if.h>

struct ifaddr * ifa_ifwithnet (addr)
register struct sockaddr *addr;

Parameter

Item Description

addr Specifies the address.

222 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The ifa_ifwithnet kernel service locates an interface that matches the network specified by the address it
is passed. If more than one interface matches, the ifa_ifwithnet service returns the first interface found.

Execution Environment
The ifa_ifwithnet kernel service can be called from either the process or interrupt environment.

Return Values
If successful, the ifa_ifwithnet service returns the ifaddr structure of the correct interface. If no interface
is found, the ifa_ifwithnet service returns a null pointer.

Example
To locate an interface on a specific network, invoke the ifa_ifwithnet kernel service as follows:

ifa_ifwithnet((struct sockaddr *)&ipaddr);

Related reference
ifa_ifwithaddr Kernel Service
ifa_ifwithdstaddr Kernel Service
Related information
Network Kernel Services

if_attach Kernel Service

Purpose
Adds a network interface to the network interface list.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>

if_attach (ifp)
struct ifnet *ifp;

Parameter

Ite
m

Description

ifp Points to the interface network (ifnet) structure that defines the network interface.

Description
The if_attach kernel service registers a Network Interface Driver (NID) in the network interface list.

Execution Environment
The if_attach kernel service can be called from either the process or interrupt environment.

Kernel Services and Subsystem Operations 223

Return Values
The if_attach kernel service has no return values.

Related reference
if_detach Kernel Service
Related information
Network Kernel Services

if_detach Kernel Service

Purpose
Deletes a network interface from the network interface list.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>

if_detach (ifp)
struct ifnet *ifp;

Parameter

Ite
m

Description

ifp Points to the interface network (ifnet) structure that describes the network interface to delete.

Description
The if_detach kernel service deletes a Network Interface Driver (NID) entry from the network interface
list.

Execution Environment
The if_detach kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

0 Indicates that the network interface was successfully deleted.

ENOENT Indicates that the if_detach kernel service could not find the NID in the network interface list.

Related reference
if_attach Kernel Service
Related information
Network Kernel Services

if_down Kernel Service

224 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Marks an interface as down.

Syntax
#include <sys/types.h> #include <sys/errno.h> #include <net/if.h> void if_down (ifp) register struct
ifnet *ifp;

Parameter

Ite
m

Description

ifp Specifies the ifnet structure associated with the interface array.

Description
The if_down kernel service:

• Marks an interface as down by setting the flags field of the ifnet structure appropriately.
• Notifies the protocols of the transaction.
• Flushes the output queue.

The ifp parameter specifies the ifnet structure associated with the interface as the structure to be marked
as down.

Execution Environment
The if_down kernel service can be called from either the process or interrupt environment.

Return Values
The if_down service has no return values.

Example
To mark an interface as down, invoke the if_down kernel service as follows:

if_down(ifp);

Related information
Network Kernel Services

if_nostat Kernel Service

Purpose
Zeroes statistical elements of the interface array in preparation for an attach operation.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>

void if_nostat (ifp)
struct ifnet *ifp;

Kernel Services and Subsystem Operations 225

Parameter

Ite
m

Description

ifp Specifies the ifnet structure associated with the interface array.

Description
The if_nostat kernel service zeroes the statistic elements of the ifnet structure for the interface. The ifp
parameter specifies the ifnet structure associated with the interface that is being attached. The if_nostat
service is called from the interface attach routine.

Execution Environment
The if_nostat kernel service can be called from either the process or interrupt environment.

Return Values
The if_nostat service has no return values.

Example
To zero statistical elements of the interface array in preparation for an attach operation, invoke the
if_nostat kernel service as follows:

if_nostat(ifp);

Related information
Network Kernel Services

ifunit Kernel Service

Purpose
Returns a pointer to the ifnet structure of the requested interface.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>

struct ifnet *
ifunit (name)
char *name;

Parameter

Item Description

name Specifies the name of an interface (for example, en0).

Description
The ifunit kernel service searches the list of configured interfaces for an interface specified by the name
parameter. If a match is found, the ifunit service returns the address of the ifnet structure for that
interface.

226 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The ifunit kernel service can be called from either the process or interrupt environment.

Return Values
The ifunit kernel service returns the address of the ifnet structure associated with the named interface. If
the interface is not found, the service returns a null value.

Example
To return a pointer to the ifnet structure of the requested interface, invoke the ifunit kernel service as
follows:

ifp = ifunit("en0");

Related information
Network Kernel Services

i_init Kernel Service

Purpose
Defines an interrupt handler.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/intr.h>

int i_init
(handler)
struct intr *handler;

Parameter

Item Description

handler Designates the address of the pinned interrupt handler structure.

Description
Attention: The interrupt handler structure must not be altered between the call to the i_init
service to define the interrupt handler and the call to the i_clear service to remove the interrupt
handler. The structure must also stay pinned. If this structure is altered at those times, a kernel
panic may result.

The i_init service allows device drivers to define an interrupt handler to the kernel. The interrupt handler
intr structure pointed to by the handler parameter describes the interrupt handler. The caller of the i_init
service must initialize all the fields in the intr structure. The /usr/include/sys/intr.h file defines these
fields and their valid values.

The i_init service enables interrupts by linking the interrupt handler structure to the end of the list of
interrupt handlers defined for that bus level. If this is the first interrupt handler for the specified bus
interrupt level, the i_init service enables the bus interrupt level by calling the i_unmask service.

The interrupt handler can be called before the i_init service returns if the following two conditions are
met:

Kernel Services and Subsystem Operations 227

• The caller of the i_init service is executing at a lower interrupt priority than the one defined for the
interrupt.

• An interrupt for the device or another device on the same bus interrupt level is already pending.

On multiprocessor systems, all interrupt handlers defined with the i_init kernel service run by default on
the first processor started when the system was booted. This ensures compatibility with uniprocessor
interrupt handlers. If the interrupt handler being defined has been designed to be multiprocessor-safe,
or is an EPOW (Early Power-Off Warning) or off-level interrupt handler, set the INTR_MPSAFE flag in the
flags field of the intr structure passed to the i_init kernel service. The interrupt handler will then run on
any available processor.

Coding an Interrupt Handler

The kernel calls the interrupt handler when an enabled interrupt occurs on that bus interrupt level. The
interrupt handler is responsible for determining if the interrupt is from its own device and processing the
interrupt. The interface to the interrupt handler is as follows:

int interrupt_handler (handler) struct intr *handler;

The handler parameter points to the same interrupt handler structure specified in the call to the i_init
kernel service. The device driver can pass additional parameters to its interrupt handler by declaring the
interrupt handler structure to be part of a larger structure that contains these parameters.

The interrupt handler can return one of two return values. A value of INTR_SUCC indicates that the
interrupt handler processed the interrupt and reset the interrupting device. A value of INTR_FAIL
indicates that the interrupt was not from this interrupt handler's device.

Registering Early Power-Off Warning (EPOW) Routines

The i_init kernel service can also be used to register an EPOW (Early Power-Off Warning) notification
routine.

The return value from the EPOW interrupt handler should be INTR_SUCC, which indicates that the
interrupt was successfully handled. All registered EPOW interrupt handlers are called when an EPOW
interrupt is indicated.

Execution Environment
The i_init kernel service can be called from the process environment only.

Return Values

Item Description

INTR_SUCC Indicates a successful completion.

INTR_FAIL Indicates an unsuccessful completion. The i_init service did not define the interrupt
handler.

An unsuccessful completion occurs when there is a conflict between a shared and a
nonshared bus interrupt level. An unsuccessful completion also occurs when more than
one interrupt priority is assigned to a bus interrupt level.

Related information
Understanding Interrupts
I/O Kernel Services

i_mask Kernel Service

228 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Disables a bus interrupt level.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/intr.h>

void i_mask (handler)
struct intr *handler;

Parameter

Item Description

handler Specifies the address of the interrupt handler structure that was passed to the i_init service.

Description
The i_mask service disables the bus interrupt level specified by the handler parameter.

The i_disable and i_enable services are used to serialize the execution of various device driver routines
with their device interrupts.

The i_init and i_clear services use the i_mask and i_unmask services internally to configure bus interrupt
levels.

Device drivers can use the i_disable, i_enable, i_mask, and i_unmask services when they must perform
off-level processing with their device interrupts disabled. Device drivers also use these services to allow
process execution when their device interrupts are disabled.

Execution Environment
The i_mask kernel service can be called from either the process or interrupt environment.

Return Values
The i_mask service has no return values.

Related reference
i_unmask Kernel Service
Related information
Understanding Interrupts
I/O Kernel Services

in_localaddr Kernel Service

Purpose
Determine whether an IPv4 address is on the local network.

Syntax
#include <arpa/inet.h>

int in_localaddr (struct in_addr in)

Kernel Services and Subsystem Operations 229

Parameters
in

Specifies the IPv4 address

Description
Indicates that the IPv4 address in is for a local host (one to which we have a connection). If
subnetsarelocal is true, this includes other subnets of the local net. Otherwise, it includes only the
directly-connected (sub)nets.

Execution Environment
The in_localaddr kernel service can be called from the process environment only.

Return Values
0

The IPv4 address in is not local.
1

Indicates that the IPv4 address in is for a local host (one to which we have a connection). If
subnetsarelocal is true, this includes other subnets of the local net. Otherwise, it includes only the
directly-connected (sub)nets.

init_heap Kernel Service

Purpose
Initializes a new heap to be used with kernel memory management services.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmalloc.h>
#include <sys/malloc.h>

heapaddr_t init_heap (area, size, heapp)
caddr_t area;
int size;
heapaddr_t *heapp;

Parameters

Item Description

area Specifies the virtual memory address used to define the starting memory area for the heap. This
address must be page-aligned.

size Specifies the size of the heap in bytes. This value must be an integral number of system pages.

heapp Points to the external heap descriptor. This must have a null value. The base kernel uses this
field is used to specify special heap characteristics that are unavailable to kernel extensions.

Description
The init_heap kernel service is most commonly used by a kernel process to initialize and manage an area
of virtual memory as a private heap. Once this service creates a private heap, the returned heapaddr_t

230 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

value can be used with the xmalloc or xmfree service to allocate or deallocate memory from the private
heap. Heaps can be created within other heaps, a kernel process private region, or even on a stack.

Few kernel extensions ever require the init_heap service because the exported global kernel_heap and
pinned_heap are normally used for memory allocation within the kernel. However, kernel processes
can use the init_heap service to create private nonglobal heaps within their process private region for
controlling kernel access to the heap and possibly for performance considerations.

Execution Environment
The init_heap kernel service can be called from the process environment only.

Related reference
xmalloc Kernel Service
Related information
Memory Kernel Services
Using Kernel Processes

initp Kernel Service

Purpose
Changes the state of a kernel process from idle to ready.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int initp
(pid, func, init_parms,
parms_length, name)
pid_t pid;
void (func) (int
flag, void* init_parms, int parms_length);
void * init_parms;
int parms_length;
char * name;

Parameters

Item Description

pid Specifies the process identifier of the process to be initialized.

func Specifies the process's initialization routine.

init_parm Specifies the pointer to the initialization parameters.

parms_length Specifies the length of the initialization parameters.

name Specifies the process name.

Description
The initp kernel service completes the transition of a kernel process from idle to ready. The idle state for
a process is represented by p_status == SIDL. Before calling the initp service, the creatp service is called
to create the process. The creatp service allocates and initializes a process table entry.

Kernel Services and Subsystem Operations 231

The initp service creates and initializes the process-private segment. The process is marked as a kernel
process by a bit set in the p_flag field in the process table entry. This bit, the SKPROC bit, signifies that
the process is a kernel process.

The process calling the initp service to initialize a newly created process must be the same process that
called the creatp service to create the new process.

"Using Kernel Processes" in Kernel Extensions and Device Support Programming Concepts further explains
how the initp kernel service completes the initialization process begun by the creatp service.

The pid parameter identifies the process to be initialized. It must be valid and identify a process in the
SIDL (idle) state.

The name parameter points to a character string that names the process. The leading characters of this
string are copied to the user structure. The number of characters copied is implementation-dependent,
but at least four are always copied.

The func parameter indicates the main entry point of the process. The new process is made ready to
run this function. If the init_parms parameter is not null, it points to data passed to this routine. The
parameter structure must be agreed upon between the initializing and initialized process. The initp
service copies the data specified by the init_parm parameter (with the exact number of bytes specified by
the parms_length parameter) of data to the new process's stack.

Execution Environment
The initp kernel service can be called from the process environment only.

Example
To initialize the kernel process running the function main_kproc, enter:

{
.
.
.
pid = creatp();
initp(pid, main_kproc, &node_num, sizeof(int), "tkproc");
.
.
}
void
main_kproc(int flag, void* init_parms, int parms_length)
{
 .
 .
 .
 int i;
 i = *((int *)init_parms);
 .
 .
 .
}

Return Values

Item Description

0 Indicates a successful operation.

ENODEV The process could not be scheduled because it has a processor attachment that does not
contain any available processors. This can be caused by Dynamic Processor Deallocation.

ENOME
M

Indicates that there was insufficient memory to initialize the process.

EINVAL Indicates an pid parameter that was not valid.

232 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related reference
creatp Kernel Service
Related information
Process and Exception Management Kernel Services
Dynamic logical partitioning

initp Kernel Service func Subroutine

Purpose

Directs the process initialization routine.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

void func (flag, init_parms, parms_length)
int flag;
void * init_parms;
int parms_length;

Parameters

Item Description

func Specifies the process's initialization routine.

flag Has a 0 value if this subroutine is executed as a result of initializing a process with
the initp service.

init_parms Specifies the pointer to the initialization parameters.

parms_length Specifies the length of the initialization parameters.

Related reference
initp Kernel Service
Related information
Process and Exception Management Kernel Services

io_map Kernel Service

Purpose
Attach to an I/O mapping

Syntax
#include <sys/adspace.h>

void * io_map (io_handle)
io_handle_t io_handle;

Kernel Services and Subsystem Operations 233

Description
The io_map kernel service sets up addressibility to the I/O address space defined by the io_handle_t
structure. It returns an effective address representing the start of the mapped region.

The io_map kernel service is a replacement call for the iomem_att kernel service, which is deprecated
on AIX 6.1. However, the io_map kernel service might replace multiple iomem_att calls depending on
the device, the driver, and whether multiple regions were mapped into a single virtual segment. Like the
iomem_att kernel service, this service does not return any kind of failure. If something goes wrong, the
system crashes.

There is a major difference between io_map and iomem_att. iomem_att took an io_map structure
containing a bus address and returned a fully qualified effective address with any byte offset from the bus
address preserved and computed into the returned effective address. The io_map kernel service always
returns a segment-aligned effective address representing the beginning of the I/O segment corresponding
to io_handle_t. Manipulation of page and byte offsets within the segment are responsibilities of the
device driver.

The io_map kernel service is subject to nesting rules regarding the number of attaches allowed. A total
system number of active temporary attaches is 4. However, it is recommended that no more than one
active attach be owned by a driver calling the interrupt or DMA kernel services. It is also recommended
that no active attaches be owned by a driver when calling other kernel services.

Parameters
Item Description

io_handle Received on a prior successful call to io_map_init. Describes the I/O space to
attach to.

Execution Environment
The io_map kernel service can be called from the process or interrupt environment.

Return Values
The io_map kernel service returns a segment-aligned effective address to access the I/O address spaces.

Related reference
io_map_init Kernel Service
io_unmap Kernel Service
Related information
Programmed I/O (PIO) Kernel Services

io_map_clear Kernel Service

Purpose
Removes an I/O mapping segment.

Syntax
#include <sys/adspace.h>

void io_map_clear (io_handle)
io_handle_t io_handle;

234 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
This service destroys all mappings defined by the io_handle_t parameter.

There should be no active mappings (outstanding io_map calls) to this handle when io_map_clear is
called. The segment previously created by an io_map_init call or multiple io_map_init calls, is deleted.

Parameters
Item Description

io_handle Received on a prior successful call to io_map_init.
Describes the I/O space to be removed.

Execution Environment
The io_map_clear kernel service can be called from the process environment only.

Related reference
io_map Kernel Service
io_unmap Kernel Service
Related information
Programmed I/O (PIO) Kernel Services

io_map_init Kernel Service

Purpose
Creates and initializes an I/O mapping segment.

Syntax
#include <sys/adspace.h>
#include <sys/vm_types.h>

io_handle_t io_map_init (io_map_ptr, page_offset, io_handle)
struct io_map *io_map_ptr;
vpn_t page_offset;
io_handle_t io_handle;

struct io_map {
 int key; /* structure version number */
 int flags; /* flags for mapping */
 int32long64_t size; /* size of address space needed */
 int bid; /* bus ID */
 long long busaddr; /* bus address */
};

Description
The io_map_init kernel service will create a segment to establish a cache-inhibited virtual-to-real
translation for the bus address region defined by the contents of the io_map struct. The flags parameter
of the io_map structure can be used to customize the mapping such as making the region read-only, using
the IOM_RDONLY flag.

The io_map_init kernel service returns a handle of an opaque type io_handle_t to be used on future
io_map or io_unmap calls. All services that use the io_handle returned by io_map_init must use the
handle from the most recent call. Using an old handle is a programming error.

The vpn_t type parameter represents the virtual page number offset to allow the caller to specify where,
in the virtual segment, to map this region. The offset must not conflict with a previous mapping in the
segment. The caller should map the most frequently accessed and performance critical I/O region at

Kernel Services and Subsystem Operations 235

vpn_t offset 0 into the segment. This is due to the fact that the subsequent io_map calls using this
io_handle will return an effective address representing the start of the segment (that is, page offset 0).
The device driver is responsible for managing various offsets into the segment. A single bus memory
address page can be mapped multiple times at different vpn_t offsets within the segment.

The io_handle_t parameter is useful when the caller wants to append a new mapping to an existing
segment. For the initial creation of a new I/O segment, this parameter must be NULL. For appended
mappings to the same segment, this parameter is the io_handle_t returned from the last successful
io_map_init call. If the mapping fails for any reason (offset conflicts with prior mapping, or no more room
in the segment), NULL is returned. In this case, the previous io_handle_t is still valid. If successful, the
io_handle_t returned should be used on all future calls. In this way, a device driver can manage multiple
I/O address spaces of a single adapter within a single virtual address segment, requiring the driver to do
only a single attach, io_map, to gain addressibility to all of the mappings.

Parameters
Item Description

io_map_ptr Pointer to io_map structure describing the address
region to map.

page_offset Page offset at which to map the specified region
into the virtual address segment.

io_handle For the first call, this parameter should be
NULL. When adding to an existing mapping, this
parameter is the io_handle received on a prior
successful call to io_map_init.

Execution Environment
The io_map_init kernel service can be called from the process environment only.

Return Values
Item Description

io_handle_t An opaque handle to the mapped I/O segment in the virtual memory that must be
used in subsequent calls to this service.

NULL Failed to create or append mapping.

Related reference
io_map_clear Kernel Service
io_unmap Kernel Service
Related information
Programmed I/O (PIO) Kernel Services

io_unmap Kernel Service

Purpose
Detach from an I/O mapping

Syntax
#include <sys/adspace.h>

236 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

void io_unmap (eaddr)
void *eaddr;

Description
The io_unmap kernel service removes addressibility to the I/O address space defined by the eaddr
parameter. There must be a valid active mapping from a previous io_map call for this effective address.
The eaddr parameter can be any valid effective address within the segment, and it does not have to be
exactly the same as the address returned by io_map.

The io_unmap kernel service is a replacement call for the iomem_det kernel service, which is deprecated
on AIX 6.1. However, the io_unmap kernel service might replace multiple iomem_det calls depending on
the device, the driver, and whether multiple regions were mapped into a single virtual segment using the
io_map_init kernel service.

Parameters
Item Description

eaddr Received on a prior successful call to io_map. Effective address for the I/O space to
detach from.

Execution Environment
The io_unmap kernel service can be called from the process or interrupt environment.

Related reference
io_map_clear Kernel Service
io_map Kernel Service
Related information
Programmed I/O (PIO) Kernel Services

iodone Kernel Service

Purpose
Performs block I/O completion processing.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

void iodone (bp)
struct buf *bp;

Parameter

Ite
m

Description

bp Specifies the address of the buf structure for the buffer whose I/O has completed.

On a platform that supports storage keys, the passed in bp parameter must be in the
KKEY_PUBLIC or KKEY_BLOCK_DEV protection domain.

Kernel Services and Subsystem Operations 237

Description
A device driver calls the iodone kernel service when a block I/O request is complete. The device driver
must not reference or alter the buffer header or buffer after calling the iodone service.

The iodone service takes one of two actions, depending on the current interrupt level. Either it invokes the
caller's individual iodone routine directly, or it schedules I/O completion processing for the buffer to be
performed off-level, at the INTIODONE interrupt level. The interrupt handler for this level then calls the
iodone routine for the individual device driver. In either case, the individual iodone routine is defined by
the b_iodone buffer header field in the buffer header. This iodone routine is set up by the caller of the
device's strategy routine.

For example, the file I/O system calls set up a routine that performs buffered I/O completion processing.
The uphysio service sets up a routine that performs raw I/O completion processing. Similarly, the pager
sets up a routine that performs page-fault completion processing.

Setting up an iodone Routine

Under certain circumstances, a device driver can set up an iodone routine. For example, the logical
volume device driver can follow this procedure:

1. Take a request for a logical volume.
2. Allocate a buffer header.
3. Convert the logical volume request into a physical volume request.
4. Update the allocated buffer header with the information about the physical volume request. This

includes setting the b_iodone buffer header field to the address of the individual iodone routine.
5. Call the physical volume device driver strategy routine.

Here, the caller of the logical volume strategy routine has set up an iodone routine that is started when
the logical volume request is complete. The logical volume strategy routine in turn sets up an iodone
routine that is invoked when the physical volume request is complete.

The key point of this example is that only the caller of a strategy routine can set up an iodone routine and
even then, this can only be done while setting up the request in the buffer header.

The interface for the iodone routine is identical to the interface to the iodone service.

Execution Environment
The iodone kernel service can be called from either the process or interrupt environment.

Return Values
The iodone service has no return values.

Related reference
iowait Kernel Service
buf Structure
Related information
I/O Kernel Services

iostadd Kernel Service

Purpose
Registers an I/O statistics structure that is used for updating I/O statistics reported by the iostat
subroutine.

238 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/iostat.h>
#include <sys/devinfo.h>

int iostadd (devtype, devstatp)
int devtype;
union {
 struct ttystat *ttystp;
 struct dkstat *dkstp;
 } devstatp;

Description
The iostadd kernel service is used to register the I/O statistics structure that is required to maintain
statistics on a device. The iostadd service is typically called by a tty, disk, or CD-ROM device driver to
provide the statistical information that is used by the iostat subroutine. The iostat subroutine displays
statistic information for tty and disk devices on the system. The iostadd service must be used once for
each configured device.

The iostadd kernel service and the dkstat structure support Multi-Path I/O (MPIO). For an MPIO device,
the anchor is the disk's dkstat structure. This anchor must be the first dkstat structure that is registered
by using the iostadd kernel service. Any path dkstat structures that are registered later must reference
the address of the anchor dkstat (disk) structure in the dkstat.dk_mpio_anchor field.

For tty devices, the devtype parameter has a value of DD_tty. In this case, the iostadd service uses the
devstatp parameter to return a pointer to a ttystat structure.

For disk or CD-ROM devices with a devtype value of DD_DISK or DD_CD-ROM, the caller must provide a
pinned and initialized dkstat structure as an input parameter. This structure is pointed to by the devstatp
parameter on entry to the iostadd kernel service.

If the device driver support for a device is terminated, the dkstat or ttystat structure that is registered
with the iostadd kernel service must be deregistered by calling the iostdel kernel service.

I/O Statistics Structures

The iostadd kernel service uses two structures that are found in the usr/include/sys/iostat.h file: the
ttystat structure and the dkstat structure.

The ttystat structure contains the following fields:

Field Description

rawinch Count of raw characters that are received by the tty device

caninch Count of canonical characters that are generated from canonical processing

outch Count of the characters output to a tty device

The second structure that is used by the iostadd kernel service is the dkstat structure, which contains
information about disk devices. This structure contains the following fields:

Field Description

diskname 32-character string name for the disk's logical device

dknextp Pointer to the next dkstat structure in the chain

dk_status Disk entry-status flags

dk_time Time the disk is active

dk_bsize Number of bytes in a block

Kernel Services and Subsystem Operations 239

Field Description

dk_xfers Number of transfers to or from the disk

dk_rblks Number of blocks that are read from the disk

dk_wblks Number of blocks that are written to the disk

dk_seeks Number of seek operations for disks

dk_version Version of the dkstat structure

dk_q_depth Queue depth

dk_mpio_anchor Pointer to the path data anchors (disk)

dk_mpio_next_path Pointer to the next path dkstat structure in the chain

dk_mpio_path_id Path ID

tty Device Driver Support

The rawinch field in the ttystat structure must be incremented by the number of characters that are
received by the tty device. The caninch field in the ttystat structure must be incremented by the number
of input characters that are generated from canonical processing. The outch field is increased by the
number of characters output to tty devices. These fields must be incremented by the device driver, but
never be cleared.

Disk Device Driver Support

A disk device driver must perform these four tasks:

• Allocate and pin a dkstat structure during device initialization.
• Update the dkstat.diskname field with the device's logical name.
• Update the dkstat.dk_bsize field with the number of bytes in a block on the device.
• Set all other fields in the structure to 0.

If a disk device driver supports MPIO, it must perform the following tasks:

• Allocate and pin a dkstat structure during device initialization.
• Update the dkstat.diskname field with the device's logical name.
• Update the dkstat.dk_bsize field with the number of bytes in a block on the device.
• Set the value of dkstat.dk_version to dk_qd_mpio_magic.
• Set the value of dkstat.dk_mpio_anchor to 0 if the dkstat added structure is the disk.
• Set the value of dkstat.dk_mpio_anchor to the address of the path's anchor (disk) dkstat structure,

and set dkstat.dk_mpio_path_id to the path's ID if the dkstat added structure is a path.
• Set all other fields to 0.

If the device supports discrete seek commands, the dkstat.dk_xrate field in the structure must be
set to the transfer rate capability of the device (KB/sec). The device's dkstat structure must then be
registered by using the iostadd kernel service.

During drive operation update, the dkstat.dk_status field must show the busy or non-busy state of
the device. It can be done by setting and resetting the IOST_DK_BUSY flag. The dkstat.dk_xfers
field must be incremented for each transfer initiated to or from the device. The dkstat.dk_rblks and
dkstat.dk_wblks fields must be incremented by the number of blocks that are read or written.

If the device supports discrete seek commands, the dkstat.dk_seek field must be incremented by
the number of seek commands that are sent to the device. If the device does not support discrete seek
commands, both the dkstat.dk_seek and dkstat.dk_xrate fields must be left with a value of 0.

240 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The base kernel updates the dkstat.dk_nextp and dkstat.dk_time fields. They mut not be
modified by the device driver after initialization. For MPIO devices, the base kernel also updates the
dkstat.dk_mpio_next_path field.

Note: The same dkstat structure must not be registered more than once.

In addition to basic tasks, a disk driver must perform the following tasks before it calls the iostadd kernel
service if the driver supports the -D option of the iostat command:

• Set the value of dkstat.dk_version to dk_qd_service2_magic.
• Set the dkstat.ident.adapter field to the adapter name if the driver does not support MPIO.

During I/O operations, the driver must perform the following tasks:

• Increase the dkstat.__dk_rxfers field for each read transfer.
• Update the dkstat.dk_q_depth field with the number of I/O requests which are in progress.
• Increase the dkstat.dk_q_full field when the number of I/O requests which are in progress reaches

the maximum queue depth.
• Increase the dkstat.dk_rserv field by the service time which is the delta-time base value between

when the devstrat kernel service sends a read request to the adapter driver and when the iodone
kernel service returns the request from the adapter driver.

• Increase the dkstat.dk_rtimeout field when the driver tries a failed read request again.
• Increase the dkstat.dk_rfailed field when the driver returns a failed read request as an error.
• Update the dkstat.dk_min_rserv field with the minimum service time for a read request.
• Update the dkstat.dk_max_rserv field with the maximum service time for a read request.
• Increase the dkstat.dk_wserv field by the service time which is the delta-time base value between

when the devstrat kernel service sends a write request to the adapter driver and when the iodone
kernel service returns the request from the adapter driver.

• Increase the dkstat.dk_wtimeout field when the driver tries a failed write request again.
• Increase the dkstat.dk_wfailed field when the driver returns a failed write request as an error.
• Update the dkstat.dk_min_wserv field with the minimum service time for a write request.
• Update the dkstat.dk_max_wserv field with the maximum service time for a write request.
• Increase and decrease the dkstat.dk_wq_depth field when the driver enqueues and dequeues an

I/O request.
• Increase the dkstat.dk_wq_time field by the wait time which is the delta-time base value between

when the driver enqueues an I/O request and when the devstrat kernel service sends the request to the
adapter driver.

• Update the dkstat.dk_wq_min_time field with the minimum wait time.
• Update the dkstat.dk_wq_max_time field with the maximum wait time.

Parameters

Item Description

devtype Specifies the type of device for which I/O statistics are kept. The various device types are
defined in the /usr/include/sys/devinfo.h file. Currently, I/O statistics are only kept for
disks, CD-ROMs, and tty devices. Possible values for this parameter are:
DD_DISK

For disks
DD_CD-ROM

For CD-ROMs
DD_TTY

For tty devices

Kernel Services and Subsystem Operations 241

Item Description

devstatp Points to an I/O statistics structure for the device type that is specified by the devtype
parameter. For a devtype parameter of DD_tty, the address of a pinned ttystat structure is
returned. For a devtype parameter of DD_DISK or DD_CD-ROM, the parameter is an input
parameter that points to a dkstat structure previously allocated by the caller.

On a platform that supports storage keys, the passed in devstatp parameter must be in the
KKEY_PUBLIC or KKEY_BLOCK_DEV protection domain.

Execution Environment
The iostadd kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates that no error is detected.

EINVAL Indicates that the devtype parameter specified a device type that is not valid. For MPIO
devices, indicates that an anchor for a path dkstat structure was not found.

Related reference
iostdel Kernel Service
Related information
iostat subroutine
Kernel Extension and Device Driver Management Kernel Services

iostdel Kernel Service

Purpose
Removes the registration of an I/O statistics structure that is used for maintaining I/O statistics on a
particular device.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/iostat.h>

void iostdel (devstatp)
union {
 struct ttystat *ttystp;
 struct dkstat *dkstp;
 } devstatp;

Description
The iostdel kernel service removes the registration of an I/O statistics structure for a terminating device.
The device's ttystat or dkstat structure must be previously registered by using the iostadd kernel service.
Following a return from the iostdel service, the iostat command no longer displays statistics for the
device that is terminated.

The iostdel kernel service supports Multi-Path I/O (MPIO). For an MPIO device, the anchor is the disk's
dkstat structure. An anchor (disk) might have several paths that are associated with it. Each of these
paths can have a dkstat structure that is registered by using the iostadd kernel service. The semantics

242 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

for unregistering a dkstat structure for an MPIO device are more restrictive than for a non-MPIO device.
All paths must unregister before the anchor (disk) is unregistered. If the anchor (disk) dkstat structure is
unregistered before all of the paths that are associated with it are unregistered, the iostdel kernel service
removes the registration of the anchor (disk) dkstat structure and all remaining registered paths.

Parameters

Item Description

devstatp Points to an I/O statistics structure previously registered by using the iostadd kernel
service.

On a platform that supports storage keys, the passed in devstatp parameter must be in the
KKEY_PUBLIC or KKEY_BLOCK_DEV protection domain.

Execution Environment
The iostdel kernel service can be called from the process environment only.

Return Values
The iostdel service has no return values.

Related reference
iostadd Kernel Service
Related information
iostat command
Kernel Extension and Device Driver Management Kernel Services

iowait Kernel Service

Purpose
Waits for block I/O completion.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

int iowait (bp)
struct buf *bp;

Parameter

Ite
m

Description

bp Specifies the address of the buf structure for the buffer with in-process I/O.

On a platform that supports storage keys, the passed in bp parameter must be in the
KKEY_PUBLIC or KKEY_BLOCK_DEV protection domain.

Kernel Services and Subsystem Operations 243

Description
The iowait kernel service causes a process to wait until the I/O is complete for the buffer specified by the
bp parameter. Only the caller of the strategy routine can call the iowait service. The B_ASYNC bit in the
buffer's b_flags field should not be set.

The iodone kernel service must be called when the block I/O transfer is complete. The buf structure
pointed to by the bp parameter must specify an iodone routine. This routine is called by the iodone
interrupt handler in response to the call to the iodone kernel service. This iodone routine must call the
e_wakeup service with the bp->b_events field as the event. This action awakens all processes waiting
on I/O completion for the buf structure using the iowait service.

Execution Environment
The iowait kernel service can be called from the process environment only.

Return Values
The iowait service uses the geterror service to determine which of the following values to return:

Item Description

0 Indicates that I/O was successful on this buffer.

EIO Indicates that an I/O error has occurred.

b_error value Indicates that an I/O error has occurred on the buffer.

Related reference
geterror Kernel Service
iodone Kernel Service
buf Structure

ip_fltr_in_hook, ip_fltr_out_hook, ipsec_decap_hook, inbound_fw,
outbound_fw Kernel Service

Purpose
Contains hooks for IP filtering.

Syntax

#define FIREWALL_OK 0 /* Accept IP packet */
#define FIREWALL_NOTOK 1 /* Drop IP packet */
#define FIREWALL_OK_NOTSEC 2 /* Accept non-encapsulated IP packet
 (ipsec_decap_hook only) */
#include <sys/mbuf.h>
#include <net/if.h>

int (*ip_fltr_in_hook)(struct mbuf **pkt, void **arg)

int (*ipsec_decap_hook)(struct mbuf **pkt, void **arg)

int (*ip_fltr_out_hook)(struct ifnet *ifp, struct mbuf **pkt,
int flags)

#include <sys/types.h>

#include <sys/mbuf.h>

#include <netinet/ip_var.h>

void (*inbound_fw)(struct ifnet *ifp, struct mbuf *m,
inbound_fw_args_t *args)

244 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

void ipintr_noqueue_post_fw(struct ifnet *ifp, struct mbuf *m,
inbound_fw_args_t *args)

inbound_fw_args_t *inbound_fw_save_args(inbound_fw_args_t *args)

int (*outbound_fw)(struct ifnet *ifp, struct mbuf *
m0, outbound_fw_args_t *args)

int ip_output_post_fw(struct ifnet *ifp, struct mbuf *m0,
outbound_fw_args_t *args)

outbound_fw_args_t *outbound_fw_save_args(outbound_fw_args_t *args)

Parameters

Item Description

pkt Points to the mbuf chain containing the IP packet to be received (ip_fltr_in_hook,
ipsec_decap_hook) or transmitted (ip_fltr_out_hook). The pkt parameter may be examined
and/or changed in any of the three hook functions.

arg Is the address of a pointer to void that is locally defined in the function where ip_fltr_in_hook
and ipsec_decap_hook are called. The arg parameter is initially set to NULL, but the address of
this pointer is passed to the two hook functions, ip_fltr_in_hook and ipsec_decap_hook. The
arg parameter may be set by either of these functions, thereby allowing a void pointer to be
shared between them.

ifp Is the outgoing interface on which the IP packet will be transmitted for the ip_fltr_out_hook
function.

flags Indicates the ip_output flags passed by a transport layer protocol. Valid flags are currently
defined in the /usr/include/netinet/ip_var.h files. See the Flags section below.

Description
These routines provide kernel-level hooks for IP packet filtering enabling IP packets to be selectively
accepted, rejected, or modified during reception, transmission, and decapsulation. These hooks are
initially NULL, but are exported by the netinet kernel extension and will be invoked if assigned non-NULL
values.

The ip_fltr_in_hook routine is used to filter incoming IP packets, the ip_fltr_out_hook routine filters
outgoing IP packets, and the ipsec_decap_hook routine filters incoming encapsulated IP packets.

The ip_fltr_in_hook function is invoked for every IP packet received by the host, whether addressed
directly to this host or not. It is called after verifying the integrity and consistency of the IP packet. The
function is free to examine or change the IP packet (pkt) or the pointer shared with ipsec_decap_hook
(arg). The return value of the ip_fltr_in_hook indicates whether pkt should be accepted or dropped.
The return values are described in Expected Return Values below. If pkt is accepted (a return value of
FIREWALL_OK) and it is addressed directly to the host, the ipsec_decap_hook function is invoked next.
If pkt is accepted, but is not directly addressed to the host, it is forwarded if IP forwarding is enabled.
If ip_fltr_in_hook indicates pkt should be dropped (a return value of FIREWALL_NOTOK), it is neither
delivered nor forwarded.

The ipsec_decap_hook function is called after reassembly of any IP fragments (the ip_fltr_in_hook
function will have examined each of the IP fragments) and is invoked only for IP packets that are
directly addressed to the host. The ipsec_decap_hook function is free to examine or change the IP
packet (pkt) or the pointer shared with ipsec_decap_hook (arg). The hook function should perform
decapsulation if necessary, back into pkt and return the proper status so that the IP packet can be
processed appropriately. See the Expected Return Values section below. For acceptable encapsulated
IP packets (a return value of FIREWALL_OK), the decapsulated packet is processed again by jumping
to the beginning of the IP input processing loop. Consequently, the decapsulated IP packet will be
examined first by ip_fltr_in_hook and, if addressed to the host, by ipsec_decap_hook. For acceptable
non-encapsulated IP packets (a return value of FIREWALL_OK_NOTSEC), IP packet delivery simply

Kernel Services and Subsystem Operations 245

continues and pkt is processed by the transport layer. A return value of FIREWALL_NOTOK indicates that
pkt should be dropped.

The ip_fltr_out_hook function is called for every IP packet to be transmitted, provided the outgoing IP
packet's destination IP address is NOT an IP multicast address. If it is, it is sent immediately, bypassing
the ip_fltr_out_hook function. This hook function is invoked after inserting the IP options from the
upper protocol layers, constructing the complete IP header, and locating a route to the destination IP
address. The ip_fltr_out_hook function may modify the outgoing IP packet (pkt), but the interface and
route have already been assigned and may not be changed. The return value from the ip_fltr_out_hook
function indicates whether pkt should be transmitted or dropped. See the Expected Return Values section
below. If pkt is not dropped (FIREWALL_OK), it's source address is verified to be local and, if pkt is to
be broadcast, the ability to broadcast is confirmed. Thereafter, pkt is enqueued on the interfaces (ifp)
output queue. If pkt is dropped (FIREWALL_NOTOK), it is not transmitted and EACCES is returned to the
process.

The inbound_fw and outbound_fw firewall hooks allow kernel extensions to get control of packets at
the place where IP receives them. If inbound_fw is set, ipintr_noqueue, the IP input routine, calls
inbound_fw and then exits. If not, ipintr_noqueue calls ipintr_noqueue_post_fw and then exits. If
the inbound_fw hook routine wishes to pass the packet into IP, it can call ipintr_noqueue_post_fw.
inbound_fw may copy its args parameter by calling inbound_fw_save_args, and may free its copy of its
args parameter by calling inbound_fw_free_args.

Similarly, ip_output calls outbound_fw if it is set, and calls ip_output_post_fw if not. The outbound_fw
hook can call ip_output_post_fw if it wants to send a packet. outbound_fw may copy its args
parameter by calling outbound_fw_save_args, and later free its copy of its args parameter by calling
outbound_fw_free_args.

Flags

Item Description

IP_FORWARDING Indicates that most of the IP headers exist.

IP_RAWOUTPUT Indicates that the raw IP header exists.

IP_MULTICAST_OPTS Indicates that multicast options are present.

IP_ROUTETOIF Contains bypass routing tables.

IP_ALLOWBROADCAST Provides capability to send broadcast packets.

IP_BROADCASTOPTS Contains broadcast options inside.

IP_PMTUOPTS Provides PMTU discovery options.

IP_GROUP_ROUTING Contains group routing gidlist.

Expected Return Values

Item Description

FIREWALL_OK Indicates that pkt is acceptable for any of the filtering functions. It will
be delivered, forwarded, or transmitted as appropriate.

FIREWALL_NOTOK Indicates that pkt should be dropped. It will not be received
(ip_fltr_in_hook, ipsec_decap_hook) or transmitted (ip_fltr_out_hook).

FIREWALL_OK_NOTSEC Indicates a return value only valid for the ipsec_decap_hook function.
This indicates that pkt is acceptable according to the filtering rules, but
is not encapsulated; pkt will be processed by the transport layer rather
than processed as a decapsulated IP packet.

Related information
Network Kernel Services

246 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

i_sched Kernel Service

Purpose
Schedules off-level processing.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/intr.h>

void i_sched (handler)
struct intr *handler;

Parameter

Item Description

handler Specifies the address of the pinned interrupt handler structure.

Description
The i_sched service allows device drivers to schedule some of their work to be processed at a less-
favored interrupt priority. This capability allows interrupt handlers to run as quickly as possible, avoiding
interrupt-processing delays and overrun conditions. See the i_init kernel service for a brief description of
interrupt handlers.

Processing can be scheduled off-level in the following situations:

• The interrupt handler routine for a device driver must perform time-consuming processing.
• This work does not need to be performed immediately.

Attention: The caller cannot alter any fields in the intr structure from the time the i_sched
service is called until the kernel calls the off-level routine. The structure must also stay pinned.
Otherwise, the system may crash.

The interrupt handler structure pointed to by the handler parameter describes an off-level interrupt
handler. The caller of the i_sched service must set up all fields in the intr structure. The INIT_OFFLn
macros in the /usr/include/sys/intr.h file can be used to initialize the handler parameter. The n value
represents the priority class that the off-level handler should run at. Currently, classes from 0 to 3 are
defined.

Use of the i_sched service has two additional restrictions:

First, the i_sched service will not re-register an intr structure that is already registered for off-level
handling. Since i_sched has no return value, the service will simply return normally without registering the
specified structure if it was already registered but not yet executed. The kernel removes the intr structure
from the registration list immediately prior to calling the off-level handler specified in the structure. It is
therefore possible for the off-level handler to use the structure again to register another off-level request.

Care must be taken when scheduling off-level requests from a second-level interrupt handler (SLIH). If
the off-level request is already registered but has not yet executed, a second registration will be ignored.
If the off-level handler is currently executing, or has already run, a new request will be registered. Users
of this service should be aware of these timing considerations and program accordingly.

Second, the kernel uses the flags field in the specified intr structure to determine if this structure is
already registered. This field should be initialized once before the first call to the i_sched service and
should remain unmodified for future calls to the i_sched service.

Kernel Services and Subsystem Operations 247

Note: Off-level interrupt handler path length should not exceed 5,000 instructions. If it does exceed this
number, real-time support is adversely affected.

Execution Environment
The i_sched kernel service can be called from either the process or interrupt environment.

Return Values
The i_sched service has no return values.

Related reference
i_init Kernel Service
Related information
Understanding Interrupts
I/O Kernel Services

i_unmask Kernel Service

Purpose
Enables a bus interrupt level.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/intr.h>

void i_unmask (handler)
struct intr *handler;

Parameter

Item Description

handler Specifies the address of the interrupt handler structure that was passed to the i_init service.

Description
The i_unmask service enables the bus interrupt level specified by the handler parameter.

Execution Environment
The i_unmask kernel service can be called from either the process or interrupt environment.

Return Values
The i_unmask service has no return values.

Related reference
i_init Kernel Service
i_mask Kernel Service
Related information
Understanding Interrupts

248 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

IS64U Kernel Service

Purpose
Determines if the current user-address space is 64-bit or not.

Syntax
#include <sys/types.h> #include <sys/user.h> int IS64U

Description
The IS64U kernel service returns 1 if the current user-address space is 64-bit. It returns 0 otherwise.

Execution Environment
The IS64U kernel service can be called from a process or interrupt handler environment. In either case, it
will operate only on the current user-address space.

Return Values

Ite
m

Description

0 The current user-address space is 32-bits.

1 The current user-address space is 64-bits.

Related reference
as_att64 Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

k
The following kernel services begin with the with the letter k.

k_cpuextintr_ctl Kernel Service

Purpose
Performs CPU external interrupt control related operations.

Syntax

#include <sys/intr.h>

kerrno_t k_cpuextintr_ctl (command , cpuset , flags)
extintctl_t command;
rsethandle_t cpuset;
unit flags;

Kernel Services and Subsystem Operations 249

Description
This kernel services provides means of enabling, disabling, and querying the external interrupt state on
the CPUs described by the CPU resource set. Enabling or disabling an CPU external interrupt could affect
the external interrupt delivery to the CPU. Normally, on multiple CPU system, external interrupts can
be delivered to any running CPU, and the distribution among the CPUs is determined by a predefined
method. Any external interrupt can only be delivered to a CPU if its interrupt priority is more favored than
the current external interrupt priority of the CPU. When external interrupts are disabled via this interface,
any external interrupt priority less favored than INTMAX will be blocked until interrupts are enabled
again. This kernel service is applicable only on selective hardware types.

Note: Since this kernel service change the way that interrupts are delivered, system performance may
be affected. This service guarantees at least one online CPU will have external interrupts enabled for all
device interrupts. Any DLPAR CPU removal can fail if the operation breaks this guarantee. On an I/O bound
system, one CPU may not be enough to handle all of the external interrupts received by the partition.
Performance may suffer when there are not enough CPUs enabled to handle external interrupts.

Parameters

Item Description

command Specifies the operation to the CPU specified by the CPU resource set. One of the
following values defined in <sys/intr.h> can be used:

The following commands are supported:

• EXTINTDISABLE: Disable external interrupts on the CPUs specified by the CPU
resource set.

• EXTINTENABLE: Enable external interrupts on the CPUs specified by the CPU
resource set

• QUERYEXTINTDISABLE: Return a CPU resource set containing the CPUs that have
external interrupts disabled.

• QUERYEXTINTENABLE: Return a CPU resource set containing the CPUs that have
externals interrupt enabled.

cpuset Reference to a CPU resource set. Upon successful return from this kernel service,
the CPUs that have the external interrupt control operation done will be set in the
CPU resource set.

The CPUs specified by this cpuset parameter are logic CPU ids.

flags Always set to 0 or EINVAL_INTR_DIS_BAD_FLAGS will be returned.

Security
The caller must have root authority with CAP_NUMA_ATTACH capability or PV_KER_CONF privilege in
the RBAC environment.

Execution Environment
The k_cpuextintr_ctl kernel service can be called from process environment only.

Return Values
Upon successful completion, the k_cpuextintr_ctl kernel service returns a 0. If unsuccessful, one of the
following kerrno value is returned.

Item Description

kerrno Description

250 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

EINVAL_EXTINTR_BAD_COMMAND The command value is not valid.

EINVAL_EXTINTR_BAD_FLAGS The flags value is unknown.

EINVAL_EXTINTR_BAD_CPUSET The cpuset references NULL.

EINVAL_EXTINTR _NO_RSET The cpuset is empty.

ENOTSUP_EXTINTR_CALLER The kernel service is called from the interrupt environment.

ENOSYS_EXTINTR_PLATFORM This function is not implemented on the platform.

EPERM_EXTINTR_OPER The caller does not have enough privilege to perform the requested operation.

Note: A return value of success does not necessarily indicate that external interrupts have been enabled
or disabled on all of the specified CPUs. For example, if a CPU is not online, then the enable or disable
operation will not be performed on that CPU. The caller should check the returned cpuset to see which
CPUs have this operation successfully done. The k_cpuextintr_ctl kernel service will not block DR CPU
add/remove operation during the whole period of system call.

kcap_is_set and kcap_is_set_cr Kernel Service

Purpose
Determines if the given capability is present in an effective capability set.

Syntax
kcap_is_set (capability)
cap_value_t capability;

kcap_is_set_cr (capability, cred)
cap_value_t capability;
struct ucred *cred;

Parameters
Item Description

capability Specifies the capability to be examined. Must be one of the capabilities named in the
sys/capabilities.h header file.

cred Pointer to the credentials to be examined.

Description
The kcap_is_set subroutine determines if the given capability is present in the current process' effective
capability set. The kcap_is_set_cr subroutine determines if the given capability is present in the effective
capability set of the credentials structure referenced by the cred parameter. The cred parameter must be
a valid referenced credentials structure.

Return Values
The kcap_is_set and kcap_is_set_cr subroutines return 1 if the capability is present. Otherwise, they
return 0.

kcid_curproc Kernel Service

Purpose
Returns the current workload partition ID associated with the calling process.

Kernel Services and Subsystem Operations 251

Syntax

#include <sys/wparid.h>

cid_t kcid_curproc ()

Description
The kcid_curproc kernel service returns the workload partition ID associated with the calling process.
You can use this service to determine whether the requesting process is operating within a workload
partition (WPAR).

Execution Environment
The kcid_curproc kernel service can be called from the process environment only.

Return Values
If the kcid_curproc kernel service is successful, it returns the workload partition ID associated with the
calling process. If the calling process is not operating within a WPAR, the ID returned is equivalent to the
WPAR_GLOBAL definition found in the wparid.h header file.

Related reference
kwpar_r2vmap_pid Kernel Service
kwpar_v2rmap_pid Kernel Service

kcred_genpagvalue Kernel Service

Purpose
Generates a system-wide unique PAG value for a given PAG type.

Syntax
int kcred_genpagvalue(crp, pag_type, pag_value, pag_flags);
cred_t *crp;
int pag_type;
uint64_t * pag_value;
int pag_flags;

Description
The kcred_genpagvalue kernel service generates a new PAG value for a given PAG type. It is essential
that for this function to succeed the PAG type must have been previously registered with the operating
system using the kcred_setpagname kernel service. The scope of the kcred_genpagvalue kernel service
is limited to maintaining information about the last generated PAG number and accordingly generating a
new number. This service optionally stores the PAG value in the cred structure. It does not monitor the
PAG values stored in the cred structure by other means.

The caller must convert a PAG name to a PAG type using the kcred_getpagid kernel service prior to
invoking the kcred_genpagvalue kernel service.

The pag_flags parameter with the PAG_SET_VALUE value set causes the generated value to be atomically
stored in the process's credentials.

The PAG value returned is of size 64 bits. The number of significant bits is determined by the requested
PAG type. 32-bit PAGs have 32 significant bits. 64-bit PAGs have 62 significant bits.

252 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters
Item Description

pag_type The pag_type parameter is the ID value associated with a PAG name.

pag_value This pointer points to a buffer where the OS will return the newly generated PAG
value.

pag_flags This parameter must be 0 or the value PAG_SET_VALUE.

Return Values
A value of 0 is returned upon successful completion. A negative value is returned if unsuccessful.

Error Codes
Item Description

EINVAL The PAG value cannot be generated because the named PAG type does not exist as
part of the table.

EPERM The named PAG type is a 32-bit PAG and the caller does not have the
SET_PROC_DAC privilege.

Related reference
__pag_getid System Call
kcred_getpagid Kernel Service
Related information
genpagvalue Subroutine

kcred_getcap Kernel Service

Purpose
Copies a capability vector from a credentials structure.

Syntax
#include <sys/capabilities.h>

#include <sys/cred.h>

int kcred_getcap (crp, cap)
struct ucred * cr;
struct __cap_t * cap;

Parameters
Item Description

crp Pointer to a credentials structure

cap Capabilities set

Description
The kcred_getcap kernel service copies the capability set from the credentials structure referenced by
crp into cap. crp must be a valid, referenced credentials structure.

Kernel Services and Subsystem Operations 253

Execution Environment
The kcred_getcap kernel service can be called from the process environment only.

Return Values
Item Description

0 Success.

-1 An error has occurred.

Related information
Security Kernel Services

kcred_getgroups Kernel Service

Purpose
Copies the concurrent group set from a credentials structure.

Syntax
#include <sys/cred.h>

int kcred_getgroups (crp, ngroups, groups)
struct ucred * cr;
int ngroups;
gid_t * groups;

Parameters
Item Description

crp Pointer to a credentials structure

ngroups Size of the array of group ID values

groups Array of group ID values

Description
The kcred_getgroups kernel service returns up to ngroups concurrent group set members from the
credentials structure pointed to by crp. crp must be a valid referenced credentials structure.

Execution Environment
The kcred_getgroups kernel service can be called from the process environment only.

Return Values
Item Description

>= 0 The number of concurrent groups copied to groups.

-1 An error has occurred.

Related information
Security Kernel Services

254 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

kcred_getpag or kcred_getpag64 Kernel Service

Purpose
Copies a process authentication group (PAG) ID from a credentials structure.

Syntax
#include <sys/cred.h>

int kcred_getpag (crp, which, pag)
struct ucred * cr;
int which;
int * pag;

int kcred_getpag64 (crp, which, pag)
struct ucred * cr;
int which;
uint64 * pag;

Parameters
Item Description

crp Pointer to a credentials structure

which PAG ID to get

pag Process authentication group

Description
The kcred_getpag or kcred_getpag64 kernel service copies the requested PAG from the credentials
structure referenced by crp into pag. The value of which must be a defined PAG ID. The PAG ID for the
Distributed Computing Environment (DCE) is 0. crp must be a valid, referenced credentials structure.

Execution Environment
The kcred_getpag or kcred_getpag64 kernel service can be called from the process environment only.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned, and the errno
global variable is set to indicate the error.

Error Codes
Thekcred_getpag kernel service fails if the following condition is true:

Item Description

-EOVERFLOW PAG value is 64-bit (should be using kcred_getpag64)

Related information
Security Kernel Services

kcred_getpagid Kernel Service

Kernel Services and Subsystem Operations 255

Purpose
Returns the PAG identifier for a PAG name.

Syntax
int kcred_getpagid (name)
char *name;

Description
Given a PAG type name, the kcred_getpagid subroutine returns the PAG identifier for that PAG name.

Parameters
Item Description

name A pointer to the name of the PAG type whose integer PAG identifer is to be returned.

Return Values
A return value greater than or equal to 0 is the PAG identifier. A value less than 0 indicates an error.

Error Codes
Item Description

ENOENT The name parameter doesn't refer to an existing PAG entry.

Related reference
__pag_getid System Call
__pag_getvalue System Call
kcred_getpagname Kernel Service

kcred_getpaginfo Kernel Service

Purpose
Returns a Process Authentication Group (PAG) flags for a given PAG type.

Syntax
#include <sys/cred.h>

int kcred_getpaginfo (type, infop, infosz)
int type;
struct paginfo * infop
int infosz;

Parameters
Item Description

type PAG for which the flags are returned

infop Pointer to PAG info structure

infosz Size of paginfo structure

256 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The kcred_getpaginfo kernel service retrieves the flags for the specific PAG type and stores them in a
PAG info structure. The value of type must be a defined PAG ID. The PAG ID for the Distributed Computing
Environment (DCE) is 0. The infop parameter must be a valid, referenced PAG info structure of the size
specified by infosz.

Execution Environment
The kcred_getpaginfo kernel service can be called from the process environment only.

Return Values
A value of 0 is returned upon successful completion. Upon failure, a -1 is returned and errno is set to a
value that explains the error.

Related information
Security Kernel Services

kcred_getpagname Kernel Service

Purpose
Retrieves the name of a PAG.

Syntax
int kcred_getpagname (type, buf, size)
int type;
char *buf;
int size;

Description
The kcred_getpagname kernel service retrieves the name of a PAG type given its integer value.

Parameters
Item Description

type The integer valued identifier representing the PAG type.

buf A char * to where the PAG name is copied.

size An int that specifies the size of buf in bytes. The size of the buffer must be
PAG_NAME_LENGTH_MAX+1.

Return Values
If successful, a 0 is returned. If unsuccessful, an error code value less than 0 is returned. The PAG name
associated with type is copied into the caller-supplied buffer buf.

Error Codes
Item Description

EINVAL The value of id is less than 0 or greater than the maximum PAG identifier.

ENOENT There is no PAG associated with id.

Kernel Services and Subsystem Operations 257

Item Description

ENOSPC The size parameter is insufficient to hold the PAG name.

Related reference
__pag_getid System Call
__pag_getname System Call
kcred_setpagname Kernel Service

kcred_getppriv Kernel Service

Purpose
Copies a privilege vector from a credentials structure.

Syntax

#include <sys/priv.h>
#include <sys/cred.h>

int kcred_getppriv (crp, which, privset)
struct ucred *crp;
int which;
privg_t privset;

Parameters

Item Description

crp Points to a credentials structure.

which Specifies the privilege set to get.

privset Specifies the privilege set.

Description
The kcred_getppriv kernel service returns a single privilege set from the credentials structure referenced
by the crp parameter. The which parameter is one of the values of PRIV_EFFECTIVE, PRIV_MAXIMUM,
PRIV_INHERITED, PRIV_LIMITING, and PRIV_USED. The corresponding privilege set is copied to the
privset parameter. The crp parameter must be a valid, referenced credentials structure.

Execution Environment
The kcred_getppriv kernel service can be called from the process environment only.

Return Values

Item Description

0 Success.

-1 An error has occurred.

Related information
Security Kernel Services

258 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

kcred_getpriv Kernel Service

Purpose
Copies a privilege vector from a credentials structure.

Syntax
#include <sys/priv.h>

#include <sys/cred.h>

int kcred_getpriv (crp, which, priv)
struct ucred * cr;
int which;
priv_t * priv;

Parameters
Item Description

crp Pointer to a credentials structure

which Privilege set to get

priv Privilege set

Description
The kcred_getpriv kernel service returns a single privilege set from the credentials structure referenced
by crp. The which parameter is one of PRIV_BEQUEATH, PRIV_EFFECTIVE, PRIV_INHERITED, or
PRIV_MAXIMUM. The corresponding privilege set will be copied to priv. rp must be a valid, referenced
credentials structure.

Execution Environment
The kcred_getpriv kernel service can be called from the process environment only.

Return Values
Item Description

0 Success. to priv.

-1 An error has occurred.

Related information
Security Kernel Services

kcred_setcap Kernel Service

Purpose
Copies a capabilities set into a credentials structure.

Syntax
#include <sys/capabilities.h>

#include <sys/cred.h>

Kernel Services and Subsystem Operations 259

void kcred_setcap (crp, cap)
struct ucred * cr;
struct __cap_t * cap;

Parameters
Item Description

crp Pointer to a credentials structure

cap Capabilities set

Description
The kcred_setcap kernel service initializes the capability set in the credentials structure referenced by
crp with cap. rp must be a valid, referenced credentials structure and must not be the current credentials
of any process.

Execution Environment
The kcred_setcap kernel service can be called from the process environment only.

Return Values
The kcred_setcap kernel service has no return values.

Related information
Security Kernel Services

kcred_setgroups Kernel Service

Purpose
Copies a concurrent group set into a credentials structure.

Syntax
#include <sys/cred.h>

int kcred_setgroups (crp, ngroups, groups)
struct ucred * cr;
int ngroups;
gid_t * groups;

Parameters
Item Description

crp Pointer to a credentials structure

ngroups Size of the array of group ID values

groups Array of group ID values

Description
The kcred_setgroups kernel service copies ngroups concurrent group set members into the credentials
structure pointed to by crp. crp must be a valid, referenced credentials structure and must not be the
current credentials of any process.

260 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The kcred_setgroups kernel service can be called from the process environment only.

Return Values
Item Description

0 The concurrent group set has been copied successfully.

-1 An error has occurred.

Related information
Security Kernel Services

kcred_setpag or kcred_setpag64 Kernel Service

Purpose
Copies a process authentication group ID into a credentials structure.

Syntax
#include <sys/cred.h>

int kcred_setpag (crp, which, pag)
struct ucred * cr;
int which;
int pag;

int kcred_setpag64 (crp, which, pag)
struct ucred * cr;
int which;
uint64 * pag;

Parameters
Item Description

crp Pointer to a credentials structure

which PAG ID to set

pag Process authentication group

Description
The kcred_setpag or kcred_setpag64 kernel service initializes the specified PAG in the credentials
structure referenced by crp with pag. The value of which must be a defined PAG ID. The PAG ID for the
Distributed Computing Environment (DCE) is 0. Crp must be a valid, referenced credentials structure. crp
may be a reference to the current credentials of a process.

Execution Environment
The kcred_setpag or kcred_setpag64 kernel service can be called from the process environment only.

Return Values
Item Description

0 Success.

Kernel Services and Subsystem Operations 261

Item Description

-1 An error has occurred.

Related information
Security Kernel Services

kcred_setpagname Kernel Service

Purpose
Copies a process authentication group ID into a credentials structure.

Syntax
int kcred_setpagname (name, flags, func)
char *name;
int flags;

Description
The kcred_setpagname kernel service registers the name of a PAG and returns the PAG type identifier. If
the PAG name has already been registered, the previously returned PAG type identifier is returned if the
flags and func parameters match their earlier values.

Parameters
Item Description

name The name parameter is a 1 to 4 character, NULL-terminated name for the PAG type. Typical
values might include "afs", "dfs", "pki" and "krb5."

flags The flags parameter indicates if each PAG value is unique (PAG_UNIQUEVALUE) or multivalued
(PAG_MULTIVALUED). A multivalued PAG type allows multiple calls to the kcred_setpag kernel
service to be made to store multiple values for a single PAG type.

func The func parameter is a pointer to an allocating and deallocating function. The flag parameter
to that function is either PAGVALUE_ALLOC or PAGVALUE_FREE. The value parameter is the
actual PAG value. The func parameter will be invoked by the crfree kernel service with a
flag value of PAGVALUE_FREE on the last free value of a credential. Whenever a credentials
structure is initialized with new PAG values, func will be invoked by that function with a value of
PAGVALUE_ALLOC. This parameter may be ignored and an error returned if the value of func is
non-NULL.

Return Values
A value of 0 or greater is returned upon successful completion. This value is the PAG type identifier which
is used with other kernel services, such as the kcred_getpag and kcred_setpag subroutines . A negative
value is returned if unsuccessful.

Error Codes
Item Description

ENOSPC The PAG table is full.

EEXISTS The named PAG type already exists in the table and the flags and func parameters do not
match their earlier values.

262 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

EINVAL The flags parameter is an invalid value.

Related reference
__pag_setname System Call
__pag_setvalue System Call
kcred_getpagname Kernel Service

kcred_setppriv Kernel Service

Purpose
Copies a privilege vector into a credentials structure.

Syntax

#include <sys/priv.h>
#include <sys/cred.h>

int kcred_setppriv (crp, which, privset)
struct ucred *crp;
int which;
privg_t privset;

Parameters

Item Description

crp Points to a credentials structure.

which Specifies the privilege set to set.

privset Specifies the privilege set.

Description
The kcred_setppriv kernel service sets one or more single privilege sets in the credentials structure
referenced by the crp parameter. The which parameter is the bitwise OR of one or more values of
PRIV_EFFECTIVE, PRIV_MAXIMUM, PRIV_INHERITED, PRIV_LIMITING, and PRIV_USED. The privset
parameter initializes the corresponding privilege sets. The crp parameter must be a valid, referenced
credentials structure and cannot be the current credentials of any process.

Execution Environment
The kcred_setppriv kernel service can be called from the process environment only.

Return Values

Item Description

0 Success.

-1 An error has occurred.

Related information
Security Kernel Services

Kernel Services and Subsystem Operations 263

kcred_setpriv Kernel Service

Purpose
Copies a privilege vector into a credentials structure.

Syntax
#include <sys/priv.h>

#include <sys/cred.h>

int kcred_setpriv (crp, which, priv)
struct ucred * cr;
int which;
priv_t * priv;

Parameters
Item Description

crp Pointer to a credentials structure

which Privilege set to set

priv Privilege set

Description
The kcred_setpriv kernel service sets one or more single privilege sets in the credentials structure
referenced by crp. The which parameter is one or more bit-wise ored values of PRIV_BEQUEATH,
PRIV_EFFECTIVE, PRIV_INHERITED, and PRIV_MAXIMUM. The corresponding privilege sets are
initialized from priv. crp must be a valid, referenced credentials structure and must not be the current
credentials of any process.

Execution Environment
The kcred_setpriv kernel service can be called from the process environment only.

Return Values
Item Description

0 Success. to priv.

-1 An error has occurred.

Related information
Security Kernel Services

kern_soaccept Kernel Service

Purpose
Accepts the first queued connection by assigning it to the new socket.

Syntax

#include <sys/kern_socket.h>
int kern_soaccept(ksocket_t so,

264 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

ksocket_t *aso,
struct mbuf **name,
int nonblock)

Parameters

Item Description

so The socket that is used in the kern_solisten() Kernel Service.

aso The new socket for the accepted connection. The caller must pass in the address of
the ksocket_t.

name A struct sockadr address is returned in a mbuf buffer whose address is stored
in the *name parameter. The caller should pass in the address of the struct
mbuf * structure. The caller sets the mbuf buffer free after the function returns
successfully.

nonblock A flag to specify if this call should be nonblocking. The value of 1 is for nonblocking
and 0 is for blocking.

Description
The kern_soaccept kernel service accepts the first queued connection by assigning it to the new socket.

Execution Environment
The kern_soaccept kernel service can be called from the process environment.

Examples
struct mbuf *name = NULL;
ksocket_t so;
ksocket_t aso;
struct sockaddr_in laddr;
int rc;
rc = kern_socreate(AF_INET, &so, SOCK_STREAM, IPPROTO_TCP);
if (rc != 0)
{
 return(-1);
}
bzero(&laddr, sizeof(struct sockaddr_in));
laddr.sin_family = AF_INET;
laddr.sin_port = 12345;
laddr.sin_len = sizeof(struct sockaddr_in);
laddr.sin_addr.s_addr = inet_addr("9.3.108.208");
rc = kern_sobind(so, (struct sockaddr *)&laddr);
if (rc != 0)
{
 return(-1);
}
rc = kern_solisten(so, 5);
if (rc != 0)
{
 return(-1);
}
rc = kern_soaccept(so, &aso, &name, 0);
if (rc != 0)
{
 return(-1);
}
m_freem(name); /* Caller needs to free the mbuf after kern_soaccept */

Return Values
Item Description

0 Upon Success

Kernel Services and Subsystem Operations 265

Item Description

>0 Error

The non-zero return value is the error number that is defined in the /usr/include/sys/errno.h file.

Related reference
kern_socreate Kernel Service
kern_soreceive Kernel Service
kern_sosend Kernel Service

kern_sobind Kernel Service

Purpose
Associates the local network address to the socket.

Syntax

#include <sys/kern_socket.h>
int kern_sobind(ksocket_t so, struct sockaddr *laddr)

Parameters

Item Description

so The socket that was created by the kern_socreate() system call.

laddr Local address to be bound.

Description
The kern_sobind kernel service binds a local address to the socket.

Execution Environment
The kern_sobind kernel service can be called from the process environment.

Examples
ksocket_t so;
struct sockaddr_in laddr;
int rc;
rc = kern_socreate(AF_INET, &so, SOCK_STREAM, IPPROTO_TCP);
if (rc != 0)
{
 return(-1);
}
bzero(&laddr, sizeof(struct sockaddr_in));
laddr.sin_family = AF_INET;
laddr.sin_port = 12345;
laddr.sin_len = sizeof(struct sockaddr_in);
laddr.sin_addr.s_addr = inet_addr("9.3.108.208");
rc = kern_sobind(so, (struct sockaddr *) &laddr);
if (rc != 0)
{
 return(-1);
}

266 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values
Item Description

0 Upon Success

>0 Error

The nonzero return value is the error number that is defined in the /usr/include/sys/errno.h file.

Related reference
kern_socreate Kernel Service
kern_solisten Kernel Service

kern_soclose Kernel Service

Purpose
Aborts any connections and releases the data in the socket.

Syntax

#include <sys/kern_socket.h>
int kern_soclose(ksocket _t so)

Parameters

Item Description

so The socket on which the close will be issued.

Description
The kern_soclose kernel service aborts any connection and releases the data in the socket.

Execution Environment
The kern_soclose kernel service can be called from the process environment.

Examples
ksocket_t so;
int rc;
rc = kern_socreate(AF_INET, &so, SOCK_STREAM, IPPROTO_TCP);
if (rc != 0)
{
 return(-1);
}
/* Socket is in use */
...
kern_soclose(so);

Return Values
Item Description

0 Upon Success

>0 Error

The nonzero return value is the error number that is defined in the /usr/include/sys/errno.h file.

Kernel Services and Subsystem Operations 267

Related reference
kern_socreate Kernel Service

kern_soconnect Kernel Service

Purpose
Establishes a connection to a foreign address.

Syntax

#include <sys/kern_socket.h>
int kern_soconnect(ksocket_t so, struct sockaddr *faddr)

Parameters

Item Description

so The socket that was created by socreate().

faddr Foreign address to connect.

Description
The kern_soconnect kernel service establishes connection with a foreign address.

Execution Environment
The kern_soconnect kernel service can be called from the process environment.

Examples
ksocket_t so;
struct sockaddr_in faddr;
int rc;
rc = kern_socreate(AF_INET, &so, SOCK_STREAM, IPPROTO_TCP);
if (rc != 0)
{
 return(-1);
}
bzero(&faddr, sizeof(struct sockaddr_in));
faddr.sin_family = AF_INET;
faddr.sin_port = 23456;
faddr.sin_len = sizeof(struct sockaddr_in);
faddr.sin_addr.s_addr = inet_addr("9.3.108.210");
rc = kern_soconnect(so, (struct sockaddr *) &faddr);
if (rc != 0)
{
 return(-1);
}

Return Values
Item Description

0 Upon Success

>0 Error

The nonzero return value is the error number that is defined in the /usr/include/sys/errno.h file.

268 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related reference
kern_socreate Kernel Service
kern_sosend Kernel Service
kern_soreceive Kernel Service

kern_socreate Kernel Service

Purpose
Used to create a socket of the specified address family and type. If the protocol is left unspecified (zero),
then the system selects the protocol based on the address family and type.

Syntax

#include <sys/kern_socket.h>
int kern_socreate (int addressfamily, ksocket_t *so, int type, int protocol)

Parameters

Item Description

addressfamily The address family for the newly created socket. The file <sys/socket.h> contains
the definitions for the family. Currently AIX supports:
AF_INET

Denotes the IPv4 Internet addresses.
AF_INET6

Denotes the IPv6 Internet addresses.

so The socket assigned by the create() call. The caller must pass the address of
ksocket_t.

type The requested socket type. The file <sys/socket.h> contains the definition for the
socket type. Currently AIX supports SOCK_STREAM.

protocol The file <netinet/in.h> contains the definition for the protocol. Currently AIX
supports IPPROTO_TCP

Description
The kern_socreate kernel service creates a socket based on the address family, type and protocol.

Execution Environment
The kern_socreate kernel service can be called from the process environment.

Examples
ksocket_t so;
ksocket _t so2;
kern_socreate(AF_INET, &so, SOCK_STREAM, IPPROTO_TCP);
kern_socreate(AF_INET6, &so2, SOCK_STREAM, 0);

Return Values
Item Description

0 Upon Success

Kernel Services and Subsystem Operations 269

Item Description

>0 Error

The nonzero return value is the error number that is defined in the /usr/include/sys/errno.h file.

Related reference
kern_soclose Kernel Service
kern_soconnect Kernel Service
kern_soshutdown Kernel Service

kern_sogetopt Kernel Service

Purpose
Obtains the option associated with the socket, either at the socket level or at the protocol level.

Syntax

#include <sys/kern_socket.h>
int kern_sogetopt(ksocket_t so, int level, int optname, struct mbuf **mp)

Parameters

Item Description

so The socket that will be used to retrieve the option.

level The socket level (e.g. SOL_SOCKET) or protocol level (IPPROTO_TCP)

optname The option name to retrieve. Socket options can be found in <sys/socket.h> and
TCP options can be found in <netinet/tcp.h> mp

mp The mbuf that will be returned with the option value. The mp->m_len will be the
size of the value. The caller must pass the address of the struct mbuf *. The caller
must set the mbuf free after the function returns successfully.

Description
The kern_sogetopt kernel service obtains the option associated with the socket, either at the socket
level, or at the protocol level.

Execution Environment
The kern_sogetopt kernel service can be called from the process environment.

Examples
ksocket_t so;
int rc;
struct mbuf *sopt = NULL;
int tcp_nodelay = -1;
rc = kern_socreate(AF_INET, &so, SOCK_STREAM, IPPROTO_TCP);
if (rc != 0)
{
 return(-1);
}
rc = sogetopt(so, IPPROTO_TCP, TCP_NODELAY, &sopt);
if (rc != 0)
{
 return(-1);
}

270 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

tcp_nodelay = *mtod(sopt, int *) ? 1 : 0;
m_free(sopt); /* Caller needs to free the mbuf after kern_sogetopt */

Return Values
Item Description

0 Upon Success

>0 Error

The nonzero return value is the error number that is defined in the /usr/include/sys/errno.h file.

Related reference
kern_socreate Kernel Service

kern_solisten Kernel Service

Purpose
Prepares to accept incoming connections on the socket.

Syntax

#include <sys/kern_socket.h>
int kern_solisten(ksocket_t so, int backlog)

Parameters

Item Description

so The socket that was created by kern_socreate() and used in kern_sobind()

backlog Limit the number of connection requests that can be queued on this socket. The
maximum value that can be passed to this parameter equals the minimum number
of user backlog number and the network option somaxconn value.

Description
The kern_solisten kernel service prepares to accept incoming connection on the socket.

Execution Environment
The kern_solisten kernel service can be called from the process environment.

Examples
struct mbuf *name = NULL;
ksocket_t so;
struct sockaddr_in laddr;
int rc;
rc = kern_socreate(AF_INET, &so, SOCK_STREAM, IPPROTO_TCP);
if (rc != 0)
{
 return(-1);
}
bzero(&laddr, sizeof(struct sockaddr_in));
laddr.sin_family = AF_INET;
laddr.sin_port = 12345;
laddr.sin_len = sizeof(struct sockaddr_in);
laddr.sin_addr.s_addr = inet_addr("9.3.108.208");
rc = kern_sobind(so, (struct sockaddr *)&laddr);
if (rc != 0)

Kernel Services and Subsystem Operations 271

{
 return(-1);
}
rc = kern_solisten(so, 5);
if (rc != 0)
{
 return(-1);
}

Return Values
Item Description

0 Upon Success

>0 Error

The nonzero return value is the error number that is defined in the /usr/include/sys/errno.h file.

Related reference
kern_socreate Kernel Service
kern_soaccept Kernel Service

kern_soreceive Kernel Service

Purpose
The routine processes one record per call and returns the number of bytes requested.

Syntax

#include <sys/kern_socket.h>
int kern_soreceive(ksocket_t so,
struct mbuf **paddr,
long len,
struct mbuf **mp,
struct mbuf **controlp,
int *flagp)

Parameters

Item Description

so The socket to receive the data.

paddr The foreign socket address information is returned in this pointer. Caller should
pass in address of struct mbuf * . Caller needs to free this mbuf after the function
returns successfully. Caller can pass in NULL if caller doesn't need foreign address
information.

len The length of the data to be received.

mp The mbuf pointer so that data can be returned in an mbuf chain. The caller must
pass in the address of struct mbuf *. The caller must free this mbuf after the
function returns.

controlp Pointer to an mbuf containing the control information. Caller should pass in address
of struct mbuf * . Caller needs to free this mbuf after the function returns
successfully. Caller can pass in NULL if there is no control information.

272 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

flagp If flagp is not NULL, caller can pass in actual flag. The flags are defined in the <sys/
socket.h> file. The kern_soreceive routine will use flags set in flagp. The caller can
set the flagsp to MSG_WAITALL or MSG_NONBLOCK. On return, it will set flagp to
MSG_TRUNC, MSG_OOB wherever applicable.

Description
The kern_soreceive kernel service processes one record per call and returns the number of bytes that
are requested. If there is data in the socket receive buffer, the kern_soreceive kernel service returns
up to < len> bytes as a mbuf chain. The actual number of bytes returned is computed by adding the
m_len fields of each mbuf in the chain. If there is no data, but the connection is still established, the
kern_soreceive kernel service either returns EAGAIN with *mp set to NULL (if MSG_NONBLOCK is set) or
returns wait for data to arrive (if MSG_NONBLOCK is not set). If the connection is closed before the call or
while waiting for data, the *mp is set to NULL and 0 is returned. Waiting may be interrupted, in which case
kern_soreceive returns EAGAIN, EINTR, or ERESTART and *mp is undefined. The application might return
EINTR, but calls the kern_soreceive kernel service again.

Execution Environment
The kern_soreceive kernel service can be called from the process environment.

Examples
ksocket_t so;
struct mbuf *data = NULL;
struct sockaddr_in faddr;
long len = 512;
int flags = 0;
int rc;
rc = kern_socreate(AF_INET, &so, SOCK_STREAM, IPPROTO_TCP);
if (rc != 0)
{
 return(-1);
}
bzero(&faddr, sizeof(struct sockaddr_in));
faddr.sin_family = AF_INET;
faddr.sin_port = 23456;
faddr.sin_len = sizeof(struct sockaddr_in);
faddr.sin_addr.s_addr = inet_addr("9.3.108.210");
rc = kern_soconnect(so, (struct sockaddr *) &faddr);
if (rc != 0)
{
 return(-1);
}
do
{
 rc = kern_soreceive(so, NULL, len, &data, NULL, &flags);
} while (rc == EAGAIN || rc == EINTR || rc == ERESTART);
if ((rc == 0) && data)
{
 /* process the data */
 ...
 m_freem(data); /* Caller needs to free the mbuf after kern_soreceive. */
}
else
{
 return(-1);
}

Return Values
Item Description

0 Upon Success

>0 Error

Kernel Services and Subsystem Operations 273

The nonzero return value is the error number that is defined in the /usr/include/sys/errno.h file.

Related reference
kern_socreate Kernel Service
kern_sosend Kernel Service

kern_soreserve Kernel Service

Purpose
The routine enforces the limit for the send and receive buffer space for a socket. It does not actually
allocate memory only sets the buffer size.

Syntax

#include <sys/kern_socket.h>
int kern_soreserve(ksocket_t so, uint64_t sndcc, uint64_t rcvcc)

Parameters

Item Description

so The socket that will be used in reserving the space.

sndcc Send buffer size in bytes.

rcvcc Receive buffer size in bytes.

Description
The kern_soreserve kernel service enforces the limit for the send and receive buffer space for a socket. It
does not actually allocate memory. It sets the buffer size.

Execution Environment
The kern_soreserve kernel service can be called from the process environment.

Examples
ksocket_t so;
uint64_t sb_snd_hiwat = 2048;
uint64_t sb_rcv_hiwat = 2048;
int rc;
rc = kern_socreate(AF_INET, &so, SOCK_STREAM, IPPROTO_TCP);
if (rc != 0)
{
 return(-1);
}
rc = kern_soreserve(so, sb_snd_hiwat, sb_rcv_hiwat);
if (rc != 0)
{
 return(-1);
}

Return Values
Item Description

0 Upon Success

>0 Error

274 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The nonzero return value is the error number that is defined in the /usr/include/sys/errno.h file.

Related reference
kern_socreate Kernel Service

kern_sosend Kernel Service

Purpose
Pass data and control information to the protocol associated send routines.

Syntax

#include <sys/kern_socket.h>
int kern_sosend(ksocket_t so, struct sockaddr *faddr,
struct mbuf *top,
struct mbuf *control,
int flags)

Parameters

Item Description

so The socket to send data.

faddr The destination address, only necessary if the socket is not connected.

top The mbuf chain of data to be sent. Remember that the first mbuf must have the
packet header filled out. Set the top->m_pkthdr.len to the total length of the data
in the mbuf chain and the m_flags to M_PKTHDR. The caller must allocate mbuf
memory before calling the routine.

control Pointer to an mbuf containing the control information to be sent. The caller must
allocate mbuf memory before calling the function if the caller wants to pass in
control information.

flags Flags options for this write call. Caller can set flags to MSG_NONBLOCK.

Description
The kern_sosend kernel service passes data and control information to the protocol associated send
routines.

Execution Environment
The kern_sosend kernel service can be called from process environment.

Examples
ksocket_t so;
int flags = 0;
struct sockaddr_in faddr;
struct mbuf *send_mbuf;
struct sockaddr_in faddr;
char msg[100];
int i, rc;
rc = kern_socreate(AF_INET, &so, SOCK_STREAM, IPPROTO_TCP);
if (rc != 0)
{
 return(-1);
}
bzero(&faddr, sizeof(struct sockaddr_in));
faddr.sin_family = AF_INET;
faddr.sin_port = 23456;

Kernel Services and Subsystem Operations 275

faddr.sin_len = sizeof(struct sockaddr_in);
faddr.sin_addr.s_addr = inet_addr("9.3.108.210");
rc = kern_soconnect(so, (struct sockaddr *) &faddr);
if (rc != 0)
{
 return(-1);
}
send_mbuf = MGETBUF(sizeof(msg), M_DONOTWAIT); /* Caller needs to allocate mbuf memory
*/
if (send_mbuf == NULL)
{
 return (-1);
}
for (i=0; i < 100, i++)
{
 msg[i] = 0x2A;
}
bcopy(msg, mtod(send_mbuf, caddr_t), sizeof(msg));
send_mbuf->m_len = send_mbuf->m_pkthdr.len = sizeof(msg);
rc = kern_sosend(so, NULL, send_mbuf, 0, MSG_NONBLOCK));
if (rc != 0)
{
 return(-1);
}

Return Values
Item Description

0 Upon Success

>0 Error

The nonzero return value is the error number that is defined in the /usr/include/sys/errno.h file.

Related reference
kern_socreate Kernel Service
kern_soreceive Kernel Service

kern_sosetopt Kernel Service

Purpose
Sets the option associated with the socket, either at the socket level or at the protocol level.

Syntax

#include <sys/kern_socket.h>
int sosetopt(ksocket_t so,
int level, int optname,
struct mbuf *mp)

Parameters

Item Description

so The socket that will be used to set the option.

level The socket level (e.g. SOL_SOCKET) or protocol level (IPPROTO_TCP)

optname The option name to set. Socket options can be found in <sys/socket.h> and the TCP
options can be found in <netinet/tcp.h>.

mp The mbuf that contains the option value and will be used to modify the field
specified by the option name. The mp->m_len should be the size of the value. The
caller must allocate mbuf memory before calling the function.

276 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The kern_sosettopt kernel service sets the option associated with the socket, either at the socket level,
or at the protocol level.

Execution Environment
The kern_sosetopt kernel service can be called from the process environment.

Examples
ksocket_t so;
struct mbuf *mp = NULL;
struct linger *linger;
int rc;
rc = kern_socreate(AF_INET, &so, SOCK_STREAM, IPPROTO_TCP);
if (rc != 0)
{
 return(-1);
}
mp = m_get(M_DONTWAIT, MT_SOOPTS); /* Caller of kern_sosetopt needs to allocated mbuf memory
*/
if (mp == NULL)
{
 return (-1);
}
mp->m_len = sizeof(struct linger);
linger = mtod(mp, struct linger *);
linger->l_linger = 5;
linger->l_onoff = 1;
rc = kern_sosetopt(so, SOL_SOCKET, SO_LINGER, mp);
if (rc != 0)
{
 return(-1);
}

Return Values
Item Description

0 Upon Success

>0 Error

The nonzero return value is the error number that is defined in the /usr/include/sys/errno.h file.

Related reference
kern_socreate Kernel Service

kern_soshutdown Kernel Service

Purpose
Closes the read-half, write-half or both read and write of a connection.

Syntax

#include <sys/kern_socket.h>
int kern_soshutdown(ksocket_t so, int how)

Kernel Services and Subsystem Operations 277

Parameters

Item Description

so The socket to which the shutdown will be issued.

how 0 read, 1 write, 2 read and write

Description
The kern_soshutdown kernel service closes the read-half, write-half or both read and write of a
connection.

Execution Environment
The kern_soshutdown kernel service can be called from the process environment.

Examples
ksocket_t so;

/* Create the socket so */

kern_socreate(AF_INET, &so, SOCK_STREAM, IPPROTO_TCP);

/* Shutting down both the read/write */

kern_soshutdown(so, 2);

Return Values
Item Description

0 Upon Success

>0 Error

Related reference
kern_socreate Kernel Service

kgethostname Kernel Service

Purpose
Retrieves the name of the current host.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int
kgethostname (name, namelen)
char *name;
int *namelen;

278 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

name Specifies the address of the buffer in which to place the host name.

namelen Specifies the address of a variable in which the length of the host name will be stored. This
parameter should be set to the size of the buffer before the kgethostname kernel service is
called.

Description
The kgethostname kernel service returns the standard name of the current host as set by the
sethostname subroutine. The returned host name is null-terminated unless insufficient space is provided.

Execution Environment
The kgethostname kernel service can be called from either the process or interrupt environment.

Return Value

Ite
m

Description

0 Indicates successful completion.

Related information
sethostname subroutine
Network Kernel Services

kgetpname Kernel Service

Purpose
Provides the calling process's base program name.

Syntax
#include <sys/encap.h>
int kgetpname (char * Buffer, size_t *BufferSize);

Description
The kgetpname kernel service copies the program name of the calling process into the buffer specified
by Buffer. Including the null terminator, the service copies no more than the lesser of *BufferSize,
MAXCOMLEN, or the actual size of the program name in bytes into the buffer. If Buffer is NULL, or
*BufferSize is 0, no copy is performed. If the full program name is copied into the buffer, the total number
of bytes copied is written to *BufferSize. If kgetpname cannot copy the full program name into the buffer,
the size in bytes of the full program name is written to *BufferSize, and ENAMETOOLONG is returned.

Execution Environment
The kgetpname kernel service can only be called from the process environment.

Kernel Services and Subsystem Operations 279

Return Values
Item Description

0 The full program name was successfully written to the buffer.

ENAMETOOLONG Only part of the full program name was written to the buffer, and kgetpname
stored the (positive) length in bytes (including the null character) of the full
program name into *BufferSize.

EINVAL Buffer is Null, BufferSize is NULL, or *BufferSize is 0.

ENOTSUP The kgetpname kernel service was called from inside an interrupt context.

kgetrlimit64 Kernel Service

Purpose
Controls maximum system resource consumption.

Library
Standard C Library (libc.a)

Syntax

#include <sys/time.h>
#include <sys/resource.h>

void kgetrlimit64 (Resource1, RLP)
int Resource1;
struct rlimit64 *RLP;

280 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

Resource1 The Resource1 parameter can be one of the following values:
RLIMIT_AS

The maximum size, in bytes, of the total available memory of a process. This limit
is enforced by the kernel only if the XPG_SUS_ENV=ON environment variable is
set in the user's environment before the process is executed. If the XPG_SUS_ENV
environment variable is not set in the user's environment, the limit is not enforced.

RLIMIT_CORE
The largest size, in bytes, of a core file that can be created. This limit is enforced
by the kernel. If the value of the RLIMIT_FSIZE limit is less than the value of the
RLIMIT_CORE limit, the system uses the RLIMIT_FSIZE limit value as the soft limit.

RLIMIT_CPU
The maximum amount of central processing unit (CPU) time, in seconds, to be used
by each process. If a process exceeds its soft CPU limit, the kernel sends a SIGXCPU
signal to the process. After the hard limit is reached, the process is killed with
SIGXCPU, even if it handles, blocks, or ignores that signal.

RLIMIT_DATA
The maximum size, in bytes, of the data region for a process. This limit defines
how far a program can extend its break value with the sbrk subroutine. This limit is
enforced by the kernel.

RLIMIT_FSIZE
The largest size, in bytes, of any single file that can be created. When a process
attempts to write, truncate, or clear beyond its soft RLIMIT_FSIZE limit, the
operation fails with the errno variable set to EFBIG. If the environment variable
XPG_SUS_ENV=ON is set in the user's environment before the process is issued,
then the SIGXFSZ signal is also generated.

RLIMIT_NOFILE
This is a number one greater than the maximum value that the system can assign to
a newly-created descriptor.

RLIMIT_STACK
The maximum size, in bytes, of the stack region for a process. This limit defines
how far a program stack region can be extended. The system automatically performs
stack extension. This limit is enforced by the kernel. When the stack limit is reached,
the process receives a SIGSEGV signal. If this signal is not caught by a handler using
the signal stack, the signal ends the process.

RLIMIT_RSS
The maximum size, in bytes, to which the resident set size of a process can grow.
This limit is not enforced by the kernel. A process might exceed its soft limit size
without being ended.

RLP Points to the rlimit64 structure where the requested limits are returned by the
kgetrlimit64 kernel service.

Description
The kgetrlimit64 kernel service returns the values of limits on system resources used by the current
process and its children processes.

Note: The initial values returned by the kgetrlimit64 kernel service are the ulimit values in effect when
the process was started. For maxdata programs the initial soft limit for data is set to the lower of data
ulimit value or a value corresponding to the number of data segments reserved for data segments.

Kernel Services and Subsystem Operations 281

The rlimit64 structure specifies the hard and soft limits for a resource, as defined in the sys/resource.h
file. The RLIM64_INFINITY value defines an infinite value for a limit.

Execution Environment
The kgetrlimit64 kernel service can be called from either the process or interrupt environment.

Return Values
The kgetrlimit64 kernel service has no return values.

Related information
getrlimit64 subroutine

kgetsystemcfg Kernel Service

Purpose
Displays the system configuration information.

Syntax
#include <systemcfg.h>
uint64_t kgetsystemcfg (int name)

Description
Displays the system configuration information.

Parameters

Item Description

name Specifies the system variable setting to be returned. Valid values for the name
parameter are defined in the systemcfg.h file.

Return Values
If the value specified by the name parameter is system-defined, the kgetsystemcfg kernel service returns
the data that is associated with the structure member represented by the input parameter. Otherwise, the
kgetsystemcfg kernel service will return UINT64_MAX, and the errno will be set.

Error Codes
The kgetsystemcfg subroutine will fail if:

Item Description

EINVAL The value of the name parameter is invalid.

Related information
getsystemcfg subroutine

kgettickd Kernel Service

282 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Retrieves the current status of the systemwide time-of-day timer-adjustment values.

Syntax

#include <sys/types.h>

int kgettickd (timed, tickd, time_adjusted)
int *timed;
int *tickd;
int *time_adjusted;

Parameters

Item Description

timed Specifies the current amount of time adjustment in microseconds remaining to be
applied to the systemwide timer.

tickd Specifies the time-adjustment rate in microseconds.

time_adjusted Indicates if the systemwide timer has been adjusted. A value of True indicates
that the timer has been adjusted by a call to the adjtime or settimer subroutine.
A value of False indicates that it has not. The use of the ksettimer kernel service
has no effect on this flag. This flag can be changed by the ksettickd kernel
service.

Description
The kgettickd kernel service provides kernel extensions with the capability to determine if the adjtime or
settimer subroutine has adjusted or changed the systemwide timer.

The kgettickd kernel service is typically used only by kernel extensions providing time synchronization
functions. This includes coordinated network time (which is the periodic synchronization of all system
clocks to a common time by a time server or set of time servers on a network), where use of the adjtime
subroutine is insufficient.

Execution Environment
The kgettickd kernel service can be called from either the process or interrupt environment.

Return Values
The kgettickd service always returns a value of 0.

Related reference
ksettimer Kernel Service
Related information
Timer and Time-of-Day Kernel Services
Using Fine Granularity Timer Services and Structures

kkey_assign_private Kernel Service

Purpose
Requests a private kernel-key assignment.

Kernel Services and Subsystem Operations 283

Syntax

#include <sys/types.h>
#include <sys/skeys.h>
#include <sys/kerrno.h>

kerrno_t kkey_assign_private (id, instance, flags, kkey)
char *id;
long instance;
unsigned long flags;
kkey_t *kkey;

Parameters

Item Description

id Specifies a null-terminated string. The kkey_assign_private kernel service uses the
string value to assign a private key. This normally contains a load module name
associated with the calling kernel subsystem, but you can specify any unique string.

instance Specifies a unique number for each private key requested by a subsystem. This must be
an integer value starting from 0 and increases with each kernel-key requested.

flags You must specify this parameter to zero.

kkey Contains the returned assigned kernel key. The valid pointer must be a 4-byte aligned
address (kkey_t’s natural alignment).

Description
The kkey_assign_private kernel service assigns a private kernel key to the caller. Private kernel keys
are used to limit data accessibility by external kernel code. The kkey_assign_private kernel service
distributes requests for private kernel keys among a predetermined range (from KKEY_PRIVATE1 to
KKEY_PRIVATE32). The intention is to perform a uniform distribution on behalf of requests by multiple
kernel subsystems. The assignment is made based on the id and instance parameters and might return
the same private key to multiple callers. It might also return the same private key when the instance
number is different.

The kkey_assign_private kernel service does not perform a resource allocation. It only provides a
recommended kernel key to use for data protection.

Execution Environment
The kkey_assign_private kernel service can be called from the process environment only.

Return Values
Item Description

0 Indicates a successful completion.

EINVAL_KKEY_ASSIGN_PRIVATE Indicates that the parameter or execution environment is not valid.

kkeyset_add_key Kernel Service

Purpose
Adds a kernel key to a kernel keyset.

284 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/kerrno.h>
#include <sys/skeys.h>

kerrno_t kkeyset_add_key (set, key, flags)
kkeyset_t set;
kkey_t key;
unsigned long flags;

Parameters

Item Description

set Specifies the kernel keyset to which the kkeyset_add_key kernel service will add a key.

key Specifies the kernel key to add.

flags You can specify the flags parameter to one of the following values:
KA_READ

Specifies that the read access for the key is to be added.
KA_WRITE

Specifies that the write access for the key is to be added.
KA_RW

Specifies that both the read access and the write access are to be added. This is
equivalent to the value of KA_READ | KA_WRITE.

Description
The kkeyset_add_key kernel service adds a single kernel key specified by the key parameter to the kernel
keyset specified by the set parameter. You must specify the flags parameter to control the read or write
authority.

Execution Environment
The kkeyset_add_key kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful completion.

EINVAL_KKEYSET_ADD_KEY Indicates that the parameter or execution environment is not
valid.

kkeyset_add_set Kernel Service

Purpose
Adds members of one kernel keyset to an existing kernel keyset.

Syntax

#include <sys/kerrno.h>
#include <sys/skeys.h>

Kernel Services and Subsystem Operations 285

kerrno_t kkeyset_add_set (set, addset)
kkeyset_t set;
kkeyset_t addset;

Parameters

Item Description

set Specifies an existing kernel keyset. This set contains the resulting union on completion.

addset Specifies the kernel keyset to add.

Description
The kkeyset_add_set kernel service adds a kernel keyset specified by the addset parameter to the kernel
keyset specified by the set parameter.

Execution Environment
The kkeyset_add_set kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful completion.

EINVAL_KKEYSET_ADD_SET Indicates that the parameter or execution environment is not
valid.

kkeyset_create Kernel Service

Purpose
Creates and initializes a kernel keyset.

Syntax

#include <sys/kerrno.h>
#include <sys/skeys.h>

kerrno_t kkeyset_create (set)
kkeyset_t *set;

Parameters

Item Description

set Contains the returned newly-created keyset.

Description
The kkeyset_create kernel service creates a new (empty) kernel keyset. You can add or remove the
access to an individual or groups of kernel keys using the kkeyset_add_key, kkeyset_remove_key,
kkeyset_add_set, and kkeyset_remove_set kernel services.

Important: The kkeyset_create kernel service allocates hidden kernel resources. You must release these
resources using the kkeyset_delete kernel service when the kernel keyset is no longer in use. When

286 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

creating a new set, the caller of the kkeyset_create kernel service must initialize the storage that will
contain the returned kernel keyset (*set) to the value of KKEYSET_INVALID.

Execution Environment
The kkeyset_create kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful completion.

ENOMEM_KKEYSET_CREATE Indicates that the available memory is not sufficient to satisfy the
request.

EINVAL_KKEYSET_CREATE Indicates that the parameter or execution environment is not
valid.

Related reference
kkeyset_add_key Kernel Service
kkeyset_remove_key Kernel Service
kkeyset_delete Kernel Service

kkeyset_delete Kernel Service

Purpose
Deletes a kernel keyset.

Syntax

#include <sys/kerrno.h>
#include <sys/skeys.h>

kerrno_t kkeyset_delete (set)
kkeyset_t set;

Parameters

Item Description

set Specifies the keyset to be destroyed.

Description
The kkeyset_delete kernel service destroys a kernel keyset. The kernel service releases the hidden
resources associated with this keyset.

Execution Environment
The kkeyset_delete kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful completion.

Kernel Services and Subsystem Operations 287

Item Description

EINVAL_KKEYSET_DELETE Indicates that the parameter or execution environment is not
valid.

kkeyset_remove_key Kernel Service

Purpose
Removes a kernel key from a kernel keyset.

Syntax

#include <sys/kerrno.h>
#include <sys/skeys.h>

kerrno_t kkeyset_remove_key (set, key, flags)
kkeyset_t set;
kkey_t key;
unsigned long flags;

Parameters

Item Description

set Specifies the kernel keyset from which the kkeyset_remove_key kernel service will
remove a key.

key Specifies the kernel key to remove.

flags You can specify the flags parameter to one of the following values:
KA_READ

Specifies that the read access for the key is to be removed.
KA_WRITE

Specifies that the write access for the key is to be removed.
KA_RW

Specifies that both the read access and the write access are to be removed. This is
equivalent to the value of KA_READ | KA_WRITE.

Description
The kkeyset_remove_key kernel service removes a single kernel key specified by the key parameter from
the kernel keyset specified by the set parameter. You must specify the flags parameter to control the read
or write authority.

Execution Environment
The kkeyset_remove_key kernel service can be called from the process environment only.

Return Values
Item Description

0 Indicates a successful completion.

EINVAL_KKEYSET_REMOVE_KEY Indicates that the parameter or execution environment is not valid.

288 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

kkeyset_remove_set Kernel Service

Purpose
Removes members of one kernel keyset from an existing kernel keyset.

Syntax

#include <sys/kerrno.h>
#include <sys/skeys.h>

kerrno_t kkeyset_remove_set (set, removeset)
kkeyset_t set;
kkeyset_t removeset;

Parameters

Item Description

set Specifies the kernel keyset from which the kkeyset_remove_set kernel service will
remove a keyset.

removeset Specifies the kernel keyset to remove.

Description
The kkeyset_remove_set kernel service removes a kernel keyset specified by the removeset parameter
from the kernel keyset specified by the set parameter.

Execution Environment
The kkeyset_remove_set kernel service can be called from the process environment only.

Return Values
Item Description

0 Indicates a successful completion.

EINVAL_KKEYSET_REMOVE_SET Indicates that the parameter or execution environment is not valid.

kkeyset_to_hkeyset Kernel Service

Purpose
Computes the hardware keyset associated with a kernel keyset.

Syntax

#include <sys/kerrno.h>
#include <sys/skeys.h>

kerrno_t kkeyset_to_hkeyset (kkeyset, hkeyset)
kkeyset_t kkeyset;
hkeyset_t *hkeyset;

Kernel Services and Subsystem Operations 289

Parameters

Item Description

kkeyset Specifies the input kernel keyset to be mapped.

hkeyset Specifies the hardware keyset that is mapped to. The valid pointer must be an 8-byte
aligned address.

Description
The kkeyset_to_hkeyset kernel service maps a kernel keyset to its associated hardware keyset.

Execution Environment
The kkeyset_to_hkeyset kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful completion.

EINVAL_KKEYSET_TO_HKEYSET Indicates that the parameter or execution environment is not
valid.

klpar_get_info Kernel Service

Purpose
Retrieves the calling partition's characteristics.

Syntax
#include <sys/dr.h>

int klpar_get_info (command, lparinfo, bufsize)
int command;
void *lparinfo;
size_t bufsize;

Parameters
Item Description

command Specifies whether the user wants format1, format2, or processor module
details.

lparinfo Pointer to the user-allocated buffer that is passed in.

bufsize Size of the buffer that is passed in.

Description
The klpar_get_info kernel service retrieves LPAR and Micro-Partitioning attributes of both low-frequency
use and high-frequency use and also retrieves processor module information. Because the low-frequency
attributes, as defined in the lpar_info_format1_t structure, are static in nature, a reboot is required
to effect any change. The high-frequncy attributes, as defined in the lpar_info_format2_t structure,
can be changed dynamically while the partition is running. The signature of this kernel service,
its parameter types, and the order of the member fields in both the lpar_info_format1_t and

290 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

lpar_info_format2_t structures are specific to the AIX platform. If you requests processor module
information, the kernel service provides this information as an array of proc_module_info_t structures.
To obtain this information, the caller must provide a buffer of the exact length to accommodate
one proc_module_info_t structure for each module type. You can obtain the module count using the
NUM_PROC_MODULE_TYPES command. The module count is in the form of a uint64_t type. Processor
module information is reported for the entire system. This information is available on POWER6® and later
systems.

To see the complete structures of lpar_info_format1_t, lpar_info_format2_t, and proc_module_info_t,
refer to the dr.h header file.

Return Values
Upon success, the klpar_get_info kernel service returns a value of 0. Upon failure, the klpar_get_info
kernel service returns an error code.

Error Codes
Item Description

EINVAL Invalid input parameter.

ENOSYS The hardware or the firmware level does not support this operation.

ENOTSUP The platform does not support this operation.

Related information
lpar_get_info subroutine

kmod_entrypt Kernel Service

Purpose
Returns a function pointer to a kernel module's entry point.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ldr.h>

void (*(kmod_entrypt (kmid, flags)))()
mid_t kmid;
uint flags;

Parameters

Item Description

kmid Specifies the kernel module ID of the object file for which the entry point is requested. This
parameter is the kernel module ID returned by the kmod_load kernel service.

flags Flag specifying entry point options. The following flag is defined:
0

Returns a function pointer to the specified module's entry point as specified in the module
header.

Kernel Services and Subsystem Operations 291

Description
The kmod_entrypt kernel service obtains a function pointer to a specified module's entry point. This
function pointer is typically used to invoke a routine in the module for initializing or terminating its
functions. Initialization and termination occurs after loading and before unloading. The module for which
the entry point is requested is specified by the kernel module ID represented by the kmid parameter.

Execution Environment
The kmod_entrypt kernel service can be called from the process environment only.

Return Values
A nonnull function pointer indicates a successful completion. This function pointer contains the module's
entry point. A null function pointer indicates an error.

Related reference
kmod_load Kernel Service
Related information
Kernel Extension and Device Driver Management Kernel Services

kmod_load Kernel Service

Purpose
Loads an object file into the kernel or queries for an object file already loaded.

Syntax
#include <sys/ldr.h>
#include <sys/types.h>
#include <sys/errno.h>

int kmod_load (pathp,
flags,libpathp, kmidp)
caddr_t pathp;
uint flags;
caddr_t
 libpathp;
mid_t * kmidp;

Parameters

Item Description

pathp Points to a character string containing the path-name of the object file to load or query.

292 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

flags Specifies a set of loader flags describing which loader options to invoke. The following
flags are defined:
LD_USRPATH

The character strings pointed to by the pathp and libpathp parameters are in user
address space. If the LD_USRPATH flag is not set, the character strings are assumed
to be in kernel, or system, space.

LD_KERNELEX
Puts this object file's exported symbols into the /usr/lib/boot/unix name space.
Additional object files loaded due to symbol resolution for the specified file do not
have their exported symbols placed in kernel name space.

LD_SINGLELOAD
When this flag is set, the object file specified by the pathp parameter is loaded into
the kernel only if an object file with the same path-name has not already been loaded.
If an object file with the same path-name has already been loaded, its module ID is
returned (using the kmidp parameter) and its load count incremented. If the object file
is not yet loaded, this service performs the load as if the flag were not set.

This option is useful in supporting global kernel routines where only one copy of the
routine and its data can be present. Typically, routines that export symbols to be
added to kernel name space are of this type.

Note: A path-name comparison is done to determine whether the same object file has
already been loaded. This service will erroneously load a new copy of the object file
into the kernel if the path-name to the object file is expressed differently than it was
on a previous load request.

If neither this flag nor the LD_QUERY flag is set, this service loads a new copy of
the object file into the kernel. This occurs even if other copies of the object file have
previously been loaded.

LD_QUERY
This flag specifies that a query operation will determine if the object file specified by
the pathp parameter is loaded. If not loaded, a kernel module ID of 0 is returned using
the kmidp parameter. Otherwise, the kernel module ID assigned to the object file is
returned.

If multiple instances of this file have been loaded into the kernel, the kernel module ID
of the most recently loaded object file is returned.

The libpathp parameter is not used for this option.

Note: A path-name comparison is done to determine whether the same object file
has been loaded. This service will erroneously return a not loaded condition if the
path-name to the object file is expressed differently than it was on a previous load
request.

If this flag is set, no object file is loaded and the LD_SINGLELOAD and LD_KERNELEX
flags are ignored, if set.

libpathp Points to a character string containing the search path to use for finding object files
required to complete symbol resolution for this load. If the parameter is null, the search
path is set from the specification in the object file header for the object file specified by
the pathp parameter.

kmidp Points to an area where the kernel module ID associated with this load of the specified
module is to be returned. The data in this area is not valid if the kmod_load service
returns a nonzero return code.

Kernel Services and Subsystem Operations 293

Description
The kmod_load kernel service loads into the kernel a kernel extension object file specified by the pathp
parameter. This service returns a kernel module ID for that instance of the module.

You can specify flags to request a single load, which ensures that only one copy of the object file is loaded
into the kernel. An additional option is simply to query for a given object file (specified by path-name).
This allows the user to determine if a module is already loaded and then access its assigned kernel
module ID.

The kmod_load service also provides load-time symbol resolution of the loaded module's imported
symbols. The kmod_load service loads additional kernel object modules if required for symbol resolution.

Loader Symbol Binding Support

Symbols imported from the kernel name space are resolved with symbols that exist in the kernel name
space at the time of the load. (Symbols are imported from the kernel name space by specifying the
#!/unix character string as the first field in an import list at link-edit time.)

Kernel modules can also import symbols from other kernel object modules. These other kernel object
modules are loaded along with the specified object module if they are needed to resolve the imported
symbols.

Any symbols exported by the specified kernel object module are added to the kernel name space if the
flags parameter has the LD_KERNELEX flag set. This makes the symbols available to other subsequently
loaded kernel object modules. Kernel object modules loaded on behalf of the specified kernel object
module (to resolve imported symbols) do not have their exported symbols added to the kernel name
space.

Kernel export symbols specified (at link-edit time) with the SYSCALL keyword in the primary module's
export list are added to the system call table. These kernel export symbols are available to application
programs as system calls.

Finding Shared Object Modules for Resolving Symbol References

The search path search string is taken from the module header of the object module specified by the
pathp parameter if the libpathp parameter is null. The module header of the object module specified by
the pathp parameter is used.

If the module header contains an unqualified base file name for the symbol (no / [slash] characters in the
name), a search string is used to find the location of the shared object module required to resolve the
import. This search string can be taken from one of two places. If the libpathp parameter on the call to the
kmod_load service is not null, then it points to a character string specifying the search path to be used.
However, if the libpathp parameter is null, then the search path is to be taken from the module header for
the object module specified by the pathp parameter.

The search path specification found in object modules loaded to resolve imported symbols is not used.
The kernel loader service does not support deferred symbol resolution. The load of the kernel module is
terminated with an error if any imported symbols cannot be resolved.

Execution Environment
The kmod_load kernel service can be called from the process environment only.

Return Values
If the object file is loaded without error, the module ID is returned in the location pointed to by the kmidp
parameter and the return code is set to 0.

294 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Error Codes
If an error results, the module is not loaded, and no kernel module ID is returned. The return code is set
to one of the following return values:

Return Value Description

EACCES Indicates that an object module to be loaded is not an ordinary file or that the mode of the object
module file denies read-only access.

EACCES Search permission is denied on a component of the path prefix.

EFAULT Indicates that the calling process does not have sufficient authority to access the data area described by
the pathp or libpathp parameters when the LD_USRPATH flag is set. This error code is also returned if
an I/O error occurs when accessing data in this area.

ENOEXEC Indicates that the program file has the appropriate access permission, but has an XCOFF indicator that
is not valid in its header. The kmod_load kernel service supports loading of XCOFF (Extended Common
Object File Format) object files only. This error code is also returned if the loader is unable to resolve an
imported symbol.

EINVAL Indicates that the program file has a valid XCOFF indicator in its header, but the header is either
damaged or incorrect for the machine on which the file is to be loaded.

ENOMEM Indicates that the load requires more kernel memory than allowed by the system-imposed maximum.

ETXTBSY Indicates that the object file is currently open for writing by some process.

ENOTDIR Indicates that a component of the path prefix is not a directory.

ENOENT Indicates that no such file or directory exists or the path-name is null.

ESTALE Indicates that the caller's root or current directory is located in a virtual file system that has been
unmounted.

ELOOP Indicates that too many symbolic links were encountered in translating the path or libpathp parameter.

ENAMETOOLONG Indicates that a component of a path-name exceeded 255 characters, or an entire path-name exceeded
1023 characters.

EIO Indicates that an I/O error occurred during the operation.

Related reference
kmod_unload Kernel Service
Related information
kmod_util subroutine
Kernel Extension and Device Driver Management Kernel Services

kmod_unload Kernel Service

Purpose
Unloads a kernel object file.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ldr.h>

int kmod_unload (kmid
, flags)
mid_t kmid;
uint flags;

Kernel Services and Subsystem Operations 295

Parameters

Item Description

kmid Specifies the kernel module ID of the object file to be unloaded. This kernel module ID is
returned when using the kmod_load kernel service.

flags Flags specifying unload options. The following flag is defined:
0

Unloads the object module specified by its kmid parameter and any object modules that
were loaded as a result of loading the specified object file if this file is not still in use.

Description
The kmod_unload kernel service unloads a previously loaded kernel extension object file. The object to
be unloaded is specified by the kmid parameter. Upon successful completion, the following objects are
unloaded or marked unload pending:

• The specified object file
• Any imported kernel object modules that were loaded as a result of the loading of the specified module

Users of these exports or system calls are modules bound to this module's exported symbols. If there are
no users of any of the module's kernel exports or system calls, the module is immediately unloaded. If
there are users of this module, the module is not unloaded but marked unload pending.

Marking a module unload pending removes the module's exported symbols from the kernel name space.
Any system calls exported by this module are also removed. This prohibits new users of these symbols.
The module is unloaded only when all current users have been unloaded.

If the unload is successfully completed or marked pending, a value of 0 is returned. When an error occurs,
the specified module and any imported modules are not unloaded. A nonzero return value indicates the
error.

Execution Environment
The kmod_unload kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates successful completion.

EINVAL Indicates that the kmid parameter, which specifies the kernel module, is not valid or does not
correspond to a currently loaded module.

EBUSY The kmid parameter specifies a kernel extension that is still intercepting system calls.

Related reference
kmod_load Kernel Service
Related information
kmod_util subroutine
Kernel Extension and Device Driver Management Kernel Services

kmod_util Kernel Service

Purpose
Registers routines to be called before and after specified system calls are invoked.

296 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/sysconfig.h>

int kmod_util (flags, buffer, blen)
int flags;
void * buffer;
long blen;

Parameters

Item Description

flags Specifies the operation. Valid values are KU_INTERCEPT, KU_INTERCEPT_STOP, and
KU_INTERCEPT_CANCEL.

buffer Points to a buffer containing a system call interception header and an array of system call
interception structures.

blen Specifies the length of the buffer.

Description
The kmod_util kernel service allows system calls to be intercepted. Routines called pre-sc functions are
specified to be called before the intercepted system call. Routines called post-sc functions are specified
to be called after the intercepted system call. In addition, a pre-sc function is allowed to abort the system
call, providing its own return value and preventing subsequent pre-sc functions and the system call itself
from being called. Similarly, each post-sc function may examine and alter the return value. If a system
call does not return (e.g., thread_terminate), post-sc functions are not called.

For each intercepted system call, either a pre-sc function, a post-sc function, or both, must be specified.
If a pre-sc function and post-sc function are registered for the same system call in the same kmod_util
invocation, they are considered paired. All pre-sc and post-sc functions specified in a kmod_util call
must be defined in the same kernel extension as the caller of the kmod_util kernel service. Other kernel
extensions, however, can intercept the same system calls. The most recently registered pre-sc function is
called first, and its paired post-sc function is called last.

The interception of a system call is implemented so that all calls to the system call are intercepted, even
for existing processes.

It may be necessary to prevent the interception of certain system calls to avoid destabilizing the system.
A future version or release of the kmod_util kernel service may prevent the interception of additional
system calls, and such a change will not be considered a violation of binary compatibility.

The prototype of a pre-sc function is

int pre_sc(uintptr_t *rc, void *parms, uintptr_t cookie, void *buffer);

where parms is a pointer to the parameters of the system call, cookie is an opaque value specified by
the caller of kmod_util, buffer is a scratch 128-byte buffer for use by the pre-sc function and its paired
post-sc function.

If the pre-sc function returns non-zero, the system call is aborted. The rc parameter is the address where
an alternate return value can be specified. Subsequent pre_sc functions are not called, nor is the system
call. For pre-sc functions already called, their paired post-sc functions are called.

The prototype of a post-sc function is

void post_sc(uintptr_t *rc, void *parms, uintptr_t cookie,
 void *buffer);

Kernel Services and Subsystem Operations 297

The parameters of the post-sc function are the same as those of the pre-sc function. In particular, the
buffer parameter is the same buffer that was passed to the paired pre-sc function. The return value can
be modified by a post-sc function.

For calls to the kmod_util kernel service, the buffer contains a header and an array of elements about
system calls to be intercepted. The layout of these structures is defined in <sys/sysconfig.h>.

An array element is ignored if the KU_IGNORE flag is set in the kue_iflag field. Otherwise, each array
element in the input buffer is validated, and if any errors are found, the entire call fails without any partial
execution.

Intercepting System Calls
Calls to kmod_util() with the KU_INTERCEPT flag initiate system call interception.

Stopping System Call Interception

Calls to kmod_util() with the KU_INTERCEPT_STOP flag suspend the interception of the specified
system calls. If a pre-sc function has already been called for a specified system call, its paired post-sc
function will still be called, but future calls to the system call will not invoke either the pre-sc or
post-sc function. It is not valid to stop interception of a system call that was not originally intercepted
by the calling kernel extension.

If the interception of a system call has been suspended, it may be resumed by calling the kmod_util()
function with the KU_INTERCEPT flag, as long as the same values are specified, such as the pre-sc
and post-sc functions.

Cancelling System Call Interception

System call interception can be cancelled by specifying the KU_INTERCEPT_CANCEL flag. When
interception is cancelled, the post-sc function is not called even if its paired pre-sc function was
called. It is not valid to cancel interception of a system call that was not originally intercepted by the
calling kernel extension, but interception can be cancelled without first stopping interception.

Once interception of a system call has been cancelled, it can be intercepted anew by calling the
kmod_util() function with the KU_INTERCEPT flag. Different pre-sc and pre-sc functions can be
specified in this case.

Return Values
If the specified operations can be enacted for all specified system calls, 0 is returned. Otherwise, a
non-zero value is returned and no change in the state of system call interception occurs. If an error occurs
because of a validation error in a particular array element, the kue_oflags field usually identifies the error
in more detail.

Error Codes
If an error results, one of the following error values is returned:

Return Value Description

EINVAL The flags parameter is not
KU_INTERCEPT, KU_INTERCEPT_STOP, nor
KU_INTERCEPT_CANCEL.

The fields in the header are invalid or the blen
parameter is not consistent with the number of
array elements.

The buffer was invalid. For KU_INTERCEPT, at
least one of the pre-sc and post-sc must be
supplied for each system call to be intercepted. All
pre-sc and post-sc functions must be in the same
kernel extension as the caller of kmod_util().

298 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Value Description

EBUSY A request was made to intercept a system call that
was already being intercepted.

ENOENT A request was made to stop or cancel interception
of a system call that was not being intercepted.

ENOMEM Memory could not be allocated to satisfy the
request.

ENOTSUPP One of the specified system calls is not allowed to
be intercepted.

Related reference
kmod_load Kernel Service
kmod_unload Kernel Service
Related information
Kernel Extension and Device Driver Management Kernel Services

kmsgctl Kernel Service

Purpose
Provides message-queue control operations.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int kmsgctl (msqid, cmd, buf)
int msqid, cmd;
struct msqid_ds *buf;

Parameters

Item Description

msqid Specifies the message queue ID, which indicates the message queue for which the control
operation is being requested for.

cmd Specifies which control operation is being requested. There are three valid commands.

buf Points to the msqid_ds structure provided by the caller of the kmsgctl service. Data is obtained
either from this structure or from status returned in this structure, depending on the cmd
parameter. The msqid_ds structure is defined in the /usr/include/sys/msg.h file.

Description
The kmsgctl kernel service provides a variety of message-queue control operations as specified by the
cmd parameter. The kmsgctl kernel service provides the same functions for user-mode processes in
kernel mode as the msgctl subroutine performs for kernel processes or user-mode processes in user
mode. The kmsgctl service can be called by a user-mode process in kernel mode or by a kernel process. A
kernel process can also call the msgctl subroutine to provide the same function.

Kernel Services and Subsystem Operations 299

The following three commands can be specified with the cmd parameter:

Item Description

IPC_STAT Sets only documented fields. See the msgctl subroutine.

IPC_SET Sets the value of the following fields of the data structure associated with the msqid
parameter to the corresponding values found in the structure pointed to by the buf
parameter:

• msg_perm.uid
• msg_perm.gid
• msg_perm.mode (only the low-order 9 bits)
• msg_qbytes

To perform the IPC_SET operation, the current process must have an effective user ID
equal to the value of the msg_perm.uid or msg_perm.cuid field in the data structure
associated with the msqid parameter. To raise the value of the msg_qbytes field, the
calling process must have the appropriate system privilege.

IPC_RMID Removes from the system the message-queue identifier specified by the msqid parameter.
This operation also destroys both the message queue and the data structure associated
with it. To perform this operation, the current process must have an effective user ID
equal to the value of the msg_perm.uid or msg_perm.cuid field in the data structure
associated with the msqid parameter.

Execution Environment
The kmsgctl kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates successful completion.

EINVAL Indicates either

• The identifier specified by the msqid parameter is not a valid message queue identifier.
• The command specified by the cmd parameter is not a valid command.

EACCES The command specified by the cmd parameter is equal to IPC_STAT and read permission is
denied to the calling process.

EPERM The command specified by the cmd parameter is equal to IPC_RMID, IPC_SET, and the
effective user ID of the calling process is not equal to that of the value of the msg_perm.uid
field in the data structure associated with the msqid parameter.

EPERM Indicates the following conditions:

• The command specified by the cmd parameter is equal to IPC_SET.
• An attempt is being made to increase to the value of the msg_qbytes field, but the calling

process does not have the appropriate system privilege.

Related information
msgctl subroutine
Message Queue Kernel Services
Understanding System Call Execution

kmsgget Kernel Service

300 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Obtains a message queue identifier.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/stat.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int kmsgget (key, msgflg, msqid)
key_t key;
int msgflg;
int *msqid;

Parameters

Item Description

key Specifies either a value of IPC_PRIVATE or an IPC key constructed by the ftok subroutine (or
a similar algorithm).

msgflg Specifies that the msgflg parameter is constructed by logically ORing one or more of these
values:
IPC_CREAT

Creates the data structure if it does not already exist.
IPC_EXCL

Causes the kmsgget kernel service to fail if IPC_CREAT is also set and the data structure
already exists.

S_IRUSR
Permits the process that owns the data structure to read it.

S_IWUSR
Permits the process that owns the data structure to modify it.

S_IRGRP
Permits the process group associated with the data structure to read it.

S_IWGRP
Permits the process group associated with the data structure to modify it.

S_IROTH
Permits others to read the data structure.

S_IWOTH
Permits others to modify the data structure.

The values that begin with S_I... are defined in the /usr/include/sys/stat.h file. They are
a subset of the access permissions that apply to files.

msqid A reference parameter where a valid message-queue ID is returned if the kmsgget kernel
service is successful.

Description
The kmsgget kernel service returns the message-queue identifier specified by the msqid parameter
associated with the specified key parameter value. The kmsgget kernel service provides the same
functions for user-mode processes in kernel mode as the msgget subroutine performs for kernel
processes or user-mode processes in user mode. The kmsgget service can be called by a user-mode

Kernel Services and Subsystem Operations 301

process in kernel mode or by a kernel process. A kernel process can also call the msgget subroutine to
provide the same function.

Execution Environment
The kmsgget kernel service can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates successful completion. The msqid parameter is set to a valid message-queue identifier.

If the kmsgget kernel service fails, the msqid parameter is not valid and the return code is one of these
four values:

Item Description

EACCES Indicates that a message queue ID exists for the key parameter but operation permission as
specified by the msgflg parameter cannot be granted.

ENOENT Indicates that a message queue ID does not exist for the key parameter and the IPC_CREAT
command is not set.

ENOSPC Indicates that a message queue ID is to be created but the system-imposed limit on the
maximum number of allowed message queue IDs systemwide will be exceeded.

EEXIST Indicates that a message queue ID exists for the value specified by the key parameter, and
both the IPC_CREAT and IPC_EXCL commands are set.

Related information
msgget subroutine
Message Queue Kernel Services
Understanding System Call Execution

kmsgrcv Kernel Service

Purpose
Reads a message from a message queue.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int kmsgrcv
(msqid, msgp, msgsz,
msgtyp, msgflg, flags, bytes)
int msqid;
struct msgxbuf * msgp;
 or struct msgbuf *msgp;
int msgsz;
mtyp_t msgtyp;
int msgflg;

302 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

int flags;
ssize_t * bytes;

Parameters

Item Description

msqid Specifies the message queue from which to read.

msgp Points to either an msgxbuf or an msgbuf structure where the message text is placed.
The type of structure pointed to is determined by the values of the flags parameter. These
structures are defined in the /usr/include/sys/msg.h file.

msgsz Specifies the maximum number of bytes of text to be received from the message queue. The
received message is truncated to the size specified by the msgsz parameter if the message is
longer than this size and MSG_NOERROR is set in the msgflg parameter. The truncated part of
the message is lost and no indication of the truncation is given to the calling process.

msgtyp Specifies the type of message requested as follows:

• If the msgtyp parameter is equal to 0, the first message on the queue is received.
• If the msgtyp parameter is greater than 0, the first message of the type specified by the

msgtyp parameter is received.
• If the msgtyp parameter is less than 0, the first message of the lowest type that is less than

or equal to the absolute value of the msgtyp parameter is received.

msgflg Specifies a value of 0, or is constructed by logically ORing one of several values:
MSG_NOERROR

Truncates the message if it is longer than the number of bytes specified by the msgsz
parameter.

IPC_NOWAIT
Specifies the action to take if a message of the desired type is not on the queue:

• If IPC_NOWAIT is set, then the kmsgrcv service returns an ENOMSG value.
• If IPC_NOWAIT is not set, then the calling process suspends execution until one of the

following occurs:

– A message of the desired type is placed on the queue.
– The message queue ID specified by the msqid parameter is removed from the

system. When this occurs, the kmsgrcv service returns an EIDRM value.
– The calling process receives a signal that is to be caught. In this case, a message is

not received and the kmsgrcv service returns an EINTR value.

flags Specifies a value of 0 if a normal message receive is to be performed. If an extended message
receive is to be performed, this flag should be set to an XMSG value. With this flag set, the
kmsgrcv service functions as the msgxrcv subroutine would. Otherwise, the kmsgrcv service
functions as the msgrcv subroutine would.

bytes Specifies a reference parameter. This parameter contains the number of message-text bytes
read from the message queue upon return from the kmsgrcv service.

If the message is longer than the number of bytes specified by the msgsz parameter bytes but
MSG_NOERROR is not set, then the kmsgrcv kernel service fails and returns an E2BIG return
value.

Description
The kmsgrcv kernel service reads a message from the queue specified by the msqid parameter and
stores the message into the structure pointed to by the msgp parameter. The kmsgrcv kernel service

Kernel Services and Subsystem Operations 303

provides the same functions for user-mode processes in kernel mode as the msgrcv and msgxrcv
subroutines perform for kernel processes or user-mode processes in user mode.

The kmsgrcv service can be called by a user-mode process in kernel mode or by a kernel process. A
kernel process can also call the msgrcv and msgxrcv subroutines to provide the same functions.

Execution Environment
The kmsgrcv kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

EINVAL Indicates that the ID specified by the msqid parameter is not a valid message queue ID.

EACCES Indicates that operation permission is denied to the calling process.

EINVAL Indicates that the value of the msgsz parameter is less than 0.

E2BIG Indicates that the message text is greater than the maximum length specified by the msgsz
parameter and MSG_NOERROR is not set.

ENOMS
G

Indicates that the queue does not contain a message of the desired type and IPC_NOWAIT is
set.

EINTR Indicates that the kmsgrcv service received a signal.

EIDRM Indicates that the message queue ID specified by the msqid parameter has been removed
from the system.

Related information
msgrcv subroutine
msgxrcv subroutine
Message Queue Kernel Services

kmsgsnd Kernel Service

Purpose
Sends a message using a previously defined message queue.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int kmsgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
struct msgbuf * msgp;
int msgsz, msgflg;

304 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

msqid Specifies the message queue ID that indicates which message queue the message is to be
sent on.

msgp Points to an msgbuf structure containing the message. The msgbuf structure is defined in
the /usr/include/sys/msg.h file.

msgsz Specifies the size of the message to be sent in bytes. The msgsz parameter can range from 0
to a system-imposed maximum.

msgflg Specifies the action to be taken if the message cannot be sent for one of several reasons.

Description
The kmsgsnd kernel service sends a message to the queue specified by the msqid parameter. The
kmsgsnd kernel service provides the same functions for user-mode processes in kernel mode as the
msgsnd subroutine performs for kernel processes or user-mode processes in user mode. The kmsgsnd
service can be called by a user-mode process in kernel mode or by a kernel process. A kernel process can
also call the msgsnd subroutine to provide the same function.

There are two reasons why the kmsgsnd kernel service cannot send the message:

• The number of bytes already on the queue is equal to the msg_qbytes member.
• The total number of messages on all queues systemwide is equal to a system-imposed limit.

There are several actions to take when the kmsgsnd kernel service cannot send the message:

• If the msgflg parameter is set to IPC_NOWAIT, then the message is not sent, and the kmsgsnd service
fails and returns an EAGAIN value.

• If the msgflg parameter is 0, then the calling process suspends execution until one of the following
occurs:

– The condition responsible for the suspension no longer exists, in which case the message is sent.
– The message queue ID specified by the msqid parameter is removed from the system. When this

occurs, the kmsgsnd service fails and an EIDRM value is returned.
– The calling process receives a signal that is to be caught. In this case, the message is not sent and the

calling process resumes execution as described in the sigaction kernel service.

Execution Environment
The kmsgsnd kernel service can be called from the process environment only.

The calling process must have write permission to perform the kmsgsnd operation.

Return Values

Item Description

0 Indicates a successful operation.

EINVAL Indicates that the msqid parameter is not a valid message queue ID.

EACCES Indicates that operation permission is denied to the calling process.

EAGAIN Indicates that the message cannot be sent for one of the reasons stated previously, and the
msgflg parameter is set to IPC_NOWAIT.

EINVAL Indicates that the msgsz parameter is less than 0 or greater than the system-imposed limit.

EINTR Indicates that the kmsgsnd service received a signal.

Kernel Services and Subsystem Operations 305

Item Description

EIDRM Indicates that the message queue ID specified by the msqid parameter has been removed
from the system.

ENOME
M

Indicates that the system does not have enough memory to send the message.

Related information
msgsnd subroutine
Message Queue Kernel Services
Understanding System Call Execution

kra_attachrset Subroutine

Purpose
Attaches a work component to a resource set.

Syntax
#include <sys/rset.h>
int kra_attachrset (rstype, rsid, rset, flags)
rstype_t rstype;
rsid_t rsid;
rsethandle_t rset;
unsigned int flags;

Description
The kra_attachrset subroutine attaches a work component specified by the rstype and rsid parameters to
a resource set specified by the rset parameter.

The work component is an existing process identified by the process ID or an existing kernel thread
identified by the kernel thread ID (tid). A process ID or thread ID value of RS_MYSELF indicates the
attachment applies to the current process or the current kernel thread, respectively.

The following conditions must be met to successfully attach a process to a resource set:

• The resource set must contain processors that are available in the system.
• The calling process must either have root authority or have CAP_NUMA_ATTACH capability.
• The calling process must either have root authority or the same effective userid as the target process.
• The target process must not contain any threads that have bindprocessor bindings to a processor.
• The resource set must be contained in (be a subset of) the target process' partition resource set.
• The resource set must be a superset of all the thread's rset in the target process.

The following conditions must be met to successfully attach a kernel thread to a resource set:

• The resource set must contain processors that are available in the system.
• The calling process must either have root authority or have CAP_NUMA_ATTACH capability.
• The calling process must either have root authority or the same effective userid as the target process.
• The target thread must not have bindprocessor bindings to a processor.
• The resource set must be contained in (be a subset of) the target thread's process effective and

partition resource set.

If any of these conditions are not met, the attachment will fail.

306 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Once a process is attached to a resource set, the threads in the process will only run on processors
contained in the resource set. Once a kernel thread is attached to a resource set, that thread will only run
on processors contained in the resource set.

The flags parameter can be set to indicate the policy for using the resources contained in the resource
set specified in the rset parameter. The only supported scheduling policy is R_ATTACH_STRSET, which
is useful only when the processors of the system are running in simultaneous multithreading mode.
Processors like the POWER5 support simultaneous multithreading, where each physical processor has
two execution engines, called hardware threads. Each hardware thread is essentially equivalent to a
single CPU, and each is identified as a separate CPU in a resource set. The R_ATTACH_STRSET flag
indicates that the process is to be scheduled with a single-threaded policy; namely, that it should be
scheduled on only one hardware thread per physical processor. If this flag is specified, then all of the
available processors indicated in the resource set must be of exclusive use. A new resource set, called an
ST resource set, is constructed from the specified resource set and attached to the process according to
the following rules:

• All offline processors are ignored.
• If all the hardware threads (CPUs) of a physical processor (when running in simultaneous multithreading

mode, there will be more than one active hardware thread per physical processor) are not included
in the specified resource set, the other CPUs of the processor are ignored when constructing the ST
resource set.

• Only one CPU (hardware thread) resource per physical processor is included in the ST resource set.

Parameters
Item Description

rstype Specifies the type of work component to be attached to the resource set specified by the rset
parameter. The rstype parameter must be the following value, defined in rset.h:

• R_PROCESS: existing process
• R_THREAD: existing kernel thread

rsid Identifies the work component to be attached to the resource set specified by the rset parameter.
The rsid parameter must be the following:

• Process ID (for rstype of R_PROCESS): set the rsid_t at_pid field to the desired process' process ID.
• Kernel thread ID (for rstype of R_THREAD): set the rsid_t at_tid field to the desired kernel thread's

thread ID.

rset Specifies which work component (specified by the rstype and rsid parameters) to attach to the
resource set.

flags Specifies the scheduling policy for the work component being attached.

The only supported value is R_ATTACH_STRSET value, which is only applicable if the rstype
parameter is set to R_PROCESS. The R_ATTACH_STRSET value indicates that the process is to be
scheduled with a single-threaded policy (only on one hardware thread per physical processor).

Return Values
Upon successful completion, the kra_attachrset subroutine returns a 0. If unsuccessful, one or more of
the following are true:

Kernel Services and Subsystem Operations 307

Item Description

EINVAL One of the following is true:

• The flags parameter contains an invalid value.
• The rstype parameter contains an invalid type qualifier.
• The R_ATTACH_STRSET flags parameter is specified and one or more processors in the rset

parameter are not assigned for exclusive use.

ENODEV The resource set specified by the rset parameter does not contain any available processors, or
the R_ATTACH_STRSET flags parameter is specified and the constructed ST resource set does not
have any available processors.

ESRCH The process or kernel thread identified by the rstype and rsid parameters does not exist.

EPERM One of the following is true:

• If the rstype is R_PROCESS, either the resource set specified by the rset parameter is not
included in the partition resource set of the process identified by the rstype and rsid parameters,
or any of the thread's R_THREAD rset in this process is not a subset of the resource set specified
by the rset parameter.

• If the rstype is R_THREAD, the resource set specified by the rset parameter is not included in the
target thread's process effective or partition (real) resource set.

• The calling process has neither root authority nor CAP_NUMA_ATTACH attachment privilege.
• The calling process has neither root authority nor the same effective user ID as the process
identified by the rstype and rsid parameters.

• The process or thread identified by the rstype and rsid parameters has one or more threads with
a bindprocessor processor binding.

Related reference
kra_getrset Subroutine
kra_detachrset Subroutine
Related information
Exclusive use processor resource sets

kra_creatp Subroutine

Purpose
Creates a new kernel process and attaches it to a resource set.

Syntax
#include <sys/rset.h>
int kra_creatp (pid, rstype, rsid, flags)
pid_t *pid;
rstype_t rstype;
rsid_t rsid;
unsigned int flags;

Description
The kra_creatp kernel service creates a new kernel process and attaches it to a resource set. The
kra_creatp kernel service attaches the new kernel process to the resource set specified by the rstype and
rsid parameters.

The kra_creatp kernel service is similar to the creatp kernel service.

308 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The following conditions must be met to successfully attach a kernel process to a resource set:

• The resource set must contain processors that are available in the system.
• The calling process must either have root authority or have CAP_NUMA_ATTACH capability.
• The calling thread must not have a bindprocessor binding to a processor.
• The resource set must be contained in the calling process' partition resource set.

Note: When the creatp kernel service is used, the new kernel process inherits its parent's resource set
attachments.

Parameters
Item Description

pid Pointer to a pid_t field to receive the process ID of the new kernel process.

rstype Specifies the type of resource the new process will be attached to. This parameter must be
the following value, defined in rset.h.

• R_RSET: resource set.

rsid Identifies the resource set the new process will be attached to.

• Resource set ID (for rstype of R_RSET): set the rsid_t at_rset field to the desired resource
set.

flags Reserved for future use. Specify as 0.

Return Values
Upon successful completion, the kra_creatp kernel service returns a 0. If unsuccessful, one or more of
the following are true:

Item Description

EINVAL One of the following is true:

• The rstype parameter contains an invalid type identifier.
• The flags parameter contains an invalid flags value.

ENODEV The specified resource set does not contain any available processors.

EFAULT Invalid address.

EPERM One of the following is true:

• The calling process has neither root authority nor CAP_NUMA_ATTACH attachment privilege.
• The calling process contains one or more threads with a bindprocessor processor binding.
• The specified resource set is not included in the calling process' partition resource set.

ENOMEM Memory not available.

Related reference
creatp Kernel Service
initp Kernel Service
kra_attachrset Subroutine

kra_detachrset Subroutine

Kernel Services and Subsystem Operations 309

Purpose
Detaches a work component from a resource set.

Syntax
#include <sys/rset.h>
int kra_detachrset (rstype, rsid, flags)
rstype_t rstype;
rsid_t rsid;
unsigned int flags;

Description
The kra_detachrset subroutine detaches a work component specified by rstype and rsid from a resource
set.

The work component is an existing process identified by the process ID or an existing kernel thread
identified by the kernel thread ID (tid). A process ID or thread ID value of RS_MYSELF indicates the
detach command applies to the current process or the current kernel thread, respectively.

The following conditions must be met to detach a process or kernel thread from a resource set:

• The calling process must either have root authority or have CAP_NUMA_ATTACH capability.
• The calling process must either have root authority or the same effective userid as the target process.

If these conditions are not met, the operation will fail.

Once a process is detached from a resource set, the threads in the process can run on all available
processors contained in the process' partition resource set. Once a kernel thread is detached from a
resource set, that thread can run on all available processors contained in its process effective or partition
resource set.

Parameters
Item Description

rstype Specifies the type of work component to be detached from to the resource set specified by rset.
This parameter must be the following value, defined in rset.h:

• R_PROCESS: existing process
• R_THREAD: existing kernel thread

rsid Identifies the work component to be attached to the resource set specified by rset. This
parameter must be the following:

• Process ID (for rstype of R_PROCESS): set the rsid_t at_pid field to the desired process'
process ID.

• Kernel thread ID (for rstype of R_THREAD): set the rsid_t at_tid field to the desired kernel
thread's thread ID.

flags For rstype of R_PROCESS, the R_DETACH_ALLTHRDS indicates that R_THREAD rsets are
detached from all threads in a specified process. The process' effective rset is not detached
in this case. Reserved for future use. Specify as 0.

Return Values
Upon successful completion, the kra_detachrset subroutine returns a 0. If unsuccessful, one or more of
the following are true:

310 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

EINVAL One of the following is true:

• The flags parameter contains an invalid value.
• The rstype contains an invalid type qualifier.

ESRCH The process or kernel thread identified by the rstype and rsid parameters does not exist.

EPERM One of the following is true:

• The calling process has neither root authority nor CAP_NUMA_ATTACH attachment
privilege.

• The calling process has neither root authority nor the same effective user ID as the
process identified by the rstype and rsid parameters.

kra_getrset Subroutine

Purpose
Gets the resource set to which a work component is attached.

Syntax
#include <sys/rset.h>
int kra_getrset (rstype, rsid, flags, rset, rset_type)
rstype_t rstype;
rsid_t rsid;
unsigned int flags;
rsethandle_t rset;
unsigned int *rset_type;

Description
The kra_getrset subroutine returns the resource set to which a specified work component is attached.

The work component is an existing process identified by the process ID or an existing kernel thread
identified by the kernel thread ID (tid). A process ID or thread ID value of RS_MYSELF indicates the
resource set attached to the current process or the current kernel thread, respectively, is requested.

Upon successful completion, one of the following types of resource set is returned into the rset_type
parameter:

• A value of RS_EFFECTIVE_RSET indicates the process was explicitly attached to the resource set. This
may have been done with the kra_attachrset subroutine.

• A value of RS_PARTITION_RSET indicates the process was not explicitly attached to a resource
set. However, the process had an explicitly set partition resource set. This may be set with the
krs_setpartition subroutine or through the use of WLM work classes with resource sets.

• A value of RS_DEFAULT_RSET indicates the process was not explicitly attached to a resource set nor did
it have an explicitly set partition resource set. The system default resource set is returned.

• A value of RS_THREAD_RSET indicates the kernel thread was explicitly attached to the resource set.
This might have been done with the ra_attachrset subroutine.

Kernel Services and Subsystem Operations 311

Parameters
Item Description

rstype Specifies the type of the work component whose resource set attachment is requested. This
parameter must be the following value, defined in rset.h:

• R_PROCESS: existing process
• R_THREAD: existing kernel thread

rsid Identifies the work component whose resource set attachment is requested. This parameter must
be the following:

• Process ID (for rstype of R_PROCESS): set the rsid_t at_pid field to the desired process' process
ID.

• Kernel thread ID (for rstype of R_THREAD): set the rsid_t at_tid field to the desired kernel thread's
thread ID.

flags Reserved for future use. Specify as 0.

rset Specifies the resource set to receive the work component's resource set.

rset_type Points to an unsigned integer field to receive the resource set type.

Return Values
Upon successful completion, the kra_getrset subroutine returns a 0. If unsuccessful, one or more of the
following are true:

Item Description

EINVAL One of the following is true:

• The flags parameter contains an invalid value.
• The rstype parameter contains an invalid type qualifier.

EFAULT Invalid address.

ESRCH The process or kernel thread identified by the rstype and rsid parameters does not exist.

krs_alloc Subroutine

Purpose
Allocates a resource set and returns its handle.

Syntax
#include <sys/rset.h>
int krs_alloc (rset, flags)
rsethandle_t *rset;
unsigned int flags;

Description
The krs_alloc subroutine allocates a resource set and initializes it according to the information specified
by the flags parameter. The value of the flags parameter determines how the new resource set is
initialized.

312 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters
Item Description

rset Points to an rsethandle_t where the resource set handle is stored on successful completion.

flags Specifies how the new resource set is initialized. It takes one of the following values, defined in rset.h:

• RS_EMPTY (or 0 value): The resource set is initialized to contain no resources.
• RS_SYSTEM: The resource set is initialized to contain available system resources.
• RS_ALL: The resource set is initialized to contain all resources.
• RS_PARTITION: The resource set is initialized to contain the resources in the caller's process

partition resource set.

Return Values
Upon successful completion, the krs_alloc subroutine returns a 0. If unsuccessful, one or more of the
following is returned:

Item Description

EINVAL The flags parameter contains an invalid value.

ENOMEM There is not enough space to create the data structures related to the resource set.

Related reference
krs_free Subroutine
krs_getinfo Subroutine
krs_init Subroutine

krs_free Subroutine

Purpose
Frees a resource set.

Syntax
#include <sys/rset.h>
void krs_free(rset)
rsethandle_t rset;

Description
The krs_free subroutine frees a resource set identified by the rset parameter. The resource set must have
been allocated by the krs_alloc subroutine.

Parameters
Item Description

rset Specifies the resource set whose memory will be freed.

Related reference
krs_alloc Subroutine

krs_getassociativity Subroutine

Kernel Services and Subsystem Operations 313

Purpose
Gets the hardware associativity values for a resource.

Syntax
#include <sys/rset.h>
int krs_getassociativity (type, id, assoc_array, array_size)
unsigned int type;
unsigned int id;
unsigned int *assoc_array;
unsigned int array_size;

Description
The krs_getassociativity subroutine returns the array of hardware associativity values for a specified
resource.

This is a special purpose subroutine intended for specialized root applications needing the hardware
associativity value information. The krs_getinfo, krs_getrad, and krs_numrads subroutines are provided
for typical applications to discover system hardware topology.

The calling process must have root authority to get hardware associativity values.

Parameters
Item Description

type Specifies the resource type whose associativity values are requested. The only value
supported to retrieve values for a processor is R_PROCS.

id Specifies the logical resource id whose associativity values are requested.

assoc_array Specifies the address of an array of unsigned integers to receive the associativity values.

array_size Specifies the number of unsigned integers in assoc_array.

Return Values
Upon successful completion, the krs_getassociativity subroutine returns a 0. The assoc_array parameter
array contains the resource's associativity values. The first entry in the array indicates the number of
associativity values returned. If the hardware system does not provide system topology data, a value of 0
is returned in the first array entry. If unsuccessful, one or more of the following are returned:

Item Description

EINVAL One of the following occurred:

• The array_size parameter was specified as 0.
• An invalid type parameter was specified.

ENODEV The resource specified by the id parameter does not exist.

EFAULT Invalid address.

EPERM The calling process does not have root authority.

Related reference
krs_getinfo Subroutine
krs_getrad Subroutine
krs_numrads Subroutine

314 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

krs_get_homesrad Subroutine

Purpose
Gets the currently running thread's home SRADID (Scheduler Resource Allocation Domain Identifier).

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
sradid_t krs_get_homesrad(void)

Description
The krs_get_homesrad is a kernel service and if the ENHANCED_AFFINITY services are enabled,
the krs_get_homesrad subroutine returns the home SRADID of the currently running thread. If the
ENHANCED_AFFINITY services are not enabled, the krs_get_homesrad subroutine returns SRADID_ANY.
SRADID is the index of a RAD (Resource Allocation Domain) at the R_SRADSDL system detail level.

Return Values
If the ENHANCED_AFFINITY services are enabled, the home SRADID of the currently running thread is
returned. Otherwise, SRADID_ANY is returned.

krs_getinfo Subroutine

Purpose
Gets information about a resource set.

Syntax
#include <sys/rset.h>
int krs_getinfo(rset, info_type, flags, result)
rsethandle_t rset;
rsinfo_t info_type;
unsigned int flags;
int *result;

Description
The krs_getinfo subroutine retrieves information about the resource set identified by the rset parameter.
Depending on the value of the info_type parameter, the krs_getinfo subroutine returns information about
the number of available processors, the number of available memory pools, or the amount of available
memory contained in the resource rset.

The subroutine can also return global system information such as the maximum system detail level, the
symmetric multiprocessor (SMP) and multiple chip module (MCM) system detail levels, and the maximum
number of processor or memory pool resources in a resource set.

Kernel Services and Subsystem Operations 315

Parameters
Item Description

rset Specifies a resource set handle of a resource set the information should be retrieved from.
This parameter is not meaningful if the info_type parameter is R_MAXSDL, R_MAXPROCS,
R_MAXMEMPS, R_SMPSDL, or R_MCMSDL.

info_type Specifies the type of information being requested. One of the following values (defined in rset.h)
can be used:

• R_NUMPROCS: The number of available processors in the resource set is returned.
• R_NUMMEMPS: The number of available memory pools in the resource set is returned.
• R_MEMSIZE: The amount of available memory (in MB) contained in the resource set is

returned.
• R_MAXSDL: The maximum system detail level of the system is returned.
• R_MAXPROCS: The maximum number of processors that may be contained in a resource set is

returned.
• R_MAXMEMPS: The maximum number of memory pools that may be contained in a resource

set is returned.
• R_SMPSDL: The system detail level that corresponds to the traditional notion of an SMP is

returned. A system detail level of 0 is returned if the hardware system does not provide system
topology data.

• R_MCMSDL: The system detail level that corresponds to resources packaged in an MCM is
returned. A system detail level of 0 is returned if the hardware system does not have MCMs or
does not provide system topology data.

flags Reserved for future use. Must be specified as 0.

result Points to an integer where the result is stored on successful completion.

Return Values
Upon successful completion, the krs_getinfo subroutine returns a 0, and the result field contains the
requested information. If unsuccessful, one or more of the following are returned:

Item Description

EINVAL One of the following is true:

• The info_type parameter specifies an invalid resource type value.
• The flags parameter was not specified as 0.

EFAULT Invalid address.

krs_getpartition Subroutine

Purpose
Gets the partition resource set to which a process is attached.

Syntax
#include <sys/rset.h>
int krs_getpartition (pid, flags, rset, rset_type)
pid_t pid;
unsigned int flags;
rsethandle_t rset;
unsigned int *rset_type;

316 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The krs_getpartition subroutine returns the partition resource set attached to the specified process. A
process ID value of RS_MYSELF indicates the partition resource set attached to the current process is
requested.

Upon successful completion, the type of resource set is returned into the rset_type parameter.

A value of RS_PARTITION_RSET indicates the process has a partition resource set that is set explicitly.
This may be set with the krs_setpartition subroutine or through the use of WLM work classes with
resource sets.

A value of RS_DEFAULT_RSET indicates the process did not have an explicitly set partition resource set.
The system default resource set is returned.

Parameters
Item Description

pid Specifies the process ID whose partition rset is requested.

flags Reserved for future use. Specify as 0.

rset Specifies the resource set to receive the process' partition resource set.

rset_type Points to an unsigned integer field to receive the resource set type.

Return Values
Upon successful completion, the krs_getpartition subroutine returns a 0. If unsuccessful, one or more of
the following are true:

Item Description

EFAULT Invalid address.

ESRCH The process identified by the pid parameter does not exist.

krs_getrad Subroutine

Purpose
Returns a system resource allocation domain (RAD) contained in an input resource set.

Syntax
#include <sys/rset.h>
int krs_getrad (rad, sdl, index, flags)
rsethandle_t rad;
unsigned int sdl;
unsigned int index;
unsigned int flags;

Description
The krs_getrad subroutine returns a system RAD at a specified system detail level and index.

The system RAD is specified by system detail level sdl and index number index.

The rad parameter must be allocated (using the krs_alloc subroutine) prior to calling the krs_getrad
subroutine.

Kernel Services and Subsystem Operations 317

Parameters
Item Description

rad Specifies a resource set handle to receive the desired system RAD.

sdl Specifies the system detail level of the desired system RAD.

index Specifies the index of the system RAD that should be returned from among those at the specified sdl.
This parameter must belong to the [0, krs_numrads(rset, sdl, flags)- 1] interval.

flags Reserved for future use. Specify as 0.

Return Values
Upon successful completion, the krs_getrad subroutine returns a 0. If unsuccessful, one or more of the
following are true:

Item Description

EINVAL One of the following is true:

• The flags parameter contains an invalid value.
• The sdl parameter is greater than the maximum system detail level.
• The RAD specified by the index parameter does not exist at the system detail level specified by

the sdl parameter.

EFAULT Invalid address.

Related reference
krs_numrads Subroutine
krs_getinfo Subroutine
krs_alloc Subroutine

krs_init Subroutine

Purpose
Initializes a previously allocated resource set.

Syntax
#include <sys/rset.h>
int krs_init (rset, flags)
rsethandle_t rset;
unsigned int flags;

Description
The krs_init subroutine initializes a previously allocated resource set. The resource set is initialized
according to information specified by the flags parameter.

Parameters
Item Description

rset Specifies the handle of the resource set to initialize.

318 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

flags Specifies how the resource set is initialized. It takes one of the following values, defined in rset.h:

• RS_EMPTY: The resource set is initialized to contain no resources.
• RS_SYSTEM: The resource set is initialized to contain available system resources.
• RS_ALL: The resource set is initialized to contain all resources.
• RS_PARTITION: The resource set is initialized to contain the resources in the caller's process

partition resource set.

Return Values
Upon successful completion, the krs_init subroutine returns a 0. If unsuccessful, the following is
returned:

Item Description

EINVAL The flags parameter contains an invalid value.

Related reference
krs_alloc Subroutine

krs_numrads Subroutine

Purpose
Returns the number of system resource allocation domains (RADs) that have available resources.

Syntax
#include <sys/rset.h>
int krs_numrads(rset, sdl, flags)
rsethandle_t rset;
unsigned int sdl;
unsigned int flags;

Description
The krs_numrads subroutine returns the number of system RADs at system detail level sdl, that have
available resources contained in the resource set identified by the rset parameter.

The number of atomic RADs contained in the rset parameter is returned if the sdl parameter is equal to
the maximum system detail level.

Parameters
Item Description

rset Specifies the resource set handle for the resource set being queried.

sdl Specifies the system detail level in which the caller is interested.

flags Reserved for future use. Specify as 0.

Return Values
Upon successful completion, the number of RADs is returned. If unsuccessful, a -1 is returned and one or
more of the following are true:

Kernel Services and Subsystem Operations 319

• The flags parameter contains an invalid value.
• The sdl parameter is greater than the maximum system detail level.

Related reference
krs_getrad Subroutine
krs_getinfo Subroutine

krs_op Subroutine

Purpose
Performs a set of operations on one or two resource sets.

Syntax
#include <sys/rset.h>
int krs_op (command, rset1, rset2, flags, id)
unsigned int command;
rsethandle_t rset1, rset2;
unsigned int flags;
unsigned int id;

Description
The krs_op subroutine performs the operation specified by the command parameter on resource set
rset1, or both resource sets rset1 and rset2.

Parameters
Item Description

command Specifies the operation to apply to the resource sets identified by rset1 and rset2. One of the
following values, defined in rset.h, can be used:

• RS_UNION: The resources contained in either rset1 or rset2 are stored in rset2.
• RS_INTERSECTION: The resources that are contained in both rset1 and rset2 are stored in rset2.
• RS_EXCLUSION: The resources in rset1 that are also in rset2 are removed from rset2. On

completion, rset2 contains all the resources that were contained in rset2 but were not contained
in rset1.

• RS_COPY: All resources in rset1 whose type is flags are stored in rset2. If rset1 contains no
resources of this type, rset2 will be empty. The previous content of rset2 is lost, while the content
of rset1 is unchanged.

• RS_ISEMPTY: Test if resource set rset1 is empty.
• RS_ISEQUAL: Test if resource sets rset1 and rset2 are equal.
• RS_ISCONTAINED: Test if all resources in resource set rset1 are also contained in resource set

rset2.
• RS_TESTRESOURCE: Test if the resource whose type is flags and index is id is contained in

resource set rset1.
• RS_ADDRESOURCE: Add the resource whose type is flags and index is id to resource set rset1.
• RS_DELRESOURCE: Delete the resource whose type is flags and index is id from resource set

rset1.
• RS_STSET: Constructs an ST resource set by including only one hardware thread per physical

processor included in rset1 and stores it in rset2. Only available processors are considered when
constructing the ST resource set.

320 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

rset1 Specifies the resource set handle for the first of the resource sets involved in the command
operation.

rset2 Specifies the resource set handle for the second of the resource sets involved in the command
operation. This resource set is also used, on return, to store the result of the operation, and its
previous content is lost. The rset2 parameter is ignored on the RS_ISEMPTY, RS_TESTRESOURCE,
RS_ADDRESOURCE, and RS_DELRESOURCE commands.

flags When combined with the RS_COPY command, the flags parameter specifies the type of the
resources that will be copied from rset1 to rset2. This parameter is constructed by logically ORing
one or more of the following values, defined in rset.h:

• R_PROCS: processors
• R_MEMPS: memory pools
• R_ALL_RESOURCES: processors and memory pools

If none of the above are specified for flags, R_ALL_RESOURCES is assumed.

id On the RS_TESTRESOURCE, RS_ADDRESOURCE, and RS_DELRESOURCE commands, the id
parameter specifies the index of the resource to be tested, added, or deleted. This parameter
is ignored on the other commands.

Return Values
Ite
m

Description

0 Successful completion. The tested condition is not met for the RS_ISEMPTY, RS_ISEQUAL,
RS_ISCONTAINED, and RS_TESTRESOURCE commands.

1 Successful completion. The tested condition is met for the RS_ISEMPTY, RS_ISEQUAL,
RS_ISCONTAINED, and RS_TESTRESOURCE commands.

-1 Unsuccessful completion. One or more of the following are true:

• rset1 identifies an invalid resource set.
• rset2 identifies an invalid resource set.
• command identifies an invalid operation.
• flags identifies an invalid resource type.
• id specifies a resource index that is too large.
• Invalid address.

krs_setpartition Subroutine

Purpose
Sets the partition resource set of a process.

Syntax
#include <sys/rset.h>
int krs_setpartition(pid, rset, flags)
pid_t pid;
rsethandle_t rset;
unsigned int flags;

Kernel Services and Subsystem Operations 321

Description
The krs_setpartition subroutine sets a process' partition resource set. The subroutine can also be used to
remove a process' partition resource set.

The partition resource set limits the threads in a process to running only on the processors contained in
the partition resource set.

The work component is an existing process identified by process ID. A process ID value of RS_MYSELF
indicates the attachment applies to the current process.

The following conditions must be met to set a process' partition resource set:

• The calling process must have root authority.
• The resource set must contain processors that are available in the system.
• The new partition resource set must be equal to, or a superset of the target process' effective resource

set.
• The target process must not contain any threads that have bindprocessor bindings to a processor.

The flags parameter can be set to indicate the policy for using the resources contained in the resource
set specified in the rset parameter. The only supported scheduling policy is R_ATTACH_STRSET, which
is useful only when the processors of the system are running in simultaneous multithreading mode.
Processors like the POWER5 support simultaneous multithreading, where each physical processor has
two execution engines, called hardware threads. Each hardware thread is essentially equivalent to a
single CPU, and each is identified as a separate CPU in a resource set. The R_ATTACH_STRSET flag
indicates that the process is to be scheduled with a single-threaded policy; namely, that it should be
scheduled on only one hardware thread per physical processor. If this flag is specified, then all of the
available processors indicated in the resource set must be of exclusive use. A new resource set, called an
ST resource set, is constructed from the specified resource set and attached to the process according to
the following rules:

• All offline processors are ignored.
• If all the hardware threads (CPUs) of a physical processor (when running in simultaneous multithreading

mode, there will be more than one active hardware thread per physical processor) are not included
in the specified resource set, the other CPUs of the processor are ignored when constructing the ST
resource set.

• Only one CPU (hardware thread) resource per physical processor is included in the ST resource set.

Parameters
Item Description

pid Specifies the process ID of the process whose partition resource set is to be set. A value of RS_MYSELF
indicates the current process' partition resource set should be set.

rset Specifies the partition resource set to be set. A value of RS_DEFAULT indicates the process' partition
resource set should be removed.

flags Specifies the policy to use for the process. A value of R_ATTACH_STRSET indicates that the process is
to be scheduled with a single-threaded policy (only on one hardware thread per physical processor).

Return Values
Upon successful completion, the krs_setpartition subroutine returns a 0. If unsuccessful, one or more of
the following are true:

Item Description

EINVAL The R_ATTACH_STRSET flags parameter is specified and one or more processors in the rset
parameter are not assigned for exclusive use.

322 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

ENODEV The resource set specified by the rset parameter does not contain any available processors, or
the R_ATTACH_STRSET flags parameter is specified and the constructed ST resource set does
not have any available processors.

ESRCH The process identified by the pid parameter does not exist.

EFAULT Invalid address.

ENOMEM Memory not available.

EPERM One of the following is true:

• The calling process does not have root authority.
• The process identified by the pid parameter has one or more threads with a bindprocessor

processor binding.
• The process identified by the pid parameter has an effective resource set and the new partition

resource set identified by the rset parameter does not contain all of the effective resource set's
resources.

Related reference
krs_getpartition Subroutine
kra_attachrset Subroutine
Related information
Exclusive use processor resource sets

ksettickd Kernel Service

Purpose
Sets the current status of the systemwide timer-adjustment values.

Syntax

#include <sys/types.h>

int ksettickd (timed, tickd, time_adjusted)
int *timed;
int *tickd;
int *time_adjusted;

Parameters

Item Description

timed Specifies the number of microseconds by which the systemwide timer is to be
adjusted unless set to a null pointer.

tickd Specifies the adjustment rate of the systemwide timer unless set to a null pointer.
This rate determines the number of microseconds that the systemwide timer
is adjusted with each timer tick. Adjustment continues until the time has been
corrected by the amount specified by the timed parameter.

time_adjusted Sets the kernel-maintained time adjusted flag to True or False. If the
time_adjusted parameter is a null pointer, calling the ksettickd kernel service
always sets the kernel's time_adjusted parameter to False.

Kernel Services and Subsystem Operations 323

Description
The ksettickd kernel service provides kernel extensions with the capability to update the time_adjusted
parameter, and set or change the systemwide time-of-day timer adjustment amount and rate. The timer-
adjustment values indicated by the timed and tickd parameters are the same values used by the adjtime
subroutine. A call to the settimer or adjtime subroutine for the systemwide time-of-day timer sets the
time_adjusted parameter to True, as read by the kgettickd kernel service.

This kernel service is typically used only by kernel extensions providing time synchronization functions
such as coordinated network time where the adjtime subroutine is insufficient.

Note: The ksettickd service provides no serialization with respect to the adjtime and settimer
subroutines, the ksettimer kernel service, or the timer interrupt handler, all of which also use and
update these values. The caller of this kernel service must provide the necessary serialization to ensure
appropriate operation.

Execution Environment
The ksettickd kernel service can be called from either the process or interrupt environment.

Return Value
The ksettickd kernel service always returns a value of 0.

Related reference
kgettickd Kernel Service
Related information
adjtime subroutine
Using Fine Granularity Timer Services and Structures

ksettimer Kernel Service

Purpose
Sets the systemwide time-of-day timer.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/time.h>

int ksettimer (nct)
struct timestruc_t *nct;

Parameter

Ite
m

Description

nct Points to a timestruc_t structure, which contains the new current time to be set. The nanoseconds
member of this structure is valid only if greater than or equal to 0, and less than the number of
nanoseconds in a second.

Description
The ksettimer kernel service provides a kernel extension with the capability to set the systemwide
time-of-day timer. Kernel extensions typically use this kernel service to support network coordinated

324 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

time, which is the periodic synchronization of all system clocks to a common time by a time server or
set of time servers on a network. The newly set "current" time must represent the amount of time since
00:00:00 GMT, January 1, 1970.

Execution Environment
The ksettimer kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates success.

EINVAL Indicates that the new current time specified by the nct parameter is outside the range of the
systemwide timer.

EIO Indicates that an error occurred while this kernel service was accessing the timer device.

Related information
Using Fine Granularity Timer Services and Structures
Timer and Time-of-Day Kernel Services

kthread_kill Kernel Service

Purpose
Posts a signal to a specified kernel-only thread.

Syntax

#include <sys/thread.h>

void kthread_kill (tid, sig)
tid_t tid;
int sig;

Parameters

Ite
m

Description

tid Specifies the target kernel-only thread. If its value is -1, the signal is posted to the calling thread.

sig Specifies the signal number to post.

Description
The kthread_kill kernel service posts the signal sig to the kernel thread specified by the tid parameter.
When the service is called from the process environment, the target thread must be in the same process
as the calling thread. When the service is called from the interrupt environment, the signal is posted to the
target thread, without a permission check.

Execution Environment
The kthread_kill kernel service can be called from either the process environment or the interrupt
environment.

Kernel Services and Subsystem Operations 325

Return Values
The kthread_kill kernel service has no return values.

Related reference
sig_chk Kernel Service
Related information
Process and Exception Management Kernel Services

kthread_start Kernel Service

Purpose
Starts a previously created kernel-only thread.

Syntax

#include <sys/thread.h>

int kthread_start (tid, i_func, i_data_addr, i_data_len,

i_stackaddr,
i_sigmask)
tid_t tid;
int (*i_func) (void *);
void *i_data_addr;
size_t i_data_len;
void *i_stackaddr;
sigset_t *i_sigmask;

Parameters

Item Description

tid Specifies the kernel-only thread to start.

i_func Points to the entry-point routine of the kernel-only thread.

i_data_addr Points to data that will be passed to the entry-point routine.

i_data_len Specifies the length of the data chunk.

i_stackaddr Specifies the stack's base address for the kernel-only thread.

i_sigmask Specifies the set of signal to block from delivery when the new kernel-only thread
begins execution.

Description
The kthread_start kernel service starts the kernel-only thread specified by the tid parameter. The thread
must have been previously created with the thread_create kernel service, and its state must be TSIDL.

This kernel service initializes and schedules the thread for the processor. Its state is changed to TSRUN.
The thread is initialized so that it begins executing at the entry point specified by the i_func parameter,
and that the signals specified by the i_sigmask parameter are blocked from delivery.

The thread's entry point gets one parameter, a pointer to a chunk of data that is copied to the base of the
thread's stack. The i_data_addr and i_data_len parameters specify the location and quantity of data to
copy. The format of the data must be agreed upon by the initializing and initialized thread.

326 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The thread's stack's base address is specified by the i_stackaddr parameter. If a value of zero is specified,
the kernel will allocate the memory for the stack (96K). This memory will be reclaimed by the system
when the thread terminates. If a non-zero value is specified, then the caller should allocate the backing
memory for the stack. Since stacks grow from high addresses to lower addresses, the i_stackaddr
parameter specifies the highest address for the thread's stack.

The thread will be automatically terminated when it returns from the entry point routine. If it is the last
thread in the process, then the process will be exited.

Execution Environment
The kthread_start kernel service can be called from the process environment only.

Return Values
The kthread_start kernel service returns one of the following values:

Item Description

0 Indicates a successful start.

ESRCH Indicates that the tid parameter is not valid.

Related reference
thread_create Kernel Service
Related information
Process and Exception Management Kernel Services

kvmgetinfo Kernel Service

Purpose
Retrieves Virtual Memory Manager (VMM) information.

Syntax

#include <sys/vminfo.h>

int kvmgetinfo (void *out, int command, int arg)

Description
The kvmgetinfo kernel service returns the current value of certain VMM parameters.

Parameters

Item Description

out Specifies the address where VMM information should be returned.

Kernel Services and Subsystem Operations 327

Item Description

command Specifies which information should be returned. The valid values for the
command parameter are decribed below:

VMINFO
The content of vminfo structure (described in sys/vminfo.h) will be
returned. The out parameter should point to a vminfo structure and the
arg parameter should be the size of this structure. The smaller of the arg or
sizeof (struct vminfo) parameters will be copied.

VMINFO_ABRIDGED
The content of the vminfo structure (described in the sys/vminfo.h file)
is returned. For this command, only the non-time consuming statistics
are updated, so this command must be used in performance-critical
applications rather than the VMINFO command. The out parameter must
point to a vminfo structure and the arg parameter must be the size of this
structure. The smaller of the arg or sizeof (struct vminfo) parameters are
copied.

VM_PAGE_INFO
The size, in bytes, of the page backing the address specified in the addr
field of the vm_page_info structure (described in the sys/vminfo.h file) is
returned. The out parameter should point to a vm_page_info structure with
the addr field set to the desired address of which to query the page size.
This address, addr, is interpreted as an address in the address space of
the current running process. The arg parameter should be the size of the
vm_page_info structure.

IPC_LIMITS
The content of the ipc_limits struct (described in the sys/vminfo.h file) is
returned. The out parameter should point to an ipc_limits structure and arg
should be the size of this structure. The smaller of the arg or sizeof (struct
ipc_limits) parameters will be copied. The ipc_limits struct contains the
inter-process communication (IPC) limits for the system.

VMINFO_GETPSIZES
Reports a system’s supported page sizes. When arg is 0, the out parameter
is ignored, and the number of supported page sizes is returned. When arg
is greater than 0, arg indicates the number of page sizes to report, and out
must be a pointer to an array with arg number of psize_t types. The array
of psize_t types is updated with the system’s supported page sizes in sorted
order starting with the smallest supported page size. The number of array
entries updated with page sizes is returned.

VMINFO_PSIZE
Reports detailed VMM statistics for a specified page size. The out parameter
must point to a vminfo_psize structure with the psize field set to a page size,
in bytes, for which to return statistics. The arg parameter should be the size
of the vminfo_psize structure.

arg An additional parameter that will depend upon the command parameter.

Execution Environment
The kvmgetinfo kernel service can be called from the process environment only.

Return Values
The following return values apply to all commands other than VMINFO_GETPSIZES:

328 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

0 Indicates successful completion.

ENOSYS Indicates the command parameter is not valid (or not yet implemented).

EINVAL When VM_PAGE_INFO is the command, the adr field of the vm_page_info structure is
an invalid address.

When VMINFO_GETPSIZES is specified as the command, -1 is returned if the kvmgetinfo() kernel service
is unsuccessful. Otherwise, the kvmgetinfo() kernel service returns a number of page sizes when the
VMINFO_GETPSIZES command is specified.

Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

kwpar_checkpoint_status Kernel Service

Purpose
Provides a method for kernel services to inform the system that an event occurred within a workload
partition (WPAR) that denies or subsequently reallows a checkpoint of the WPAR.

Syntax

#include <sys/wparid.h>

int kwpar_checkpoint_status (kcid, cmd, varp)
cid_t kcid;
int cmd;
void * varp;

Parameters
Item Description

cmd An integer command that informs the API what action to take on behalf of the caller.

kcid The WPAR ID where the command operation is to take place.

varp A void pointer to different elements that depends on the cmd parameter.

• If the cmd parameter is set to the WPAR_CHECKPOINT_TRY value, the varp parameter is a pointer
to an integer variable that contains the number of seconds that the caller is willing to wait before a
blocking event is removed.

• If the cmd parameter is set to the WPAR_CHECKPOINT_DENY value, the varp parameter is a
pointer to a null terminated character string that contains a user readable reason for posting the
event.

Cmd Types

The cmd parameter is supplied on input to the kwpar_checkpoint_status API and describes the type of
action or event notification the caller is expecting. The following cmd types are supported:

Item Description

WPAR_CHECKPOINT_DENY The caller is experiencing an event within the WPAR identified by the
kcid parameter that would deny a checkpoint operation. The caller must
supply a pointer to a user readable character string in the varp parameter.

Kernel Services and Subsystem Operations 329

Item Description

WPAR_CHECKPOINT_ALLO
W

The caller is clearing a previous checkpoint denial operation. Deny and
allow operations are cumulative and thus each denial operation must be
matched with an allow operation before a checkpoint is finally reallowed.

WPAR_CHECKPOINT_TRY Used by the AIX checkpoint system itself. The caller supplies the varp
pointer to an integer that contains a “willing to wait” timeout in seconds
before a checkpoint denial operation is cleared.

WPAR_CHECKPOINT_CLEA
R

Used by the AIX checkpoint system itself. The caller completed a
checkpoint after a successful WPAR_TRY_CHKPNT operation.

WPAR_RESTART_CLEAR Used by the AIX checkpoint system itself. The caller completed a restart.
The WPAR restart state is initially set when the WPAR is re-created on the
arrival system.

Description
The kwpar_checkpoint_status kernel service provides a mechanism for kernel services to inform or
query the system about a checkpoint denial event. Kernel extensions that experience a temporary event
which prevents a WPAR from being the target of a checkpoint operation, must use this API to deny and
then to subsequently reallow a checkpoint when the event clears. An example denial event might occur if
a device open is in an unserialized interim state that cannot handle a checkpoint operation.

Execution Environment
The kwpar_checkpoint_status kernel service can be called from the process environment only.

Return Values
Item Description

0 Success.

non-zero Failure.

Error Codes
The kwpar_checkpoint_status service fails if one or more of the following errors occur:

Item Description

EINVAL The caller supplied an invalid cmd or other parameter.

ENOENT No WPAR with the kcid ID is active in the system.

EBUSY Either of the following situations can lead to the EBUSY error.

• WPAR is in a checkpoint or restart state. The caller is unsuccessful in a
WPAR_CHECKPOINT_DENY operation.

• WPAR is in a state that cannot participate in a checkpoint. The caller is
unsuccessful in a WPAR_CHECKPOINT_TRY operation.

ETIMEDOUT The caller is waiting for a timeout period during a
WPAR_CHECKPOINT_TRY operation but the timer expired.

kwpar_err Kernel Service

330 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Logs an error message for a given Workload Partition.

Syntax

int kwpar_err(kcid,cat_file_name,msg_set_no,msg_no,default_fmt_msg)
cid_t kcid;
char* cat_file_name;
unsigned int msg_set_no;
unsigned int msg_no;
char* default_fmt_msg;

Description
The kwpar_err interface provides a mechanism to log error messages for a given WPAR from a kernel
routine. Each WPAR can hold up to 1 KB of error messages. If there is enough space to log the new
message, the command logs the message; otherwise, it fails. The kwpar_err routine is pinned and as such
can be called from the interrupt handlers as well.

Parameter

Item Description

kcid Specified the cid of the WPAR.

cat_file_name Specifies the catalog file name to be used for translation.

msg_set_no Specifies the message set number of the error message in the catalog file.

msg_no Specifies the message number of the error message.

default_fmt_msg Specifies the default message string. Follows the same syntax as the printf
subroutine Format parameter. Floating point is not supported.

… Specifies the arguments to the message if any.

Return values
Item Description

0 Success

-1 Failure

Error codes
Item Description

ENOMEM Not enough memory

EINVAL Invalid parameter

Example
To log an error message into WPAR with cid 4, enter

kwpar_err(4, “wparerrs.cat”,1,10,”%s : command failed”, “mycommand”);
…

Related information
wpar_log_err subroutine
wpar_print_err subroutine

Kernel Services and Subsystem Operations 331

wparerr command

kwpar_getname Kernel Service

Purpose
Returns the workload partition name associated with the requested ID.

Syntax
#include<sys/wparid.h>
#include<sys/xmem.h>

int kwpar_getname(kcid, buffer, length, adspace)
cid_t kcid;
char * buffer;
size_t length;
int adspace;

Description
Get the name associated with the workload partition ID (kcid) and write it to the output buffer. The
maximum number of bytes to write is limited by the length parameter. The length parameter cannot
exceed MAXCORRALNAMELEN. The service writes to either user space or kernel space, depending on the
value specified for the adspace parameter.

Parameters
Item Description

kcid Specifies the workload partition ID.

buffer Points to the buffer where the workload partition name is stored.

length Specifies the maximum number of bytes to return.

adspace Indicates in which part of memory the buffer parameter is located:
SYS_ADSPACE

Indicates that the buffer parameter is in the kernel memory.
USER_ADSPACE

Indicates that the buffer parameter is in the application memory.

Execution Environment
Process environment only.

Return Values

Item Description

0 The command completed successfully.

EINVAL Invalid WPAR ID or specified length is greater than MAXCORRALNAMELEN.

EFAULT Error during copyout to user space.

kwpar_getrootpath Kernel Service

332 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Returns the root path of the workload partition associated with the requested ID.

Syntax
#include<sys/wparid.h>

int kwpar_getrootpath(kcid, length, buffer)
cid_t kcid;
size_t * length;
char * buffer;

Description
Get the root path of the workload partition associated with the kcid parameter and copy it to the output
buffer. On entry, the value specified for the length parameter indicates the size of the output buffer. On
return, the value specified for the length parameter, contains the size of the root path. If the value for
the length parameter on entry is smaller than the actual path length, then ENOSPC is returned. Then, the
length parameter is set to the actual length of the root path.

Parameters
Item Description

kcid Specifies the workload partition ID.

length Specifies the maximum number of bytes to return.

buffer Points to the buffer where the workload partition root path will be stored.

Execution Environment
Process environment only.

Return Values

Item Description

0 The command completed successfully.

EINVAL Error indicating that buffer is NULL, length is NULL, or *length is 0.

ENOENT Invalid WPAR ID specified for the kcid parameter.

ENOSPC Insufficient space in buffer to copy path.

kwpar_isappwpar Kernel Service

Purpose
Returns whether a workload partition is an application workload partition.

Syntax
#include <sys/wparid.h>

int kwpar_isappwpar(kcid)
cid_t kcid;

Kernel Services and Subsystem Operations 333

Description
Checks whether the workload partition associated with the kcid is an application workload partition.

Parameters
Item Description

kcid Specifies the workload partition ID.

Execution Environment
Process environment only.

Return Values

Item Description

1 Workload partition is an application workload partition.

0 Workload partition is not an application workload partition.

-1 Indicates that the command did not complete successfully.

kwpar_r2vmap_devno Kernel Service

Purpose
Maps a real device number to the corresponding virtual device number for a given workload partition
(WPAR).

Syntax

#include <sys/wparid.h>

int kwpar_r2vmap_devno (wparid, vdevno, rdevno)
cid_t wparid;
dev_t rdevno;
dev_t * vdevno;

Parameters
Item Description

wparid WPAR identifier. This parameter is required.

rdevno Real device number. This parameter is required.

vdevno Points to the data area that will contain the virtual device number. This parameter
is passed by reference. This parameter is optional.

Description
The kwpar_r2vmap_devno kernel service provides the ability to translate a real device number,
maintained in the kernel device switch table, to the corresponding virtual device number maintained
in the user space. The caller must specify an existing WPAR identifier with the wparid parameter and a
valid real device number with the rdevno parameter. The kwpar_r2vmap_devno kernel service writes the
corresponding virtual device number to the data area pointed to by the vdevno parameter (if specified). If

334 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

the vdevno parameter is not specified, the return code indicates whether a mapping exists for the given
WPAR identifier and real device number.

A mapping for the specified virtual device number must exist for the kwpar_v2rmap_devno kernel service
to succeed.

Execution Environment
The kwpar_r2vmap_devno kernel service can be called from the process environment only.

Return Values
Item Description

0 Success.

non-zero Failure.

Error Codes
The kwpar_r2vmap_devno service fails if one or more of the following errors occur:

Item Description

EINVAL Either the wparid or rdevno argument is invalid.

ENXIO Unable to locate the WPAR device map associated with the given WPAR
ID.

ESRCH Unable to locate a mapping for the given real device number rdevno.

Related reference
kwpar_v2rmap_devno Kernel Service
kwpar_regdevno Kernel Service
kwpar_unregdevno Kernel Service

kwpar_r2vmap_pid Kernel Service

Purpose
Maps a real process ID to the equivalent virtual process ID assigned within a workload partition.

Syntax

#include <sys/wparid.h>

pid_t kwpar_r2vmap_pid (kcidp, rpid)
cid_t * kcidp;
pid_t rpid;

Parameters
Item Description

kcidp A pointer to a memory location where the workload partition (WPAR) ID
associated with the rpid parameter is returned.

rpid The real process ID on which to translate a real process ID to a virtual process ID.

Kernel Services and Subsystem Operations 335

Description
The kwpar_r2vmap_pid kernel service provides a mapping from a real process ID to a virtual process ID
assigned within the workload partition. In most instances, the real and virtual process IDs are the same
except in cases where the Workload Partition Mobility is in effect or for certain system services such as
the init command which always have different real and virtual process IDs.

Usually kernel services dealing with process IDs only accept real process IDs. However, in some instances
it might be necessary for kernel extensions, which communicate with other WPAR services or with
processes within the WPAR, to know and communicate with virtual process IDs.

Execution Environment
The kwpar_r2vmap_pid kernel service can be called from the process environment only.

Return Values
If the kwpar_r2vmap_pid kernel service succeeds, it returns the virtual pid_t value associated with the
rpid value provided on input. If the kernel service fails or if there is no virtual process ID associated with
the rpid value, the rpid value is returned.

Related reference
kwpar_v2rmap_pid Kernel Service

kwpar_r2vmap_tid Kernel Service

Purpose
Maps a real thread ID to the equivalent virtual thread ID assigned within a workload partition.

Syntax

#include <sys/wparid.h>

tid_t kwpar_r2vmap_tid (kcidp, rtid)
cid_t * kcidp;
tid_t rtid;

Parameters
Item Description

kcidp A pointer to a memory location where the WPAR ID associated with the rtid
parameter is returned.

rtid The real thread ID on which to translate a real process ID to a virtual process ID.

Description
The kwpar_r2vmap_tid kernel service provides a mapping from a real thread ID to a virtual thread ID
assigned within the workload partition. In most instances, the real and virtual thread IDs are the same
except in cases where the Workload Partition Mobility is in effect.

Normally kernel services dealing with thread IDs accept only real thread IDs. However, in some instances
it might be necessary for kernel extensions, which communicate with other WPAR services or with
processes within the WPAR, to know and communicate with virtual thread IDs.

336 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The kwpar_r2vmap_tid kernel service can be called from the process environment only.

Return Values
If the kwpar_r2vmap_tid kernel service succeeds, it returns the virtual tid_t value associated with the rtid
value provided on input. If the kernel service fails or if there is no virtual process ID associated with the
rtid value, the rtid value is returned.

Related reference
kwpar_v2rmap_tid Kernel Service

kwpar_regdevno Kernel Service

Purpose
Registers a virtual device number for a given workload partition (WPAR) by mapping it to a real device
number in the device switch table.

Syntax

#include <sys/wparid.h>

int kwpar_regdevno (wparid, vdevno, rdevno)
cid_t wparid;
dev_t vdevno;
dev_t * rdevno;

Parameters
Item Description

wparid WPAR ID. This parameter is required.

vdevno Virtual device number. This parameter is required.

rdevno Points to the data area that will contains the real device number. This parameter
is passed by reference. This parameter is required.

Description
The kwpar_regdevno kernel service provides the ability to register a virtual device number for a given
WPAR by mapping it to a real device number in the device switch table. The kwpar_regdevno kernel
service performs the following steps:

1. Locates a free slot in the kernel device switch table and reserves it for the WPAR specified by the
wparid parameter.

2. Creates a mapping between the virtual device number, which is specified by the vdevno parameter, to
the real device number reserved in the previous step.

3. The newly reserved real device number is passed back to the caller through the rdevno parameter.

Execution Environment
The kwpar_regdevno kernel service can be called from the process environment only.

Kernel Services and Subsystem Operations 337

Return Values
Item Description

0 Success.

non-zero Failure.

Error Codes
The kwpar_regdevno kernel service fails if one or more of the following errors occur:

Item Description

EINVAL Either the wparid or vdevno argument is not valid.

ENXIO Unable to locate the WPAR device map associated with the given WPAR
ID.

ENOTEMPTY The virtual device number vdevno is already mapped.

Related reference
kwpar_r2vmap_devno Kernel Service
kwpar_v2rmap_devno Kernel Service
kwpar_unregdevno Kernel Service

kwpar_reghook Kernel Service

Purpose
Registers a function callback with workload partition (WPAR) kernel services. Callback functions are
subsequently performed when specific WPAR conditions occur.

Syntax

#include <sys/wparid.h>

regkey_t kwpar_reghook (hooktype, hookp)
int hooktype;
void * hookp;

Parameters
Item Description

hooktype Identifies the form of the hookp pointer.

hookp A pointer to a memory location that might contain function pointers or other structure elements that
are interpreted depending on the supplied hooktype value.

Hook Types

The hooktype parameter is supplied on input to the kwpar_reghook return and describes the form of the
second parameter. The supported hook types are as follows:

Item Description

WPAR_NOTIFY_HOOK Identifies the form of the hookp parameter as being of type wpar_config_hook_t.

The wpar_config_hook_t structure contains the following fields:

338 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

uint current_hiwater On output from the kwpar_reghook service, this field contains the current upper number of WPARs that became
active on this boot instance of the AIX operating system. WPAR IDs are allocated in numeric order. Kernel
subsystems that want to size internal components according to the number of active WPARs must register a
WPAR_NOTIFY_HOOK hook type and examine the current_hiwater value for existing WPARs during registration.
Future WPAR activation after hook registration calls the specified configp function within the wpar_config_hook_t
element. See the WPARSTART flags later in this section for a further description of the WPAR activation.

wpar_config_func_t configp On input, this field contains a pointer to a callback routine that is started by the WPAR kernel services during the
activation and the deactivation of workload partitions within the AIX kernel.

The syntax for the wpar_config_func_t is as follows:

#include <sys/wpar.h>

typedef int * wpar_config_func_t (flags, cid, corralp, unused)
int flags;
cid_t cid;
struct corral * corralp;
void * unused;

The parameters are as follows:

Item Description

flags Information regarding the type of condition that is occurring within the workload
partition.

cid The ID for the workload partition experiencing the condition.

corralp A pointer to a kernel copy of the corral structure that might be supplied from the
user space at the start of the condition processing.

unused Currently unused and must be set to NULL. It might be expanded to contain more
information in later revisions of this API.

The flags parameter can have the following potential values:

Item Description

WPARSTART Signifies that the WPAR is undergoing activation. The callout to registered
routines occurs before any other kernel subsystem processing occurs. Kernel
components registering and desiring to see the WPAR activation are informed that
a new WPAR with the cid parameter set is going to enter the AIX kernel system.

WPARSTOP Signifies that the WPAR underwent deactivation. The callout to registered
routines occurs after all other kernel subsystem processing occurs. Kernel
components registering and desiring to see the WPAR deactivation are informed
that an existing WPAR with the cid parameter set left the AIX kernel system.

Description
The kwpar_reghook kernel service provides a mechanism for other kernel services to register callbacks
and retrieve information when certain workload partition conditions occur.

Execution Environment
The kwpar_reghook kernel service can be called from the process environment only.

Return Values
If the kwpar_reghook kernel service is successful, it returns a registration key that can subsequently
be used with the kwpar_unreghook kernel service. If the kernel service fails, it returns a numeric value
equivalent to the BADREGKEY definition found in the wparid.h file.

Kernel Services and Subsystem Operations 339

Error Codes
The kwpar_reghook kernel service fails if no space remains to record additional registration hook.

Related reference
kwpar_unreghook Kernel Service

kwpar_unregdevno Kernel Service

Purpose
Unregisters the mapping associated with a real device number for a given workload partition (WPAR).

Syntax

#include <sys/wparid.h>

int kwpar_unregdevno (wparid, rdevno)
cid_t wparid;
dev_t rdevno;

Parameters
Item Description

wparid WPAR identifier. This parameter is required.

rdevno Real device number. This parameter is required.

Description
The kwpar_unregdevno kernel service provides the ability to unregister the mapping associated with a
real device number for a given WPAR. The kwpar_unregdevno kernel service will perform the following
steps:

1. Deletes the virtual-to-real mapping associated with the real device number specified by the rdevno
parameter for the WPAR specified by the wparid parameter.

2. Releases the reserve associated with the real device number specified by the rdevno parameter.

Execution Environment
The kwpar_unregdevno kernel service can be called from the process environment only.

Return Values
Item Description

0 Success.

non-zero Failure.

Error Codes
The kwpar_unregdevno kernel service fails if one or more of the following errors occur:

Item Description

EINVAL Either the wparid or rdevno argument is not valid.

340 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

ENXIO Unable to locate the WPAR device map associated with the given WPAR
ID.

ESRCH Unable to locate the mapping for the given real device number rdevno.

Related reference
kwpar_r2vmap_devno Kernel Service
kwpar_v2rmap_devno Kernel Service
kwpar_regdevno Kernel Service

kwpar_unreghook Kernel Service

Purpose
Removes a previously registered workload partition (WPAR) callback hook.

Syntax

#include <sys/wparid.h>

int kwpar_unreghook (key)
regkey_t key;

Parameters
Item Description

key The registration key of the hook that the caller wants to un-register. This key is
equivalent to the key returned from a hook registration with the kwpar_reghook
kernel service.

Description
The kwpar_unreghook kernel service informs workload partitions that the caller no longer wants to
receive callouts for WPAR conditions.

Execution Environment
The kwpar_unreghook kernel service can be called from the process environment only.

Return Values
Item Description

0 Success.

non-zero Failure.

Error Codes
The kwpar_unreghook service fails if one or more of the following errors occur:

Item Description

EINVAL Not a valid registration key.

EPERM Not allowed to un-register this key.

Kernel Services and Subsystem Operations 341

Related reference
kwpar_reghook Kernel Service

kwpar_v2rmap_devno Kernel Service

Purpose
Maps a virtual device number to the corresponding real device number in the device switch table for a
given workload partition (WPAR).

Syntax

#include <sys/wparid.h>

int kwpar_v2rmap_devno (wparid, vdevno, rdevno)
cid_t wparid;
dev_t vdevno;
dev_t * rdevno;

Parameters
Item Description

wparid WPAR identifier. This parameter is required.

vdevno Virtual device number. This parameter is required.

rdevno Points to the data area that will contain the real device number. This parameter is
passed by reference. This parameter is optional.

Description
The kwpar_v2rmap_devno kernel service provides the ability to translate a virtual device number
maintained in user space to the corresponding real device number maintained in the kernel device
switch table. The caller must specify an existing WPAR identifier with the wparid parameter and a valid
virtual device number with the vdevno parameter. The kwpar_v2rmap_devno kernel service will write the
corresponding real device number to the data area pointed to by the rdevno parameter if it is specified. If
the rdevno parameter is not specified, the return code will indicate whether a mapping exists for the given
WPAR identifier and virtual device number.

A mapping for the specified virtual device number must exist for the kwpar_v2rmap_devno kernel service
to succeed.

Execution Environment
The kwpar_v2rmap_devno kernel service can be called from the process environment only.

Return Values
Item Description

0 Success.

non-zero Failure.

Error Codes
The kwpar_v2rmap_devno service fails if one or more of the following errors occur:

342 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

EINVAL Either the wparid or vdevno argument is not valid.

ENXIO Unable to locate the WPAR device map associated with the given WPAR
id.

ENODEV Unable to locate the mapping for the given virtual device number.

Related reference
kwpar_r2vmap_devno Kernel Service
kwpar_regdevno Kernel Service
kwpar_unregdevno Kernel Service

kwpar_v2rmap_pid Kernel Service

Purpose
Maps a virtual process ID associated with a process within a workload partition to the equivalent real
process ID.

Syntax

#include <sys/wparid.h>

pid_t kwpar_v2rmap_pid (kcid, vpid)
cid_t kcid;
pid_t vpid;

Parameters
Item Description

kcid The workload partition (WPAR) ID associated with the vpid parameter. Equivalent
virtual process IDs can be in use across different processes in different WPARs.
Thus the caller must provide the WPAR ID for which a virtual to real mapping is to
occur.

vpid The virtual process ID on which to perform a virtual to real mapping.

Description
The kwpar_v2rmap_pid kernel service provides a mapping from a virtual process ID associated with a
process in a workload partition to the equivalent real process ID. In most instances, both the real and
virtual process IDs are the same, except in cases where the Workload Partition Mobility is in effect.

Normally, kernel services dealing with process IDs accept only real thread IDs. In some instances where
a kernel extension is communicating with other WPAR services or with processes within the WPAR, a
mapping from virtual to real process IDs might be needed.

Execution Environment
The kwpar_v2rmap_pid kernel service can be called from the process environment only.

Kernel Services and Subsystem Operations 343

Return Values
If the kwpar_v2rmap_pid kernel service succeeds, it returns the real pid_t value associated with the vpid
value provided on input. If the kernel service fails, or if there is no real thread ID associated with the vpid
value, then the vpid value is returned.

Related reference
kwpar_r2vmap_pid Kernel Service

kwpar_v2rmap_tid Kernel Service

Purpose
Maps a virtual thread ID associated with a thread within a workload partition to the equivalent real thread
ID.

Syntax

#include <sys/wparid.h>

tid_t kwpar_v2rmap_tid (kcid, vtid)
cid_t kcid;
tid_t vtid;

Parameters
Item Description

kcid The workload partition (WPAR) ID associated with the vtid parameter. Equivalent
virtual thread IDs can be in use across different threads in different WPARs. Thus
the caller must provide the WPAR ID for which a virtual to real mapping is to
occur.

vtid The virtual thread ID on which to perform a virtual to real mapping.

Description
The kwpar_v2rmap_tid kernel service provides a mapping from a virtual thread ID associated with a
thread in a workload partition to the equivalent real thread ID. In most instances, both the real and virtual
thread IDs are the same, except in cases where the Workload Partition Mobility is in effect. Normally,
kernel services dealing with thread IDs accept only real thread IDs. In some instances where a kernel
extension is communicating with other WPAR services or with processes within the WPAR, a mapping
from virtual to real thread IDs might be needed.

Execution Environment
The kwpar_v2rmap_tid kernel service can be called from the process environment only.

Return Values
If the kwpar_v2rmap_tid kernel service succeeds, it returns the real tid_t value associated with the vtid
value provided on input. If the kernel service fails, or if there is no real thread ID associated with the vtid
value then the vtid value is returned.

Related reference
kwpar_r2vmap_tid Kernel Service

344 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

l
The following kernel services begin with the with the letter l.

ldata_alloc Kernel Service

Purpose
Allocates a pinned storage element from an ldata pool.

Syntax
#include <sys/ldata.h>

void * ldata_alloc (ldatap)

ldata_t ldatap;

Description
The ldata_alloc kernel service allocates a pinned storage element from a ldata pool and returns the
address of the element. The ldata_alloc kernel service makes a pinned storage element from the ldata
pool available for use by the caller. The sub-pool from which the element is allocated corresponds to
the SRAD on which the call was made. If there are no free pinned elements, a new element cannot be
allocated and a NULL value is returned.

After it is allocated, the pinned storage element can be freed to the ldata pool through the ldata_free
kernel service.

Parameters
Item Description

ldatap Specifies the handle of the ldata pool.

Execution Environment
The ldata_alloc kernel service can be called from the process or interrupt environment.

Return Values
Returns a pointer to a pinned storage element allocated from an ldata pool or NULL if no element could
be allocated.

Implementation Specifics
The ldata_alloc kernel service is part of the Base Operating System (BOS) Runtime.

Related reference
ldata_create Kernel Service
ldata_grow Kernel Service
ldata_free Kernel Service

ldata_create Kernel Service

Purpose
Creates a SRAD-aware pinned storage element pool (ldata pool) and returns its handle.

Kernel Services and Subsystem Operations 345

Syntax
#include <sys/ldata.h>

int ldata_create (size, initcount, maxcount, kkey, ldatap)

size_t size;
long initcount;
long maxcount;
kkey_t kkey;
ldata_t * ldatap;

Description
The ldata_create kernel service creates a SRAD-aware pool (ldata pool) of pinned storage elements,
each of the specified size, and returns a handle to the newly-allocated pool. An ldata pool consists
of a number of sub-pools (one per SRAD). Each sub-pool is physically backed with memory local to
its corresponding SRAD. The size of each sub-pool is equal to the value of the maxcount parameter
multiplied by the value of the size parameter. The parameter (initcount) specifies the number of pinned
storage elements in each sub-pool that should be pre-allocated.

The ldata pool can be created with a kernel storage protection key by specifying one through the kkey
parameter. For compatibility with previous releases, a kkey parameter of zero requests no protection.
When a protection key is specified, the caller must hold this key when calling any ldata service, including
the ldata_create kernel service.

After an ldata pool is created, its handle can be used to allocate pinned storage elements from the
pool through the ldata_alloc kernel service and free these elements to the pool through the ldata_free
kernel services. Elements are allocated and freed to the sub-pool corresponding to the SRAD on which
ldata_alloc and ldata_free are called. If a sub-pool is exhausted of its pinned storage elements, it can be
grown by calling the ldata_grow kernel service up to maxcount.

An ldata pool created through the ldata_create service can be destroyed by the ldata_destroy kernel
service.

Parameters
Item Description

size Specifies the size, in bytes, of each pinned storage element of the ldata
pool.

initcount Specifies the initial count of pinned storage elements, to be contained within
the ldata pool. Must be a positive integer.

maxcount Specifies the maximum count of pinned storage elements that can be
contained with the ldata pool. The value of maxcount must be positive and
greater than or equal to the value of initcount.

kkey Specifies the kernel storage protection key to be applied to the newly
created ldata pool. The value must be a valid kernel key number, or zero
to indicate that storage protection is not requested.

ldatap Specifies an address to be set on successful completion with the handle for
the newly created ldata pool.

Execution Environment
The ldata_create kernel service can be called only from the process environment.

346 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values
Item Description

0 Completed successfully. The handle for ldata
storage is returned in ldatap.

EINVAL Invalid input parameters given. Invalid initcount,
maxcount or kkey. The ldatap parameter is
undefined.

ENOMEM Error encountered. Insufficient memory to satisfy
request. The ldatap parameter is undefined.

Implementation Specifics
The ldata_create kernel service is part of the Base Operating System (BOS) Runtime.

Related reference
ldata_destroy Kernel Service
ldata_grow Kernel Service
ldata_alloc Kernel Service

ldata_destroy Kernel Service

Purpose
Destroys an ldata pool created by the ldata_create kernel service.

Syntax
#include <sys/ldata.h>

void ldata_destroy (ldatap)

ldata_t ldatap;

Description
The ldata_destroy kernel service destroys an ldata pool previously created by an ldata_create call. This
routine assumes that all elements allocated from the pool have been freed back to the pool and there are
no longer any active elements in the pool.

The ldata_destroy call unpins and frees all of the storage associated with the handle.

Parameters
Item Description

ldatap Specifies the handle of the ldata pool to be destroyed.

Execution Environment
The ldata_destroy kernel service can be called from the process environment only.

Return Values
None.

Kernel Services and Subsystem Operations 347

Implementation Specifics
The ldata_destroy kernel service is part of the Base Operating System (BOS) Runtime.

Related reference
ldata_create Kernel Service
ldata_alloc Kernel Service
ldata_free Kernel Service

ldata_free Kernel Service

Purpose
Frees a storage element that is pinned to an ldata pool.

Syntax
#include <sys/ldata.h>

void ldata_free (ldatap, elementp)

ldata_t ldatap;
void * elementp;

Description
The ldata_free kernel service frees a pinned storage element that was previously allocated to an ldata
pool. The pinned storage element is identified through the elementp parameter. The element identified by
elementp is freed to the sub-pool corresponding to the SRAD that allocated the element.

Parameters
Item Description

ldatap Specifies the handle of the ldata pool.

elementp Specifies the address of the pinned storage element to be freed.

Execution Environment
The ldata_free kernel service can be called from the process or interrupt environment.

Return Values
None.

Implementation Specifics
The ldata_free kernel service is part of Base Operating System (BOS) Runtime.

ldata_grow Kernel Service

Purpose
Expands the count of available pinned storage elements contained within an ldata pool.

348 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax
#include <sys/ldata.h>

int ldata_grow (ldatap, count)

ldata_t ldatap;
long count;

Description
The ldata_grow kernel service increases the number of pinned storage elements contained within a
per-SRAD sub-pool associated with the ldata handle ldatap, by count. If the ldata_alloc call fails because
there are no more free pinned storage elements in a sub-pool, use the ldata_grow kernel service. The
ldata_grow kernel service pins additional count elements from the sub-pool and makes them available
for the ldata_alloc call. All of the sub-pools associated with the handle are grown. If count elements are
not available or there is not enough pinned memory available, the ldata_grow kernel service fails.

Parameters
Item Description

ldatap Specifies the handle of the ldata pool.

count Specifies the additional number of storage elements to be pinned in the sub-
pool. The count value should be greater than 0 and should not increase the
sub-pool size beyond the value of maxcount specified with the ldata_create
call.

Execution Environment
The ldata_grow kernel service can be called only from the process environment.

Return Values
Item Description

0 Success.

-1 Error encountered. Illegal parameters or
insufficient resources.

Implementation Specifics
The ldata_grow kernel service is part of the Base Operating System (BOS) Runtime.

ldmp_bufest, ldmp_timeleft, ldmp_xmalloc, ldmp_xmfree, and ldmp_errstr
Kernel Services

Purpose
Obtains information about the current live dump.

Syntax

#include <sys/livedump.h>

kerrno_t ldmp_bufest (id, cb, len)
dumpid_t id;

Kernel Services and Subsystem Operations 349

ras_block_t cb;
size_t *len;

kerrno_t ldmp_timeleft (id, timeleft)
dumpid_t id;
long *timeleft;

kerrno_t ldmp_xmalloc (id, size, align, p)
dumpid_t id;
size_t size;
uint align;
void **p;

kerrno_t ldmp_xmfree (id, p)
dumpid_t id;
void *p;

kerrno_t ldmp_errstr (id, cb, str)
dumpid_t id;
ras_block_t cb;
char *str;

Parameters

Item Description

align Specifies the log base 2 of the desired alignment. The maximum allowed alignment is
12, 4096 byte alignment.

cb Specifies the ras_block_t for the component.

id Specifies the ID of the dump.

len Specifies the estimate of data in bytes that can still be buffered by the specified
component in this pass.

p Specifies the memory block to be allocated or freed.

size Specifies the memory size to be allocated.

str Specifies the error message.

timeleft Specifies the time, in nanoseconds, remaining for this pass. This value only has meaning
for a serialized dump. It can be negative.

Description
The ldmp_bufest kernel service estimates the number of bytes of dump buffer storage available to this
component.

The ldmp_timeleft kernel service estimates the time, in nanoseconds, remaining in this pass.

The ldmp_xmalloc kernel service allocates storage from the live dump heap.

The ldmp_xmfree kernel service frees live dump heap storage.

The ldmp_errstr kernel service records an error to be part of the live dump status reporting. The string is
contained in the live dump and reported in the error log entry if there is sufficient space.

Important: An error log entry has a maximum length of 2048 bytes. The error string is limited to 128
bytes, including the trailing NULL, and is truncated if too long. The component's path name is also logged.

350 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Tip: The ldmp_errstr kernel service can be called multiple times to report multiple errors.

Components are encouraged to limit the size of error strings due to limited space in the error log entry.

Return Values

Item Description

0 Indicates a successful completion.

EINVAL_RAS_xxx_BADARGS Indicates that the arguments for the service are not valid.

EFAULT_RAS_xxx_BADARGS Indicates that an address argument is not a valid address.

ENOMEM_RAS_LDMP_XMALLOC Indicates that there is insufficient space in the live dump heap to
satisfy this request.

ldmp_freeparms Kernel Service

Purpose
Frees any data allocated by the live dump associated with an unused ldmp_parms_t data item.

Syntax

#include <sys/livedump.h>

kerrno_t ldmp_freeparms (parms)
ldmp_parms_t *parms;

Parameters

Item Description

parms Points to an item of ldmp_parms_t type.

Description
The ldmp_freeparms kernel service is used in the event that you have partially set up the ldmp_parms_t
data item, but do not want to take a dump. You can use the ldmp_freeparms kernel service to clean up
any data allocated by the live dump subsystem. However, you can always call the ldmp_freeparms kernel
service after the livedump kernel service, and the ldmp_freeparms kernel service returns normally if
there is nothing to free.

Execution Environment
The ldmp_freeparms kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

0 Indicates a successful completion.

EINVAL_RAS_LDMP_FREEPARMS Indicates that the area is not a valid ldmp_parms_t
data area.

EFAULT_RAS_LDMP_FREEPARMS Indicates that a memory fault results.

Kernel Services and Subsystem Operations 351

Related reference
ldmp_setupparms Kernel Service
livedump Kernel Service

ldmp_setupparms Kernel Service

Purpose
Sets up the ldmp_parms_t parameter for the livedump kernel service.

Syntax

#include <sys/livedump.h>

kerrno_t ldmp_setupparms (parms)
ldmp_parms_t *parms;

Parameters

Item Description

parms Points to an item of ldmp_parms_t type.

Description
The ldmp_setupparms kernel service simplifies the process of setting up a live dump by setting up the
ldmp_parms_t parameter. It does not allocate any storage.

The ldmp_setupparms kernel service performs the following setup for the ldmp_parms_t parameter:

Item Description

Field Value

ldp_eyec eyecatcher for ldmp_parms

ldp_vers current version

ldp_flags 0

ldp_prio LDPP_CRITICAL

ldp_recov NULL

ldp_func NULL

ldp_namepref NULL

ldp_errcode 0

ldp_symptom NULL

ldp_title NULL

ldp_rsvd1 NULL

Execution Environment
The ldmp_setupparms kernel service can be called from either the process or interrupt environment.

352 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values

Item Description

0 Indicates a successful completion.

EFAULT_RAS_LDMP_SETUPPARMS Indicates that the address is not valid.

limit_sigs or sigsetmask Kernel Service

Purpose
Changes the signal mask for the calling kernel thread.

Syntax

#include <sys/encap.h>

void limit_sigs (
 siglist,
 old_mask)
sigset_t *siglist;
sigset_t *old_mask;

void sigsetmask (old_mask)
sigset_t *old_mask;

Parameters

Item Description

siglist Specifies the signal set to deliver.

old_mask Points to the old signal set.

Description
The limit_sigs kernel service changes the signal mask for the calling kernel thread such that only the
signals specified by the siglist parameter will be delivered, unless they are currently being blocked or
ignored.

The old signal mask is returned via the old_mask parameter. If the siglist parameter is NULL, the signal
mask is not changed; it can be used for getting the current signal mask.

The sigsetmask kernel service should be used to restore the set of blocked signals for the calling thread.
The typical usage of these services is the following:

sigset_t allowed = limited set of signals
sigset_t old;

/* limits the set of delivered signals */
limit_sigs (&allowed, &old);

 /* do something with a limited set of delivered signals */

/* restore the original set */
sigsetmask (&old);

Execution Environment
The limit_sigs and sigsetmask kernel services can be called from the process environment only.

Kernel Services and Subsystem Operations 353

Return Values
The limit_sigs and sigsetmask kernel services have no return values.

Related reference
kthread_kill Kernel Service
Related information
Process and Exception Management Kernel Services

livedump Kernel Service

Purpose
Starts a live dump.

Syntax

#include <sys/livedump.h>

kerrno_t livedump (parms)
ldmp_parms_t *parms;

Parameters

Item Description

parms Points to an item of ldmp_parms_t type.

Description
The livedump kernel service initiates a live dump. It can be called from either the kernel or a kernel
extension. Storage associated with the dump is not entirely freed until the dump has been written to disk,
or the livedump kernel service returns an error indicating the dump was not taken.

Execution Environment
The livedump kernel service can be called from either the process or interrupt environment. Only a
serialized, synchronous dump can be started from the interrupt level, and the dump is limited to one pass.

Return Values
Item Description

0 Indicates a successful completion.

EINVAL_RAS_LIVEDUMP_PARM Indicates that one or more parameters are not valid.

EFAULT_RAS_LIVEDUMP_PARM Indicates that a memory fault occurs.

EINVAL_RAS_LIVEDUMP_COMP Indicates one or more components are not valid.

EINVAL_RAS_LIVEDUMP_NOCOMPS Indicates that no valid components were given.

Related reference
dmp_compspec and dmp_compext Kernel Services
dmp_eaddr, dmp_context, dmp_tid, dmp_pid, dmp_errbuf, dmp_mtrc, dmp_systrace, and dmp_ct Kernel
Services

lock_alloc Kernel Service

354 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Allocates system memory for a simple or complex lock.

Syntax

#include <sys/lock_def.h>
#include <sys/lock_alloc.h>

void lock_alloc (lock_addr, flags, class, occurrence)
void *lock_addr;
int flags;
short class;
short occurrence;

Parameters

Item Description

lock_addr Specifies a valid simple or complex lock address.

flags Specifies whether the memory allocated is to be pinned or pageable. Set this parameter
as follows:
LOCK_ALLOC_PIN

Allocate pinned memory; use if it is not permissible to take a page fault while calling
a locking kernel service for this lock.

LOCK_ALLOC_PAGED
Allocate pageable memory; use if it is permissible to take a page fault while calling a
locking kernel service for this lock.

Item Description

class Specifies the family which the lock belongs to.

occurrence Identifies the instance of the lock within the family. If only one instance of the lock is
defined, this parameter should be set to -1.

Description
The lock_alloc kernel service allocates system memory for a simple or complex lock. The lock_alloc
kernel service must be called for each simple or complex before the lock is initialized and used. The
memory allocated is for internal lock instrumentation use, and is not returned to the caller; no memory is
allocated if instrumentation is not used.

Execution Environment
The lock_alloc kernel service can be called from the process environment only.

Return Values
The lock_alloc kernel service has no return values.

Related reference
lock_free Kernel Service
lock_init Kernel Service
Related information
Understanding Locking

Kernel Services and Subsystem Operations 355

lock_clear_recursive Kernel Service

Purpose
Prevents a complex lock from being acquired recursively.

Syntax

#include <sys/lock_def.h>

void lock_clear_recursive (lock_addr)
complex_lock_t lock_addr;

Parameter

Item Description

lock_addr Specifies the address of the lock word that will be protected from being acquired
recursively.

Description
The lock_clear_recursive kernel service prevents the specified complex lock from being acquired
recursively. The complex lock must have been made recursive by using the lock_set_recursive kernel
service. The calling thread must hold the specified complex lock in write-exclusive mode.

Note: The lock_set_recursive and lock_clear_recursive kernel services must be used in pairs and must
be called only when recursion is likely to occur. The lock_set_recursive kernel service must be called
after making a call to the lock_write kernel service and the lock_clear_recursive kernel service must be
called before making the call to the lock_done kernel service in routines where recursion might occur
down the call stack.

Execution Environment
The lock_clear_recursive kernel service can be called from the process environment only.

Return Values
The lock_clear_recursive kernel service has no return values.

Related reference
lock_init Kernel Service
lock_done Kernel Service
Related information
Locking Kernel Services

lock_done Kernel Service

Purpose
Unlocks a complex lock.

Syntax

#include <sys/lock_def.h>

356 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

void lock_done (lock_addr)
complex_lock_t lock_addr;

Parameter

Item Description

lock_addr Specifies the address of the lock word to unlock.

Description
The lock_done kernel services unlocks a complex lock. The calling kernel thread must hold the lock either
in shared-read mode or exclusive-write mode. If one or more kernel threads are waiting to acquire the
lock in exclusive-write mode, one of these kernel threads (the one with the highest priority) is made
runnable and may compete for the lock. Otherwise, any kernel threads which are waiting to acquire the
lock in shared-read mode are made runnable. If there was at least one kernel thread waiting for the lock,
the priority of the calling kernel thread is recomputed.

If the lock is held recursively, it is not actually released until the lock_done kernel service has been called
once for each time that the lock was locked.

Execution Environment
The lock_done kernel service can be called from the process environment only.

Return Values
The lock_done kernel service has no return values.

Related reference
lock_alloc Kernel Service
lock_free Kernel Service
lock_init Kernel Service
Related information
Understanding Locking
Locking Kernel Services

lock_free Kernel Service

Purpose
Frees the memory of a simple or complex lock.

Syntax

#include <sys/lock_def.h>
#include <sys/lock_alloc.h>

void lock_free (lock_addr)
void *lock_addr;

Parameter

Item Description

lock_addr Specifies the address of the lock word whose memory is to be freed.

Kernel Services and Subsystem Operations 357

Description
The lock_free kernel service frees the memory of a simple or complex lock. The memory freed is the
internal operating system memory which was allocated with the lock_alloc kernel service.

Note: It is only necessary to call the lock_free kernel service when the memory that the corresponding
lock was protecting is released. For example, if you allocate memory for an i-node which is to be
protected by a lock, you must allocate and initialize the lock before using it. The memory may be used
with several i-nodes, each taken from, and returned to, the free i-node pool; the lock_init kernel service
must be called each time this is done.The lock_free kernel service must be called when the memory
allocated for the inode is finally freed.

Execution Environment
The lock_free kernel service can be called from the process environment only.

Return Values
The lock_free kernel service has no return values.

Related reference
lock_alloc Kernel Service
Related information
Understanding Locking
Locking Kernel Services

lock_init Kernel Service

Purpose
Initializes a complex lock.

Syntax

#include <sys/lock_def.h>

void lock_init (lock_addr, can_sleep)
complex_lock_t lock_addr;
boolean_t can_sleep;

Parameters

Item Description

lock_addr Specifies the address of the lock word.

can_sleep This parameter is ignored.

Description
The lock_init kernel service initializes the specified complex lock. This kernel service must be called for
each complex lock before the lock is used. The complex lock must previously have been allocated with
the lock_alloc kernel service. The can_sleep parameter is included for compatibility with OSF/1 1.1, but is
ignored. Using a value of TRUE for this parameter will maintain OSF/1 1.1 semantics.

Execution Environment
The lock_init kernel service can be called from the process environment only.

358 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values
The lock_init kernel service has no return values.

Related reference
lock_alloc Kernel Service
lock_free Kernel Service
Related information
Understanding Locking
Locking Kernel Services

lock_islocked Kernel Service

Purpose
Tests whether a complex lock is locked.

Syntax

#include <sys/lock_def.h>

int lock_islocked (lock_addr)
complex_lock_t lock_addr;

Parameter

Item Description

lock_addr Specifies the address of the lock word to test.

Description
The lock_islocked kernel service determines whether the specified complex lock is free, or is locked in
either shared-read or exclusive-write mode.

Execution Environment
The lock_islocked kernel service can be called from the process environment only.

Return Values

Item Description

TRUE Indicates that the lock was locked.

FALSE Indicates that the lock was free.

Related reference
lock_init Kernel Service
Related information
Understanding Locking
Locking Kernel Services

lockl Kernel Service

Kernel Services and Subsystem Operations 359

Purpose
Locks a conventional process lock.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/lockl.h>

int lockl (lock_word, flags)
lock_t *lock_word;
int flags;

Parameters

Item Description

lock _word Specifies the address of the lock word.

flags Specifies the flags that control waiting for a lock. The flags parameter is used to control
how signals affect waiting for a lock. The four flags are:
LOCK_NDELAY

Controls whether the caller waits for the lock. Setting the flag causes the request
to be terminated. The lock is assigned to the caller. Not setting the flag causes
the caller to wait until the lock is not owned by another process before the lock is
assigned to the caller.

LOCK_SHORT
Prevents signals from terminating the wait for the lock. LOCK_SHORT is the default
flag for the lockl Kernel Service. This flag causes non-preemptive sleep.

LOCK_SIGRET
Causes the wait for the lock to be terminated by an unmasked signal.

LOCK_SIGWAKE
Causes the wait for the lock to be terminated by an unmasked signal and control
transferred to the return from the last operation by the setjmpx kernel service.

Note: The LOCK_SIGRET flag overrides the LOCK_SIGWAKE flag.

Description
Note: The lockl kernel service is provided for compatibility only and should not be used in new code,
which should instead use simple locks or complex locks.

The lockl kernel service locks a conventional lock

The lock word can be located in shared memory. It must be in the process's address space when the lockl
or unlockl services are called. The kernel accesses the lock word only while executing under the caller's
process.

The lock_word parameter is typically part of the data structure that describes the resource managed by
the lock. This parameter must be initialized to the LOCK_AVAIL value before the first call to the lockl
service. Only the lockl and unlockl services can alter this parameter while the lock is in use.

The lockl service is nestable. The caller should use the LOCK_SUCC value for determining when to call
the unlockl service to unlock the conventional lock.

The lockl service temporarily assigns the owner the process priority of the most favored waiter for the
lock.

360 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

A process must release all locks before terminating or leaving kernel mode. Signals are not delivered to
kernel processes while those processes own any lock. "Understanding System Call Execution" in Kernel
Extensions and Device Support Programming Concepts discusses how system calls can use the lockl
service when accessing global data.

Execution Environment
The lockl kernel service can be called from the process environment only.

Return Values

Item Description

LOCK_SUCC Indicates that the process does not already own the lock or the lock is not owned by
another process when the flags parameter is set to LOCK_NDELAY.

LOCK_NEST Indicates that the process already owns the lock or the lock is not owned by another
process when the flags parameter is set to LOCK_NDELAY.

LOCK_FAIL Indicates that the lock is owned by another process when the flags parameter is set to
LOCK_NDELAY.

LOCK_SIG Indicates that the wait is terminated by a signal when the flags parameter is set to
LOCK_SIGRET.

Related reference
unlockl Kernel Service
Related information
Understanding Locking
Locking Kernel Services

lock_mine Kernel Service

Purpose
Checks whether a simple or complex lock is owned by the caller.

Syntax

#include <sys/lock_def.h>

boolean_t lock_mine (lock_addr)
void *lock_addr;

Parameter

Item Description

lock_addr Specifies the address of the lock word to check.

Description
The lock_mine kernel service checks whether the specified simple or complex lock is owned by the
calling kernel thread. Because a complex lock held in shared-read mode has no owner, the service returns
FALSE in this case. This kernel service is provided to assist with debugging.

Kernel Services and Subsystem Operations 361

Execution Environment
The lock_mine kernel service can be called from the process environment only.

Return Values

Item Description

TRUE Indicates that the calling kernel thread owns the lock.

FALSE Indicates that the calling kernel thread does not own the lock, or that a complex lock is held in
shared-read mode.

Related reference
lock_init Kernel Service
lock_read or lock_try_read Kernel Service
lock_write or lock_try_write Kernel Service
Related information
Locking Kernel Services

lock_read or lock_try_read Kernel Service

Purpose
Locks a complex lock in shared-read mode.

Syntax

#include <sys/lock_def.h>

void lock_read (lock_addr)
complex_lock_t lock_addr;

boolean_t lock_try_read (lock_addr)
complex_lock_t lock_addr;

Parameter

Item Description

lock_addr Specifies the address of the lock word to lock.

Description
The lock_read kernel service locks the specified complex lock in shared-read mode; it blocks if the lock
is locked in exclusive-write mode. The lock must previously have been initialized with the lock_init kernel
service. The lock_read kernel service has no return values.

The lock_try_read kernel service tries to lock the specified complex lock in shared-read mode; it returns
immediately if the lock is locked in exclusive-write mode, otherwise it locks the lock in shared-read mode.
The lock must previously have been initialized with the lock_init kernel service.

Execution Environment
The lock_read and lock_try_read kernel services can be called from the process environment only.

362 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values
The lock_try_read kernel service has the following return values:

Item Description

TRUE Indicates that the lock was successfully acquired in shared-read mode.

FALSE Indicates that the lock was not acquired.

Related reference
lock_init Kernel Service
lock_islocked Kernel Service
lock_done Kernel Service
Related information
Understanding Locking
Locking Kernel Services

lock_read_to_write or lock_try_read_to_write Kernel Service

Purpose
Upgrades a complex lock from shared-read mode to exclusive-write mode.

Syntax

#include <sys/lock_def.h>

boolean_t lock_read_to_write (lock_addr)
complex_lock_t lock_addr;

boolean_t lock_try_read_to_write (lock_addr)
complex_lock_t lock_addr;

Parameter

Item Description

lock_addr Specifies the address of the lock word to be converted from read-shared to write-
exclusive mode.

Description
The lock_read_to_write and lock_try_read_to_write kernel services try to upgrade the specified
complex lock from shared-read mode to exclusive-write mode. The lock is successfully upgraded if no
other thread has already requested write-exclusive access for this lock. If the lock cannot be upgraded, it
is no longer held on return from the lock_read_to_write kernel service; it is still held in shared-read mode
on return from the lock_try_read_to_write kernel service.

The calling kernel thread must hold the lock in shared-read mode.

Execution Environment
The lock_read_to_write and lock_try_read_to_write kernel services can be called from the process
environment only.

Kernel Services and Subsystem Operations 363

Return Values
The following only apply to lock_read_to_write:

Item Description

TRUE Indicates that the lock was not upgraded and is no longer held.

FALSE Indicates that the lock was successfully upgraded to exclusive-write mode.

The following only apply to lock_try_read_to_write:

Item Description

TRUE Indicates that the lock was successfully upgraded to exclusive-write mode.

FALSE Indicates that the lock was not upgraded and is held in read mode.

Related reference
lock_init Kernel Service
lock_islocked Kernel Service
lock_done Kernel Service
Related information
Understanding Locking
Locking Kernel Services

lock_set_recursive Kernel Service

Purpose
Prepares a complex lock for recursive use.

Syntax

#include <sys/lock_def.h>

void lock_set_recursive (lock_addr)
complex_lock_t lock_addr;

Parameter

Item Description

lock_addr Specifies the address of the lock word to be prepared for recursive use.

Description
The lock_set_recursive kernel service prepares the specified complex lock for recursive use. A complex
lock cannot be nested until the lock_set_recursive kernel service is called for it. The calling kernel thread
must hold the specified complex lock in write-exclusive mode.

When a complex lock is used recursively, the lock_done kernel service must be called once for each time
that the thread is locked in order to unlock the lock.

Only the kernel thread which calls the lock_set_recursive kernel service for a lock may acquire that lock
recursively.

Note: The lock_set_recursive and lock_clear_recursive kernel services must be used in pairs and must
be called only when recursion is likely to occur. The lock_set_recursive kernel service must be called
after making a call to the lock_write kernel service and the lock_clear_recursive kernel service must be

364 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

called before making the call to the lock_done kernel service in routines where recursion might occur
down the call stack.

Execution Environment
The lock_set_recursive kernel service can be called from process environment only.

Return Values
The lock_set_recursive kernel service has no return values.

Related reference
lock_init Kernel Service
lock_done Kernel Service
lock_write or lock_try_write Kernel Service
lock_clear_recursive Kernel Service
Related information
Understanding Locking
Locking Kernel Services

lock_write or lock_try_write Kernel Service

Purpose
Locks a complex lock in exclusive-write mode.

Syntax

#include <sys/lock_def.h>

void lock_write (lock_addr)
complex_lock_t lock_addr;

boolean_t lock_try_write (lock_addr)
complex_lock_t lock_addr;

Parameter

Item Description

lock_addr Specifies the address of the lock word to lock.

Description
The lock_write kernel service locks the specified complex lock in exclusive-write mode; it blocks if
the lock is busy. The lock must have been previously initialized with the lock_init kernel service. The
lock_write kernel service has no return values.

The lock_try_write kernel service tries to lock the specified complex lock in exclusive-write mode; it
returns immediately without blocking if the lock is busy. The lock must have been previously initialized
with the lock_init kernel service.

Execution Environment
The lock_write and lock_try_write kernel services can be called from the process environment only.

Kernel Services and Subsystem Operations 365

Return Values
The lock_try_write kernel service has the following parameters:

Item Description

TRUE Indicates that the lock was successfully acquired.

FALSE Indicates that the lock was not acquired.

Related reference
lock_done Kernel Service
lock_read_to_write or lock_try_read_to_write Kernel Service
Related information
Understanding Locking
Locking Kernel Services

lock_write_to_read Kernel Service

Purpose
Downgrades a complex lock from exclusive-write mode to shared-read mode.

Syntax

#include <sys/lock_def.h>

void lock_write_to_read (lock_addr)
complex_lock_t lock_addr;

Parameter

Item Description

lock_addr Specifies the address of the lock word to be downgraded from exclusive-write to shared-
read mode.

Description
The lock_write_to_read kernel service downgrades the specified complex lock from exclusive-write
mode to shared-read mode. The calling kernel thread must hold the lock in exclusive-write mode.

Once the lock has been downgraded to shared-read mode, other kernel threads will also be able to
acquire it in shared-read mode.

Execution Environment
The lock_write_to_read kernel service can be called from the process environment only.

Return Values
The lock_write_to_read kernel service has no return values.

Related reference
lock_islocked Kernel Service
lock_read_to_write or lock_try_read_to_write Kernel Service
Related information
Understanding Locking

366 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

loifp Kernel Service

Purpose

Returns the address of the software loopback interface structure.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

struct ifnet *loifp ()

Description
The loifp kernel service returns the address of the ifnet structure associated with the software loopback
interface. The interface address can be used to examine the interface flags. This address can also be used
to determine whether the looutput kernel service can be called to send a packet through the loopback
interface.

Execution Environment
The loifp kernel service can be called from either the process or interrupt environment.

Return Values
The loifp service returns the address of the ifnet structure describing the software loopback interface.

Related reference
looutput Kernel Service
Related information
Network Kernel Services

longjmpx Kernel Service

Purpose
Allows exception handling by causing execution to resume at the most recently saved context.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int longjmpx (ret_val)
int ret_val;

Parameters

Item Description

ret_val Specifies the return value to be supplied on the return from the setjmpx kernel service for
the resumed context. This value normally indicates the type of exception that has occurred.

Kernel Services and Subsystem Operations 367

Description
The longjmpx kernel service causes the normal execution flow to be modified so that execution resumes
at the most recently saved context. The kernel mode lock is reacquired if it is necessary. The interrupt
priority level is reset to that of the saved context.

The longjmpx service internally calls the clrjmpx service to remove the jump buffer specified by the
jump_buffer parameter from the list of contexts to be resumed. The longjmpx service always returns a
nonzero value when returning to the restored context. Therefore, if the value of the ret_val parameter is 0,
the longjmpx service returns an EINTR value to the restored context.

If there is no saved context to resume, the system crashes.

Execution Environment
The longjmpx kernel service can be called from either the process or interrupt environment.

Return Values
A successful call to the longjmpx service does not return to the caller. Instead, it causes execution to
resume at the return from a previous setjmpx call with the return value of the ret_val parameter.

Related reference
clrjmpx Kernel Service
setjmpx Kernel Service
Related information
Understanding Exception Handling
Process and Exception Management Kernel Services

lookupvp, lookupname, lookupname_cur Kernel Services

Purpose
Retrieves the v-node that corresponds to the named path.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

int lookupvp (namep, flags, compvpp, crp)
char *namep;
int flags;
struct vnode **compvpp;
struct ucred *crp;

int lookupname (namep, seg, flags, dirvpp, compvpp, crp)
char *namep;
int seg;
int flags;
struct vnode **dirvpp;
struct vnode **compvpp;
struct cred *crp;

int lookupname_cur (namep, seg, flags, dirvpp, compvpp, curdvp, crp)
char *namep;
int seg;
int flags;

368 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

struct vnode **dirvpp;
struct vnode **compvpp;
struct vnode **curdvp;
struct cred *crp;

Parameters

Item Description

crp Points to the cred structure. This structure contains data that the file system can use to
validate access permission.

namep Points to a character string path name.

flags Specifies lookup directives, including these six flags:
L_LOC

The path-name resolution must not cross a mount point into another file system
implementation.

L_NOFOLLOW
If the final component of the path name resolves to a symbolic link, the link is not to
be traversed.

L_NOXMOUNT
If the final component of the path name resolves to a mounted-over object, the
mounted-over object, rather than the root of the next virtual file system, is to be
returned.

L_CRT
The object is to be created.

L_DEL
The object is to be deleted.

L_EROFS
An error is to be returned if the object resides in a read-only file system.

seg Specifies whether the namep buffer is in user space (UIO_USERSPACE) or kernel space
(UIO_SYSSPACE).

compvpp Points to the location where the vnode pointer for the named object is to be returned to
the calling routine.

dirvpp Points to the location where the vnode pointer for the directory containing the named
object is to be returned.

curdvp Points to the vnode for a current directory to be used instead of u_cdir.

Description
The lookupvp kernel service provides translation of the path name provided by the namep parameter
into a virtual file system node. The lookupvp service provides a flexible interface to path-name resolution
by regarding the flags parameter values as directives to the lookup process. The lookup process is
a cooperative effort between the logical file system and underlying virtual file systems (VFS). Several
v-node and VFS operations are employed to:

• Look up individual name components
• Read symbolic links
• Cross mount points

The lookupvp kernel service determines the process's current and root directories by consulting the
u_cdir and u_rdir fields in the u structure. Information about the virtual file system and file system
installation for transient v-nodes is obtained from each name component's vfs or gfs structure. The
lookupvp kernel service assumes that the named path is in kernel address space.

Kernel Services and Subsystem Operations 369

The lookupname kernel service provides the same service as the lookupvp kernel service, but allows the
caller to specify whether the path name is in kernel or user space. It also provides the ability to retrieve
the vnode for the directory containing the named object. The lookupname_cur kernel service further
extends the interface by allowing the lookup to proceed relative to the given curdvp directory.

The vnodes returned by the lookup services are held. The calling routine is responsible for releasing the
hold by calling the vnop_rele entry point when it completes its operation.

Execution Environment
The lookup kernel services can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

errno Indicates an error. This number is defined in the /usr/include/sys/errno.h file.

Related information
Understanding Data Structures and Header Files for Virtual File Systems
Virtual File System Overview
Virtual File System (VFS) Kernel Services

looutput Kernel Service

Purpose
Sends data through a software loopback interface.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int looutput (ifp, m0, dst)
struct ifnet *ifp;
struct mbuf *m0;
struct sockaddr *dst;

Parameters

Ite
m

Description

ifp Specifies the address of an ifnet structure describing the software loopback interface.

m0 Specifies an mbuf chain containing output data.

dst Specifies the address of a sockaddr structure that specifies the destination for the data.

Description
The looutput kernel service sends data through a software loopback interface. The data in the m0
parameter is passed to the input handler of the protocol specified by the dst parameter.

370 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The looutput kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

0 Indicates that the data was successfully sent.

ENOBUFS Indicates that resource allocation failed.

EAFNOSUPPORT Indicates that the address family specified by the dst parameter is not supported.

Related reference
loifp Kernel Service
Related information
Network Kernel Services

ltpin Kernel Service

Purpose
Pins the address range in the system (kernel) space and frees the page space for the associated pages.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/pin.h>

int ltpin (addr, length)
caddr_t addr;
int length;

Parameters

Item Description

addr Specifies the address of the first byte to pin.

length Specifies the number of bytes to pin.

Description
The ltpin (long term pin) kernel service pins the real memory pages touched by the address range
specified by the addr and length parameters in the system (kernel) address space. It pins the real-
memory pages to ensure that page faults do not occur for memory references in this address range.
The ltpin kernel service increments the long-term pin count for each real-memory page. While either the
long-term or short-term pin count is nonzero, the page cannot be paged out of real memory.

The ltpin kernel service pins either the entire address range or none of it. Only a limited number of pages
are pinned in the system. If there are not enough unpinned pages in the system, the ltpin kernel service
returns an error code. The ltpin kernel service is not a published interface.

Note: The operating system pins only whole pages at a time. Therfore, if the requested range is not
aligned on a page boundary, then memory outside this range is also pinned.

The ltpin kernel service can only be called for addresses within the system (kernel) address space.

Kernel Services and Subsystem Operations 371

Return Values
Item Description

0 Indicates successful completion.

EINVAL Indicates that the length parameter has a negative value. Otherwise, the area of memory beginning at the address of
the first byte to pin (the addr parameter) and extending for the number of bytes specified by the length parameter is
not defined.

EIO Indicates that a permanent I/O error occurred while referencing data.

ENOMEM Indicates that the pin kernel service was unable to pin due to insufficient real memory or exceeding the system-wide
pin count.

ENOSPC Indicates insufficient file system or paging space.

Related reference
ltunpin Kernel Service

ltunpin Kernel Service

Purpose
Unpins the address range in system (kernel) address space and reallocates paging space for the specified
region.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/pin.h>

int ltunpin (addr, length)
caddr_t addr;
int length;

Parameters

Item Description

addr Specifies the address of the first byte to unpin.

length Specifies the number of bytes to unpin.

Description
The ltunpin kernel service decreases the long-term pin count of each page in the address range. When
the long-term pin count becomes 0, the backing storage (paging space) for the memory region is allocated
and assigned to the pages. When both the long-term and short-term pin counts are 0, the page is no
longer pinned and the ltunpin kernel service will assert. If allocating backing pages would put the system
below the low paging space threshold, the call waits until paging space becomes available.

The ltunpin kernel service can only be called with addresses in the system (kernel) address space from
the process environment.

Return Values

Item Description

0 Indicates successful completion.

EINVAL Indicates that the length parameter is a negative value.

372 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

EIO Indicates that a permanent I/O error occurred while referencing data.

Related reference
ltpin Kernel Service

m
The following kernel services begin with the with the letter m.

m_adj Kernel Service

Purpose
Adjusts the size of an mbuf chain.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

void m_adj (m, diff)
struct mbuf *m;
int diff;

Parameters

Item Description

m Specifies the mbuf chain to be adjusted.

diff Specifies the number of bytes to be removed.

Description
The m_adj kernel service adjusts the size of an mbuf chain by the number of bytes specified by the diff
parameter. If the number specified by the diff parameter is nonnegative, the bytes are removed from the
front of the chain. If this number is negative, the alteration is done from back to front.

Execution Environment
The m_adj kernel service can be called from either the process or interrupt environment.

Return Values
The m_adj service has no return values.

Related information
I/O Kernel Services

mbreq Structure for mbuf Kernel Services

Purpose
Contains mbuf structure registration information for the m_reg and m_dereg kernel services.

Kernel Services and Subsystem Operations 373

Syntax

#include <sys/mbuf.h>

struct mbreq {
 int low_mbuf;
 int low_clust;
 int initial_mbuf;
 int initial_clust;
}

Parameters

Item Description

low_mbuf Specifies the mbuf structure low-water mark.

low_clust Specifies the page-sized mbuf structure low-water mark.

initial_mbuf Specifies the initial allocation of mbuf structures.

initial_clust Specifies the initial allocation of page-sized mbuf structures.

Description
The mbreq structure specifies the mbuf structure usage expectations for a user of mbuf kernel services.

Related reference
m_dereg Kernel Service
m_reg Kernel Service
Related information
I/O Kernel Services

mbstat Structure for mbuf Kernel Services

Purpose
Contains mbuf usage statistics.

Syntax

#include <sys/mbuf.h>

struct mbstat {
ulong m_mbufs;
ulong m_clusters;
ulong m_spare;
ulong m_clfree;
ulong m_drops;
ulong m_wait;
ulong m_drain;
short m_mtypes[256];
}

Parameters

Item Description

m_mbufs Specifies the number of mbuf structures allocated.

m_clusters Specifies the number of clusters allocated.

m_spare Specifies the spare field.

374 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

m_clfree Specifies the number of free clusters.

m_drops Specifies the times failed to find space.

m_wait Specifies the times waited for space.

m_drain Specifies the times drained protocols for space.

m_mtypes Specifies the type-specific mbuf structure allocations.

Description
The mbstat structure provides usage information for the mbuf services. Statistics can be viewed through
the netstat -m command.

Related information
netstat subroutine
I/O Kernel Services

m_cat Kernel Service

Purpose
Appends one mbuf chain to the end of another.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

void m_cat (m, n)
struct mbuf *m;
struct mbuf *n;

Parameters

Ite
m

Description

m Specifies the mbuf chain to be appended to.

n Specifies the mbuf chain to append.

Description
The m_cat kernel service appends an mbuf chain specified by the n parameter to the end of mbuf chain
specified by the m parameter. Where possible, compaction is performed.

Execution Environment
The m_cat kernel service can be called from either the process or interrupt environment.

Return Values
The m_cat service has no return values.

Kernel Services and Subsystem Operations 375

Related information
I/O Kernel Services

m_clattach Kernel Service

Purpose
Allocates an mbuf structure and attaches an external cluster.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

struct mbuf *
m_clattach(ext_buf, ext_free, ext_size, ext_arg, wait)
caddr_t ext_buf;
int (*ext_free)();
int ext_size;
int ext_arg;
int wait;

Parameters

Item Description

ext_buf Specifies the address of the external data area.

ext_free Specifies the address of a function to be called when this mbuf structure is freed.

ext_size Specifies the length of the external data area.

ext_arg Specifies an argument to pass to the above function.

wait Specifies either the M_WAIT or M_DONTWAIT value.

Description
The m_clattach kernel service allocates an mbuf structure and attaches the cluster specified by the
ext_buf parameter. This data is owned by the caller. The m_data field of the returned mbuf structure
points to the caller's data. Interrupt handlers can call this service only with the wait parameter set to
M_DONTWAIT.

Note: The m_clattach kernel service replaces the m_clgetx kernel service, which is no longer supported.

The calling function is required to fill out the mbuf structure sufficiently to support normal usage. This
includes support for the DMA functions during network transmission. To support DMA functions, the
ext_hasxm flag field needs to be set to true and the ext_xmemd structure needs to be filled out.
For buffers allocated from the kernel pinned heap, the ext_xmemd.aspace_id field should be set to
XMEM_GLOBAL.

Execution Environment
The m_clattach kernel service can be called from either the process or interrupt environment.

Return Values
The m_clattach kernel service returns the address of an allocated mbuf structure. If the wait parameter
is set to M_DONTWAIT and there are no free mbuf structures, the m_clattach service returns null.

376 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related information
I/O Kernel Services

m_clget Macro for mbuf Kernel Services

Purpose
Allocates a page-sized mbuf structure cluster.

Syntax

#include <sys/mbuf.h>

int m_clget (m)
struct mbuf *m;

Parameter

Ite
m

Description

m Specifies the mbuf structure with which the cluster is to be associated.

Description
The m_clget macro allocates a page-sized mbuf cluster and attaches it to the given mbuf structure. If
successful, the length of the mbuf structure is set to CLBYTES.

Execution Environment
The m_clget macro can be called from either the process or interrupt environment.

Return Values

Ite
m

Description

1 Indicates successful completion.

0 Indicates an error.

Related reference
m_clgetm Kernel Service
Related information
I/O Kernel Services

m_clgetm Kernel Service

Purpose
Allocates and attaches an external buffer.

Kernel Services and Subsystem Operations 377

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>
#include <net/net_globals.h>

int
m_clgetm(m, how, size)
struct mbuf *m;
int how;
int size;

Parameters

Item Description

m Specifies the mbuf structure that the cluster will be associated with.

how Specifies either the M_DONTWAIT or M_WAIT value.

size Specifies the size of external cluster to attach. Any value less than MAXALLOCSAVE is valid. For
larger values, M_WAIT must be specified.

Description
The m_clgetm service allocates an mbuf cluster of the specified number of bytes and attaches it to the
mbuf structure indicated by the m parameter. If successful, the m_clgetm service sets the M_EXT flag.

Execution Environment
The m_clgetm kernel service can be called from either the process or interrupt environment.

An interrupt handler can specify the wait parameter as M_DONTWAIT only.

Return Values

Ite
m

Description

1 Indicates a successful operation.

If there are no free mbuf structures, the m_clgetm kernel service returns a null value.

Related reference
m_freem Kernel Service
m_get Kernel Service
m_clget Macro for mbuf Kernel Services
Related information
I/O Kernel Services

m_collapse Kernel Service

Purpose
Guarantees that an mbuf chain contains no more than a given number of mbuf structures.

378 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

struct mbuf *m_collapse (m, size)
struct mbuf *m;
int size;

Parameters

Item Description

m Specifies the mbuf chain to be collapsed.

size Denotes the maximum number of mbuf structures allowed in the chain.

Description
The m_collapse kernel service reduces the number of mbuf structures in an mbuf chain to the number
of mbuf structures specified by the size parameter. The m_collapse service accomplishes this by copying
data into page-sized mbuf structures until the chain is of the desired length. (If required, more than one
page-sized mbuf structure is used.)

Execution Environment
The m_collapse kernel service can be called from either the process or interrupt environment.

Return Values
If the chain cannot be collapsed into the number of mbuf structures specified by the size parameter, a
value of null is returned and the original chain is deallocated. Upon successful completion, the head of the
altered mbuf chain is returned.

Related information
I/O Kernel Services

m_copy Macro for mbuf Kernel Services

Purpose
Creates a copy of all or part of a list of mbuf structures.

Syntax

#include <sys/mbuf.h>

struct mbuf *m_copy (m, off, len)
struct mbuf *m;
int off;
int len;

Kernel Services and Subsystem Operations 379

Parameters

Ite
m

Description

m Specifies the mbuf structure, or the head of a list of mbuf structures, to be copied.

off Specifies an offset into data from which copying starts.

len Denotes the total number of bytes to copy.

Description
The m_copy macro makes a copy of the structure specified by the m parameter. The copy begins at the
specified bytes (represented by the off parameter) and continues for the number of bytes specified by the
len parameter. If the len parameter is set to M_COPYALL, the entire mbuf chain is copied.

Execution Environment
The m_copy macro can be called from either the process or interrupt environment.

Return Values
Upon successful completion, the address of the copied list (the mbuf structure that heads the list) is
returned. If the copy fails, a value of null is returned.

Related reference
m_copydata Kernel Service
m_copym Kernel Service
Related information
I/O Kernel Services

m_copydata Kernel Service

Purpose
Copies data from an mbuf chain to a specified buffer.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

void m_copydata (m, off, len, cp)
struct mbuf * m;
int off;
int len;
caddr_t cp;

Parameters

Ite
m

Description

m Indicates the mbuf structure, or the head of a list of mbuf structures, to be copied.

off Specifies an offset into data from which copying starts.

380 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Ite
m

Description

len Denotes the total number of bytes to copy.

cp Points to a data buffer into which to copy the mbuf data.

Description
The m_copydata kernel service makes a copy of the structure specified by the m parameter. The copy
begins at the specified bytes (represented by the off parameter) and continues for the number of bytes
specified by the len parameter. The data is copied into the buffer specified by the cp parameter.

Execution Environment
The m_copydata kernel service can be called from either the process or interrupt environment.

Return Values
The mcopydata service has no return values.

Related reference
m_copy Macro for mbuf Kernel Services
Related information
I/O Kernel Services

m_copym Kernel Service

Purpose
Creates a copy of all or part of a list of mbuf structures.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

struct mbuf *
m_copym(m, off, len, wait)
struct mbuf m;
int off;
int len;
int wait;

Parameters

Item Description

m Specifies the mbuf structure to be copied.

off Specifies an offset into data from which copying will start.

len Specifies the total number of bytes to copy.

wait Specifies either the M_DONTWAIT or M_WAIT value.

Kernel Services and Subsystem Operations 381

Description
The m_copym kernel service makes a copy of the mbuf structure specified by the m parameter starting
at the specified offset from the beginning and continuing for the number of bytes specified by the len
parameter. If the len parameter is set to M_COPYALL, the entire mbuf chain is copied.

If the mbuf structure specified by the m parameter has an external buffer attached (that is, the M_EXT
flag is set), the copy is done by reference to the external cluster. In this case, the data must not be altered
or both copies will be changed. Interrupt handlers can specify the wait parameter as M_DONTWAIT only.

Execution Environment
The m_copym kernel service can be called from either the process or interrupt environment.

Return Values
The address of the copy is returned upon successful completion. If the copy fails, null is returned. If
the wait parameter is set to M_DONTWAIT and there are no free mbuf structures, the m_copym kernel
service returns a null value.

Related reference
m_copydata Kernel Service
m_copy Macro for mbuf Kernel Services
Related information
I/O Kernel Services

m_dereg Kernel Service

Purpose
Deregisters expected mbuf structure usage.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

void m_dereg (mbp)
struct mbreq mbp;

Parameter

Ite
m

Description

mb
p

Defines the address of an mbreq structure that specifies expected mbuf usage.

Description
The m_dereg kernel service deregisters requirements previously registered with the m_reg kernel
service. The m_dereg service is mandatory if the m_reg service is called.

Execution Environment
The m_dereg kernel service can be called from the process environment only.

382 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values
The m_dereg service has no return values.

Related reference
mbreq Structure for mbuf Kernel Services
m_reg Kernel Service
Related information
I/O Kernel Services

m_free Kernel Service

Purpose
Frees an mbuf structure and any associated external storage area.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

struct mbuf *m_free(m)
struct mbuf *m;

Parameter

Ite
m

Description

m Specifies the mbuf structure to be freed.

Description
The m_free kernel service returns an mbuf structure to the buffer pool. If the mbuf structure specified by
the m parameter has an attached cluster (that is, a paged-size mbuf structure), the m_free kernel service
also frees the associated external storage.

Execution Environment
The m_free kernel service can be called from either the process or interrupt environment.

Return Values
If the mbuf structure specified by the m parameter is the head of an mbuf chain, the m_free service
returns the next mbuf structure in the chain. A null value is returned if the structure specified by the m
parameter is not part of an mbuf chain.

Related reference
m_get Kernel Service
Related information
I/O Kernel Services

m_freem Kernel Service

Kernel Services and Subsystem Operations 383

Purpose
Frees an entire mbuf chain.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

void m_freem (m)
struct mbuf *m;

Parameter

Ite
m

Description

m Indicates the head of the mbuf chain to be freed.

Description
The m_freem kernel service starts the m_free kernel service for each mbuf structure in the chain headed
by the head specified by the m parameter.

Execution Environment
The m_freem kernel service can be called from either the process or interrupt environment.

Return Values
The m_freem service has no return values.

Related reference
m_free Kernel Service
m_get Kernel Service
Related information
I/O Kernel Services

m_get Kernel Service

Purpose
Allocates a memory buffer (mbuf) from the mbuf pool.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

struct mbuf *m_get (wait, type)
int wait;
int type;

384 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

wait Indicates the action to be taken if there are no free mbuf structures. Possible values are:
M_DONTWAIT

Called from either an interrupt or process environment.
M_WAIT

Called from a process environment.

type Specifies a valid mbuf type, as listed in the /usr/include/sys/mbuf.h file.

Description
The m_get kernel service allocates an mbuf structure of the specified type. If the buffer pool is empty
and the wait parameter is set to M_WAIT, the m_get kernel service does not return until an mbuf
structure is available.

Execution Environment
The m_get kernel service can be called from either the process or interrupt environment.

An interrupt handler can specify the wait parameter as M_DONTWAIT only.

Return Values
Upon successful completion, the m_get service returns the address of an allocated mbuf structure. If the
wait parameter is set to M_DONTWAIT and there are no free mbuf structures, the m_get kernel service
returns a null value.

Related reference
m_free Kernel Service
m_freem Kernel Service
Related information
I/O Kernel Services

m_getclr Kernel Service

Purpose
Allocates and zeroes a memory buffer from the mbuf pool.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

struct mbuf *m_getclr (wait, type)
int wait;
int type;

Kernel Services and Subsystem Operations 385

Parameters

Item Description

wait This flag indicates the action to be taken if there are no free mbuf structures. Possible values are:
M_DONTWAIT

Called from either an interrupt or process environment.
M_WAIT

Called from a process environment only.

type Specifies a valid mbuf type, as listed in the /usr/include/sys/mbuf.h file.

Description
The m_getclr kernel service allocates an mbuf structure of the specified type. If the buffer pool is empty
and the wait parameter is set to M_WAIT value, the m_getclr service does not return until an mbuf
structure is available.

The m_getclr kernel service differs from the m_get kernel service in that the m_getclr service zeroes the
data portion of the allocated mbuf structure.

Execution Environment
The m_getclr kernel service can be called from either the process or interrupt environment. Interrupt
handlers can call the m_getclr service only with the wait parameter set to the M_DONTWAIT value.

Return Values
The m_getclr kernel service returns the address of an allocated mbuf structure. If the wait parameter is
set to the M_DONTWAIT value and there are no free mbuf structures, the m_getclr kernel service returns
a null value.

Related reference
m_free Kernel Service
m_freem Kernel Service
m_get Kernel Service
Related information
I/O Kernel Services

m_getclust Macro for mbuf Kernel Services

Purpose
Allocates an mbuf structure from the mbuf buffer pool and attaches a page-sized cluster.

Syntax

#include <sys/mbuf.h>

struct mbuf *m_getclust (wait, type)
int wait;
int type;

386 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

wait Indicates the action to be taken if there are no available mbuf structures. Possible values are:
M_DONTWAIT

Called from either an interrupt or process environment.
M_WAIT

Called from a process environment only.

type Specifies a valid mbuf type from the /usr/include/sys/mbuf.h file.

Description
The m_getclust macro allocates an mbuf structure of the specified type. If the allocation succeeds, the
m_getclust macro then attempts to attach a page-sized cluster to the structure.

If the buffer pool is empty and the wait parameter is set to M_WAIT, the m_getclust macro does not
return until an mbuf structure is available.

Execution Environment
The m_getclust macro can be called from either the process or interrupt environment.

Return Values
The address of an allocated mbuf structure is returned on success. If the wait parameter is set to
M_DONTWAIT and there are no free mbuf structures, the m_getclust macro returns a null value.

Related reference
m_getclustm Kernel Service
Related information
I/O Kernel Services

m_getclustm Kernel Service

Purpose
Allocates an mbuf structure and attaches a cluster of the specified size, both from the mbuf buffer pool.

Syntax

#include <sys/mbuf.h>
#include <net/net_globals.h>

struct mbuf *
m_getclustm(wait, type, size)
int wait;
int type;
int size;

Parameters

Item Description

wait Specifies either the M_DONTWAIT or M_WAIT value.

type Specifies a valid mbuf type from the /usr/include/sys/mbuf.h file.

Kernel Services and Subsystem Operations 387

Item Description

size Specifies the size of the external cluster to attach. Any value less than MAXALLOCSAVE is valid.
For larger values, M_WAIT must be specified.

Description
The m_getclustm service allocates an mbuf structure of the specified type. If successful, the
m_getclustm service then attempts to attach a cluster of the indicated size (specified by the size
parameter) to the mbuf structure. If the buffer pool is empty and the wait parameter is set to M_WAIT,
the m_get service does not return until an mbuf structure is available. Interrupt handlers should call this
service only with the wait parameter set to M_DONTWAIT.

Execution Environment
The m_getclustm kernel service can be called from either the process or interrupt environment.

An interrupt handler can specify the wait parameter as M_DONTWAIT only.

Return Values
The m_getclustm kernel service returns the address of an allocated mbuf structure on success. If the
wait parameter is set to M_DONTWAIT and there are no free mbuf structures, the m_getclustm kernel
service returns null.

Related reference
m_clget Macro for mbuf Kernel Services
m_free Kernel Service
m_freem Kernel Service
m_get Kernel Service
m_getclust Macro for mbuf Kernel Services
Related information
I/O Kernel Services

m_gethdr Kernel Service

Purpose
Allocates a header memory buffer from the mbuf pool.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

struct mbuf *
m_gethdr (wait, type)
int wait;
int type;

Parameters

Item Description

wait Specifies either the M_DONTWAIT or M_WAIT value.

type Specifies the valid mbuf type from the /usr/include/sys/mbuf.h file.

388 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The m_gethdr kernel service allocates an mbuf structure of the specified type. If the buffer pool is empty
and the wait parameter is set to M_WAIT, the m_gethdr kernel service will not return until an mbuf
structure is available. Interrupt handlers should call this kernel service only with the wait parameter set to
M_DONTWAIT. The M_PKTHDR flag is set for the returned mbuf structure.

Execution Environment
The m_gethdr kernel service can be called from either the process or interrupt environment.

An interrupt handler can specify the wait parameter as M_DONTWAIT only.

Return Values
The address of an allocated mbuf structure is returned on success. If the wait parameter is set to
M_DONTWAIT and there are no free mbuf structure, the m_gethdr kernel service returns null.

Related Information
The m_free kernel service, m_freem kernel service.

I/O Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Related reference
m_free Kernel Service
m_freem Kernel Service
Related information
I/O Kernel Services

M_HASCL Macro for mbuf Kernel Services

Purpose
Determines if an mbuf structure has an attached cluster.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

struct mbuf * m;
M_HASCL (m);

Parameter

Ite
m

Description

m Indicates the address of the mbuf structure in question.

Description
The M_HASCL macro determines if an mbuf structure has an attached cluster.

Kernel Services and Subsystem Operations 389

Execution Environment
The M_HASCL macro can be called from either the process or interrupt environment.

Example
The M_HASCL macro can be used as in the following example:

struct mbuf *m;
if (M_HASCL(m))
 printf("mbuf has attached cluster");

Related information
I/O Kernel Services

m_pullup Kernel Service

Purpose
Adjusts an mbuf chain so that a given number of bytes is in contiguous memory in the data area of the
head mbuf structure.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

struct mbuf *m_pullup (m, size)
struct mbuf *m;
int size;

Parameters

Item Description

m Specifies the mbuf chain to be adjusted.

size Specifies the number of bytes to be contiguous.

Description
The m_pullup kernel service guarantees that the mbuf structure at the head of a chain has in contiguous
memory within its data area at least the number of data bytes specified by the size parameter.

Execution Environment
The m_pullup kernel service can be called from either the process or interrupt environment.

Return Values
Upon successful completion, the head structure in the altered mbuf chain is returned.

A value of null is returned and the original chain is deallocated under the following circumstances:

• The size of the chain is less than indicated by the size parameter.
• The number indicated by the size parameter is greater than the data portion of the head-size mbuf

structure.

390 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related information
I/O Kernel Services

m_reg Kernel Service

Purpose
Registers expected mbuf usage.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

void m_reg (mbp)
struct mbreq mbp;

Parameter

Ite
m

Description

mb
p

Defines the address of an mbreq structure that specifies expected mbuf usage.

Description
The m_reg kernel service lets users of mbuf services specify initial requirements. The m_reg kernel
service also allows the buffer pool low-water and deallocation marks to be adjusted based on expected
usage. Its use is recommended for better control of the buffer pool.

When the number of free mbuf structures falls below the low-water mark, the total mbuf pool is
expanded. When the number of free mbuf structures rises above the deallocation mark, the total mbuf
pool is contracted and resources are returned to the system.

Execution Environment
The m_reg kernel service can be called from the process environment only.

Return Values
The m_reg service has no return values.

Related reference
mbreq Structure for mbuf Kernel Services
m_dereg Kernel Service
Related information
I/O Kernel Services

md_restart_block_read Kernel Service

Purpose
A copy of the RESTART_BLOCK structure in the NVRAM header will be placed in the caller's buffer.

Kernel Services and Subsystem Operations 391

Syntax

#include <sys/mdio.h>

int md_restart_block_read (md)
 struct mdio *md;

Parameters

Ite
m

Description

md Specifies the address of the mdio structure. The mdio structure contains the following fields:
md_data

Pointer to the data buffer.
md_size

Number of bytes in the data buffer.
md_addr

Contains the value PMMode on return in the least significant byte.

Description
The RestartBlock which is in the NVRAM header will be copied to the user supplied buffer. This block is a
communication vehicle for the software and the firmware.

Return Values
Returns 0 for successful completion.

Item Description

ENOMEM Indicates that there was not enough room in the user supplied buffer to contain the
RestartBlock.

EINVAL Indicates this is not a PowerPC® reference platform.

Prerequisite Information
Kernel Extensions and Device Driver Management Kernel Services in Kernel Extensions and Device
Support Programming Concepts.

Related information
Machine Device Driver

md_restart_block_upd Kernel Service

Purpose
The caller supplied RestartBlock will be copied to the NVRAM header.

Syntax

#include <sys/mdio.h>

int md_restart_block_upd (md, pmmode)
 struct mdio *md;
 unsigned char pmmode;

392 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The 8-bit value in pmmode will be stored into the NVRAM header at the PMMode offset.The RestartBlock
which is in the caller's buffer will be copied to the NVRAM after the RestartBlock checksum is calculated
and a new Crc1 value is computed.

Parameters

Item Description

md Specifies the address of the mdio structure. The mdio structure contains the following fields:
md_data

Pointer to the RestartBlock structure..

pmmode Value to be stored into PMMode in the NVRAM header.

Return Values
Returns 0 for successful completion.

Item Description

EINVAL Indicates this is not a PowerPC reference platform.

Prerequisite Information
Kernel Extensions and Device Driver Management Kernel Services in Kernel Extensions and Device
Support Programming Concepts.

Related information
Machine Device Driver

MTOCL Macro for mbuf Kernel Services

Purpose
Converts a pointer to an mbuf structure to a pointer to the head of an attached cluster.

Syntax

#include <sys/mbuf.h>

struct mbuf * m;
MTOCL (m);

Parameter

Ite
m

Description

m Indicates the address of the mbuf structure in question.

Description
The MTOCL macro converts a pointer to an mbuf structure to a pointer to the head of an attached cluster.

The MTOCL macro can be used as in the following example:

Kernel Services and Subsystem Operations 393

caddr_t attcls;
struct mbuf *m;
attcls = (caddr_t) MTOCL(m);

Execution Environment
The MTOCL macro can be called from either the process or interrupt environment.

Related reference
M_HASCL Macro for mbuf Kernel Services
Related information
I/O Kernel Services

MTOD Macro for mbuf Kernel Services

Purpose
Converts a pointer to an mbuf structure to a pointer to the data stored in that mbuf structure.

Syntax

#include <sys/mbuf.h>

MTOD (m, type);

Parameters

Item Description

m Identifies the address of an mbuf structure.

type Indicates the type to which the resulting pointer should be cast.

Description
The MTOD macro converts a pointer to an mbuf structure into a pointer to the data stored in the mbuf
structure. This macro can be used as in the following example:

char *bufp;
 bufp = MTOD(m, char *);

Execution Environment
The MTOD macro can be called from either the process or interrupt environment.

Related reference
DTOM Macro for mbuf Kernel Services
Related information
I/O Kernel Services

M_XMEMD Macro for mbuf Kernel Services

Purpose
Returns the address of an mbuf cross-memory descriptor.

394 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/mbuf.h>
#include <sys/xmem.h>

struct mbuf * m;

M_XMEMD (m);

Parameter

Ite
m

Description

m Specifies the address of the mbuf structure in question.

Description
The M_XMEMD macro returns the address of an mbuf cross-memory descriptor.

Execution Environment
The M_XMEMD macro can be called from either the process or interrupt environment.

Example
The M_XMEMD macro can be used as in the following example:

struct mbuf *m;
struct xmem *xmemd;

xmemd = M_XMEMD(m);

Related information
I/O Kernel Services

mycpu Kernel Service

Purpose
Gets the bind ID of the processor we are running on.

Syntax

#include <sys/processor.h>

cpu_t myc ()

Description
The mycpu kernel service returns the bind ID of the processor we are currently running on.

Execution Environment
The mycpu kernel services can be called from either the process or interrupt environment. This routine
must be called disabled. Otherwise, the calling thread might be preempted and resume execution on a
different processor resulting in a stale value being returned.

Kernel Services and Subsystem Operations 395

Return Values
The mycpu kernel service returns the bind ID of the current processor.

Related reference
bindprocessor Kernel Service

n
The following kernel services begin with the with the letter n.

nameToXfid() Kernel Service

Purpose
Obtains the xfid value and attributes for a specific file name.

Syntax

#include <sys/xfops.h>
#include <sys/vattr.h>

int nameToXfid(char *pathname,
 struct xfid *xfp,
 struct vattr *vap,
 long flags);

Description
A kernel extension might need to convert a path name to an xfid_t structure. The nameToXfid()
kernel service returns the xfid value for a specific path name.

Parameters
pathname

Full path name of the file for which an xfid value is needed.
xfp

Pointer to an xfid_t structure to hold the xfid value that is set by this routine.
vap

Pointer to a vattr structure to be entered by this routine. No attributes are set if the pointer is null.
flags

Operation modifiers. This parameter must be set to zero.

Return values
0

Indicates success. The xfid value and the optional vattr structure are returned.
ENOENT

Name not found.
EPERM

No permission for lookup.
EINVAL

Invalid parameter is specified.

net_attach Kernel Service

396 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Opens a communications I/O device handler.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <aixif/net_if.h>
#include <sys/comio.h>

int net_attach (kopen_ext, device_req, netid, netfpp)
struct kopen_ext * kopen_ext;
struct device_req * device_req;
struct netid_list * netid;
struct file ** netfpp;

Parameters

Item Description

kopen_ext Specifies the device handler kernel open extension.

device_req Indicates the address of the device description structure.

netid Indicates the address of the network ID list.

netfpp Specifies the address of the variable that will hold the returned file pointer.

Description
The net_attach kernel service opens the device handler specified by the device_req parameter and then
starts all the network IDs listed in the address specified by the netid parameter. The net_attach service
then sleeps and waits for the asynchronous start completion notifications from the net_start_done
kernel service.

Execution Environment
The net_attach kernel service can be called from the process environment only.

Return Values
Upon success, a value of 0 is returned and a file pointer is stored in the address specified by the
netfpp parameter. Upon failure, the net_attach service returns either the error codes received from the
fp_opendev or fp_ioctl kernel service, or the value ETIMEDOUT. The latter value is returned when an
open operation times out.

Related reference
net_detach Kernel Service
net_start Kernel Service
net_start_done Kernel Service
Related information
Network Kernel Services

net_detach Kernel Service

Purpose
Closes a communications I/O device handler.

Kernel Services and Subsystem Operations 397

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <aixif/net_if.h>

int net_detach (netfp)
struct file *netfp;

Parameter

Item Description

netfp Points to an open file structure obtained from the net_attach kernel service.

Description
The net_detach kernel service closes the device handler associated with the file pointer specified by the
netfp parameter.

Execution Environment
The net_detach kernel service can be called from the process environment only.

Return Values
The net_detach service returns the value it obtains from the fp_close service.

Related reference
fp_close Kernel Service
net_attach Kernel Service
Related information
Network Kernel Services

net_error Kernel Service

Purpose
Handles errors for communication network interface drivers.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>
#include <sys/comio.h>

net_error (ifp, error_code, netfp)
struct ifnet *ifp;
int error_code;
struct file *netfp;

Parameters

Item Description

error_code Specifies the error code listed in the /usr/include/sys/comio.h file.

ifp Specifies the address of the ifnet structure for the device with an error.

398 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

netfp Specifies the file pointer for the device with an error.

Description
The net_error kernel service provides generic error handling for communications network interface (if)
drivers. Network interface (if) kernel extensions call this service to trace errors and, in some instances,
perform error recovery.

Errors traced include those:

• Received from the communications adapter drivers.
• Occurring during input and output packet processing.

Execution Environment
The net_error kernel service can be called from either the process or interrupt environment.

Return Values
The net_error service has no return values.

Related reference
net_attach Kernel Service
net_detach Kernel Service
Related information
Network Kernel Services

net_sleep Kernel Service

Purpose
Sleeps on the specified wait channel.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/pri.h>

net_sleep (chan, flags)
int chan;
int flags;

Parameters

Item Description

chan Specifies the wait channel to sleep upon.

flags Sleep flags described in the sleep kernel service.

Description
The net_sleep kernel service puts the caller to sleep waiting on the specified wait channel. If the caller
holds the network lock, the net_sleep kernel service releases the lock before sleeping and reacquires the
lock when the caller is awakened.

Kernel Services and Subsystem Operations 399

Execution Environment
The net_sleep kernel service can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates that the sleeping process was not awakened by a signal.

1 Indicates that the sleeper was awakened by a signal.

Related reference
net_wakeup Kernel Service
sleep Kernel Service
Related information
Network Kernel Services

net_start Kernel Service

Purpose
Starts network IDs on a communications I/O device handler.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <aixif/net_if.h>
#include <sys/comio.h>

struct file *net_start (netfp, netid)
struct file *netfp;
struct netid_list *netid;

Parameters

Item Description

netfp Specifies the file pointer of the device handler.

netid Specifies the address of the network ID list.

Description
The net_start kernel service starts all the network IDs listed in the list specified by the netid parameter.
This service then waits for the asynchronous notification of completion of starts.

Execution Environment
The net_start kernel service can be called from the process environment only.

Return Values
The net_start service uses the return value returned from a call to the fp_ioctl service requesting the
CIO_START operation.

400 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

ETIMEDOUT Indicates that the start for at least one network ID timed out waiting for start-done
notifications from the device handler.

Related reference
fp_ioctl Kernel Service
net_attach Kernel Service
net_start_done Kernel Service
Related information
Network Kernel Services

net_start_done Kernel Service

Purpose
Starts the done notification handler for communications I/O device handlers.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <aixif/net_if.h>
#include <sys/comio.h>

void net_start_done (netid, sbp)
struct netid_list *netid;
struct status_block *sbp;

Parameters

Item Description

netid Specifies the address of the network ID list for the device being started.

sbp Specifies the status block pointer returned from the device handler.

Description
The net_start_done kernel service is used to mark the completion of a network ID start operation. When
all the network IDs listed in the netid parameter have been started, the net_attach kernel service returns
to the caller. The net_start_done service should be called when a CIO_START_DONE status block is
received from the device handler. If the status block indicates an error, the start process is immediately
aborted.

Execution Environment
The net_start_done kernel service can be called from either the process or interrupt environment.

Return Values
The net_start_done service has no return values.

Related reference
net_attach Kernel Service
net_start Kernel Service

Kernel Services and Subsystem Operations 401

Related information
CIO_START_DONE subroutine
Network Kernel Services

net_wakeup Kernel Service

Purpose
Wakes up all sleepers waiting on the specified wait channel.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

net_wakeup (chan)
int chan;

Parameter

Item Description

chan Specifies the wait channel.

Description
The net_wakeup service wakes up all network processes sleeping on the specified wait channel.

Execution Environment
The net_wakeup kernel service can be called from either the process or interrupt environment.

Return Values
The net_wakeup service has no return values.

Related reference
net_sleep Kernel Service
Related information
Network Kernel Services

net_xmit Kernel Service

Purpose
Transmits data using a communications device handler .

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <aixif/net_if.h>

int net_xmit (ifp, m, netfp, lngth, m_ext)
struct ifnet * ifp;
struct mbuf * m;

402 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

struct file * netfp;
int lngth;
struct mbuf * m_ext;

Parameters

Item Description

ifp Indicates an address of the ifnet structure for this interface.

m Specifies the address of an mbuf structure containing the data to transmit.

netfp Indicates the open file pointer obtained from the net_attach kernel service.

lngth Indicates the total length of the buffer being transmitted.

m_ext Indicates the address of an mbuf structure containing a write extension.

Description
The net_xmit kernel service builds a uio structure and then invokes the fp_rwuio service to transmit a
packet. The net_xmit_trace kernel service is an alternative for network interfaces that choose not to use
the net_xmit kernel service.

Execution Environment
The net_xmit kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

0 Indicates that the packet was transmitted successfully.

ENOBUFS Indicates that buffer resources were not available.

The net_xmit kernel service returns a value from the fp_rwuio service when an error occurs during a call
to that service.

Related reference
fp_rwuio Kernel Service
net_xmit_trace Kernel Service
Related information
Network Kernel Services

net_xmit_trace Kernel Service

Purpose
Traces transmit packets.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int net_xmit_trace (ifp, mbuf)
struct ifnet *ifp;
struct mbuf *mbuf;

Kernel Services and Subsystem Operations 403

Parameters

Item Description

ifp Designates the address of the ifnet structure for this interface.

mbuf Designates the address of the mbuf structure to be traced.

Description
The net_xmit_trace kernel service traces the data pointed to by the mbuf parameter. This kernel service
was added for those network interfaces that choose not to use the net_xmit kernel service to transmit
packets. An application program (the iptrace command) reads the trace data and writes it to a file for the
ipreport command to interpret.

Execution Environment
The net_xmit_trace kernel service can be called from either the process or interrupt environment.

Return Values
The net_xmit_trace kernel service has no return values.

Related reference
net_xmit Kernel Service
Related information
ipreport subroutine
iptrace subroutine
Network Kernel Services

NLuprintf Kernel Service

Purpose
Submits a request to print an internationalized message to a process' controlling terminal.

Syntax

#include <sys/uprintf.h>

int NLuprintf (Uprintf)
struct uprintf *Uprintf;

Parameters

Item Description

Uprintf Points to a uprintf request structure.

Description
The NLuprintf kernel service submits a internationalized kernel message request with the uprintf request
structure specified by the Uprintf parameter as input. Once the request has been successfully submitted,
the uprintfd daemon retrieves, converts, formats, and writes the message described by the uprintf
request structure to a process' controlling terminal.

404 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The caller must initialize the uprintf request structure before calling the NLuprintf kernel service. Fields
in the uprintf request structure use several constants. The following constants are defined in the /usr/
include/sys/uprintf.h file:

• UP_MAXSTR
• UP_MAXARGS
• UP_MAXCAT
• UP_MAXMSG

The uprintf request structure consists of the following fields:

Kernel Services and Subsystem Operations 405

Field Description

Uprintf->upf_defmsg Points to a default message format. The default
message format is a character string that contains
either or both of two types of objects:

• Plain characters, which are copied to the message
output stream

• Conversion specifications, each of which causes zero
or more items to be fetched from the Uprintf->arg
value parameter array

Each conversion specification consists of a % (percent
sign) followed by a character that indicates the type of
conversion to be applied:

%
Performs no conversion. Prints a % character.

d, i
Accepts an integer value and converts it to signed
decimal notation.

u
Accepts an integer value and converts it to
unsigned decimal notation.

o
Accepts an integer value and converts it to
unsigned octal notation.

x
Accepts an integer value and converts it to
unsigned hexadecimal notation.

c
Accepts and prints a char value.

s
Accepts a value as a string (character pointer).
Characters from the string are printed until a \0
(null character) is encountered.

Field-width or precision conversion specifications are
not supported.

The maximum length of the default message-format
string pointed to by the Uprintf->upf_defmsg
field is the number of characters specified by the
UP_MAXSTR constant. The Uprintf->upf_defmsg
field must be a nonnull character.

The default message format is used in constructing
the kernel message if the message format
described by the Uprintf->upf_NLsetno and
Uprint->upf_NLmsgno fields cannot be retrieved
from the message catalog specified by Uprintf-
>upf_NLcatname. The conversion specifications
contained within the default message format should
match those contained in the message format
specified by the upf_NLsetno and upf_NLmsgno
fields.

406 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Field Description

Uprintf->upf_arg[UP_MAXARGS] Specifies from zero to the number of value parameters
specified by the UP_MAXARGS constant. A Value
parameter may be a integer value, a character value,
or a string value (character pointer). Strings are limited
in length to the number of characters specified by the
UP_MAXSTR constant. String value parameters must
be nonnull characters. The number, type, and order of
items in the Value parameter array should match the
conversion specifications within the message format
string.

Uprintf->upf_NLcatname Points to the message catalog file name. If the
catalog file name referred to by the Uprintf-
>upf_NLcatname field begins with a / (slash), it is
assumed to be an absolute path name. If the catalog
file name is not an absolute path name, the process
environment determines the directory paths to search.
The maximum length of the catalog file name is
limited to the number of characters specified by the
UP_MAXCAT constant. The value of the Uprintf-
>upf_NLcatname field must be a nonnull character.

Uprintf->upf_NLsetno Specifies the set ID.

Uprintf->upf_NLmsgno Specifies the message ID. The Uprintf-
>upf_NLsetno and Uprintf->upf_NLmsgno fields
specify a particular message format string to be
retrieved from the message catalog specified by the
Uprintf->upf_NLcatname field.

The maximum length of the constructed kernel
message is limited to the number of characters
specified by the UP_MAXMSG constant. Messages
larger then the number of characters specified by the
UP_MAXMSG constant are discarded.

Execution Environment
The NLuprintf kernel service can be called from the process environment only.

Return Values
Item Description

0 Indicates a successful operation.

ENOMEM Indicates that memory is not available to buffer the request.

ENODEV Indicates that a controlling terminal does not exist for the process.

ESRCH Indicates the uprintfd daemon is not active. No requests may be submitted.

EINVAL Indicates that the message catalog file-name pointer is null or the catalog file name is greater than the number of
characters specified by the UP_MAXCAT constant.

EINVAL Indicates that a string-value parameter pointer is null or the string-value parameter is greater than the number of
characters specified by the UP_MAXCAT constant.

Kernel Services and Subsystem Operations 407

Item Description

EINVAL Indicates one of the following:

• Default message format pointer is null.
• Number of characters in the default message format is greater than the number specified by the UP_MAXSTR

constant.
• Number of conversion specifications contained within the default message format is greater than the number

specified by the UP_MAXARGS constant.

Related reference
uprintf Kernel Service
Related information
uprintfd subroutine
Process and Exception Management Kernel Services

ns_add_demux Network Kernel Service

Purpose
Adds a demuxer for the specified type of network interface.

Syntax

#include <sys/ndd.h>
#include <sys/cdli.h>

int ns_add_demux (ndd_type, demux)
 u_long ndd_type;
 struct ns_demuxer * demux;

Parameters

Item Description

ndd_type Specifies the interface type of the demuxer to be added.

demux Specifies the pointer to an ns_demux structure that defines the demuxer.

Description
The ns_add_demux network service adds the specified demuxer to the list of available network
demuxers. Only one demuxer per network interface type can exist. An interface type describes a certain
class of network devices that have the same characteristics (such as ethernet or token ring). The values
of the ndd_type parameter listed in the /usr/include/sys/ndd.h file are the numbers defined by Simple
Network Management Protocol (SNMP). If the desired type is not in the ndd.h file, the SNMP value should
be used if it is defined. Otherwise, any undefined type above NDD_MAX_TYPE may be used.

Note: The ns_demuxer structure must be allocated and pinned by the network demuxer.

Examples
The following example illustrates the ns_add_demux network service:

struct ns_demuxer demuxer;
bzero (&demuxer, sizeof (demuxer));
demuxer.nd_add_filter = eth_add_filter;
demuxer.nd_del_filter = eth_del_filter;
demuxer.nd_add_status = eth_add_status;
demuxer.nd_del_status = eth_del_status;
demuxer.nd_receive = eth_receive;

408 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

demuxer.nd_status = eth_status;
demuxer.nd_response = eth_response;
demuxer.nd_use_nsdnx = 1;
ns_add_demux(NDD_ISO88023, &demuxer);

Return Values

Item Description

0 Indicates the operation was successful.

EEXIST Indicates a demuxer already exists for the given type.

ns_add_filter Network Service

Purpose
Registers a receive filter to enable the reception of packets.

Syntax

#include <sys/cdli.h>
#include <sys/ndd.h>

int ns_add_filter (nddp, filter, len, ns_user)
 struct ndd * nddp;
 caddr_t filter;
 int len;
 struct ns_user * ns_user;

Parameters

Item Description

nddp Specifies the ndd structure to which this add request applies.

filter Specifies the pointer to the receive filter.

len Specifies the length in bytes of the receive filter to which the filter parameter points.

ns_user Specifies the pointer to a ns_user structure that defines the user.

Description
The ns_add_filter network service registers a receive filter for the reception of packets and enables
a network demuxer to route packets to the appropriate users. The add request is passed on to the
nd_add_filter function of the demuxer for the specified NDD. The caller of the ns_add_filter network
service is responsible for relinquishing filters before calling the ns_free network service.

Examples
The following example illustrates the ns_add_filter network service:

struct ns_8022 dl;
struct ns_user ns_user;

dl.filtertype = NS_LLC_DSAP_SNAP;
dl.dsap = 0xaa;
dl.orgcode[0] = 0x0;
dl.orgcode[1] = 0x0;
dl.orgcode[2] = 0x0;
dl.ethertype = 0x0800;

Kernel Services and Subsystem Operations 409

ns_user.isr = NULL;
ns_user.isr_data = NULL;
ns_user.protoq = &ipintrq;
ns_user.netisr = NETISR_IP;
ns_user.ifp = ifp;
ns_user.pkt_format = NS_PROTO_SNAP;

ns_add_filter(nddp, &dl, sizeof(dl), &ns_user);

There are two ways a user (that is, the entity that is interested in receiving incoming packets) can be
invoked when a packet arrives. In the first method, a protocol queue can be defined in which incoming
packets are queued upon receipt, and the specified netisr is scheduled to let the user know that there
are new packets in the queue. For example, the preceding code assumes a network interrupt service
request (netisr) with the name NETISR_IP has been defined. When a packet arrives for the specified user,
the packet is queued on the specified protocol queue (in this case, ipintrq) and the NETISR_IP request
is scheduled to be executed. Because of its complexity, this mode is not currently being used by any
network user.

The preferred way of receiving incoming packets is by registering an interrupt service request (isr)
function that handles incoming packets; ns_user.isr points to the function that will get invoked whenever
a packet that matches the specified filter arrives. This function should expect the following four
arguments:

void isr (ndd_t *nddp, mbuf *m, caddr_t macp, caddr_t extp)

where

Item Description

nddp Pointer to the ndd structure representing the adapter where the packet was received.

m Pointer to the mbuf structure representing the packet that was received.

macp Pointer to the start of the MAC header of the packet that was received.

extp Pointer to the (optional) structure specified in ns_user.isr_data, or NULL if none was
specified.

In the following code, the function bpf_cdli_tap will be called when a new packet arrives; a pointer to the
bp structure will be passed as the fourth parameter when bpf_cdli_tap is called.

dl.filtertype = NS_TAP;

ns_user.isr = bpf_cdli_tap;
ns_user.isr_data = (caddr_t) bp;
ns_user.protoq = (struct ifqueue *) NULL;
ns_user.netisr = 0;
ns_user.ifp = (struct ifnet *) NULL;
ns_user.pkt_format = NS_INCLUDE_MAC;

Note: Both modes of receiving packets are mutually exclusive. In other words, if the ns_user.protoq
member is non-null, the protocol queue method is used; otherwise, the direct isr function method is used,
and the ns_user.isr function pointer must be a valid function pointer.

In both cases, ns_user.ifp can optionally point to the ifnet structure of the interface where the packets
will be received. If it is non-null, the state of the interface will be verified when a packet is received. If the
interface is not up, the packet will be dropped and it will not be delivered to the user. If the interface is
up, the statistics for the number of received packets will be incremented, and the ifp will be saved in the
packet's mbuf structure's m_pkthdr.rcvif field.

The ns_user.pkt_format member determines how much of the MAC header the user is interested in
receiving. Its possible values are:

Item Description

NS_PROTO Do not include the LLC header (but include the SNAP header, if there is
one).

410 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

NS_PROTO_SNAP Do not include the LLC SNAP header (that is, remove the entire MAC
header and deliver only the data).

NS_INCLUDE_LLC Include the LLC header.

NS_INCLUDE_MAC Include the entire MAC header.

NS_HANDLE_HEADERS Instead of passing the specified ns_user.isr_data structure by itself,
build an isr_data_ext structure containing header information, as well
as a pointer to the specified ns_user.isr_data. These are the fields that
will be set in the isr_data_ext structure:
isr_data_ext.isr_data

Pointer to the structure passed as ns_user.isr_data.
isr_data_ext.dstp

Pointer to the destination MAC address.
isr_data_ext.dstlen

Length of the destination MAC address.
isr_data_ext.srcp

Pointer to the source MAC address.
isr_data_ext.seclen

Length of the source MAC address.
isr_data_ext.segp

Pointer to the routing segment.
isr_data_ext.seglen

Length of the routing segment.
isr_data_ext.llcp

Pointer to the LLC.
isr_data_ext.llclen

Length of the LLC.
It is possible to combine NS_HANDLE_HEADERS with one
of the other flags by means of a logical OR operator
(for example, ns_user.pkt_format = NS_INCLUDE_MAC |
NS_HANDLE_HEADERS). The other flags, however, are mutually
exclusive.

Return Values

Ite
m

Description

0 Indicates the operation was successful.

The network demuxer may supply other return values.

ns_add_status Network Service

Purpose
Adds a status filter for the routing of asynchronous status.

Kernel Services and Subsystem Operations 411

Syntax

#include <sys/cdli.h>
#include <sys/ndd.h>

int ns_add_status (nddp, statfilter, len, ns_statuser)
 struct ndd * nddp;
 caddr_t statfilter;
 int len;
 struct ns_statuser * ns_statuser;

Parameters

Item Description

nddp Specifies a pointer to the ndd structure to which this add request applies.

statfilter Specifies a pointer to the status filter.

len Specifies the length, in bytes, of the value of the statfilter parameter.

ns_statuser Specifies a pointer to an ns_statuser structure that defines this user.

Description
The ns_add_status network service registers a status filter. The add request is passed on to the
nd_add_status function of the demuxer for the specified network device driver (NDD). This network
service enables the user to receive asynchronous status information from the specified device.

Note: The user's status processing function is specified by the isr field of the ns_statuser structure.
The network demuxer calls the user's status processing function directly when asynchronous status
information becomes available. Consequently; the status processing function cannot be a scheduled
routine. The caller of the ns_add_status network service is responsible for relinquishing status filters
before calling the ns_free network service.

Examples
The following example illustrates the ns_add_status network service:

struct ns_statuser user;
struct ns_com_status filter;

filter.filtertype = NS_STATUS_MASK;
filter.mask = NDD_HARD_FAIL;
filter.sid = 0;
user.isr = status_fn;
user.isr_data = whatever_makes_sense;

error = ns_add_status(nddp, &filter, sizeof(filter), &user);

Return Values

Ite
m

Description

0 Indicates the operation was successful.

The network demuxer may supply other return values.

412 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

ns_alloc Network Service

Purpose
Allocates use of a network device driver (NDD).

Syntax

#include <sys/ndd.h>

int ns_alloc (nddname, nddpp)
 char * nddname;
 struct ndd ** nddpp;

Parameters

Item Description

nddname Specifies the device name to be allocated.

nddpp Indicates the address of the pointer to a ndd structure.

Description
The ns_alloc network service searches the Network Service (NS) device chain to find the device driver
with the specified nddname parameter. If the service finds a match, it increments the reference count for
the specified device driver. If the reference count is incremented to 1, the ndd_open subroutine specified
in the ndd structure is called to open the device driver.

Examples
The following example illustrates the ns_alloc network service:

struct ndd *nddp;
error = ns_alloc("en0", &nddp);

Return Values
If a match is found and the ndd_open subroutine to the device is successful, a pointer to the ndd
structure for the specified device is stored in the nddpp parameter. If no match is found or the open of the
device is unsuccessful, a non-zero value is returned.

Item Description

0 Indicates the operation was successful.

ENODEV Indicates an invalid network device.

ENOENT Indicates no network demuxer is available for this device.

The ndd_open routine may specify other return values.

ns_attach Network Service

Purpose
Attaches a network device to the network subsystem.

Kernel Services and Subsystem Operations 413

Syntax

#include <sys/ndd.h>

int ns_attach (nddp)
 struct ndd * nddp;

Parameters

Item Description

nddp Specifies a pointer to an ndd structure describing the device to be attached.

Description
The ns_attach network service places the device into the available network service (NS) device chain.
The network device driver (NDD) should be prepared to be opened after the ns_attach network service is
called.

Note: The ndd structure is allocated and initialized by the device. It should be pinned.

Examples
The following example illustrates the ns_attach network service:

struct ndd ndd;
ndd.ndd_name = "en0";
ndd.ndd_addrlen = 6;
ndd.ndd_hdrlen = 14;
ndd.ndd_mtu = ETHERMTU;
ndd.ndd_mintu = 60;
ndd.ndd_type = NDD_ETHER;
ndd.ndd_flags =
 NDD_BROADCAST | NDD_SIMPLEX;
ndd.ndd_open = entopen;
ndd.ndd_output = entwrite;
ndd.ndd_ctl = entctl;
ndd.ndd_close = entclose;
.
.
.
ns_attach(&ndd);

Return Values

Item Description

0 Indicates the operation was successful.

EEXIST Indicates the device is already in the available NS device chain.

ns_del_demux Network Service

Purpose
Deletes a demuxer for the specified type of network interface.

Syntax

#include <sys/ndd.h>

int ns_del_demux (ndd_type)
 u_long ndd_type;

414 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

ndd_type Specifies the network interface type of the demuxer that is to be deleted.

Description
If the demuxer is not currently in use, the ns_del_demux network service deletes the specified demuxer
from the list of available network demuxers. A demuxer is in use if a network device driver (NDD) is open
for the demuxer.

Examples
The following example illustrates the ns_del_demux network service:

ns_del_demux(NDD_ISO88023);

Return Values

Item Description

0 Indicates the operation was successful.

ENOENT Indicates the demuxer of the specified type does not exist.

ns_del_filter Network Service

Purpose
Deletes a receive filter.

Syntax

#include <sys/cdli.h>
#include <sys/ndd.h>

int ns_del_filter (nddp, filter, len)
 struct ndd * nddp;
 caddr_t filter;
 int len;

Parameters

Item Description

nddp Specifies the ndd structure that this delete request is for.

filter Specifies the pointer to the receive filter.

len Specifies the length in bytes of the receive filter.

Description
The ns_del_filter network service deletes the receive filter from the corresponding network demuxer.
This disables packet reception for packets that match the filter. The delete request is passed on to the
nd_del_filter function of the demuxer for the specified network device driver (NDD).

Kernel Services and Subsystem Operations 415

Examples
The following example illustrates the ns_del_filter network service:

struct ns_8022 dl;

dl.filtertype = NS_LLC_DSAP_SNAP;
dl.dsap = 0xaa;
dl.orgcode[0] = 0x0;
dl.orgcode[1] = 0x0;
dl.orgcode[2] = 0x0;
dl.ethertype = 0x0800;
ns_del_filter(nddp, &dl, sizeof(dl));

Return Values

Ite
m

Description

0 Indicates the operation was successful.

The network demuxer may supply other return values.

Related reference
ns_add_filter Network Service
ns_alloc Network Service

ns_del_status Network Service

Purpose
Deletes a previously added status filter.

Syntax

#include <sys/cdli.h>
#include <sys/ndd.h>

int ns_del_status (nddp, statfilter, len)
 struct ndd * nddp;
 caddr_t statfilter;
 int len;

Parameters

Item Description

nddp Specifies the pointer to the ndd structure to which this delete request applies.

statfilter Specifies the pointer to the status filter.

len Specifies the length, in bytes, of the value of the statfilter parameter.

Description
The ns_del_status network service deletes a previously added status filter from the corresponding
network demuxer. The delete request is passed on to the nd_del_status function of the demuxer for
the specified network device driver (NDD). This network service disables asynchronous status notification
from the specified device.

416 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Examples
The following example illustrates the ns_del_status network service:

error = ns_add_status(nddp, &filter,
sizeof(filter));

Return Values

Ite
m

Description

0 Indicates the operation was successful.

The network demuxer may supply other return values.

ns_detach Network Service

Purpose
Removes a network device from the network subsystem.

Syntax

#include <sys/ndd.h>

int ns_detach (nddp)
 struct ndd * nddp;

Parameters

Item Description

nddp Specifies a pointer to an ndd structure describing the device to be detached.

Description
The ns_detach service removes the ndd structure from the chain of available NS devices.

Examples
The following example illustrates the ns_detach network service:

ns_detach(nddp);

Return Values

Item Description

0 Indicates the operation was successful.

ENOENT Indicates the specified ndd structure was not found.

EBUSY Indicates the network device driver (NDD) is currently in use.

Kernel Services and Subsystem Operations 417

ns_free Network Service

Purpose
Relinquishes access to a network device.

Syntax

#include <sys/ndd.h>

void ns_free (nddp)
 struct ndd * nddp;

Parameters

Item Description

nddp Specifies the ndd structure of the network device that is to be freed from use.

Description
The ns_free network service relinquishes access to a network device. The ns_free network service also
decrements the reference count for the specified ndd structure. If the reference count becomes 0, the
ns_free network service calls the ndd_close subroutine specified in the ndd structure.

Examples
The following example illustrates the ns_free network service:

struct ndd *nddp
ns_free(nddp);

Files

Item Description

net/cdli.c

p
The following kernel services begin with the with the letter p.

__pag_getid System Call

Purpose
Invokes the kcred_getpagid kernel service and returns the PAG identifier for that PAG name.

Syntax
int __pag_getid (name)
char *name;

418 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
Given a PAG type name, the __pag_getid invokes the kcred_getpagid kernel service and returns the PAG
identifier for that PAG name.

Parameters
Item Description

name A char * value which references a NULL-terminated string of not more than
PAG_NAME_LENGTH_MAX characters.

Return Values
If successful, a value greater than or equal to 0 is returned and represents the PAG type. This value
may be used in subsequent calls to other PAG system calls that require a type parameter on input. If
unsuccessful, -1 is returned and the errno global variable is set to a value reflecting the cause of the error.

Error Codes
Item Description

ENOENT The name parameter doesn't refer to an existing PAG type.

ENAMETOOLONG The name parameter refers to a string that is longer than PAG_NAME_LENGTH_MAX.

Related reference
__pag_getname System Call
__pag_setname System Call
kcred_getpagid Kernel Service

__pag_getname System Call

Purpose
Retrieves the name of a PAG type.

Syntax
int __pag_getname (type, buf, size)
int type;
char *buf;
int size;

Description
The __pag_getname system call retrieves the name of a PAG type given its integer value by invoking the
kcred_getpagname kernel service with the given parameters.

Parameters
Item Description

type A numerical PAG identifier.

buf A char * value that points to an array at least PAG_NAME_LENGTH_MAX+1 bytes in length.

size An int value that gives the size of buf in bytes.

Kernel Services and Subsystem Operations 419

Return Values
If successful, 0 is returned and the buf parameter contains the PAG name associated with the type
parameter. If unsuccessful, -1 is returned and the errno global variable is set to a value reflecting the
cause of the error.

Error Codes
Item Description

EINVAL The value of the type parameter is less than 0 or greater than the maximum PAG identifier.

ENOENT There is no PAG associated with the type parameter.

ENOSPC The value of the size parameter is insuffient to hold the PAG name and its terminating NULL
character.

Related reference
__pag_getvalue System Call
__pag_setname System Call
kcred_getpagname Kernel Service

__pag_getvalue System Call

Purpose
Invokes the kcred_getpag kernel service and returns the PAG value.

Syntax
int __pag_getvalue (type)
int type;

Description
Given a PAG type, the __pag_getvalue system call invokes the kcred_getpag kernel service and returns
the PAG value for the value of the type parameter.

Parameters
Item Description

type An int value indicating the desired PAG.

Return Values
If successful, the value of the PAG (or 0 when there is no value for that PAG type) is returned. If
unsuccessful, -1 is returned and the errno global variable is set to a value reflecting the cause of the error.

Error Codes
Item Description

EINVAL The type parameter is less than 0 or greater than the maximum PAG type value.

ENOENT The type parameter doesn't reference and existing PAG type.

Note: It is not an error for a defined PAG to not have a value in the current process' credentials.

420 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related reference
__pag_getid System Call
__pag_setvalue System Call
kcred_getpagname Kernel Service

__pag_setname System Call

Purpose
Invokes the kcred_setpagname kernel service and returns the PAG type identifier.

Syntax
int __pag_setname (name, flags)
char *name;
int flags;

Description
The __pag_setname system call invokes the kcred_setpagname kernel service to register the name of
a PAG and returns the PAG type identifier. The value of the func parameter to kcred_setpagname will be
NULL. The other parameters to this system call are the same as with the underlying kernel service. This
system call requires the SYS_CONFIG privilege.

Parameters
Item Description

name A char * value giving the symbolic name of the requested PAG.

flags Either PAG_UNIQUEVALUE or PAG_MULTIVALUED 1 .

Return Values
A return value greater than or equal to 0 is the PAG type associated with the name parameter. This
value may be used with other PAG-related system calls which require a numerical PAG identifier. If
unsuccessful, -1 is returned and the errno global variable is set to indicate the cause of the error.

Error Codes
Item Description

ENOSPC The PAG name table is full.

EEXIST The named PAG type already exists in the table, and the flags and func parameters do not
match their previous values.

EPERM The calling process does not have the SYS_CONFIG privilege.

Related reference
__pag_getname System Call
__pag_setvalue System Call
kcred_setpagname Kernel Service

__pag_setvalue System Call

Kernel Services and Subsystem Operations 421

Purpose
Invokes the kcred_setpag kernel service and sets the value of PAG type to pag.

Syntax
int __pag_setvalue (type, pag)
int type;
int pag;

Description
Given a PAG type and value, the __pag_setvalue system call invokes the kcred_setpag kernel service and
sets the value of PAG type to pag. This system call requires the SET_PROC_DAC privilege.

Parameters
Item Description

type An int value indicating the desired PAG.

pag An int value containing the new PAG value.

Return Values
If successful, 0 is returned. If unsuccessful, -1 is returned and the errno global variable is set to a value
reflecting the cause of the error.

Error Codes
Item Description

ENOENT The type parameter doesn't reference an existing PAG type.

EINVAL The value of pag is -1.

EPERM The calling process lacks the appropriate privilege.

Related reference
__pag_getvalue System Call
__pag_setname System Call
kcred_setpagname Kernel Service

panic Kernel Service

Purpose
Crashes the system.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

panic (s)
char *s;

422 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameter

Ite
m

Description

s Points to a character string to be written to the error log.

Description
The panic kernel service is called when a catastrophic error occurs and the system can no longer continue
to operate. The panic service performs these two actions:

• Writes the character string pointed to by the s parameter to the error log.
• Performs a system dump.

The system halts after the dump. You should wait for the dump to complete, reboot the system, and then
save and analyze the dump.

Execution Environment
The panic kernel service can be called from either the process or interrupt environment.

Return Values
The panic kernel service has no return values.

pci_cfgrw Kernel Service

Purpose
Reads and writes PCI bus slot configuration registers.

Syntax

#include <sys/mdio.h>

int pci_cfgrw(bid, md, write_flag)
int bid;
struct mdio *md;
int write_flag;

Description
The pci_cfgrw kernel service provides serialized access to the configuration registers for a PCI bus.
To ensure data integrity in a multi-processor environment, a lock is required before accessing the
configuration registers. Depending on the value of the write_flag parameter, a read or write to the
configuration register is performed at offset md_addr for the device identified by md_sla.

The pci_cfgrw kernel service provides for kernel extensions the same services as the MIOPCFGET and
MIOPCFPUT ioctls provides for applications. The pci_cfgrw kernel service can be called from either the
process or the interrupt environment.

Parameters

Item Description

bid Specifies the bus identifier.

Kernel Services and Subsystem Operations 423

Item Description

md Specifies the address of the mdio structure. The mdio structure contains the following
fields:
md_addr

Starting offset of the configuration register to access (0 to 0xFF for PCI/PCI-X, and
0 to 0xFFF for PCI-E).

md_data
Pointer to the data buffer.

md_size
Number of items of size specified by the md_incr parameter. The maximum size is
256 bytes for PCI/PCI-X, and 4096 for PCI-E.

md_incr
Access types, MV_BYTE, MV_WORD, or MV_SHORT.

md_sla
Device Number and Function Number.
(Device Number * 8) + Function.

write_flag Set to 1 for write and 0 for read.

Return Values
Returns 0 for successful completion.

Item Description

ENOMEM Indicates no memory could be allocated.

EINVAL Indicated that the bus, device/function, or size is not valid.

EPERM Indicates that the platform does not allow the requested operation

pfctlinput Kernel Service

Purpose
Invokes the ctlinput function for each configured protocol.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/domain.h>

void pfctlinput (cmd, sa)
int cmd;
struct sockaddr *sa;

Parameters

Ite
m

Description

cm
d

Specifies the command to pass on to protocols.

sa Indicates the address of a sockaddr structure that is passed to the protocols.

424 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The pfctlinput kernel service searches through the protocol switch table of each configured domain
and invokes the protocol ctlinput function if defined. Both the cmd and sa parameters are passed as
parameters to the protocol function.

Execution Environment
The pfctlinput kernel service can be called from either the process or interrupt environment.

Return Values
The pfctlinput service has no return values.

Related information
Network Kernel Services
Understanding Socket Header Files

pffindproto Kernel Service

Purpose
Returns the address of a protocol switch table entry.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/domain.h>

struct protosw *pffindproto (family, protocol, type)
int family;
int protocol;
int type;

Parameters

Item Description

family Specifies the address family for which to search.

protocol Indicates the protocol within the address family.

type Specifies the type of socket (for example, SOCK_RAW).

Description
The pffindproto kernel service first searches the domain switch table for the address family specified by
the family parameter. If found, the pffindproto service then searches the protocol switch table for that
domain and checks for matches with the type and protocol parameters.

If a match is found, the pffindproto service returns the address of the protocol switch table entry. If the
type parameter is set to SOCK_RAW, the pffindproto service returns the first entry it finds with protocol
equal to 0 and type equal to SOCK_RAW.

Execution Environment
The pffindproto kernel service can be called from either the process or interrupt environment.

Kernel Services and Subsystem Operations 425

Return Values
The pffindproto service returns a null value if a protocol switch table entry was not found for the given
search criteria. Upon success, the pffindproto service returns the address of a protocol switch table entry.

Related information
Network Kernel Services
Understanding Socket Header Files

pgsignal Kernel Service

Purpose
Sends a signal to all of the processes in a process group.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

void pgsignal (pid, sig)
pid_t pid;
int sig;

Parameters

Ite
m

Description

pid Specifies the process ID of a process in the group of processes to receive the signal.

sig Specifies the signal to send.

Description
The pgsignal kernel service sends a signal to each member in the process group to which the process
identified by the pid parameter belongs. The pid parameter must be the process identifier of the member
of the process group to be sent the signal. The sig parameter specifies which signal to send.

Device drivers can get the value for the pid parameter by using the getpid kernel service. This value is the
process identifier for the currently executing process.

The sigaction subroutine contains a list of the valid signals.

Execution Environment
The pgsignal kernel service can be called from either the process or interrupt environment.

Return Values
The pgsignal service has no return values.

Related reference
getpid Kernel Service
pidsig Kernel Service
Related information
sigaction subroutine
Process and Exception Management Kernel Services

426 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

pidsig Kernel Service

Purpose
Sends a signal to a process.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

void pidsig (pid, sig)
pid_t pid;
int sig;

Parameters

Ite
m

Description

pid Specifies the process ID of the receiving process.

sig Specifies the signal to send.

Description
The pidsig kernel service sends a signal to a process. The pid parameter must be the process identifier
of the process to be sent the signal. The sig parameter specifies the signal to send. See the sigaction
subroutine for a list of the valid signals.

Device drivers can get the value for the pid parameter by using the getpid kernel service. This value is the
process identifier for the currently executing process.

The pidsig kernel service can be called from an interrupt handler execution environment if the process ID
is known.

Execution Environment
The pidsig kernel service can be called from either the process or interrupt environment.

Return Values
The pidsig service has no return values.

Related reference
getpid Kernel Service
pgsignal Kernel Service
Related information
sigaction subroutine
Process and Exception Management Kernel Services

pin Kernel Service

Purpose
Pins the address range in the system (kernel) space.

Kernel Services and Subsystem Operations 427

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/pin.h>

int pin (addr, length)
caddr_t addr;
int length;

Parameters

Item Description

addr Specifies the address of the first byte to pin.

length Specifies the number of bytes to pin.

Description
The pin service pins the real memory pages touched by the address range specified by the addr and
length parameters in the system (kernel) address space. It pins the real-memory pages to ensure that
page faults do not occur for memory references in this address range. The pin service increments the pin
count for each real-memory page. While the pin count is nonzero, the page cannot be paged out of real
memory.

The pin routine pins either the entire address range or none of it. Only a limited number of pages can be
pinned in the system. If there are not enough unpinned pages in the system, the pin service returns an
error code.

Note: If the requested range is not aligned on a page boundary, then memory outside this range is also
pinned. This is because the operating system pins only whole pages at a time.

The pin service can only be called for addresses within the system (kernel) address space. The xmempin
service should be used for addresses within kernel or user space.

Execution Environment
The pin kernel service can be called from the process environment only.

Return Values
Item Description

0 Indicates successful completion.

EINVAL Indicates that the value of the length parameter is negative or 0. Otherwise, the area of memory beginning at the
address of the first byte to pin (the addr parameter) and extending for the number of bytes specified by the length
parameter is not defined.

EIO Indicates that a permanent I/O error occurred while referencing data.

ENOMEM Indicates that the pin service was unable to pin due to insufficient real memory or exceeding the systemwide pin
count.

ENOSPC Indicates insufficient file system or paging space.

Related reference
xmempin Kernel Service
xmemunpin Kernel Service
Related information
Understanding Execution Environments
Memory Kernel Services

428 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

pin_context_stack or unpin_context_stack Kernel Service

Purpose
Pins and unpins hidden kernel stack region.

Syntax

#include <sys/pin.h>

kerrno_t pin_context_stack (flags)
long flags;

kerrno_t unpin_context_stack (flags)
long flags;

Parameters

Item Description

flags Various flags to the kernel service. Must be set to 0.

Description
Kernel code that pins its system call stack should call this service before the first kernel stack pin and call
the unpin_context_stack() service after the last unpin. These services do not pin or unpin the C execution
stack, but instead pin or unpin a hidden stack resource used for the kernel-key support.

Execution Environment
These services must be called in the process environment.

Return Values
Item Description

0 Indicates a successful completion.

ENOMEM_PIN_CONTEXT_STACK Indicates that the memory is not sufficient to satisfy the request.

ENOSPC_PIN_CONTEXT_STACK Indicates that the page space is not sufficient.

EINVAL_PIN_CONTEXT_STACK Indicates that the execution environment is not valid.

EINVAL_UNPIN_CONTEXT_STACK Indicates that the execution environment is not valid. (For example, the service is
not in the process environment or the kernel keys are not enabled or the value of
the flag parameter is not valid.)

Related reference
vm_setseg_kkey Kernel Service
vm_protect_kkey Kernel Service
raschk_eaddr_kkey Kernel Service
xmgethkeyset Kernel Service
xmsethkeyset Kernel Service

pincf Kernel Service

Purpose
Manages the list of free character buffers.

Kernel Services and Subsystem Operations 429

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

int pincf (delta)
int delta;

Parameter

Item Description

delta Specifies the amount by which to change the number of free-pinned character buffers.

Description
The pincf service is used to control the size of the list of free-pinned character buffers. A positive value for
the delta parameter increases the size of this list, while a negative value decreases the size.

All device drivers that use character blocks need to use the pincf service. These drivers must indicate
with a positive delta value the maximum number of character blocks they expect to be using concurrently.
Device drivers typically call this service with a positive value when the ddopen routine is called. They
should call the pincf service with a negative value of the same amount when they no longer need the
pinned character blocks. This occurs typically when the ddclose routine is called.

Execution Environment
The pincf kernel service can be called in the process environment only.

Return Values
The pincf service returns a value representing the amount by which the service changed the number of
free-pinned character buffers.

Related reference
waitcfree Kernel Service
Related information
I/O Kernel Services

pincode Kernel Service

Purpose
Pins the code and data associated with a loaded object module.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/pin.h>

int pincode (func)
int (*func) ();

430 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameter

Item Description

func Specifies an address used to determine the object module to be pinned. The address is typically
that of a function exported by this object module.

Description
The pincode service uses the pin service to pin the specified object module. The loader entry for the
object module is used to determine the size of both the code and data.

Execution Environment
The pincode kernel service can be called from the process environment only.

Return Values
Item Description

0 Indicates successful completion.

EINVAL Indicates that the func parameter is not a valid pointer to the function.

ENOMEM Indicates that the pincode service was unable to pin the module due to insufficient real memory.

When an error occurs, the pincode service returns without pinning any pages.

Related reference
pin Kernel Service
Related information
Understanding Execution Environments
Memory Kernel Services

Process State-Change Notification Routine

Purpose
Allows kernel extensions to be notified of major process and thread state transitions.

Syntax
void prochadd_handler (term, type, id)
struct proch *term;
int type;
long id;

void proch_reg_handler (term, type, id)
struct prochr *term;
int type;
long id;

Parameters

Item Description

term Points to the proch structure used in the prochadd call or to the prochr structure used in the
proch_reg call.

Kernel Services and Subsystem Operations 431

Item Description

type Defines the state change event being reported: process initialization, process termination,
process exec, thread initialization, or thread termination. These values are defined in the /usr/
include/sys/proc.h file. The values that may be passed as type also depend on how the callout is
requested.

Possible prochadd_handler type values:

PROCH_INITIALIZE
Process is initializing.

PROCH_TERMINATE
Process is terminating.

PROCH_EXEC
Process is about to exec a new program.

THREAD_INITIALIZE
A new thread is created.

THREAD_TERMINATE
A thread is terminated.

Possible proch_reg_handler type values:

PROCHR_INITIALIZE
Process is initializing.

PROCHR_TERMINATE
Process is terminating.

PROCHR_EXEC
Process is about to exec a new program.

PROCHR_THREAD_INIT
A new thread is created.

PROCHR_THREAD_TERM
A thread is terminated.

id Defines either the process ID or the thread ID.

Description
The notification callout is set up by using either the prochadd or the proch_reg kernel service. If you
request the notification using the prochadd kernel service, the callout follows the syntax shown first as
prochadd_handler. If you request the notification using the proch_reg kernel service, the callout follows
the syntax shown second as proch_reg_handler.

For process initialization, the process state-change notification routine is called in the execution
environment of a parent process for the initialization of a newly created child process. For kernel
processes, the notification routine is called when the initp kernel service is called to complete
initialization.

For process termination, the notification routines are called before the kernel handles default termination
procedures. The routines must be written so as not to allocate any resources under the terminating
process. The notification routine is called under the process image of the terminating process.

Related reference
prochadd Kernel Service
prochdel Kernel Service
Related information
Kernel Extension and Device Driver Management Kernel Services

432 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

proch_reg Kernel Service

Purpose
Registers a callout handler.

Syntax

#include <sys/proc.h>

int proch_reg(struct prochr *)

Note: The prochr structure contains the following elements that must be set prior to calling proch_reg:

void (* proch_handler)(struct prochr *, int, long)
unsigned int int prochr_mask

Parameters

Item Description

int prochr_mask Specifies the set of kernel events for which a
callout is requested. Unlike the old_style interface,
the callout is invoked only for the specified events.
This mask is formed by ORing together any of these
defined values:
PROCHR_INITIALIZE

Process created.
PROCHR_TERMINATE

Process terminated
PROCHR_EXEC

Process has issued the exec system call
PROCHR_THREADINIT

Thread created
PROCHR_THREADTERM

Thread terminated

proch_handler Specifies the callout function to be called when
specified kernel events occur.

Description
If the same struct prochr * is registered more than once, only the most recently specified information is
retained in the kernel.

The struct prochr * is not copied to a new location in memory. As a result, if the structure is changed,
results are unpredictable. This structure does not need to be pinned.

The primary consideration for the new-style interface is to improve scalability. A lock is only acquired
when callouts are made. A summary mask of all currently registered callout event types is maintained.
This summary mask is updated every time proch_reg or proch_unreg is called, even when registering an
identical struct prochr *. Further, the lock is a complex lock, so once callouts have been registered, there
is no lock contention in invoking them because the lock is held read-only.

When a callout to a registered handler function is made, the parameters passed are:

• a pointer to the registered prochr structure
• a callout request value to indicate the reason for the callout

Kernel Services and Subsystem Operations 433

• a thread or process ID

Return Values
On successful completion, the proch_reg kernel service returns a value of 0. The only error (non-zero)
return is from trying to register with a NULL pointer.

Execution Environment
The proch_reg kernel service can be called from the process environment only.

Related reference
proch_unreg Kernel Service
Process State-Change Notification Routine
Related information
Kernel Extension and Driver Management Kernel Services

proch_unreg Kernel Service

Purpose
Unregisters a callout handler that was previously registered using the proch_reg kernel service.

Syntax

#include <sys/proc.h>

int proch_unreg(struct prochr *old_prochr);

Parameter

Item Description

old_prochr Specifies the address of the proch structure to be unregistered.

Description
Unregisters an existing callout handler that was previously registered using the proch_reg() kernel
service.

Return Values
On successful completion, the proch_unreg kernel service returns a value of 0. An error (non-zero) return
occurs when trying to unregister a handler that is not presently registered.

Execution Environment
The proch_unreg kernel service can be called from the process environment only.

Related reference
proch_reg Kernel Service
Related information
Kernel Extension and Driver Management Kernel Services

434 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

prochadd Kernel Service

Purpose
Adds a system-wide process state-change notification routine.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/proc.h>

void prochadd (term)
struct proch *term;

Parameters

Item Description

term Points to a proch structure containing a notification routine to be added from the chain of
systemwide notification routines.

Description
The prochadd kernel service allows kernel extensions to register for notification of major process state
transitions. The prochadd service allows the caller to be notified when a process:

• Has just been created.
• Is about to be terminated.
• Is executing a new program.

The complete list of callouts is:

Callout Description

PROCH_INITIALIZE Process (pid) created (initp, kforkx)

PROCH_TERMINATE Process (pid) terminated (kexitx)

PROCH_EXEC Process (pid) executing (execvex)

THREAD_INITIALIZE Thread (tid) created (kforkx, thread_create)

THREAD_TERMINATE Thread (tid) created (kexitx, thread_terminate)

The prochadd service is typically used to allow recovery or reassignment of resources when processes
undergo major state changes.

The caller should allocate a proch structure and update the proch.handler field with the entry point of
a caller-supplied notification routine before calling the prochadd kernel service. This notification routine
is called once for each process in the system undergoing a major state change.

The proch structure has the following form:

struct proch
{
 struct proch *next
 void *handler ();
}

Execution Environment
The prochadd kernel service can be called from the process environment only.

Kernel Services and Subsystem Operations 435

Related reference
prochdel Kernel Service
Process State-Change Notification Routine
Related information
Kernel Extension and Driver Management Kernel Services

prochdel Kernel Service

Purpose
Deletes a process state change notification routine.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/proc.h>

void prochdel (term)
struct proch *term;

Parameter

Item Description

term Points to a proch structure containing a notification routine to be removed from the chain
of system-wide notification routines. This structure was previously registered by using the
prochadd kernel service.

Description
The prochdel kernel service removes a process change notification routine from the chain of system-wide
notification routines. The registered notification routine defined by the handler field in the proch structure
is no longer to be called by the kernel when major process state changes occur.

If the proch structure pointed to by the term parameter is not found in the chain of structures, the
prochdel service performs no operation.

Execution Environment
The prochdel kernel service can be called from the process environment only.

Related reference
prochadd Kernel Service
Process State-Change Notification Routine
Related information
Kernel Extension and Driver Management Kernel Services

probe or kprobe Kernel Service

Purpose
Logs errors with symptom strings.

Library (for probe)
Run-time Services Library.

436 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax
#include <sys/probe.h>
or
#include <sys/sysprobe.h>
int probe (probe_p)
probe_t *probe_p

int kprobe (probe_p)
probe_t *probe_p

Description
The probe subroutine logs an entry to the error log. The entry consists of an error log entry as defined in
the errlog subroutine and the err_rec.h header file, and a symptom string.

The probe subroutine is called from an application, while kprobe is called from the Kernel and Kernel
extensions. Both probe and kprobe have the same interfaces, except for return codes.

IBM software should use the sys/sysprobe.h header file while non-IBM programs should include the
sys/probe.h file. This is because IBM symptom strings must conform to different rules than non-IBM
strings. It also tells any electronic support application whether or not to route the symptom string to
IBM's Retain database.

Parameters

Item Description

probe_p is a pointer to the data structure which contains the pointer and length of the error record,
and the data for the probe. The error record is described under the errlog subroutine and
defined in err_rec.h.

The first word of the structure is a magic number to identify this version of the structure. The
magic number should be set to PROBE_MAGIC.

Note: PROBE_MAGIC is different between probe.h and sysprobe.h to distinguish an IBM
symptom string from a non-IBM string.

The probe data consists of flags which control probe handling, the number of symptom
string keywords, followed by an array consisting of one element for each keyword.

Flags

Item Description

SSNOSEND indicates this symptom string shouldn't be forwarded to automatic problem opening
facilities. An example where SSNOSEND should be used is in symptom data used for
debugging purposes.

nsskwd This gives the number of keywords specified (i.e.), the number of elements in the sskwds
array.

Kernel Services and Subsystem Operations 437

Item Description

sskwds This is an array of keyword/value pairs. The keywords and their values are in the following
table. The I/S value indicates whether the keyword and value are informational or are part
of the logged symptom string. The number in parenthesis indicates, where applicable, the
maximum string length.

keyword I/S value type Description

SSKWD_LONGNAME I char * (30) Product's long name
SSKWD_OWNER I char * (16) Product's owner
SSKWD_PIDS S char * (11) product id.
(required for IBM symptom strings)
SSKWD_LVLS S char * (5) product level

(required for IBM symptom strings)
SSKWD_APPLID I char * (8) application id.
SSKWD_PCSS S char * (8) probe id

(required for all symptom strings)
SSKWD_DESC I char * (80) problem description
SSKWD_SEV I int severity from
 1
(highest) to 4 (lowest).
 3 is
the default.
SSKWD_AB S char * (5) abend code
SSKWD_ADRS S void * address. If used at all,
 this
should be a relative address.
SSKWD_DEVS S char * (6) Device type
SSKWD_FLDS S char * (9) arbitrary character string.
 This
is usually a field name and
 the SSKWD_VALUE

keyword specifies the value.
SSKWD_MS S char * (11) Message number
SSKWD_OPCS S char * (8) OP code
SSKWD_OVS S char * (9) overwritten storage
SSKWD_PRCS S unsigned long return code
SSKWD_REGS S char * (4) Register name (e.g.)
 GR15
or LR unsigned long Value
SSKWD_VALU S
SSKWD_RIDS S char * (8) resource or module id.
SSKWD_SIG S . int Signal number
SSKWD_SN S char * (7) Serial Number
SSKWD_SRN S char * (9) Service Req. Number If specified,
 and
no error is logged,
 a hardware error is assumed.
SSKWD_WS S char * (10) Coded wait

Note: The SSKWD_PCCS value is always required. This is the probe id. Additionally, for IBM symptom
strings, the SSKWD_PIDS and SSKWD_LVLS keywords are also required

If either the erecp or erecl fields in the probe_rec structure is 0 then no error logging record is being
passed, and one of the default templates for symptom strings is used. The default template indicating a
software error is used unless the SSKWD_SRN keyword is specified. If it is, the error is assumed to be
a hardware error. If you don't want to log your own error with a symptom string, and you want to have
a hardware error, and don't want to use the SSKWD_SRN value, then you can supply an error log record
using the error identifier of ERRID_HARDWARE_SYMPTOM, see the /usr/include/sys/errids.h file.

Return Values for probe Subroutine

Item Description

0 Successful

-1 Error. The errno variable is set to

438 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

EINVAL Indicates an invalid parameter

EFAULT Indicates an invalid address

Return Values for kprobe Kernal Service

Item Description

0 Successful

EINVAL Indicates an invalid parameter

Execution Environment
probe is executed from the application environment.

kprobe is executed from the Kernel and Kernel extensions. Currently, kprobe must not be called with
interrupts disabled.

Files

Item Description

/usr/include/sys/probe.h Contains parameter definition.

Related reference
errsave or errlast Kernel Service
Related information
Error Logging Overview
errlog subroutine

purblk Kernel Service

Purpose
Purges the specified block from the buffer cache.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

void purblk (dev, blkno)
dev_t dev;
daddr_t blkno;

Parameters

Item Description

dev Specifies the device containing the block to be purged.

blkno Specifies the block to be purged.

Kernel Services and Subsystem Operations 439

Description
The purblk kernel service purges (that is, makes unreclaimable by marking the block with a value of
STALE) the specified block from the buffer cache.

Execution Environment
The purblk kernel service can be called from the process environment only.

Return Values
The purblk service has no return values.

Related reference
brelse Kernel Service
geteblk Kernel Service
Related information
Block I/O Buffer Cache Kernel Services: Overview

putc Kernel Service

Purpose
Places a character at the end of a character list.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

int putc (c, header)
char c;
struct clist *header;

Parameters

Item Description

c Specifies the character to place on the character list.

header Specifies the address of the clist structure that describes the character list.

Description
Attention: The caller of the putc service must ensure that the character list is pinned. This
includes the clist header and all the cblock character buffers. Character blocks acquired from
the getcf service are also pinned. Otherwise, the system may crash.

The putc kernel service puts the character specified by the c parameter at the end of the character list
pointed to by the header parameter.

If the putc service indicates that there are no more buffers available, the waitcfree service can be used to
wait until a character block is available.

Execution Environment
The putc kernel service can be called from either the process or interrupt environment.

440 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values

Ite
m

Description

0 Indicates successful completion.

-1 Indicates that the character list is full and no more buffers are available.

Related reference
getcb Kernel Service
putcf Kernel Service
Related information
I/O Kernel Services

putcb Kernel Service

Purpose
Places a character buffer at the end of a character list.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

void putcb (p, header)
struct cblock *p;
struct clist *header;

Parameters

Item Description

p Specifies the address of the character buffer to place on the character list.

header Specifies the address of the clist structure that describes the character list.

Description
Attention: The caller of the putcb service must ensure that the character list is pinned. This
includes the clist header and all the cblock character buffers. Character blocks acquired from
the getcf service are pinned. Otherwise, the system may crash.

The putcb kernel service places the character buffer pointed to by the p parameter on the end of the
character list specified by the header parameter. Before calling the putcb service, you must load this new
buffer with characters and set the c_first and c_last fields in the cblock structure. The p parameter is
the address returned by either the getcf or the getcb service.

Execution Environment
The putcb kernel service can be called from either the process or interrupt environment.

Kernel Services and Subsystem Operations 441

Return Values

Ite
m

Description

0 Indicates successful completion.

-1 Indicates that the character list is full and no more buffers are available.

Related reference
getcb Kernel Service
putcf Kernel Service
Related information
I/O Kernel Services

putcbp Kernel Service

Purpose
Places several characters at the end of a character list.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

int putcbp (header, source, n)
struct clist *header;
char *source;
int n;

Parameters

Item Description

header Specifies the address of the clist structure that describes the character list.

source Specifies the address from which characters are read to be placed on the character list.

n Specifies the number of characters to be placed on the character list.

Description
Attention: The caller of the putcbp service must ensure that the character list is pinned. This
includes the clist header and all of the cblock character buffers. Character blocks acquired
from the getcf service are pinned. Otherwise, the system may crash.

The putcbp kernel service operates on the characters specified by the n parameter starting at the address
pointed to by the source parameter. This service places these characters at the end of the character list
pointed to by the header parameter. The putcbp service then returns the number of characters added to
the character list. If the character list is full and no more buffers are available, the putcbp service returns
a 0. Otherwise, it returns the number of characters written.

Execution Environment
The putcbp kernel service can be called from either the process or interrupt environment.

442 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values
The putcbp service returns the number of characters written or a value of 0 if the character list is full, and
no more buffers are available.

Related reference
pincf Kernel Service
putcf Kernel Service
waitcfree Kernel Service

putcf Kernel Service

Purpose
Frees a specified buffer.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

void putcf (p)
struct cblock *p;

Parameter

Ite
m

Description

p Identifies which character buffer to free.

Description
The putcf kernel service unpins the indicated character buffer.

The putcf service returns the specified buffer to the list of free character buffers.

Execution Environment
The putcf kernel service can be called from either the process or interrupt environment.

Return Values
The putcf service has no return values.

Related information
I/O Kernel Services

putcfl Kernel Service

Purpose
Frees the specified list of buffers.

Kernel Services and Subsystem Operations 443

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

void putcfl (header)
struct clist *header;

Parameter

Item Description

header Identifies which list of character buffers to free.

Description
The putcfl kernel service returns the specified list of buffers to the list of free character buffers. The
putcfl service unpins the indicated character buffer.

Note: The caller of the putcfl service must ensure that the header and clist structure are pinned.

Execution Environment
The putcfl kernel service can be called from either the process or interrupt environment.

Return Values
The putcfl service has no return values.

Related information
I/O Kernel Services

putcx Kernel Service

Purpose
Places a character on a character list.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/cblock.h>

int putcx (c, header)
char c;
struct clist *header;

Parameters

Item Description

c Specifies the character to place at the front of the character list.

header Specifies the address of the clist structure that describes the character list.

444 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The putcx kernel service puts the character specified by the c parameter at the front of the character list
pointed to by the header parameter. The putcx service is identical to the putc service, except that it puts
the character at the front of the list instead of at the end.

If the putcx service indicates that there are no more buffers available, the waitcfree service can be used
to wait until a character buffer is available.

Note: The caller of the putcx service must ensure that the character list is pinned. This includes the clist
header and all the cblock character buffers. Character blocks acquired from the getcf service are pinned.

Execution Environment
The putcx kernel service can be called from either the process or interrupt environment.

Return Values

Ite
m

Description

0 Indicates successful completion.

-1 Indicates that the character list is full and no more buffers are available.

Related reference
pincf Kernel Service
putcfl Kernel Service
Related information
I/O Kernel Services

q
The following kernel services begin with the with the letter q.

query_proc_info Kernel Service

Purpose
Returns specific information about the current process or thread.

Syntax

#include <sys/encap.h>

int query_proc_info (type)
int type;

Parameters

Item Description

type Specifies the type of process or thread information requested. The type parameter can
be one of the following values:
QPI_XPG_SUS_ENV

Queries whether the calling process has SPEC 1170 environment active.
QTI_FUNNELLED

Queries whether the current thread is funneled.

Kernel Services and Subsystem Operations 445

Description
The query_proc_info kernel service returns information about the current process or thread.

When called with the value QPI_XPG_SUS_ENV as the type parameter, it returns TRUE (1) when
the process has SPEC 1170 active, that is, the process was issued with the environment variable
XPG_SUS_ENV defined. Otherwise, the routine returns FALSE (0). When called with the value
QTI_FUNNELLED as the type parameter, the query_proc_info kernel service returns TRUE (1) if the
current thread has been funneled. Otherwise, the routine returns FALSE (0).

Execution Environment
The query_proc_info kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

1 True.

0 False.

r
The following kernel services begin with the with the letter r.

RAS_BLOCK_NULL Exported Data Structure

Purpose
Allows for the silent failure of ras_register calls due to memory allocation errors.

Syntax

#include <sys/ras.h>

extern const ras_block_t RAS_BLOCK_NULL

Description
The RAS_BLOCK_NULL data structure allows components to go through their normal code paths when
they receive an ENOMEM error from the ras_register kernel service. The presence of this data structure
does not need to be explicitly checked by callers of RAS functions. All RAS domain functions (such as
Component Tracing) are disabled with this control block.

Related reference
ras_register and ras_unregister Exported Kernel Services
ras_customize Exported Kernel Service
Related information
CT_HOOKx subroutine

ras_control Exported Kernel Service

Purpose
Controls component RAS characteristics.

446 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/ras.h>

kerrno_t ras_control (
ras_block_t ras_blk,
ras_cmd_t command,
void * arg,
long argsize);

Description
The ras_control kernel service passes a command to the callback for the component referenced by the
ras_blk parameter. If the ras_blk parameter is not known, use the ras_path_control call.

Note: During the ras_control process, callbacks to the registrant of the component might be initiated for
changes that the RAS infrastructure makes to the component. The registrant should be aware of this for
locking purposes (for instance, the registrant should not hold any locks that the callback needs).

If the ras_blk input parameter has a value of RAS_BLOCK_NULL, the ras_control kernel service returns
without errors and takes no action.

Parameters
Item Description

ras_blk The target control block pointer.

command Command passed to the callback. Commands are specific to a given RAS
domain, such as Component Trace.

arg Optional argument for the command.

argsize Size of the argument, if a buffer or structure.

Execution Environment
The calling environment of the ras_control kernel service varies by individual command. The calling
environment of a particular command is documented with the command itself.

Return Values
The ras_control kernel service returns 0 for success and a non-zero error code for failure.

Related reference
ras_customize Exported Kernel Service
ras_path_control Exported Kernel Services
Related information
Component Trace Facility
ras_callback subroutine

ras_customize Exported Kernel Service

Purpose
Loads persistent customized properties for a RAS control block.

Kernel Services and Subsystem Operations 447

Syntax

#include <sys/ras.h>

kerrno_t ras_customize (ras_block_t ras_blk);

Description
The ras_customize kernel service checks for, and applies persistent customized properties for a given
ras_blk parameter. After applying any persistent properties, the ras_customize kernel service puts the
ras_blk parameter in a usable state. Registration is not complete without a call to the ras_customize
kernel service.

Note: During the ras_customize process, callbacks to the registrant might be initiated for changes that
the RAS infrastructure makes to the component. The registrant should be aware of this for locking and
initialization purposes (for example, the registrant should not be holding any locks that the callback
needs, and the private data for the callback should be initialized before ras_customize is called).

If the ras_blk input parameter has a value of RAS_BLOCK_NULL, the ras_customize kernel service returns
without errors and takes no action.

Parameters
Item Description

ras_blk The control block to act on. Must be previously allocated by the ras_register
kernel service.

Execution Environment
The ras_customize kernel service must be called from the process environment.

Return Values
Item Description

0 Successful.

non-zero Unsuccessful.

Related reference
ras_control Exported Kernel Service
Related information
Component Trace Facility
ras_callback subroutine

ras_path_control Exported Kernel Services

Purpose
Controls component RAS characteristics.

Syntax

#include <sys/ras.h>

kerrno_t ras_path_control (
char * path,

448 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

ras_cmd_t command,
void * arg,
long argsize);

Description
The ras_path_control kernel service passes a command to the RAS component specified by the path
parameter.

Note: During the ras_path_control process, callbacks to the registrant of the component might be
initiated for changes that the RAS infrastructure makes to the component. The registrant should be aware
of this for locking purposes (for instance, the registrant should not be holding any locks the callback
needs).

Parameters
Item Description

path The pathname of the component to receive the command parameter.

command Command passed to the callback. Commands are specific to a given RAS
domain, such as Component Trace.

arg Optional argument for the command.

argsize Size of the argument, if a buffer or structure.

Execution Environment
The calling environment of the ras_path_control kernel service varies by individual command. The calling
environment of a particular command is documented with the command itself.

Return Values
Item Description

0 Successful.

non-zero Unsuccessful.

Related reference
ras_control Exported Kernel Service
ras_customize Exported Kernel Service
Related information
Component Trace Facility

ras_register and ras_unregister Exported Kernel Services

Purpose
Registers and unregisters a RAS component.

Syntax

#include <sys/ras.h>

kerrno_t ras_register (
ras_block_t * rasbp,
char * name,

Kernel Services and Subsystem Operations 449

ras_block_t parent,
ras_type_t typesubtype,
char * desc,
long flags,
ras_callback_t ras_callback,
void * private_data);

kerrno_t ras_unregister (ras_block_t ras_blk);

Description
The ras_register kernel service and the ras_unregister kernel service register and unregister RAS
handlers which are invoked by the kernel when the system needs to communicate various RAS commands
to each component.

The ras_register kernel service registers a component with the given name under the parent provided.
If the parent is NULL, the ras_register kernel service registers name as a base component, but the
typesubtype parameter must be provided. The name parameter specifies the name for the subcomponent
or base component (it is not a full component path). The flags field is used to specify what aspects
of RAS the component understands. The ras_callback is the mechanism by which the RAS subsystem
communicates various commands to the component, depending on what aspects of RAS the component
understands. The desc parameter provides a short description for the component as a service aid.

The ras_register kernel service allocates a ras_block_t member and returns the control block for the
component through the rasbp argument. This control block can be used in ras_control calls and further
ras_register calls (to allocate children, for instance).

If the registration fails due to the system being out of memory, the value of the rasbp argument is set
to RAS_BLOCK_NULL. All RAS functions for this component are disabled. RAS kernel services accept
RAS_BLOCK_NULL control blocks but take no action. If the control block is set to RAS_BLOCK_NULLRAS,
domain related functions (such as the CT_HOOKx and CT_GEN macros) run correctly but take no action.
This action allows the ENOMEM type failures from the ras_register kernel service to be safely ignored.
The value of the rasbp argument for all other types of errors is undefined.

The ras_unregister kernel service unregisters a component previously registered with the ras_register
kernel service. The ras_blk parameter should have no further children.

Parameters
Item Description

rasbp The newly allocated ras_block_t member.

name The name of the component, not its full pathname. Individual node names
are limited to the number of characters specified by the value of the
RAS_NAME_MAX parameter (including the terminating NULL character).
The full component path (the concatenated names of a child component
and all of its ancestors) is limited to the number of characters specified by
the value of the RAS_PATH_MAX parameter (including the terminating NULL
character). The ras_register kernel service reconstructs the full component
path and rejects registrations for components whose full path exceeds the
value of the RAS_PATH_MAX parameter. Node names are restricted to the
character set “A-Z”,”a-z”,”0-9” and “_”.

parent An optional pointer to the parent component or NULL if none.

450 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

typesubtype If parent is NULL, mandatory parameter is used to categorize the
component. The top 16-bits of the lower word of this field are the type,
and the bottom 16-bits are the subtype. The typesubtype is a ras_type_t
member, which is an enum. See the sys/ras_base.h file for a description of
the types available. If parent is non-NULL, this parameter is required to be
the value of the RAS_TYPE_CHILD parameter.

desc A short description string for the component. The desc string is limited to
the number of characters specified by the value of the RAS_DESC_MAX
parameter (including the terminating null). The desc string has no character
set restriction. Any static elements of the string should be in U.S. English,
but dynamic elements have no restriction.

flags Indicates what type of RAS systems this component is aware of. Valid
choices are the following:

• RASF_TRACE_AWARE: Component is Component Trace aware.
• RASF_ERROR_AWARE: Component is Error Checking aware.

These flags are defined in the sys/ras.h file.

ras_callback A function pointer provided by the registrant and called by the framework
each time an external event modifies a property of the component. See the
ras_callback interface specification.

private_data An optional pointer to a component private memory area passed to the
ras_callback function upon callback.

ras_blk The control block to remove.

Execution Environment
Both the ras_register kernel service and the ras_unregister kernel service must be called from the
process environment.

Return Values
The following are the return values of the ras_register kernel service.

Item Description

0 Successful.

non-zero Unsuccessful.

The following are the return values of the ras_unregister kernel service.

Item Description

0 Successful.

non-zero Unsuccessful.

Related reference
ras_customize Exported Kernel Service
Related information
Component Trace Facility
ras_callback subroutine

Kernel Services and Subsystem Operations 451

ras_ret_query_parms Kernel Service

Purpose
Returns callback parameters in the ras_query_parms structure.

Syntax

#include <sys/ras.h>

kerrno_t ras_ret_query_parms (retp, fmtstr, numstrings, descr)
ras_query_parms_t *retp;
char *fmtstr;
int numstrings;
char *descr[];

Parameters

Item Description

retp Points to the ras_query_parms_t data item to be filled in.

fmtstr This is a format specifier. It has the following form:

spec-list

or

kywd=spec-list kywd=spec-list ...

Where the spec-list variable is of the form: spec,spec,... . Thespec variable must be %x,
%xx, %d, %dd, %s, or %ss. If the characters x, d, or s are doubled, for example, %xx,
this indicates that multiple values are allowed.

The following are some valid fmtstr values:

%x
One hexidecimal value.

%x,%d
One hexadecimal and one decimal value.

%xx
Multiple hexadecimal values.

k1=%x,%d k2=%dd
Keyword k1 takes one hexadecimal value and one decimal value. Keyword k2 takes
multiple decimal values.

numstrings Specifies the number of strings in the descr string array. The value must be at least 1.

descr Specifies the component and parameters. There must be at least one string. The
first string describes the component's function. If the component takes positional
parameters, the following string(s) describe those. If keyword parameters are supplied,
each keyword must have a corresponding descr string in the array describing that
keyword.

The ras_ret_query_parms kernel service does not return an error if the number of the
descr strings does not match the format string. Instead, either the last keywords do not
have help text, or the excess help strings are simply displayed.

452 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The ras_ret_query_parms kernel service can be used by a callback to aid in filling in the
ras_query_parms_t structure when it receives the RASC_QUERY_PARMS call. This function formats the
help text and places it into the ras_query_parms_t structure. If there is insufficient space for the help
text in the provided ras_query_parms_t item, it returns ENOMEM_RASC_CONTROL_QUERYPARMS. The
callback then just returns this error code.

The help text provided must follow the following conventions:

component - first line of description
component:parameters - parameter(s) description

or

component - first line of description
component:kywd1=parms - kywd1:parms description
component:kywd2=parms - kywd2:parms description

Execution Environment
The ras_ret_query_parms kernel service can be called from the process environment only.

Return Values
Item Description

0 Indicates a successful completion.

EINVAL_RAS_CONTROL_QUERYPARMS Indicates that one or more parameters was not valid.

EFAULT_RAS_CONTROL_QUERYPARMS Indicates that one or more parameter addresses was not valid.

ENOMEM_RAS_CONTROL_QUERYPARMS Indicates that the rqp_text size was not large enough.

raschk_eaddr_hkeyset Kernel Service

Purpose
Checks if an effective address can be referenced with a hardware keyset.

Syntax

#include <sys/raschk.h>
#include <sys/skeys.h>
#include <sys/kerrno.h>

kerrno_t rashchk_eaddr_hkeyset (eaddr, hset, flags)
void * eaddr;
hkeyset_t hset;
unsigned long flags;

Parameters

Item Description

eaddr Effective address to validate. Only one byte is checked.

hset Hardware keyset to validate against.

Kernel Services and Subsystem Operations 453

Item Description

flags The following flags are defined:
RCHK_EHK_NOFAULT

No page faults are permitted while performing this check.
RCHK_EHK_NOPAGEIN

No page in is performed during this check.
RCHK_EHK_READ

Validates for read access.
RCHK_EHK_WRITE

Validates for write access.

Description
The raschk_eaddr_hkeyset kernel service performs an advisory runtime check to determine if an
effective address can be referenced with a hardware keyset.

Read and write access checks are independently specified in the flags field. A check for read and write
access requires both flags to be set.

Execution Environment
The raschk_eaddr_hkeyset kernel service can be called from the process or interrupt environment.

Return Values
Item Description

0 Successful.

EFAULT_RASCHK_EADDR_HKEYSET Operation failed because a page in or page fault was not allowed.

EFAULT_RASCHK_EADDR_HKEYSET_PROT The address failed the protection check.

EINVAL_RASCHK_EADDR_HKEYSET The address to validate was determined to be invalid, or neither
READ nor WRITE checking was requested.

raschk_eaddr_kkey Kernel Service

Purpose
Checks if an effective address can be referenced with a kernel-key.

Syntax

#include <sys/raschk.h>
#include <sys/kerrno.h>

kerrno_t raschk_eaddr_kkey (eaddr, kkey, flags)
void * eaddr;
kkey_t kkey;
unsigned long flags;

Parameters

Item Description

eaddr Effective address to validate. Only one byte is checked.

454 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

kkey Kernel-key to check.

flags The following flags are defined:
RCHK_EK_NOFAULT

No page faults of any kind are permitted while performing this check.
RCHK_EK_NOPAGEIN

No page in will be performed during this check.

Description
The raschk_eaddr_kkey kernel service performs an advisory runtime check to determine if an effective
address can be referenced with a kernel-key. Note that read/write attributes are not maintained at a page
granularity. This service only checks if the kernel-key assigned to an effective address matches the kkey
value.

Execution Environment
The raschk_eaddr_kkey kernel service can be called from the process or interrupt environment.

Return Values
Item Description

0 Successful.

EFAULT_RASCHK_EADDR_KKEY Operation cannot be performed because a page in or page fault was
not allowed.

EINVAL_RASCHK_EADDR_KKEY The address to validate was determined to be invalid.

EINVAL_RASCHK_EADDR_KKEY_PROT The address failed the protection check.

raschk_stktrace Kernel Service

Purpose
Generates a runtime compact stack trace for only call chain addresses.

Syntax

#include <sys/raschk.h>

kerrno_t rashchk_stktrace (trcbufsz, flags, trcbuf)
size_t trcbufsz;
long flags;
void * trcbuf;

Parameters

Item Description

trcbufsz Size of the stack trace buffer the caller allocated.

Kernel Services and Subsystem Operations 455

Item Description

flags The following flags are defined:

RAS_STK_DO_CURMST
If this flag bit value is set, this service will not look at the previous MST to
get the stack trace. The stack trace is obtained only for the current context.

RAS_STK_DO_PREVMST
If this flag bit value is set, this service will skip the current MST and start
getting the stack trace from the previous MST.

RAS_STK_DO_ONEMST
This flag bit value can be combined with the above bit values to get stack
trace for that MST.

RAS_STK_GET_SYMBOLS
If this flag bit value is set, then all the call chain addresses are translated
into a stream of bytes containing symbols with offset (null terminated) and
placed in the caller's buffer.

RAS_STK_DO_CURRWA
If this flag bit value is set, this service will use the RWA (recovery work
area) associated with the current MST to begin the trace back.

Note:

The RAS_STK_DO_PREVMST, RAS_STK_DO_CURMST, and
RAS_STK_DO_CURRWA flags are mutually exclusive. Specifying the
RAS_STK_DO_ONEMST flag without specifying the RAS_STK_DO_PREVMST
flag is equivalent to specifying the RAS_STK_DO_CURMST flag.

If the RAS_STK_GET_SYMBOLS flag is not set, the end of the stack trace is
indicated by an entry containing 0. A value of -2 in trcbuf indicates the start of
a new mst trace if any. Also, the stack trace will stop once we reach the system
call boundary as we are interested only in kernel stack trace and we can only
validate kernel stack addresses.

If the RAS_STK_GET_SYMBOLS flag is set, the output buffer will contain a null-
terminated string with the symbolic representation of the stack trace. A call
to raschk_addr2sym() is performed for each entry in the stack trace and the
resulting strings are concatenated in the output buffer, and separated by '\n'
characters. Special values in the stack trace will be translated to appropriate
strings.

trcbuf Pointer to the buffer that the caller allocated to get stack trace.

Note: Ensure that trcbuf is pinned when called disabled.

Description
This kernel service can be used to generate a runtime compact stack trace. The algorithm is performed
for:

• All MSTs starting from the current MST (default, and none of RAS_STK_DO_CURMST,
RAS_STK_DO_PREVMST, RAS_STK_DO_CURRWA, nor RAS_STK_DO_ONEMST flag bits specified.)

• Only for the current MST (RAS_STK_DO_CURMST bit flag is set)
• All the MSTs starting from previous MST (RAS_STK_DO_PREVMST bit flag is set)
• Only for the previous MST (RAS_STK_DO_PREVMST and RAS_STK_DO_ONEMST bits are set)
• For the current MST recovery work area (RWA) context and previous MSTs. (RAS_STK_DO_CURRWA

flag bit is set.)

456 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

• Only for the current MST recovery work area (RWA) context. (RAS_STK_DO_CURRWA and
RAS_STK_DO_ONEMST flag bits are set.)

• Getting all the symbols plus offset corresponding to the call addresses obtained in trcbuf and replacing
trcbuf with symbol information in a string format. (RAS_STK_GET_SYMBOLS bit flag is set)

Execution Environment
The raschk_stktrace kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

0 Successful

kerrno Unsuccessful

raw_input Kernel Service

Purpose
Builds a raw_header structure for a packet and sends both to the raw protocol handler.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

void raw_input (m0, proto, src, dst)
struct mbuf * m0;
struct sockproto * proto;
struct sockaddr * src;
struct sockaddr * dst;

Parameters

Item Description

m0 Specifies the address of an mbuf structure containing input data.

proto Specifies the protocol definition of data.

src Identifies the sockaddr structure indicating where data is from.

dst Identifies the sockaddr structure indicating the destination of the data.

Description
The raw_input kernel service accepts an input packet, builds a raw_header structure (as defined in
the /usr/include/net/raw_cb.h file), and passes both on to the raw protocol input handler.

Execution Environment
The raw_input kernel service can be called from either the process or interrupt environment.

Return Values
The raw_input service has no return values.

Kernel Services and Subsystem Operations 457

Related information
Network Kernel Services

raw_usrreq Kernel Service

Purpose
Implements user requests for raw protocols.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

void raw_usrreq (so, req, m, nam, control)
struct socket * so;
int req;
struct mbuf * m;
struct mbuf * nam;
struct mbuf * control;

Parameters

Item Description

so Identifies the address of a raw socket.

req Specifies the request command.

m Specifies the address of an mbuf structure containing data.

nam Specifies the address of an mbuf structure containing the sockaddr structure.

control This parameter should be set to a null value.

Description
The raw_usrreq kernel service implements user requests for the raw protocol.

The raw_usrreq service supports the following commands:

Command Description

PRU_ABORT Aborts (fast DISCONNECT, DETACH).

PRU_ACCEPT Accepts connection from peer.

PRU_ATTACH Attaches protocol to up.

PRU_BIND Binds socket to address.

PRU_CONNECT Establishes connection to peer.

PRU_CONNECT2 Connects two sockets.

PRU_CONTROL Controls operations on protocol.

PRU_DETACH Detaches protocol from up.

PRU_DISCONNECT Disconnects from peer.

PRU_LISTEN Listens for connection.

PRU_PEERADDR Fetches peer's address.

PRU_RCVD Have taken data; more room now.

458 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Command Description

PRU_RCVOOB Retrieves out of band data.

PRU_SEND Sends this data.

PRU_SENDOOB Sends out of band data.

PRU_SENSE Returns status into m.

PRU_SOCKADDR Fetches socket's address.

PRU_SHUTDOWN Will not send any more data.

Any unrecognized command causes the panic kernel service to be called.

Execution Environment
The raw_userreq kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

EOPNOTSUPP Indicates an unsupported command.

EINVAL Indicates a parameter error.

EACCES Indicates insufficient authority to support the PRU_ATTACH command.

ENOTCONN Indicates an attempt to detach when not attached.

EISCONN Indicates that the caller tried to connect while already connected.

Related reference
panic Kernel Service
Related information
Network Kernel Services

reconfig_register, reconfig_register_ext, reconfig_unregister, or
reconfig_complete, reconfig_register_list Kernel Service

Purpose
Register and unregister reconfiguration handlers.

Syntax
#include <sys/dr.h>

int reconfig_register (handler, actions,
 h_arg, h_token, name)
int (*handler)(void *event, void *h_arg, int req,
void *resource_info);
int actions;
void *h_arg;
ulong *h_token;
char *name;

int reconfig_register_ext (handler, actions, h_arg, h_token, name)
int (*handler)(void *event, void *h_arg, unsigned long long req,
void *resource_info);
unsigned long long actions;
void *h_arg;
ulong *h_token;
char *name;

Kernel Services and Subsystem Operations 459

int reconfig_unregister (h_token)
ulong h_token;

void reconfig_complete (event, rc)
void *event;
int rc;

int reconfig_register_list (handler, event_list, list_size, h_arg, h_token, name)
int (*handler)(void *event, void *h_arg, dr_kevent_t event_in_prog,
void *resource_info);
dr_kevent_t event_list[];
size_t list_size;
void *h_arg;
ulong *h_token;
char *name;

Description
The reconfig_register, reconfig_register_ext, reconfig_register_list and reconfig_unregister kernel
services register and unregister reconfiguration handlers, which are invoked by the kernel both before and
after DLPAR operations depending on the set of events specified by the kernel extension when registering.

Starting with AIX 6.1 with 6100-02, all future kernel extensions use the reconfig_register_list kernel
service when registering for DLPAR operations. The reconfig_register_list kernel service supports
previous and new DLPAR operations. The reconfig_register or reconfig_register_ext kernel services will
no longer support all future DLPAR operations.

The reconfig_complete kernel service is used to indicate that the request has completed. If a kernel
extension expects that the operation is likely to take a long time (several seconds), the handler must
return DR_WAIT to the caller, but proceed with the request asynchronously. In this case, the handler
must indicate that it has completed the request by invoking the reconfig_complete kernel service.

460 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters
Item Description

actions Allows the kernel extension to specify which of the following events require
notification:

• DR_PMIG_CHECK
• DR_PMIG_PRE
• DR_PMIG_POST
• DR_PMIG_POST_ERROR
• DR_CAP_ADD_CHECK
• DR_CAP_ADD_PRE
• DR_CAP_ADD_POST
• DR_CAP_ADD_POST_ERROR
• DR_CAP_REMOVE_CHECK
• DR_CAP_REMOVE_PRE
• DR_CAP_REMOVE_POST
• DR_CAP_REMOVE_POST_ERROR
• DR_CPU_ADD_CHECK
• DR_CPU_ADD_PRE
• DR_CPU_ADD_POST
• DR_CPU_ADD_POST_ERROR
• DR_CPU_REMOVE_CHECK
• DR_CPU_REMOVE_PRE
• DR_CPU_REMOVE_POST
• DR_CPU_REMOVE_POST_ERROR
• DR_MEM_ADD_CHECK
• DR_MEM_ADD_OP_POST
• DR_MEM_ADD_PRE
• DR_MEM_ADD_POST
• DR_MEM_ADD_POST_ERROR
• DR_MEM_REMOVE_CHECK
• DR_MEM_REMOVE_OP_POST
• DR_MEM_REMOVE_OP_PRE
• DR_MEM_REMOVE_PRE
• DR_MEM_REMOVE_POST
• DR_MEM_REMOVE_POST_ERROR

event Passed to the handler and intended to be used only when calling the
reconfig_complete kernel service.

event_list Specifies which events require notification. For the supported values, see the dr.h
file.

handler Specifies the kernel extension function to be invoked.

Kernel Services and Subsystem Operations 461

Item Description

h_arg Specified by the kernel extension, remembered by the kernel along with the function
descriptor for the handler, and passed to the handler when it is invoked. It is not
used directly by the kernel, but is intended to support kernel extensions that manage
multiple adapter instances. This parameter points to an adapter control block.

h_token An output parameter that is used when unregistering the handler.

list_size Specifies the memory size of the event_list array.

name Provided for information purposes and may be included within an error log entry, if
the driver returns an error. It is provided by the kernel extension and must be limited
to 15 ASCII characters.

rc Can be set to DR_FAIL or DR_SUCCESS.

resource_info Identifies the resource specific information for the current DLPAR request. If
the request is cpu based, the resource_info data is provided through a dri_cpu
structure. Otherwise a dri_mem structure is used. On a Micro-Partitioning partition,
if the request is CPU-capacity based, the resource_info data is provided through a
dri_cpu_capacity structure, which has the following format. The kernel extensions
are not notified of changes in variable capacity weight in an uncapped Micro-
Partitioning environment.

*/
struct dri_cpu_capacity {
 uint64_t ent_capacity; /* partition current entitled capacity*/
 int delta_ent_cap; /* delta capacity added/removed*/
 int status; /* capacity update constrained or not */
};

/*
 * dri_cpu_capacity.status flags.
 */
#define CAP_UPDATE_SUCCESS 0x0
#define CAP_UPDATE_CONSTRAINED 0x1

Note: The capacity update is constrained by the Hypervisor.

If the request is memory capacity based, the resource_info data is provided through
a dri_mem_capacity structure, which has the following format:

struct dri_mem_capacity {
 size64_t mem_capacity; /* partition current entitled
capacity*/
 ssize64_t delta_mem_capacity;
 uint flags;
 int status; /* capacity update constrained or not */
 uchar reserved[7];
 };

 /*
 * dri_mem_capacity.status flags.
 */
 #define CAP_UPDATE_SUCCESS 0x0
 #define CAP_UPDATE_CONSTRAINED 0x1

462 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

req Indicates the following DLPAR operation to be performed by the handler:

• DR_PMIG_CHECK
• DR_PMIG_PRE
• DR_PMIG_POST
• DR_PMIG_POST_ERROR
• DR_CAP_ADD_CHECK
• DR_CAP_ADD_PRE
• DR_CAP_ADD_POST
• DR_CAP_ADD_POST_ERROR
• DR_CAP_REMOVE_CHECK
• DR_CAP_REMOVE_PRE
• DR_CAP_REMOVE_POST
• DR_CAP_REMOVE_POST_ERROR
• DR_CPU_ADD_CHECK
• DR_CPU_ADD_PRE
• DR_CPU_ADD_POST
• DR_CPU_ADD_POST_EEROR
• DR_CPU_REMOVE_CHECK
• DR_CPU_REMOVE_PRE
• DR_CPU_REMOVE_POST
• DR_CPU_REMOVE_POST_ERROR
• DR_MEM_ADD_CHECK
• DR_MEM_ADD_OP_POST
• DR_MEM_ADD_PRE
• DR_MEM_ADD_POST
• DR_MEM_ADD_POST_ERROR
• DR_MEM_REMOVE_CHECK
• DR_MEM_REMOVE_OP_POST
• DR_MEM_REMOVE_OP_PRE
• DR_MEM_REMOVE_PRE
• DR_MEM_REMOVE_POST
• DR_MEM_REMOVE_POST_ERROR

List of dr_kevent_t events
The following events are used with the reconfig_register_list() call for the event_list array:

• DR_KEVENT_CPU_ADD_CHECK
• DR_KEVENT_CPU_ADD_PRE
• DR_KEVENT_CPU_ADD_POST
• DR_KEVENT_CPU_ADD_POST_ERROR
• DR_KEVENT_CPU_RM_CHECK
• DR_KEVENT_CPU_RM_PRE

Kernel Services and Subsystem Operations 463

• DR_KEVENT_CPU_RM_POST
• DR_KEVENT_CPU_RM_POST_ERROR
• DR_KEVENT_MEM_ADD_CHECK
• DR_KEVENT_MEM_ADD_PRE
• DR_KEVENT_MEM_ADD_POST
• DR_KEVENT_MEM_ADD_POST_ERROR
• DR_KEVENT_MEM_RM_CHECK
• DR_KEVENT_MEM_RM_PRE
• DR_KEVENT_MEM_RM_POST
• DR_KEVENT_MEM_RM_POST_ERROR
• DR_KEVENT_MEM_ADD_RES
• DR_KEVENT_MEM_RM_RES
• DR_KEVENT_CPU_CAP_ADD_CHECK
• DR_KEVENT_CPU_CAP_ADD_PRE
• DR_KEVENT_CPU_CAP_ADD_POST
• DR_KEVENT_CPU_CAP_ADD_POST_ERROR
• DR_KEVENT_CPU_CAP_RM_CHECK
• DR_KEVENT_CPU_CAP_RM_PRE
• DR_KEVENT_CPU_CAP_RM_POST
• DR_KEVENT_CPU_CAP_RM_POST_ERROR
• DR_KEVENT_MEM_RM_OP_PRE
• DR_KEVENT_MEM_RM_OP_POST
• DR_KEVENT_MEM_ADD_OP_POST
• DR_KEVENT_PMIG_CHECK
• DR_KEVENT_PMIG_PRE
• DR_KEVENT_PMIG_POST
• DR_KEVENT_PMIG_POST_ERROR
• DR_KEVENT_PMIG_POST_INTERNAL
• DR_KEVENT_WMIG_CHECK
• DR_KEVENT_WMIG_PRE
• DR_KEVENT_WMIG_POST
• DR_KEVENT_WMIG_POST_ERROR
• DR_KEVENT_WMIG_CHECKPOINT_CHECK
• DR_KEVENT_WMIG_CHECKPOINT_PRE
• DR_KEVENT_WMIG_CHECKPOINT_DOIT
• DR_KEVENT_WMIG_CHECKPOINT_ERROR
• DR_KEVENT_WMIG_CHECKPOINT_POST
• DR_KEVENT_WMIG_CHECKPOINT_POST_ERROR
• DR_KEVENT_WMIG_RESTART_CHECK
• DR_KEVENT_WMIG_RESTART_PRE
• DR_KEVENT_WMIG_RESTART_DOIT
• DR_KEVENT_WMIG_RESTART_ERROR
• DR_KEVENT_WMIG_RESTART_POST

464 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

• DR_KEVENT_WMIG_RESTART_POST_ERROR
• DR_KEVENT_MEM_CAP_ADD_CHECK
• DR_KEVENT_MEM_CAP_ADD_PRE
• DR_KEVENT_MEM_CAP_ADD_POST
• DR_KEVENT_MEM_CAP_ADD_POST_ERROR
• DR_KEVENT_MEM_CAP_RM_CHECK
• DR_KEVENT_MEM_CAP_RM_PRE
• DR_KEVENT_MEM_CAP_RM_POST
• DR_KEVENT_MEM_CAP_RM_POST_ERROR
• DR_KEVENT_MEM_CAP_WGT_ADD_CHECK
• DR_KEVENT_MEM_CAP_WGT_ADD_PRE
• DR_KEVENT_MEM_CAP_WGT_ADD_POST
• DR_KEVENT_MEM_CAP_WGT_ADD_POST_ERROR
• DR_KEVENT_MEM_CAP_WGT_RM_CHECK
• DR_KEVENT_MEM_CAP_WGT_RM_PRE
• DR_KEVENT_MEM_CAP_WGT_RM_POST
• DR_KEVENT_MEM_CAP_WGT_RM_POST_ERROR
• DR_KEVENT_TOPOLOGY_PRE
• DR_KEVENT_TOPOLOGY_POST
• DR_KEVENT_AME_FACTOR_CHECK
• DR_KEVENT_AME_FACTOR_PRE
• DR_KEVENT_AME_FACTOR_POST
• DR_KEVENT_AME_FACTOR_POST_ERROR

Return Values
Upon successful completion, the reconfig_register, reconfig_register_ext and reconfig_unregister
kernel services return zero. If unsuccessful, the appropriate errno value is returned.

Execution Environment
The reconfig_register, reconfig_register_ext, reconfig_unregister, and handler interfaces are invoked
in the process environment only.

The reconfig_complete kernel service may be invoked in the process or interrupt environment.

Related information
Making Kernel Extensions DLPAR-Aware

refmon Kernel Service

Purpose
Performs various access checks such as privileges, authorizations, discretionary access control checks
and so on.

Syntax

#include <refmon.h>

Kernel Services and Subsystem Operations 465

int refmon (crp, action, flags, nargs, args[])
cred_t *crp;
rfm_action_t action;
uint_t flags;
int nargs;
void *args[];

Parameters

Item Description

crp Specifies the caller's (subject) credentials; If NULL, then current process credentials are
referenced.

action Specifies the type of access check that needs to be carried out.

flags Enables auditing of this event. You can only set this parameter to the value of
REFMON_AUDIT.

nargs Specifies the number of arguments in the args parameter.

args Specifies an array of void pointers used as input to the refmon kernel service based on
the action parameter.

Description
The refmon kernel service provides an interface to perform various access checks. You can call the
refmon kernel service to determine access to system resources. Most of the actions that are passed to
the refmon kernel service check for specific privileges. Many of the system calls and kernel services call
the refmon kernel service to check whether you are authorized or privileged to use such functions. The
action parameter determines which type of checks needs to be performed. The sys/refmon.h header file
contains a complete list of these actions and their corresponding description.

Execution Environment
The refmon kernel service can be called from the process environment only.

Return Values

Item Description

0 Success.

EINVAL The action parameter is not valid or a value that is not allowed is passed in for an action.

EPERM The caller does not have permission to perform the intended action.

Related information
Security Kernel Services

register_HA_handler Kernel Service

Purpose
Registers a High Availability Event Handler with the Kernel.

Syntax

#include <sys/high_avail.h>

466 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

int register_HA_handler (ha_handler)
ha_handler_ext_t * ha_handler;

Parameter

Item Description

ha_handler Specifies a pointer to a structure of the type
ha_handler_ext_t as defined in /usr/include/sys/
high_avail.h.

Description
The register_HA_handler kernel registers the High Availability Event Handler (HAEH) function to those
kernel extensions that need to be made aware of high availability events such as processor deallocation.
This function is called by the kernel, at base level, when a high availability event is initiated, due to some
hardware fault.

The ha_handler_ext_t structure has 3 fields:

Field Description

_fun Contains a pointer to the high availability event
handler function.

_data Contains a user defined value which will be passed
as an argument by the kernel when calling the
function.

_name Component name

When a high availability event is initiated, the kernel calls _fun() at base level (that is, process
environment) with 2 parameters:

• The first is the data the user passed in the _data field at registration time.
• The second is a pointer to a haeh_event_t structure defined in /usr/include/sys/high_avail.h.

The fields of interest in this structure are:

Field Description

_magic Identifies the event type. The only possible value is HA_CPU_FAIL.

dealloc_cpu The logical number of the CPU being deallocated.

The high availability even handler, in addition to user specific functions, must unbind its threads bound to
dealloc_cpu and stop the timer request blocks (TRB) started by those bound threads when applicable.

The high availability event handler must return one of the following values:

Value Description

HA_ACCEPTED The user processing of the event has succeeded.

HA_REFUSED The user processing of the event was not successful.

Any return value different from HA_ACCEPTED causes the kernel to abort the processing of the
event. In the case of a processor failure, the processor deallocation is aborted. In this case, a
CPU_DEALLOC_ABORTED error log entry is created, and the value passed in the _name field appears
in the detailed data area of the error log entry.

An extension may register the same HAEH N times (N > 1). Although it is considered as an incorrect
behaviour, no error is reported. The given HAEH is invoked N times for each HA event. This handler has to
be unregistered as many times as it was registered.

Kernel Services and Subsystem Operations 467

Since the kernel calls the HAEH in turn, it is possible for a HAEH to be called multiple times for the
same event. The kernel extensions should be ready to deal with this possibility. For example, two kernel
extensions K1 and K2 have registered HA Handlers. A CPU deallocation is initiated. The HAEH for K1
gets invoked, does its job and returns HA_ACCEPTED. K2 gets invoked next and for some reason returns
HA_REFUSED. The deallocation is aborted, and an error log entry reports K2 as the reason for failure.
Later, the system administer unloads K2 and restarts the deallocation by manually running ha_star. The
result is that the HAEH for K1 gets invoked again with the same parameters.

Execution Environment
The register_HA_handler kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

A non zero value indicates an error.

Related reference
unregister_HA_handler Kernel Service
Related information
RAS Kernel Services

rmalloc Kernel Service

Purpose
Allocates an area of memory from the real_heap heap.

Syntax

#include <sys/types.h>

caddr_t rmalloc (size, align)
int size
int align

Parameters

Item Description

size Specifies the number of bytes to allocate.

align Specifies alignment characteristics.

Description
The rmalloc kernel service allocates an area of memory from the contiguous real memory heap. This area
is the number of bytes in length specified by the size parameter and is aligned on the byte boundary
specified by the align parameter. The align parameter is actually the log base 2 of the desired address
boundary. For example, an align value of 4 requests that the allocated area be aligned on a 16-byte
boundary.

The contiguous real memory heap, real_heap, is a heap of contiguous real memory pages located in the
low 16MB of real memory. This heap is virtually mapped into the kernel extension's address space. By
nature, this heap is implicitly pinned, so no explicit pinning of allocated regions is necessary.

468 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The real_heap heap is useful for devices that require DMA transfers greater than 4K but do not
provide a scatter/gather capability. Such a device must be given contiguous bus addresses by its device
driver. The device driver should pass the DMA_CONTIGUOUS flag on its d_map_init call in order
to obtain contiguous mappings. On certain platforms it is possible that a d_map_init call using the
DMA_CONTIGUOUS flag could fail. In this case, the device driver can make use of the real_heap heap
(using rmalloc) to obtain contiguous bus addresses for its device driver. Because the real_heap heap is a
limited resource, device drivers should always attempt to use the DMA_CONTIGUOUS flag first.

On unsupported platforms, the rmalloc service returns NULL if the requested memory cannot be
allocated.

The rmfree kernel service should be called to free allocation from a previous rmalloc call. The rmalloc
kernel service can be called from the process environment only.

Return Values
Upon successful completion, the rmalloc kernel service returns the address of the allocated area. A NULL
pointer is returned if the requested memory cannot be allocated.

rmfree Kernel Service

Purpose
Frees memory allocated by the rmalloc kernel service.

Syntax

#include <sys/types.h>

int rmfree (pointer, size)
caddr_t pointer
int size

Parameters

Item Description

pointer Specifies the address of the area in memory to free.

size Specifies the size of the area in memory to free.

Description
The rmfree kernel service frees the area of memory pointed to by the pointer parameter in the contiguous
real memory heap. This area of memory must be allocated with the rmalloc kernel service, and the
pointer must be the pointer returned from the corresponding rmalloc kernel service call. Also, the size
must be the same size that was used on the corresponding rmalloc call.

Any memory allocated in a prior rmalloc call must be explicitly freed with an rmfree call. This service can
be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates successful completion.

Kernel Services and Subsystem Operations 469

Ite
m

Description

-1 Indicates one of the following:

• The area was not allocated by the rmalloc kernel service.
• The heap was not initialized for memory allocation.

rmmap_create Kernel Service

Purpose
Defines an Effective Address [EA] to Real Address [RA] translation region.

Syntax

#include <sys/ioacc.h>
#include <sys/adspace.h>

int rmmap_create (eaddrp, iomp, flags)
void **eaddrp;
struct io_map *iomp;
int flags;

Parameters

Item Description

eaddr Required process effective address of the mapping region.

iomp The bus memory to which the effective address described by the eaddr parameter must
correspond. For real memory, the bus id must be set to REALMEM_BID and the bus address
must be set to the real memory address. The size field must be at least PAGESIZE, no larger
than SEGSIZE, and a multiple of PAGESIZE. The key must be set to IO_MEM_MAP. The flags
field is not used.

470 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

flags The flags select page and segment attributes of the translation. Not all page attribute flags are
compatible. The valid combinations of page attribute flags follow.
RMMAP_PAGE_W

PowerPC "Write Through" page attribute. Write-through mode is not supported, and if this
flag is set, EINVAL is reported.

RMMAP_PAGE_I
PowerPC "Cache Inhibited" page attribute. This flag is valid for I/O mappings, but is not
allowed for real memory mappings.

RMMAP_PAGE_M
PowerPC "Memory Coherency Required" page attribute. This flag is optional for I/O
mappings; however, it is required for memory mappings. The default operating mode for
real memory pages has this bit set.

RMMAP_PAGE_G
PowerPC "Guarded" page attribute. This flag is optional for I/O mappings, and must be 0 for
real memory mappings. Although optional for I/O, it is recommended that this flag must be
set for I/O mappings. When set, the processor does not make unnecessary (speculative)
references to the page. It includes out of order read or write operations and branch
fetching. When clear, normal PowerPC speculative execution rules apply.

RMMAP_RDONLY
When set, the page protection bits used in the HTAB does not allow write operations
regardless of the setting of the key bit in the associated segment register. Exactly one of
RMMAP_RDONLY and RMMAP_RDWR must be specified.

RMMAP_RDWR
When set, the page protection bits used in the HTAB allows read and write operations
regardless of the setting of the key bit in the associated segment register. Exactly one of:
RMMAP_RDONLY, and RMMAP_RDWR must be specified.

RMMAP_PRELOAD
When set, the protection attributes of this region are entered immediately into the hardware
page table. It is very slow initially, but prevents each referenced page in the region from
faulting in separately. It is only advisory. This flag is not maintained as an attribute of the
map region, it is used only during the current call.

RMMAP_INHERIT
When set, this protection attribute specifies that the translation region created by this
rmmap_create invocation must be inherited on a fork operation, to the child process. This
inheritance is achieved with copy-semantics. The child has its own private mapping to the
same I/O or real memory address range as the parent.

Description
The translation regions that are created with rmmap_create kernel service are maintained in I/O mapping
segments. Any single such segment might translate up to 256 Megabytes of real memory or memory
mapped I/O in a single region. The only granularity for which the rmmap_remove service might be started
is a single mapping that is created by a single call to the rmmap_create.

There are constraints on the size of the mapping and the flags parameter, described later, which causes
the call to fail regardless of whether adequate effective address space exists.

If rmmap_create kernel service is called with the effective address of zero, the function attempts to
find free space in the process address space. If successful, an I/O mapping segment is created and the
effective address (which is passed by reference) is changed to the effective address which is mapped to
the first page of the iomp memory.

If rmmap_create kernel service is called with a non-zero effective address, it is taken as the required
effective address which must translate to the passed iomp memory. This function verifies that the

Kernel Services and Subsystem Operations 471

requested range is free. If not, it fails and returns EINVAL. If the mapping at the effective address is not
contained in a single segment, the function fails and returns ENOSPC. Otherwise, the region is allocated
and the effective address is not modified. The effective address is mapped to the first page of the iomp
memory. References outside of the mapped regions but within the same segment are invalid.

The effective address (if provided) and the bus address must be a multiple of PAGESIZE or EINVAL is
returned.

I/O mapping segments are not inherited by child processes after a fork subroutine.

I/O mapping segments are not inherited by child processes after a fork subroutine, except when
RMMAP_INHERIT is specified. These segments are deleted by exec, exit, or rmmap_remove of the
last range in a segment.

Only certain combinations of flags are permitted, depending on the type of memory that is mapped.
For real memory mappings, RMMAP_PAGE_M is required while RMMAP_PAGE_W, RMMAP_PAGE_I, and
RMMAP_PAGE_G are not allowed. For I/O mappings, it is valid to specify only RMMAP_PAGE_M, with
no other page attribute flags. It is also valid to specify RMMAP_PAGE_I and optionally, either or both of
RMMAP_PAGE_M, and RMMAP_PAGE_G. RMMAP_PAGE_W is never allowed.

The real address range that is described by the iomp parameter must be unique within this I/O mapping
segment.

Execution Environment
The rmmap_create kernel service can be called only from the process environment.

Return Values
On successful completion, rmmap_create kernel service returns zero and modifies the effective address
to the value at which the newly created mapping region was attached to the process address space.
Otherwise, it returns one of following errors:

Item Description

EINVAL Some type of parameter error occurred. These parameters include, but are not limited to, size errors and mutually
exclusive flag selections.

ENOMEM The operating system cannot allocate the necessary data structures to represent the mapping.

ENOSPC Effective address space exhausted in the region indicated by eaddr.

EPERM This hardware platform does not implement this service.

Implementation Specifics
This service only functions on PowerPC microprocessors.

Related reference
rmmap_remove Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

rmmap_getwimg Kernel Service

Purpose
Returns wimg information about a particular effective address range within an effective address to real
address translation region.

472 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/adspace.h>

int rmmap_getwimg(eaddr, npages, results)
unsigned long long eaddr;
unsigned int npages;
char* results;

Parameters

Item Description

eaddr The process effective address of the start of the desired mapping region. This address
should point somewhere inside the first page of the range. This address is interpreted as a
64-bit quantity if the current user address space is 64-bits, and is interpreted as a 32-bit
(not remapped) quantity if the current user address space is 32-bits.

npages The number of pages whose wimg information is returned, starting from the page indicated
by eaddr.

results This is an array of bytes, where the wimg information is returned. The address of this is
passed in by the caller, and rmmap_getwimg stores the wimg information for each page in
the range in each successive byte in this array. The size of this array is indicated by npages
as specified by the caller. The caller is responsible for ensuring that the storage allocated for
this array is large enough to hold npage bytes.

Description
The wimg information corresponding to the input effective address range is returned.

This routine only works for regions previously mapped with an I/O mapping segment as created by
rmmap_create.

npages should not be such that the range crosses a segment boundary. If it does, EINVAL is returned.

The wimg information is returned in the results array. Each element of the results array is a character.
Each character may be added with the following fields to examine wimg information: RMMAP_PAGE_W,
RMMAP_PAGE_I, RMMAP_PAGE_M or RMMAP_PAGE_G. The array is valid if the return value is 0.

Execution Environment
The rmmap_getwimg kernel service is called from the process environment only.

Return Values

Item Description

0 Successful completion. Indicates that the results array is valid and should be examined.

EINVAL An error occurred. Most likely the region was not mapped via rmmap_create previously.

.

EINVAL Input range crosses a certain boundary.

EINVAL The hardware platform does not implement this service.

Implementation Specifics
This service only functions on PowerPC microprocessors.

Kernel Services and Subsystem Operations 473

Related reference
rmmap_create Kernel Service
rmmap_remove Kernel Service

rmmap_remove Kernel Service

Purpose
Destroys an effective address to real address translation region.

Syntax

#include <sys/adspace.h>
int rmmap_remove (eaddrp);
void **eaddrp;

Parameters

Item Description

eaddrp Pointer to the process effective address of the desired mapping region.

Description
Destroys an effective address to real address translation region. If rmmap_remove kernel service is
called with the effective address within the region of a previously created I/O mapping segment, the
region is destroyed. This service must be called from the process level.

Execution Environment
The rmmap_remove kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

EINVAL The provided eaddr does not correspond to a valid I/O mapping segment.

EINVAL This hardware platform does not implement this service.

Implementation Specifics
This service only functions on PowerPC microprocessors.

Related reference
rmmap_create Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

rtalloc Kernel Service

Purpose
Allocates a route.

474 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <net/route.h>

void rtalloc (ro)
register struct route *ro;

Parameter

Ite
m

Description

ro Specifies the route.

Description
The rtalloc kernel service allocates a route, which consists of a destination address and a reference to a
routing entry.

Execution Environment
The rtalloc kernel service can be called from either the process or interrupt environment.

Return Values
The rtalloc service has no return values.

Example
To allocate a route, invoke the rtalloc kernel service as follows:

rtalloc(ro);

Related information
Network Kernel Services

rtalloc_gr Kernel Service

Purpose
Allocates a route.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <net/route.h>

void rtalloc_gr (ro, gidlist)
register struct route *ro;
struct gidstruct *gidlist;

Kernel Services and Subsystem Operations 475

Parameter

Item Description

ro Specifies the route.

gidlist Points to the group list.

Description
The rtalloc_gr kernel service allocates a route, which consists of a destination address and a reference to
a routing entry.

A route can be allocated only if its group id restrictions specify that it can be used by a user with the gidlist
that is passed in.

Execution Environment
The rtalloc_gr kernel service can be called from either the process or interrupt environment.

Return Values
The rtalloc_gr service has no return values.

Example
To allocate a route, invoke the rtalloc_gr kernel service as follows:

rtalloc_gr (ro, gidlist);

Related reference
rtalloc Kernel Service
Related information
Network Kernel Services

rtfree Kernel Service

Purpose
Frees the routing table entry.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <net/route.h>

int rtfree (rt)
register struct rtentry *rt;

Parameter

Ite
m

Description

rt Specifies the routing table entry.

476 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The rtfree kernel service frees the entry it is passed from the routing table. If the route does not exist, the
panic service is called. Otherwise, the rtfree service frees the mbuf structure that contains the route and
decrements the routing reference counters.

Execution Environment
The rtfree kernel service can be called from either the process or interrupt environment.

Return Values
The rtfree kernel service has no return values.

Example
To free a routing table entry, invoke the rtfree kernel service as follows:

rtfree(rt);

Related reference
panic Kernel Service
Related information
Network Kernel Services

rtinit Kernel Service

Purpose
Sets up a routing table entry typically for a network interface.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/socket.h>
#include <net/route.h>

int rtinit (ifa, cmd, flags)
struct ifaddr * ifa;
int cmd, flags;

Parameters

Item Description

ifa Specifies the address of an ifaddr structure containing destination address, interface address,
and netmask.

cmd Specifies a request to add or delete route entry.

flags Identifies routing flags, as defined in the /usr/include/net/route.h file.

Description
The rtinit kernel service creates a routing table entry for an interface. It builds an rtentry structure using
the values in the ifa and flags parameters.

The rtinit service then calls the rtrequest kernel service and passes the cmd parameter and the rtentry
structure to process the request. The cmd parameter contains either the value RTM_ADD (a request to

Kernel Services and Subsystem Operations 477

add the route entry) or the value RTM_DELETE (delete the route entry). Valid routing flags to set are
defined in the /usr/include/route.h file.

Execution Environment
The rtinit kernel service can be called from either the process or interrupt environment.

Return Values
The rtinit kernel service returns values from the rtrequest kernel service.

Example
To set up a routing table entry, invoke the rtinit kernel service as follows:

rtinit(ifa, RMT_ADD, flags (RTF_DYNAMIC);

Related reference
rtrequest Kernel Service
Related information
Network Kernel Services

rtredirect Kernel Service

Purpose
Forces a routing table entry with the specified destination to go through a given gateway.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>
#include <net/route.h>

rtredirect (dst, gateway, netmask, flags, src, rtp)
struct sockaddr *dst, *gateway, *netmask, *src;
int flags;
struct rtentry **rtp;

Parameters

Item Description

dst Specifies the destination address.

gateway Specifies the gateway address.

netmask Specifies the network mask for the route.

flags Indicates routing flags as defined in the /usr/include/net/route.h file.

src Identifies the source of the redirect request.

rtp Indicates the address of a pointer to a rtentry structure. Used to return a constructed route.

Description
The rtredirect kernel service forces a routing table entry for a specified destination to go through the
given gateway. Typically, the rtredirect service is called as a result of a routing redirect message from

478 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

the network layer. The dst, gateway, and flags parameters are passed to the rtrequest kernel service to
process the request.

Execution Environment
The rtredirect kernel service can be called from either the process or interrupt environment.

Return Values

Ite
m

Description

0 Indicates a successful operation.

If a bad redirect request is received, the routing statistics counter for bad redirects is incremented.

Example
To force a routing table entry with the specified destination to go through the given gateway, invoke the
rtredirect kernel service:

rtredirect(dst, gateway, netmask, flags, src, rtp);

Related reference
rtinit Kernel Service
Related information
Network Kernel Services

rtrequest Kernel Service

Purpose
Carries out a request to change the routing table.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>
#include <net/if.h>
#include <net/af.h>
#include <net/route.h>

int rtrequest (req,
dst,
gateway,
netmask,
flags, ret_nrt)
int req;
struct sockaddr *dst, *gateway, *netmask;
int flags;
struct rtentry **ret_nrt;

Parameters

Item Description

req Specifies a request to add or delete a route.

Kernel Services and Subsystem Operations 479

Item Description

dst Specifies the destination part of the route.

gateway Specifies the gateway part of the route.

netmask Specifies the network mask to apply to the route.

flags Identifies routing flags, as defined in the /usr/include/net/route.h file.

ret_nrt Specifies to return the resultant route.

Description
The rtrequest kernel service carries out a request to change the routing table. Interfaces call the
rtrequest service at boot time to make their local routes known for routing table ioctl operations.
Interfaces also call the rtrequest service as the result of routing redirects. The request is either to add (if
the req parameter has a value of RMT_ADD) or delete (the req parameter is a value of RMT_DELETE) the
route.

Execution Environment
The rtrequest kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

0 Indicates a successful operation.

ESRCH Indicates that the route was not there to delete.

EEXIST Indicates that the entry the rtrequest service tried to add already exists.

ENETUNREACH Indicates that the rtrequest service cannot find the interface for the route.

ENOBUFS Indicates that the rtrequest service cannot get an mbuf structure to add an entry.

Example
To carry out a request to change the routing table, invoke the rtrequest kernel service as follows:

rtrequest(RTM_ADD, dst, gateway, netmask, flags, &rtp);

Related reference
rtinit Kernel Service
Related information
Network Kernel Services

rtrequest_gr Kernel Service

Purpose
Carries out a request to change the routing table.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>
#include <net/if.h>

480 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

#include <net/af.h>
#include <net/route.h>

int rtrequest_gr (req, dst, gateway, netmask, flags, ret_nrt, rt_parm)
int req;
struct sockaddr *dst, *
gateway
, *netmask;
int flags;
struct rtentry **
ret_nrt;
struct rtreq_parm *
rt_parm;

Parameters

Item Description

req Specifies a request to add or delete a route.

dst Specifies the destination part of the route.

gateway Specifies the gateway part of the route.

netmask Specifies the network mask to apply to the route.

flags Identifies routing flags, as defined in the /usr/include/net/route.h file.

ret_nrt Specifies to return the resultant route.

rt_parm Points to the rtreq_parm structure. The /usr/include/net/radix.h file contains the
rtreq_parm structure. Through this structure, the route attributes like group list, policy,
weight, WPAR ID, interface can be specified.

Description
The rtrequest_gr kernel service carries out a request to change the routing table. Interfaces call the
rtrequest_gr service at boot time to make their local routes known for routing table ioctl operations.
Interfaces also call the rtrequest_gr service as the result of routing redirects. The request is either to add
(if the req parameter has a value of RMT_ADD) or delete (the req parameter is a value of RMT_DELETE)
the route.

Execution Environment
The rtrequest_gr kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

0 Indicates a successful operation.

ESRCH Indicates that the route was not there to delete.

EEXIST Indicates that the entry the rtrequest_gr service tried to add already exists.

ENETUNREACH Indicates that the rtrequest_gr service cannot find the interface for the route.

ENOBUFS Indicates that the rtrequest_gr service cannot get an mbuf structure to add an
entry.

Kernel Services and Subsystem Operations 481

Example
To carry out a request to change the routing table, invoke the rtrequest_gr kernel service as follows:

rtrequest_gr(RTM_ADD, dst, gateway, netmask, flags, &rtp, &rtreq);

Related reference
rtinit Kernel Service
rtrequest Kernel Service
Related information
Network Kernel Services

rusage_incr Kernel Service

Purpose
Increments a field of the rusage structure.

Syntax

#include <sys/encap.h>

void rusage_incr (field, amount)
int field;
int amount;

Parameters

Item Description

field Specifies the field to increment. It must have one of the following values:
RUSAGE_INBLOCK

Denotes the ru_inblock field. This field specifies the number of times the file system
performed input.

RUSAGE_OUTBLOCK
Denotes the ru_outblock field. This field specifies the number of times the file system
performed output.

RUSAGE_MSGRCV
Denotes the ru_msgrcv field. This field specifies the number of IPC messages received.

RUSAGE_MSGSENT
Denotes the ru_msgsnd field. This field specifies the number of IPC messages sent.

amount Specifies the amount to increment to the field.

Description
The rusage_incr kernel service increments the field specified by the field parameter of the calling
process' rusage structure by the amount amount.

Execution Environment
The rusage_incr kernel service can be called from the process environment only.

Return Values
The rusage_incr kernel service has no return values.

482 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related information
getrusage subroutine
Process and Exception Management Kernel Services

s
The following kernel services begin with the with the letter s.

schednetisr Kernel Service

Purpose
Schedules or invokes a network software interrupt service routine.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <net/netisr.h>

int schednetisr (anisr)
int anisr;

Parameter

Item Description

anisr Specifies the software interrupt number to issue. Refer to netisr.h for the range of values
of anisr that are already in use. Also, other kernel extensions that are not AIX and that use
network ISRs currently running on the system can make use of additional values not mentioned
in netisr.h.

Description
The schednetisr kernel service schedules or calls a network interrupt service routine. The add_netisr
kernel service establishes interrupt service routines. If the service was added with a service level of
NET_OFF_LEVEL, the schednetisr kernel service directly calls the interrupt service routine. If the service
level was NET_KPROC, a network kernel dispatcher is notified to call the interrupt service routine.

Execution Environment
The schednetisr kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

EFAULT Indicates that a network interrupt service routine does not exist for the specified interrupt
number.

EINVAL Indicates that the anisr parameter is out of range.

Related reference
add_netisr Kernel Service
del_netisr Kernel Service
Related information
Network Kernel Services

Kernel Services and Subsystem Operations 483

selnotify Kernel Service

Purpose
Wakes up processes waiting in a poll or select subroutine or in the fp_poll kernel service.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

void selnotify (id, subid, rtnevents)
int id;
int subid;
ushort rtnevents;

Parameters

Item Description

id Indicates a primary resource identification value. This value along with the subidentifier
(specified by the subid parameter) is used by the kernel to notify the appropriate
processes of the occurrence of the indicated events. If the resource on which the event
has occurred is a device driver, this parameter must be the device major/minor number
(that is, a dev_t structure that has been cast to an int). The kernel has reserved values
for the id parameter that do not conflict with possible device major or minor numbers for
sockets, message queues, and named pipes.

subid Helps identify the resource on which the event has occurred for the kernel. For a
multiplexed device driver, this is the number of the channel on which the requested
events occurred. If the device driver is nonmultiplexed, the subid parameter must be set
to 0.

rtnevents Consists of a set of bits indicating the requested events that have occurred on the
specified device or channel. These flags have the same definition as the event flags
that were provided by the events parameter on the unsatisfied call to the object's select
routine.

Description
The selnotify kernel service should be used by device drivers that support select or poll operations. It is
also used by the kernel to support select or poll requests to sockets, named pipes, and message queues.

The selnotify kernel service wakes up processes waiting on a select or poll subroutine. The processes to
be awakened are those specifying the given device and one or more of the events that have occurred on
the specified device. The select and poll subroutines allow a process to request information about one or
more events on a particular device. If none of the requested events have yet happened, the process is put
to sleep and re-awakened later when the events actually happen.

The selnotify service should be called whenever a previous call to the device driver's ddselect entry point
returns and both of the following conditions apply:

• The status of all requested events is false.
• Asynchronous notification of the events is requested.

The selnotify service can be called for other than these conditions but performs no operation.

Sequence of Events for Asynchronous Notification

The device driver must store information about the events requested while in the driver's ddselect
routine under the following conditions:

484 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

• None of the requested events are true (at the time of the call).
• The POLLSYNC flag is not set in the events parameter.

The POLLSYNC flag, when not set, indicates that asynchronous notification is desired. In this case, the
selnotify service should be called when one or more of the requested events later becomes true for that
device and channel.

When the device driver finds that it can satisfy a select request, (perhaps due to new input data) and an
unsatisfied request for that event is still pending, the selnotify service is called with the following items:

• Device major and minor number specified by the id parameter
• Channel number specified by the subid parameter
• Occurred events specified by the rtnevents parameter

These parameters describe the device instance and requested events that have occurred on that device.
The notifying device driver then resets its requested-events flags for the events that have occurred for
that device and channel. The reset flags thus indicate that those events are no longer requested.

If the rtnevents parameter indicated by the call to the selnotify service is no longer being waited on, no
processes are awakened.

Execution Environment
The selnotify kernel service can be called from either the process or interrupt environment.

Return Values
The selnotify service has no return values.

Implementation Specifics
The selnotify kernel service is part of Base Operating System (BOS) Runtime.

Related reference
ddselect Device Driver Entry Point
Related information
poll subroutine
select subroutine
Kernel Extension and Device Driver Management Kernel Services

selreg Kernel Service

Purpose
Registers an asynchronous poll or select request with the kernel.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/poll.h>

int selreg (corl, dev_id, unique_id, reqevents, notify)
int corl;
int dev_id;
int unique_id;
ushort reqevents;
void (*notify) ();

Kernel Services and Subsystem Operations 485

Parameters

Item Description

corl The correlator for the poll or select request. The corl parameter is used by the poll and
select subroutines to correlate the returned events in a specific select control block with
a process' file descriptor or message queue.

dev_id Primary resource identification value. Along with the unique_id parameter, the dev_id
parameter is used to record in the select control block the resource on which the
requested poll or select events are expected to occur.

unique_id Unique resource identification value. Along with the dev_id parameter, the unique_id
parameter denotes the resource on which the requested events are expected to occur.
For a multiplexed device driver, this parameter specifies the number of the channel on
which the requested events are expected to occur. For a nonmultiplexed device driver,
this parameter must be set to 0.

reqevents Requested events parameter. The reqevents parameter consists of a set of bit flags
denoting the events for which notification is being requested. These flags have the same
definitions as the event flags provided by the events parameter on the unsatisfied call to
the object's select subroutine (see the sys/poll.h file for the definitions).

Note: The POLLSYNC bit flag should not be set in this parameter.

notify Notification routine entry point. This parameter points to a notification routine used for
nested poll and select calls.

Description
The selreg kernel service is used by select file operations in the top half of the kernel to register an
unsatisfied asynchronous poll or select event request with the kernel. This registration enables later
calls to the selnotify kernel service from resources in the bottom half of the kernel to correctly identify
processes awaiting events on those resources.

The event requests may originate from calls to the poll or select subroutine, from processes, or from calls
to the fp_poll or fp_select kernel service. A select file operation calls the selreg kernel service under the
following circumstances:

• The poll or select request is asynchronous (the POLLSYNC flag is not set for the requested event's bit
flags).

• The poll or select request determines (by calling the underlying resource's ddselect entry point) that
the requested events have not yet occurred.

A registered event request takes the form of a select control block. The select control block is a structure
containing the following:

• Requested event bit flags
• Returned event bit flags
• Primary resource identifier
• Unique resource identifier
• Pointer to a proc table entry
• File descriptor correlator
• Pointer to a notification routine that is non-null only for nested calls to the poll and select subroutines

The selreg kernel service allocates and initializes a select control block each time it is called.

When an event occurs on a resource that supports the select file operation, the resource calls the
selnotify kernel service. The selnotify kernel service locates all select control blocks whose primary and
unique identifiers match those of the resource, and whose requested event flags match the occurred
events on the resource. Then, for each of the matching control blocks, the selnotify kernel service takes

486 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

one of two courses of action, depending upon whether the control block's notification routine pointer is
non-null (nested) or null (non-nested):

• In nested calls to the select or poll subroutines, the notification routine is called with the primary and
unique resource identifiers, the returned event bit flags, and the process identifiers.

• In non-nested calls to the select or poll subroutine (the usual case), the SSEL bit of the process
identified in the block is cleared, the returned event bit flags in the block are updated, and the process
is awakened. A process awakened in this manner completes the poll or select call in which it was
sleeping. The poll or select subroutine then collects the returned event bit flags in its processes' select
control blocks for return to the user mode process, deallocates the control blocks, and returns tallys of
the numbers of requested events that occurred to the user process.

Execution Environment
The selreg kernel service can be called from the process environment only.

Returns Values

Item Description

0 Indicates successful completion.

EAGAIN Indicates the selreg kernel service was unable to allocate a select control block.

Related information
select subroutine
Kernel Extension and Device Driver Management Kernel Services

set_pag or set_pag64 Kernel Service

Purpose
Sets a Process Authentication Group (PAG) value for the current process.

Syntax
#include <sys/cred.h>

int set_pag (type, pag)
int type;
int pag;

int set_pag64 (type, pag)
int type;
uint64_t *pag;

Parameters
Item Description

type PAG type to change

pag PAG value

Description
The set_pag or set_pag64 kernel service copies the requested PAG for the current process. The caller
must synchronize the set_pag and set_pag64 kernel services with validate_pag because set_pag
and set_pag64 do not lock process creation across the system. The value of type must be a defined PAG
ID. The PAG ID for the Distributed Computing Environment (DCE) is 0.

Kernel Services and Subsystem Operations 487

Execution Environment
The set_pag and set_pag64 kernel services can be called from the process environment only.

Return Values
A value of 0 is returned upon successful completion. Upon failure, a -1 is returned and errno is set to a
value that explains the error.

Error Codes
The set_pag and set_pag64 kernel services fails if one or both of the following conditions are true:

Item Description

EINVAL Invalid PAG specification

Related information
Security Kernel Services

setioctlrv Subroutine

Purpose
Sets a value to be returned by an ioctl routine.

Syntax
void setioctlrv (ioctlrv)
int ioctlrv;

Parameters

Item Description

ioctlrv Specifies an integer value to be returned by a successful completion of the ioctl
subroutine.

Description
The setioctlrv subroutine sets the value of the u_ioctlrv field in the uthread structure of the running
thread. The value in the u_ioctlrv field is returned by theioctl or fp_ioctl subroutine on a successful
completion. If the ioctl subroutine fails, an errno value is returned instead.

Return Values
The setioctlrv subroutine returns no return values.

Error Codes
The setioctlrv subroutine returns no error codes.

setjmpx Kernel Service

Purpose
Allows saving the current execution state or context.

488 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int setjmpx (jump_buffer)
label_t *jump_buffer;

Parameter

Item Description

jump_buffer Specifies the address of the caller-supplied jump buffer that was specified on the call
to the setjmpx service.

Description
The setjmpx kernel service saves the current execution state, or context, so that a subsequent longjmpx
call can cause an immediate return from the setjmpx service. The setjmpx service saves the context with
the necessary state information including:

• The current interrupt priority.
• Whether the process currently owns the kernel mode lock.

Other state variables include the nonvolatile general purpose registers, the current program's table of
contents and stack pointers, and the return address.

Calls to the setjmpx service can be nested. Each call to the setjmpx service causes the context at this
point to be pushed to the top of the stack of saved contexts.

Execution Environment
The setjmpx kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

Nonzero value Indicates that a longjmpx call caused the setjmpx service to return.

0 Indicates any other circumstances.

Related reference
clrjmpx Kernel Service
Related information
Handling Signals While in a System Call
Exception Processing

setpinit Kernel Service

Purpose
Sets the parent of the current kernel process to the initialization process.

Kernel Services and Subsystem Operations 489

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/device.h>

int setpinit()

Description
The setpinit kernel service can be called by a kernel process to set its parent process to the init process.
This is done to redirect the death of child signal for the termination of the kernel process. As a result, the
init process is allowed to perform its default zombie process cleanup.

The setpinit service is used by a kernel process that can terminate, but does not want the user-mode
process under which it was created to receive a death of child process notification.

Execution Environment
The setpinit kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

EINVAL Indicates that the current process is not a kernel process.

Related information
Using Kernel Processes
Process and Exception Management Kernel Services

setuerror Kernel Service

Purpose
Allows kernel extensions to set the ut_error field for the current thread.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int setuerror (errno)
int errno;

Parameter

Item Description

errno Contains a value found in the /usr/include/sys/errno.h file that is to be copied to the current
thread ut_error field.

Description
The setuerror kernel service allows a kernel extension in a process environment to set the ut_error field
in current thread's uthread structure. Kernel extensions providing system calls available to user-mode

490 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

applications typically use this service. For system calls, the value of the ut_error field in the per thread
uthread structure is copied to the errno global variable by the system call handler before returning to the
caller.

Execution Environment
The setuerror kernel service can be called from the process environment only.

Return Codes
The setuerror kernel service returns the errno parameter.

Related reference
getuerror Kernel Service
Related information
Kernel Extension and Device Driver Management Kernel Services
Understanding System Call Execution

shutdown_notify_reg Kernel Service

Purpose
Allows kernel extensions to register a shutdown notification.

Syntax
#include <sys/reboot.h>

int shutdown_notify_reg(sn)
shutdown_notify_t *sn;

typedef struct _shutdown_notify {
 struct _shutdown_notify *next; /* Next in the link-list */
 int version; /* Version of structure */
 int oper; /* Bit map of the operation being performed */
 int status; /* The current status of this notify */
 uchar cb_retry; /* Internal use */
 uchar scope; /* Partition or system wide */
 uchar reason; /* User initiated or EPOW */
 uchar padding; /* padding */
 long (*func)(); /* Function kernel calls to notify ext. */
 void *uaddr;
/* Address to help extension identify the object this structure refers to */
} shutdown_notify_t;

/* Valid values
for shutdown_notify_t->oper */
#define SHUTDOWN_NOTIFY_PREPARE 0x1 /* Shutdown has started */
#define SHUTDOWN_NOTIFY_REBOOT 0x2 /*
Final notify that shutdown will be a reboot */
#define SHUTDOWN_NOTIFY_HALT 0x4
/* Final notify that shutdown will be a halt */
#define SHUTDOWN_NOTIFY_QUERY 0x8
/* Check to see if finished shutdown */

/* Valid values for
shutdown_notify_t->status and
for SHUTDOWN_NOTIFY_QUERY return code */
#define SHUTDOWN_STATUS_PREPARE 0x1 /* Preparing for shutdown */
#define SHUTDOWN_STATUS_COMMENCE 0x2 /* Commencing shutdown */
#define SHUTDOWN_STATUS_FINISH 0x4 /* Finished shutdown */

#define SHUTDOWN_NOTIFY_VERSION 1 /* Increment by 1
 * every time add more
 * variables to
 * shutdown_notify_t
 */
/* Valid values for shutdown_notify_t->scope */
#define SHUTDOWN_SCOPE_PARTITION 1
#define SHUTDOWN_SCOPE_SYSTEM 2

Kernel Services and Subsystem Operations 491

/* Valid values for shutdown_notify_t->reason */
#define SHUTDOWN_REASON_USER 1
#define SHUTDOWN_REASON_EPOW 2

/* Valid handler return codes
during the SHUTDOWN_NOTIFY_PREPARE phase */
#define SHUTDOWN_RC_SUCCESS 0
#define SHUTDOWN_RC_DELAY 1

#define SHUTDOWN_NOTIFY_VERSION 2

Description
The shutdown notify subsystem has been extended to provide additional information during a shutdown
operation. During the SHUTDOWN_NOTIFY_PREPARE phase, the kernel provides information on the
scope and reason for the shutdown action. Additionally, when a handler is called, before its completion,
it can now delay the shutdown operation in order to finalize any outstanding jobs. The kernel again
then calls out to the handler after some small amount of time. This process continues until all handlers
return SHUTDOWN_RC_SUCCESS. This functionality is only present for shutdown_notify_t version 2 and
preceding handlers. For version 1 handlers, the new fields are not present and the return code from the
handler is ignored.

Parameters
Item Description

cb_retry Internal use.

func Pointer to the function called to notify registered extension.

next Pointer to next shutdown_notify_t structure in list.

oper Bit map of operation(s) being performed.

padding Padding.

reason User initiated or EPOW event.

scope Shutdown at the partition or system level.

sn Pointer to a structure that the calling extension fills out when it registers.

status Current status of notify.

uaddr Place for extension to store an address to help it identify the object to which this
structure refers.

version Version of structure. Set to 1.

SHUTDOWN_NOTIFY_HALT A halt is occurring.

SHUTDOWN_NOTIFY_PREPARE Shutdown has started.

SHUTDOWN_NOTIFY_QUERY Check to see if finished shutdown.

SHUTDOWN_NOTIFY_REBOOT A reboot is occurring.

SHUTDOWN_NOTIFY_VERSION Version number of structure.

SHUTDOWN_RC_DELAY Return from registered handler to indicate its processing is not complete and
wants to delay the shutdown operation.

SHUTDOWN_RC_SUCCESS Return from registered handler to indicate all processing is complete and the
shutdown operation can proceed.

SHUTDOWN_REASON_EPOW EPOW event.

SHUTDOWN_REASON_USER User initiated shutdown.

SHUTDOWN_SCOPE_PARTITION Shutdown at the partition level.

SHUTDOWN_SCOPE_SYSTEM Shutdown at the system level.

SHUTDOWN_STATUS_COMMENCE Wrap up shutdown.

SHUTDOWN_STATUS_FINISH Shutdown has completed.

492 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

SHUTDOWN_STATUS_PREPARE Preparing for shutdown.

Execution Environment
Process environment only.

Return Values
Item Description

0 Success.

EPERM Attempted to register after prepare notification has started.

EINVAL Invalid argument passed.

shutdown_notify_unreg Kernel Service

Purpose
Unregisters an extension from getting notified in the event of a shutdown.

Syntax
#include <sys/reboot.h>

int shutdown_notify_unreg(sn)
shutdown_notify_t *sn;

Description
The shutdown_notify_unreg kernel service unregisters an extension from getting notified in the event
of a shutdown. The extension passes in the shutdown_notify_t instance it wants to unregister. This
function will fail if it is called after the SHUTDOWN_NOTIFY_HALT and SHUTDOWN_NOTIFY_REBOOT
notification process has started.

Parameters
Item Description

sn Pointer to a structure that the calling extension wants to unregister.

Execution Environment
Process environment only.

Return Values
Item Description

0 Success

EPERM Attempted to unregister after final notification has started.

EINVAL Invalid argument passed.

Kernel Services and Subsystem Operations 493

sig_chk Kernel Service

Purpose
Provides a kernel process the ability to poll for receipt of signals.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/signal.h>

int sig_chk ()

Description
Attention: A system crash will occur if the sig_chk service is not called by a kernel process.

The sig_chk kernel service can be called by a kernel thread in kernel mode to determine if any unmasked
signals have been received. Signals do not preempt threads because serialization of critical data areas
would be lost. Instead, threads must poll for signals, either periodically or after a long sleep has been
interrupted by a signal.

The sig_chk service checks for any pending signal that has a specified signal catch or default action. If
one is found, the service returns the signal number as its return value. It also removes the signal from the
pending signal mask. If no signal is found, this service returns a value of 0. The sig_chk service does not
return signals that are blocked or ignored. It is the responsibility of the kernel process to handle the signal
appropriately.

For kernel-only threads, the sig_chk kernel service clears the returned signal from the list of pending
signals. For other kernel threads, the signal is not cleared, but left pending. It will be delivered to the
kernel thread as soon as it returns to the user mode.

Understanding Kernel Threads in Kernel Extensions and Device Support Programming Concepts provides
more information about kernel-only thread signal handling.

Execution Environment
The sig_chk kernel service can be called from the process environment only.

Return Values
Upon completion, the sig_chk service returns a value of 0 if no pending unmasked signal is found.
Otherwise, it returns a nonzero signal value indicating the number of the highest priority signal that is
pending. Signal values are defined in the /usr/include/sys/signal.h file.

Related information
Introduction to Kernel Processes
Process and Exception Management Kernel Services

simple_lock or simple_lock_try Kernel Service

Purpose
Locks a simple lock.

494 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/lock_def.h>

void simple_lock (lock_addr)
simple_lock_t lock_addr;

boolean_t simple_lock_try (lock_addr)
simple_lock_t lock_addr;

Parameter

Item Description

lock_addr Specifies the address of the lock word to lock.

Description
The simple_lock kernel service locks the specified lock; it blocks if the lock is busy. The lock must have
been previously initialized with the simple_lock_init kernel service. The simple_lock kernel service has
no return values.

The simple_lock_try kernel service tries to lock the specified lock; it returns immediately without
blocking if the lock is busy. If the lock is free, the simple_lock_try kernel service locks it. The lock must
have been previously initialized with the simple_lock_init kernel service.

Note: When using simple locks to protect thread-interrupt critical sections, it is recommended that you
use the disable_lock kernel service instead of calling the simple_lock kernel service directly.

Execution Environment
The simple_lock and simple_lock_try kernel services can be called from the process environment only.

Return Values
The simple_lock_try kernel service has the following return values:

Item Description

TRUE Indicates that the simple lock has been successfully acquired.

FALSE Indicates that the simple lock is busy, and has not been acquired.

Related reference
disable_lock Kernel Service
simple_unlock Kernel Service
Related information
Understanding Locking
Locking Kernel Services

simple_lock_init Kernel Service

Purpose
Initializes a simple lock.

Kernel Services and Subsystem Operations 495

Syntax

#include <sys/lock_def.h>

void simple_lock_init (lock_addr)
simple_lock_t lock_addr;

Parameter

Item Description

lock_addr Specifies the address of the lock word.

Description
The simple_lock_init kernel service initializes a simple lock. This kernel service must be called before
the simple lock is used. The simple lock must previously have been allocated with the lock_alloc kernel
service.

Execution Environment
The simple_lock_init kernel service can be called from the process environment only.

The simple_lock_init kernel service may be called either the process or interrupt environments.

Return Values
The simple_lock_init kernel service has no return values.

Related reference
lock_alloc Kernel Service
Related information
Understanding Locking
Locking Kernel Services

simple_unlock Kernel Service

Purpose
Unlocks a simple lock.

Syntax

#include <sys/lock_def.h>

void simple_unlock (lock_addr)
simple_lock_t lock_addr;

Parameter

Item Description

lock_addr Specifies the address of the lock word to unlock.

496 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The simple_unlock kernel service unlocks the specified simple lock. The lock must be held by the thread
which calls the simple_unlock kernel service. Once the simple lock is unlocked, the highest priority
thread (if any) which is waiting for it is made runnable, and may compete for the lock again. If at least one
kernel thread was waiting for the lock, the priority of the calling kernel thread is recomputed.

Note: When using simple locks to protect thread-interrupt critical sections, it is recommended that you
use the unlock_enable kernel service instead of calling the simple_unlock kernel service directly.

Execution Environment
The simple_unlock kernel service can be called from the process environment only.

Return Values
The simple_unlock kernel service has no return values.

Related reference
simple_lock_init Kernel Service
simple_lock or simple_lock_try Kernel Service
unlock_enable Kernel Service
Related information
Understanding Locking

sleep Kernel Service

Purpose
Forces the calling kernel thread to wait on a specified channel.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/pri.h>
#include <sys/proc.h>

int sleep (chan, priflags)
void *chan;
int priflags;

Parameters

Item Description

chan Specifies the channel number. For the sleep service, this parameter identifies the channel
to wait for (sleep on).

priflags Specifies two conditions:

• The priority at which the kernel thread is to run when it is reactivated.
• Flags indicating how a signal is to be handled by the sleep kernel service.

The valid flags and priority values are defined in the /usr/include/sys/pri.h file.

Kernel Services and Subsystem Operations 497

Description
The sleep kernel service is provided for compatibility only and should not be invoked by new code. The
e_sleep_thread or et_wait kernel service should be used when writing new code.

The sleep service puts the calling kernel thread to sleep, causing it to wait for a wakeup to be issued for
the channel specified by the chan parameter. When the process is woken up again, it runs with the priority
specified in the priflags parameter. The new priority is effective until the process returns to user mode.

All processes that are waiting on the channel are restarted at once, causing a race condition to occur
between the activated threads. Thus, after returning from the sleep service, each thread should check
whether it needs to sleep again.

The channel specified by the chan parameter is simply an address that by convention identifies some
event to wait for. When the kernel or kernel extension detects such an event, the wakeup service is called
with the corresponding value in the chan parameter to start up all the threads waiting on that channel.
The channel identifier must be unique systemwide. The address of an external kernel variable (which can
be defined in a device driver) is generally used for this value.

If the SWAKEONSIG flag is not set in the priflags parameter, signals do not terminate the sleep. If the
SWAKEONSIG flag is set and the PCATCH flag is not set, the kernel calls the longjmpx kernel service to
resume the context saved by the last setjmpx call if a signal interrupts the sleep. Therefore, any system
call (such as those calling device driver ddopen, ddread, and ddwrite routines) or kernel process that
does an interruptible sleep without the PCATCH flag set must have set up a context using the setjmpx
kernel service. This allows the sleep to resume in case a signal is sent to the sleeping process.

Attention: The caller of the sleep service must own the kernel-mode lock specified by the
kernel_lock parameter. The sleep service does not provide a compatible level of serialization if
the kernel lock is not owned by the caller of the sleep service.

Execution Environment
The sleep kernel service can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates successful completion.

1 Indicates that a signal has interrupted a sleep with both the PCATCH and SWAKEONSIG flags set
in the priflags parameter.

Related information
Locking Strategy in Kernel Mode
Process and Exception Management Kernel Services

sleepx Kernel Service

Purpose
Wait for an event

Syntax
#include <sys/sleep.h>

int sleepx (tchan_t chan int pri flags_t flags)

498 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters
chan

Specifies the channel number. For the sleep service, this parameter identifies the channel to wait for
(sleep on).

pri
Specifies the wakeup priority

flags
Signal control flags

Description
Wait for an event to occur. This procedure can only be called by a thread. Callers of this service must be
prepared for a premature return and check that the reason for waiting has gone away.

The pri parameter will be the priority of the thread when it becomes runnable again (if that priority is
more favorable). The process will keep that priority until it is dispatched. The range of the wakeup priority
is 0 <= pri <= PRI_LOW. If the pri parameter is outside of that range, it is forced to the lower or
upper boundary.

Execution Environment
The sleepx kernel service can be called from the process environment only.

Return Values
0

Indicates that the event occurred.
1

Indicates that the event signalled out.

subyte Kernel Service

Purpose
Stores a byte of data in user memory.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int subyte (uaddr, c)
uchar *uaddr;
uchar c;

Parameters

Item Description

uaddr Specifies the address of user data.

c Specifies the character to store.

Kernel Services and Subsystem Operations 499

Description
The subyte kernel service stores a byte of data at the specified address in user memory. It is provided so
that system calls and device heads can safely access user data. The subyte service ensures that the user
has the appropriate authority to:

• Access the data.
• Protect the operating system from paging I/O errors on user data.

The subyte service should only be called while executing in kernel mode in the user process.

Execution Environment
The subyte kernel service can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates successful completion.

-1 Indicates a uaddr parameter that is not valid for one of the following reasons:

• The user does not have sufficient authority to access the data.
• The address is not valid.
• An I/O error occurs when the user data is referenced.

Related reference
fubyte Kernel Service
Related information
Accessing User-Mode Data While in Kernel Mode
Memory Kernel Services

suser Kernel Service

Purpose
Determines the privilege state of a process.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int suser (ep)
char *ep;

Parameter

Ite
m

Description

ep Points to a character variable where the EPERM value is stored on failure.

500 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The suser kernel service checks whether a process has any effective privilege (that is, whether the
process's uid field equals 0).

Execution Environment
The suser kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates failure. The character pointed to by the ep parameter is set to the value
of EPERM. This indicates that the calling process does not have any effective
privilege.

Nonzero value Indicates success (the process has the specified privilege).

Related information
Security Kernel Services

suword Kernel Service

Purpose
Stores a word of data in user memory.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int suword (uaddr, w)
int *uaddr;
int w;

Parameters

Item Description

uaddr Specifies the address of user data.

w Specifies the word to store.

Description
The suword kernel service stores a word of data at the specified address in user memory. It is provided so
that system calls and device heads can safely access user data. The suword service ensures that the user
had the appropriate authority to:

• Access the data.
• Protect the operating system from paging I/O errors on user data.

The suword service should only be called while executing in kernel mode in the user process.

Execution Environment
The suword kernel service can be called from the process environment only.

Kernel Services and Subsystem Operations 501

Return Values

Ite
m

Description

0 Indicates successful completion.

-1 Indicates a uaddr parameter that is not valid for one of these reasons:

• The user does not have sufficient authority to access the data.
• The address is not valid.
• An I/O error occurs when the user data is referenced.

Related reference
fuword Kernel Service
Related information
Memory Kernel Services
Accessing User-Mode Data While in Kernel Mode

t
The following kernel services begin with the with the letter t.

TE_verify_reg Kernel Service

Purpose
Registers a callout handler for Trusted Execution (TE) file verification during the exec() functions, kernel
extension loads, and library load operations.

Syntax

#include <sys/file.h>
typedef int (*TE_verify)(char *, int, struct file *);

int TE_verify_reg(TE_verify verify_fn, uint_64 options)

Parameters
verify_fn

Specifies the callout function to be called for the verification checks with the exec() functions for the
Trusted Execution of the AIX kernel level, loading of kernel extensions, and library loading events
instead of the default AIX Trusted Execution method.

For more information about the function definition of this callout handler, see the alt_verify_fn
section.

options
Specifies a bit mask of registration options. The options parameter is not defined currently. The
caller must set the options parameter to 0.

Description
The TE_verify_reg kernel service registers a callout handler for the AIX Trusted Execution framework.

After a callout handler is registered, the handler is invoked for the exec() functions, loading kernel
extensions, and library load-time checks for Trusted Execution in the AIX kernel. The default AIX Trusted
Execution logic is not invoked and any AIX-configured policies for Trusted Execution not applied. The

502 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

registered alternative handler becomes the active Trusted Execution engine for AIX to provide security
policy as implemented in the handler and its associated management components.

After a callout handler is registered with the TE_verify_reg kernel service, subsequent invocation of
the TE_verify_reg service returns with an error code of EEXIST.

You must have root authority to call the TE_verify_reg kernel service.

Return values
On successful completion, the TE_verify_reg service kernel service returns a value of 0.

The following error codes are returned on failure:

EEXIST
The callout handler is already registered.

EPERM
The caller does not have permission to invoke this function.

EINVAL
The callout handler or the options parameters are invalid.

Execution environment
The TE_verify_reg kernel service can be called from the process environment only.

The registered alternative Trusted Execution handler must conform to the behaviors that are described in
the following section.

alt_verify_fn callout function
Purpose

Verifies the integrity of a file.

Syntax

#include <sys/file.h>

#define VERIFY_EXECUTABLES 2
#define VERIFY_SHLIBS 3
#define VERIFY_SCRIPTS 4
#define VERIFY_KERNEXTS 5

int alt_TE_verify (char *path_name, int type, struct file *path_fp)

Description

The alt_TE_verify callout function is started from the loader and the program execution path to verify
the integrity of a file that is specified under the path_name parameter. The path_fp parameter is a file
pointer to the file object that is associated with the path_name parameter.

The type parameter can be one of the following values:
VERIFY_EXECUTABLES

This value is specified when the alt_TE_verify function is started from the kernel exec() function
to verify executable programs.

VERIFY_SCRIPTS
This value is specified when the alt_TE_verify function is started from the exec() function and the
path_name value is a shell file.

VERIFY_KERNEXTS
This value is specified when the alt_TE_verify function is started for loading a kernel extension.

VERIFY_SHLIBS
This value is specified when the alt_TE_verify function is started for loading a shared library.

Kernel Services and Subsystem Operations 503

Input parameters

path_name
Specifies the path to the file that must be verified.

type
Indicates the type of verification that must be performed.

path_fp
Indicates the file pointer to the path_name file.

Return values

0
Indicates that the verification completed successfully.

Nonzero
Indicates that the verification failed.

The nonzero return value blocks loading of the file. An error number is set by the AIX kernel functions that
start the alt_verify_fn callout function.

TE_verify_unreg Kernel Service

Purpose
Unregisters a previously registered callout handler for trusted execution.

Syntax
#include <sys/file.h>
typedef int (*TE_verify)(char *, int, struct file *);

int TE_verify_unreg(TE_verify verify_fn, uint_64 options)

Parameters
verify_fn

Specifies the callout function that must be used when you register the handler by using the
TE_verify_reg() kernel service.

options
Specifies a bit mask of registration options. The options parameter is not defined currently. The
caller must set the options parameter to 0.

Description
The TE_verify_unreg kernel service unregisters a callout handler for the AIX Trusted Execution
(TE) framework. The verify_fn parameter must match with the currently registered TE callout handler.
Otherwise, the TE_verify_unreg kernel service returns an error code of EPERM.

After a callout handler is unregistered, the default AIX trusted execution logic is applied based on the
configured AIX trusted execution policies.

The caller of the TE_verify_unreg kernel service must have root authority.

Return values
On successful completion, the TE_verify_unreg kernel service returns a value of 0.

The following error codes are returned on failure:

504 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

EPERM
The caller does not have permission to start this function. Or, the registered callout handler is not
same as the verify_fn parameter.

EINVAL
No callout handler is registered or the options parameters are invalid.

Execution environment
The TE_verify_unreg kernel service can be called only from the process environment.

talloc Kernel Service

Purpose
Allocates a timer request block before starting a timer request.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/timer.h>

struct trb *talloc()

Description
The talloc kernel service allocates a timer request block. The user must call it before starting a timer
request with the tstart kernel service. If successful, the talloc service returns a pointer to a pinned timer
request block.

Execution Environment
The talloc kernel service can be called from the process environment only.

Return Values
The talloc service returns a pointer to a timer request block upon successful allocation of a trb structure.
Upon failure, a null value is returned.

Related reference
tfree Kernel Service
Related information
Timer and Time-of-Day Kernel Services
Using Fine Granularity Timer Services and Structures

tfree Kernel Service

Purpose
Deallocates a timer request block.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/timer.h>

Kernel Services and Subsystem Operations 505

void tfree (t)
struct trb *t;

Parameter

Ite
m

Description

t Points to the timer request structure to be freed.

Description
The tfree kernel service deallocates a timer request block that was previously allocated with a call to
the talloc kernel service. The caller of the tfree service must first cancel any pending timer request
associated with the timer request block being freed before attempting to free the request block.
Canceling the timer request block can be done using the tstop kernel service.

Execution Environment
The tfree kernel service can be called from either the process or interrupt environment.

Note: Do not use the tfree kernel service to free the timer request block that is passed to the timer
completion handler.

Return Values
The tfree service has no return values.

Related reference
talloc Kernel Service
Related information
Timer and Time-of-Day Kernel Services
Using Fine Granularity Timer Services and Structures

thread_create Kernel Service

Purpose
Creates a new kernel thread in the calling process.

Syntax

#include <sys/thread.h>

tid_t thread_create ()

Description
The thread_create kernel service creates a new kernel-only thread in the calling kernel process. The
thread's ID is returned; it is unique system wide.

The new thread does not begin running immediately; its state is set to TSIDL. The execution will start
after a call to the kthread_start kernel service. If the process is exited prior to the thread being made
runnable, the thread's resources are released immediately. The thread's signal mask is inherited from the
calling thread; the set of pending signals is cleared. Signals sent to the thread are marked pending while
the thread is in the TSIDL state.

If the calling thread is bound to a specific processor, the new thread will also be bound to the processor.

506 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The thread_create kernel service can be called from the process environment only. This service cannot
be called directly from a kernel extension.

Return Values
Upon successful completion, the new thread's ID is returned. Otherwise, -1 is returned, and the error
code can be checked by calling the getuerror kernel service.

Error Codes
Item Description

EAGAIN The total number of kernel threads executing system wide or the maximum number of kernel threads per process
would be exceeded.

ENOMEM There is not sufficient memory to create the kernel thread.

ENOTSUP The thread_create service was called directly from a kernel extension.

Related reference
kthread_start Kernel Service
Related information
Process and Exception Management Kernel Services

thread_self Kernel Service

Purpose
Returns the caller's kernel thread ID.

Syntax

#include <sys/thread.h>

tid_t thread_self ()

Description
The thread_self kernel service returns the thread process ID of the calling process.

The thread_self service can also be used to check the environment that the routine is being executed in.
If the caller is executing in the interrupt environment, the thread_self service returns a process ID of -1.
If a routine is executing in a process environment, the thread_self service obtains the thread process ID.

Execution Environment
The thread_self kernel service can be called from either the process or interrupt environment.

Return Values

Ite
m

Description

-1 Indicates that the thread_self service was called from an interrupt environment.

The thread_self service returns the thread process ID of the current process if called from a process
environment.

Kernel Services and Subsystem Operations 507

Related information
Process and Exception Management Kernel Services
Understanding Execution Environments

thread_setsched Kernel Service

Purpose
Sets kernel thread scheduling parameters.

Syntax

#include <sys/thread.h>
#include <sys/sched.h>

int thread_setsched (tid, priority, policy)
tid_t tid;
int priority;
int policy;

Parameters

Item Description

tid Specifies the kernel thread.

priority Specifies the priority. It must be in the range from 0 to PRI_LOW; 0 is the most favored
priority.

policy Specifies the scheduling policy. It must have one of the following values:
SCHED_FIFO

Denotes fixed priority first-in first-out scheduling.
SCHED_FIFO2

Allows a thread that sleeps for a relatively short amount of time to be requeued to the
head, rather than the tail, of its priority run queue.

SCHED_FIFO3
Causes threads to be enqueued to the head of their run queues.

SCHED_RR
Denotes fixed priority round-robin scheduling.

SCHED_OTHER
Denotes the default scheduling policy.

Description
The thread_setsched subroutine sets the scheduling parameters for a kernel thread. This includes both
the priority and the scheduling policy, which are specified in the priority and policy parameters. The calling
and the target thread must be in the same process.

When setting the scheduling policy to SCHED_OTHER, the system chooses the priority; the priority
parameter is ignored. The only way to influence the priority of a thread using the default scheduling policy
is to change the process nice value.

The calling thread must belong to a process with root authority to change the scheduling policy of a
thread to either SCHED_FIFO, SCHED_FIFO2, SCHED_FIFO3, or SCHED_RR.

508 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The thread_setsched kernel service can be called from the process environment only.

Return Values
Upon successful completion, 0 is returned. Otherwise, -1 is returned, and the error code can be checked
by calling the getuerror kernel service.

Error Codes

Item Description

EINVAL The priority or policy parameters are not valid.

EPERM The calling kernel thread does not have sufficient privilege to perform the operation.

ESRCH The kernel thread tid does not exist.

Related reference
thread_create Kernel Service
Related information
Process and Exception Management Kernel Services

thread_set_smt_priority or thread_read_smt_priority System Call

Purpose
Sets or reads the current simultaneous multithreading (SMT) thread priority for a user-thread.

Syntax

#include <sys/errno.h>
#include <sys/thread.h>
#include <sys/processor.h>

int thread_set_smt_priority (Priority)
smt_thread_priority_t Priority;

#include <sys/errno.h>
#include <sys/thread.h>
#include <sys/processor.h>

smt_thread_priority_t thread_read_smt_priority ()

Description
The SMT thread priority that is associated with a logical CPU, SMT hardware thread, controls the relative
priority of the logical CPU in relation to the other logical CPUs on the same processor core. The relative
priority between the SMT hardware threads on a processor core determines how decode cycles are
granted to each SMT hardware thread. The SMT thread priority can be used to cause a particular
application thread to be favored over other application threads that are running on the other SMT
hardware threads in the same processor core. It is done by increasing the SMT thread priority of the
logical CPU the application is running on, or by lowering the SMT thread priority of the application threads
that are running on the other logical CPUs associated with the same processor core.

The thread_set_smt_priority and thread_read_smt_priority system calls provide a way to register and
read back the current SMT thread priority on a per process-thread basis.

Note:

Kernel Services and Subsystem Operations 509

These interfaces are not supported on some processor architectures.

If the process-thread is dispatched to a logical CPU that is running in non-SMT mode, the SMT thread
priority level has no effect.

Callers of the thread_set_smt_priority system call with normal user-level privileges can set their SMT
thread priority level to one of the following levels:

• LOW
• MEDIUM LOW
• NORMAL

Callers that have RBAC PV_PROC_VARS privilege can set their priority level to one of the following levels:

• VERY LOW
• LOW
• MEDIUM LOW
• NORMAL
• MEDIUM HIGH
• HIGH

The default thread priority level is NORMAL.

Note: The only supported means for altering the SMT thread priority level is by using the
thread_set_smt_priority system call. If an alternative means of setting the SMT priority is used, the
kernel does not know the process-thread’s current SMT priority level, and overwrites the required SMT
priority level without restoring it.

The thread_read_smt_priority system call returns the current SMT priority level that is registered by
the process thread. If the process thread did not register a required SMT priority level, then the default
priority level of NORMAL is returned.

Parameters

Item Description

Priority Used to specify one of the following parameters:

• T_VERYLOW_SMT_PRI
• T_LOW_SMT_PRI
• T_MEDIUMLOW_SMT_PRI
• T_NORMAL_SMT_PRI
• T_MEDIUMHIGH_SMT_PRI
• T_HIGH_SMT_PRI

Execution Environment
The thread_read_smt_priority and thread_set_smt_priority system calls can be called from the process
environment only.

Return Values
On successful completion, the thread_set_smt_priority system call returns 0. Otherwise, -1 is returned
and the errno global variable is set to indicate the error.

On successful completion, the thread_read_smt_priority system call returns the current required SMT
priority. Otherwise, -1 is returned and the errno global variable is set to indicate the error.

510 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Error Codes

Item Description

EPERM The process attempted to set the SMT thread priority level to a value other than
T_LOW_SMT_PRI, T_MEDIUMLOW_SMT_PRI, or T_NORMAL_SMT_PRI and does
not have the necessary privileges.

EINVAL The required priority value that is specified is invalid.

ENOSYS SMT thread priority level manipulation is not supported on this system.

thread_terminate Kernel Service

Purpose
Terminates the calling kernel thread.

Syntax

#include <sys/thread.h>

void thread_terminate ()

Description
The thread_terminate kernel service terminates the calling kernel thread and cleans up its structure and
its kernel stack. If it is the last thread in the process, the process will exit.

The thread_terminate kernel service is automatically called when a thread returns from its entry point
routine (defined in the call to the kthread_start kernel service).

Execution Environment
The thread_terminate kernel service can be called from the process environment only.

Return Values
The thread_terminate kernel service never returns.

Related reference
kthread_start Kernel Service
Related information
Process and Exception Management Kernel Services

timeout Kernel Service
Attention: This service must not be used because it is not multi-processor safe. The base kernel timer
and watchdog services must be used instead.

Purpose
Schedules a function to be called after a specified interval.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

Kernel Services and Subsystem Operations 511

void timeout (func, arg, ticks)
void (*func)();
caddr_t *arg;
int ticks;

Parameters

Item Description

func Indicates the function to be called.

arg Indicates the parameter to supply to the function specified by the func parameter.

ticks Specifies the number of timer ticks that must occur before the function specified by the
func parameter is called. Many timer ticks can occur per second. The HZ label that is found
in the /usr/include/sys/m_param.h file can be used to determine the number of ticks per
second.

Description
The timeout service is not part of the kernel. However, it is a compatibility service that is provided in the
libsys.a library. To use the timeout service, a kernel extension must be bound with the libsys.a library.
The timeout service, like the associated kernel services untimeout and timeoutcf, can be bound and
used only in the pinned part of a kernel extension or the bottom half of a device driver because these
services use interrupt disable for serialization.

The timeout service schedules the function pointed to by the func parameter to be called with the arg
parameter after the number of timer ticks that are specified by the ticks parameter. Use the timeoutcf
routine to allocate enough callout elements for the maximum number of simultaneous active time outs
that you expect.

Note: The timeoutcf routine must be called before the timeout service is called.

Calling the timeout service without allocating enough callout table entries can result in a kernel panic
because of a lack of pinned callout table elements. The value of a timer tick depends on the hardware's
capability. You can use the restimer subroutine to determine the minimum granularity.

Multiple pending timeout requests with the same func and arg parameters are not allowed.

The func Parameter

The function that is specified by the func parameter must be declared as follows:

void func (arg)
void *arg;

Execution Environment
The timeout routine can be called from either the process or interrupt environment.

The function that is specified by the func parameter is called in the interrupt environment. Therefore, it
must follow the conventions for interrupt handlers.

Return Values
The timeout service has no return values.

Related reference
untimeout Kernel Service
timeoutcf Subroutine for Kernel Services
Related information
restimer subroutine

512 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Timer and Time-of-Day Kernel Services

timeoutcf Subroutine for Kernel Services
Attention: This service must not be used because it is not multi-processor safe. The base kernel timer
and watchdog services must be used instead.

Purpose
Allocates or deallocates callout table entries for use with the timeout kernel service.

Library
libsys.a (Kernel extension runtime routines)

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int timeoutcf (cocnt)
int cocnt;

Parameter

Item Description

cocnt Specifies the callout count. This value indicates the number of callout elements by which to
increase or decrease the current allocation. If this number is positive, the number of callout
entries for use with the timeout service is increased. If this number is negative, the number of
elements is decreased by the amount specified.

Description
The timeoutcf subroutine is not part of the kernel. It is a compatibility service that is provided in the
libsys.a library. To use the timeoutcf subroutine, a kernel extension must be bound with the libsys.a
library. The timeoutcf subroutine, like the associated kernel libsys services untimeout and timeout, can
be bound and used only in the pinned part of a kernel extension or the bottom half of a device driver
because these services use interrupt disable for serialization.

The timeoutcf subroutine registers an increase or decrease in the number of callout table entries
available for the timeout subroutine to use. Before a subroutine can use the timeout kernel service, the
timeoutcf subroutine must increase the number of callout table entries available to the timeout kernel
service. It increases this number by the maximum number of outstanding time outs that the routine can
have pending at one time.

The timeoutcf subroutine must be used to decrease the number of callout table entries by the amount it
was increased under the following conditions:

• The routine that uses the timeout subroutine finished using it.
• The calling routine has no more outstanding timeout requests that are pending.

Typically the timeoutcf subroutine is called in a device driver's open and close routine. It is called to
allocate and deallocate sufficient elements for the maximum expected use of the timeout kernel service
for that instance of the open device.

Attention: A kernel panic results either of these two circumstances:

• A request to decrease the callout table allocation is made that is greater than the number of unused
callout table entries.

Kernel Services and Subsystem Operations 513

• The timeoutcf subroutine is called in an interrupt environment.

Execution Environment
The timeoutcf subroutine can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates a successful allocation or deallocation of the requested callout table entries.

-1 Indicates an unsuccessful operation.

Related reference
timeout Kernel Service
Related information
Timer and Time-of-Day Kernel Services

trc_ishookon Exported Kernel Service

Purpose
Checks if a given trace hook word is being traced by system trace.

Syntax

#include <sys/trcmacros.h>

int trc_ishookon (int chan, long hkwd);

Description
The trc_ishookon kernel service informs the user if tracing is on and the specified hook word is being
traced.

Parameters
Item Description

chan The channel to query with the range from 0 to 7.

hkwd The hook word to be traced by system trace.

Return Values
Item Description

1 The hook word is being traced.

0 Hook word is not being traced or system trace is
off.

Related information
trace subroutine

514 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

trcgenk Kernel Service

Purpose
Records a trace event for a generic trace channel.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/trchkid.h>

void trcgenk (chan, hk_word, data_word, len, buf)
unsigned int chan, hk_word, data_word, len;
char * buf;

Parameters

Item Description

chan Specifies the channel number for the trace session. This number is obtained from the
trcstart subroutine.

hk_word An integer containing a hook ID and a hook type:
hk_id

Before AIX 6.1 the hook identifier is a 12-bit value. On AIX 6.1 and above, the hook
identifier is a 16-bit value. A 16-bit value of the form hhh0 is equivalent to a 12-bit
value of the form hhh.

hk_type
A 4-bit hook type. The trcgenk service automatically records this information. This
value is only valid before AIX 6.1.

data_word Specifies a word of user-defined data.

len Specifies the length in bytes of the buffer specified by the buf parameter.

buf Points to a buffer of trace data. The maximum amount of trace data is 4096 bytes.

Description
The trcgenk kernel service records a trace event if a trace session is active for the specified trace channel.
If a trace session is not active, the trcgenk kernel service simply returns. The trcgenk kernel service is
located in pinned kernel memory.

The trcgenk kernel service is used to record a trace entry consisting of an hk_word entry, a data_word
entry, a variable number of bytes of trace data, and, in AIX 5L Version 5.3 with the 5300-05 Technology
Level and above, a time stamp.

Execution Environment
The trcgenk kernel service can be called from either the process or interrupt environment.

Return Values
The trcgenk kernel service has no return values.

Related reference
trcgenkt Kernel Service

Kernel Services and Subsystem Operations 515

Related information
trace subroutine
trcgen subroutine
RAS Kernel Services

trcgenkt Kernel Service

Purpose
Records a trace event, including a time stamp, for a generic trace channel.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/trchkid.h>

void trcgenkt (chan, hk_word, data_word, len, buf)
unsigned int chan, hk_word, data_word, len;
char * buf;

Parameters

Item Description

chan Specifies the channel number for the trace session. This number is obtained from the
trcstart subroutine.

hk_word An integer containing a hook ID and a hook type:
hk_id

Before AIX 6.1 the hook identifier is a 12-bit value. On AIX 6.1 and above, the hook
identifier is a 16-bit value. A 16-bit value of the form hhh0 is equivalent to a 12-bit
value of the form hhh.

hk_type
A 4-bit hook type. The trcgenkt service automatically records this information. This
value is only valid before AIX 6.1.

data_word Specifies a word of user-defined data.

len Specifies the length, in bytes, of the buffer identified by the buf parameter.

buf Points to a buffer of trace data. The maximum amount of trace data is 4096 bytes.

Description
The trcgenkt kernel service records a trace event if a trace session is active for the specified trace
channel. If a trace session is not active, the trcgenkt service simply returns. The trcgenkt kernel service
is located in pinned kernel memory.

The trcgenkt service records a trace entry consisting of an hk_word entry, a data_word entry, a variable
number of bytes of trace data, and a time stamp.

Execution Environment
The trcgenkt kernel service can be called from either the process or interrupt environment.

Return Values
The trcgenkt service has no return values.

516 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related reference
trcgenk Kernel Service
Related information
trace command
trcgen subroutine
RAS Kernel Services

trcgenkt Kernel Service for Data Link Control (DLC) Devices

Purpose
Records a trace event, including a time stamp, for a DLC trace channel.

Syntax

#include <sys/trchkid.h>

void trcgenkt (chan, hk_word, data_word, len, buf)
unsigned int chan, hk_word, data_word, len;
char * buf;

Parameters

Item Description

chan Specifies the channel number for the trace session. This number is obtained from the
trcstart subroutine.

hk_word Contains the trace hook identifier defined in the /usr/include/sys/trchkid.h file. The
types of link trace entries registered using the hook ID include:
HKWD_SYSX_DLC_START

Start link station completions
HKWD_SYSX_DLC_TIMER

Time-out completions
HKWD_SYSX_DLC_XMIT

Transmit completions
HKWD_SYSX_DLC_RECV

Receive completions
HKWD_SYSX_DLC_HALT

Halt link station completions

Kernel Services and Subsystem Operations 517

Item Description

data_word Specifies trace data format field. This field varies depending on the hook ID. Each of
these definitions are in the /usr/include/sys/gdlextcb.h file:

• The first half-word always contains the data link protocol field including one of these
definitions:
DLC_DL_SDLC

SDLC
DLC_DL_HDLC

HDLC
DLC_DL_BSC

BISYNC
DLC_DL_ASC

ASYNC
DLC_DL_PCNET

PC Network
DLC_DL_ETHER

Standard Ethernet
DLC_DL_802_3

IEEE 802.3
DLC_DL_TOKEN

Token-Ring

 • On start or halt link station completion, the second half-word contains the physical link
protocol in use:
DLC_PL_EIA232

EIA-232D Telecommunications
DLC_PL_EIA366

EIA-366 Auto Dial
DLC_PL_X21

CCITT X.21 Data Network
DLC_PL_PCNET

PC Network Broadband
DLC_PL_ETHER

Standard Baseband Ethernet
DLC_PL_SMART

Smart Modem Auto Dial
DLC_PL_802_3

IEEE 802.3 Baseband Ethernet
DLC_PL_TBUS

IEEE 802.4 Token Bus
DLC_PL_TRING

IEEE 802.5 Token-Ring
DLC_PL_EIA422

EIA-422 Telecommunications
DLC_PL_V35

CCITT V.35 Telecommunications
DLC_PL_V25BIS

CCITT V.25 bis Autodial for Telecommunications

518 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

 • On timeout completion, the second half-word contains the type of timeout occurrence:
DLC_TO_SLOW_POLL

Slow station poll
DLC_TO_IDLE_POLL

Idle station poll
DLC_TO_ABORT

Link station aborted
DLC_TO_INACT

Link station receive inactivity
DLC_TO_FAILSAFE

Command failsafe
DLC_TO_REPOLL_T1

Command repoll
DLC_TO_ACK_T2

I-frame acknowledgment

 • On transmit completion, the second half-word is set to the data link control bytes
being sent. Some transmit packets only have a single control byte; in that case, the
second control byte is not displayed.

• On receive completion, the second half-word is set to the data link control bytes that
were received. Some receive packets only have a single control byte; in that case, the
second control byte is not displayed.

len Specifies the length in bytes of the entry specific data specified by the buf parameter.

buf Specifies the pointer to the entry specific data that consists of:
Start Link Station Completions

Link station diagnostic tag and the remote station's name and address.
Time-out Completions

No specific data is recorded.
Transmit Completions

Either the first 80 bytes or all the transmitted data, depending on the short/long
trace option.

Receive Completions
Either the first 80 bytes or all the received data, depending on the short/long trace
option.

Halt Link Station Completions
Link station diagnostic tag, the remote station's name and address, and the result
code.

Description
The trcgenkt kernel service records a trace event if a trace session is active for the specified trace
channel. If a trace session is not active, the trcgenkt kernel service simply returns. The trcgenkt kernel
service is located in pinned kernel memory.

The trcgenkt kernel service is used to record a trace entry consisting of an hk_word entry, a data_word
entry, a variable number of bytes of trace data, and a time stamp.

Execution Environment
The trcgenkt kernel service can be called from either the process or interrupt environment.

Kernel Services and Subsystem Operations 519

Return Values
The trcgenkt kernel service has no return values.

Related reference
trcgenk Kernel Service
trcgenkt Kernel Service
Related information
trace subroutine
Generic Data Link Control (GDLC) Environment Overview
RAS Kernel Services

tstart Kernel Service

Purpose
Submits a timer request.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/timer.h>

void tstart (t)
struct trb *t;

Parameter

Ite
m

Description

t Points to a timer request structure.

Description
The tstart kernel service submits a timer request with the timer request block specified by the t
parameter as input. The caller of the tstart kernel service must first call the talloc kernel service to
allocate the timer request structure. The caller must then initialize the structure's fields before calling the
tstart kernel service.

Once the request has been submitted, the kernel calls the t->func timer function when the amount of
time specified by the t->timeout.it value has elapsed. The t->func timer function is called on an
interrupt level. Therefore, code for this routine must follow conventions for interrupt handlers.

The tstart kernel service examines the t->flags field to determine if the timer request being submitted
represents an absolute request or an incremental one. An absolute request is a request for a time out at
the time represented in the it_value structure. An incremental request is a request for a time out at the
time represented by now, plus the time in the it_value structure.

The caller should place time information for both absolute and incremental timers in the itimerstruc_t t.it
value substructure. The T_ABSOLUTE absolute request flag is defined in the /usr/include/sys/timer.h
file and should be ORed into the t->flag field if an absolute timer request is desired.

When the T_MOVE_OK flag is set, the associated timer is moved to another processor when the owning
processor is folded.

When T_LATE_OK flag is set, the associated timer is put to sleep when the owning processor is put
to sleep (folded) mode. The timer expiration handler is called when the owning processor is awakened
(unfolded) if the scheduled expiration time has past. The time spent sleeping is therefore counted with

520 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

respect to the expiration time. When this flag is set, there is no guarantee as to when the timer might
expire.

Note: The T_MOVE_OK and T_LATE_OK flags are not required. They are intended to improve the
effectiveness of processor folding by reducing the load on folded processors.

Modifications to the system time are added to incremental timer requests, but not to absolute ones.
Consider the user who has submitted an absolute timer request for noon on 12/25/88. If a privileged user
then modifies the system time by adding four hours to it, then the timer request submitted by the user still
occurs at noon on 12/25/88.

By contrast, suppose it is presently 12 noon and a user submits an incremental timer request for 6 hours
from now (to occur at 6 p.m.). If, before the timer expires, the privileged user modifies the system time by
adding four hours to it, the user's timer request will then expire at 2200 (10 p.m.).

Execution Environment
The tstart kernel service can be called from either the process or interrupt environment.

Return Values
The tstart service has no return values.

Related reference
tstop Kernel Service
Related information
Timer and Time-of-Day Kernel Services
Using Fine Granularity Timer Services and Structures

tstop Kernel Service

Purpose
Cancels a pending timer request.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/timer.h>

int tstop (t)
struct trb *t;

Parameter

Ite
m

Description

t Specifies the pending timer request to cancel.

Description
The tstop kernel service cancels a pending timer request. The tstop kernel service must be called before
a timer request block can be freed with the tfree kernel service.

In a multiprocessor environment, the timer function associated with a timer request block may be active
on another processor when the tstop kernel service is called. In this case, the timer request cannot be
canceled. A multiprocessor-safe driver must therefore check the return code and take appropriate action
if the cancel request failed.

Kernel Services and Subsystem Operations 521

In a uniprocessor environment, the call always succeeds. This is untrue in a multiprocessor environment,
where the call will fail if the timer is being handled by another processor. Therefore, the function now
has a return value, which is set to 0 if successful, or -1 otherwise. Funnelled device drivers do not need
to check the return value since they run in a logical uniprocessor environment. Multiprocessor-safe and
multiprocessor-efficient device drivers need to check the return value in a loop. In addition, if a driver
uses locking, it must release and reacquire its lock within this loop. A delay should be used between the
release and reacquiring the lock as shown below:

while (tstop(&trp)) {
 release_any_lock;
 delay_some_time;
 reacquire_the_lock;
} /* null while loop if locks not used */

Execution Environment
The tstop kernel service can be called from either the process or interrupt environment.

Return Values

Ite
m

Description

0 Indicates that the request was successfully canceled.

-1 Indicates that the request could not be canceled.

Related reference
tstart Kernel Service
Related information
Timer and Time-of-Day Kernel Services
Using Fine Granularity Timer Services and Structures
Using Multiprocessor-Safe Timer Services

tuning Kernel Service

Purpose
Provides access to the kernel tunable variables through an easily accessible interface.

Syntax
typedef enum {
 TH_MORE,
 TH_EOF
} tmode_t;

#define TH_ABORT TH_EOF

typedef int (*tuning_read_t)(tmode_t mode, long *size, char **buf, void *context);
typedef int (*tuning_write_t)(tmode_t mode, long *size, char *buf, void *context);

tinode_t *tuning_register_handler (path, mode, readfunc, writefunc, context)
const char *path;
mode_t mode;
tuning_read_t readfunc;
tuning_write_t writefunc;
void * context;

tinode *tuning_register_bint32 (path, mode, variable, low, high)
const char *path;
mode_t mode;
int32 *variable;

522 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

int32 low;
int32 high;

tinode *tuning_register_bint32x (path, rfunc, wfunc, mode, low, high)
const char *path;
mode_t mode;
int32 (*rfunc)(void *);
int (*wfunc)(int32, void *);
void *context;
int32 low;
int32 high;

tinode *tuning_register_buint32 (path, mode,variable, low, high)
const char *path;
mode_t mode;
uint32 *variable;
uint32 low;
uint32 high;

tinode *tuning_register_buint32x (path, rfunc, wfunc, mode, low, high)
const char *path;
mode_t mode;
uint32 (*rfunc)(void *);
int (*wfunc)(uint32, void *);
void *context;
uint32 low;
uint32 high;

tinode *tuning_register_bint64 (path, mode, variable, low, high)
const char *path;
mode_t mode;
int64 *variable;
int64 low;
int64 high;

tinode *tuning_register_bint64x (path, rfunc, wfunc, mode, low, high)
const char *path;
mode_t mode;
int64 (*rfunc)(void *);
int (*wfunc)(int64, void *);
void *context;
in64 low;
in64 high;

tinode *tuning_register_buint64 (path, mode, variable, low, high)
const char *path;
mode_t mode;
uint64 *variable;
uint64 low;
uint64 high;

tinode *tuning_register_buint64x (path, rfunc, wfunc, mode, low, high)
const char *path;
mode_t mode;
uint64 (*rfunc)(void *);
int (*wfunc)(uint64, void *);
void *context;
uint64 low;
uint64 high;

void tuning_deregister (t)
tinode_t * t;

Description
The tuning_register_handler kernel service is used to add a file at the location specified by the path
parameter. When this file is read from or written to, one of the two callbacks passed as parameters to the
function is invoked.

Kernel Services and Subsystem Operations 523

Accesses to the file are viewed in terms of streams. A single stream is created by a sequence of one open,
one or more reads, and one close on the file. While the file is open by one process, attempts to open
the same file by other processes will be blocked unless O_NONBLOCK is passed in the flags to the open
subroutine.

The readfunc callback behaves like a producer function. The function is called when the user attempts to
read from the file. The mode parameter is equal to TH_MORE unless the user closes the file prematurely.
On entry, the size parameter is an integer containing the size of the buffer. The context parameter is the
context pointer passed to the registration function. Upon return, size should contain either the actual
amount of data returned, or a zero if an end-of-file condition should be returned to the user. The return
value of the function can also be used to signal end-of-file, as described below.

Note: It is expected that the readfunc callback has already done any necessary end-of-file cleanup when
it returns the end-of-file signal.

If the amount of data returned is nonzero, the buf parameter may be modified to point to a new buffer. If
this is done, the callback is responsible for freeing the new buffer.

If the buffer provided by the caller is too small, the caller may instead set buf to NULL. In this case, the
size parameter should be modified to indicate the size of the buffer needed. The caller will then re-invoke
the callback with a buffer of at least the requested size.

If the user closes the file before the callback indicates end-of-file, the callback will be invoked one last
time with mode equal to TH_ABORT. In this case, the size parameter is equal to 0 on entry, and any data
returned is discarded. The callback must reset its state because no further callbacks will be made for this
stream.

The writefunc callback behaves as a consumer function and is used when the user attempts to write to the
file. The mode parameter is set to TH_EOF if no further data can be expected on this stream (for example,
the user called the close subroutine on the file). Otherwise, mode is set to TH_MORE. The size parameter
contains the size of the data passed in the buffer. The buf parameter is the pointer to the buffer.

Note: There will be zero or more calls with the mode parameter set to TH_MORE and one call with the
mode parameter set to TH_EOF for every stream.

The buf parameter may change between invocations. Upon return from the callback, the size parameter
must be modified to reflect the amount of data consumed from the buffer, and the buffer must not be
freed even if all data is consumed. The function is expected to consume data in a linear (first in, first out)
fashion. Unconsumed data is present at the beginning of the buffer at the next invocation of the callback.
The size parameter will include the size of the unconsumed data.

Both callbacks' return values are expected to be zero. If unsuccessful, a positive value will be placed into
the errno global variable (with the accompanying indication of an error return from the kernel service).
If the return value of a callback is less than 0, end-of-file will be signaled to the user, and the return
value will be treated as its unary negation (For example, -1 will be treated like 0). In this case, no further
callbacks will be made for this stream.

The tuning_register_bint32, tuning_register_buint32, tuning_register_bint64, and
tuning_register_buint64 kernel services are used to add a file at the location specified by the path
parameter that, when read from, will return the ASCII value of the integer variable pointed to by the
variable parameter. When written to, this file will set the integer variable to the value whose ASCII value
was written, unless that value does not satisfy the relation low <= value < high. In this case, the integer
variable is not modified, and an error is returned to the user through an error return of the kernel service
during which the invalid attempt is detected (probably either write or close).

The tuning_register_b*x functions operate similarly to their non-x variants, but they use a pair of
callbacks to retrieve (rfunc) and set (wfunc) the variable. The callback is passed the value (if setting)
and the context parameter. This permits more complex operations on read/write, such as serialization and
memory allocation and deallocation.

The tuning_get_context kernel service returns the context of the registration function used to create the
tinode_t structure referred to by the argument parameter.

524 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The tuning_register kernel service is the basic interface by which a file can be added to the /proc/sys
directory hierarchy. This function is not exported to kernel extensions, and its direct use in the kernel is
strongly discouraged. The path parameter contains the path relative to the /proc/sys root at which the file
should appear. Intermediate path components are automatically created. The mode parameter contains
the UNIX permissions and the type of the file to be created (as per the st_mode field of the stat struct).
If the file type is not specified, it is assumed to be S_IFREG. In most cases this parameter will be 0644 or
0600. The vnops parameter is used to dispatch all operations on the file.

The tuning_deregister kernel service is used to remove a file from the /proc/sys directory hierarchy. It is
exported to kernel extensions. It should only be used when a specific file's implementation is no longer
available. The t parameter is a tinode_t structure as returned by tuning_register. If the file is currently
open, any further access to it after this call returns ESTALE.

Parameters
Item Description

mode Is set to either TH_EOF if no further data is expected from the user for this change, or
TH_MORE if further data is expected.

size Contains the size of the data passed in the buffer.

buf Points to the buffer.

context Points to the context passed to the registration function.

path Specifies the location of the file to be added.

readfunc Behaves as a producer function.

rfunc Retrieves the variable.

wfunc Sets the variable.

writefunc Behaves as a consumer function.

variable Specifies the variable.

high Specifies the maximum value that the variable parameter can contain.

low Specifies the minimum value that the variable parameter can contain.

t A tinode_t structure as returned by tuning_register.

Return Values
Upon successful completion, the tuning_register kernel service returns the newly created tinode_t
structure. If unsuccessful, a NULL value is returned.

Examples
A user of this interface might include the following line in their initialization routine:

tuning_var = tuning_register_buint64
("fs/jfs2/max_readahead", 0644 &j2_max_read_ahead, 0, 1024);

In this example tuning_var is a global variable of type tinode_t *. This causes the fs and fs/jfs2
directories to be created, and a file (pipe) to be created as fs/jfs2/max_readahead. The file returns
the value of j2_max_readahead in ASCII when read. The variable is read at the time of the first read. A
write would set the value of the variable, but only at the time of either the first newline being written or a
close function being performed. In order to write the variable after reading it, one must close the file and
reopen it for write. This file is not seekable.

Kernel Services and Subsystem Operations 525

u
The following kernel services begin with the with the letter u.

ue_proc_check Kernel Service

Purpose
Determines if a process is critical to the system.

Syntax
int ue_proc_check (pid)
pid_t pid;

Description
The ue_proc_check kernel service determines if a particular process is critical to the system. A critical
process is either a kernel process or a process registered as critical by the ue_proc_register system
call. A process that is critical will cause the system to terminate if that process has an unrecoverable
hardware error associated with the process. Unrecoverable hardware errors associated with a process are
determined by the kernel machine check handler on systems that support UE-Gard error processing.

The ue_proc_check kernel service should be called only while executing in kernel mode in the user
process.

Parameters
Item Description

pid Specifies the process' ID to be checked as critical.

Execution Environment
The ue_proc_check kernel service can be called from the interrupt environment only.

Return Values
Item Description

0 Indicates that the pid is not critical.

EINVAL Indicates that the pid is critical.

-1 Indicates that the pid parameter is not valid or the process no longer exists.

ue_proc_register Subroutine

Purpose
Registers a process as critical to the system.

Syntax
int ue_proc_register (pid, argument)
pid_t pid;
int argument;

526 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The ue_proc_register system call registers a particular process as critical to the system. A process that is
critical will cause the system to terminate if that process has an unrecoverable hardware error associated
with the process. Unrecoverable hardware errors associated with a process are determined by the kernel
machine check handler on systems that support UE-Gard error processing.

An execed process from a critical process must register itself to be critical. A fork from a process inherits
the critical registration unless the argument is set to NONCRITFORK.

If the value of the pid parameter is equal to (pid_t) 0, the subroutine is registering the calling process.

The ue_proc_register system call should be called only while executing with root authority in the user
process.

Parameters
Item Description

pid Specifies the process' ID to be registered critical.

argument Defined in the sys/proc.h header file. Can be the following value:
NONCRITFORK

The pid forks are not critical.

Execution Environment
The ue_proc_register system call can be called from the process environment only.

Return Values
Item Description

0 Indicates successful completion.

EINVAL Indicates that the pid parameter is not valid or the process no longer exists.

EACCES Indicates that the caller does not have sufficient authority to alter the pid registration.

ue_proc_unregister Subroutine

Purpose
Unregisters a process from being critical to the system.

Syntax
int ue_proc_register (pid)
pid_t pid;

Description
The ue_proc_unregister system call unregisters a particular process as being no longer critical to the
system. A process that has been previously registered critical will cause the system to terminate if
that process has an unrecoverable hardware error associated with the process. Unrecoverable hardware
errors associated with a process are determined by the kernel machine check handler on systems that
support UE-Gard error processing.

If the value of the pid parameter is equal to (pid_t) 0, the subroutine is unregistering the calling process.

Kernel Services and Subsystem Operations 527

The ue_proc_unregister service should be called only while executing with root authority in the user
process.

Parameters
Item Description

pid Specifies the process' ID to be unregistered.

Execution Environment
The ue_proc_unregister system call can be called from the process environment only.

Return Values
Item Description

0 Indicates successful completion.

EINVAL Indicates that the pid parameter is not valid or the process no longer exists.

EACCES Indicates that the caller does not have sufficient authority to alter the pid registration.

uexadd Kernel Service

Purpose
Adds a systemwide exception handler for catching user-mode process exceptions.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/except.h>

void uexadd (exp)
struct uexcepth *exp;

Parameter

Ite
m

Description

exp Points to an exception handler structure. This structure must be pinned and is used for
registering user-mode process exception handlers. The uexcepth structure is defined in the /usr/
include/sys/except.h file.

Description
The uexadd kernel service is typically used to install a systemwide exception handler to catch exceptions
occurring during execution of a process in user mode. The uexadd kernel service adds the exception
handler structure specified by the exp parameter, to the chain of exception handlers to be called if an
exception occurs while a process is executing in user mode. The last exception handler registered is the
first exception handler called for a user-mode exception.

The uexcepth structure has:

• A chain element used by the kernel to chain the registered user exception handlers.
• A function pointer defining the entry point of the exception handler being added.

528 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Additional exception handler-dependent information can be added to the end of the structure, but must
be pinned.

Attention: The uexcepth structure must be pinned when the uexadd kernel service is called.
It must remain pinned and unmodified until after the call to the uexdel kernel service to delete
the specified exception handler. Otherwise, the system may crash.

Execution Environment
The uexadd kernel service can be called from the process environment only.

Return Values
The uexadd kernel service has no return values.

Related reference
uexdel Kernel Service
User-Mode Exception Handler for the uexadd Kernel Service
Related information
User-Mode Exception Handling
Kernel Extension and Device Driver Management Services

User-Mode Exception Handler for the uexadd Kernel Service

Purpose
Handles exceptions that occur while a kernel thread is executing in user mode.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/except.h>

int func (exp, type, tid, mst)
struct excepth * exp;
int type;
tid_t tid;
struct kmstsave * mst;

Parameters

Ite
m

Description

exp Points to the excepth structure used to register this exception handler.

mst Points to the current kmstsave area for the process. This pointer can be used to access the
kmstsave area to obtain additional information about the exception.

Item Description

tid Specifies the thread ID of the kernel thread that was executing at the time of the exception.

type Denotes the type of exception that has occurred. This type value is platform specific. Specific
values are defined in the /usr/include/sys/except.h file.

Kernel Services and Subsystem Operations 529

Description
The user-mode exception handler (exp->func) is called for synchronous exceptions that are detected
while a kernel thread is executing in user mode. The kernel exception handler saves exception information
in the kmstsave area of the structure. For user-mode exceptions, it calls the first exception handler found
on the user exception handler list. The exception handler executes in an interrupt environment at the
priority level of either INTPAGER or INTIODONE.

If the registered exception handler returns a return code indicating that the exception was handled, the
kernel exits from the exception handler without calling additional exception handlers from the list. If the
exception handler returns a return code indicating that the exception was not handled, the kernel invokes
the next exception handler on the list. The last exception handler in the list is the default handler. This is
typically signalling the thread.

The kernel exception handler must not page fault. It should also register an exception handler using the
setjmpx kernel service if any exception-handling activity can result in an exception. This is important
particularly if the exception handler is handling the I/O. If the exception handler did not handle the
exception, the return code should be set to the EXCEPT_NOT_HANDLED value for user-mode exception
handling.

Execution Environment
The user-mode exception handler for the uexadd kernel service is called in the interrupt environment at
the INTPAGER or INTIODONE priority level.

Return Values

Item Description

EXCEPT_HANDLED Indicates that the exception was successfully handled.

EXCEPT_NOT_HANDLED Indicates that the exception was not handled.

Related reference
uexadd Kernel Service
Related information
User-Mode Exception Handling
Kernel Extension and Device Driver Management Kernel Services

uexblock Kernel Service

Purpose
Makes the currently active kernel thread nonrunnable when called from a user-mode exception handler.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/except.h>

void uexblock (tid)
tid_t *tid;

530 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameter

Ite
m

Description

tid Specifies the thread ID of the currently active kernel thread to be put into a wait state.

Description
The uexblock kernel service puts the currently active kernel thread specified by the tid parameter into a
wait state until the uexclear kernel service is used to make the thread runnable again. If the uexblock
kernel service is called from the process environment, the tid parameter must specify the current active
thread; otherwise the system will crash with a kernel panic.

The uexblock kernel service can be used to lazily control user-mode threads access to a shared serially
usable resource. Multiple threads can use a serially used resource, but only one process at a time. When
a thread attempts to but cannot access the resource, a user-mode exception can be set up to occur. This
gives control to an exception handler registered by the uexadd kernel service. This exception handler can
then block the thread using the uexblock kernel service until the resource is made available. At this time,
the uexclear kernel service can be used to make the blocked thread runnable.

Execution Environment
The uexblock kernel service can be called from either the process or interrupt environment.

Return Values
The uexblock service has no return values.

Related reference
uexclear Kernel Service
Related information
User-Mode Exception Handling
Kernel Extension and Device Driver Management Services

uexclear Kernel Service

Purpose
Makes a kernel thread blocked by the uexblock service runnable again.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/except.h>

void uexclear (tid)
tid_t *tid;

Parameter

Ite
m

Description

tid Specifies the thread ID of the previously blocked kernel thread to be put into a run state.

Kernel Services and Subsystem Operations 531

Description
The uexclear kernel service puts a kernel thread specified by the tid parameter back into a runnable state
after it was made nonrunnable by the uexblock kernel service. A thread that has been sent a SIGSTOP
stop signal is made runnable again when it receives the SIGCONT continuation signal.

The uexclear kernel service can be used to lazily control user-mode thread access to a shared serially
usable resource. A serially used resource is usable by more than one thread, but only by one at a time.
When a thread attempts to access the resource but does not have access, a user-mode exception can be
setup to occur.

This setup gives control to an exception handler registered by the uexadd kernel service. Using the
uexblock kernel service, this exception handler can then block the thread until the resource is later made
available. At that time, the uexclear service can be used to make the blocked thread runnable.

Execution Environment
The uexclear kernel service can be called from either the process or interrupt environment.

Return Values
The uexclear service has no return values.

Related reference
uexblock Kernel Service
Related information
User-Mode Exception Handling
Kernel Extension and Device Driver Management Services

uexdel Kernel Service

Purpose
Deletes a previously added systemwide user-mode exception handler.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/except.h>

void uexdel (exp)
struct uexcepth *exp;

Parameter

Ite
m

Description

exp Points to the exception handler structure used to add the exception handler with the uexadd kernel
service.

Description
The uexdel kernel service removes a user-mode exception handler from the systemwide list of exception
handlers maintained by the kernel's exception handler.

The uexdel kernel service removes the exception handler structure specified by the exp parameter from
the chain of exception handlers to be called if an exception occurs while a process is executing in user

532 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

mode. Once the uexdel kernel service has completed, the specified exception handler is no longer called.
In addition, the uexcepth structure can be modified, freed, or unpinned.

Execution Environment
The uexdel kernel service can be called from the process environment only.

Return Values
The uexdel kernel service has no return values.

Related reference
uexadd Kernel Service
Related information
User-Mode Exception Handling
Kernel Extension and Device Driver Management Services

ufdcreate Kernel Service

Purpose
Allocates and initializes a file descriptor.

Syntax

#include <fcntl.h>
#include <sys/types.h>
#include <sys/file.h>

int ufdcreate (flags, ops, datap, type, fdp, cnp)

int flags;
struct fileops * ops;
void * datap;
short type;
int * fdp;
 struct ucred *crp;

Parameters

Item Description

flags Specifies the flags to save in a file structure. The file structure is defined in the sys/file.h file. If
a read or write subroutine is called with the file descriptor returened by this routine, the FREAD
and FWRITE flags must be set appropriately. Valid flags are defined in the fcntl.h file.

ops Points to the list of subsystem-supplied routines to call for the file system operations: read/
write, ioctl, select, fstat, and close. The fileops structure is defined in the sys/file.h file. See
"File Operations" for more information.

datap Points to type-dependent structures. The system saves this pointer in the file structure. As a
result, the pointer is available to the file operations when they are called.

type Specifies the unique type value for the file structure. Valid types are listed in the sys/file.h file.

fdp Points to an integer field where the file descriptor is stored on successful return.

crp Points to a credentials structure. This pointer is saved in the file struct for use in subsequent
operations. It must be a valid ucred struct. The crref() kernel service can be used to obtain a
ucred struct.

Kernel Services and Subsystem Operations 533

Description
The ufdcreate kernel service provides a file interface to kernel extensions. Kernel extensions use this
service to create a file descriptor and file structure pair. Also, this service allows kernel extensions
to provide their own file descriptor-based system calls, enabling read/write, ioctl, select, fstat, and
close operations on objects outside the file system. The ufdcreate kernel services does not require the
extension to understand or conform to the synchronization requirements of the logical file system (LFS).

The ufdcreate kernel service provides a file descriptor to the caller and creates the underlying file
structure. The caller must include pointers to subsystem-supplied routines for the read/write, ioctl,
select, fstat, and close operations. If any of the operations are not needed by the calling subsystem, then
the caller must provide a pointer to an appropriate errno value. Typically, the EOPNOTSUPP value is used
for this purpose. See "File Operations" for information about the requirements for the subsystem-supplied
routines.

Removing a File Descriptor
There is no corresponding operation to remove a file descriptor (and the attendant structures) created by
the ufdcreate kernel service. To remove a file descriptor, use a call to the close subroutine. The close
subroutine can be called from a routine or from within the kernel or kernel extension. If the close is not
called, the file is closed when the process exits.

Once a call is made to the ufdcreate kernel service, the file descriptor is considered open before the call
to the service returns. When a close or exit subroutine is called, the close file operation specified on the
call to the ufdcreate interface is called.

File Operations

The ufdcreate kernel service allows kernel extensions to provide their own file descriptor-based system
calls, enabling read/write, ioctl, select, fstat, and close operations on objects outside the file system. The
fileops structure defined in the sys/file.h file provides interfaces for these routines.

read/write Requirements

The read/write operation manages input and output to the object specified by the fp parameter. The
actions taken by this operation are dependent on the object type. The syntax for the operation is as
follows:

#include <sys/types.h>
#include <sys/uio.h>

int (*fo_rw) (fp, rw, uiop, ext)

struct file *fp;
enum uio_rw rw;
struct uio *uiop;
int ext;

The parameters have the following values:

Valu
e

Description

fp Points to the file structure. This structure corresponds to the file descriptor used on the read or
write subroutine.

rw Contains a UIO_READ value for a read operation or UIO_WRITE value for a write operation.

uiop Points to a uio structure. This structure describes the location and size information for the input
and output requested. The uio structure is defined in the uio.h file.

534 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Valu
e

Description

ext Specifies subsystem-dependent information. If the readx or writex subroutine is used, the value
passed by the operation is passed through to this subroutine. Otherwise, the value is 0.

If successful, the fo_rw operation returns a value of 0. A nonzero return value should be programmed to
indicate an error. See the sys/errno.h file for a list of possible values.

Note: On successful return, the uiop->uio_resid field must be updated to include the number of bytes
of data actually transferred.

ioctl Requirements

The ioctl operation provides object-dependent special command processing. The ioctl subroutine
performs a variety of control operations on the object associated with the specified open file structure.
This subroutine is typically used with character or block special files and returns an error for ordinary files.

The control operation provided by the ioctl operation is specific to the object being addressed, as are the
data type and contents of the arg parameter.

The syntax for the ioctl operation is as follows:

#include <sys/types.h>
#include <sys/ioctl.h>

int (*fo_ioctl) (fp, cmd, arg, ext, kflag)

struct file *fp;
int cmd, ext, kflag;
caddr_t arg;

The parameters have the following values:

Value Description

fp Points to the file structure. This structure corresponds to the file descriptor used by the ioctl
subroutine.

cmd Defines the specific request to be acted upon by this routine.

arg Contains data that is dependent on the cmd parameter.

ext Specifies subsystem-specific information. If the ioctlx subroutine is used, the value passed by
the application is passed through to this subroutine. Otherwise, the value is 0.

kflag Determines where the call is made from. The kflag parameter has the value FKERNEL (from the
fcntl.h file) if this routine is called through the fp_ioctl interface. Otherwise, its value is 0.

If successful, the fo_ioctl operation returns a value of 0. For errors, the fo_ioctl operation should return a
nonzero return value to indicate an error. Refer to the sys/errno.h file for the list of possible values.

select Requirements

The select operation performs a select operation on the object specified by the fp parameter. The syntax
for this operation is as follows:

#include <sys/types.h>

int (*fo_select) (fp, corl, reqevents, rtneventsp, notify)

struct file *fp;
int corl;
ushort reqevents, *rtneventsp;
void (notify) ();

Kernel Services and Subsystem Operations 535

The parameters have the following values:

Value Description

fp Points to the file structure. This structure corresponds to the file descriptor used by
the select subroutine.

corl Specifies the ID used for correlation in the selnotify kernel service.

reqevents Identifies the events to check. The poll and select functions define three standard
event flags and one informational flag. The sys/poll.h file details the event bit
definition. See the fp_select kernel service for information about the possible flags.

rtneventsp Indicates the returned events pointer. This parameter, passed by reference, indicates
the events that are true at the current time. The returned event bits include the
request events and an error event indicator.

notify Points to a routine to call when the specified object invokes the selnotify kernel
service for an outstanding asynchronous select or poll event request. If no routine is to
be called, this parameter must be null.

If successful, the fo_select operation returns a value of 0. This operation should return a nonzero return
value to indicate an error. Refer to the sys/errno.h file for the list of possible values.

fstat Requirements

The fstat operation fills in an attribute structure. Depending on the object type specified by the fp
parameter, many fields in the structure may not be applicable. The value passed back from this operation
is dependent upon both the object type and what any routine that understands the type is expecting. The
syntax for this operation is as follows:

#include <sys/types.h>

int (*fo_fstat) (fp, sbp)

struct file *fp;
struct stat *sbp;

The parameters have the following values:

Val
ue

Description

fp Points to the file structure. This structure corresponds to the file descriptor used by the stat
subroutine.

sbp Points to the stat structure to be filled in by this operation. The address supplied is in kernel space.

If successful, the fo_fstat operation returns a value of 0. A nonzero return value should be programmed to
indicate an error. Refer to the sys/errno.h file for the list of possible values.

close Requirements

The close operation invalidates routine access to objects specified by the fp parameter and releases any
data associated with that access. This operation is called from the close subroutine code when the file
structure use count is decremented to 0. For example, if there are multiple accesses to an object (created
by the dup, fork, or other subsystem-specific operation), the close subroutine calls the close operation
when it determines that there is no remaining access through the file structure being closed.

A file descriptor is considered open once a file descriptor and file structure have been set up by the LFS.
The close file operation is called whenever a close or exit is specified. As a result, the close operation
must be able to close an object that is not fully open, depending on what the caller did before the file
structure was initialized.

The syntax for the close operation is as follows:

536 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

#include <sys/file.h>

int (*fo_close) (fp)
struct file *fp;

The parameter is:

Ite
m

Description

fp Points to the file structure. This structure corresponds to the file descriptor used by the close
subroutine.

If successful, the fo_close operation returns a value of 0. This operation should return a nonzero return
value to indicate an error. Refer to the sys/errno.h file for the list of possible values.

Execution Environment
The ufdcreate kernel service can be called from the process environment only.

Return Values
If the ufdcreate kernel service succeeds, it returns a value of 0. If the kernel service fails, it returns a
nonzero value and sets the errno global variable.

Error Codes
The ufdcreate kernel service fails if one or more of the following errors occur:

Error Description

EINVAL The ops parameter is null, or the fileops structure does not have entries for for every
operation.

EMFILE All file descriptors for the process have already been allocated.

ENFILE The system file table is full.

Related reference
selnotify Kernel Service
Related information
close subroutine
exit, atexit, or _exit
Logical File System Kernel Services

ufdgetf Kernel Service

Purpose
Returns a pointer to a file structure associated with a file descriptor.

Syntax

#include <sys/file.h>

int ufdgetf(fd, fpp)
int fd;
struct file **fpp;

Kernel Services and Subsystem Operations 537

Parameters

Ite
m

Description

fd Identifies the file descriptor. The descriptor must be for an open file.

fpp Points to a location to store the file pointer.

Description
The ufdgetf kernel service returns a pointer to a file structure associated with a file descriptor. The calling
routine must have a use count on the file descriptor. To obtain a use count on the file descriptor, the caller
must first call the ufdhold kernel service.

Execution Environment
The ufdget kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates successful completion.

EBADF Indicates that the fd parameter is not a file descriptor for an open file.

Related reference
ufdhold and ufdrele Kernel Service

ufdhold and ufdrele Kernel Service

Purpose
Increment or decrement a file descriptor reference count.

Syntax
int ufdhold(fd)
int fd;

int ufdrele(fd)
int fd;

Parameter

Ite
m

Description

fd Identifies the file descriptor.

Description
Attention: It is extremely important that the calls to ufdhold and ufdrele kernel service are
balanced. If a file descriptor is held more times than it is released, the close subroutine on
the descriptor never completes. The process hangs and cannot be killed. If the descriptor is
released more times than it is held, the system panics.

538 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The ufdhold and ufdrele kernel services increment and decrement a file-descriptor reference count.
Together, these kernel services maintain the file descriptor reference count. The ufdhold kernel service
increments the count. The ufdrele kernel service decrements the count.

These subroutines are supported for kernel extensions that provide their own file-descriptor-based
system calls. This support is required for synchronization with the close subroutine.

When a thread is executing a file-descriptor-based system call, it is necessary that the logical file system
(LFS) be aware of it. The LFS uses the count in the file descriptor to monitor the number of system
calls currently using any particular file descriptor. To keep the count accurately, any thread using the file
descriptor must increment the count before performing any operation and decrement the count when all
activity using the file descriptor is completed for that system call.

Execution Environment
These kernel services can be called from the process environment only.

Return Values

Item Description

0 Indicates successful completion.

EBADF Indicates that the fd parameter is not a file descriptor for an open file.

Related reference
ufdgetf Kernel Service
Related information
close subroutine

uiomove Kernel Service

Purpose
Moves a block of data between kernel space and a space defined by a uio structure.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

int uiomove (cp, n, rw, uiop)
caddr_t cp;
int n;
uio_rw rw;
struct uio *uiop;

Parameters

Item Description

cp Specifies the address in kernel memory to or from which data is moved.

n Specifies the number of bytes to move.

Kernel Services and Subsystem Operations 539

Item Description

rw Indicates the direction of the move:
UIO_READ

Copies data from kernel space to space described by the uio structure.
UIO_WRITE

Copies data from space described by the uio structure to kernel space.

uiop Points to a uio structure describing the buffer used in the data transfer.

Description
The uiomove kernel service moves the specified number of bytes of data between kernel space and
a space described by a uio structure. Device driver top halves, especially character device drivers,
frequently use the uiomove service to transfer data into or out of a user area. The uio_resid and
uio_iovcnt fields in the uio structure describing the data area must be greater than 0 or an error is
returned.

The uiomove service moves the number of bytes of data specified by either the n or uio_resid parameter,
whichever is less. If either the n or uio_resid parameter is 0, no data is moved. The uio_segflg field
in the uio structure is used to indicate if the move is accessing a user- or kernel-data area, or if the
caller requires cross-memory operations and has provided the required cross-memory descriptors. If a
cross-memory operation is indicated, there must be a cross-memory descriptor in the uio_xmem array
for each iovec element.

If the move is successful, the following fields in the uio structure are updated:

Field Description

uio_iov Specifies the address of current iovec element to use.

uio_xmem Specifies the address of the current xmem element to use.

uio_iovcnt Specifies the number of remaining iovec elements.

uio_iovdcnt Specifies the number of already processed iovec elements.

uio_offset Specifies the character offset on the device performing the I/O.

uio_resid Specifies the total number of characters remaining in the data area described by the
uio structure.

iov_base Specifies the address of the data area described by the current iovec element.

iov_len Specifies the length of remaining data area in the buffer described by the current
iovec element.

Execution Environment
The uiomove kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates successful completion.

ENOMEM Indicates that there was no room in the buffer.

EIO Indicates a permanent I/O error file space.

ENOSPC Indicates insufficient disk space.

EFAULT Indicates a user location that is not valid.

540 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related reference
uphysio Kernel Service
uio Structure
Related information
Memory Kernel Services

unlock_enable Kernel Service

Purpose
Unlocks a simple lock if necessary, and restores the interrupt priority.

Syntax

#include <sys/lock_def.h>

void unlock_enable (int_pri, lock_addr)
int int_pri;
simple_lock_t lock_addr;

Parameters

Item Description

int_pri Specifies the interrupt priority to restore. This must be set to the value returned by the
corresponding call to the disable_lock kernel service.

lock_addr Specifies the address of the lock word to unlock.

Description
The unlock_enable kernel service unlocks a simple lock if necessary, and restores the interrupt priority,
in order to provide optimized thread-interrupt critical section protection for the system on which it is
executing. On a multiprocessor system, calling the unlock_enable kernel service is equivalent to calling
the simple_unlock and i_enable kernel services. On a uniprocessor system, the call to the simple_unlock
service is not necessary, and is omitted. However, you should still pass the valid lock address which was
used with the corresponding call to the disable_lock kernel service. Never pass a NULL lock address.

Execution Environment
The unlock_enable kernel service can be called from either the process or interrupt environment.

Return Values
The unlock_enable kernel service has no return values.

Related reference
disable_lock Kernel Service
simple_unlock Kernel Service
Related information
Understanding Locking
Understanding Interrupts

Kernel Services and Subsystem Operations 541

unlockl Kernel Service

Purpose
Unlocks a conventional process lock.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

void unlockl (lock_word)
lock_t *lock_word;

Parameter

Item Description

lock_word Specifies the address of the lock word.

Description
Note: The unlockl kernel service is provided for compatibility only and should not be used in new code,
which should instead use simple locks or complex locks.

The unlockl kernel service unlocks a conventional lock. Only the owner of a lock can unlock it. Once a
lock is unlocked, the highest priority thread (if any) which is waiting for the lock is made runnable and may
compete again for the lock. If there was at least one process waiting for the lock, the priority of the caller
is recomputed. Preempting a System Call discusses how system calls can use locking kernel services
when accessing global data.

The lockl and unlockl services do not maintain a nesting level count. A single call to the unlockl service
unlocks the lock for the caller. The return code from the lockl service should be used to determine when
to unlock the lock.

Note: The unlockl kernel service can be called with interrupts disabled, only if the event or lock word is
pinned.

Execution Environment
The unlockl kernel service can be called from the process environment only.

Return Values
The unlockl service has no return values.

Example
A call to the unlockl service can be coded as follows:

int lock_ret; /* return code from lockl() */
extern int lock_word; /* lock word that is external
 and was initialized to
 LOCK_AVAIL */
...
/* get lock prior to using resource */
lock_ret = lockl(lock_word, LOCK_SHORT)
/* use resource for which lock was obtained */
...
/* release lock if this was not a nested use */
if (lock_ret != LOCK_NEST)
 unlockl(lock_word);

542 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related reference
lockl Kernel Service
Related information
Understanding Locking

unpin Kernel Service

Purpose
Unpins the address range in system (kernel) address space.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/pin.h>

int unpin (addr, length)
caddr addr;
int length;

Parameters

Item Description

addr Specifies the address of the first byte to unpin in the system (kernel) address space.

length Specifies the number of bytes to unpin.

Description
The unpin kernel service decreases the pin count of each page in the address range. When the pin count
is 0, the page is not pinned and can be paged out of real memory. Upon finding an unpinned page, the
unpin service returns the EINVAL error code and leaves any remaining pinned pages still pinned.

The unpin service can only be called with addresses in the system (kernel) address space. The
xmemunpin service should be used where the address space might be in either user or kernel space.

Execution Environment
The unpin kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

0 Indicates successful completion.

EINVAL Indicates that the value of the length parameter is negative or 0. Otherwise, the area of
memory beginning at the byte specified by the base parameter and extending for the number
of bytes specified by the len parameter is not defined. If neither cause is responsible, an
unpinned page was specified.

Related reference
pin Kernel Service
xmemunpin Kernel Service
Related information
Understanding Execution Environments

Kernel Services and Subsystem Operations 543

Memory Kernel Services

unpincode Kernel Service

Purpose
Unpins the code and data associated with a loaded object module.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/pin.h>

int unpincode (func)
int (*func) ();

Parameter

Item Description

func Specifies an address used to determine the object module to be unpinned. The address is
typically that of a function that is exported by this object module.

Description
The unpincode kernel service uses the ltunpin kernel service to decrement the pin count for the pages
associated with the following items:

• Code associated with the object module
• Data area of the object module that contains the function specified by the func parameter

The loader entry for the module is used to determine the size of both the code and the data area.

Execution Environment
The unpincode kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates successful completion.

EINVAL Indicates that the func parameter is not a valid pointer to the function.

EFAULT Indicates that the calling process does not have access to the area of memory that is
associated with the module.

Related reference
unpin Kernel Service
Related information
Understanding Execution Environments
Memory Kernel Services

544 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

unregister_HA_handler Kernel Service

Purpose
Removes from the kernel the registration of a High Availability Event Handler.

Syntax
#include <sys/high_avail.h>

int register_HA_handler (ha_handler)
ha_handler_ext_t * ha_handler;

Parameter

Item Description

ha_handler Specifies a pointer to a structure of the type
ha_handler_ext_t defined in /usr/include/sys/
high_avail.h. This structure must be identical to
the one passed to register_HA_handler at the time
of registration.

Description
The unregister_HA_handler kernel service cancels an unconfigured kernel extensions that have
registered a high availability event handler, done by the register_HA_handler kernel service, so that
the kernel extension can be unloaded.

Failure to do so may cause a system crash when a high availability event such as a processor deallocation
is initiated due to some hardware fault.

Execution Environment
The unregister_HA_handler kernel service can be called from the process environment only.

An extension may register the same HAEH N times (N > 1). Although this is considered an incorrect
behaviour, no error is reported. The given HAEH will be invoked N times for each HA event. This handler
has to be unregistered as many times as it was registered.

Return Values

Item Description

0 Indicates a successful operation.

A non-zero value indicates an error.

Related reference
register_HA_handler Kernel Service
Related information
RAS Kernel Services

untimeout Kernel Service
Attention: This service must not be used because it is not multi-processor safe. The base kernel timer
and watchdog services must be used instead. See talloc and w_init for more information.

Kernel Services and Subsystem Operations 545

Purpose
Cancels a pending timer request.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

void untimeout (func, arg)
void (*func)();
caddr_t *arg;

Parameters

Item Description

func Specifies the function that is associated with the timer to be canceled.

arg Specifies the function argument that is associated with the timer to be canceled.

Description
The untimeout kernel service is not part of the kernel. However, it is a compatibility service that is
provided in the libsys.a library. To use the untimeout service, a kernel extension must be bound with the
libsys.a library. The untimeout service, like the associated kernel libsys services timeoutcf and timeout,
can be bound and used only in the pinned part of a kernel extension or the bottom half of a device driver
because these services use interrupt disable for serialization.

The untimeout kernel service cancels a specific request that is made with the timeout service. The func
and arg parameters must match the parameters that are used in the timeout kernel service request that
is to be canceled.

Upon return, the specified timer request is canceled, if found. If no timer request matches the func and
arg parameters, no operation is performed.

Execution Environment
The untimeout kernel service can be called from either the process or interrupt environment.

Return Values
The untimeout kernel service has no return values.

Related reference
timeout Kernel Service
Related information
Timer and Time-of-Day Kernel Services

uphysio Kernel Service

Purpose
Performs character I/O for a block device using a uio structure.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

546 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

#include <sys/buf.h>
#include <sys/uio.h>

int uphysio (uiop, rw, buf_cnt, devno, strat, mincnt, minparms)
struct uio * uiop;
int rw;
uint buf_cnt;
dev_t devno;
int (* strat)();
int (* mincnt)();
void * minparms;

Parameters

Item Description

uiop Points to the uio structure describing the buffer of data to
transfer using character-to-block I/O.

rw Indicates either a read or write operation. A value of
B_READ for this flag indicates a read operation. A value of
B_WRITE for this flag indicates a write operation.

buf_cnt Specifies the maximum number of buf structures to use
when calling the strategy routine specified by the strat
parameter. This parameter is used to indicate the maximum
amount of concurrency the device can support and minimize
the I/O redrive time. The value of the buf_cnt parameter can
range from 1 to 64.

devno Specifies the major and minor device numbers. With the
uphysio service, this parameter specifies the device number
to be placed in the buf structure before calling the strategy
routine specified by the strat parameter.

strat Represents the function pointer to the ddstrategy routine
for the device.

mincnt Represents the function pointer to a routine used to reduce
the data transfer size specified in the buf structure, as
required by the device before the strategy routine is started.
The routine can also be used to update extended parameter
information in the buf structure before the information is
passed to the strategy routine.

minparms Points to parameters to be used by the mincnt parameter.

Description
The uphysio kernel service performs character I/O for a block device. The uphysio service attempts to
send to the specified strategy routine the number of buf headers specified by the buf_cnt parameter.
These buf structures are constructed with data from the uio structure specified by the uiop parameter.

The uphysio service initially transfers data area descriptions from each iovec element found in the uio
structure into individual buf headers. These headers are later sent to the strategy routine. The uphysio
kernel service tries to process as many data areas as the number of buf headers permits. It then invokes
the strategy routine with the list of buf headers.

Preparing Individual buf Headers

Kernel Services and Subsystem Operations 547

The routine specified by the mincnt parameter is called before the buf header, built from an iovec
element, is added to the list of buf headers to be sent to the strategy routine. The mincnt parameter is
passed a pointer to the buf header along with the minparms pointer. This arrangement allows the mincnt
parameter to tailor the length of the data transfer described by the buf header as required by the device
performing the I/O. The mincnt parameter can also optionally modify certain device-dependent fields in
the buf header.

When the mincnt parameter returns with no error, an attempt is made to pin the data buffer described by
the buf header. If the pin operation fails due to insufficient memory, the data area described by the buf
header is reduced by half. The buf header is again passed to the mincnt parameter for modification before
trying to pin the reduced data area.

This process of downsizing the transfer specified by the buf header is repeated until one of the three
following conditions occurs:

• The pin operation succeeds.
• The mincnt parameter indicates an error.
• The data area size is reduced to 0.

When insufficient memory indicates a failed pin operation, the number of buf headers used for
the remainder of the operation is reduced to 1. This is because trying to pin multiple data areas
simultaneously under these conditions is not desirable.

If the user has not already obtained cross-memory descriptors, further processing is required. (The
uio_segflg field in the uio structure indicates whether the user has already initialized the cross-
memory descriptors. The usr/include/sys/uio.h file contains information on possible values for this flag.)

When the data area described by the buf header has been successfully pinned, the uphysio service
verifies user access authority for the data area. It also obtains a cross-memory descriptor to allow the
device driver interrupt handler limited access to the data area.

Calling the Strategy Routine

After the uphysio kernel service obtains a cross-memory descriptor to allow the device driver interrupt
handler limited access to the data area, the buf header is then put on a list of buf headers to be sent to
the strategy routine specified by the strat parameter.

The strategy routine specified by the strat parameter is called with the list of buf headers when:

• The list reaches the number of buf structures specified by the buf_cnt parameter.
• The data area described by the uio structure has been completely described by buf headers.

The buf headers in the list are chained together using the av_back and av_forw fields before they are
sent to the strategy routine.

Waiting for buf Header Completion

When all available buf headers have been sent to the strategy routine, the uphysio service waits for one
or more of the buf headers to be marked complete. The IODONE handler is used to wake up the uphysio
service when it is waiting for completed buf headers from the strategy routine.

When the uphysio service is notified of a completed buf header, the associated data buffer is unpinned
and the cross-memory descriptor is freed. (However, the cross-memory descriptor is freed only if the user
had not already obtained it.) An error is detected on the data transfer under the following conditions:

• The completed buf header has a nonzero b_resid field.
• The b_flags field has the B_ERROR flag set.

When an error is detected by the uphysio service, no new buf headers are sent to the strategy routine.

The uphysio service waits for any buf headers already sent to the strategy routine to be completed and
then returns an error code to the caller. If no errors are detected, the buf header and any other completed

548 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

buf headers are again used to send more data transfer requests to the strategy routine as they become
available. This process continues until all data described in the uio structure has been transferred or until
an error has been detected.

The uphysio service returns to the caller when:

• All buf headers have been marked complete by the strategy routine.
• All data specified by the uio structure has been transferred.

The uphysio service also returns an error code to the caller if an error is detected.

Error Detection by the uphysio Kernel Service

When it detects an error, the uphysio kernel service reports the error that was detected closest to the
start of the data area described by the uio structure. No additional buf headers are sent to the strategy
routine. The uphysio kernel service waits for all buf headers sent to the strategy routine to be marked
complete.

However, additional buf headers may have been sent to the strategy routine between these two events:

• After the strategy routine detects the error.
• Before the uphysio service is notified of the error condition in the completed buf header.

When errors occur, various fields in the returned uio structure may or may not reflect the error. The
uio_iov and uio_iovcnt fields are not updated and contain their original values.

The uio_resid and uio_offset fields in the returned uio structure indicate the number of bytes
transferred by the strategy routine according to the sum of all (the b_bcount field minus the b_resid
fields) fields in the buf headers processed by the strategy routine. These headers include the buf header
indicating the error nearest the start of the data area described by the original uio structure. Any data
counts in buf headers completed after the detection of the error are not reflected in the returned uio
structure.

Execution Environment
The uphysio kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates successful completion.

ENOMEM Indicates that no memory is
available for the required buf
headers.

EAGAIN Indicates that the operation fails
due to a temporary insufficient
resource condition.

EFAULT Indicates that the uio_segflg
field indicated user space and
that the user does not have
authority to access the buffer.

EIO or the b_error field in a buf header Indicates an I/O error in a buf
header processed by the strategy
routine.

Kernel Services and Subsystem Operations 549

Item Description

Return code from the mincnt parameter Indicates that the return code
from the mincnt parameter if the
routine returned with a nonzero
return code.

Related reference
uphysio Kernel Service mincnt Routine
buf Structure
uio Structure

uphysio Kernel Service mincnt Routine

Purpose
Tailors a buf data transfer request to device-dependent requirements.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

int mincnt (bp, minparms)
struct buf *bp;
void *minparms;

Parameters

Item Description

bp Points to the buf structure to be tailored.

minparms Points to parameters.

Description
Only the following fields in the buf header sent to the routine specified by the uphysio kernel service
mincnt parameter can be modified by that routine:

• b_bcount
• b_work
• b_options

The mincnt parameter cannot modify any other fields without the risk of error. If the mincnt parameter
determines that the buf header cannot be supported by the target device, the routine should return a
nonzero return code. This stops the buf header and any additional buf headers from being sent to the
ddstrategy routine.

The uphysio kernel service waits for all buf headers already sent to the strategy routine to complete and
then returns with the return code from the mincnt parameter.

uprintf Kernel Service

Purpose
Submits a request to print a message to the controlling terminal of a process.

550 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/uprintf.h>

int uprintf (Format [,
Value, ...])
char *Format;

Parameters

Item Description

Format Specifies a character string containing either or both of two types of objects:

• Plain characters, which are copied to the message output stream.
• Conversion specifications, each of which causes 0 or more items to be retrieved from the

Value parameter list. Each conversion specification consists of a % (percent sign) followed
by a character that indicates the type of conversion to be applied:
%

Performs no conversion. Prints %.
d, i

Accepts an integer Value and converts it to signed decimal notation.
u

Accepts an integer Value and converts it to unsigned decimal notation.
o

Accepts an integer Value and converts it to unsigned octal notation.
x

Accepts an integer Value and converts it to unsigned hexadecimal notation.
s

Accepts a Value as a string (character pointer), and characters from the string are
printed until a \ 0 (null character) is encountered. Value must be non-null and the
maximum length of the string is limited to UP_MAXSTR characters.

Field width or precision conversion specifications are not supported.

The following constants are defined in the /usr/include/sys/uprintf.h file:

– UP_MAXSTR
– UP_MAXARGS
– UP_MAXCAT
– UP_MAXMSG

The Format string may contain from 0 to the number of conversion specifications specified
by the UP_MAXARGS constant. The maximum length of the Format string is the number of
characters specified by the UP_MAXSTR constant. Format must be non-null.

The maximum length of the constructed kernel message is limited to the number of
characters specified by the UP_MAXMSG constant. Messages larger then the number of
characters specified by the UP_MAXMSG constant are discarded.

Value Specifies, as an array, the value to be converted. The number, type, and order of items in the
Value parameter list should match the conversion specifications within the Format string.

Kernel Services and Subsystem Operations 551

Description
The uprintf kernel service submits a kernel message request. Once the request has been successfully
submitted, the uprintfd daemon constructs the message based on the Format and Value parameters of
the request. The uprintfd daemon then writes the message to the process' controlling terminal.

Execution Environment
The uprintf kernel service can be called from the process environment only.

Return Values
Item Description

0 Indicates a successful operation.

ENOMEM Indicates that memory is not available to buffer the request.

ENODEV Indicates that a controlling terminal does not exist for the process.

ESRCH Indicates that the uprintfd daemon is not active. No requests may be submitted.

EINVAL Indicates that a string Value string pointer is null or the string Value parameter is greater than the number of
characters specified by the UP_MAXSTR constant.

EINVAL Indicates one of the following:

• Format string pointer is null.
• Number of characters in the Format string is greater than the number specified by the UP_MAXSTR constant.
• Number of conversion specifications contained within the Format string is greater than the number specified by the

UP_MAXARGS constant.

Related reference
NLuprintf Kernel Service
Related information
uprintfd command
Process and Exception Management Kernel Services

ureadc Kernel Service

Purpose
Writes a character to a buffer described by a uio structure.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

int ureadc (c, uiop)
int c;
struct uio *uiop;

Parameters

Item Description

c Specifies a character to be written to the buffer.

uiop Points to a uio structure describing the buffer in which to place a character.

552 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The ureadc kernel service writes a character to a buffer described by a uio structure. Device driver top
half routines, especially character device drivers, frequently use the ureadc kernel service to transfer data
into a user area.

The uio_resid and uio_iovcnt fields in the uio structure describing the data area must be greater
than 0. If these fields are not greater than 0, an error is returned. The uio_segflg field in the uio
structure is used to indicate whether the data is being written to a user- or kernel-data area. It is
also used to indicate if the caller requires cross-memory operations and has provided the required
cross-memory descriptors. The values for the flag are defined in the /usr/include/sys/uio.h file.

If the data is successfully written, the following fields in the uio structure are updated:

Field Description

uio_iov Specifies the address of current iovec element to use.

uio_xmem Specifies the address of current xmem element to use (used for cross-memory copy).

uio_iovcnt Specifies the number of remaining iovec elements.

uio_iovdcnt Specifies the number of iovec elements already processed.

uio_offset Specifies the character offset on the device from which data is read.

uio_resid Specifies the total number of characters remaining in the data area described by the
uio structure.

iov_base Specifies the address of the next available character in the data area described by
the current iovec element.

iov_len Specifies the length of remaining data area in the buffer described by the current
iovec element.

Execution Environment
The ureadc kernel service can be called from the process environment only.

Return Values
Item Description

0 Indicates successful completion.

ENOMEM Indicates that there is no room in the buffer.

EFAULT Indicates that the user location is not valid for one of these reasons:

• The uio_segflg field indicates user space and the base address (iov_base field) points to a location outside of
the user address space.

• The user does not have sufficient authority to access the location.
• An I/O error occurs while accessing the location.

Related reference
uiomove Kernel Service
uwritec Kernel Service
Related information
Memory Kernel Services

uwritec Kernel Service

Purpose
Retrieves a character from a buffer described by a uio structure.

Kernel Services and Subsystem Operations 553

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

int uwritec (uiop)
struct uio *uiop;

Parameter

Item Description

uiop Points to a uio structure describing the buffer from which to read a character.

Description
The uwritec kernel service reads a character from a buffer described by a uio structure. Device driver
top half routines, especially character device drivers, frequently use the uwritec kernel service to transfer
data out of a user area. The uio_resid and uio_iovcnt fields in the uio structure must be greater than
0 or an error is returned.

The uio_segflg field in the uio structure indicates whether the data is being read out of a user- or
kernel-data area. This field also indicates whether the caller requires cross-memory operations and
has provided the required cross-memory descriptors. The values for this flag are defined in the /usr/
include/sys/uio.h file.

If the data is successfully read, the following fields in the uio structure are updated:

Field Description

uio_iov Specifies the address of the current iovec element to use.

uio_xmem Specifies the address of the current xmem element to use (used for cross-memory
copy).

uio_iovcnt Specifies the number of remaining iovec elements.

uio_iovdcnt Specifies the number of iovec elements already processed.

uio_offset Specifies the character offset on the device to which data is written.

uio_resid Specifies the total number of characters remaining in the data area described by the
uio structure.

iov_base Specifies the address of the next available character in the data area described by
the current iovec element.

iov_len Specifies the length of the remaining data in the buffer described by the current
iovec element.

Execution Environment
The uwritec kernel service can be called from the process environment only.

Return Values
Upon successful completion, the uwritec service returns the character it was sent to retrieve.

554 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Ite
m

Description

-1 Indicates that the buffer is empty or the user location is not valid for one of these three reasons:

• The uio_segflg field indicates user space and the base address (iov_base field) points to a
location outside of the user address space.

• The user does not have sufficient authority to access the location.
• An I/O error occurred while the location was being accessed.

Related reference
uiomove Kernel Service
uphysio Kernel Service
ureadc Kernel Service

v
The following kernel services begin with the letter v.

validate_pag or validate_pag64 Kernel Service

Purpose
Validates the Process Authentication Group (PAG) value.

Syntax
#include <sys/cred.h>

int validate_pag (type, pg, npags)
int type;
struct paglist pg[];
int npags;

int validate_pag64 (type, pg, npags)
int type;
struct paglist64 pg[];
int npags;

Parameters
Item Description

type PAG type to validate

pg PAG list (must be in pinned memory)

npags Number of PAGs to validate

Description
The validate_pag or validate_pag64 kernel service validates the PAGs specified in pg. These
services support the garbage collection of data structures by kernel extensions associated with PAGs.
These structures are associated with a set_pag interface process. PAG values are inherited from parent
to child across the fork system call, so one kernel extension structure can map to many processes.
This routine is required to synchronize the execution of forks so that the process table can be scanned
to identify a particular PAG. The validate_pag and validate_pag64 kernel services cannot be used
simultaneously with the set_pag interface. The application is required to provide this synchronization.

Kernel Services and Subsystem Operations 555

The value of type must be a defined PAG ID. The PAG ID for the Distributed Computing Environment (DCE)
is 0. The pg parameter must be a valid, referenced PAG list in pinned memory.

Execution Environment
The validate_pag and validate_pag64 kernel services can be called from the process environment
only.

Return Values
A value of 0 is returned upon successful completion. Upon failure, a -1 is returned and errno is set to a
value that explains the error.

Error Codes
The validate_pag and validate_pag64 kernel services fail if the following condition is true:

Item Description

EINVAL Invalid PAG specification

Related Information
Security Kernel Services in Kernel Extensions and Device Support Programming Concepts.

vec_clear Kernel Service

Purpose
Removes a virtual interrupt handler.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

void vec_clear (levsublev)
int levsublev;

Parameter

Item Description

levsublev Represents the value returned by vec_init kernel service when the virtual interrupt
handler was defined.

Description
The vec_clear kernel service is not part of the base kernel but is provided by the device queue
management kernel extension. This queue management kernel extension must be loaded into the kernel
before loading any kernel extensions referencing these services.

The vec_clear kernel service removes the association between a virtual interrupt handler and the virtual
interrupt level and sublevel that was assigned by the vec_init kernel service. The virtual interrupt handler
at the sublevel specified by the levsublev parameter no longer registers upon return from this routine.

Execution Environment
The vec_clear kernel service can be called from the process environment only.

556 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values
The vec_clear kernel service has no return values. If no virtual interrupt handler is registered at the
specified sublevel, no operation is performed.

vec_init Kernel Service

Purpose
Defines a virtual interrupt handler.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int vec_init (level, routine, arg)
int level;
void (*routine) ();
int arg;

Parameters

Item Description

level Specifies the virtual interrupt level. This level value is not used by the vec_init kernel
service and implies no relative priority. However, it is returned with the sublevel assigned for
the registered virtual interrupt handler.

routine Identifies the routine to call when a virtual interrupt occurs on a given interrupt sublevel.

arg Specifies a value that is passed to the virtual interrupt handler.

Description
The vec_init kernel service is not part of the base kernel but provided by the device queue management
kernel extension. This queue management kernel extension must be loaded into the kernel before loading
any kernel extensions referencing these services.

The vec_init kernel service associates a virtual interrupt handler with a level and sublevel. This service
searches the available sublevels to find the first unused one. The routine and arg parameters are used to
initialize the open sublevel. The vec_init kernel service then returns the level and assigned sublevel.

There is a maximum number of available sublevels. If this number is exceeded, the vec_init service halts
the system. This service should be called to initialize a virtual interrupt before any device queues using
the virtual interrupt are created.

The level parameter is not used by the vec_init service. It is provided for compatibility reasons only.
However, its value is passed back intact with the sublevel.

Execution Environment
The vec_init kernel service can be called from the process environment only.

Return Values
The vec_init kernel service returns a value that identifies the virtual interrupt level and assigned sublevel.
The low-order 8 bits of this value specify the sublevel, and the high-order 8 bits specify the level. The
attchq kernel service uses the same format. This level value is the same value as that supplied by the
level parameter.

Kernel Services and Subsystem Operations 557

vfsrele Kernel Service

Purpose
Releases all resources associated with a virtual file system.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int vfsrele (vfsp)
struct vfs *vfsp;

Parameter

Item Description

vfsp Points to a virtual file system structure.

Description
The vfsrele kernel service releases all resources associated with a virtual file system.

When a file system is unmounted, the VFS_UNMOUNTED flag is set in the vfs structure, indicating that it
is no longer valid to do path name-related operations within the file system. When this flag is set and a
vnop_rele v-node operation releases the last active v-node within the file system, the vnop_rele v-node
implementation must call the vfsrele kernel service to complete the deallocation of the vfs structure.

Execution Environment
The vfsrele kernel service can be called from the process environment only.

Return Values
The vfsrele kernel service always returns a value of 0.

Related information
Virtual File System Overview
Virtual File System (VFS) Kernel Services

vm_att Kernel Service

Purpose
Maps a specified virtual memory object to a region in the current address space.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

caddr_t vm_att (vmhandle, offset)
vmhandle_t vmhandle;
caddr_t offset;

558 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

vmhandle Specifies the handle for the virtual memory object to be mapped.

offset Specifies the offset in the virtual memory object and region.

Description
The vm_att kernel service performs the following tasks:

• Selects an unallocated region in the current address space and allocates it.
• Maps the virtual memory object specified by the vmhandle parameter with the access permission
specified in the handle.

• Constructs the address in the current address space corresponding to the offset in the virtual memory
object and region.

The vm_att kernel service assumes an address space model of fixed-size virtual memory objects and
address space regions.

Attention: If there are no more free regions, this call cannot complete and calls the panic
kernel service.

Execution Environment
The vm_att kernel service can be called from either the process or interrupt environment.

Return Values
The vm_att kernel service returns the address that corresponds to the offset parameter in the address
space.

Related reference
vm_det Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_cflush Kernel Service

Purpose
Flushes the processor's cache for a specified address range.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

void vm_cflush (eaddr, nbytes)
caddr_t eaddr;
int nbytes;

Kernel Services and Subsystem Operations 559

Parameters

Item Description

eaddr Specifies the starting address of the specified range.

nbytes Specifies the number of bytes in the address range. If this parameter is negative or 0, no lines
are invalidated.

Description
The vm_cflush kernel service writes to memory all modified cache lines that intersect the address range
(eaddr, eaddr + nbytes -1). The eaddr parameter can have any alignment in a page.

The vm_cflush kernel service can only be called with addresses in the system (kernel) address space.

Execution Environment
The vm_cflush kernel service can be called from both the interrupt and the process environment.

Return Values
The vm_cflush kernel service has no return values.

Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_det Kernel Service

Purpose
Unmaps and deallocates the region in the current address space that contains a given address.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

void vm_det (eaddr)
caddr_t eaddr;

Parameter

Item Description

eaddr Specifies the effective address in the current address space. The region containing this address
is to be unmapped and deallocated.

Description
The vm_det kernel service unmaps the region containing the eaddr parameter and deallocates the region,
adding it to the free list for the current address space.

The vm_det kernel service assumes an address space model of fixed-size virtual memory objects and
address space regions.

Attention: If the region is not mapped, or a system region is referenced, the system will halt.

560 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The vm_det kernel service can be called from either the process or interrupt environment.

Related reference
vm_att Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_flushp Kernel Service

Purpose
Flushes the specified range of pages.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_flushp (sid, pfirst, npages)
vmid_t sid;
vpn_t pfirst;
vpn_t npages;

Parameters

Item Description

sid Identifies the base segment.

pfirst The first page number within the range.

npages The number of pages to flush starting from the pfirst value. All pages must be in the same
segment.

Description
The vm_flushp kernel service routine initiates page-out for the specified page range in the virtual memory
object. I/O is initiated for the modified pages only. If page-out is initiated, or the pages are currently
undergoing page I/O, then they are flagged to have their page frames released upon completion. If the
pages are not modified, their page frames are immediately released.

The caller can wait for the completion of I/O initiated by this and prior calls by calling the vms_iowait
kernel service.

Note: The vm_flushp subroutine is not supported for use on large pages.

Execution Environment
The vm_flushp kernel service can be called from the process environment only.

This is intended for files, and might not be called for working storage segments.

Kernel Services and Subsystem Operations 561

Return Values

Item Description

0 Indicates the completion of the flush operation.

EINVAL Indicates one of the following errors:

• pfirst = 0 and npages = 0.
• pfirst < 0.
• npages < 0.
• Page interval not in one segment.
• Invalid sid parameter.
• Invalid segment type.

Related reference
vm_writep Kernel Service
vm_invalidatep Kernel Service
Related information
Understanding Virtual Memory Manager Interfaces

vm_galloc Kernel Service

Purpose
Allocates a region of global memory in the 64-bit kernel.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_galloc (int type, vmsize_t size, ulong * eaddr)

Description
The vm_galloc kernel service allocates memory from the kernel global memory pool on the 64-bit kernel.
The allocation size is rounded up to the nearest 4K boundary. The default page protection key for global
memory segments is 00 unless overridden with the V_UREAD flag.

The type field may have the following values, which may be combined:

Item Description

V_WORKING Required. Creates a working storage segment.

V_SYSTEM The new allocation is a global system area
that does not belong to any application. Storage
reference errors to this area will result in system
crashes.

V_UREAD Overrides the default page protection of 00 and
creates the new region with a default page
protection of 01.

V_NOEXEC Pages in the region will have no-execute protection
by default. Only supported on POWER4 and later
hardware.

562 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The vm_galloc kernel service is intended for subsystems that have large data structures for which
xmalloc is not the best choice for management. The kernel xmalloc heap itself does reside in global
memory.

Parameters

Item Description

type Flags that may be specified to control the
allocation.

size Specifies the size, in bytes, of the desired
allocation.

eaddr Pointer to where vm_galloc will return the start
address of the allocated storage.

Execution Environment
The vm_galloc kernel service can be called from the process environment only.

Return Values

Item Description

0 Successful completion. A new region was
allocated, and its start address is returned at the
address specified by the eaddr parameter.

EINVAL Invalid size or type specified.

ENOSPC Not enough space in the galloc heap to perform the
allocation.

ENOMEM Insufficient resources available to satisfy the
request.

Related reference
vm_gfree Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_gfree Kernel Service

Purpose
Frees a region of global memory in the kernel previously allocated with the vm_galloc kernel service.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_gfree (ulong eaddr, vmsize_t size)

Kernel Services and Subsystem Operations 563

Description
The vm_gfree kernel service frees up a global memory region previously allocated with the vm_galloc
kernel service. The start address and size must exactly match what was previously allocated by the
vm_galloc kernel service. It is not valid to free part of a previously allocated region in the vm_galloc area.

Any I/O to or from the region being freed up must be quiesced before calling the vm_gfree kernel service.

Parameters

Item Description

eaddr Start address of the region to free.

size Size in bytes of the region to free.

Execution Environment
The vm_gfree kernel service can be called from the process environment only.

Return Values

Item Description

0 Successful completion. The region was freed.

EINVAL Invalid size or start address specified. This could
mean that the region is out of range of the
vm_galloc heap, was not previously allocated with
vm_galloc, or does not exactly match a previous
allocation from vm_galloc.

Related reference
vm_galloc Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_guatt Kernel Service

Purpose
Attaches an area of global kernel memory to the current process's address space.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_guatt (kaddr, size, key, flags, uaddr)
void * kaddr;
vmsize_t size;
vmkey_t key;
long flags;
void ** uaddr;

564 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters
Item Description

kaddr Kernel address to be attached (returned from vm_galloc when the global memory was
allocated).

size Length of the region to be inserted into the process address space, in bytes.

key Protection key that the process will use when accessing the attached region.

flags Type of vm_guatt operation; must be set to VU_ANYWHERE.

uaddr Pointer to user space address where the region was attached by vm_guatt. The location
pointed to by uaddr (*uaddr) must be null when the vm_guatt call is made.

Description
vm_guatt is a kernel service used to attach a region of global kernel memory that was allocated with
vm_galloc to a process's address space. If the call is successful, the address in the process address
space where the memory was attached is returned in the location pointed to by uaddr.

key can be set to VM_PRIV or VM_UNPRIV. If it is set to VM_PRIV, the process will be able to read and
write the attached region. If it is set to VM_UNPRIV, the process will not be able to write the region and
will only be able to read it if the vm_galloc of the region was done with the V_UREAD flag on.

vm_guatt attachments are not inherited across a process fork.

Execution Environment
The vm_guatt kernel service can be called from the process environment only.

Return Values
Item Description

0 Indicates a successful operation.

EINVAL Indicates one of the following errors:

• flags or key is not set to a valid value, size is 0, or the value pointed to by uaddr is
non-NULL.

• Region indicated by kaddr and size does not lie within a region previously allocated by
vm_galloc.

Implementation Specifics
The vm_guatt kernel service is part of Base Operating System (BOS) Runtime.

Related reference
vm_galloc Kernel Service
vm_gudet Kernel Service
Related information
Memory Kernel Services

vm_gudet Kernel Service

Purpose
Removes a region attached with vm_guatt from the current process's address space.

Kernel Services and Subsystem Operations 565

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_gudet (kaddr, uaddr, size, flags)
void * kaddr;
void * uaddr;
vmsize_t size;
long flags;

Parameters
Item Description

kaddr Kernel address attached by vm_guatt.

uaddr Location in the process address space where the kernel region was attached.

size Length of the attached region, in bytes.

flags Type of vm_gudet operation, must be VU_ANYWHERE.

Description
vm_gudet is a kernel service that detaches a region of global kernel memory that was attached by
vm_guatt. This memory must still be allocated, detaching a region after it has been deallocated with
vm_gfree is an error. If the detach is successful, the global kernel memory region at kaddr will no longer
be addressable at uaddr by the calling process.

Execution Environment
The vm_gudet kernel service can be called from the process environment only.

Return Values
Item Description

0 User address detached successfully.

EINVAL Indicates one of the following errors:

• Invalid flags.
• Region indicated by kaddr and size does not lie within a region allocated by vm_galloc.

Implementation Specifics
The vm_gudet kernel service is part of Base Operating System (BOS) Runtime.

Related reference
vm_galloc Kernel Service
vm_gfree Kernel Service
vm_guatt Kernel Service
Related information
Memory Kernel Services

566 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

vm_handle Kernel Service

Purpose
Constructs a virtual memory handle for mapping a virtual memory object with a specified access level.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

vmhandle_t vm_handle (vmid, key)
vmid_t vmid;
int key;

Parameters

Item Description

vmid Specifies a virtual memory object identifier, as returned by the vms_create kernel service.

key Specifies an access key. This parameter has a 1 value for limited access and a 0 value for
unlimited access, respectively.

Description
The vm_handle kernel service constructs a virtual memory handle for use by the vm_att kernel service.
The handle identifies the virtual memory object specified by the vmid parameter and contains the access
key specified by the key parameter.

A virtual memory handle is used with the vm_att kernel service to map a virtual memory object into the
current address space.

The vm_handle kernel service assumes an address space model of fixed-size virtual memory objects and
address space regions.

Execution Environment
The vm_handle kernel service can be called from the process environment only.

Return Values
The vm_handle kernel service returns a virtual memory handle type.

Related reference
vm_att Kernel Service
vms_create Kernel Service
Related information
Understanding Virtual Memory Manager Interfaces

vm_invalidatep Kernel Service

Purpose
Releases page frames in the specified range for a non-journaled persistent segment or client segment.

Kernel Services and Subsystem Operations 567

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_invalidatep (sid, pfirst, npages)
vmid_t sid;
vpn_t pfirst;
ulong npages;

Parameters

Item Description

sid Identifies the base segment.

pfirst The first page number within the range.

npages The number of pages to invalidate starting from the pfirst value. All pages must be in the same
segment.

Description
The vm_invalidatep kernel service routine discards any page frames associated with the virtual memory
object in the specified page range.

If a page within the specified range is found in page-in or page-out state, then the thread is synchronously
put to sleep until the page I/O completes. When the I/O is complete, any memory-resident page frame is
then freed.

Note: The vm_invalidatep subroutine is not supported for use on large pages.

Execution Environment
The vm_invalidatep kernel service can be called from the process environment only.

This is intended for files, and might not be called for working storage segments.

Return Values

Item Description

0 Indicates the completion of the invalidating operations.

EINVAL Indicates one of the following errors:

• pfirst < 0.
• npages < 0.
• Page interval not in one segment.
• Invalid sid parameter.
• Invalid segment type.

Related reference
vm_writep Kernel Service
vms_iowait, vms_iowaitf Kernel Services
Related information
Understanding Virtual Memory Manager Interfaces

568 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

vm_ioaccessp Kernel Service

Purpose
Initiates asynchronous page-in or page-out for the range of pages specified.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_ioaccessp (bsid, pfirst, npages, modifier)
vmid_t bsid;
vpn_t pfirst;
vpn_t npages;
uint modifier;

Parameters

Item Description

bsid Identifies the base segment.

pfirst The first page number within the range.

npages The number of pages to access starting from the pfirst value. All pages must be in the same
segment.

modifie
r

Flags passed in by the user. These flags are detailed below.

Description
The vm_ioaccessp kernel service routine enables a client file system with a thread-level strategy routine
to access the pages specified. This call is strictly advisory and might return without having done anything.
If you want to actually move the data, call the vm_uiomove kernel service. If you want to pre-page the
target, then call the vm_readp kernel service.

The flags passed in through the modifier parameter determine what type of action taken by the
vm_ioaccessp kernel service. For details of each flag's purpose, see the table below.

The flags carry certain restrictions. You cannot request both a make and a flush operation. Also, if the
VM_IOACCESSP_WAITONLY flag is declared then you must specify at least one type of wait operation.
Finally, you cannot request a make or a flush operation if the VM_IOACCESSP_WAITONLY flag is
declared.

Flags
Value Name Purpose

0x0001 VM_IOACCESSP_MAKE Creates new pages in the page-in state in the specified range. Can only
make up to 1MB of pages.

0x0002 VM_IOACCESSP_FLUSH Flushes pages in the specified range.

0x0004 VM_IOACCESSP_PGINWAIT If a page in the specified range is in page-in state, then block until
page-in is complete.

0x0008 VM_IOACCESSP_PGOUTWAIT If a page in the specified range is in page-out state, then block until
page-out is complete.

Kernel Services and Subsystem Operations 569

Value Name Purpose

0x0010 VM_IOACCESSP_WAITONLY Returns once the specified wait is complete.
The VM_IOACCESSP_PGINWAIT flag and the
VM_IOACCESSP_PGOUTWAIT flag must also be specified.

Execution Environment
The vm_ioaccessp kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates the completion of the I/O access operations.

EINVAL Indicates one of the following errors:

• pfirst = 0 and npages = 0.
• pfirst < 0.
• npages < 0.
• Page interval not in one segment.
• Invalid sid parameter.
• Page make requests > 1 MB.
• Not a client file system.
• Unsupported flag used.
• Both the VM_IOACCESSP_MAKE and the VM_IOACCESSP_FLUSH flags are set.
• The VM_IOACCESSP_WAITONLY flag is set and the VM_IOACCESSP_PGINWAIT flag or

the VM_IOACCESSP_PGOUTWAIT flag is not set.
• The VM_IOACCESSP_WAITONLY flag and the VM_IOACCESSP_MAKE flag or the

VM_IOACCESSP_FLUSH flag are set.

Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_makep Kernel Service

Purpose
Makes a page in client storage.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_makep (vmid, pno)
vmid_t vmid;
int pno;

570 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

vmid Specifies the ID of the virtual memory object.

pno Specifies the page number in the virtual memory object.

Description
The vm_makep kernel service makes the page specified by the pno parameter addressable in the virtual
memory object without requiring a page-in operation. The vm_makep kernel service is restricted to client
storage.

The page is not initialized to any particular value. It is assumed that the page is completely overwritten. If
the page is already in memory, a value of 0, indicating a successful operation, is returned.

Execution Environment
The vm_makep kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

EINVAL Indicates a virtual memory object type or page number that is not valid.

EFBIG Indicates that the page number exceeds the file-size limit.

Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_mem_policy System Call

Purpose
Allows callers to get or set their applications' default memory placement policies.

Library
Standard C Library (libc.a)

Syntax
#include <sys/rset.h>

#include <sys/vminfo.h>

int vm_mem_policy(int cmd, int *early_lru, int *policies, int num_policies)

Description
The vm_mem_policy system call allows callers to get or set their applications' default memory
placement policies for different types of memory.

Following are the different types of placement policies:

Kernel Services and Subsystem Operations 571

Item Description

P_FIRST_TOUCH Places the memory at the MCM where the application first referenced it. This is also achieved by setting the MEMORY_AFFINITY environment variable to MCM and benefit
the applications with an identified home MCM to run on.

P_BALANCED Uses the stripe memory in the application across all the system's MCMs. This benefits applications that do not identify a home MCM to run on, or on global memory objects
that is accessed by many applications.

P_DEFAULT Accepts the system's default policy for memory placement, which can be either the first touch or balanced policy, depending on the circumstances and the type of memory.

The vm_mem_policy system call allows the caller to get or set the early_lru flag, which triggers the
system to look for stealable pages immediately after a P_FIRST_TOUCH driven scan for local memory (the
memory on the same MCM the application is running on) does not find any available pages.

The parameters policies, and num_policies allow a caller to fine control over the default memory
placement policies of different types of memory. The policy settings take effect on any new memory page
the application creates after having called this function. The existing memory pages of the application
retains their existing memory placement.

Parameters

Item Description

cmd A command that is either VM_SET_POLICY or VM_GET_POLICY. The
VM_GET_POLICY command copies the current policy setting into the buffers
supplied by the caller, and does not change any of the process policies. The
VM_SET_POLICY command reads input from the supplied buffers and changes
the process policies accordingly.

early_lru A pointer to an integer that indicates the state of the early_lru setting for first
touch policy. Enabling early_lru causes memory to be paged out in order to fulfill a
first-touch request for memory placement.

The possible values for early_lru are:
0

turn off early_lru.
1

turn on early_lru.
-1

do not modify early_lru setting for VM_SET_POLICY.

572 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

policies A pointer to an array of policies for distinct types of memory. Each array element
contains one of the policy types. The array element contains -1 to leave the policy
unchanged for the corresponding memory type. The array must be declared with a
length of VM_NUM_POLICIES. The list that follows enumerates the memory types
whose policies can be changed in the form of constants. Enter the constant that is
an array index into the policies array for the corresponding memory type.
VM_POLICY_TEXT

policy for executable program text
VM_POLICY_STACK

policy for program stack
VM_POLICY_DATA

policy for program heap and private mmap data
VM_POLICY_SHM_NAMED

policy for shared memory obtained via shm_open() or shmget() with a key
VM_POLICY_SHM_ANON

policy for anonymous mmap memory, or shared memory obtained via shmget()
with IPC_PRIVATE key

VM_POLICY_MAPPED_FILE
policy for files mapped into the address space via shmat() or mmap()

VM_POLICY_UNMAPPED_FILE
policy for open files that are not mapped

num_policies Number of elements in the policies array. This value must be set to
VM_NUM_POLICIES.

vm_mount Kernel Service

Purpose
Adds a file system to the paging device table.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_mount (type, ptr, nbufstr)
int type;
int (*ptr)();
int nbufstr;

Parameters

Item Description

type Specifies the type of device. The type parameter must have a value of D_REMOTE.

ptr Points to the file system's strategy routine.

nbufstr Specifies the number of buf structures to use.

Kernel Services and Subsystem Operations 573

Description
The vm_mount kernel service allocates an entry in the paging device table for the file system. This service
also allocates the number of buf structures specified by the nbufstr parameter for the calls to the strategy
routine.

Execution Environment
The vm_mount kernel service can be called from the process environment only.

Return Values
Item Description

0 Indicates a successful operation.

ENOMEM Indicates that there is no memory for the buf structures.

EINVAL Indicates that the file system strategy pointer is already in the paging device table.

Related reference
vm_umount Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_mounte Kernel Service

Purpose
Adds a file system with a thread-level strategy routine to the paging device table.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_mounte (in_dtype, in_devid, in_thrinfop)
int in_dtype;
dev_t in_devid;
struct thrpginfo * in_thrinfop;

Parameters

Item Description

in_dtype Specifies the type of device. Supported device types are D_REMOTE, D_LOGDEV,
D_SERVER, D_LOCALCLIENT. Other optional flags are detailed below.

in_devid If the type is D_LOGDEV, specifies a dev_t object of the block device. If the type is
D_REMOTE or D_SERVER, specifies a pointer to a strategy routine.

in_thrinfop Pointer to a thrpginfo structure.

Description
The vm_mounte kernel service allocates an entry in the paging device table for the device specified. The
vm_mounte kernel service can also mount a client file system with a thread-level strategy routine. This is
done by passing in the D_THRPGIO and the D_ENHANCEDIO flags.

574 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Flags
Name Purpose

D_ENHANCEDIO Indicates an enhanced I/O-aware file system.

D_PREXLATE Enables pre-translation as the default for all but remote file systems.

D_THRPGIO Indicates a thread-level strategy routine.

Execution Environment
The vm_mounte kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

ENOMEM Indicates that there is no memory for the buf or the thrpginfo structure.

EINVAL Indicates one of the following errors:

• The file system strategy pointer is already in the paging device table, or in case of
D_SERVER, a server is already defined.

• The in_dtype parameter is set to the D_PAGING or the D_FILESYSTEM value.
• The thrpginfo structure has not been initialized correctly.
• The D_THRPGIO flag has been set without the D_ENHANCEDIO flag.

Related reference
vm_umount Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_move Kernel Service

Purpose
Moves data between a virtual memory object and a buffer specified in the uio structure.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/uio.h>

int vm_move (vmid, offset, limit, rw, uio)
vmid_t vmid;
caddr_t offset;
int limit;
enum uio_rw rw;
struct uio * uio;

Kernel Services and Subsystem Operations 575

Parameters

Item Description

vmid Specifies the virtual memory object ID.

offset Specifies the offset in the virtual memory object.

limit Indicates the limit on the transfer length. If this parameter is negative or 0, no bytes are
transferred.

rw Specifies a read/write flag that gives the direction of the move. The possible values for this
parameter (UIO_READ, UIO_WRITE) are defined in the /usr/include/sys/uio.h file.

uio Points to the uio structure.

Description
The vm_move kernel service moves data between a virtual memory object and the buffer specified in a
uio structure.

This service determines the virtual addressing required for the data movement according to the offset in
the object.

The vm_move kernel service is similar to the uiomove kernel service, but the address for the trusted
buffer is specified by the vmid and offset parameters instead of as a caddr_t address. The offset size is
also limited to the size of a caddr_t address since virtual memory objects must be smaller than this size.

Note: The vm_move kernel service does not support use of cross-memory descriptors.

I/O errors for paging space and a lack of paging space are reported as signals.

Execution Environment
The vm_move kernel service can be called from the process environment only.

Return Values
Item Description

0 Indicates a successful operation.

EFAULT Indicates a bad address.

ENOMEM Indicates insufficient memory.

ENOSPC Indicates insufficient disk space.

EIO Indicates an I/O error.

Other file system-specific errno global variables are returned by the virtual file system involved in the
move function.

Related reference
uiomove Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_mvc Kernel Service

Purpose
Reads or writes partial pages of files.

576 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_mvc (in_sid, in_pno, in_pgoffs, in_count, in_cmd, in_xmemdp, in_ptr)
vmid_t in_sid;
vpn_t in_pno;
int in_pgoffs;
int in_count;
int in_cmd;
struct xmem * in_xmemdp;
void * in_ptr;

Parameters

Item Description

in_sid The primary memory object, m1.

in_pno The m1 pno object. If it is a read operation, this parameter refers to the source. If not, it
refers to a target.

in_pgoffs The byte offset in the pno object.

in_count The number of bytes to zero or copy in memory.

in_cmd The reason for the function call. The possible values could be Zero, Zero(protect), read, or
write.

in_xmemd
p

The xmem descriptor for the second memory object, m2.

in_ptr The byte offset in the xmem object.

Description
The vm_mvc kernel service is meant to be used by client file systems doing read or write operations to
partial pages of files, where the file is denoted by the m1 object and the read or write buffer by the m2
object. Such cases arise on EOF handling, fragments, compression, and holes among other situations.

Given two memory object, m1 and m2, the vm_mvc kernel service allows you to do one of the following
operations:

• Zero out bytes on the m1 object (VM_MVC_ZERO).
• Zero out and protect the m1 object (VM_MVC_PROTZERO).
• Copy bytes from the m1 object to the m2 object (VM_MVC_READ).
• Copy bytes from the m2 object to the m1 object (VM_MVC_WRITE).

The first memory object, m1, is characterized by a sid parameter and a pno parameter. The second
memory object, m2, is characterized by an xmem descriptor and a pointer for an offset. The second
memory object is a user or kernel buffer.

Note: The second memory object must be pinned.

Flags
in_cmd Purpose

VM_MVC_ZERO Zeros out the bytes on the m1 object.

VM_MVC_READ Copies bytes from the m1 object to the m2 object.

Kernel Services and Subsystem Operations 577

in_cmd Purpose

VM_MVC_WRITE Copies bytes from the m2 object to the m1 object.

VM_MVC_PROTZERO Zeros out and protects the m1 object.

Execution Environment
The vm_mvc kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates that the I/O access operations completed successfully.

ENOENT Indicates that the (sid, pno) set was not mapped to a real frame.

EINVAL Indicates one of the following errors:

• The m1 object crosses page boundary.
• The in_cmd parameter does not contain a valid command.

Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_pattr System Call and kvm_pattr Kernel Service

Purpose
Queries or modifies virtual memory attributes.

Library
Standard C Library (libc.a)

Syntax

#include <sys/vmpattr.h>

int vm_pattr (
long cmd,
pid_t pid,
void * attr,
size_t attr_size);

int kvm_pattr (
long cmd,
pid_t pid,
void * attr,
size_t attr_size);

Description
The vm_pattr system call queries or modifies memory attributes of the calling process's address space or
that of another user process.

578 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The kvm_pattr kernel service provides the same function to kernel subsystems (kernel extensions, kernel
processes and so on) except that it cannot modify another kernel process' memory attributes.

Parameters
Item Description

cmd The following commands can be passed in:

VM_PA_SET_PSIZE or VM_PA_GET_PSIZE
These commands set or retrieve the page size used for a specified memory range.

VM_PA_GET_RMUSAGE
This command retrieves the amount of the real memory in bytes being used for a specified memory
range.

VM_PA_SET_PSPA or VM_PA_GET_PSPA
These commands set or retrieve the page size promotion aggressiveness factor for a specified
memory range.

VM_PA_GET_PSPA_ALIGN
This command retrieves the minimum memory alignment necessary for memory ranges specified to
the vm_pattr kernel service when using the VM_PA_SET_PSPA command.

VM_PA_CHECK_PSIZE
This command reports if a specified page size can be used for a memory range.

VM_PA_SET_LSA_POLICY
This command allows the shared memory address space allocator to be tuned according to a process
requirements. This command should be run before any shared memory regions are created.

VM_PA_SET_PSIZE_EXTENDED or VM_PA_GET_PSIZE_EXTENDED
These commands provide variable large page size segment support.

pid Specifies the ID of the process whose memory attributes are to be queried or modified. A value of -1
specifies the calling process. The root user can specify any process ID, but other users can only specify
processes they own (that is, the target process's user ID must match the calling process's user ID).

The vm_pattr system call is only supported on user processes while the kvm_pattr kernel service can
target user processes or its own kernel process (for example, pid = -1).

attr A pointer to a structure describing the effective address range for the memory being queried or modified
and additional data depending on the command.

The range is specified through the following vm_pa_range structure:

struct vm_pa_range
 {
 ptr64_t rng_start;
 size64_t rng_size;
 };

The range specified must be in the target process's address space and must correspond to one of these
process areas:

• Main program data (initialized, bss, or heap).
• Shared library data or private module load area data.
• Privately loaded text.
• Initial thread stack area.
• Anonymous shared memory (System V shared memory, extended System V shared through EXTSHM,

and POSIX real-time shared memory). The target process must have write access to the memory in
order to change the attributes of the shared memory range.

• Anonymous mmap memory.

If the memory range specified includes shared memory or mmap memory, the calling process must have
write access to the memory according to the shared memory descriptor or mapping attributes in order
to change the attributes of the range. The range can have additional restrictions based on the following
commands.

Kernel Services and Subsystem Operations 579

Item Description

attr (continued) The structure specified through the attr parameter must be a pointer to one of the following structures:

VM_PA_SET_PSIZE or VM_PA_GET_PSIZE
These commands take a pointer to the following structure:

struct vm_pa_psize
 {
 struct vm_pa_range pa_range;
 psize_t pa_psize;
 };

For the VM_PA_SET_PSIZE command, the pa_psize parameter is the page size (in bytes) to use for
the given range. This is an advisory setting that might or might not be used at the operating system's
discretion. This must be a valid page size between the minimum and maximum page sizes of all
segments in the range. Additionally, the range must start and end on a multiple of the specified page
size. If an error occurs during the processing of this command, any successfully altered page size
settings can remain set.

For the VM_PA_GET_PSIZE command, the page size (in bytes) backing the specified memory range
is returned in the pa_psize parameter. The range must start and end on a multiple of the smallest
page size supported as reported by the sysconf(_SC_PAGE_SIZE) subroutine. If the range is using
multiple page sizes, the smallest page size in the range is reported. Unlike the VM_PAGE_INFO
command of the vmgetinfo subroutine that reports the segment's base page size, the page size
reported by the VM_PA_GET_PSIZE command is the actual page size being used at the time
the vm_pattr system call was called. The page size reported is transient because the operating
system can change the backing page size at any time. Therefore, the page size reported must be for
informational purposes only.

VM_PA_SET_PSIZE_EXTENDED
This command takes a pointer to the following structure:

struct vm_pa_psize_extended
 {
 struct vm_pa_range pa_range;
 psize_t pa_psize;
 size_t pa_info_size;
 uint64_t *pa_info;
 }

This command is essentially the same as VM_PA_SET_PSIZE except that pa_psize must be 16 MB
and, if not NULL, pa_info can be used to pass additional information specifying one or more affinity
domains.

The info passed by the parameter is advisory request, and the system might choose to ignore it.

The pa_range is scanned for subregions that begin and end on a 16 MB boundary, are fully backed
with 4 KB or 64 KB pages, and have uniform page attributes. The page attributes include read or
write page protection, storage key protection, and no-execute protection.

The data in qualifying 16 MB subregions is colocated to a 16 MB contiguous block of physical
memory, and it uses 16 MB hardware translations.

If the pa_info pointer is NULL, the memory for collocation is allocated from any memory SRAD,
affinity domain chosen by the operating system.

If parameter value is not NULL, pa_info must point to an rsethandle_t that describes a set of
affinity domains from which the physical memory for the collocation must be allocated. The
object should be allocated by a call to rs_alloc (RS_EMPTY). It must then be initialized with one
rs_op(RS_ADDRESOURCE, ..., R_MEMPS, srad#) call per affinity domain being requested.

This command can potentially affect system performance and is not generally recommended;
therefore, this command requires you to have either the CAP_BYPASS_RAC_VMM and
CAP_PROPAGATE capabilities or root authority.

VM_PA_GET_PSIZE_EXTENDED
This command is essentially the same as the VM_PA_GET_PSIZE command except that it can also
return the 64 KB and 16 MB subregions that are using an hardware translation page size different
from the underlying segments default page size.

580 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

attr (continued) If the pa_info field is NULL, this command is identical to the VM_PA_GET_PSIZE command.

The pa_info field should point to an array containing two 64 bit integers. The pa_info_size field should be
set to the size of the array.

In the first 64-bit integer, this command reports the number of 64-KB sized and aligned subregions in the
specified pa_range range that consist of 16 contiguous 4-KB pages that are promoted to using a 64-KB
page size hardware translation. In the second 64-bit integer, this command reports the number of 16
MB sized and aligned subregions in the specified range that consist of either 4096 4 KB or 256 64-KB
contiguous pages that are promoted to using a 16-MB page size hardware translation.

The pa_psize field reports the smallest page size found for the specified range.

The information reported is transient because the operating system can change the backing page size at
any time. Therefore, the page size reported must be for informational purposes only.

attr (continued) VM_PA_GET_RMUSAGE
This command takes a pointer to the following structure:

struct vm_pa_rmusage
 {
 struct vm_pa_range pa_range;
 size64_t pa_rbytes;
 };

This command reports the amount of real memory (in bytes) used for the given range in the
pa_rbytes field. This can help an application decide whether it needs to use a large page size for
a specific range based on how much real memory the range is using. For example, if a 64KB range is
only using 4KB of real memory, then it does not make sense to try to use a 64KB page size for that
range. But if it is using all 64KB or some large percentage of it, then the application might decide to
use a 64KB page size. The range specified for this command has no alignment requirements for this
command, and the command includes only those bytes in the range that are using real memory.

VM_PA_SET_PSPA or VM_PA_GET_PSPA
These commands take a pointer to the following structure:

struct vm_pa_pspa
 {
 struct vm_pa_range pa_range;
 int pa_pspa;
 };

The VM_PA_SET_PSPA command can set the page size promotion aggressiveness for the specified
range. The pa_pspa setting is in the same units as the vmm_default_pspa vmo tunable. This setting
is the inverse of the real memory occupancy threshold needed to promote to a large page size and
ranges from -1 to 100. The value of -1 indicates that no page promotion can occur regardless of the
occupancy of the memory range. A value of 0 indicates a page size promotion can only be done when
the memory range is fully occupied. A value of 100 indicates a page promotion must be done at the
first reference to the memory range.

This setting is only supported at a segment granularity, so the range must start and end
on a segment boundary. The alignment requirement for the range can be found using the
VM_PA_GET_PSPA_ALIGN command with the vm_pattr system call.

If an error occurs during the processing of the VM_PA_SET_PSPA command, the vm_pattr system
call can return after altering the page size promotion thresholds for part of the specified range.

The VM_PA_GET_PSPA command retrieves the page size promotion aggressiveness factor for
the specified range. If the range spans multiple segments consisting of different page promotion
thresholds, the pa_pspa field is updated with the least aggressive PSPA setting (the smallest PSPA
setting across all of the segments).

The PSPA commands are not supported on mmap or EXTSHM memory ranges.

Kernel Services and Subsystem Operations 581

Item Description

attr (continued) VM_PA_GET_PSPA_ALIGN
This command takes a pointer to the following structure:

 struct vm_pa_pspa_align
 {
 struct vm_pa_range pa_range;
 size64_t pa_pspa_align;
 };

The VM_PA_GET_PSPA_ALIGN command returns the minimum memory alignment requirements
of a memory range for the VM_PA_SET_PSPA command in the pa_pspa_align field based on what
segments are contained in the specified memory range. If a memory range spans segments with
different alignment requirements, this command returns the largest of the alignment requirements.

The alignment requirements for the VM_PA_SET_PSPA command are as follows:

attr (continued) VM_PA_SET_LSA_POLICY
This command takes a pointer to the following structure:

struct vm_pa_lsa_options
 {
 u_int64_t setting;
 size64_t value;
 };

The following settings are allowed:

VM_PA_SHM_1TB_SHARED
This setting controls the threshold of the number of 256 MB segments required before a SHM
object is considered big enough to be placed in its own 1 TB region to be promoted to the large
alias segments. Values can range from 0 to 4 KB.

VM_PA_SHM_1TB_UNSHARED
This setting controls the threshold of the number of 256 MB segments required before a group
of SHM object packed in a 1 TB aligned group is promoted to the large alias segments. Values
can range from 0 to 4 KB.

attr (continued) Process's Memory Area Minimum Alignment

Main process data 256 MB

Process stack 256 MB

Shared Library data 256 MB

Privately loaded module data 256 MB

Privately loaded module text 256 MB

POSIX Real-Time Shared Memory 256 MB

Anonymous MMAP 256 MB

Anonymous Extended System V Shared memory 256 MB

Anonymous System V Shared memory with page sizes less than or equal to 256 MB 256 MB

Anonymous System V shared memory backed with 16 GB page size 1 TB

582 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

attr (continued) VM_PA_CHECK_PSIZE
This command takes a pointer to the following structure:

struct vm_pa_psize_check
 {
 struct vm_pa_range pa_range;
 psize_t pa_psize;
 int pa_reason;
 };

The VM_PA_CHECK_PSIZE command determines if a specific page size is allowed by the
VM_PA_SET_PSIZE command for a specified memory range. The VM_PA_CHECK_PSIZE command
can be used when the application wants more detailed information about why a VM_PA_SET_PSIZE
operation fails, or to check if a VM_PA_SET_PSIZE operation will successfully modify the page size
for the range specified.

This command must be used on a memory range that spans a single page and is aligned to the page
size specified by the pa_psize parameter. If the page size can be used for that range, the pa_reason
parameter is set to 0. Otherwise, it is set to a reason code defined in the vmpattr.h header file.

VMPATTR_SET_PSIZE_VALID The specified page size can be used for the specified range.

VMPATTR_INVALID_MPSS_PSIZE The specified page size is not supported in mixed page size segments.

VMPATTR_NON_MPSS_SEGMENT The address range specified is from a segment that does not support
mixed page sizes.

VMPATTR_NON_MPSS_PAGE The size of the target page cannot be modified. For example, this reason
code can be returned when trying to set an address range to a 64 KB page size if a portion of the range
has page protection settings that do not match the rest of the range.

VMPATTR_RDONLY_MEM The target range cannot be modified because the caller does not have write
access to the memory specified.

VMPATTR_PAGE_ATTRIBUTES The address range specified does not have uniform page attributes.

VMPATTR_NOT_FULLY_POPULATED The address range specified does not fully reside in memory.

VMPATTR_PHYSICAL_ATTACHMENTS The address range specified has memory affinity attachments
that specify more than one affinity domain.

VMPATTR_MEMORY_TYPE_UNSUPPORTED The address range contains a memory object that does not
support the requested page size in a mixed page size segment.

attr_size The attr_size parameter must be the size of the structure needed, or greater for the specified command.

Return Values
When successful, these commands return 0. Otherwise, they return -1 and set the errno global variable to
indicate the error.

Error Codes

Item Description

EPERM The calling process does not have the appropriate privilege to
perform the requested operation.

ESRCH The target process does not exist or is not in a valid state.

ENOMEM The range specified contains a hole. A hole is any part of the target
process's address space that is not backed by a virtual memory
segment or is outside of the valid range of the virtual memory
segment specified.

Kernel Services and Subsystem Operations 583

Item Description

ENOTSUP Any of the following situations can cause the ENOTSUP error:

• The target process is a kernel process other than the calling
process.

• The command specified was the VM_PA_SET_PSIZE command
and the page size specified is not supported for multiple page size
segments.

• The command specified was either the VM_PA_GET_PSPA or the
VM_PA_SET_PSPA command and the specified memory range
includes mmap or EXTSHM segment(s).

EINVAL Any of the following situations can cause the EINVAL error:

• The attr_size parameter specified is less than the size of the
structure needed for this command.

• The range specified is outside the process's address space (for
example, global kernel memory).

• The command specified was the VM_PA_SET_PSIZE command
and the page size specified was not a valid page size supported
by the system.

• The command specified was the VM_PA_SET_PSPA command and
the address range specified was not aligned to the segment size
backing the range.

• The command specified was the VM_PA_SET_PSPA command and
the page promotion aggressiveness factor specified was not valid.

• The command specified was the VM_PA_CHECK_PSIZE command
and the address range specified was not aligned to the page size
specified.

ENOMEM The command specified was VM_PA_SET_PSIZE_EXTENDED, and
the system was unable to allocate memory from the set of affinity
domains specified by the pa_info object or the entire set of
system affinity domains without potentially causing a performance
degradation.

EFAULT The command specified was either VM_PA_SET_PSIZE_EXTENDED,
or VM_PA_GET_PSIZE_EXTENDED and the pa_info address is not
valid and is not NULL.

EINVAL The command specified was either VM_PA_SET_PSIZE_EXTENDED,
or VM_PA_GET_PSIZE_EXTENDED and the pa_info field is not-
NULL, but the pa_info_size field is 0.

ENODEV The command specified was VM_PA_SET_PSIZE_EXTENDED, and
an invalid sradid was specified in pa_info.

Related information
Dynamic variable page size support

vm_protect_kkey Kernel Service

Purpose
Sets kernel-key on a kernel address range.

584 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/types.h>
#include <sys/skeys.h>
#include <sys/vmuser.h>

kerrno_t vm_protect_kkey (eaddr, nbytes, kkey, flags)
void * eaddr;
size_t nbytes;
kkey_t kkey;
unsigned long flags;

Parameters

Item Description

eaddr Starting address to protect.

nbytes Number of bytes to protect.

kkey Kernel-key value to set on memory.

flags Defined flag value is:

• VMPK_NO_CHECK_AUTHORITY – This flag indicates that extended authority checking
will not be performed.

Description
The vm_protect_kkey() kernel service is used to alter the kernel-key associated with a virtual memory
range. If set, any code that references the memory needs to include the kernel-key in their active keyset.
The kernel-key is set for all pages in the effective address range specified by eaddr to eaddr + nbytes - 1.
If the address range does not specify a page-aligned area consisting of an integral number of full pages,
an error will be returned.

By default, an authority check is performed when altering storage-keys. This check requires that the
vm_protect_kkey() caller has write access to the pages’ current kernel-key(s). This authority checking
can be overridden by setting the VMPK_NO_CHECK_AUTHORITY value, but this is not recommended
since the check can protect against some programming errors.

Execution Environment
The vm_protect_kkey kernel service can be called from the process environment only.

Return Values
Item Description

0 Successful.

EINVAL_VM_PROTECT_KKEY Invalid parameter or execution environment.

EINVAL_VM_PROTECT_KKEY_PPAGE Request includes a partial page.

EFAULT_VM_PROTECT_KKEY Invalid address range.

EPERM_VM_PROTECT_KKEY Insufficient authority to perform the operation.

If the vm_protect_kkey() kernel service is unsuccessful because of a condition other than that specified
by the EINVAL_VM_PROTECT_KKEY error code, the kernel-key for some pages in the (eaddr, eaddr +
nbytes - 1) range might have been changed.

Related reference
vm_setseg_kkey Kernel Service

Kernel Services and Subsystem Operations 585

vm_protectp Kernel Service

Purpose
Sets the page protection key for a page range.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_protectp (vmid, pfirst, npages, key)
vmid_t vmid;
int pfirst;
int npages;
int key;

Description
The vm_protectp kernel service is called to set the storage protect key for a given page range. The key
parameter specifies the value to which the page protection key is set. The protection key is set for all
pages touched by the specified page range that are resident in memory. The vm_protectp kernel service
applies only to client storage.

If a page is not in memory, no state information is saved from a particular call to the vm_protectp service.
If the page is later paged-in, it receives the default page protection key.

Note: The vm_protectp subroutine is not supported for use on large pages.

Parameters

Item Description

vmid Specifies the identifier for the virtual memory object for which the page protection key is to be
set.

pfirst Specifies the first page number in the designated page range.

npages Specifies the number of pages in the designated page range.

key Specifies the value to be used in setting the page protection key for the designated page
range.

Execution Environment
The vm_protectp kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

586 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

EINVAL Indicates one of the following errors:

• Invalid virtual memory object ID.
• The starting page in the designated page range is negative.
• The number of pages in the page range is negative.
• The designated page range exceeds the size of virtual memory object.
• The target page range does not exist.
• One or more large pages lie in the target page range.

Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_qmodify Kernel Service

Purpose
Determines whether a mapped file has been changed.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_qmodify (vmid)
vmid_t vmid;

Parameter

Item Description

vmid Specifies the ID of the virtual memory object to check.

Description
The vm_qmodify kernel service performs two tests to determine if a mapped file has been changed:

• The vm_qmodify kernel service first checks the virtual memory object modified bit, which is set
whenever a page is written out.

• If the modified bit is 0, the list of page frames holding pages for this virtual memory object are examined
to see if any page frame has been modified.

If both tests are false, the vm_qmodify kernel service returns a value of False. Otherwise, this service
returns a value of True.

If the virtual memory object modified bit was set, it is reset to 0. The page frame modified bits are not
changed.

Execution Environment
The vm_qmodify kernel service can be called from the process environment only.

Kernel Services and Subsystem Operations 587

Return Values

Item Description

FALSE Indicates that the virtual memory object has not been modified.

TRUE Indicates that the virtual memory object has been modified.

Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_qpages Kernel Service

Purpose
Returns the number of in-memory page frames associated with the virtual memory object.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

vpn_t vm_qpages (sid)
vmid_t sid;

Parameters

Item Description

sid Identifies the base segment.

Description
The vm_qpages kernel service routine returns the number of page frames associated with the virtual
memory object with the sid parameter specified.

Execution Environment
The vm_qpages kernel service can be called from the process environment only.

This function can be run for persistent, client, and working storage segments.

Return Values

Item Description

npages The number of page frames.

-1 Indicates an invalid sid parameter.

Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

588 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

vm_readp Kernel Service

Purpose
Initiates asynchronous page-in for the range of pages specified.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_readp (sid, pfirst, npages, flags)
vmid_t sid;
vpn_t pfirst;
vpn_t npages;
int flags;

Parameters

Item Description

sid Identifies the base segment.

pfirst The first page number within the range.

npages The number of pages to read starting from the pfirst value. All pages must be in the same
segment, unless the V_READMAKE flag is used.

flags Flags used by the function.

Description
The vm_readp kernel service routine starts the process of paging within the range of specified pages. This
call is strictly advisory and might return without performing any operations.

The flags parameter is optional and accepts the following values:
V_IOWAIT

Instructs the vm_readp kernel service to wait for any page I/O requests to complete, within the range
of specified pages, before initiating the read operation.

V_READMAKE
Instructs the vm_readp kernel service to create the segments within the range of the vm_readp
operation.

Execution Environment
The vm_readp kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates that the I/O access operations completed successfully.

Kernel Services and Subsystem Operations 589

Item Description

EINVAL Indicates one of the following errors:

• pfirst = 0 and npages = 0.
• pfirst < 0.
• npages < 0.
• Page interval > Maximum file size.
• The sid parameter is not valid.
• Not a file or persistent storage segment.

Related reference
vm_writep Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_release Kernel Service
Note: The vm_release subroutine is not supported for use on large pages.

Purpose
Releases virtual memory resources for the specified address range.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_release (vaddr, nbytes)
caddr_t vaddr;
int nbytes;

Description
The vm_release kernel service releases pages that intersect the specified address range from the vaddr
parameter to the vaddr parameter plus the number of bytes specified by the nbytes parameter. The value
in the nbytes parameter must be nonnegative and the caller must have write access to the pages specified
by the address range.

Each page that intersects the byte range is logically reset to 0, and any page frame is discarded. A page
frame in I/O state is marked for discard at I/O completion. That is, the page frame is placed on the free list
when the I/O operation completes.

Note: All of the pages to be released must be in the same virtual memory object.

Parameters

Item Description

vaddr Specifies the address of the first byte in the address range to be released.

nbytes Specifies the number of bytes to be released.

590 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The vm_release kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates successful completion.

EACCES Indicates that the caller does not have write access to the specified pages.

EINVAL Indicates one of the following errors:

• The specified region is not mapped.
• The specified region is an I/O region.
• The length specified in the nbytes parameter is negative.
• The specified address range crosses a virtual memory object boundary.
• One or more large pages lie in the target page range.

Related reference
vm_releasep Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_releasep Kernel Service

Purpose
Releases virtual memory resources for the specified page range.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_releasep (vmid, pfirst, npages)
vmid_t vmid;
int pfirst;
int npages;

Description
The vm_releasep kernel service releases pages for the specified page range in the virtual memory object.
The values in the pfirst and npages parameters must be nonnegative.

Each page of the virtual memory object that intersects the page range (pfirst, pfirst + npages -1) is
logically reset to 0, and any page frame is discarded. A page frame in the I/O state is marked for discard at
I/O completion.

For working storage, paging-space disk blocks are freed and the storage-protect key is reset to the default
value.

Note: All of the pages to be released must be in the same virtual memory object.

Note: The vm_releasep subroutine is not supported for use on large pages.

Kernel Services and Subsystem Operations 591

Parameters

Item Description

vmid Specifies the virtual memory object identifier.

pfirst Specifies the first page number in the specified page range.

npages Specifies the number of pages in the specified page range.

Execution Environment
The vm_releasep kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

EINVAL Indicates one of the following errors:

• An invalid virtual memory object ID.
• The starting page is negative.
• Number of pages is negative.
• Page range crosses a virtual memory object boundary.
• One or more large pages lie in the target page range.

Related reference
vm_release Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_segmap Kernel Service

Purpose
Creates the segments associated with a range of bytes in a file and attaches them to the kernel's address
space.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_segmap (basesid, pfirst, flags, basepp)
vmid_t basesid;
vpn_t pfirst;
uint flags;
caddr_t * basepp;

592 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

basesi
d

Identifies the base segment.

pfirst The first page number within the range. The pfirst parameter is non-negative.

flags Optional flags passed in by the user. .

basepp The offset of the object to be attached.

Description
The vm_segmap kernel service routine creates segments associated with a range of bytes in a file.
Afterwards, it uses the vm_att kernel service to map the specified virtual memory object to a region in the
virtual address space and returns the effective address of that object in the basepp parameter.

Execution Environment
The vm_segmap kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

caddr_t The effective address of the attached object.

EINVAL Indicates one of the following errors:

• pfirst < 0.
• Invalid sid parameter.

EFBIG Indicates the range of values is too large to create.

Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_setdevid Kernel Service

Purpose
Modifies the paging device table entry for a virtual memory object.

Syntax

#include <sys/types.h>
#include <sys/kerrno.h>
#include <sys/vmuser.h>

kerrno_t vm_setdevid (vmid, type, ptr, flags)
vmid_t vmid;
int type;
int (*ptr)();
unsigned long flags;

Kernel Services and Subsystem Operations 593

Parameters

Item Description

vmid Specifies the identifier for the virtual memory object for which the paging device table entry
is to be set.

type Specifies the type of device. The type parameter must have a value of D_REMOTE.

ptr Points to the strategy routine of the file system.

flags Reserved. You must set the flags parameter to zero.

Description
The vm_setdevid kernel service binds the paging device table entry associated with the file system
strategy routine ptr, to the virtual memory object vmid. The paging device table entry must have already
been mounted as type D_REMOTE through a prior vm_mount kernel service call.

After the file system has called the vm_setdevid kernel service on a given virtual memory object,
subsequent paging I/O will be performed to or from the newly specified paging device table. Any
outstanding I/O's to the paging device table formerly associated with the virtual memory object, remain
queued, and will complete asynchronously. After they complete, subsequent paging I/O to those file
pages will be performed to or from the newly specified paging device table.

The paging device table entry currently associated with the vmid object, on input to this call, must be valid
and of type D_REMOTE. Any flags specified when the vm_mount kernel service gets called must match
exactly any flags specified when the vm_mount kernel service gets called for the new paging device table
entry.

Execution Environment
The vm_setdevid kernel service can be called from the process environment only.

Return Values
Item Description

0 Indicates a successful operation.

EINVAL_VM_SETDEVID1 Indicates that the vmid value is not a client segment, or the input type does not have the
value of D_REMOTE.

ENODEV_VM_SETDEVID2 Indicates that a file system with the strategy routine designated by the ptr parameter is not
in the paging device table.

EINVAL_VM_SETDEVID3 Indicates that the new paging device table entry is not D_REMOTE or is not valid.

EINVAL_VM_SETDEVID4 Indicates that the paging device table entry currently associated with the vmid object is not
D_REMOTE or is not valid.

EINVAL_VM_SETDEVID5 Indicates that the vm_mount flags for the current and new paging device table entries
differ.

EINVAL_VM_SETDEVID6 Indicates that this was called at interrupt level.

EINVAL_VM_SETDEVID7 Indicates that the input flags was nonzero.

EINVAL_VM_SETDEVID8 Indicates that the input vmid value is not valid.

Related Information
The vm_mount kernel service, vm_umount kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in Kernel Extensions and
Device Support Programming Concepts.

594 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related reference
vm_mount Kernel Service
vm_umount Kernel Service
Related information
Understanding Virtual Memory Manager Interfaces

vm_setseg_kkey Kernel Service

Purpose
Sets the default kernel-key for a segment.

Syntax

#include <sys/types.h>
#include <sys/kerrno.h>
#include <sys/vmuser.h>

kerrno_t vm_setseg_kkey (vmid, kkey)
vmid_t vmid;
kkey_t kkey;

Parameters

Item Description

vmid Virtual memory object to act on.

kkey New kernel key for the virtual memory object.

Description
The vm_setseg_kkey kernel service alters the default kernel-key for newly allocated pages in a segment.
The kernel-key values for any existing pages in the segment are left unchanged.

Execution Environment
The vm_setseg_kkey kernel service can be called from the process environment only.

Return Values

Item Description

0 Successful.

EINVAL_VM_SETSEG_KKEY Invalid parameter or execution environment.

vm_thrpgio_pop Kernel Service

Purpose
Retrieves the latest context information.

Kernel Services and Subsystem Operations 595

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

void vm_thrpgio_pop (in_ctxp)
ut_pgio_context_t * in_ctxp;

Parameters

Item Description

in_ctxp The context structure used by the function.

Description
The vm_thrpgio_pop kernel service enables a client file system with a thread-level strategy routine to
copy information from a context structure to the current thread. Afterwards, it makes the current thread
point to the next context.

This service must be called if a client file system using a thread-level strategy routine has re-entered the
Virtual Memory Manager and wishes to return to its strategy routine. This service restores the context that
was saved using the vm_thrpgio_push kernel service.

Execution Environment
The vm_thrpgio_pop kernel service can only be used by client file systems using a thread-level strategy
routine.

Return Values
The vm_thrpgio_pop kernel service has no return values.

Related reference
vm_thrpgio_push Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_thrpgio_push Kernel Service

Purpose
Saves some context information of the current thread.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

void vm_thrpgio_push (in_ctxp)
ut_pgio_context_t * in_ctxp;

596 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

in_ctxp The context structure used by the function.

Description
The vm_thrpgio_push kernel service enables a client file system with a thread-level strategy routine to
save information about the current thread to a linked list. The linked list is a Last-In-First-Out (LIFO)
(stack) data structure, and is pointed to by the thread.

This service must be called if a client file system using a thread-level strategy routine has had its strategy
routine invoked and wishes to re-enter the Virtual Memory Manager. This could involve a page fault on one
of its client segments, or the use of one of the Virtual Memory Manager (VMM) services that operates on
client segments.

The vm_thrpgio_pop kernel service must be invoked when all such Virtual Memory Manager callbacks are
complete.

Execution Environment
The vm_thrpgio_push kernel service can only be used by client file systems using a thread-level strategy
routine.

Return Values
The vm_thrpgio_push kernel service has no return values.

Related reference
vm_thrpgio_pop Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vms_create Kernel Service

Purpose
Creates a virtual memory object of the specified type, size, and limits.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vms_create (vmid, type, devgno, size,
 uplim, downlim)
vmid_t * vmid;
int type;
dev_t devgno;
int size;
int uplim;
int downlim;

Kernel Services and Subsystem Operations 597

Parameters

Item Description

vmid Points to the variable in which the virtual memory object identifier is to be stored.

type Specifies the virtual memory object type and options as an OR of bits. The type parameter
must have the value of V_CLIENT. The V_INTRSEG flag specifies if the process can be
interrupted from a page wait on this object.

devgno Specifies the address of the g-node for client storage. If the type parameter has the value of
V_CLIENT, the third argument is a g-node ptr argument, otherwise, it is a devgno argument.

size Specifies the current size of the file (in bytes). This can be any valid file size. If the V_LARGE
is specified, it is interpreted as number of pages.

uplim Ignored. The enforcement of file size limits is done by comparing with the u_limit value in
the u block.

downlim Ignored.

Description
The vms_create kernel service creates a virtual memory object. The resulting virtual memory object
identifier is passed back by reference in the vmid parameter.

The size parameter is used to determine the size in units of bytes of the virtual memory object to
be created. This parameter sets an internal variable that determines the virtual memory range to be
processed when the virtual memory object is deleted.

An entry for the file system is required in the paging device table when the vms_create kernel service is
called.

Execution Environment
The vms_create kernel service can be called from the process environment only.

Return Values
Item Description

0 Indicates a successful operation.

ENOMEM Indicates that no space is available for the virtual memory object.

ENODEV Indicates no entry for the file system in the paging device table.

EINVAL Indicates incompatible or bad parameters.

Related reference
vms_delete Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vms_delete Kernel Service

Purpose
Deletes a virtual memory object.

598 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vms_delete (vmid)
vmid_t vmid;

Parameter

Item Description

vmid Specifies the ID of the virtual memory object to be deleted.

Description
The vms_delete kernel service deallocates the temporary resources held by the virtual memory object
specified by the vmid parameter and then frees the control block. This delete operation can complete
asynchronously, but the caller receives a synchronous return code indicating success or failure.

Releasing Resources

The completion of the delete operation can be delayed if paging I/O is still occurring for pages attached to
the object. All page frames not in the I/O state are released.

If there are page frames in the I/O state, they are marked for discard at I/O completion and the virtual
memory object is placed in the iodelete state. When an I/O completion occurs for the last page attached
to a virtual memory object in the iodelete state, the virtual memory object is placed on the free list.

Execution Environment
The vms_delete kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful operation.

EINVAL Indicates that the vmid parameter is not valid.

Related reference
vms_create Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vms_iowait, vms_iowaitf Kernel Services

Purpose
Waits for the completion of all page-out operations for pages in the virtual memory object.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

Kernel Services and Subsystem Operations 599

int vms_iowait (vmid)
vmid_t vmid;

int vms_iowaitf (vmid, flags)
vmid_t vmid;
int flags;

Parameter

Item Description

vmid Identifies the virtual memory object for which to wait.

flags Optional flags passed in by the user.

Description
The vms_iowait kernel service performs two tasks. First, it determines the I/O level at which all currently
scheduled page-outs are complete for the virtual memory object specified by the vmid parameter. Then,
the vms_iowait service places the current process in a wait state until this I/O level has been reached.

The I/O level value is a count of page-out operations kept for each virtual memory object.

The I/O level accounts for out-of-order processing by not incrementing the I/O level for new page-out
requests until all previous requests are complete. Because of this, processes waiting on different I/O
levels can be awakened after a single page-out operation completes.

If the caller holds the kernel lock, the vms_ iowait service releases the kernel lock before waiting and
reacquires it afterwards.

The vms_iowait function is a special case of the vms_iowaitf function with the V_WAITERR flag set.

Flags
Name Purpose

V_WAITERR Waits until the completion of all I/O unless an error occurs.

V_WAITALL Waits until the completion of all I/O regardless of any occurrence of I/O
errors.

Execution Environment
The vms_iowait and vms_iowaitf kernel services can be called from the process environment only.

They can only be used by file segments.

Return Values

Ite
m

Description

0 Indicates that the page-out operations completed.

EIO Indicates that an error occurred while performing I/O.

Related reference
vm_invalidatep Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

600 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

vm_uiomove Kernel Service

Purpose
Moves data between a virtual memory object and a buffer specified in the uio structure.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/uio.h>

int vm_uiomove (vmid, limit, rw, uio)
vmid_t vmid;
int limit;
enum uio_rw rw;
struct uio *uio;

Parameters

Item Description

vmid Specifies the virtual memory object ID.

limit Indicates the limit on the transfer length. If this parameter is negative or 0, no bytes are
transferred.

rw Specifies a read/write flag that gives the direction of the move. The possible values for this
parameter (UIO_READ, UIO_WRITE) are defined in the /usr/include/sys/uio.h file.

uio Points to the uio structure.

Description
The vm_uiomove kernel service moves data between a virtual memory object and the buffer specified in
a uio structure.

This service determines the virtual addressing required for the data movement according to the offset in
the object.

The vm_uiomove kernel service is similar to the uiomove kernel service, but the address for the trusted
buffer is specified by the vmid parameter and the uio_offset field of offset parameters instead of as a
caddr_t address. The offset size is a 64 bit offset_t, which allows file offsets in client segments which are
greater than 2 gigabytes. vm_uiomove must be used instead of vm_move if the client filesystem supports
files which are greater than 2 gigabytes.

Note: The vm_uiomove kernel service does not support use of cross-memory descriptors.

I/O errors for paging space and a lack of paging space are reported as signals.

Execution Environment
The vm_uiomove kernel service can be called from the process environment only.

Return Values
Item Description

0 Indicates a successful operation.

EFAULT Indicates a bad address.

ENOMEM Indicates insufficient memory.

Kernel Services and Subsystem Operations 601

Item Description

ENOSPC Indicates insufficient disk space.

EIO Indicates an I/O error.

Other file system-specific errno global variables are returned by the virtual file system involved in the
move function.

Related reference
uiomove Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_umount Kernel Service

Purpose
Removes a file system from the paging device table.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_umount (type, devid)
int type;
dev_t devid)();

Parameters

Item Description

type Specifies the type of device. You can specify multiple values. But the type parameter must have a
value of D_REMOTE as one of its values. You can also specify the following optional value:
D_NOWAIT

Indicates that if I/O discovered during a prior vm_setdevid call has not yet completed, the
paging device table entry will be removed, asynchronously, at a future point in time when
all such I/O to it has completed. This particular vm_umount kernel service call will return
without waiting for the I/O to complete. Any buf structures associated with this paging device
entry remain allocated until the paging device entry is finally removed.

devid Points to the strategy routine.

Description
The vm_umount kernel service waits for all I/O for the device scheduled by the pager to finish. This
service then frees the entry in the paging device table. The associated buf structures are also freed.

Execution Environment
The vm_umount kernel service can be called from the process environment only.

602 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values

Item Description

0 Indicates successful completion.

EINVAL Indicates that a file system with the strategy routine designated by the devid parameter is not
in the paging device table.

Related reference
vm_mount Kernel Service
vm_setdevid Kernel Service
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_write Kernel Service

Purpose
Initiates page-out for a page range in the address space.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_write (vaddr, nbytes, force)
int vaddr;
int nbytes;
int force;

Description
The vm_write kernel service initiates page-out for pages that intersect the address range (vaddr, vaddr +
nbytes).

If the force parameter is nonzero, modified pages are written to disk regardless of how recently they have
been written.

Page-out is initiated for each modified page. An unchanged page is left in memory with its reference bit
set to 0. This makes the unchanged page a candidate for the page replacement algorithm.

The caller must have write access to the specified pages.

The initiated I/O is asynchronous. The vms_iowait kernel service can be called to wait for I/O completion.

Note: The vm_write subroutine is not supported for use on large pages.

Parameters

Item Description

vaddr Specifies the address of the first byte of the page range for which a page-out is desired.

nbytes Specifies the number of bytes starting at the byte specified by the vaddr parameter. This parameter
must be nonnegative. All of the bytes must be in the same virtual memory object.

force Specifies a flag indicating that a modified page is to be written regardless of when it was last written.

Kernel Services and Subsystem Operations 603

Execution Environment
The vm_write kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates a successful completion.

EINVAL Indicates one of these four errors:

• A region is not defined.
• A region is an I/O region.
• The length specified by the nbytes parameter is negative.
• The address range crosses a virtual memory object boundary.
• One or more large pages lie in the target page range.

EACCES Indicates that access does not permit writing.

EIO Indicates a permanent I/O error.

Related reference
vm_writep Kernel Service
vms_iowait, vms_iowaitf Kernel Services
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vm_writep Kernel Service

Purpose
Initiates page-out for a page range in a virtual memory object.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_writep (vmid, pfirst, npages)
vmid_t vmid;
int pfirst;
int npages;

Description
The vm_writep kernel service initiates page-out for the specified page range in the virtual memory object.
I/O is initiated for modified pages only. Unchanged pages are left in memory, but their reference bits are
set to 0.

The caller can wait for the completion of I/O initiated by this and prior calls by calling the vms_iowait
kernel service.

Note: The vm_writep subroutine is not supported for use on large pages.

604 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

vmid Specifies the identifier for the virtual memory object.

pfirst Specifies the first page number at which page-out is to begin.

npages Specifies the number of pages for which the page-out operation is to be performed.

Execution Environment
The vm_writep kernel service can be called from the process environment only.

Return Values

Item Description

0 Indicates successful completion.

EINVAL Indicates any one of the following errors:

• pfirst = 0 and npages = 0.
• The virtual memory object ID is not valid.
• The starting page is negative.
• The number of pages is negative.
• The page range exceeds the size of virtual memory object.
• One or more large pages lie in the target page range.

Related reference
vm_invalidatep Kernel Service
vm_write Kernel Service
vms_iowait, vms_iowaitf Kernel Services
Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

vn_free Kernel Service

Purpose
Frees a v-node previously allocated by the vn_get kernel service.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int vn_free (vp)
struct vnode *vp;

Parameter

Ite
m

Description

vp Points to the v-node to be deallocated.

Kernel Services and Subsystem Operations 605

Description
The vn_free kernel service provides a mechanism for deallocating v-node objects used within the virtual
file system. The v-node specified by the vp parameter is returned to the pool of available v-nodes to be
used again.

Execution Environment
The vn_free kernel service can be called from the process environment only.

Return Values
The vn_free service always returns 0.

Related reference
vn_get Kernel Service
Related information
Virtual File System Overview
Virtual File System (VFS) Kernel Services

vn_get Kernel Service

Purpose
Allocates a virtual node.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int vn_get (vfsp, gnp, vpp)
struct vfs *vfsp;
struct gnode *gnp;
struct vnode **vpp;

Parameters

Item Description

vfsp Points to a vfs structure describing the virtual file system that is to contain the v-node. Any
returned v-node belongs to this virtual file system.

gnp Points to the g-node for the object. This pointer is stored in the returned v-node. The new v-node
is added to the list of v-nodes in the g-node.

vpp Points to the place in which to return the v-node pointer. This is set by the vn_get kernel service
to point to the newly allocated v-node.

Description
The vn_get kernel service provides a mechanism for allocating v-node objects for use within the virtual
file system environment. A v-node is first allocated from an effectively infinite pool of available v-nodes.

Upon successful return from the vn_get kernel service, the pointer to the v-node pointer provided
(specified by the vpp parameter) has been set to the address of the newly allocated v-node.

The fields in this v-node have been initialized as follows:

606 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Field Initial Value

v_count Set to 1.

v_vfsp Set to the value in the vfsp parameter.

v_gnode Set to the value in the gnp parameter.

v_next Set to list of others v-nodes with the same g-node.

All other fields in the v-node are zeroed.

Execution Environment
The vn_get kernel service can be called from the process environment only.

Return Values
Item Description

0 Indicates successful completion.

ENOMEM Indicates that the vn_get kernel service could not allocate memory for the v-node. (This is a highly unlikely
occurrence.)

Related reference
vn_free Kernel Service
Related information
Virtual File System Overview
Virtual File System (VFS) Kernel Services

vsx_disable Kernel Service

Purpose
Communicates the status of the vector and the vector-scalar registers to the hypervisor.

Syntax

#include <sys/machine.h>
void vsx_disable (old)
char old;

Parameters
old

Specifies the value returned by the vsx_enable kernel service.

Description
The vsx_disable kernel service communicates to the hypervisor that the vector and the vector-scalar
registers are no longer in use.

Execution Environment
The vsx_disable kernel service can be called from the process environment or the interrupt
environment. The vsx_disable kernel service must be called while all interrupts from within the
INTMAX critical section are disabled.

Kernel Services and Subsystem Operations 607

Return Values
The vsx_disable kernel service has no return values.

vsx_enable Kernel Service

Purpose
Communicates the status of the vector and the vector-scalar registers to the hypervisor.

Syntax

#include <sys/machine.h>
char vsx_enable ()

Description
The vsx_enable kernel service communicates to the hypervisor that the vector and the vector-scalar
registers are in use.

Execution Environment
The vsx_enable kernel service can be called from the process environment or the interrupt
environment. The vsx_enable kernel service must be called while all the interrupts from within the
INTMAX critical section are disabled.

Return Values
The vsx_enable kernel service returns the current setting.

w
The following kernel services begin with the with the letter w.

waitcfree Kernel Service

Purpose
Checks the availability of a free character buffer.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/cblock.h>
#include <sys/sleep.h>

int waitcfree ()

Description
The waitcfree kernel service is used to wait for a buffer which was allocated by a previous call to the
pincf kernel service. If one is not available, the waitcfree kernel service waits until either a character
buffer becomes available or a signal is received.

The waitcfree kernel service has no parameters.

608 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The waitfree kernel service can be called from the process environment only.

Return Values

Item Description

EVENT_SUCC Indicates a successful operation.

EVENT_SIG Indicates that the wait was terminated by a signal.

Related reference
pincf Kernel Service
putcf Kernel Service
Related information
I/O Kernel Services

waitq Kernel Service

Purpose
Waits for a queue element to be placed on a device queue.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

struct req_qe *waitq (queue_id)
cba_id queue_id;

Parameter

Item Description

queue_id Specifies the device queue identifier.

Description
The waitq kernel service is not part of the base kernel but is provided by the device queue management
kernel extension. This queue management kernel extension must be loaded into the kernel before loading
any kernel extensions referencing these services.

The waitq kernel service waits for a queue element to be placed on the device queue specified by the
queue_id parameter. This service performs these two actions:

• Waits on the event mask associated with the device queue.
• Calls the readq kernel service to make the most favored queue element the active one.

Processes can only use the waitq kernel service to wait for a single device queue. Use the et_wait service
to wait on the occurrence of more than one event, such as multiple device queues.

The waitq kernel service uses the EVENT_SHORT form of the et_wait kernel service. Therefore, a signal
does not terminate the wait. Use the et _wait kernel service if you want a signal to terminate the wait.

The readq kernel service can be used to read the active queue element from a queue. It does not wait for
a queue element if there are none in the queue.

Attention: The server must not alter any fields in the queue element or the system may halt.

Kernel Services and Subsystem Operations 609

Execution Environment
The waitq kernel service can be called from the process environment only.

Return Values
The waitq service returns the address of the active queue element in the device queue.

WPAR_CKPT_QUERY (Checkpoint Query) Device Driver ioctl Operation

Purpose
Queries a device driver about its checkpoint capabilities.

Syntax

#include <sys/ioctl.h>

int ioctl (FileDescriptor, WPAR_CKPT_QUERY, Arg)
int FileDescriptor;
wpar_ckpt_resp_t * Arg;

Parameters
Item Description

FileDescriptor Open file descriptor that refers to the device being queried for the checkpoint capability.

WPAR_CKPT_QUERY The command that requests information on the device checkpoint capability.

Arg Pointer to a wpar_ckpt_resp_t structure which will contain a device driver response on the checkpoint
capability upon a successful return from the ioctl call.

Description
The WPAR_CKPT_QUERY operation allows a caller to ask a device driver connected to the ioctl input
file descriptor if it supports checkpoint and restart operations. If a device driver supports checkpoint
and restart operations, the returned answer can describe what operations are required to accomplish a
checkpoint and restart.

If the device is not checkpoint and restart capable, checkpoint-aware devices fail this ioctl request with
the ENOSYS error. Non-checkpoint-aware devices fail this ioctl request as an unknown ioctl. If the device
is checkpoint and restart capable, checkpoint-aware devices return success.

The arg parameter to a WPAR_CKPT_QUERY ioctl request allows the caller to receive specific
information regarding how the device supports checkpoint and restart if it is capable. The caller of a
WPAR_CKPT_QUERY ioctl request must supply a pointer to a structure of the wpar_ckpt_resp_t type in
the arg parameter.

wpar_ckpt_resp_t structure
The wpar_ckpt_resp_t structure is supplied as the input to the WPAR_CKPT_QUERY ioctl request.

#define WPAR_CKPT_OP_MAX 5
typedef struct wpar_ckpt_resp_t {
int opcnt;
wpar_ckpt_op_top [WPAR_CKPT_OP_MAX];
}wpar_ckpt_resp_t;

The fields of the wpar_ckpt_resp_t structure are as follows:

610 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

opcnt Returned from an WPAR_CKPT_QUERY ioctl request as the number of
the wpar_ckpt_op_t sub-structures that contain return information.

wpar_ckpt_op_top A sub-structure that contains specific information on operation types
that must occur on a device for it to save or restore its state correctly.

wpar_ckpt_op_t structure
The wpar_ckpt_op_t structure is a sub-structure of the wpar_ckpt_resp_t structure.

typedef struct wpar_ckpt_op_t {
int op;
int opt; /*extended options of openx*/
}wpar_ckpt_op_t;

The fields of the wpar_ckpt_op_t structure are as follows:

Item Description

op Returned from a WPAR_CKPT_QUERY ioctl request. Defined as a set
of one or more operations that must be performed to successfully
checkpoint and restart the device.

opt Options to supply to the openx function if the device is to be re-opened
on the arrival server through the openx function.

wpar_ckpt_op_t op field
Item Description

WPAR_CKPT_OP_NULL Device requires no special handling for checkpoint and restart operations.

WPAR_CKPT_OP_REOPEN Device needs to be re-opened through the open function with the access modes applicable
at checkpoint time.

WPAR_CKPT_OP_OPENX Device needs to be re-opened with the openx function. The opt field denotes the desired
extension argument to the openx function.

Return Values
Upon successful completion, this operation returns a value of 0. Otherwise, it returns a value of -1 and the
errno global variable is set to one of the following values:

Item Description

ENOSYS Device cannot participate in checkpoint and restart operations.

EINVAL Device does not accept the WPAR_CKPT_QUERY operation.

w_clear Kernel Service

Purpose
Removes a watchdog timer from the list of watchdog timers known to the kernel.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/watchdog.h>

Kernel Services and Subsystem Operations 611

int w_clear (w)
struct watchdog *w;

Parameter

Ite
m

Description

w Specifies the watchdog timer structure.

Description
The watchdog timer services, including the w_clear kernel service, are typically used to verify that an I/O
operation completes in a reasonable time.

When the w_clear kernel service removes the watchdog timer, the w->count watchdog count is no longer
decremented. In addition, the w->func watchdog timer function is no longer called.

In a uniprocessor environment, the call always succeeds. This is untrue in a multiprocessor environment,
where the call will fail if the watchdog timer is being handled by another processor. Therefore, the
function now has a return value, which is set to 0 if successful, or -1 otherwise. Funnelled device
drivers do not need to check the return value since they run in a logical uniprocessor environment.
Multiprocessor-safe and multiprocessor-efficient device drivers need to check the return value in a loop.
In addition, if a driver uses locking, it must release and reacquire its lock within this loop, as shown below:

while (w_clear(&watchdog))
 release_then_reacquire_dd_lock;
 /* null statement if locks not used */

Note: The w_clear kernel service clears any attributes that were previously set by using the w_setattr()
kernel service.

Execution Environment
The w_clear kernel service can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates that the watchdog timer was successfully removed.

-1 Indicates that the watchdog timer could not be removed.

Related reference
w_init Kernel Service
w_setattr Kernel Service
Related information
Timer and Time-of-Day Kernel Services

w_init Kernel Service

Purpose
Registers a watchdog timer with the kernel.

612 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/watchdog.h>

int w_init (w)
struct watchdog *w;

Parameter

Ite
m

Description

w Specifies the watchdog timer structure.

Description
The watchdog structure must be initialized prior to calling the w_init kernel service as follows:

• Set the next and prev fields to NULL.
• Set the func and restart fields to the appropriate values.
• Set the count field to 0.

Attention: The watchdog structure must be pinned when the w_init service is called. It must
remain pinned until after the call to the w_clear service. During this time, the watchdog
structure must not be altered except by the watchdog services.

The watchdog timer services, including the w_init kernel service, are typically used to verify that an I/O
operation completes in a reasonable time. The watchdog timer is initialized to the stopped state and must
be started using the w_start service.

In both uniprocessor and multiprocessor environments, the w_init kernel service always succeeds.

The calling parameters for the watchdog timer function are:

void func (w)
struct watchdog *w;

Execution Environment
The w_init kernel service can be called from the process environment only.

Return Values
The w_init kernel service returns 0 for compatibility with previous releases of AIX.

Related reference
w_clear Kernel Service
w_setattr Kernel Service
Related information
Timer and Time-of-Day Kernel Services

w_setattr Kernel Service

Purpose
Sets attributes for a watchdog timer.

Kernel Services and Subsystem Operations 613

Syntax
#include <sys/watchdog.h>
#include <sys/kerrno.h>

kerrno_t w_setattr(struct watchdog *w, char attr)

Parameter

Item Description

w Specifies the watchdog timer structure.

attr A bitmask of attributes to be set. Supported flags are:
WD_ATTR_MOVE_OK

Allow timer to migrate from one CPU to another.

Description
The w_setattr kernel service sets attributes for the specified watchdog timer. The WD_ATTR_MOVE_OK
attribute should be set when the caller does not have a dependency on which processor the timer
expiration handler is called. This attribute allows the system to move the timer from one processor to
another as needed, to improve the effectiveness of processor folding. When this attribute is set, the
associated watchdog timer is moved to another processor when the owning processor is folded.

The w_setattr kernel service must be called after the w_init() kernel service but before the w_start()
kernel service. Otherwise, the w_setattr kernel service may fail.

Execution Environment
The w_setattr kernel service can be called from either the process or interrupt environment.

Return Values

Ite
m

Description

0 The specified attribute was successfully set.

<0 The specified attribute was not set. The failure is indicated with return value set to one of the
following values:

EINVAL_W_SETATTR_EYEC: An invalid eye catcher was detected.

EINVAL_W_SETATTR_ATTR: An invalid attribute flag was detected.

Related reference
w_clear Kernel Service
w_start Kernel Service
w_stop Kernel Service

w_start Kernel Service

Purpose
Starts a watchdog timer.

614 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/watchdog.h>

void w_start (w)
struct watchdog *w;

Parameter

Ite
m

Description

w Specifies the watchdog timer structure.

Description
The watchdog timers, including the w_start kernel service, are typically used to verify that an I/O
operation completes in a reasonable time. The w_start and w_stop kernel services are designed to allow
the timer to be started and stopped efficiently. The kernel decrements the w->count watchdog count
every second. The kernel calls the w->func watchdog timer function when the w->count watchdog count
reaches 0. A watchdog timer is ignored when the w->count watchdog count is less than or equal to 0.

The w_start kernel service sets the w->count watchdog count to a value of w->restart.

Attention: The watchdog structure must be pinned when the w_start kernel service is called.
It must remain pinned until after the call to the w_clear kernel service. During this time, the
watchdog structure must not be altered except by the watchdog services.

Execution Environment
The w_start kernel service can be called from the process and interrupt environments.

Return Values
The w_start kernel service has no return values.

Related reference
w_stop Kernel Service
w_setattr Kernel Service
Related information
Timer and Time-of-Day Kernel Services

w_stop Kernel Service

Purpose
Stops a watchdog timer.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/watchdog.h>

void w_stop (w)
struct watchdog *w;

Kernel Services and Subsystem Operations 615

Parameter

Ite
m

Description

w Specifies the watchdog timer structure.

Description
The watchdog timer services, including the w_stop kernel service, are typically used to verify that an I/O
operation completes in a reasonable time. The w_start and w_stop kernel services are designed to allow
the timer to be started and stopped efficiently. The kernel decrements the w->count watchdog count
every second. The kernel calls the w->func watchdog timer function when the w->count watchdog count
reaches 0. A watchdog timer is ignored when w->count is less than or equal to 0.

Attention: The watchdog structure must be pinned when the w_stop kernel service is called.
It must remain pinned until after the call to the w_clear kernel service. During this time, the
watchdog structure must not be altered except by the watchdog services.

Execution Environment
The w_stop kernel service can be called from the process and interrupt environments.

Return Values
The w_stop kernel service has no return values.

Related reference
w_start Kernel Service
w_setattr Kernel Service
Related information
Timer and Time-of-Day Kernel Services

x
The following kernel services begin with the with the letter x.

xfidToName() Kernel Service

Purpose
Finds the full path name of the file corresponding to an xfid_t structure.

Syntax

#include <sys/xfops.h>

int xfidToName(struct xfid *xfp,
 void *nrp,
 char *pathname,
 unsigned int pbuflen,
 long flags);

Description
The xfidToName() kernel service finds a name for an xfid value.

616 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters
xfp

Pointer to the xfid value for which a name is needed.
nrp

Name resolution structure that is passed to the validation routine.
pathname

Pointer to buffer where the file name will be stored.
pbuflen

Size of path name buffer. A size of MAXPATHLEN is sufficient to hold any path name.
flags

Operation modifiers. This parameter must be set to zero.

Return values
0

Indicates success. The path name for the xfid value is returned.
ENOENT

Name not found.
EPERM

No permission for lookup.
EINVAL

Invalid parameter is specified.
E2BIG

Path is larger than pbuflen bytes.

xlate_create Kernel Service

Purpose
Creates pretranslation data structures.

Syntax
int xlate_create (dp, baddr, count, flags)
struct xmem*dp;
caddr_t baddr;
int count;
uint flags;

Description
The xlate_create kernel service creates pretranslation data structures capable of pretranslating all pages
of the virtual buffer indicated by the baddr parameter for length of count into a list of physical page
numbers, appended to the cross memory descriptor pointed to by dp.

If the XLATE_ALLOC flag is set, only the data structures are created and no pretranslation is done. If
the flag is not set, in addition to the data structures being created, each page of the buffer is translated
and the access permissions verified, requiring read-write access to each page. The XLATE_ALLOC flag
is useful when the buffer will be pinned and utilized later, through the xlate_pin and xlate_unpin kernel
services.

The XLATE_SPARSE flag can be used to indicate that only selected portions of a pretranslated region may
be valid (pinned and pretranslated) at any given time. The XLATE_SPARSE flag can be used in conjunction
with the XLATE_ALLOC flag to preallocate the pretranslation data structures for an address region that
will be dynamically managed.

Kernel Services and Subsystem Operations 617

The xlate_create kernel service is primarily for use when memory buffers will be reused for I/O. The
use of this service to create a pretranslation for the memory buffer avoids page translation and access
checking overhead for all future DMAs involving the memory buffer until the xlate_remove kernel service
is called.

Parameters
Item Description

dp Points to the cross memory descriptor.

baddr Points to the virtual buffer.

count Specifies the length of the virtual buffer.

flags Specifies the operation. Valid values are as follows:
XLATE_PERSISTENT

Indicates that the pretranslation data structures should be persistent across calls to
pretranslation services.

XLATE_ALLOC
Indicates that the pretranslation data structures should be allocated only, and no translation
should be performed.

XLATE_SPARSE
Indicates that the pretranslation information will be sparse, allowing for the coexistence of
valid (active) pretranslation regions and invalid (inactive) pretranslation regions.

Return Values
Item Description

ENOMEM Unable to allocate memory

XMEM_FAIL No physical translation, or No Access to a Page

XMEM_SUCC Successful pretranslation created

Execution Environment
The xlate_create kernel service can only be called from the process environment. The entire buffer must
be pinned (unless the XLATE_ALLOC flag is set), and the cross memory descriptor valid.

Related reference
xlate_remove Kernel Service
xlate_pin Kernel Service
xlate_unpin Kernel Service

xlate_pin Kernel Service

Purpose
Pins all pages of a virtual buffer.

Syntax
int xlate_pin (dp, baddr, count, rw)
struct xmem *dp;
caddr_t baddr;
int count;
int rw;

618 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The xlate_pin kernel service pins all pages of the virtual buffer indicated by the baddr parameter for
length of count and also appends pretranslation information to the cross memory descriptor pointed to by
the dp parameter.

The xlate_pin kernel service results in a short-term pin, which will support mmap and shmatt allocated
memory buffers.

In addition to pinning and translating each page, the access permissions to the page are verified
according to the desired access (as specified by the rw parameter). For a setting of B_READ, write access
to the page must be allowed. For a setting of B_WRITE, only read access to the page must be allowed.

The caller can preallocate pretranslation data structures and append them to the cross memory
descriptor prior to the call (through a call to the xlate_create kernel service) , or have this service allocate
the necessary data structures. If the cross memory descriptor is already of type XMEM_XLATE, it is
assumed that the data structures are already allocated. If callers want to have the pretranslation data
structures persist across the subsequent xlate_unpin call, they should also set the XLATE_PERSISTENT
flag on the call to the xlate_create kernel service.

Parameters
Item Description

dp Points to the cross memory descriptor.

baddr Points to the virtual buffer.

count Specifies the length of the virtual buffer.

rw Specifies the access permissions for each page.

Return Values
If successful, the xlate_pin kernel service returns 0. If unsuccessful, one of the following is returned:

Item Description

EINVAL Invalid cross memory descriptor or parameters.

ENOMEM Unable to allocate memory.

ENOSPC Out of Paging Resources.

XMEM_FAIL Page Access violation.

Execution Environment
The xlate_pin kernel service is only callable from the process environment, and the cross memory
descriptor must be valid.

Related reference
xm_det Kernel Service
xm_mapin Kernel Service
xlate_unpin Kernel Service

xlate_remove Kernel Service

Purpose
Removes physical translation information from an xmem descriptor from a prior xlate_create call.

Kernel Services and Subsystem Operations 619

Syntax
caddr_t xlate_remove (dp)
struct xmem *dp;

Description
See the xlate_create kernel service.

Parameters
Item Description

dp Points to the cross memory descriptor.

Return Values
Item Description

XMEM_FAIL No pretranslation information present in the xmem descriptor.

XMEM_SUCC Pretranslation successfully removed.

Execution Environment
The xlate_remove kernel service can only be called from the process environment.

Related reference
xm_det Kernel Service
xlate_pin Kernel Service
xlate_unpin Kernel Service

xlate_unpin Kernel Service

Purpose
Unpins all pages of a virtual buffer.

Syntax
int xlate_unpin (dp, baddr, count)
struct xmem *dp;
caddr_t baddr;
int count;

Description
The xlate_unpin kernel service unpins pages from a prior call to the xlate_pin kernel service based on the
baddr and count parameters. It does this by utilizing the pretranslated real page numbers appended to
the cross memory descriptor pointed to by dp.

If the XLATE_PERSISTENT flag is not set in the prexflags flag word of the pretranslation data structure,
the pretranslation data structures are also freed.

Parameters
Item Description

dp Points to the cross memory descriptor.

620 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

baddr Points to the virtual buffer.

count Specifies the length of the virtual buffer.

Return Values
If successful, the xlate_unpin kernel service returns 0. If unsuccessful, one of the following is returned:

Item Description

EINVAL Invalid cross memory descriptor or parameters.

ENOSPC Unable to allocate paging space (case of mmap segment).

ENOSPC Out of Paging Resources.

XMEM_FAIL Page Access violation.

Related reference
xm_det Kernel Service
xm_mapin Kernel Service
xlate_pin Kernel Service

xm_det Kernel Service

Purpose
Releases the addressability to the address space described by an xmem descriptor.

Syntax
void xm_det (baddr, dp)
caddr_t baddr;
struct xmem *dp;

Description
See the xm_mapin Kernel Service for more information.

Parameters
Item Description

baddr Specifies the effective address previously returned from the xm_mapin kernel
service.

dp Cross memory descriptor that describes the above memory object.

Related reference
xlate_create Kernel Service
xlate_remove Kernel Service
xm_mapin Kernel Service

xm_mapin Kernel Service

Purpose
Sets up addressability in the current process context.

Kernel Services and Subsystem Operations 621

Syntax
#include <sys/adspace.h>

int xm_mapin (dp, baddr, count, eaddr)
struct xmem *dp;caddr_t baddr;
size_t count;
caddr_t *eaddr;

Description
The xm_mapin kernel service sets up addressability in the current process context to the address space
indicated by the cross memory descriptor pointed to by the dp parameter for the addresses [baddr, baddr
+ count - 1].

This service is created specifically for Client File Systems, or others who need to setup addressability to
an address space defined by an xmem descriptor.

If the requested mapping spans a segment boundary, no mapping will be performed, and a return code
of EAGAIN is returned to indicate that individual calls to the xm_mapin kernel service are necessary
to map the portions of the buffer in each segment. The xm_mapin kernel service must be called again
with the original baddr and a count indicating the number of bytes to the next segment. (The number
of bytes to the next segment boundary can be obtained using the xm_maxmap kernel service.) This will
provide an effective address to use for accessing this portion of the buffer. Then, iteratively, xm_mapin
must be called with the segment boundary address (previous baddr + count), and a new count indicating
the remainder of the buffer or the next segment boundary, whichever is smaller. This will provide another
effective address to use for accessing the next portion of the buffer.

Each address set up by the xm_mapin kernel service must be undone with the xm_det kernel service
when it is no longer needed because the xm_mapin kernel service currently uses the vm_att kernel
service.

Parameters
Item Description

dp Points to the cross memory descriptor.

baddr Points to the virtual buffer.

count Specifies the length of the virtual buffer to map.

eaddr Points to where the effective address to access the data buffer is returned.

Return Values
Item Description

0 Successful. (Reference Parameter eaddr contains
the address to use)

XMEM_FAIL Invalid cross memory descriptor.

EAGAIN Segment boundary crossing encountered. Caller
should make separate xm_mapin calls to map
each segments worth.

Execution Environment
The xm_mapin kernel service can be called from the process or interrupt environments.

Related reference
xm_det Kernel Service

622 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

xlate_remove Kernel Service
xlate_pin Kernel Service
xm_maxmap Kernel Service

xm_maxmap Kernel Service

Purpose
Determines the maximum permissible count value for a subsequent call to xm_mapin.

Syntax
#include <sys/adspace.h>

int xm_maxmap (dp, uaddr, len)
 struct xmem *dp;
 void *uaddr;
 size_t *len;

Parameters
Item Description

dp Points to the cross memory descriptor.

uaddr Points to the virtual buffer.

len Points to where the maximum permissible count is returned.

Description
The xm_maxmap kernel service determines the maximum permissible count value (in bytes) for a
subsequent xm_mapin call. The value is determined based on the input cross-memory descriptor dp and
the starting address uaddr, and it is returned in the len parameter. There is no guarantee that xm_mapin
will succeed; however, it is guaranteed that uaddr + *len - 1 is in the same segment as uaddr, and
therefore xm_mapin will not return EAGAIN.

Execution Environment
The xm_maxmap interface can be called from the process or interrupt environment.

Return Values
Item Description

XMEM_SUCC Successful (Reference parameter len contains the maximum permissible value
for a subsequent xm_mapin call)

XMEM_FAIL Invalid cross memory descriptor.

EAGAIN Segment boundary crossing encountered. Caller should make separate
xm_mapin calls to map each segment's worth.

Related reference
xm_mapin Kernel Service

Kernel Services and Subsystem Operations 623

xmalloc Kernel Service

Purpose
Allocates memory.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/malloc.h>

caddr_t xmalloc (size, align, heap)
int size;
int align;
caddr_t heap;

Parameters

Item Description

size Specifies the number of bytes to allocate.

align Specifies the alignment characteristics for the allocated memory.

heap Specifies the address of the heap from which the memory is to be allocated.

Description
The xmalloc kernel service allocates an area of memory out of the heap specified by the heap parameter.
This area is the number of bytes in length specified by the size parameter and is aligned on the byte
boundary specified by the align parameter. The align parameter is actually the log base 2 of the desired
address boundary. For example, an align value of 4 requests that the allocated area be aligned on a 2^4
(16) byte boundary.

There are multiple heaps provided by the kernel for use by kernel extensions. Two primary kernel heaps
are kernel_heap and pinned_heap. Kernel extensions should use the kernel_heap value when allocating
memory that is not pinned, and should use the pinned_heap value when allocating memory that should
always be pinned or pinned for long periods of time. When allocating from the pinned_heap heap, the
xmalloc kernel service will pin the memory before a successful return. The pin and unpin kernel services
should be used to pin and unpin memory from the kernel_heap heap when the memory should only
be pinned for a limited amount of time. Memory from the kernel_heap heap must be unpinned before
freeing it. Memory from the pinned_heap heap should not be unpinned.

The kernel_heap heap points to one of the following heaps: kernel_heap_4K_64K and
kernel_heap_16M. The pinned_heap heap points to one of the following heaps: pinned_heap_4K_64K
and pinned_heap_16M. Each of the target heaps differ in the size of the pages that back them.
kernel_heap_4K_64K or pinned_heap_4K_64K will be backed by either medium (64 KB) or
regular (4 KB) pages, depending on the page size supported by the machine. kernel_heap_16M or
pinned_heap_16M will return memory backed by large pages if large page heaps are enabled. If large
page heaps are not enabled, kernel_heap or pinned_heap will point to the default heap. If the size of the
backing pages are not important, use the kernel_heap value and the pinned_heap value. They will point
to the heap that you prefer. For more information about large page heap support, see vmo.

Kernel extensions can use these services to allocate memory out of the kernel heaps. For example, the
xmalloc (128,3,kernel_heap) kernel service allocates a 128-byte double word aligned area out of the
kernel heap.

A kernel extension must use the xmfree kernel service to free the allocated memory. If it does not,
subsequent allocations eventually are unsuccessful.

624 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The xmalloc kernel service has two compatibility interfaces: malloc and palloc.

The following additional interfaces to the xmalloc kernel service are provided:

• malloc (size) is equivalent to xmalloc (size, 0, kernel_heap).
• palloc (size, align) is equivalent to xmalloc (size, align, kernel_heap).

Execution Environment
The xmalloc kernel service can be called from the process environment only.

Return Values
Upon successful completion, the xmalloc kernel service returns the address of the allocated area. A null
pointer is returned under the following circumstances:

• The requested memory cannot be allocated.
• The heap has not been initialized for memory allocation.

Related reference
xmfree Kernel Service
Related information
Memory Kernel Services

xmattach Kernel Service

Purpose
Attaches to a user buffer for cross-memory operations.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmem.h>

int xmattach (addr, count, dp, segflag)
char * addr;
int count;
struct xmem * dp;
int segflag;

Parameters

Item Description

addr Specifies the address of the user buffer to be accessed in a cross-memory operation.

count Indicates the size of the user buffer to be accessed in a cross-memory operation.

dp Specifies a cross-memory descriptor. The dp->aspace_id variable must be set to a value of
XMEM_INVAL.

segflag Specifies a segment flag. This flag is used to determine the address space of the memory
that the cross-memory descriptor applies to, as well as for other purposes. The valid values
for this flag can be found in the /usr/include/xmem.h file.

Kernel Services and Subsystem Operations 625

Description
The xmattach kernel service prepares the user buffer so that a device driver can access it without
executing under the process that requested the I/O operation. A device top-half routine calls the
xmattach kernel service. The xmattach kernel service allows a kernel process or device bottom-half
routine to access the user buffer with the xmemin or xmemout kernel services. The device driver must
use the xmdetach kernel service to inform the kernel when it has finished accessing the user buffer.

The kernel remembers which segments are attached for cross-memory operations. Resources associated
with these segments cannot be freed until all cross-memory descriptors have been detached. "Cross
Memory Kernel Services" in Memory Kernel Services in in Kernel Extensions and Device Support
Programming Concepts describes how the cross-memory kernel services use cross-memory descriptors.

Note: When the xmattach kernel service remaps user memory containing the cross-memory buffer, the
effects are machine-dependent. Also, cross-memory descriptors are not inherited by a child process.

Storage-key protection can be enforced on memory regions described by a cross-memory descriptor.
The enforcement is done during normal access checking performed by cross-memory services, such
as the xmemdma kernel service. A kernel keyset can be contained in the cross-memory descriptor to
limit memory accessibility. When a keyset is associated with a cross-memory descriptor, access to the
memory region is limited by that keyset. A keyset is required because a cross-memory descriptor can
describe a virtual memory region with multiple keys assigned to the pages it contains. Normally, a keyset
describes the accessibility of the context that the attach was initiated for. For example, a cross-memory
attached to user-space contains a description of the user-mode accessibility (keyset). Adding keysets to
kernel cross-memory descriptors can also enhance system RAS, since they limit kernel access by the
cross-memory descriptor. Typically it is limited to that of the xmattach caller or to specific key(s), to catch
cases where a cross-memory descriptor is misused.

User-mode storage-keys are always associated with descriptors attached using USER_SPACE or
USERI_SPACE segflag. These flags were always required to attach to the user address space, so no
explicit update is required to enable storage-key protection on user memory attaches. Once attached,
existing kernel services that require cross-memory descriptors enforce the user keyset saved at attach
time when performing memory accesses or checking user accessibility.

For kernel memory, a keyset is not used to restrict regions attached with SYS_ADSPACE. Attaching
a region with SYS_ADSPACE_ASSIGN_KEYSET associates the caller’s keyset with the cross-memory
region.

Execution Environment
The xmattach kernel service can be called from the process environment only.

Return Values

Item Description

XMEM_SUCC Indicates a successful operation.

XMEM_FAIL Indicates one of the following errors:

• The buffer size indicated by the count parameter is less than or equal to 0.
• The cross-memory descriptor is in use (dp->aspace_id != XMEM_INVAL).
• The area of memory indicated by the addr and count parameters is not defined.

Related reference
uphysio Kernel Service
xmdetach Kernel Service
xmgethkeyset Kernel Service

626 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

xmdetach Kernel Service

Purpose
Detaches from a user buffer used for cross-memory operations.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmem.h>

int xmdetach (dp)
struct xmem *dp;

Parameter

Ite
m

Description

dp Points to a cross-memory descriptor initialized by the xmattach kernel service.

Description
The xmdetach kernel service informs the kernel that a user buffer can no longer be accessed. This means
that some previous caller, typically a device driver bottom half or a kernel process, is no longer permitted
to do cross-memory operations on this buffer. Subsequent calls to either the xmemin or xmemout kernel
service using this cross-memory descriptor result in an error return. The cross-memory descriptor is
set to dp->aspace_id = XMEM_INVAL so that the descriptor can be used again. "Cross Memory Kernel
Services" in Memory Kernel Services in Kernel Extensions and Device Support Programming Concepts
describes how the cross-memory kernel services use cross-memory descriptors.

Execution Environment
The xmdetach kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

XMEM_SUCC Indicates successful completion.

XMEM_FAIL Indicates that the descriptor was not valid or the buffer was not defined.

Related reference
xmattach Kernel Service
xmemout Kernel Service
Related information
Cross Memory Kernel Services

xmemdma Kernel Service

Purpose
Prepares a page for direct memory access (DMA) I/O or processes a page after DMA I/O is complete.

Kernel Services and Subsystem Operations 627

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmem.h>

int xmemdma (xp, xaddr, flag)
struct xmem *xp;
caddr_t xaddr;
int flag;

Parameters

Item Description

xp Specifies a cross-memory descriptor.

xaddr Identifies the address specifying the page for transfer.

flag Specifies whether to prepare a page for DMA I/O or process it after DMA I/O is complete.
Possible values are:
XMEM_ACC_CHK

Performs access checking on the page. When this flag is set, the page protection attributes
are verified.

XMEM_DR_SAFE
Indicates that the use of the real memory address is DLPAR safe.

XMEM_HIDE
Prepares the page for DMA I/O. For cache-inconsistent platforms, this preparation includes
hiding the page by making it inaccessible.

XMEM_UNHIDE
Processes the page after DMA I/O. Also, this flag reveals the page and makes it accessible
for cache-inconsistent platforms.

XMEM_WRITE_ONLY
Marks the intended transfer as outbound only. This flag is used with XMEM_ACC_CHK to
indicate that read-only access to the page is sufficient.

Description
The xmemdma kernel service operates on the page specified by the xaddr parameter in the region
specified by the cross-memory descriptor. If the cross-memory descriptor is for the kernel, the xaddr
parameter specifies a kernel address. Otherwise, the xaddr parameter specifies the offset in the region
described in the cross-memory descriptor.

The xmemdma kernel service is provided for machines that have processor-memory caches, but that
do not perform DMA I/O through the cache. Device handlers for Micro Channel DMA devices use the
d_master service and d_complete kernel service instead of the xmemdma kernel service.

If the flag parameter indicates XMEM_HIDE (that is, XMEM_UNHIDE is not set) and this is the first hide
for the page, the xmemdma kernel service prepares the page for DMA I/O by flushing the cache and
making the page invalid. When the XMEM_UNHIDE bit is set and this is the last unhide for the page, the
following events take place:

1. The page is made valid.

If the page is not in pager I/O state:
2. Any processes waiting on the page are readied.
3. The modified bit for the page is set unless the page has a read-only storage key.

628 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The page is made not valid during DMA operations so that it is not addressable with any virtual address.
This prevents any process from reading or loading any part of the page into the cache during the DMA
operation.

The page specified must be in memory and must be pinned.

If the XMEM_ACC_CHK bit is set, then the xmemdma kernel service also verifies access permissions
to the page. If the page access is read-only, then the XMEM_WRITE_ONLY bit must be set in the flag
parameter.

Note:

1. The xmemdma kernel service does not hide or reveal the page nor does it perform any cache flushing.
The service's primary function is for real-address translation.

2. This service is not supported for large-memory systems with greater than 4GB of physical memory
addresses. For such systems, xmemdma64 should be used.

Execution Environment
The xmemdma kernel service can be called from either the process or interrupt environment.

Return Values
On successful completion, the xmemdma service returns the real address corresponding to the xaddr and
xp parameters.

Error Codes
The xmemdma kernel service returns a value of XMEM_FAIL if one of the following are true:

• The descriptor was invalid.
• The page specified by the xaddr or xp parameter is invalid.
• Access is not allowed to the page.

Related information
Cross Memory Kernel Services
Understanding Direct Memory Access (DMA) Transfer
Dynamic Logical Partitioning

xmemdma64 Kernel Service

Purpose
Prepares a page for direct memory access (DMA) I/O or processes a page after DMA I/O is complete.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmem.h>

unsigned long long xmemdma64 (
struct xmem *dp,
caddr_t xaddr,>
int flags)

Kernel Services and Subsystem Operations 629

Parameters

Item Description

dp Specifies a cross-memory descriptor.

xaddr Identifies the address that specify the page for transfer.

flags Specifies whether to prepare a page for DMA I/O or process it after DMA I/O is
complete. Possible values are:
XMEM_HIDE

Prepares the page for DMA I/O. If cache-inconsistent, then the data cache
is flushed, the memory page is hidden, and the real page address is
returned. If cache-consistent, then the modified bit is set and the real
address of the page is returned.

XMEM_UNHIDE
Processes the page after DMA I/O. Also, this flag reveals the page, readies
any waiting processes on the page, and sets the modified bit accordingly.

XMEM_ACC_CHK
Performs access checking on the page. When this flag is set, the page
protection attributes are verified.

XMEM_WRITE_ONLY
Marks the intended transfer as outbound only. This flag is used with
XMEM_ACC_CHK to indicate that read-only access to the page is
sufficient.

Description
The xmemdma64 kernel service operates on the page that is specified by the xaddr parameter in the
region that is specified by the cross-memory descriptor. If the cross-memory descriptor is for the kernel,
the xaddr parameter specifies a kernel address. Otherwise, the xaddr parameter specifies the offset in the
region that is described in the cross-memory descriptor.

The xmemdma64 kernel service is provided for machines that have processor-memory caches, but that
do not perform DMA I/O through the cache.

If the flag parameter indicates XMEM_HIDE (that is, XMEM_UNHIDE is not set) and it is the first hide
for the page, the xmemdma64 kernel service prepares the page for DMA I/O by flushing the cache and
making the page invalid. When the XMEM_UNHIDE bit is set and it is the last unhide for the page, the
following events take place:

1. The page is made valid.

If the page is not in pager I/O state:
2. Any processes that is waiting on the page are readied.
3. The modified bit for the page is set unless the page has a read-only storage key.

The page is made not valid during DMA operations so that it is not addressable with any virtual address.
It prevents any process from reading or loading any part of the page into the cache during the DMA
operation.

The page that is specified must be in memory and must be pinned.

If the XMEM_ACC_CHK bit is set, then the xmemdma64 kernel service also verifies access permissions
to the page. If the page access is read-only, then the XMEM_WRITE_ONLY bit must be set in the flag
parameter.

Note: The xmemdma64 kernel service does not hide or reveal the page, nor does it perform any cache
flushing. The service's primary function is for real-address translation.

630 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The xmemdma64 kernel service can be called from either the process or interrupt environment.

Return Values
On successful completion, the xmemdma64 service returns the real address corresponding to the xaddr
and xp parameters.

Error Codes
The xmemdma64 kernel service returns a value of XMEM_FAIL if one of the following are true:

• The descriptor was invalid.
• The page that is specified by the xaddr or xp parameter is invalid.
• Access is not allowed to the page.

Related information
Cross Memory Kernel Services
Understanding Direct Memory Access (DMA) Transfer

xmempin Kernel Service

Purpose
Pins the specified address range in user or system memory.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

int xmempin(base, len, xd)
caddr_t base;
int len;
struct xmem *xd;

Parameters

Item Description

base Specifies the address of the first byte to pin.

len Indicates the number of bytes to pin.

xd Specifies the cross-memory descriptor.

Description
The xmempin kernel service is used to pin pages backing a specified memory region which is defined in
either system or user address space. Pinning a memory region prohibits the pager from stealing pages
from the pages backing the pinned memory region. Once a memory region is pinned, accessing that
region does not result in a page fault until the region is subsequently unpinned.

The cross-memory descriptor must have been filled in correctly prior to the xmempin call (for example,
by calling the xmattach kernel service).

Kernel Services and Subsystem Operations 631

Execution Environment
The xmempin kernel service can be called from the process environment only.

Return Values
Item Description

0 Indicates successful completion.

EFAULT Indicates that the memory region as specified by the base and len parameters is not within the address space
specified by the xd parameter.

EINVAL Indicates that the value of the length parameter is negative or 0. Otherwise, the area of memory beginning at the byte
specified by the base parameter and extending for the number of bytes specified by the len parameter is not defined.

ENOMEM Indicates that the xmempin kernel service is unable to pin the region due to insufficient real memory or because it
has exceeded the systemwide pin count.

Related reference
pin Kernel Service
xmemunpin Kernel Service
Related information
Memory Kernel Services

xmemunpin Kernel Service

Purpose
Unpins the specified address range in user or system memory.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

int xmemunpin (base, len, xd)
caddr_t base;
int len;
struct xmem *xd;

Parameters

Item Description

base Specifies the address of the first byte to unpin.

len Indicates the number of bytes to unpin.

xd Specifies the cross-memory descriptor.

Description
The xmemunpin kernel service unpins a region of memory. When the pin count is 0, the page is not
pinned and can be paged out of real memory. Upon finding an unpinned page, the xmemunpin kernel
service returns the EINVAL error code and leaves any remaining pinned pages still pinned.

The xmemunpin service should be used where the address space might be in either user or kernel space.

The cross-memory descriptor must have been filled in correctly prior to the xmempin call (for example,
by calling the xmattach kernel service).

632 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The xmemunpin kernel service can be called in the process environment when unpinning data that is in
either user space or system space. It can be called in the interrupt environment only when unpinning data
that is in system space.

Return Values

Item Description

0 Indicates successful completion.

EFAULT Indicates that the memory region as specified by the base and len parameters is not within
the address specified by the xd parameter.

EINVAL Indicates that the value of the length parameter is negative or 0. Otherwise, the area of
memory beginning at the byte specified by the base parameter and extending for the number
of bytes specified by the len parameter is not defined. If neither cause is responsible, an
unpinned page was specified.

Related reference
unpin Kernel Service
xmempin Kernel Service
Related information
Understanding Execution Environments

xmemzero Kernel Service

Purpose
Zeros a buffer described by a cross memory descriptor.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int xmemzero (dp, uaddr, count)
struct xmem * dp;
caddr_t uaddr;
long count;

Parameters

Item Description

dp The cross memory descriptor.

uaddr The address in the buffer to begin zeroing.

count The number of bytes to be zeroed.

Description
The xmemzero kernel service zeros a buffer described by a cross memory descriptor. The page specified
must be in memory.

Kernel Services and Subsystem Operations 633

Execution Environment
The xmemzero kernel service can be called from a process or an interrupt environment.

Return Values

Item Description

XMEM_SUCC Indicates the area in the buffer has been zeroed.

XMEM_FAIL Indicates one of the following errors:

• The descriptor is marked by XMEM_REMIO.
• The descriptor is not marked by XMEM_PROC and XMEM_GLOBAL.
• Count < 0.

Related information
Memory Kernel Services
Understanding Virtual Memory Manager Interfaces

xmemin Kernel Service

Purpose
Performs a cross-memory move by copying data from the specified address space to kernel global
memory.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmem.h>

int xmemin (uaddr, kaddr, count, dp)
caddr_t * uaddr;
caddr_t * kaddr;
int count;
struct xmem * dp;

Parameters

Item Description

uaddr Specifies the address in memory specified by a cross-memory descriptor.

kaddr Specifies the address in kernel memory.

count Specifies the number of bytes to copy.

dp Specifies the cross-memory descriptor.

Description
The xmemin kernel service performs a cross-memory move. A cross-memory move occurs when data is
moved to or from an address space other than the address space that the program is executing in. The
xmemin kernel service copies data from the specified address space to kernel global memory.

The xmemin kernel service is provided so that kernel processes and interrupt handlers can safely access
a buffer within a user process. Calling the xmattach kernel service prepares the user buffer for the
cross-memory move.

634 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The xmemin kernel service differs from the copyin and copyout kernel services in that it is used to access
a user buffer when not executing under the user process. In contrast, the copyin and copyout kernel
services are used only to access a user buffer while executing under the user process.

Execution Environment
The xmemin kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

XMEM_SUCC Indicates successful completion.

XMEM_FAIL Indicates one of the following errors:

• The user does not have the appropriate access authority for the user buffer.
• The user buffer is located in an address range that is not valid.
• The segment containing the user buffer has been deleted.
• The cross-memory descriptor is not valid.
• A paging I/O error occurred while the user buffer was being accessed.

If the user buffer is not in memory, the xmemin kernel service also returns an
XMEM_FAIL error when executing on an interrupt level.

Related reference
xmattach Kernel Service
xmemout Kernel Service
Related information
Cross Memory Kernel Services

xmemout Kernel Service

Purpose
Performs a cross-memory move by copying data from kernel global memory to a specified address space.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmem.h>

int xmemout (kaddr, uaddr, count, dp)
caddr_t * kaddr;
caddr_t * uaddr;
int count;
struct xmem * dp;

Parameters

Item Description

kaddr Specifies the address in kernel memory.

uaddr Specifies the address in memory specified by a cross-memory descriptor.

count Specifies the number of bytes to copy.

Kernel Services and Subsystem Operations 635

Item Description

dp Specifies the cross-memory descriptor.

Description
The xmemout kernel service performs a cross-memory move. A cross-memory move occurs when data
is moved to or from an address space other than the address space that the program is executing in. The
xmemout kernel service copies data from kernel global memory to the specified address space.

The xmemout kernel service is provided so that kernel processes and interrupt handlers can safely
access a buffer within a user process. Calling the xmattach kernel service prepares the user buffer for the
cross-memory move.

The xmemout kernel service differs from the copyin and copyout kernel services in that it is used to
access a user buffer when not executing under the user process. In contrast, the copyin and copyout
kernel services are only used to access a user buffer while executing under the user process.

Execution Environment
The xmemout kernel service can be called from either the process or interrupt environment.

Return Values

Item Description

XMEM_SUCC Indicates successful completion.

XMEM_FAIL Indicates one of the following errors:

• The user does not have the appropriate access authority for the user buffer.
• The user buffer is located in an address range that is not valid.
• The segment containing the user buffer has been deleted.
• The cross-memory descriptor is not valid.
• A paging I/O error occurred while the user buffer was being accessed.

If the user buffer is not in memory, the xmemout service also returns an XMEM_FAIL
error when executing on an interrupt level.

Related reference
xmattach Kernel Service
xmemin Kernel Service
Related information
Cross Memory Kernel Services

xmempsize Kernel Service

Purpose
Reports the page size being used for a specified address range on the 64-bit kernel.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmem.h>

long long xmempsize (dp, uaddr, count)

struct xmem * dp;

636 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

void * uaddr;
size_t count;

Description
The xmempsize kernel service returns the size, in bytes, of the virtual memory pages contained in the
memory range starting at uaddr and continuing for count number of bytes. If the memory range consists
of virtual memory pages of different sizes, the size of the smallest pages contained in the range is
returned.

The cross-memory descriptor, dp, must have been previously initialized to describe the buffer containing
the specified range of memory. The xmattach() kernel service prepares a buffer and cross-memory
descriptor for use with the xmempsize() kernel service.

Parameters
Item Description

dp Specifies the cross-memory descriptor.

uaddr Specifies the starting address of the memory range.

count Specifies the number of bytes.

Execution Environment
The xmempsize kernel service can be called from either the process or interrupt environment.

The xmempsize kernel service is only supported on the 64-bit kernel.

Return Values
On successful completion, the xmempsize() kernel service returns a page size in bytes.

Otherwise, the xmempsize() kernel service returns XMEM_FAIL.

Related reference
xmattach Kernel Service
Related information
Cross Memory Kernel Services

xmfree Kernel Service

Purpose
Frees allocated memory.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/malloc.h>

int xmfree (ptr, heap)
caddr_t ptr;
caddr_t heap;

Kernel Services and Subsystem Operations 637

Parameters

Item Description

ptr Specifies the address of the area in memory to free.

heap Specifies the address of the heap from which the memory was allocated.

Description
The xmfree kernel service frees the area of memory pointed to by the ptr parameter in the heap specified
by the heap parameter. This area of memory must be allocated with the xmalloc kernel service. In
addition, the ptr pointer must be the pointer returned from the corresponding xmalloc call.

For example, the xmfree (ptr, kernel_heap) kernel service frees the area in the kernel heap allocated by
ptr=xmalloc (size, align, kernel_heap).

A kernel extension must explicitly free any memory it allocates. If it does not, eventually subsequent
allocations are unsuccessful. Pinned memory must also be unpinned before it is freed if allocated from
the kernel_heap. The kernel does not keep track of which kernel extension owns various allocated areas
in the heap. Therefore, the kernel never automatically frees these allocated areas on process termination
or device close.

An additional interface to the xmfree kernel service is provided. The free (ptr) is equivalent to xmfree
(ptr, kernel_heap).

Execution Environment
The xmfree kernel service can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates successful completion.

-1 Indicates one of the following errors:

• The area to be freed was not allocated with the xmalloc kernel service.
• The heap was not initialized for memory allocation.

Related reference
xmalloc Kernel Service
Related information
Memory Kernel Services

xmgethkeyset Kernel Service

Purpose
Retrieves the hardware keyset associated with a cross-memory descriptor.

Syntax

#include <sys/types.h>
#include <sys/kerrno.h>
#include <sys/xmem.h>
#include <sys/skeys.h>

638 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

kerrno_t xmgethkeyset (dp, keyset, flags)
struct xmem * dp;
hkeyset_t * hkeyset;
long flags;

Parameters

Item Description

dp Specifies a valid cross-memory descriptor.

hkeyset Pointer to returned hardware keyset associated with the cross-memory descriptor.

flags Must be set to zero.

Description
The xmgethkeyset() kernel service can be used to obtain the keyset associated with a cross-memory
descriptor.

Kernel-key protection can be enforced on memory regions described by a cross-memory descriptor.
The enforcement is done during normal access checking performed by cross-memory services, such as
xmemdma() service.

Execution Environment
The xmgethkeyset kernel service can be called from the process or interrupt environment.

Return Values

Item Description

0 Successful.

EINVAL_XMGETHKEYSET Invalid parameter.

Related reference
xmsethkeyset Kernel Service
xmattach Kernel Service

xmsethkeyset Kernel Service

Purpose
Alters hardware keyset associated with a cross-memory descriptor.

Syntax

#include <sys/types.h>
#include <sys/kerrno.h>
#include <sys/xmem.h>
#include <sys/skeys.h>

kerrno_t xmsethkeyset (dp, hkeyset, flags)
struct xmem * dp;
hkeyset_t hkeyset;
long flags;

Kernel Services and Subsystem Operations 639

Parameters

Item Description

dp Specifies a valid cross-memory descriptor.

hkeyset Hardware keyset to assign to the cross-memory descriptor.

flags Must be set to zero.

Description
The xmsethkeyset() kernel service can be used to modify the keyset associated with a cross-memory
descriptor.

Kernel-key protection can be enforced on memory regions described by a cross-memory descriptor. The
enforcement is done during normal access checking performed by cross-memory services, such as the
xmemdma() service.

Execution Environment
The xmsethkeyset kernel service can be called from the process environment only.

Return Values

Item Description

0 Successful.

EINVAL_XMSETHKEYSET Invalid parameter or execution environment.

Related reference
xmgethkeyset Kernel Service
xmattach Kernel Service

Device Driver Operations
This topic provides a description of standard device driver entry points parameters.

Standard Parameters to Device Driver Entry Points

Purpose
Provides a description of standard device driver entry points parameters.

Description
There are three parameters passed to device driver entry points that always have the same meanings: the
devno parameter, the chan parameter, and the ext parameter.

The devno Parameter

This value, defined to be of type dev_t, specifies the device or subdevice to which the operation is
directed. For convenience and portability, the /usr/include/sys/sysmacros.h file defines the following
macros for manipulating device numbers:

640 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Macro Descriptionf

major(devno) Returns the major device number.

minor(devno) Returns the minor device number.

makedev(maj, min). Constructs a composite device number in the format of devno from the
major and minor device numbers given.

The chan Parameter

This value, defined to be of type chan_t, is the channel ID for a multiplexed device driver. If the device
driver is not multiplexed, chan has the value of 0. If the driver is multiplexed, then the chan parameter is
the chan_t value returned from the device driver's ddmpx routine.

The ext Parameter

The ext parameter, or extension parameter, is defined to be of type int. It is meaningful only with calls
to such extended subroutines as the openx, readx, writex, and ioctlx subroutines. These subroutines
allow applications to pass an extra, device-specific parameter to the device driver. This parameter is then
passed to the ddopen, ddread, ddwrite, and ddioctl device driver entry points as the ext parameter. If
the application uses one of the non-extended subroutines (for example, the read instead of the readx
subroutine), then the ext parameter has a value of 0.

Note: Using the ext parameter is highly discouraged because doing so makes an application program less
portable to other operating systems.

Related reference
ddioctl Device Driver Entry Point
Related information
read subroutine
Device Driver Kernel Extension Overview

buf Structure

Purpose
Describes buffering data transfers between a program and the peripheral device

Introduction to Kernel Buffers
For block devices, kernel buffers are used to buffer data transfers between a program and the peripheral
device. These buffers are allocated in blocks of 4096 bytes. At any given time, each memory block is a
member of one of two linked lists that the device driver and the kernel maintain:

List Description

Available buffer queue (avlist) A list of all buffers available for use. These buffers
do not contain data waiting to be transferred to or
from a device.

Busy buffer queue (blist) A list of all buffers that contain data waiting to be
transferred to or from a device.

Kernel Services and Subsystem Operations 641

Each buffer has an associated buffer header called the buf structure pointing to it. Each buffer header has
several parts:

• Information about the block
• Flags to show status information
• Busy list forward and backward pointers
• Available list forward and backward pointers

The device driver maintains the av_forw and av_back pointers (for the available blocks), while the
kernel maintains the b_forw and b_back pointers (for the busy blocks).

buf Structure Variables for Block I/O
The buf structure, which is defined in the /usr/include/sys/buf.h file, includes the following fields:

642 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

b_flags Flag bits. The value of this field is constructed by logically ORing 0 or more of the
following values:
B_WRITE

This operation is a write operation.
B_READ

This operation is a read data operation, rather than write.
B_DONE

I/O on the buffer has been done, so the buffer information is more current than
other versions.

B_ERROR
A transfer error has occurred and the transaction has aborted.

B_BUSY
The block is not on the free list.

B_INFLIGHT
This I/O request has been sent to the physical device driver for processing.

B_AGE
The data is not likely to be reused soon, so prefer this buffer for reuse. This flag
suggests that the buffer goes at the head of the free list rather than at the end.

B_ASYNC
Asynchronous I/O is being performed on this block. When I/O is done, release
the block.

B_DELWRI
The contents of this buffer still need to be written out before the buffer can be
reused, even though this block may be on the free list. This is used by the write
subroutine when the system expects another write to the same block to occur
soon.

B_NOHIDE
Indicates that the data page should not be hidden during direct memory access
(DMA) transfer.

B_SETMOD
Allows an enhanced I/O file system to cause a page to be considered modified.

B_STALE
The data conflicts with the data on disk because of an I/O error.

B_ XREADONLY
Indicates a read-only page in the external pager buffer list.

B_MORE_DONE
When set, indicates to the receiver of this buf structure that more structures are
queued in the IODONE level. This permits device drivers to handle all completed
requests before processing any new requests.

B_SPLIT
When set, indicates that the transfer can begin anywhere within the data buffer.

b_forw The forward busy block pointer.

b_back The backward busy block pointer.

av_forw The forward pointer for a driver request queue.

av_back The backward pointer for a driver request queue.

b_iodone Anyone calling the strategy routine must set this field to point to their I/O done
routine. This routine is called on the INTIODONE interrupt level when I/O is
complete.

Kernel Services and Subsystem Operations 643

Item Description

b_dev The major and minor device number.

b_bcount The byte count for the data transfer.

b_un.b_addr The memory address of the data buffer.

b_blkno The block number on the device.

b_resid Amount of data not transferred after error.

b_event Anchor for event list.

b_xmemd Cross-memory descriptor.

Related reference
ddstrategy Device Driver Entry Point
bufx Structure
Related information
write subroutine
Device Driver Kernel Extension Overview

bufx Structure

Purpose
Extends the buf structure to accommodate new fields as needed for performance and RAS reasons.

Description
The bufx structure is available for use by the 64-bit kernel and 64-bit kernel extensions. The 32-bit kernel
and 32-bit kernel extensions only have the option of using the buf structure.

bufx Structure Variables for Block I/O
The bufx structure, which is defined in the /usr/include/sys/buf.h file, includes the following fields:

644 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

b_flags Flag bits. The value of this field is constructed by the logical OR operation with 0 or
more of the following values:
B_WRITE

This operation is a write operation.
B_READ

This operation is a read data operation.
B_DONE

I/O on the buffer is done, so the buffer information is more current than other
versions.

B_ERROR
A transfer error occurred and the transaction aborted.

B_BUSY
The block is not on the free list.

B_INFLIGHT
This I/O request was sent to the physical device driver for processing.

B_AGE
The data is not likely to be reused soon, so prefer this buffer for reuse. This flag
suggests that the buffer goes at the head of the free list rather than at the end.

B_ASYNC
Asynchronous I/O is being performed on this block. When I/O is done, release
the block.

B_DELWRI
The contents of this buffer still need to be written out before the buffer can be
reused, even though this block may be on the free list. This is used by the write
subroutine when the system expects another write to the same block to occur
soon.

B_NOHIDE
Indicates that the data page should not be hidden during direct memory access
(DMA) transfer.

B_STALE
The data conflicts with the data on disk because of an I/O error.

B_MORE_DONE
When set, indicates to the receiver of this bufx structure that more structures are
queued in the IODONE level. This permits device drivers to handle all completed
requests before processing any new requests.

B_SPLIT
When set, indicates that the transfer can begin anywhere within the data buffer.

B_BUFX
A buffer is identified as an extended buf structure if all of the following conditions
are met:

• B_BUFX bit is set in the b_flags field.
• The pointer obtained by recombining the bx_refptrtop field and the
bx_refptrbot field points to the beginning of the structure.

• The bx_eyecatcher field, which identifies whether the buf structure is
extended or not, is equal to the ASCII string "bufx".

B_BUFX_INITIAL
When set, indicates that the buf is extended.

b_forw The forward busy block pointer.

Kernel Services and Subsystem Operations 645

Item Description

b_back The backward busy block pointer.

av_forw The forward pointer for a driver request queue.

av_back The backward pointer for a driver request queue.

b_iodone Anyone calling the strategy routine must set this field to point to their I/O done
routine. This routine is called on the INTIODONE interrupt level when I/O is
complete.

b_dev The major and minor device number.

b_bcount The byte count for the data transfer.

b_un.b_addr The memory address of the data buffer.

b_blkno The block number on the device.

b_resid The amount of data not transferred after error.

b_event The anchor for event list.

b_xmemd The cross-memory descriptor.

bx_refptrtop The top half of the reference pointer.

bx_refptrbot The bottom half of the reference pointer.

bx_version The version of the bufx structure.

bx_eyecatcher The field contains the string "bufx", allowing for easy identification of the bufx
structure in KDB when dumping data and for structure verification in addition to
using the BUFX_VALIDATE macro.

bx_flags Bufx flags with a 64-bit field that can be used for bufx-specific flags that are yet to
be defined.

bx_io_priorit
y

If the underlying storage devices do not support I/O priority, this value is ignored.
The bx_io_priority must be either the value of IOPRIORITY_UNSET (0) or a
value from 1 to 15. Lower I/O priority values are considered to be more important
than higher values. For example, a value of 1 is considered the highest priority and
a value of 15 is considered the lowest priority. The value of IOPRIORITY_UNSET is
defined in the sys/extendio.h file.

bx_io_cache_h
int

If the underlying storage devices do not support I/O cache hints, this value is
ignored. The bx_io_cache_hint must be either the value of CH_AGE_OUT_FAST
or the value of CH_PAGE_WRITE (defined in the sys/extendio.h file). These values
are mutually exclusive. If CH_AGE_OUT_FAST is set, the I/O buffer can be aged out
quickly from the storage device buffer cache. This is useful in the situations where
the application is already caching the I/O buffer and redundant caching within the
storage layer can be avoided. If CH_PAGE_WRITE is set, the I/O buffer is written only
to the storage device cache and not to the disk.

Character Lists Structure
Character device drivers, and other character-oriented support that can perform character-at-a-time I/O,
can be implemented by using a common set of services and data buffers to handle characters in the form
of character lists. A character list is a list or queue of characters. Some routines put characters in a list,
and others remove the characters from the list.

Character lists, known as clists, contain a clist header and a chain of one or more data buffers known as
character blocks. Putting characters on a queue allocates space (character blocks) from the common pool
and links the character block into the data structure defining the character queue. Obtaining characters
from a queue returns the corresponding space back to the pool.

646 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

A character list can be used to communicate between a character device driver top and bottom half. The
clist header and the character blocks that are used by these routines must be pinned in memory, since
they are accessed in the interrupt environment.

Users of the character list services must register (typically in the device driver ddopen routine) the
number of character blocks to be used at any one time. This allows the kernel to manage the number of
pinned character blocks in the character block pool. Similarly, when usage terminates (for example, when
the device driver is closed), the using routine should remove its registration of character blocks. The pincf
kernel service provides registration for character block usage.

The kernel provides four services for obtaining characters or character blocks from a character list:
the getc, getcb, getcbp, and getcx kernel services. There are also four services that add characters or
character blocks to character lists: the putc, putcb, putcbp, and putcx kernel services. The getcf kernel
services allocates a free character block while the putcf kernel service returns a character block to the
free list. Additionally, the putcfl kernel service returns a list of character buffers to the free list. The
waitcfree kernel service determines if any character blocks are on the free list, and waits for one if none
are available.

Using a Character List
For each character list you use, you must allocate a clist header structure. This clist structure is defined in
the /usr/include/sys/cblock.h file.

You do not need to be concerned with maintaining the fields in the clist header, as the character list
services do this for you. However, you should initialize the c_cc count field to 0, and both character
block pointers (c_cf and c_cl) to null before using the clist header for the first time. The clist structure
defines these fields.

Each buffer in the character list is a cblock structure, which is also defined in the /usr/include/sys/
cblock.h file.

A character block data area does not need to be completely filled with characters. The c_first and c_last
fields are zero-based offsets within the c_data array, which actually contains the data.

Only a limited amount of memory is available for character buffers. All character drivers share this pool
of buffers. Therefore, you must limit the number of characters in your character list to a few hundred.
When the device is closed, the device driver should make certain all of its character lists are flushed so
the buffers are returned to the list of free buffers.

Related reference
getc Kernel Service
putc Kernel Service
Related information
Device Driver Kernel Extension Overview

ddclose Device Driver Entry Point

Purpose

Closes a previously open device instance.

Syntax

#include <sys/device.h>
#include <sys/types.h>

Kernel Services and Subsystem Operations 647

int ddclose (devno, chan)
dev_t devno;
chan_t chan;

Parameters

Item Description

devno Specifies the major and minor device numbers of the device instance to close.

chan Specifies the channel number.

Description
The ddclose entry point is called when a previously opened device instance is closed by the close
subroutine or fp_close kernel service. The kernel calls the routine under different circumstances for
non-multiplexed and multiplexed device drivers.

For non-multiplexed device drivers, the kernel calls the ddclose routine when the last process having the
device instance open closes it. This causes the g-node reference count to be decremented to 0 and the
g-node to be deallocated.

For multiplexed device drivers, the ddclose routine is called for each close associated with an explicit
open. In other words, the device driver's ddclose routine is invoked once for each time its ddopen routine
was invoked for the channel.

In some instances, data buffers should be written to the device before returning from the ddclose routine.
These are buffers containing data to be written to the device that have been queued by the device driver
but not yet written.

Non-multiplexed device drivers should reset the associated device to an idle state and change the device
driver device state to closed. This can involve calling the fp_close kernel service to issue a close to an
associated open device handler for the device. Returning the device to an idle state prevents the device
from generating any more interrupt or direct memory access (DMA) requests. DMA channels and interrupt
levels allocated for this device should be freed, until the device is re-opened, to release critical system
resources that this device uses.

Multiplexed device drivers should provide the same device quiescing, but not in the ddclose routine.
Returning the device to the idle state and freeing its resources should be delayed until the ddmpx routine
is called to deallocate the last channel allocated on the device.

In all cases, the device instance is considered closed once the ddclose routine has returned to the caller,
even if a nonzero return code is returned.

Execution Environment
The ddclose routine is executed only in the process environment. It should provide the required
serialization of its data structures by using the locking kernel services in conjunction with a private lock
word defined in the driver.

Return Values
The ddclose entry point can indicate an error condition to the user-mode application program by
returning a nonzero return code. This causes the subroutine call to return a value of -1. It also makes
the return code available to the user-mode application in the errno global variable. The return code used
should be one of the values defined in the /usr/include/sys/errno.h file.

The device is always considered closed even if a nonzero return code is returned.

When applicable, the return values defined in the POSIX 1003.1 standard for the close subroutine should
be used.

648 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related reference
ddopen Device Driver Entry Point
fp_close Kernel Service
Related information
Programming in the Kernel Environment Overview

ddconfig Device Driver Entry Point

Purpose
Performs configuration functions for a device driver.

Syntax

#include <sys/device.h>
#include <sys/types.h>

int ddconfig (devno, cmd, uiop)
dev_t devno;
int cmd;
struct uio *uiop;

Parameters

Item Description

devno Specifies the major and minor device numbers.

cmd Specifies the function to be performed by the ddconfig routine.

uiop Points to a uio structure describing the relevant data area for configuration information.

Description
The ddconfig entry point is used to configure a device driver. It can be called to do the following tasks:

• Initialize the device driver.
• Terminate the device driver.
• Request configuration data for the supported device.
• Perform other device-specific configuration functions.

The ddconfig routine is called by the device's Configure, Unconfigure, or Change method. Typically,
it is called once for each device number (major and minor) to be supported. This is, however, device-
dependent. The specific device method and ddconfig routine determines the number of times it is called.

The ddconfig routine can also provide additional device-specific functions relating to configuration,
such as returning device vital product data (VPD). The ddconfig routine is usually invoked through the
sysconfig subroutine by the device-specific Configure method.

Device drivers and their methods typically support these values for the cmd parameter:

Kernel Services and Subsystem Operations 649

Value Description

CFG_INIT Initializes the device driver and internal data areas. This typically involves the minor
number specified by the devno parameter, for validity. The device driver's ddconfig routine
also installs the device driver's entry points in the device switch table, if this was the
first time called (for the specified major number). This can be accomplished by using
the devswadd kernel service along with a devsw structure to add the device driver's
entry points to the device switch table for the major device number supplied in the devno
parameter.

The CFG_INIT command parameter should also copy the device-dependent information
(found in the device-dependent structure provided by the caller) into a static or
dynamically allocated save area for the specified device. This information should be used
when the ddopen routine is later called.

The device-dependent structure's address and length are described in the uio structure
pointed to by the uiop parameter. The uiomove kernel service can be used to copy the
device-dependent structure into the device driver's data area.

When the ddopen routine is called, the device driver passes device-dependent
information to the routines or other device drivers providing the device handler role in
order to initialize the device. The delay in initializing the device until the ddopen call is
received is useful in order to delay the use of valuable system resources (such as DMA
channels and interrupt levels) until the device is actually needed.

CFG_TERM Terminates the device driver associated with the specified device number, as represented
by the devno parameter. The ddconfig routine determines if any opens are outstanding on
the specified devno parameter. If none are, the CFG_TERM command processing marks
the device as terminated, disallowing any subsequent opens to the device. All dynamically
allocated data areas associated with the specified device number should be freed.

If this termination removes the last minor number supported by the device driver from
use, the devswdel kernel service should be called to remove the device driver's entry
points from the device switch table for the specified devno parameter.

If opens are outstanding on the specified device, the terminate operation is rejected with
an appropriate error code returned. The Unconfigure method can subsequently unload the
device driver if all uses of it have been terminated.

To determine if all the uses of the device driver have been terminated, a device method
can make a sysconfig subroutine call. By using the sysconfig SYS_QDVSW operation, the
device method can learn whether or not the device driver has removed itself from the
device switch table.

CFG_QVPD Queries device-specific vital product data (VPD).

For this function, the calling routine sets up a uio structure pointed at by the uiop
parameter to the ddconfig routine. This uio structure defines an area in the caller's
storage in which the ddconfig routine is to write the VPD. The uiomove kernel service can
be used to provide the data copy operation.

The data area pointed at by the uiop parameter has two different purposes, depending on the cmd
function. If the CFG_INIT command has been requested, the uiop structure describes the location
and length of the device-dependent data structure (DDS) from which to read the information. If the
CFG_QVPD command has been requested, the uiop structure describes the area in which to write vital
product data information. The content and format of this information is established by the specific device
methods in conjunction with the device driver.

The uiomove kernel service can be used to facilitate copying information into or out of this data area. The
format of the uio structure is defined in the /usr/include/sys/uio.h file and described further in the uio
structure.

650 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The ddconfig routine and its operations are called in the process environment only.

Return Values
The ddconfig routine sets the return code to 0 if no errors are detected for the operation specified. If
an error is to be returned to the caller, a nonzero return code should be provided. The return code used
should be one of the values defined in the /usr/include/sys/errno.h file.

If this routine was invoked by a sysconfig subroutine call, the return code is passed to its caller (typically
a device method). It is passed by presenting the error code in the errno global variable and providing a -1
return code to the subroutine.

Related reference
devswadd Kernel Service
uiomove Kernel Service
Related information
sysconfig subroutine
Device Driver Kernel Extension Overview

dddump Device Driver Entry Point

Purpose
Writes system dump data to a device.

Syntax
#include <sys/device.h>

int dddump (devno, uiop, cmd, arg, chan, ext)
dev_t devno;
struct uio * uiop;
int cmd, arg;
chan_t chan;
int ext;

Parameters

Item Description

devno Specifies the major and minor device numbers.

uiop Points to the uio structure describing the data area or areas to be dumped.

cmd The parameter from the kernel dump function that specifies the operation to be performed.

arg The parameter from the caller that specifies the address of a parameter block associated with
the kernel dump command.

chan Specifies the channel number.

ext Specifies the extension parameter.

Kernel Services and Subsystem Operations 651

Description
The kernel dump routine calls the dddump entry point to set up and send dump requests to the device.
The dddump routine is optional for a device driver. It is required only when the device driver supports a
device as a target for a possible kernel dump.

If this is the case, it is important that the system state change as little as possible when performing the
dump. As a result, the dddump routine should use the minimal amount of services in writing the dump
data to the device.

The cmd parameter can specify any of the following dump commands:

Dump
Command

Description

DUMPINIT Initialization a device in preparation for supporting a system dump. The specified
device instance must have previously been opened. The arg parameter points to a
dumpio_stat structure, defined in /usr/include/sys/dump.h. This is used for returning
device-specific status in case of an error.

The dddump routine should pin all code and data that the device driver uses
to support dump writing. This is required to prevent a page fault when actually
performing a write of the dump data. (Pinned code should include the dddump
routine.) The pin or pincode kernel service can be used for this purpose.

DUMPQUERY Determines the maximum and minimum number of bytes that can be transferred to
the device in one DUMPWRITE command. For network dumps, the address of the
write routine used in transferring dump data to the network dump device is also sent.
The uiop parameter is not used and is null for this command. The arg parameter is a
pointer to a dmp_query structure, as defined in the /usr/include/sys/dump.h file.

The dmp_query structure contains the following fields:

min_tsize
Minimum transfer size (in bytes).

max_tsize
Maximum transfer size (in bytes).

dumpwrite
Address of the write routine.

The DUMPQUERY command returns the data transfer size information in the
dmp_query structure pointed to by the arg parameter. The kernel dump function then
uses a buffer between the minimum and maximum transfer sizes (inclusively) when
writing dump data.

If the buffer is not the size found in the max_tsize field, then its size must
be a multiple of the value in the min_tsize field. The min_tsize field and the
max_tsize field can specify the same value.

DUMPSTART Suspends current device activity and provide whatever setup of the device is needed
before receiving a DUMPWRITE command. The arg parameter points to a dumpio_stat
structure, defined in /usr/include/sys/dump.h. This is used for returning device-
specific status in case of an error.

652 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Dump
Command

Description

DUMPWRITE Writes dump data to the target device. The uio structure pointed to by the uiop
parameter specifies the data area or areas to be written to the device and the starting
device offset. The arg parameter points to a dumpio_stat structure, defined in /usr/
include/sys/dump.h. This is used for returning device-specific status in case of an
error. Code for the DUMPWRITE command should minimize its reliance on system
services, process dispatching, and such interrupt services as the INTIODONE interrupt
priority or device hardware interrupts.

Note: The DUMPWRITE command must never cause a page fault. This is ensured on
the part of the caller, since the data areas to be dumped have been determined to be
in memory. The device driver must ensure that all of its code, data and stack accesses
are to pinned memory during its DUMPINIT command processing.

DUMPEND Indicates that the kernel dump has been completed. Any cleanup of the device state
should be done at this time.

DUMPTERM Indicates that the specified device is no longer a selected dump target device. If
no other devices supported by this dddump routine have a DUMPINIT command
outstanding, the DUMPTERM code should unpin any resources pinned when it
received the DUMPINIT command. (The unpin kernel service is available for unpinning
memory.) The DUMPTERM command is received before the device is closed.

DUMPREAD Receives the acknowledgment packet for previous DUMPWRITE operations to a
communications device driver. If the device driver receives the acknowledgment
within the specified time, it returns a 0 and the response data is returned to the
kernel dump function in the uiop parameter. If the device driver does not receive the
acknowledgment within the specified time, it returns a value of ETIMEDOUT.

The arg parameter contains a timeout value in milliseconds.

Execution Environment
The DUMPINIT dddump operation is called in the process environment only. The DUMPQUERY,
DUMPSTART, DUMPWRITE, DUMPEND, and DUMPTERM dddump operations can be called in both the
process environment and interrupt environment.

Return Values
The dddump entry point indicates an error condition to the caller by returning a nonzero return code.

Related reference
devdump Kernel Service
dmp_add Kernel Service
Related information
Device Driver Kernel Extension Overview

ddioctl Device Driver Entry Point

Purpose
Performs the special I/O operations requested in an ioctl or ioctlx subroutine call.

Syntax

#include <sys/device.h>

Kernel Services and Subsystem Operations 653

int ddioctl (devno, cmd, arg, devflag, chan, ext)
dev_t devno;
int cmd;
void *arg;
ulong devflag;
chan_t chan;
int ext;

Description
When a program issues an ioctl or ioctlx subroutine call, the kernel calls the ddioctl routine of
the specified device driver. The ddioctl routine is responsible for performing whatever functions are
requested. In addition, it must return whatever control information has been specified by the original
caller of the ioctl subroutine. The cmd parameter contains the name of the operation to be performed.

Most ioctl operations depend on the specific device involved. However, all ioctl routines must respond to
the following command:

Item Description

IOCINFO Returns a devinfo structure (defined in the /usr/include/sys/devinfo.h file) that describes
the device. (Refer to the description of the special file for a particular device in the
Application Programming Interface.) Only the first two fields of the data structure need
to be returned if the remaining fields of the structure do not apply to the device.

The devflag parameter indicates one of several types of information. It can give conditions in which
the device was opened. (These conditions can subsequently be changed by the fcntl subroutine call.)
Alternatively, it can tell which of two ways the entry point was invoked:

• By the file system on behalf of a using application
• Directly by a kernel routine using the fp_ioctl kernel service

Thus flags in the devflag parameter have the following definitions, as defined in the /usr/include/sys/
device.h file:

Item Description

DKERNEL Entry point called by kernel routine using the fp_ioctl service.

DREAD Open for reading.

DWRITE Open for writing.

DAPPEND Open for appending.

DNDELAY Device open in nonblocking mode.

Parameters

Item Description

devno Specifies the major and minor device numbers.

cmd The parameter from the ioctl subroutine call that specifies the operation to be performed.

arg The parameter from the ioctl subroutine call that specifies an additional argument for the
cmd operation.

devflag Specifies the device open or file control flags.

chan Specifies the channel number.

ext Specifies the extension parameter.

654 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The ddioctl routine is executed only in the process environment. It should provide the required
serialization of its data structures by using the locking kernel services in conjunction with a private lock
word defined in the driver.

Return Values
The ddioctl entry point can indicate an error condition to the user-mode application program by returning
a nonzero return code. This causes the ioctl subroutine to return a value of -1 and makes the return code
available to the user-mode application in the errno global variable. The error code used should be one of
the values defined in the /usr/include/sys/errno.h file.

When applicable, the return values defined in the POSIX 1003.1 standard for the ioctl subroutine should
be used.

Related reference
Standard Parameters to Device Driver Entry Points
fp_ioctl Kernel Service
Related information
fcntl subroutine
Device Driver Kernel Extension Overview

ddmpx Device Driver Entry Point

Purpose

Allocates or deallocates a channel for a multiplexed device driver.

Syntax

#include <sys/device.h>
#include <sys/types.h>

int ddmpx (devno, chanp, channame)
dev_t devno;
chan_t *chanp;
char *channame;

Parameters

Item Description

devno Specifies the major and minor device numbers.

chanp Specifies the channel ID, passed by reference.

channame Points to the path name extension for the channel to be allocated.

Description
Only multiplexed character class device drivers can provide the ddmpx routine, and every multiplexed
driver must do so. The ddmpx routine cannot be provided by block device drivers even when providing
raw read/write access.

Kernel Services and Subsystem Operations 655

A multiplexed device driver is a character class device driver that supports the assignment of channels to
provide finer access control to a device or virtual subdevice. This type of device driver has the capability to
decode special channel-related information appended to the end of the path name of the device's special
file. This path name extension is used to identify a logical or virtual subdevice or channel.

When an open or creat subroutine call is issued to a device instance supported by a multiplexed device
driver, the kernel calls the device driver's ddmpx routine to allocate a channel.

The kernel calls the ddmpx routine when a channel is to be allocated or deallocated. Upon allocation, the
kernel dynamically creates g-nodes (in-core i-nodes) for channels on a multiplexed device to allow the
protection attributes to differ for various channels.

To allocate a channel, the ddmpx routine is called with a channame pointer to the path name extension.
The path name extension starts after the first / (slash) character that follows the special file name in the
path name. The ddmpx routine should perform the following actions:

• Parse this path name extension.
• Allocate the corresponding channel.
• Return the channel ID through the chanp parameter.

If no path name extension exists, the channame pointer points to a null character string. In this case, an
available channel should be allocated and its channel ID returned through the chanp parameter.

If no error is returned from the ddmpx routine, the returned channel ID is used to determine if the
channel was already allocated. If already allocated, the g-node for the associated channel has its
reference count incremented. If the channel was not already allocated, a new g-node is created for the
channel. In either case, the device driver's ddopen routine is called with the channel number assigned by
the ddmpx routine. If a nonzero return code is returned by the ddmpx routine, the channel is assumed
not to have been allocated, and the device driver's ddopen routine is not called.

If a close of a channel is requested so that the channel is no longer used (as determined by the channel's
g-node reference count going to 0), the kernel calls the ddmpx routine. The ddmpx routine deallocates
the channel after the ddclose routine was called to close the last use of the channel. If a nonzero return
code is returned by the ddclose routine, the ddmpx routine is still called to deallocate the channel.
The ddclose routine's return code is saved, to be returned to the caller. If the ddclose routine returned
no error, but a nonzero return code was returned by the ddmpx routine, the channel is assumed to be
deallocated, although the return code is returned to the caller.

To deallocate a channel, the ddmpx routine is called with a null channame pointer and the channel ID
passed by reference in the chanp parameter. If the channel g-node reference count has gone to 0, the
kernel calls the ddmpx routine to deallocate the channel after invoking the ddclose routine to close it.
The ddclose routine should not itself deallocate the channel.

Execution Environment
The ddmpx routine is called in the process environment only.

Return Values
If the allocation or deallocation of a channel is successful, the ddmpx routine should return a return code
of 0. If an error occurs on allocation or deallocation, this routine returns a nonzero value.

The return code should conform to the return codes described for the open and close subroutines in the
POSIX 1003.1 standard, where applicable. Otherwise, the return code should be one defined in the /usr/
include/sys/errno.h file.

Related reference
ddclose Device Driver Entry Point
ddopen Device Driver Entry Point
Related information
Device Driver Kernel Extension Overview

656 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

ddopen Device Driver Entry Point

Purpose
Prepares a device for reading, writing, or control functions.

Syntax
#include <sys/device.h>

int ddopen (devno, devflag, chan, ext)
dev_t devno;
ulong devflag;
chan_t chan;
int ext;

Parameters

Item Description

devno Indicates major and minor device numbers.

devflag Specifies open file control flags.

chan Specifies the channel number.

ext Specifies the extension parameter.

Description
The kernel calls the ddopen routine of a device driver when a program issues an open or creat subroutine
call. It can also be called when a system call, kernel process, or other device driver uses the fp_opendev
or fp_open kernel service to use the device.

The ddopen routine must first ensure exclusive access to the device, if necessary. Many character
devices, such as printers and plotters, should be opened by only one process at a time. The ddopen
routine can enforce this by maintaining a static flag variable, which is set to 1 if the device is open and 0 if
not.

Each time the ddopen routine is called, it checks the value of the flag. If the value is other than 0,
the ddopen routine returns with a return code of EBUSY to indicate that the device is already open.
Otherwise, the ddopen routine sets the flag and returns normally. The ddclose entry point later clears the
flag when the device is closed.

Since most block devices can be used by several processes at once, a block driver should not try to
enforce opening by a single user.

The ddopen routine must initialize the device if this is the first open that has occurred. Initialization
involves the following steps:

1. The ddopen routine should allocate the required system resources to the device (such as DMA
channels, interrupt levels, and priorities). It should, if necessary, register its device interrupt handler
for the interrupt level required to support the target device. (The i_init and d_init kernel services are
available for initializing these resources.)

2. If this device driver is providing the head role for a device and another device driver is providing the
handler role, the ddopen routine should use the fp_opendev kernel service to open the device handler.

Note: The fp_opendev kernel service requires a devno parameter to identify which device handler to
open. This devno value, taken from the appropriate device dependent structure (DDS), should have
been stored in a special save area when this device driver's ddconfig routine was called.

Flags Defined for the devflag Parameter

Kernel Services and Subsystem Operations 657

The devflag parameter has the following flags, as defined in the /usr/include/sys/device.h file:

Item Description

DKERNEL Entry point called by kernel routine using the fp_opendev or fp_open kernel service.

DREAD Open for reading.

DWRITE Open for writing.

DAPPEND Open for appending.

DNDELAY Device open in nonblocking mode.

Execution Environment
The ddopen routine is executed only in the process environment. It should provide the required
serialization of its data structures by using the locking kernel services in conjunction with a private lock
word defined in the driver.

Return Values
The ddopen entry point can indicate an error condition to the user-mode application program by returning
a nonzero return code. Returning a nonzero return code causes the open or creat subroutines to return a
value of -1 and makes the return code available to the user-mode application in the errno global variable.
The return code used should be one of the values defined in the /usr/include/errno.h file.

If a nonzero return code is returned by the ddopen routine, the open request is considered to have failed.
No access to the device instance is available to the caller as a result. In addition, for nonmultiplexed
drivers, if the failed open was the first open of the device instance, the kernel calls the driver's ddclose
entry point to allow resources and device driver state to be cleaned up. If the driver was multiplexed, the
kernel does not call the ddclose entry point on an open failure.

When applicable, the return values defined in the POSIX 1003.1 standard for the open subroutine should
be used.

Related reference
ddclose Device Driver Entry Point
Related information
close subroutine
Programming in the Kernel Environment Overview

ddread Device Driver Entry Point

Purpose
Reads in data from a character device.

Syntax
#include <sys/device.h>
#include <sys/types.h>

int ddread (devno, uiop, chan, ext)
dev_t devno;
struct uio *uiop;
chan_t chan;
int ext;

658 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

devno Specifies the major and minor device numbers.

uiop Points to a uio structure describing the data area or areas in which to be written.

chan Specifies the channel number.

ext Specifies the extension parameter.

Description
When a program issues a read or readx subroutine call or when the fp_rwuio kernel service is used, the
kernel calls the ddread entry point.

This entry point receives a pointer to a uio structure that provides variables used to specify the data
transfer operation.

Character device drivers can use the ureadc and uiomove kernel services to transfer data into and out of
the user buffer area during a read subroutine call. These services receive a pointer to the uio structure
and update the fields in the structure by the number of bytes transferred. The only fields in the uio
structure that cannot be modified by the data transfer are the uio_fmode and uio_segflg fields.

For most devices, the ddread routine sends the request to the device handler and then waits for it to
finish. The waiting can be accomplished by calling the e_sleep kernel service. This service suspends the
driver and the process that called it and permits other processes to run until a specified event occurs.

When the I/O operation completes, the device usually issues an interrupt, causing the device driver's
interrupt handler to be called. The interrupt handler then calls the e_wakeup kernel service specifying the
awaited event, thus allowing the ddread routine to resume.

The uio_resid field initially contains the total number of bytes to read from the device. If the device
driver supports it, the uio_offset field indicates the byte offset on the device from which the read
should start.

The uio_offset field is a 64 bit integer (offset_t); this allows the file system to send I/O requests to
a device driver's read & write entry points which have logical offsets beyond 2 gigabytes. Device drivers
must use care not to cause a loss of significance by assigning the offset to a 32 bit variable or using it in
calculations that overflow a 32 bit variable.

If no error occurs, the uio_resid field should be 0 on return from the ddread routine to indicate that all
requested bytes were read. If an error occurs, this field should contain the number of bytes remaining to
be read when the error occurred.

If a read request starts at a valid device offset but extends past the end of the device's capabilities,
no error should be returned. However, the uio_resid field should indicate the number of bytes not
transferred. If the read starts at the end of the device's capabilities, no error should be returned. However,
the uio_resid field should not be modified, indicating that no bytes were transferred. If the read starts
past the end of the device's capabilities, an ENXIO return code should be returned, without modifying the
uio_resid field.

When the ddread entry point is provided for raw I/O to a block device, this routine usually translates
requests into block I/O requests using the uphysio kernel service.

Execution Environment
The ddread routine is executed only in the process environment. It should provide the required
serialization of its data structures by using the locking kernel services in conjunction with a private lock
word defined in the driver.

Kernel Services and Subsystem Operations 659

Return Values
The ddread entry point can indicate an error condition to the caller by returning a nonzero return code.
This causes the subroutine call to return a value of -1. It also makes the return code available to the
user-mode program in the errno global variable. The error code used should be one of the values defined
in the /usr/include/sys/errno.h file.

When applicable, the return values defined in the POSIX 1003.1 standard for the read subroutine should
be used.

Related reference
ddwrite Device Driver Entry Point
Select/Poll Logic for ddwrite and ddread Routines
Related information
read, readx
Programming in the Kernel Environment Overview

ddrevoke Device Driver Entry Point

Purpose
Ensures that a secure path to a terminal is provided.

Syntax
#include <sys/device.h>
#include <sys/types.h>

int ddrevoke (devno, chan, flag)
dev_t devno;
chan_t chan;
int flag;

Parameters

Item Description

devno Specifies the major and minor device numbers.

chan Specifies the channel number. For a multiplexed device driver, a value of -1 in this parameter
means access to all channels is to be revoked.

flag Currently defined to have the value of 0. (Reserved for future extensions.)

Description
The ddrevoke entry point can be provided only by character class device drivers. It cannot be provided
by block device drivers even when providing raw read/write access. A ddrevoke entry point is required
only by device drivers supporting devices in the Trusted Computing Path to a terminal (for example, by
the /dev/ lft and /dev/tty files for the low function terminal and teletype device drivers). The ddrevoke
routine is called by the frevoke and revoke subroutines.

The ddrevoke routine revokes access to a specific device or channel (if the device driver is multiplexed).
When called, the ddrevoke routine should terminate all processes waiting in the device driver while
accessing the specified device or channel. It should terminate the processes by sending a SIGKILL signal
to all processes currently waiting for a specified device or channel data transfer. The current process is
not to be terminated.

660 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

If the device driver is multiplexed and the channel ID in the chan parameter has the value -1, all channels
are to be revoked.

Execution Environment
The ddrevoke routine is called in the process environment only.

Return Values
The ddrevoke routine should return a value of 0 for successful completion, or a value from the /usr/
include/errno.h file on error.

Files

Item Description

/dev/lft Specifies the path of the LFT special file.

/dev/tty Specifies the path of the tty special file.

Related information
frevoke subroutine
revoke subroutine
TTY Subsystem Overview

ddselect Device Driver Entry Point

Purpose
Checks to see if one or more events has occurred on the device.

Syntax

#include <sys/device.h>
#include <sys/poll.h>

int ddselect (devno, events, reventp, chan)
dev_t devno;
ushort events;
ushort *reventp;
int chan;

Parameters

Item Description

devno Specifies the major and minor device numbers.

events Specifies the events to be checked.

reventp Returned events pointer. This parameter, passed by reference, is used by the ddselect
routine to indicate which of the selected events are true at the time of the call. The returned
events location pointed to by the reventp parameter is set to 0 before entering this routine.

chan Specifies the channel number.

Kernel Services and Subsystem Operations 661

Description
The ddselect entry point is called when the select or poll subroutine is used, or when the fp_select
kernel service is invoked. It determines whether a specified event or events have occurred on the device.

Only character class device drivers can provide the ddselect routine. It cannot be provided by block
device drivers even when providing raw read/write access.

Requests for Information on Events

The events parameter represents possible events to check as flags (bits). There are three basic events
defined for the select and poll subroutines, when applied to devices supporting select or poll operations:

Event Description

POLLIN Input is present on the device.

POLLOUT The device is capable of output.

POLLPRI An exceptional condition has occurred on the device.

A fourth event flag is used to indicate whether the ddselect routine should record this request for later
notification of the event using the selnotify kernel service. This flag can be set in the events parameter if
the device driver is not required to provide asynchronous notification of the requested events:

Event Description

POLLSYNC This request is a synchronous request only. The routine need not call the selnotify kernel
service for this request even if the events later occur.

Additional event flags in the events parameter are left for device-specific events on the poll subroutine
call.

Select Processing

If one or more events specified in the events parameter are true, the ddselect routine should indicate
this by setting the corresponding bits in the reventp parameter. Note that the reventp returned events
parameter is passed by reference.

If none of the requested events are true, then the ddselect routine sets the returned events parameter
to 0. It is passed by reference through the reventp parameter. It also checks the POLLSYNC flag in the
events parameter. If this flag is true, the ddselect routine should just return, since the event request was a
synchronous request only.

However, if the POLLSYNC flag is false, the ddselect routine must notify the kernel when one or more of
the specified events later happen. For this purpose, the routine should set separate internal flags for each
event requested in the events parameter.

When any of these events become true, the device driver routine should use the selnotify service to notify
the kernel. The corresponding internal flags should then be reset to prevent re-notification of the event.

Sometimes the device can be in a state in which a supported event or events can never be satisfied (such
as when a communication line is not operational). In this case, the ddselect routine should simply set
the corresponding reventp flags to 1. This prevents the select or poll subroutine from waiting indefinitely.
As a result however, the caller will not in this case be able to distinguish between satisfied events and
unsatisfiable ones. Only when a later request with an NDELAY option fails will the error be detected.

Note: Other device driver routines (such as the ddread, ddwrite routines) may require logic to support
select or poll operations.

Execution Environment
The ddselect routine is executed only in the process environment. It should provide the required
serialization of its data structures by using the locking kernel services in conjunction with a private lock
word defined in the driver.

662 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values
The ddselect routine should return with a return code of 0 if the select or poll operation requested is valid
for the resource specified. Requested operations are not valid, however, if either of the following is true:

• The device driver does not support a requested event.
• The device is in a state in which poll and select operations are not accepted.

In these cases, the ddselect routine should return with a nonzero return code (typically EINVAL), and
without setting the relevant reventp flags to 1. This causes the poll subroutine to return to the caller
with the POLLERR flag set in the returned events parameter associated with this resource. The select
subroutine indicates to the caller that all requested events are true for this resource.

When applicable, the return values defined in the POSIX 1003.1 standard for the select subroutine
should be used.

Related reference
fp_select Kernel Service
Related information
select subroutine
Programming in the Kernel Environment Overview

ddstrategy Device Driver Entry Point

Purpose
Performs block-oriented I/O by scheduling a read or write to a block device.

Syntax
void ddstrategy (bp)
struct buf *bp;

Parameter

Ite
m

Description

bp Points to a buf structure describing all information needed to perform the data transfer.

Description
When the kernel needs a block I/O transfer, it calls the ddstrategy strategy routine of the device driver
for that device. The strategy routine schedules the I/O to the device. This typically requires the following
actions:

• The request or requests must be added on the list of I/O requests that need to be processed by the
device.

• If the request list was empty before the preceding additions, the device's start I/O routine must be
called.

Required Processing

The ddstrategy routine can receive a single request with multiple buf structures. However, it is not
required to process requests in any specific order.

The strategy routine can be passed a list of operations to perform. The av_forw field in the buf header
describes this null-terminated list of buf headers. This list is not doubly linked: the av_back field is
undefined.

Kernel Services and Subsystem Operations 663

Block device drivers must be able to perform multiple block transfers. If the device cannot do multiple
block transfers, or can only do multiple block transfers under certain conditions, then the device driver
must transfer the data with more than one device operation.

Kernel Buffers and Using the buf Structure

An area of memory is set aside within the kernel memory space for buffering data transfers between a
program and the peripheral device. Each kernel buffer has a header, the buf structure, which contains all
necessary information for performing the data transfer. The ddstrategy routine is responsible for updating
fields in this header as part of the transfer.

The caller of the strategy routine should set the b_iodone field to point to the caller's I/O done routine.
When an I/O operation is complete, the device driver calls the iodone kernel service, which then calls
the I/O done routine specified in the b_iodone field. The iodone kernel service makes this call from the
INTIODONE interrupt level.

The value of the b_flags field is constructed by logically ORing zero or more possible b_flags field flag
values.

Attention:

• Do not modify any of the following fields of the buf structure passed to the ddstrategy entry
point: the b_forw, b_back, b_dev, b_un, or b_blkno field. Modifying these fields can cause
unpredictable and disastrous results.

• Do not modify any of the following fields of a buf structure acquired with the geteblk service: the
b_flags, b_forw, b_back, b_dev, b_count, or b_un field. Modifying any of these fields can
cause unpredictable and disastrous results.

Execution Environment
The ddstrategy routine must be coded to execute in an interrupt handler execution environment (device
driver bottom half). That is, the routine should neither touch user storage, nor page fault, nor sleep.

Return Values
The ddstrategy routine, unlike other device driver routines, does not return a return code. Any error
information is returned in the appropriate fields within the buf structure pointed to by the bp parameter.

When applicable, the return values defined in the POSIX 1003.1 standard for the read and write
subroutines must be used.

Related reference
geteblk Kernel Service
Related information
read subroutine
write subroutine

ddwrite Device Driver Entry Point

Purpose
Writes out data to a character device.

Syntax

#include <sys/device.h>
#include <sys/types.h>

int ddwrite (devno, uiop, chan, ext)
dev_t devno;

664 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

struct uio * uiop;
chan_t chan;
int ext;

Parameters

Item Description

devno Specifies the major and minor device numbers.

uiop Points to a uio structure describing the data area or areas from which to be written.

chan Specifies the channel number.

ext Specifies the extension parameter.

Description
When a program issues a write or writex subroutine call or when the fp_rwuio kernel service is used, the
kernel calls the ddwrite entry point.

This entry point receives a pointer to a uio structure, which provides variables used to specify the data
transfer operation.

Character device drivers can use the uwritec and uiomove kernel services to transfer data into and out
of the user buffer area during a write subroutine call. These services are passed a pointer to the uio
structure. They update the fields in the structure by the number of bytes transferred. The only fields in the
uio structure that are not potentially modified by the data transfer are the uio_fmode and uio_segflg
fields.

For most devices, the ddwrite routine queues the request to the device handler and then waits for it to
finish. The waiting is typically accomplished by calling the e_sleep kernel service to wait for an event. The
e_sleep kernel service suspends the driver and the process that called it and permits other processes to
run.

When the I/O operation is completed, the device usually causes an interrupt, causing the device driver's
interrupt handler to be called. The interrupt handler then calls the e_wakeup kernel service specifying the
awaited event, thus allowing the ddwrite routine to resume.

The uio_resid field initially contains the total number of bytes to write to the device. If the device driver
supports it, the uio_offset field indicates the byte offset on the device from where the write should
start.

The uio_offset field is a 64 bit integer (offset_t); this allows the file system to send I/O requests to
a device driver's read & write entry points which have logical offsets beyond 2 gigabytes. Device drivers
must use care not to cause a loss of significance by assigning the offset to a 32 bit variable or using it in
calculations that overflow a 32 bit variable.

If no error occurs, the uio_resid field should be 0 on return from the ddwrite routine to indicate that all
requested bytes were written. If an error occurs, this field should contain the number of bytes remaining
to be written when the error occurred.

If a write request starts at a valid device offset but extends past the end of the device's capabilities,
no error should be returned. However, the uio_resid field should indicate the number of bytes
not transferred. If the write starts at or past the end of the device's capabilities, no data should
be transferred. An error code of ENXIO should be returned, and the uio_resid field should not be
modified.

When the ddwrite entry point is provided for raw I/O to a block device, this routine usually uses the
uphysio kernel service to translate requests into block I/O requests.

Kernel Services and Subsystem Operations 665

Execution Environment
The ddwrite routine is executed only in the process environment. It should provide the required
serialization of its data structures by using the locking kernel services in conjunction with a private lock
word defined in the driver.

Return Values
The ddwrite entry point can indicate an error condition to the caller by returning a nonzero return
value. This causes the subroutine to return a value of -1. It also makes the return code available to the
user-mode program in the errno global variable. The error code used should be one of the values defined
in the /usr/include/sys/errno.h file.

When applicable, the return values defined in the POSIX 1003.1 standard for the write subroutine should
be used.

Related reference
ddread Device Driver Entry Point
Related information
Device Driver Kernel Extension Overview

Select/Poll Logic for ddwrite and ddread Routines

Description
The ddread and ddwrite entry points require logic to support the select and poll operations. Depending
on how the device driver is written, the interrupt routine may also need to include this logic as well.

The select/poll logic is required wherever code checks on the occurrence of desired events. At each
point where one of the selection criteria is found to be true, the device driver should check whether a
notification is due for that selection. If so, it should call the selnotify kernel service to notify the kernel of
the event.

The devno, chan, and revents parameters are passed to the selnotify kernel service to indicate which
device and which events have become true.

Related reference
ddread Device Driver Entry Point
Related information
poll subroutine
Device Driver Kernel Extension Overview

uio Structure

Purpose
Describes a memory buffer to be used in a data transfer.

Introduction
The user I/O or uio structure is a data structure describing a memory buffer to be used in a data transfer.
The uio structure is most commonly used in the read and write interfaces to device drivers supporting
character or raw I/O. It is also useful in other instances in which an input or output buffer can exist in
different kinds of address spaces, and in which the buffer is not contiguous in virtual memory.

The uio structure is defined in the /usr/include/sys/uio.h file.

666 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description

The uio structure describes a buffer that is not contiguous in virtual memory. It also indicates the address
space in which the buffer is defined. When used in the character device read and write interface, it also
contains the device open-mode flags, along with the device read/write offset.

The kernel provides services that access data using a uio structure. The ureadc, uwritec, uiomove, and
uphysio kernel services all perform data transfers into or out of a data buffer described by a uio structure.
The ureadc kernel service writes a character into the buffer described by the uio structure. The uwritec
kernel service reads a character from the buffer. These two services have names opposite from what you
would expect, since they are named for the user action initiating the operation. A read on the part of the
user thus results in a device driver writing to the buffer, while a write results in a driver reading from the
buffer.

The uiomove kernel service copies data to or from a buffer described by a uio structure from or to a
buffer in the system address space. The uphysio kernel service is used primarily by block device drivers
providing raw I/O support. The uphysio kernel service converts the character read or write request into a
block read or write request and sends it to the ddstrategy routine.

The buffer described by the uio structure can consist of multiple noncontiguous areas of virtual memory
of different lengths. This is achieved by describing the data buffer with an array of elements, each of
which consists of a virtual memory address and a byte length. Each element is defined as an iovec
element. The uio structure also contains a field specifying the total number of bytes in the data buffer
described by the structure.

Another field in the uio structure describes the address space of the data buffer, which can either be
system space, user space, or cross-memory space. If the address space is defined as cross memory, an
additional array of cross-memory descriptors is specified in the uio structure to match the array of iovec
elements.

The uio structure also contains a byte offset (uio_offset). This field is a 64 bit integer (offset_t);
it allows the file system to send I/O requests to a device driver's read & write entry points which have
logical offsets beyond 2 gigabytes. Device drivers must use care not to cause a loss of significance by
assigning the offset to a 32 bit variable or using it in calculations that overflow a 32 bit variable.

The called routine (device driver) is permitted to modify fields in the uio and iovec structures as the
data transfer progresses. The final uio_resid count is in fact used to determine how much data was
transferred. Therefore this count must be decremented, with each operation, by the number of bytes
actually copied.

The uio structure contains the following fields:

Field Description

uio_iov A pointer to an array of iovec structures describing the user buffer for the data
transfer.

uio_xmem A pointer to an array of xmem structures containing the cross-memory descriptors
for the iovec array.

uio_iovcnt The number of yet-to-be-processed iovec structures in the array pointed to by the
uio_iov pointer. The count must be at least 1. If the count is greater than 1, then a
scatter-gather of the data is to be performed into or out of the areas described by the
iovec structures.

uio_iovdcnt The number of already processed iovec structures in the iovec array.

uio_offset The file offset established by a previous lseek, llseek subroutine call. Most character
devices ignore this variable, but some, such as the /dev/mem pseudo-device, use
and maintain it.

Kernel Services and Subsystem Operations 667

Field Description

uio_segflg A flag indicating the type of buffer being described by the uio structure. This flag
typically describes whether the data area is in user or kernel space or is in cross-
memory. Refer to the /usr/include/sys/uio.h file for a description of the possible
values of this flag and their meanings.

uio_fmode The value of the file mode that was specified on opening the file or modified
by the fcntl subroutine. This flag describes the file control parameters. The /usr/
include/sys/fcntl.h file contains specific values for this flag.

uio_resid The byte count for the data transfer. It must not exceed the sum of all the iov_len
values in the array of iovec structures. Initially, this field contains the total byte
count, and when the operation completes, the value must be decremented by the
actual number of bytes transferred.

The iovec structure contains the starting address and length of a contiguous data area to be used in a
data transfer. The iovec structure is the element type in an array pointed to by the uio_iov field in the
uio structure. This array can contain any number of iovec structures, each of which describes a single unit
of contiguous storage. Taken together, these units represent the total area into which, or from which, data
is to be transferred. The uio_iovcnt field gives the number of iovec structures in the array.

The iovec structure contains the following fields:

Field Description

iov_base A variable in the iovec structure containing the base address of the contiguous data area
in the address space specified by the uio_segflag field. The length of the contiguous
data area is specified by the iov_len field.

iov_len A variable in the iovec structure containing the byte length of the data area starting at the
address given in the iov_base variable.

Related reference
uiomove Kernel Service
uphysio Kernel Service
vnop_getxacl Entry Point
Related information
Device Driver Kernel Extension Overview

Virtual File System Operations
The following topic provides entry points specified by the virtual file system interface for performing
operations on vfs structures.

The following entry points are specified by the virtual file system interface for performing operations on
vfs structures:

Entry Point Description

vfs_aclxcntl Issues ACL related control operations for a file system.

vfs_cntl Issues control operations for a file system.

vfs_init Initializes a virtual file system.

vfs_mount Mounts a virtual file system.

vfs_root Finds the root v-node of a virtual file system.

vfs_statfs Obtains virtual file system statistics.

vfs_sync Forces file system updates to permanent storage.

vfs_umount Unmounts a virtual file system.

668 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Entry Point Description

vfs_vget Gets the v-node corresponding to a file identifier.

The following entry points are specified by the Virtual File System interface for performing operations on
v-node structures:

Entry Point Description

vnop_access Tests a user's permission to access a file.

vnop_close Releases the resources associated with a v-node.

vnop_create Creates and opens a new file.

vnop_create_attr Creates and opens a new file with initial attributes.

vnop_fclear Releases portions of a file (by zeroing bytes).

vnop_fid Builds a file identifier for a v-node.

vnop_finfo Returns pathconf information about a file or file system.

vnop_fsync Flushes in-memory information and data to permanent storage.

vnop_fsync_range Flushes in-memory information and data for a given range to permanent storage.

vnop_ftrunc Decreases the size of a file.

vnop_getacl Gets information about access control, by retrieving the access control list.

vnop_getattr Gets the attributes of a file.

vnop_getxacl Gets information about access control by retrieving the ACL. Provides an advanced interface when
compared to vnop_getacl.

vnop_hold Assures that a v-node is not destroyed, by incrementing the v-node's use count.

vnop_ioctl Performs miscellaneous operations on devices.

vnop_link Creates a new directory entry for a file.

vnop_lockctl Sets, removes, and queries file locks.

vnop_lookup Finds an object by name in a directory.

vnop_map Associates a file with a memory segment.

vnop_map_lloff Associates a file with a memory segment using 64 bit offset.

vnop_memcntl Manages physical attachment of a file.

vnop_mkdir Creates a directory.

vnop_mknod Creates a file of arbitrary type.

vnop_open Gets read and/or write access to a file.

vnop_rdwr Reads or writes a file.

vnop_rdwr_attr Reads or writes a file and returns attributes.

vnop_readdir Reads directory entries in standard format.

vnop_readdir_eofp Reads directories and returns end of file indication.

vnop_readlink Reads the contents of a symbolic link.

vnop_rele Releases a reference to a virtual node (v-node).

vnop_remove Unlinks a file or directory.

vnop_rename Renames a file or directory.

vnop_revoke Revokes access to an object.

vnop_rmdir Removes a directory.

vnop_seek Moves the current offset in a file.

vnop_select Polls a v-node for pending I/O.

vnop_setacl Sets information about access control for a file.

vnop_setattr Sets attributes of a file.

Kernel Services and Subsystem Operations 669

Entry Point Description

vnop_setxacl Sets information about access control for a file. Provides an advanced interface compared to
vnop_setacl.

vnop_strategy Reads or writes blocks of a file.

vnop_symlink Creates a symbolic link.

vnop_unmap Destroys a file or memory association.

Related information
Virtual File System Overview
Virtual File System Kernel Extensions Overview

vfs_aclxcntl Entry Point

Purpose
Implements access-control-specific control operations for a file system.

Syntax

int vfs_aclxcntl (vfsp, vp, cmd, uiop, argsize, crp)

struct vfs *vfsp;
struct vnode *vp;
int cmd;
struct uio *uiop;
size_t *argsize;
struct ucred *crp;

Description
The vfs_aclxcntl entry point is invoked to perform various ACL-specific control operations on the
underlying physical file system. If a file system is implemented to support this interface, it needs to
adhere to the various commands and arguments defined for the interface. A file system implementation
can define cmd parameter values and corresponding control functions that are specific to the file system.
The cmd parameter for these functions has values defined globally for all the physical file systems. These
control operations can be issued with the ACL library interfaces.

Parameters
Item Description

vfsp Points to the file system for which the control operation is to be issued.

vp Points to the virtual node pointer to the file path of the file system for which the control
operation is being requested.

670 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

cmd Specifies which control operation to perform. Has one of the following values:
ACLCNTL_GETACLXTYPES

Returns the various ACL types supported for the file system instance. This area is of
the following structure type:

typedef struct _acl_types_list_t {
 uint32_t num_entries; // in the buffer to follow
 uint32_t pad; // reserved space
 acl_type_t entries[MAX_ACL_TYPES];
 // Array of ACL types
} acl_types_list_t ;

If the buffer space is not enough to accommodate ACL types supported by the physical
file system, errno is set to ENOSPC and the necessary size of the buffer is returned in
argsize.

ACLCNTL_GETACLXTYPEINFO
Returns the characteristics information related to an ACL type for the file system
instance. This area is of the following structure type:

typedef struct _acl_type_info_t {
 acl_type_t acl_type;
// ACL type for which info is needed
 uint8_t acl_type_info;
// Start of ACL characteristics data
} _acl_type_info_t ;

acl_type_info is the start byte of the ACL-related characteristics information. ACL
characteristics information depends on the ACL type. ACL characteristics for NFS4
ACL type have the following structure:

typedef struct _nfs4_acl_type_info_t {
 uint32_t version;
// Version of this structure
 uint32_t acl_suport;
// Support of Access control entry types.
} nfs4_acl_type_info_t ;

If the buffer space is not enough to accommodate the ACL types supported by the
physical file system, errno is set to ENOSPC and the necessary size of the buffer is
returned in argsize.

uiop Identifies data specific to the control operation. If the cmd parameter has a value of
ACLCNTL_GETACLXTYPES, uiop points to a buffer area where the file system stores the
supported ACL types. If the cmd parameter has a value of ACLCNTL_GETACLXTYPEINFO,
uiop points to a buffer area where the file system stores the ACL characteristics
information.

argsize Identifies the length of the data specified by the arg parameter. This buffer is used to
return the necessary buffer size, in case the buffer size provided by the user is not enough.

crp Points to the cred structure. This structure contains data that the file system can use to
validate access permission.

Execution Environment
The vfs_aclxcntl entry point can be called from the process environment only.

Return Values
Upon successful completion, the vfs_aclxcntl entry point returns 0. Nonzero return values are returned
from the /usr/include/sys/errno.h file to indicate failure.

Kernel Services and Subsystem Operations 671

Item Description

EACCES The cmd parameter requires a privilege that the current process does not have.

EINVAL Indicates that the cmd parameter is not a supported control, or the arg parameter
is not a valid argument for the command.

ENOSPC The input buffer was not sufficient for storing the requested information.

Related information
Virtual File System Overview
Virtual File System Kernel Extensions Overview
Logical File System Overview

vfs_cntl Entry Point

Purpose
Implements control operations for a file system.

Syntax
int vfs_cntl (vfsp, cmd, arg, argsize, crp)
struct vfs * vfsp;
int cmd;
caddr_t arg;
unsigned long argsize;
struct ucred * crp;

Parameters

Item Description

vfsp Points to the file system for which the control operation is to be issued.

cmd Specifies which control operation to perform.

arg Identifies data specific to the control operation.

argsize Identifies the length of the data specified by the arg parameter.

crp Points to the cred structure. This structure contains data that the file system can use to
validate access permission.

Description
The vfs_cntl entry point is invoked by the logical file system to request various control operations on
the underlying file system. A file system implementation can define file system-specific cmd parameter
values and corresponding control functions. The cmd parameter for these functions should have a
minimum value of 32768. These control operations can be issued with the fscntl subroutine.

Note: The only system-supported control operation is FS_EXTENDFS. This operation increases the file
system size and accepts an arg parameter that specifies the new size. The FS_EXTENDFS operation
ignores the argsize parameter.

Execution Environment
The vfs_cntl entry point can be called from the process environment only.

672 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values

Ite
m

Description

0 Indicates success.

Non-zero return values are returned from the /usr/include/sys/errno.h file to indicate failure. Typical
values include:

Item Description

EINVAL Indicates that the cmd parameter is not a supported control, or the arg parameter is not a
valid argument for the command.

EACCES Indicates that the cmd parameter requires a privilege that the current process does not have.

Related information
fscntl subroutine
Virtual File System Overview
Virtual File System Kernel Extensions Overview

vfs_hold or vfs_unhold Kernel Service

Purpose
Holds or releases a vfs structure.

Syntax

#include <sys/vfs.h>

void vfs_hold(vfsp)
struct vfs *vfsp;

int vfs_unhold(vfsp)
struct vfs *vfsp;

Parameter

Item Description

vfsp Points to a vfs structure.

Description
The vfs_hold kernel service holds a vfs structure and the vfs_unhold kernel service releases it. These
routines manage a use count for a virtual file system (VFS). A use count greater than 1 prevents the virtual
file system from being unmounted.

Execution Environment
These kernel services can be called from the process environment only.

Return Values
The vfs_hold kernel service has no return value.

The vfs_unhold kernel service returns the original value of the hold count.

Kernel Services and Subsystem Operations 673

vfs_init Entry Point

Purpose
Initializes a virtual file system.

Syntax
int vfs_init (gfsp)
struct gfs *gfsp;

Parameter

Item Description

gfsp Points to a file system's attribute structure.

Description
The vfs_init entry point is invoked to initialize a file system. It is called when a file system implementation
is loaded to perform file system-specific initialization.

The vfs_init entry point is not called through the virtual file system switch. Instead, it is called indirectly
by the gfsadd kernel service when the vfs_init entry point address is stored in the gfs structure passed to
the gfsadd kernel service as a parameter. (The vfs_init address is placed in the gfs_init field of the gfs
structure.) The gfs structure is defined in the /usr/include/sys/gfs.h file.

Note: The return value for the vfs_init entry point is passed back as the return value from the gfsadd
kernel service.

Execution Environment
The vfs_init entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related reference
gfsadd Kernel Service
Related information
Virtual File System Overview
Virtual File System Kernel Extensions Overview

vfs_mount Entry Point

Purpose
Mounts a virtual file system.

674 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax
int vfs_mount (vfsp)
struct vfs *vfsp;
struct ucred * crp;

Parameter

Item Description

vfsp Points to the newly created vfs structure.

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Description
The vfs_mount entry point is called by the logical file system to mount a new file system. This entry
point is called after the vfs structure is allocated and initialized. Before this structure is passed to the
vfs_mount entry point, the logical file system:

• Guarantees the syntax of the vmount or mount subroutines.
• Allocates the vfs structure.
• Resolves the stub to a virtual node (v-node). This is the vfs_mntdover field in the vfs structure.
• Initializes the following virtual file system fields:

Field Description

vfs_flags Initialized depending on the type of mount. This field takes the following values:
VFS_MOUNTOK

The user has write permission in the stub's parent directory and is the owner
of the stub.

VFS_SUSER
The user has root user authority.

VFS_NOSUID
Execution of setuid and setgid programs from this mount are not allowed.

VFS_NODEV
Opens of devices from this mount are not allowed.

vfs_type Initialized to the / (root) file system type when the mount subroutine is used. If
the vmount subroutine is used, the vfs_type field is set to the type parameter
supplied by the user. The logical file system verifies the existence of the type
parameter.

vfs_ops Initialized according to the vfs_type field.

vfs_mntdover Identifies the v-node that refers to the stub path argument. This argument is
supplied by the mount or vmount subroutine.

vfs_date Holds the time stamp. The time stamp specifies the time to initialize the virtual
file system.

vfs_number Indicates the unique number sequence representing this virtual file system.

vfs_mdata Initialized with the vmount structure supplied by the user. The virtual file system
data is detailed in the /usr/include/sys/vmount.h file. All arguments indicated
by this field are copied to kernel space.

Kernel Services and Subsystem Operations 675

Execution Environment
The vfs_mount entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related information
mount subroutine
Virtual File System Overview
Logical File System Overview

vfs_root Entry Point

Purpose
Returns the root v-node of a virtual file system (VFS).

Syntax
int vfs_root (vfsp, vpp, crp)
struct vfs *vfsp;
struct vnode **vpp;
struct ucred *crp;

Parameters

Item Description

vfsp Points to the vfs structure.

vpp Points to the place to return the v-node pointer.

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Description
The vfs_root entry point is invoked by the logical file system to get a pointer to the root v-node of the file
system. When successful, the vpp parameter points to the root virtual node (v-node) and the v-node hold
count is incremented.

Execution Environment
The vfs_root entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

676 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related information
Virtual File System Overview
Understanding Data Structures and Header Files for Virtual File Systems
Logical File System Overview

vfs_search Kernel Service

Purpose
Searches the vfs list.

Syntax
int vfs_search (vfs_srchfcn, srchargs)
(int (*vfs_srchfcn)(struct vfs *, caddr_t);
caddr_t srchargs;

Parameters

Item Description

vfs_srchfcn Points to a search function. The search function is identified by the vfs_srchfcn
parameter. This function is used to examine or modify an entry in the vfs list. The
search function is called once for each currently active VFS. If the search function
returns a value of 0, iteration through the vfs list continues to the next entry. If the
return value is nonzero, vfs_search kernel service returns to its caller, passing back
the return value from the search function.

 When the system invokes this function, the system passes it a pointer to a virtual file
system (VFS) and the srchargs parameter.

srchargs Points to data to be used by the search function. This pointer is not used by the
vfs_search kernel service but is passed to the search function.

Description
The vfs_search kernel service searches the vfs list. This kernel service allows a process outside the file
system to search the vfs list. The vfs_search kernel service locks out all activity in the vfs list during a
search. Then, the kernel service iterates through the vfs list and calls the search function on each entry.

The search function must not request locks that could result in deadlock. In particular, any attempt to do
lock operations on the vfs list or on other VFS structures could produce deadlock.

The performance of the vfs_search kernel service may not be acceptable for functions requiring quick
response. Iterating through the vfs list and making an indirect function call for each structure is inherently
slow.

Execution Environment
The vfs_search kernel service can be called from the process environment only.

Return Values
This kernel service returns the value returned by the last call to the search function.

Kernel Services and Subsystem Operations 677

vfs_statfs Entry Point

Purpose
Returns virtual file system statistics.

Syntax
int vfs_stafs (vfsp, stafsp, crp)
struct vfs *vfsp;
struct statfs *stafsp;
struct ucred *crp;

Parameters

Item Description

vfsp Points to the vfs structure being queried. This structure is defined in the /usr/include/sys/
vfs.h file.

stafsp Points to a statfs structure. This structure is defined in the /usr/include/sys/statfs.h file.

crp Points to the cred structure. This structure contains data that the file system can use to
validate access permission.

Description
The vfs_stafs entry point is called by the logical file system to obtain file system characteristics. Upon
return, the vfs_statfs entry point has filled in the following fields of the statfs structure:

Field Description

f_blocks Specifies the number of blocks.

f_files Specifies the total number of file system objects.

f_bsize Specifies the file system block size.

f_bfree Specifies the number of free blocks.

f_ffree Specifies the number of free file system objects.

f_fname Specifies a 32-byte string indicating the file system name.

f_fpack Specifies a 32-byte string indicating a pack ID.

f_name_max Specifies the maximum length of an object name.

Fields for which a vfs structure has no values are set to 0.

Execution Environment
The vfs_statfs entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

678 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related information
statfs subroutine
Virtual File System Overview
Virtual File System Kernel Extensions Overview

vfs_sync Entry Point

Purpose
Requests that file system changes be written to permanent storage.

Syntax
int vfs_sync (* gfsp)
struct gfs *gfsp;

Parameter

Item Description

gfsp Points to a gfs structure. The gfs structure describes the file system type. This structure is
defined in the /usr/include/sys/gfs.h file.

Description
The vfs_sync entry point is used by the logical file system to force all data associated with a particular
virtual file system type to be written to its storage. This entry point is used to establish a known consistent
state of the data.

Note: The vfs_sync entry point is called once per file system type rather than once per virtual file system.

Execution Environment
The vfs_sync entry point can be called from the process environment only.

Return Values
The vfs_sync entry point is advisory. It has no return values.

Related information
sync subroutine
Virtual File System Overview
Virtual File System Kernel Extensions Overview
Logical File System Overview

vfs_umount Entry Point

Purpose
Unmounts a virtual file system.

Syntax
int vfs_umount (vfsp, crp)
struct vfs *vfsp;
struct ucred *crp;

Kernel Services and Subsystem Operations 679

Parameters

Item Description

vfsp Points to the vfs structure being unmounted. This structure is defined in the /usr/include/sys/
vfs.h file.

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Description
The vfs_umount entry point is called to unmount a virtual file system. The logical file system performs
services independent of the virtual file system that initiate the unmounting. The logical file system
services:

• Guarantee the syntax of the uvmount subroutine.
• Perform permission checks:

– If the vfsp parameter refers to a device mount, then the user must have root user authority to perform
the operation.

– If the vfsp parameter does not refer to a device mount, then the user must have root user authority
or write permission in the parent directory of the mounted-over virtual node (v-node), as well as write
permission to the file represented by the mounted-over v-node.

• Ensure that the virtual file system being unmounted contains no mount points for other virtual file
systems.

• Ensure that the root v-node is not in use except for the mount. The root v-node is also referred to as the
mounted v-node.

• Clear the v_mvfsp field in the stub v-node. This prevents lookup operations already in progress from
traversing the soon-to-be unmounted mount point.

The logical file system assumes that, if necessary, successful vfs_umount entry point calls free the root
v-node. An error return from the vfs_umount entry point causes the mount point to be re-established. A
0 (zero) returned from the vfs_umount entry point indicates the routine was successful and that the vfs
structure was released.

Execution Environment
The vfs_umount entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related information
umount subroutine
vmount subroutine
Understanding Data Structures and Header Files for Virtual File Systems

680 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

vfs_vget Entry Point

Purpose
Converts a file identifier into a virtual node (v-node).

Syntax
int vfs_vget (vfsp, vpp, fidp, crp)
struct vfs *vfsp;
struct vnode **vpp;
struct fileid *fidp;
struct ucred *crp;

Parameters

Item Description

vfsp Points to the virtual file system that is to contain the v-node. Any returned v-node should belong
to this virtual file system.

vpp Points to the place to return the v-node pointer. This is set to point to the new v-node. The fields
in this v-node should be set as follows:
v_vntype

The type of v-node dependent on private data.
v_count

Set to at least 1 (one).
v_pdata

If a new file, set to the private data for this file system.

fidp Points to a file identifier. This is a file system-specific file identifier that must conform to the fileid
structure.

Note: If the fidp parameter is invalid, the vpp parameter should be set to a null value by the
vfs_vget entry point.

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Description
The vfs_vget entry point is called to convert a file identifier into a v-node. This entry point uses
information in the vfsp and fidp parameters to create a v-node or attach to an existing v-node. This
v-node represents, logically, the same file system object as the file identified by the fidp parameter.

If the v-node already exists, successful operation of this entry point increments the v-node use count and
returns a pointer to the v-node. If the v-node does not exist, the vfs_vget entry point creates it using the
vn_get kernel service and returns a pointer to the new v-node.

Execution Environment
The vfs_vget entry point can be called from the process environment only.

Kernel Services and Subsystem Operations 681

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. A typical
value includes:

Item Description

EINVAL Indicates that the remote virtual file system specified by the vfsp parameter does not support
chained mounts.

Related reference
vn_get Kernel Service
Related information
access subroutine
Virtual File System Overview

vnop_access Entry Point

Purpose
Requests validation of user access to a virtual node (v-node).

Syntax
int vnop_access (vp, mode, who, crp)
struct vnode *vp;
int mode;
int who;
struct ucred *crp;

Parameters

Item Description

vp Points to the v-node.

mode Identifies the access mode.

682 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

who Specifies the IDs for which to check access. This parameter should be one of the following
values, which are defined in the /usr/include/sys/access.h file:
ACC_SELF

Determines if access is permitted for the current process. The effective user and group IDs
and the supplementary group ID of the current process are used for the calculation.

ACC_ANY
Determines if the specified access is permitted for any user, including the object owner. The
mode parameter must contain only one of the valid modes.

ACC_OTHERS
Determines if the specified access is permitted for any user, excluding the owner. The mode
parameter must contain only one of the valid modes.

ACC_ALL
Determines if the specified access is permitted for all users. (This is a useful check to make
when files are to be written blindly across networks.) The mode parameter must contain only
one of the valid modes.

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Description
The vnop_access entry point is used by the logical volume file system to validate access to a v-node.
This entry point is used to implement the access subroutine. The v-node is held for the duration of the
vnop_access entry point. The v-node count is unchanged by this entry point.

In addition, the vnop_access entry point is used for permissions checks from within the file system
implementation. The valid types of access are listed in the /usr/include/sys/access.h file. Current modes
are read, write, execute, and existence check.

Note: The vnop_access entry point must ensure that write access is not requested on a read-only file
system.

Execution Environment
The vnop_access entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. A typical
value includes:

Item Description

EACCES Indicates no access is allowed.

Related information
access subroutine
Virtual File System Overview
Virtual File System Kernel Extensions Overview

Kernel Services and Subsystem Operations 683

vnop_close Entry Point

Purpose
Closes a file associated with a v-node (virtual node).

Syntax
int vnop_close (vp, flag, vinfo, crp)
struct vnode *vp;
int flag;
caddr_t vinfo;
struct ucred *crp;

Parameters

Item Description

vp Points to the v-node.

flag Identifies the flag word from the file pointer.

vinfo This parameter is not used.

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Description
The vnop_close entry point is used by the logical file system to announce that the file associated with a
given v-node is now closed. The v-node continues to remain active but will no longer receive read or write
requests through the vnop_rdwr entry point.

A vnop_close entry point is called only when the use count of an associated file structure entry goes to 0
(zero).

Note: The v-node is held over the duration of the vnop_close entry point.

Execution Environment
The vnop_close entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Note: The vnop_close entry point may fail and an error will be returned to the application. However, the
v-node is considered closed.

Related reference
vnop_open Entry Point
Related information
close subroutine
Virtual File System Overview

684 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

vnop_create Entry Point

Purpose
Creates a new file.

Syntax
int vnop_create (dp, vpp, flag, pname, mode, vinfop, crp)
struct vnode * dp;
struct vnode ** vpp;
int flag;
char * pname;
int mode;
caddr_t * vinfop;
struct ucred * crp;

Parameters

Item Description

dp Points to the virtual node (v-node) of the parent directory.

vpp Points to the place in which the pointer to a v-node for the newly created file is returned.

flag Specifies an integer flag word. The vnop_create entry point uses this parameter to open the
file.

pname Points to the name of the new file.

mode Specifies the mode for the new file.

vinfop This parameter is unused.

crp Points to the cred structure. This structure contains data that the file system can use to
validate access permission.

Description
The vnop_create entry point is invoked by the logical file system to create a regular (v-node type VREG)
file in the directory specified by the dp parameter. (Other v-node operations create directories and special
files.) Virtual node types are defined in the /usr/include/sys/vnode.h file. The v-node of the parent
directory is held during the processing of the vnop_create entry point.

To create a file, the vnop_create entry point does the following:

• Opens the newly created file.
• Checks that the file system associated with the directory is not read-only.

Note: The logical file system calls the vnop_lookup entry point before calling the vnop_create entry
point.

Execution Environment
The vnop_create entry point can be called from the process environment only.

Kernel Services and Subsystem Operations 685

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related reference
vnop_lookup Entry Point
Related information
Virtual File System Overview
Virtual File System Kernel Extensions Overview

vnop_create_attr Entry Point

Purpose
Creates a new file.

Syntax
int vnop_create_attr (dvp, vpp, flags, name, vap, vcf, finfop, crp) struct vnode *dvp; struct vnode *vpp;
int flags; char *name; struct vattr *vap; int vcf; caddr_t finfop; struct ucred *crp;

Parameters

Item Description

dvp Points to the directory vnode.

vpp Points to the newly created vnode pointer.

flags Specifies file creation flags.

name Specifies the name of the file to create.

vattr Points to the initial attributes.

vcf Specifies create flags.

finfop Specifies address of finfo field.

crp Specifies user's credentials.

Description
The vnop_create_attr entry point is used to create a new file. This operation is similar to the vnop_create
entry point except that the initial file attributes are passed in a vattr structure.

The va_mask field in the vattr structure identifies which attributes are to be applied. For example, if the
AT_SIZE bit is set, then the file system should use va_size for the initial file size. For all vnop_create_attr
calls, at least AT_TYPE and AT_MODE must be set.

The vcf parameter controls how the new vnode is to be activated. If vcf is set to VC_OPEN, then the new
object should be opened. If vcf is VC_LOOKUP, then the new object should be created, but not opened. If
vcf is VC_DEFAULT, then the new object should be created, but the vnode for the object is not activated.

File systems that do not define GFS_VERSION421 in their gfs flags do not need to supply a
vnop_create_attr entry point. The logical file system will funnel all creation requests through the old
vnop_create entry point.

686 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The vnop_create_attr entry point can be called from the process environment only.

Return Values

Item Description

Zero Indicates a successful operation; *vpp contains a pointer to the new vnode.

Nonzero Indicates that the operation failed; return values should be chosen from the /usr/
include/sys/errno.h file.

vnop_fclear Entry Point

Purpose
Releases portions of a file.

Syntax
int vnop_fclear (vp, flags, offset, len, vinfo, crp)
struct vnode * vp;
int flags;
offset_t offset;
offset_t len;
caddr_t vinfo;
struct ucred * crp;

Parameters

Item Description

vp Points to the virtual node (v-node) of the file.

flags Identifies the flags from the open file structure.

offset Indicates where to start clearing in the file.

len Specifies the length of the area to be cleared.

vinfo This parameter is unused.

crp Points to the cred structure. This structure contains data that the file system can use to
validate access permission.

Description
The vnop_fclear entry point is called from the logical file system to clear bytes in a file, returning whole
free blocks to the underlying file system. This entry point performs the clear regardless of whether the file
is mapped.

Upon completion of the vnop_fclear entry point, the logical file system updates the file offset to reflect
the number of bytes cleared. Also upon completion, if either the starting or ending offset is past the
starting end of file, the file is extended.

Execution Environment
The vnop_fclear entry point can be called from the process environment only.

Kernel Services and Subsystem Operations 687

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related information
fclear subroutine
Virtual File System Overview

vnop_fid Entry Point

Purpose
Builds a file identifier for a virtual node (v-node).

Syntax
int vnop_fid (vp, fidp, crp)
struct vnode *vp;
struct fileid *fidp;
struct ucred *crp;

Parameters

Item Description

vp Points to the v-node that requires the file identifier.

fidp Points to where to return the file identifier.

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Description
The vnop_fid entry point is invoked to build a file identifier for the given v-node. This file identifier must
contain sufficient information to find a v-node that represents the same file when it is presented to the
vfs_get entry point.

Execution Environment
The vnop_fid entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related information
Virtual File System Overview
Virtual File System Kernel Extensions Overview

688 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Logical File System Overview

vnop_finfo Entry Point

Purpose
Returns information about a file.

Syntax
int vnop_finfo (vp, cmd, bufp, length, crp) struct vnode *vp; int cmd; void *bufp; int length; struct ucred
*crp;

Parameters

Item Description

vp Points to the vnode to be queried.

cmd Specifies the command parameter.

bufp Points to the buffer for the information.

length Specifies the length of the buffer.

crp Specifies user's credentials.

Description
The vnop_finfo entry point is used to query a file system. It is used primarily to implement the pathconf
and fpathconf subroutines. The command parameter defines what type of query is being done. The query
commands and the associated data structures are defined in <sys/finfo.h>. If the file system does not
support the particular query, it should return ENOSYS.

File systems that do not define GFS_VERSION421 in their gfs flags do not need to supply a vnop_finfo
entry point. If the command is FI_PATHCONF, then the logical file system returns generic pathconf
information. If the query is other than FI_PATHCONF, then the request fails with EINVAL.

Execution Environment
The vnop_finfo entry point can be called from the process environment only.

Return Values

Item Description

Zero Indicates a successful operation.

Nonzero Indicates that the operation failed; return values should be chosen from the /usr/
include/sys/errno.h file.

Related information
pathconf, fpathconf
Virtual File System Overview
Logical File System Overview

Kernel Services and Subsystem Operations 689

vnop_fsync, vnop_fsync_range Entry Points

Purpose
Flushes file data from memory to disk.

Syntax
int vnop_fsync (vp, flags, vinfo, crp)
struct vnode *vp;
long flags;
long vinfo;
struct ucred *crp;

int vnop_fsync_range (vp, flags, vinfo, offset, length, crp)
struct vnode *vp;
long flags;
long vinfo;
offset_t offset;
offset_t length;
struct ucred *crp;

Parameters

Item Description

vp Points to the virtual node (v-node) of the file.

flags Identifies flags from the open file and the flags that govern the action to be taken. It can
be one of the following values:
FDATASYNC

The changed data in the range specified by the offset and length parameters
is written to the storage. If the metadata of the file is changed and this changed
metadata must read the data, the metadata is also written to the storage.
Otherwise, the metadata is not updated.

FFILESYNC
The changed data in the range specified by the offset and length parameters is
written to the storage. If any metadata is changed, all of the changed user data is
written to the storage. Metadata changes and file attributes including time stamps
are also written to the storage.

FNOCACHE
The changed data is written to the storage similar to the FDATASYNC flag value.
The full pages in the range specified by the offset and length parameters are
removed from the memory cache. The pages are removed from the cache even if
the pages are not changed. This operation is also applicable to the files that are
open only for reading.

vinfo This parameter is currently not used.

offset Specifies the starting offset in the file of the data to be flushed.

length Specifies the length of the data to be flushed. If you specify the value as zero, all cached
data is flushed.

crp Points to the cred structure. This structure contains data that the file system can use to
validate access permission.

690 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The vnop_fsync entry point is called by the logical file system to request that all modifications associated
with a given v-node to be flushed out to permanent storage. This must be done synchronously so that the
caller can assure that all I/O has completed successfully. The vnop_fsync_range entry point provides the
same function but limits the data to be written to a specified range in the file.

Execution Environment
The vnop_fsync and vnop_fsync_range entry points can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related information
fsync subroutine
Virtual File System Kernel Extensions Overview
Logical File System Overview

vnop_ftrunc Entry Point

Purpose
Truncates a file.

Syntax
int vnop_ftrunc (vp, flags, length, vinfo, crp)
struct vnode * vp;
int flags;
offset_t length;
caddr_t vinfo;
struct ucred * crp;

Parameters

Item Description

vp Points to the virtual node (v-node) of the file.

flags Identifies flags from the open file structure.

length Specifies the length to which the file should be truncated.

vinfo This parameter is unused.

crp Points to the cred structure. This structure contains data that the file system can use to
validate access permission.

Description
The vnop_ftrunc entry point is invoked by the logical file system to decrease the length of a file by
truncating it. This operation is unsuccessful if any process other than the caller has locked a portion of the
file past the specified offset.

Kernel Services and Subsystem Operations 691

Execution Environment
The vnop_ftrunc entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related information
ftruncate subroutine
Virtual File System Overview
Logical File System Overview

vnop_getacl Entry Point

Purpose
Retrieves the access control list (ACL) for a file.

Syntax
#include <sys/acl.h>

int vnop_getacl (vp, uiop, crp)
struct vnode *vp;
struct uio *uiop;
struct ucred *crp;

Description
The vnop_getacl entry point is used by the logical file system to retrieve the access control list (ACL) for a
file to implement the getacl subroutine.

Parameters

Item Description

vp Specifies the virtual node (v-node) of the file system object.

uiop Specifies the uio structure that defines the storage for the ACL.

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Execution Environment
The vnop_getacl entry point can be called from the process environment only.

692 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values

Ite
m

Description

0 Indicates a successful operation.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. A valid
value includes:

Item Description

ENOSPC Indicates that the buffer size specified in the uiop parameter was not large enough to hold the
ACL. If this is the case, the first word of the user buffer (data in the uio structure specified by
the uiop parameter) is set to the appropriate size.

Related reference
uio Structure
Related information
chacl subroutine
statacl subroutine
Virtual File System Overview

vnop_getattr Entry Point

Purpose
Gets the attributes of a file.

Syntax
int vnop_getattr (vp, vap, crp)
struct vnode *vp;
struct vattr *vap;
struct ucred *crp;

Parameters

Ite
m

Description

vp Specifies the virtual node (v-node) of the file system object.

vap Points to a vattr structure.

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Description
The vnop_getattr entry point is called by the logical file system to retrieve information about a file. The
vattr structure indicated by the vap parameter contains all the relevant attributes of the file. The vattr
structure is defined in the /usr/include/sys/vattr.h file. This entry point is used to implement the stat,
fstat, and lstat subroutines.

Note: The indicated v-node is held for the duration of the vnop_getattr subroutine.

Kernel Services and Subsystem Operations 693

Execution Environment
The vnop_getattr entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related information
statx subroutine
Virtual File System Overview
Virtual File System Kernel Extensions Overview

vnop_getxacl Entry Point

Purpose
Retrieves the access control list (ACL) for a file. This is an advanced version of vnop_getacl interface.

Syntax
#include <sys/acl.h>
int vnop_getxacl (vp, ctl_flags, acl_type, uiop, acl_len, mode_info, crp)

struct vnode *vp;
uint64_t ctl_flags;
acl_type_t *acl_type;
struct uio *uiop;
size_t *acl_len;
mode_t *mode_info;
struct ucred *crp;

Description
The vnop_getxacl entry point retrieves the access control list (ACL) for a file system object. It is an
advanced version of vnop_getacl interface and provides for ACL-type-based operations. Note that this
interface can be used to obtain the ACL type and length information, without actually retrieving the ACL
data (see the ctl_flags description for more details).

Parameters
Item Description

vp Specifies the virtual node (v-node) of the file system object.

694 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

acl_type Points to buffer space for file systems to return the ACL type associated
with the file system object. The value should normally be set to ACL_ANY
or 0 when the call is made. Some physical file systems can solicit ACL
requests for a particular ACL type. In such cases, the caller provides the
ACL type requested in this buffer.

Note: The latter issue is file system implementation specific. For example,
when ACL information is requested with an input ACL type, a physical file
system might return an error if the existing ACL associated with the file
system object is of a different ACL type. Or, the file system might emulate
an ACL of the type requested and return.

acl_len Pointer to a length variable. The space pointed to is used as an input,
as well as output, parameter. As input, the value will indicate the size of
buffer uiop. When the call returns, this space holds the actual length of the
ACL (true for when the call is successful or when the call fails with errno
set to ENOSPC).

ctl_flags A 64-bit bit mask that provides control over the ACL retrieval and for any
future variations in the interface. The following value is defined for these
flags:
GET_ACLINFO_ONLY

Gets only the ACL type and length information from the underlying file
system. When this bit is set, arguments such as mode_info can be set
to NULL. All other cases must be valid buffer pointers or else an error
is returned. If this bit is not specified, all the other information about
the ACL (such as ACL data and mode information) is returned.

uiop Specifies the uio structure that provides space for the store of the ACL.

mode_info This value indicates any mode word information that needs to be retrieved
for the file system object as part of this ACL get operation.

crp Points to the cred structure. This structure contains data that the file
system can use to validate access permission.

Execution Environment
The vnop_getxacl entry point can be called from the process environment only.

Return Values
Upon successful completion, the vnop_getxacl entry point returns 0. Nonzero return values are returned
from the /usr/include/sys/errno.h file to indicate failure.

Item Description

ENOSPC Indicates that the buffer size specified in the uiop parameter was not large
enough to hold the ACL.

Note: This list of error numbers is not complete and is dependent on the particular physical file system
implementation supporting the ACL.

Related reference
uio Structure
Related information
chacl subroutine
Virtual File System Overview

Kernel Services and Subsystem Operations 695

vnop_hold Entry Point

Purpose
Assures that a virtual node (v-node) is not destroyed.

Syntax
int vnop_hold (vp)
struct vnode *vp;

Parameter

Ite
m

Description

vp Points to the v-node.

Description
The vnop_hold entry point increments the v_count field, the hold count on the v-node, and the v-node's
underlying g-node (generic node). This incrementation assures that the v-node is not deallocated.

Execution Environment
The vnop_hold entry point can be called from the process environment only.

Return Values
The vnop_hold entry point cannot fail and therefore has no return values.

Related information
Virtual File System Overview

vnop_ioctl Entry Point

Purpose

Requests I/O control operations on special files.

Syntax
int vnop_ioctl (vp, cmd, arg, flags, ext, crp)
struct vnode * vp;
int cmd;
caddr_t arg;
int flags, ext;
struct ucred * crp;

Parameters

Item Description

vp Points to the virtual node (v-node) on which to perform the operation.

696 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

cmd Identifies the specific command. Common operations for the ioctl subroutine are defined
in the /usr/include/sys/ioctl.h file. The file system implementation can define other ioctl
operations.

arg Defines a command-specific argument. This parameter can be a single word or a pointer to an
argument (or result structure).

flags Identifies flags from the open file structure.

ext Specifies the extended parameter passed by the ioctl subroutine. The ioctl subroutine always
sets the ext parameter to 0.

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Description
The vnop_ioctl entry point is used by the logical file system to perform miscellaneous operations on
special files. If the file system supports special files, the information is passed down to the ddioctl entry
point of the device driver associated with the given v-node.

Execution Environment
The vnop_ioctl entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. A valid
value includes:

Item Description

EINVAL Indicates the file system does not support the entry point.

Related information
ioctl subroutine
Logical File System Overview

vnop_link Entry Point

Purpose
Requests a hard link to a file.

Syntax
int vnop_link (vp, dp, name, crp)
struct vnode *vp;
struct vnode *dp;
caddr_t *name;
struct ucred *crp;

Kernel Services and Subsystem Operations 697

Parameters

Item Description

vp Points to the virtual node (v-node) to link to. This v-node is held for the duration of the linking
process.

dp Points to the v-node for the directory in which the link is created. This v-node is held for the
duration of the linking process.

name Identifies the new name of the entry.

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Description
The vnop_link entry point is invoked to create a new hard link to an existing file as part of the link
subroutine. The logical file system ensures that the dp and vp parameters reside in the same virtual file
system, which is not read-only.

Execution Environment
The vnop_link entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related information
Virtual File System Overview
Virtual File System Kernel Extensions Overview
Logical File System Overview

vnop_lockctl Entry Point

Purpose
Sets, checks, and queries record locks.

Syntax
int vnop_lockctl (vp, offset, lckdat, cmd, retry_fn, retry_id, crp)
struct vnode * vp;
offset_t offset;
struct eflock * lckdat;
int cmd;
int (* retry_fn)();
caddr_t retry_id;
struct ucred * crp;

698 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

vp Points to the file's virtual node (v-node).

offset Indicates the file offset from the open file structure. This parameter is used to establish
where the lock region begins.

lckdat Points to the elock structure. This structure describes the lock operation to perform.

cmd Identifies the type of lock operation the vnop_lockctl entry point is to perform. It is a bit
mask that takes the following lock-control values:
SETFLCK

If set, performs a lock set or clear. If clear, returns the lock information. The l_type
field in the eflock structure indicates whether a lock is set or cleared.

SLPFLCK
If the lock is unavailable immediately, wait for it. This is only valid when the SETFLCK
flag is set.

retry_fn Points to a subroutine that is called when a lock is retried. This subroutine is not used if
the lock is granted immediately.

Note: If the retry_fn parameter is not a null value, the vnop_lockctl entry point will not
sleep, regardless of the SLPFLCK flag.

retry_id Points to the location where a value can be stored. This value can be used to correlate
a retry operation with a specific lock or set of locks. The retry value is only used in
conjunction with the retry_fn parameter.

Note: This value is an opaque value and should not be used by the caller for any purpose
other than a lock correlation. (This value should not be used as a pointer.)

crp Points to the cred structure. This structure contains data that the file system can use to
validate access permission.

Description
The vnop_lockctl entry point is used to request record locking. This entry point uses the information in
the eflock structure to implement record locking.

If a requested lock is blocked by an existing lock, the vnop_lockctl entry point should establish a sleeping
lock with the retry subroutine address (specified by the retry_fn parameter) stored in the entry point. The
vnop_lockctl entry point then returns a correlating ID value to the caller (in the retry_id parameter), along
with an exit value of EAGAIN. When the sleeping lock is later awakened, the retry subroutine is called
with the retry_id parameter as its argument.

eflock Structure

The eflock structure is defined in the /usr/include/sys/flock.h file and includes the following fields:

Kernel Services and Subsystem Operations 699

Field Description

l_type Specifies type of lock. This field takes the following values:
F_RDLCK

Indicates read lock.
F_WRLCK

Indicates write lock.
F_UNLCK

Indicates unlock this record. A value of F_UNLCK starting at 0 until 0 for a length of
0 means unlock all locks on this file. Unlocking is done automatically when a file is
closed.

l_whence Specifies location that the l_start field offsets.

l_start Specifies offset from the l_whence field.

l_len Specifies length of record. If this field is 0, the remainder of the file is specified.

l_vfs Specifies virtual file system that contains the file.

l_sysid Specifies value that uniquely identifies the host for a given virtual file system. This field
must be filled in before the call to the vnop_lockctl entry point.

l_pid Specifies process ID (PID) of the lock owner. This field must be filled in before the call to
the vnop_lockctl entry point.

Execution Environment
The vnop_lockctl entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. Valid values
include:

Item Description

EAGAIN Indicates a blocking lock exists and the caller did not use the SLPFLCK flag to request that
the operation sleep.

ERRNO Returns an error number from the /usr/include/sys/errno.h file on failure.

Related information
Virtual File System Overview
Logical File System Overview

vnop_lookup Entry Point

Purpose
Returns a v-node for a given name in a directory.

700 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax
int vnop_lookup (dvp, vpp, name, vattrp , crp)
struct vnode * dvp;
struct vnode ** vpp;
char * name;
struct vattr * vattrp;
struct ucred * crp;

Parameters

Item Description

dvp Points to the virtual node (v-node) of the directory to be searched. The logical file system
verifies that this v-node is of a VDIR type.

name Points to a null-terminated character string containing the file name to look up.

vattrp Points to a vattr structure. If this pointer is NULL, no action is required of the file system
implementation. If it is not NULL, the attributes of the file specified by the name parameter
are returned at the address passed in the vattrp parameter.

vpp Points to the place to which to return the v-node pointer, if the pointer is found. Otherwise, a
null character should be placed in this memory location.

crp Points to the cred structure. This structure contains data that the file system can use to
validate access permission.

Description
The vnop_lookup entry point is invoked by the logical file system to find a v-node. It is used by the kernel
to convert application-given path names to the v-nodes that represent them.

The use count in the v-node specified by the dvp parameter is incremented for this operation, and it is not
decremented by the file system implementation.

If the name is found, a pointer to the desired v-node is placed in the memory location specified by the
vpp parameter, and the v-node hold count is incremented. (In this case, this entry point returns 0.) If the
file name is not found, a null character is placed in the vpp parameter, and the function returns a ENOENT
value. Errors are reported with a return code from the /usr/include/sys/errno.h file. Possible errors are
usually specific to the particular virtual file system involved.

Execution Environment
The vnop_lookup entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related information
Virtual File System Overview
Virtual File System Kernel Extensions Overview
Logical File System Overview

Kernel Services and Subsystem Operations 701

vnop_map Entry Point

Purpose
Validates file mapping requests.

Syntax
int vnop_map (vp, addr, length, offset, flags, crp)
struct vnode * vp;
caddr_t addr;
uint length;
uint offset;
uint flags;
struct ucred * crp;

Parameters
Note: The addr, offset, and length parameters are unused in the current implementation. The file system
is expected to store the segment ID with the file in the gn_seg field of the g-node for the file.

Item Description

vp Points to the virtual node (v-node) of the file.

addr Identifies the location within the process address space where the mapping is to begin.

length Specifies the maximum size to be mapped.

offset Specifies the location within the file where the mapping is to begin.

flags Identifies what type of mapping to perform. This value is composed of bit values defined in
the /usr/include/sys/shm.h file. The following values are of particular interest to file system
implementations:
SHM_RDONLY

The virtual memory object is read-only.
SHM_COPY

The virtual memory object is copy-on-write. If this value is set, updates to the segment
are deferred until an fsync operation is performed on the file. If the file is closed without
an fsync operation, the modifications are discarded. The application that called the
vnop_map entry point is also responsible for calling the vnop_fsync entry point.

Note: Mapped segments do not reflect modifications made to a copy-on-write segment.

crp Points to the cred structure. This structure contains data that applications can use to validate
access permission.

Description
The vnop_map entry point is called by the logical file system to validate mapping requests resulting from
the mmap or shmat subroutines. The logical file system creates the virtual memory object (if it does not
already exist) and increments the object's use count.

Execution Environment
The vnop_map entry point can be called from the process environment only.

702 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related reference
vnop_fsync, vnop_fsync_range Entry Points
Related information
shmat subroutine
Virtual File System Kernel Extensions Overview

vnop_map_lloff Entry Point

Purpose
Announces intention to map a file.

Syntax
int vnop_map_lloff (vp, addr, length, offset, mflags, fflags, crp) struct vnode *vp; caddr_t addr; offset_t
length; offset_t offset; int mflags; int fflags; struct ucred *crp;

Parameters

Item Description

vp Points to the vnode to be queried.

addr Unused.

length Specifies the length of the mapping request.

offset Specifies the starting offset for the map request.

mflags Specifies the mapping flags.

fflags Specifies the file flags.

crp Specifies user's credentials.

Description
The vnop_map_lloff entry point is used to tell the file system that the file is going to be accessed by
memory mapped loads and stores. The file system should fail the request if it does not support memory
mapping. This interface allows applications to specify starting offsets that are larger than 2 gigabytes.

File systems that do not define GFS_VERSION421 in their gfs flags do not need to supply a
vnop_map_lloff entry point.

Execution Environment
The vnop_map_lloff entry point can be called from the process environment only.

Kernel Services and Subsystem Operations 703

Return Values

Item Description

Zero Indicates a successful operation.

Nonzero Indicates that the operation failed; return values should be chosen from the /usr/
include/sys/errno.h file.

Related information
shmat subroutine
mmap subroutine
Virtual File System Kernel Extensions Overview

vnop_memcntl Entry Point

Purpose
Changes or queries the physical attachment of a file.

Syntax

#include <sys/vnode.h>
#include <sys/fcntl.h>

int vnop_memcntl (vnode, cmd, arg, crp)
struct gnode * vnode;
int cmd;
void * arg;
struct ucred * crp;

Parameters

Item Description

vnode Points to the virtual node of the file

cmd Specifies the operation to be performed. The cmd parameter can be one of the
following values:

• F_ATTACH
• F_DETACH
• F_ATTINFO

arg Points to a structure containing the attach_desc_t, detach_desc_t or attinfo_desc_t
information according to the specified cmd parameter.

F_ATTACH attach_desc_t

F_DETACH detach_desc_t

F_ATTINFO attinfo_desc_t

crp Points to the cred structure. This structure contains data that the file system can use
to validate access permission.

Description
The vnop_memcntl entry point requests memory attachment operations as specified by the cmd
parameter. The cmd parameter determines the arg structure.

704 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution Environment
The vnop_memcntl entry point can be called from the process environment only.

Return Values

Item Description

0 Success.

non-zero Failure.

Related information
Workload management

vnop_mkdir Entry Point

Purpose
Creates a directory.

Syntax
int vnop_mkdir (dp, name, mode, crp)
struct vnode *dp;
caddr_t name;
int mode;
struct ucred *crp;

Parameters

Item Description

dp Points to the virtual node (v-node) of the parent directory of a new directory. This v-node is held
for the duration of the entry point.

name Specifies the name of a new directory.

mode Specifies the permission modes of a new directory.

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Description
The vnop_mkdir entry point is invoked by the logical file system as the result of the mkdir subroutine. The
vnop_mkdir entry point is expected to create the named directory in the parent directory associated with
the dp parameter. The logical file system ensures that the dp parameter does not reside on a read-only
file system.

Execution Environment
The vnop_mkdir entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Kernel Services and Subsystem Operations 705

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related information
mkdir subroutine
Virtual File System Overview
Logical File System Overview

vnop_mknod Entry Point

Purpose
Creates a special file.

Syntax
int vnop_mknod (dvp, name, mode, dev, crp)
struct vnode * dvp;
caddr_t * name;
int mode;
dev_t dev;
struct ucred * crp;

Parameters

Item Description

dvp Points to the virtual node (v-node) for the directory to contain the new file. This v-node is held for
the duration of the vnop_mknod entry point.

name Specifies the name of a new file.

mode Identifies the integer mode that indicates the type of file and its permissions.

dev Identifies an integer device number.

crp Points to the cred structure. This structure contains data that applications can use to validate
access permission.

Description
The vnop_mknod entry point is invoked by the logical file system as the result of a mknod subroutine.
The underlying file system is expected to create a new file in the given directory. The file type bits of the
mode parameter indicate the type of file (regular, character special, or block special) to be created. If a
special file is to be created, the dev parameter indicates the device number of the new special file.

The logical file system verifies that the dvp parameter does not reside in a read-only file system.

Execution Environment
The vnop_mknod entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

706 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Related information
mknod subroutine
Virtual File System Overview
Logical File System Overview

vnop_open Entry Point

Purpose
Requests that a file be opened for reading or writing.

Syntax
int vnop_open (vp, flag, ext, vinfop, crp)
struct vnode * vp;
int flag;
caddr_t ext;
caddr_t vinfop;
struct ucred * crp;

Parameters

Item Description

vp Points to the virtual node (v-node) associated with the desired file. The v-node is held for the
duration of the open process.

flag Specifies the type of access. Access modes are defined in the /usr/include/sys/fcntl.h file.

Note: The vnop_open entry point does not use the FCREAT mode.

ext Points to external data. This parameter is used if the subroutine is opening a device.

vinfop This parameter is not currently used.

crp Points to the cred structure. This structure contains data that the file system can use to
validate access permission.

Description
The vnop_open entry point is called to initiate a process access to a v-node and its underlying file
system object. The operation of the vnop_open entry point varies between virtual file system (VFS)
implementations. A successful vnop_open entry point must leave a v-node count of at least 1.

The logical file system ensures that the process is not requesting write access (with the FWRITE or
FTRUNC mode) to a read-only file system.

Execution Environment
The vnop_open entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Kernel Services and Subsystem Operations 707

Related reference
vnop_close Entry Point
Related information
open subroutine
Virtual File System Overview

vnop_rdwr, vnop_rdwr_attr Entry Points

Purpose
Requests file I/O.

Syntax
int vnop_rdwr (vp, op, flags, uiop, ext, vinfo, vattrp, crp)
struct vnode * vp;
enum uio_rw op;
int flags;
struct uio * uiop;
int ext;
caddr_t vinfo;
struct vattr * vattrp;
struct ucred * crp;

int vnop_rdwr_attr (vp, op, flags, uiop, ext, vinfo, vpre, vpost, crp)
struct vnode * vp;
enum uio_rw op;
long flags;
struct uio * uiop;
ext_t ext;
caddr_t vinfo;
struct vattr * vpre;
struct vattr * vpost;
struct ucred * crp;

Parameters

Item Description

vp Points to the virtual node (v-node) of the file.

op Specifies a number that indicates a read or write operation. This parameter has a value of
either UIO_READ or UIO_WRITE. These values are found in the /usr/include/sys/uio.h file.

flags Identifies flags from the open file structure.

uiop Points to a uio structure. This structure describes the count, data buffer, and other I/O
information.

ext Provides an extension for special purposes. Its use and meaning are specific to virtual file
systems, and it is usually ignored except for devices.

vinfo This parameter is currently not used.

vattrp Points to a vattr structure. If this pointer is NULL, no action is required of the file system
implementation. If it is not NULL, the attributes of the file specified by the vp parameter are
returned at the address passed in the vattrp parameter.

vpre Points to an attributes structure for pre-operation attributes.

vpost Points to an attributes structure for post-operation attributes.

708 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

crp Points to the cred structure. This structure contains data that the file system can use to
validate access permission.

Description
The vnop_rdwr entry point is used to request that data to be read or written from an object represented
by a v-node. The vnop_rdwr entry point does the indicated data transfer and sets the number of bytes not
transferred in the uio_resid field. This field is 0 (zero) on successful completion.

The vnop_rdwr_attr kernel service performs the same function as the vnop_rdwr kernel service but also
allows the caller to retrieve attributes of the object either before the I/O, after or both.

Execution Environment
The vnop_rdwr and vnop_rdwr_attr entry points can be called from the process environment only.

Return Values
Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. The
vnop_rdwr entry point returns an error code if an operation did not transfer all the data requested.
The only exception is if an end of file is reached on a read request. In this case, the operation still returns
0.

Related reference
vnop_create Entry Point
vnop_open Entry Point
Related information
Virtual File System Kernel Extensions Overview

vnop_readdir Entry Point

Purpose
Reads directory entries in standard format.

Syntax
int vnop_readdir (vp, uiop, crp)
struct vnode *vp;
struct uio *uiop;
struct ucred *crp;

Parameters

Item Description

vp Points to the virtual node (v-node) of the directory.

uiop Points to the uio structure that describes the data area into which to put the block of dirent
structures. The starting directory offset is found in the uiop->uio_offset field and the size of
the buffer area is found in the uiop->uio_resid field.

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Kernel Services and Subsystem Operations 709

Description
The vnop_readdir entry point is used to access directory entries in a standard way. These directories
should be returned as an array of dirent structures. The /usr/include/sys/dir.h file contains the definition
of a dirent structure.

The vnop_readdir entry point does the following:

• Copies a block of directory entries into the buffer specified by the uiop parameter.
• Sets the uiop->uio_resid field to indicate the number of bytes read.

The End-of-file character should be indicated by not reading any bytes (not by a partial read). This
provides directories with the ability to have some hidden information in each block.

The virtual file system-specific implementation is also responsible for setting the uio_offset field to the
offset of the next whole block to be read.

Notes:

• If the call is meant for a JFS2 filesystem, extra processing is needed to avoid duplicate entries being
returned in the user data area. The caller can check the VFS type from the directory vnode.

• The caller must allocate a two-element array of type struct iovec to pass with the uio structure. The
first element is initialized to point to the user data area to receive the dirent structures. If the file
pointer of the directory has a non-NULL f_vinfo field, the second iovec element is initialized to point
to the f_vinfo field and the length is set to 0; the number of elements in the uio structure is set to 2. If
the f_vinfo field is NULL, then the number of elements in the uio structure is set to 1 and the second
iovec element remains uninitialized.

• If the caller does not have access to the directory file pointer, a dirent structure can be allocated in
place of the f_vinfo field. The caller must not change this allocated structure between calls to the
vnop_readdir entry point.

Execution Environment
The vnop_readdir entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related information
readdir subroutine
Virtual File System Overview
Logical File System Overview

vnop_readdir_eofp Entry Point

Purpose
Returns directory entries.

Syntax
int vnop_readdirr_eofp (vp, uiop, eofp, crp) struct vnode *vp; struct uio *uiop; int *eofp; struct ucred
*crp;

710 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

vp Points to the directory vnode to be processed.

uiop Points to the uiop structure describing the user's buffer.

eofp Points to a word that places the eop structure.

crp Specifies user's credentials.

Description
The vnop_readdir_eofp entry point is used to read directory entries. It is similar to vnop_readdir except
that it takes the additional parameter, eofp. The location pointed to by the eofp parameter should be set to
1 if the readdir request reached the end of the directory. Otherwise, it should be set to 0.

File systems that do not define GFS_VERSION421 in their gfs flags do not need to supply a
vnop_readdir_eofp entry point.

Note: If the call is meant for a JFS2 file system, extra processing is needed to avoid duplicate entries
being returned in the user data area, similar to the vnop_readdir entry point.

Execution Environment
The vnop_readdir_eofp entry point can be called from the process environment only.

Return Values

Item Description

Zero Indicates a successful operation.

Nonzero Indicates that the operation failed; return values should be chosen from the /usr/
include/sys/errno.h file.

Related reference
vnop_readdir Entry Point
Related information
readdir subroutine
Virtual File System Overview
Logical File System Overview

vnop_readlink Entry Point

Purpose
Reads the contents of a symbolic link.

Syntax
int vnop_readlink (vp, uio, crp)
struct vnode *vp;
struct uio *uio;
struct ucred *crp;

Kernel Services and Subsystem Operations 711

Parameters

Ite
m

Description

vp Points to a virtual node (v-node) structure. The vnop_readlink entry point holds this v-node for the
duration of the routine.

uio Points to a uio structure. This structure contains the information required to read the link. In
addition, it contains the return buffer for the vnop_readlink entry point.

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Description
The vnop_readlink entry point is used by the logical file system to get the contents of a symbolic link,
if the file system supports symbolic links. The logical file system finds the v-node (virtual node) for the
symbolic link, so this routine simply reads the data blocks for the symbol link.

Execution Environment
The vnop_readlink entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related reference
uio Structure
Related information
Virtual File System Kernel Extensions Overview
Logical File System Overview

vnop_rele Entry Point

Purpose
Releases a reference to a virtual node (v-node).

Syntax
int vnop_rele (vp,)
struct vnode *vp;

Parameter

Ite
m

Description

vp Points to the v-node.

712 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The vnop_rele entry point is used by the logical file system to release the object associated with a v-node.
If the object was the last reference to the v-node, the vnop_rele entry point then calls the vn_free kernel
service to deallocate the v-node.

If the virtual file system (VFS) was unmounted while there were open files, the logical file system sets
the VFS_UNMOUNTING flag in the vfs structure. If the flag is set and the v-node to be released is the
last v-node on the chain of the vfs structure, then the virtual file system must be deallocated with the
vnop_rele entry point.

Execution Environment
The vnop_rele entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related reference
vn_free Kernel Service
Related information
Virtual File System Overview
Logical File System Overview

vnop_remove Entry Point

Purpose
Unlinks a file or directory.

Syntax
int vnop_remove (vp, dvp, name, crp)
struct vnode *vp;
struct vnode *dvp;
char *name;
struct ucred *crp;

Parameters

Item Description

vp Points to a virtual node (v-node). The v-node indicates which file to remove and is held over the
duration of the vnop_remove entry point.

dvp Points to the v-node of the parent directory. This directory contains the file to be removed. The
directory's v-node is held for the duration of the vnop_remove entry point.

name Identifies the name of the file.

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Kernel Services and Subsystem Operations 713

Description
The vnop_remove entry point is called by the logical file system to remove a directory entry (or link) as
the result of a call to the unlink subroutine.

The logical file system assumes that the vnop_remove entry point calls the vnop_rele entry point. If the
link is the last reference to the file in the file system, the disk resources that the file is using are released.

The logical file system ensures that the directory specified by the dvp parameter does not reside in a
read-only file system.

Execution Environment
The vnop_remove entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related reference
vnop_rele Entry Point
Related information
unlink subroutine
Virtual File System Overview

vnop_rename Entry Point

Purpose
Renames a file or directory.

Syntax
int vnop_rename (srcvp, srcdvp, oldname, destvp, destdvp, newname, crp)
struct vnode * srcvp;
struct vnode * srcdvp;
char * oldname;
struct vnode * destvp;
struct vnode * destdvp;
char * newname;
struct ucred * crp;

Parameters

Item Description

srcvp Points to the virtual node (v-node) of the object to rename.

srcdvp Points to the v-node of the directory where the srcvp parameter resides. The parent
directory for the old and new object can be the same.

oldname Identifies the old name of the object.

destvp Points to the v-node of the new object. This pointer is used only if the new object exists.
Otherwise, this parameter is the null character.

714 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

destdvp Points to the parent directory of the new object. The parent directory for the new and old
objects can be the same.

newname Points to the new name of the object.

crp Points to the cred structure. This structure contains data that applications can use to
validate access permission.

Description
The vnop_rename entry point is invoked by the logical file system to rename a file or directory. This entry
point provides the following renaming actions:

• Renames an old object to a new object that exists in a different parent directory.
• Renames an old object to a new object that does not exist in a different parent directory.
• Renames an old object to a new object that exists in the same parent directory.
• Renames an old object to a new object that does not exist in the same parent directory.

To ensure that this entry point routine executes correctly, the logical file system guarantees the following:

• File names are not renamed across file systems.
• The old and new objects (if specified) are not the same.
• The old and new parent directories are of the same type of v-node.

Execution Environment
The vnop_rename entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related information
rename subroutine
Virtual File System Overview
Logical File System Overview

vnop_revoke Entry Point

Purpose
Revokes all access to an object.

Syntax
int vnop_revoke (vp, cmd, flag, vinfop, crp)
struct vnode * vp;
int cmd;
int flag;
caddr_t vinfop;
struct ucred * crp;

Kernel Services and Subsystem Operations 715

Parameters

Item Description

vp Points to the virtual node (v-node) containing the object.

cmd Indicates whether the calling process holds the file open. This parameter takes the following
values:
0

The process did not have the file open.
1

The process had the file open.
2

The process had the file open and the reference count in the file structure was greater
than 1.

flag Identifies the flags from the file structure.

vinfop This parameter is currently unused.

crp Points to the cred structure. This structure contains data that the file system can use to
validate access permission.

Description
The vnop_revoke entry point is called to revoke further access to an object.

Execution Environment
The vnop_revoke entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related information
frevoke subroutine
revoke subroutine
Virtual File System Overview

vnop_rmdir Entry Point

Purpose
Removes a directory.

Syntax
int vnop_rmdir (vp, dp, pname, crp)
struct vnode *vp;
struct vnode *dp;
char *pname;
struct ucred *crp;

716 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters

Item Description

vp Points to the virtual node (v-node) of the directory.

dp Points to the parent of the directory to remove.

pname Points to the name of the directory to remove.

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Description
The vnop_rmdir entry point is invoked by the logical file system to remove a directory object. To remove
a directory, the directory must be empty (except for the current and parent directories). Before removing
the directory, the logical file system ensures the following:

• The vp parameter is a directory.
• The vp parameter is not the root of a virtual file system.
• The vp parameter is not the current directory.
• The dp parameter does not reside on a read-only file system.

Note: The vp and dp parameters' v-nodes (virtual nodes) are held for the duration of the routine.

Execution Environment
The vnop_rmdir entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related information
rmdir subroutine
Virtual File System Overview
Logical File System Overview

vnop_seek Entry Point

Purpose
Validates file offsets.

Syntax
int vnop_seek (vp, offsetp, crp)
struct vnode * vp;
offset_t * offp;
struct ucred * crp;

Kernel Services and Subsystem Operations 717

Parameters

Item Description

vp Points to the virtual node (vnode) of the file.

offp Points to the location of the new offset to validate.

crp Points to the user's credential.

Description
The vnop_seek entry point is called by the logical file system to validate a new offset that is computed
by the lseek, llseek, and lseek64 subroutines. The file system implementation must check the offset
that is pointed to by the offp parameter and, if it is acceptable for the file, return zero. If the offset is
not acceptable, the routine must return a non-zero value. EINVAL is the suggested error value for invalid
offsets.

File system that do not want to do offset validation can simply return 0. File system that do not provide
the vnop_seek entry point has a maximum offset of OFF_MAX (2 gigabytes minus 1) enforced by the
logical file system.

Execution Environment
The vnop_seek entry point is to be called from the process environment only.

Return Values

Item Description

0 Indicates success.

Non-zero Return values are returned the /usr/include/sys/errno.h file to indicate failure.

Related information
lseek, llseek, and, lseek64

vnop_select Entry Point

Purpose
Polls a virtual node (v-node) for immediate I/O.

Syntax
int vnop_select (vp, correl, e, re, notify, vinfo, crp)
struct vnode * vp;
int correl;
int e;
int re;
int (* notify)();
caddr_t vinfo;
struct ucred * crp;

Parameters

Item Description

vp Points to the v-node to be polled.

718 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

correl Specifies the ID used for correlation in the selnotify kernel service.

e Identifies the requested event.

re Returns an events list. If the v-node is ready for immediate I/O, this field should be set to
indicate the requested event is ready.

notify Specifies the subroutine to call when the event occurs. This parameter is for nested polls.

vinfo Is currently unused.

crp Points to the cred structure. This structure contains data that the file system can use to
validate access permission.

Description
The vnop_select entry point is invoked by the logical file system to poll a v-node to determine if it is
immediately ready for I/O. This entry point is used to implement the select and poll subroutines.

File system implementation can support constructs, such as devices or pipes, that support the select
semantics. The fp_select kernel service provides more information about select and poll requests.

Execution Environment
The vnop_select entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related reference
fp_select Kernel Service
Related information
select subroutine
Virtual File System Kernel Extensions Overview

vnop_setacl Entry Point

Purpose
Sets the access control list (ACL) for a file.

Syntax

#include <sys/acl.h>

int vnop_setacl (vp, uiop, crp)
struct vnode *vp;
struct uio *uiop;
struct ucred *crp;

Kernel Services and Subsystem Operations 719

Description
The vnop_setacl entry point is used by the logical file system to set the access control list (ACL) on a file.

Parameters

Item Description

vp Specifies the virtual node (v-node) of the file system object.

uiop Specifies the uio structure that defines the storage for the call arguments.

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Execution Environment
The vnop_setacl entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. Valid values
include:

Item Description

ENOSPC Indicates that the space cannot be allocated to hold the new ACL information.

EPERM Indicates that the effective user ID of the process is not the owner of the file and the process
is not privileged.

Related information
chacl subroutine
statacl subroutine
Virtual File System Overview

vnop_setattr Entry Point

Purpose
Sets attributes of a file.

Syntax
int vnop_setattr (vp, cmd, arg1, arg2, arg3, crp)
struct vnode * vp;
int cmd;
int arg1;
int arg2;
int arg3;
struct ucred * crp;

720 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The vnop_setattr entry point is used by the logical file system to set the attributes of a file. This entry
point is used to implement the chmod, chownx, and utime subroutines.

The values that the arg parameters take depend on the value of the cmd parameter. The vnop_setattr
entry point accepts the following cmd values and arg parameters:

Possible cmd Values for the vnop_setattr Entry Point

Command V_OWN V_UTIME V_MODE

arg1 int flag; int flag; int mode;

arg2 int uid; timestruc_t *atime; Unused

arg3 int gid; timestruc_t *mtime; Unused

Note: For V_UTIME, if arg2 or arg3 is NULL, then the corresponding time field, atime and mtime, of the file
should be left unchanged.

Parameters

Item Description

vp Points to the virtual node (v-node) of the file.

cmd Defines the setting operation. This parameter takes the following values:
V_OWN

Sets the user ID (UID) and group ID (GID) to the UID and GID values of
the new file owner. The flag argument indicates which ID is affected.

V_UTIME
Sets the access and modification time for the new file. If the flag
parameter has the value of T_SETTIME, then the specific values have
not been provided and the access and modification times of the object
should be set to current system time. If the T_SETTIME value is not
specified, the values are specified by the atime and mtime variables.

V_MODE
Sets the file mode.

The /usr/include/sys/vattr.h file contains the definitions for the three
command values.

arg1, arg2, arg3 Specify the command arguments. The values of the command arguments
depend on which command calls the vnop_setattr entry point.

crp Points to the cred structure. This structure contains data that the file
system can use to validate access permission.

Execution Environment
The vnop_setattr entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Kernel Services and Subsystem Operations 721

Related information
chmod subroutine
Understanding Virtual Nodes (V-nodes)

vnop_setxacl Entry Point

Purpose
Sets the access control list (ACL) for a file system object. This is an advanced interface compared to
vnop_setacl and provides for ACL-type-based operations.

Syntax
#include <sys/acl.h>
int vnop_setxacl (vp, ctl_flags, acl_type, uiop, mode_info, crp)

struct vnode *vp;
uint64_t ctl_flags;
acl_type_t acl_type;
struct uio *uiop;
mode_t mode_info;
struct ucred *crp;

Description
The vnop_setxacl entry point sets the access control list (ACL) on a file. It is an advanced version of
vnop_setacl interface and provides for ACL-type-based operations. This interface can also be used to
manage special bits in mode word (such as SUID, SGID and SVTX) in case the ACL type does not support
these bits through ACL.

Parameters
Item Description

vp Specifies the virtual node (v-node) of the file system object for which the
ACL needs to be set.

acl_type Specifies the ACL type of the ACL information that needs to be set for the
file system object.

Note: If the underlying physical file system does not support the ACL type
being requested, the system could return an error.

acl_len Pointer to a length variable. The space pointed to is used as an input,
as well as output, parameter. As input, the value will indicate the size of
buffer uiop. When the call returns, this space holds the actual length of the
ACL (true for when the call is successful or when the call fails with errno
set to ENOSPC).

722 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

ctl_flags This 64-bit bit mask provides for control over the ACL setting and for
any future variations in the interface. The following flag values have been
defined:
SET_MODE_S_BITS

Indicates that the mode_info value is set by the caller and the ACL put
operation must consider this value to complete the ACL put operation.

SET_ACL
Indicates that the ACL arguments point to valid ACL data that must be
considered while the ACL put operation is being performed.

Note: Both of the preceding values can be specified by the caller by ORing
the two masks.

uiop Specifies the uio structure that defines the storage for the call arguments.

mode_info This value indicates any mode word information that needs to be set for
the file system object as part of this ACL put operation. When mode bits
are altered by specifying the SET_MODE_S_BITS flag (in ctl_flags), the
entire ACL put operation will fail if the caller does not have the required
privileges.

crp Points to the cred structure. This structure contains data that the file
system can use to validate access permission.

Execution Environment
The vnop_setxacl entry point can be called from the process environment only.

Return Values
Upon successful completion, the vnop_setxacl entry point returns 0. Nonzero return values are returned
from the /usr/include/sys/errno.h file to indicate failure.

Item Description

EPERM Indicates that the effective user ID of the process is not authorized to change the
ACL on the specified file system object.

EINVAL Invalid operation. File system might not support the ACL type being set.

Note: This list of error numbers is not complete and is dependent on the particular physical file system
implementation supporting the ACL.

Related reference
vnop_setacl Entry Point
Related information
statacl subroutine
Logical File System Overview

vnop_strategy Entry Point

Purpose
Accesses blocks of a file.

Kernel Services and Subsystem Operations 723

Syntax
int vnop_strategy (vp, bp, crp)
struct vnode *vp;
struct buf *bp;
struct ucred *crp;

Description
Note: The vnop_strategy entry point is not implemented in Version 3.2 of the operating system.

The vnop_strategy entry point accesses blocks of a file. This entry point is intended to provide a block-
oriented interface for servers for efficiency in paging.

Parameters

Ite
m

Description

vp Points to the virtual node (v-node) of the file.

bp Points to a buf structure that describes the buffer.

crp Points to the cred structure. This structure contains data that applications can use to validate
access permission.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related reference
buf Structure
Related information
Virtual File System Overview
Virtual File System Kernel Extensions Overview

vnop_symlink Entry Point

Purpose
Creates a symbolic link.

Syntax
int vnop_symlink (vp, linkname, target, crp)
struct vnode *vp;
char *linkname;
char *target;
struct ucred *crp;

724 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The vnop_symlink entry point is called by the logical file system to create a symbolic link. The path name
specified by the linkname parameter is the name of the new symbolic link. This symbolic link points to the
object named by the target parameter.

Parameters

Item Description

vp Points to the virtual node (v-node) of the parent directory where the link is created.

linkname Points to the name of the new symbolic link. The logical file system guarantees that the
new link does not already exit.

target Points to the name of the object to which the symbolic link points. This name need not be
a fully qualified path name or even an existing object.

crp Points to the cred structure. This structure contains data that the file system can use to
validate access permission.

Execution Environment
The vnop_symlink entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related information
symlink subroutine
Virtual File System Overview
Logical File System Overview

vnop_unmap Entry Point

Purpose
Unmaps a file.

Syntax
int vnop_unmap (vp, flag, crp)
struct vnode *vp;
ulong flag;
struct ucred *crp;

Description
The vnop_unmap entry point is called by the logical file system to unmap a file. When this entry point
routine completes successfully, the use count for the memory object should be decremented and (if the
use count went to 0) the memory object should be destroyed. The file system implementation is required
to perform only those operations that are unique to the file system. The logical file system handles
virtual-memory management operations.

Kernel Services and Subsystem Operations 725

Parameters

Item Description

vp Points to the v-node (virtual node) of the file.

flag Indicates how the file was mapped. This flag takes the following values:
SHM_RDONLY

The virtual memory object is read-only.
SHM_COPY

The virtual memory object is copy-on-write.

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Execution Environment
The vnop_unmap entry point can be called from the process environment only.

Return Values

Ite
m

Description

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related information
Virtual File System Overview
Virtual File System Kernel Extensions Overview
Logical File System Overview

Configuration Subsystem

Adapter-Specific Considerations for the Predefined Attribute (PdAt) Object
Class

Description
The various bus resources required by an adapter card are represented as attributes in the Predefined
Attribute (PdAt) object class. If the currently assigned values differ from the default values, they are
represented with other device attributes in the Customized Attribute (CuAt) object class. To assign bus
resources, the Bus Configurator obtains the bus resource attributes for an adapter from both the PdAt
and CuAt object classes. It also updates the CuAt object class, as necessary, to resolve any bus resource
conflicts.

The following additional guidelines apply to bus resource attributes.

The Attribute Type descriptor must indicate the type of bus resource. The values are as follows:

Val
ue

Description

A Indicates a DMA arbitration level.

B Indicates a bus memory address which is not associated with DMA transfers.

M Indicates a bus memory address to be used for DMA transfers.

726 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Val
ue

Description

I Indicates a bus interrupt level that can be shared with another device.

N Indicates a bus interrupt level that cannot be shared with another device.

O Indicates a bus I/O address.

P Indicates an interrupt-priority class.

W Indicates an amount in bytes of bus memory or bus I/O space.

G Indicates a group.

S Indicates an attribute that must be shared with another adapter.

For bus memory and bus I/O addresses, the amount of address space to be assigned must also be
specified. This value can be specified by either the attribute's Width descriptor or by a separate type W
attribute.

If the value is specified in the attribute's Width descriptor, it is fixed at that value and cannot be
customized. If a separate type W attribute is used, the bus memory or bus I/O attribute's Width descriptor
must be set to a null string. The type W attribute's Width descriptor must indicate the name of the bus
memory or bus I/O attribute to which it applies.

Attribute types G and S are special-purpose types that the Bus Configurator recognizes. If an adapter has
resources whose values cannot be assigned independently of each other, a Group attribute will identify
them to the Bus Configurator. For example, an adapter card might have an interrupt level that depends on
the bus memory address assigned. Suppose that interrupt level 3 must be used with bus memory address
0x1000000, while interrupt level 4 must be used with bus memory address 0x2000000. This relationship
can be described using the Group attribute as discussed in "Predefined Attribute (PdAt) Object Class" .

Occasionally, all cards of a particular type or types must use the same bus resource when present in the
system. This is especially true of interrupt levels. Although most adapter's resources can be assigned
independently of other adapters, even those of the same type, it is not uncommon to find adapters that
must share an attribute value. An adapter card having a bus resource that must be shared with another
adapter needs a type S attribute to describe the relationship.

PdAt Descriptors for Type S Attributes

The PdAt descriptors for a type S attribute should be set as follows:

PdAt Descriptor Setting Description

Unique Type Indicates the unique type of the adapter.

Attribute Name Specifies the name assigned to this attribute.

Default Value Set to a null string.

Possible Values Contains the name of the attribute that must be
shared with another adapter or adapters.

Width Set to a null string.

Attribute Type Set to S.

Generic Attribute Flags Set to a null string. This attribute must neither be
displayed nor set by the user.

Attribute Representation Flags Set to sl, indicating an enumerated list of strings,
even though the list consists of only one item.

NLS Index Set to 0 since the attribute is not displayable.

Kernel Services and Subsystem Operations 727

The type S attribute identifies a bus resource attribute that must be shared. The other adapters are
identifiable by attributes of type S with the same attribute name. The attribute name for the type S
attribute serves as a key to identify all the adapters.

For example, suppose an adapter with unique type adapter/mca/X must share its interrupt level with an
adapter of unique type adapter/mca/Y. The following attributes describe such a relationship:

The Predefined Attribute object for X's interrupt level:

• Attribute Name = int_level
• Default Value = 3
• Possible Values = 2 - 9, 1
• Width = null string
• Unique Type = adapter/mca/X
• Attribute Type = I
• Generic Attribute Flags = D (displayable, but cannot be set by user)
• Attribute Representation Flags = nr
• NLS Index = 12 (message number for text description)

The predefined attribute object describing X's shared interrupt level:

• Unique Type = adapter/mca/X
• Attribute Name = shared_intr
• Default Value = null string
• Possible Values = "int_level"
• Width = null string
• Attribute Type = S
• Generic Attribute Flags = null string
• Attribute Representation Flags = sl
• NLS Index = 0

The Predefined Attribute object for Y's interrupt level:

• Unique Type = adapter/mca/Y
• Attribute Name = interrupt
• Default Value = 7
• Possible Values = 2, 3, 4, 5, 7, 9
• Width = null string
• Attribute Type = I
• Generic Attribute Flags = D (displayed, but cannot be set by user)
• Attribute Representation Flags = nl
• NLS Index = 6 (message number for text description).

The Predefined Attribute object describing Y's shared interrupt level:

• Unique Type = adapter/mca/Y
• Attribute Name = shared_intr
• Default Value = null string
• Possible Values = "interrupt"
• Width = null string
• Attribute Type = S
• Generic Attribute Flags = null string

728 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

• Attribute Representation Flags = sl
• NLS Index = 0

Note that the two adapters require different attributes to describe their interrupt levels. The attribute
name is also different. However, their attributes describing what must be shared have the same name:
shared_intr.

Adapter bus resource attributes except those of type W can be displayed but not set by the user. That is,
the Generic Attribute Flags descriptor can either be a null string or the character D, but cannot be U or DU.
The Bus Configurator has total control over the assignment of bus resources. These resources cannot be
changed to user-supplied values by the Change method.

The Bus Configurator uses type W attributes to allocate bus memory address and bus I/O address
attributes but never changes the value of a type W attribute. Attributes of type W can be set by users by
setting the Generic Attribute flags descriptor to DU. This allows the Change method to change the type W
attribute values to a user-supplied value.

The Bus Configurator does not use or modify any other attribute the adapter may have with attribute type
R.

Adapter-Specific Considerations for the Predefined Devices (PdDv) Object
Class

Description
The information to be populated into the Predefined Devices object class is described in the Predefined
Devices (PdDv) Object Class. The following descriptors should be set as indicated:

Item Description

Device Class Set to adapter.

Device ID Must identify the values that are obtained from the POS(0) and POS(1)
registers on the adapter card. The format is 0xAABB, where AA is the
hexadecimal value obtained from POS(0), and BB the value from POS(1).
This descriptor is used by the Bus Configurator to match up the physical
device with its corresponding information in the Configuration database.

Bus Extender Flag Usually set to FALSE, which indicates that the adapter card is not a bus
extender. This descriptor is set to TRUE for a multi-adapter card requiring
different sets of bus resources assigned to each adapter. The Standard I/O
Planar is an example of such a card.

The Bus Configurator behaves slightly differently for cards that are bus extenders. Typically, it finds
an adapter card and returns the name of the adapter to the Configuration Manager so that it can be
configured.

However, for a bus extender, the Bus Configurator directly invokes the device's Configure method. The bus
extender's Configure method defines the various adapters on the card as separate devices (each needing
its own predefined information and device methods), and writes the names to standard output for the Bus
Configurator to intercept. The Bus Configurator adds these names to the list of device names for which it
is to assign bus resources.

An example of a type of adapter card that would be a bus extender is one which allows an expansion box
with additional card slots to be connected to the system.

attrval Device Configuration Subroutine

Purpose
Verifies that attribute values are within range.

Kernel Services and Subsystem Operations 729

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int attrval (uniquetype, pattr, errattr)
char * uniquetype;
char * pattr;
char ** errattr;

Parameters

Item Description

uniquetype Identifies the predefined device object, which is a pointer to a character string of
the form class/subclass/type.

pattr Points to a character string containing the attribute-value pairs to be validated,
in the form attr1=val1 attr2=val2.

errattr Points a pointer to a null-terminated character string. On return from the attrval
subroutine, this string will contain the names of invalid attributes, if any are
found. Each attribute name is separated by spaces.

Description
The attrval subroutine is used to validate each of a list of input attribute values against the legal range.
If no illegal values are found, this subroutine returns a value of 0. Otherwise, it returns the number of
incorrect attributes.

If any attribute values are invalid, a pointer to a string containing a list of invalid attribute names is
returned in the errattr parameter. These attributes are separated by spaces.

Allocation of the error buffer is done in the attrval subroutine. However, a character pointer (for example,
char *errorb;) must be declared in the calling routine. Thereafter, the address of that pointer is
passed to the attrval subroutine (for example, attrval(...,&errorb);) as one of the parameters.

Return Values

Item Description

0 Indicates that all values are valid.

Nonzero Indicates the number of erroneous attributes.

Files

Item Description

/usr/lib/libcfg.a Archive of device configuration subroutines.

busresolve Device Configuration Subroutine

Purpose
Allocates bus resources for adapters on an I/O bus.

730 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int busresolve
(logname, flag, conf_list,
not_res_list, busname)
char * logname;
int flags;
char * conf_list;
char * not_res_list;
char * busname;

Parameters

Item Description

logname Specifies the device logical name.

flags Specifies either the boot phase or 0.

conf_list Points to an array of at least 512 characters.

not_res_list Points to an array of at least 512 characters.

busname Specifies the logical name of the bus.

Description
The busresolve device configuration subroutine is invoked by a device's configuration method to allocate
bus resources for all devices that have predefined bus resource attributes. It also is invoked by the bus
Configuration method to resolve attributes of all devices in the Defined state.

This subroutine first queries the Customized Attribute and Predefined Attribute object classes to retrieve
a list of current bus resource attribute settings and a list of possible settings for each attribute. To
resolve conflicts between the values assigned to an already available device and the current device, the
subroutine adjusts the values for attributes of devices in the Defined state. For example, the busresolve
subroutine makes sure that the current device is not assigned the same interrupt level as an already
available device when invoked at run time. These values are updated in the customized Attribute object
class.

The busresolve subroutine never modifies attributes of devices that are already in the Available state.
It ignores devices in the Defined state if their chgstatus field in the Customized Devices object class
indicates that they are missing.

When the logname parameter is set to the logical name of a device, the busresolve subroutine adjusts
the specified device's bus resource attributes if necessary to resolve any conflicts with devices that are
already in the Available state. A device's Configuration method must invoke the busresolve subroutine
to ensure that its bus resources are allocated properly when configuring the device at run time. The
Configuration method does not need to do it when run as part of system boot because the bus device's
Configuration method would have already performed it.

If the logname parameter is set to a null string, the busresolve subroutine allocates bus resources for
all devices that are not already in the Available state. The bus device's Configuration method invokes the
busresolve subroutine in this way during system boot.

The flags parameter is set to 1 for system boot phase 1; 2 for system boot phase 2; and 0 when the
busresolve subroutine is invoked during run time. The busresolve subroutine can be invoked only to
resolve a specific device's bus resources at run time. That is, the flags parameter must be 0 when the
logname parameter specifies a device logical name.

Kernel Services and Subsystem Operations 731

The E_BUSRESOURCE value indicates that the busresolve subroutine was not able to resolve all
conflicts. In this case, the conf_list parameter will contain a list of the logical names of the devices
for which it successfully resolved attributes. The not_res_list parameter also contains a list of the logical
names of the devices for which it can not successfully resolve all attributes. Devices whose names appear
in the not_res_list parameter must not be configured into the Available state.

When you write a Configure method for a device that has bus resources, make sure that it fails and returns
a value of E_BUSRESOURCE if the busresolve subroutine does not return an E_OK value.

Note: If the conf_list and not_res_list strings are not at least 512 characters, there might be insufficient
space to hold the device names.

Return Values

Item Description

E_OK Indicates that all bus resources were resolved and allocated successfully.

E_ARGS Indicates that the parameters to the busresolve subroutine were not valid. For example,
the logname parameter specifies a device logical name, but the flags parameter is not
set to 0 for run time.

E_MALLOC Indicates that the malloc operation if necessary memory storage failed.

E_NOCuDv Indicates that there is no customized device data for the bus device whose logical name
is specified by the busname parameter.

E_ODMGET Indicates that an ODM error occurred while retrieving data from the Configuration
database.

E_PARENTSTATE Indicates that the bus device whose name is specified by the busname parameter is not
in the Available state.

E_BUSRESOLVE Indicates that a bus resource for a device did not resolve. The logname parameter can
identify the particular device. However, if this parameter is null, then an E_BUSRESOLVE
value indicates that the bus resource for some unspecified device in the system did not
resolve.

Files

Item Description

/usr/lib/libcfg.a Archive of device configuration subroutines.

Configuration Rules (Config_Rules) Object Class

Description
The Configuration Rules (Config_Rules) object class contains the configuration rules used by the
Configuration Manager. The Configuration Manager runs in two phases during system boot. The first phase
is responsible for configuring the base devices so that the real root device can be configured and made
ready for operation. The second phase configures the rest of the devices in the system after the root file
system is up and running. The Configuration Manager can also be invoked at run time. The Configuration
Manager routine is driven by the rules in the Config_Rules object class.

The Config_Rules object class is preloaded with predefined configuration rules when the system is
delivered. There are three types of rules: phase 1, phase 2, and phase 2 service. You can use the ODM
commands to add, remove, change, and show new or existing configuration rules in this object class to
customize the behavior of the Configuration Manager. However, any changes to a phase 1 rule must be
written to the boot file system to be effective. This is done with the bosboot command.

732 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

All logical and physical devices in the system are organized in clusters of tree structures called nodes.
For information on nodes or tree structures, see the "Device Configuration Manager Overview" in Kernel
Extensions and Device Support Programming Concepts. The rules in the Config_Rules object class specify
program names that the Configuration Manager executes. Usually, these programs are the configuration
programs for the top of the nodes. When these programs are invoked, the names of the next lower-level
devices that need to be configured are returned in standard output.

The Configuration Manager configures the next lower-level devices by invoking the Configure method
for those devices. In turn, those devices return a list of device names to be configured. This process
is repeated until no more device names are returned. All devices in the same node are configured in a
transverse order.

The second phase of system boot requires two sets of rules: phase 2 and service. The position of the key
on the front panel determines which set of rules is used. The service rules are used when the key is in the
service position. If the key is in any other position, the phase 2 rules are used. Different types of rules are
indicated in the Configuration Manager Phase descriptor of this object class.

Each configuration rule has an associated boot mask. If this mask has a nonzero value, it represents
the type of boot to which the rule applies. For example, if the mask has a DISK_BOOT value, the rule
applies to system boots where disks are base devices. The type of boot masks are defined in the /usr/
include/sys/cfgdb.h file.

Descriptors
The Config_Rules object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status

ODM_SHORT phase Configuration
Manager Phase

Required

ODM_SHORT seq Sequence Value Required

ODM_LONG boot_mask Type of boot Required

ODM_VCHAR rule_value[RULESIZE] Rule Value Required

These descriptors are described as follows:

Descriptor Description

Configuration Manager Phase This descriptor indicates which phase a rule should be executed under phase
1, phase 2, or phase 2 service.

1
Indicates that the rule should be executed in phase 1.

2
Indicates that the rule should be executed in phase 2.

3
Indicates that the rule should be executed in phase 2 service mode.

Sequence Value In relation to the other rules of this phase, the seq number indicates the order
in which to execute this program. In general, the lower the seq number, the
higher the priority. For example, a rule with a seq number of 2 is executed
before a rule with a seq number of 5. There is one exception to this: a value
of 0 indicates a DONT_CARE condition, and any rule with a seq number of 0 is
executed last.

Type of boot If the boot_mask field has a nonzero value, it represents the type of boot
to which the rule applies. If the -m flag is used when invoking the cfgmgr
command, the cfgmgr command applies the specified mask to this field to
determine whether to execute the rule. By default, the cfgmgr command
always executes a rule for which the boot_mask field has a 0 value.

Kernel Services and Subsystem Operations 733

Descriptor Description

Rule Value This is the full path name of the program to be invoked. The rule value
descriptor may also contain any options that should be passed to that
program. However, options must follow the program name, as the whole string
will be executed as if it has been typed in on the command line.

Note: There is one rule for each program to execute. If multiple programs are
needed, then multiple rules must be added.

Rule Values

Phase Sequence Type of boot Rule Value

1 1 0 /usr/lib/methods/
defsys
1 10 0x0001 /usr/lib/methods/
deflvm
2 1 0 /usr/lib/methods/
defsys
2 5 0 /usr/lib/methods/
ptynode
2 10 0 /usr/lib/methods/
starthft
2 15 0 /usr/lib/methods/
starttty
2 20 0x0010 /usr/lib/methods/
rc.net
3 1 0 /usr/lib/methods/
defsys
3 5 0 /usr/lib/methods/
ptynode
3 10 0 /usr/lib/methods/
starthft
3 15 0 /usr/lib/methods/
starttty

Customized Attribute (CuAt) Object Class

Description
The Customized Attribute (CuAt) object class contains customized device-specific attribute information.

Device instances represented in the Customized Devices (CuDv) object class have attributes found in
either the Predefined Attribute (PdAt) object class or the CuAt object class. There is an entry in the CuAt
object class for attributes that take nondefault values. Attributes taking the default value are found in the
PdAt object class. Each entry describes the current value of the attribute.

When changing the value of an attribute, the Predefined Attribute object class must be referenced to
determine other possible attribute values.

Both attribute object classes must be queried to get a complete set of current values for a particular
device's attributes. Use the getattr and putattr subroutines to retrieve and modify, respectively,
customized attributes.

Descriptors
The Customized Attribute object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR name[NAMESIZE] Device Name Required

ODM_CHAR attribute[ATTRNAMESIZE] Attribute Name Required

ODM_VCHAR value[ATTRVALSIZE] Attribute Value Required

ODM_CHAR type[FLAGSIZE] Attribute Type Required

ODM_CHAR generic[FLAGSIZE] Generic Attribute
Flags

Optional

734 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR rep[FLAGSIZE] Attribute
Representation
Flags

Required

ODM_SHORT nls_index NLS Index Optional

These descriptors are described as follows:

Descriptor Description

Device Name Identifies the logical name of the device instance to
which this attribute is associated.

Attribute Name Identifies the name of a customized device
attribute.

Attribute Value Identifies a customized value associated with the
corresponding Attribute Name. This value is a
nondefault value.

Attribute Type Identifies the attribute type associated with the
Attribute Name. This descriptor is copied from the
Attribute Type descriptor in the corresponding PdAt
object when the CuAt object is created.

Generic Attribute Flags Identifies the Generic Attribute flag or flags
associated with the Attribute Name. This descriptor
is copied from the Generic Attribute Flags
descriptor in the corresponding PdAt object when
the CuAt object is created.

Attribute Representation Flags Identifies the Attribute Value's representation.
This descriptor is copied from the Attribute
Representation flags descriptor in the
corresponding Predefined Attribute object when
the Customized Attribute object is created.

NLS Index Identifies the message number in the NLS message
catalog that contains a textual description of the
attribute. This descriptor is copied from the NLS
Index descriptor in the corresponding Predefined
Attribute object when the Customized Attribute
object is created.

Customized Dependency (CuDep) Object Class

Description
The Customized Dependency (CuDep) object class describes device instances that depend on other
device instances. Dependency does not imply a physical connection. This object class describes the
dependence links between logical devices and physical devices as well as dependence links between
logical devices, exclusively. Physical dependencies of one device on another device are recorded in the
Customized Device (CuDev) object class.

Descriptors
The Customized Dependency object class contains the following descriptors:

Kernel Services and Subsystem Operations 735

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR name[NAMESIZE] Device Name Required

ODM_CHAR dependency[NAMESIZE] Dependency
(device logical
name)

Required

These descriptors are described as follows:

Descriptor Description

Device Name Identifies the logical name of the device having a dependency.

Item Description

Dependency Identifies the logical name of the device instance on which there is a dependency.
For example, a mouse, keyboard, and display might all be dependencies of a device
instance of lft0.

Customized Device Driver (CuDvDr) Object Class

Description
The Customized Device Driver (CuDvDr) object class stores information about critical resources that need
concurrence management through the use of the Device Configuration Library subroutines. You should
only access this object class through these five Device Configuration Library subroutines: the genmajor,
genminor, relmajor, reldevno, and getminor subroutines.

These subroutines exclusively lock this class so that accesses to it are serialized. The genmajor and
genminor routines return the major and minor number, respectively, to the calling method. Similarly, the
reldevno and relmajor routines release the major or minor number, respectively, from this object class.

Descriptors
The Customized Device Driver object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR resource[RESOURCESIZE] Resource Name Required

ODM_CHAR value1[VALUESIZE] Value1 Required

ODM_CHAR value2[VALUESIZE] Value2 Required

ODM_CHAR value3[VALUESIZE] Value3 Required

The Resource descriptor determines the nature of the values in the Value1, Value2, and Value3
descriptors. Possible values for the Resource Name descriptor are the strings devno and ddins.

The following table specifies the contents of the Value1, Value2, and Value3 descriptors, depending on
the contents of the Resource Name descriptor.

Resource Value1 Value2 Value3

devno Major number Minor number Device instance name

ddins Dd instance name Major number Null string

When the Resource Name descriptor contains the devno string, the Value1 field contains the device
major number, Value2 the device minor number, and Value3 the device instance name. These value

736 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

descriptors are filled in by the genminor subroutine, which takes a major number and device instance
name as input and generates the minor number and resulting devno Customized Device Driver object.

When the Resource Name descriptor contains the ddins string, the Value1 field contains the device
driver instance name. This is typically the device driver name obtained from the Device Driver Name
descriptor of the Predefined Device object. However, this name can be any unique string and is used
by device methods to obtain the device driver major number. The Value2 field contains the device
major number and the Value3 field is not used. These value descriptors are set by the genmajor
subroutine, which takes a device instance name as input and generates the corresponding major number
and resulting ddins Customized Device Driver object.

Customized Devices (CuDv) Object Class

Description
The Customized Devices (CuDv) object class contains entries for all device instances defined in the
system. As the name implies, a defined device object is an object that a Define method has created in the
CuDv object class. A defined device instance may or may not have a corresponding actual device attached
to the system.

A CuDv object contains attributes and connections specific to the device instance. Each device instance,
distinguished by a unique logical name, is represented by an object in the CuDv object class. The
Customized database is updated twice, during system boot and at run time, to define new devices,
remove undefined devices, or update the information for a device whose attributes have been changed.

Descriptors
The Customized Devices object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR name[NAMESIZE] Device Name Required

ODM_SHORT status Device Status Flag Required

ODM_SHORT chgstatus Change Status Flag Required

ODM_CHAR ddins[TYPESIZE] Device Driver
Instance

Optional

ODM_CHAR location[LOCSIZE] Location Code Optional

ODM_CHAR parent[NAMESIZE] Parent Device
Logical Name

Optional

ODM_CHAR connwhere[LOCSIZE] Location Where
Device Is
Connected

Optional

ODM_LINK PdDvLn Link to Predefined
Devices Object
Class

Required

These descriptors are described as follows:

Kernel Services and Subsystem Operations 737

Descriptor Description

Device Name A Customized Device object for a device instance is assigned a unique
logical name to distinguish the instance from other device instances. The
device logical name of a device instance is derived during Define method
processing. The rules for deriving a device logical name are:

• The name should start with a prefix name pre-assigned to the device
instance's associated device type. The prefix name can be retrieved
from the Prefix Name descriptor in the Predefined Device object
associated with the device type.

• To complete the logical device name, a sequence number is usually
appended to the prefix name. This sequence number is unique among
all defined device instances using the same prefix name. Use the
following subrules when generating sequence numbers:

– A sequence number is a non-negative integer represented
in character format. Therefore, the smallest available sequence
number is 0.

– The next available sequence number relative to a given prefix name
should be allocated when deriving a device instance logical name.

– The next available sequence number relative to a given prefix name
is defined to be the smallest sequence number not yet allocated to
defined device instances using the same prefix name.

For example, if tty0, tty1, tty3, tty5, and tty6 are currently
assigned to defined device instances, then the next available
sequence number for a device instance with the tty prefix name
is 2. This results in a logical device name of tty2.

The genseq subroutine can be used by a Define method to obtain the
next available sequence number.

Device Status Flag Identifies the current status of the device instance. The device methods
are responsible for setting Device Status flags for device instances.
When the Define method defines a device instance, the device's
status is set to defined. When the Configure method configures a
device instance, the device's status is typically set to available. The
Configure method takes a device to the Stopped state only if the device
supports the Stopped state.

When the Start method starts a device instance, its device status is
changed from the Stopped state to the Available state. Applying a Stop
method on a started device instance changes the device status from the
Available state to the Stopped state. Applying an Unconfigure method
on a configured device instance changes the device status from the
Available state to the Defined state. If the device supports the Stopped
state, the Unconfigure method takes the device from the Stopped state
to the Defined state.

The possible status values are:

DEFINED
Identifies a device instance in the Defined state.

AVAILABLE
Identifies a device instance in the Available state.

STOPPED
Identifies a device instance in the Stopped state.

738 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Descriptor Description

Change Status Flag This flag tells whether the device instance has been altered since the
last system boot. The diagnostics facility uses this flag to validate
system configuration. The flag can take these values:
NEW

Specifies whether the device instance is new to the current system
boot.

DONT_CARE
Identifies the device as one whose presence or uniqueness cannot
be determined. For these devices, the new, same, and missing states
have no meaning.

SAME
Specifies whether the device instance was known to the system prior
to the current system boot.

MISSING
Specifies whether the device instance is missing. This is true if the
device is in the CuDv object class, but is not physically present.

Device Driver Instance This descriptor typically contains the same value as the Device Driver
Name descriptor in the Predefined Devices (PdDv) object class if the
device driver supports only one major number. For a driver that uses
multiple major numbers (for example, the logical volume device driver),
unique instance names must be generated for each major number. Since
the logical volume uses a different major number for each volume group,
the volume group logical names would serve this purpose. This field
is filled in with a null string if the device instance does not have a
corresponding device driver.

Location Code Identifies the location code of the device. This field provides a means
of identifying physical devices. The location code format is defined as
AB-CD-EF-GH, where:
AB

Identifies the CPU and Async drawers with a drawer ID.
CD

Identifies the location of an adapter, memory card, or Serial Link
Adapter (SLA) with a slot ID.

EF
Identifies the adapter connector that something is attached to with a
connector ID.

GH
Identifies a port, device, or field replaceable unit (FRU), with a port
or device or FRU ID, respectively.

Parent Device Logical Name Identifies the logical name of the parent device instance. In the case of a
real device, this indicates the logical name of the parent device to which
this device is connected. More generally, the specified parent device
is the device whose Configure method is responsible for returning the
logical name of this device to the Configuration Manager for configuring
this device. This field is filled in with a null string for a node device.

Kernel Services and Subsystem Operations 739

Descriptor Description

Location Where Device Is
Connected

Identifies the specific location on the parent device instance where
this device is connected. The term location is used in a generic sense.
For some device instances such as the operating system bus, location
indicates a slot on the bus. For device instances such as the SCSI
adapter, the term indicates a logical port (that is, a SCSI ID and Logical
Unit Number combination).

For example, for a bus device the location can refer to a specific slot on
the bus, with values 1, 2, 3 For a multiport serial adapter device, the
location can refer to a specific port on the adapter, with values 0, 1,

Link to Predefined Devices
Object Class

Provides a link to the device instance's predefined information through
the Unique Type descriptor in the PdDv object class.

Customized VPD (CuVPD) Object Class

Description
The Customized Vital Product Data (CuVPD) object class contains the Vital Product Data (VPD) for
customized devices. VPD can be either machine-readable VPD or manually entered user VPD information.

Descriptors
The Customized VPD object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR name[NAMESIZE] Device Name Required

ODM_SHORT vpd_type VPD Type Required

ODM_LONGCHAR vpd[VPDSIZE] VPD Required

These fields are described as follows:

Descriptor Description

Device Name Identifies the device logical name to which this VPD information belongs.

VPD Type Identifies the VPD as either machine-readable or manually-entered. The possible
values:
HW_VPD

Identifies machine-readable VPD.
USER_VPD

Identifies manually entered VPD.

VPD Identifies the VPD for the device. For machine-readable VPD, an entry in this field
might include such information as serial numbers, engineering change levels, and
part numbers.

Device Methods for Adapter Cards: Guidelines
The device methods for an adapter card are essentially the same as for any other device. They need to
perform roughly the same tasks as those described in "Writing a Device Method" in Kernel Extensions and
Device Support Programming Concepts. However, there is one additional important consideration. The Bus
Configure method, or Bus Configurator, is responsible for discovering the adapter cards present in the
system and for assigning bus resources to each of the adapters. These resources include interrupt levels,
DMA arbitration levels, bus memory, and bus I/O space.

740 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Adapters are typically defined and configured at boot time. However, if an adapter is not configured
due to unresolvable bus resource conflicts, or if an adapter is unconfigured at run time with the rmdev
command, an attempt to configure an adapter at run time may occur.

If an attempt is made, the Configure method for the adapter must take these steps to ensure system
integrity:

1. Ensure the card is present in the system by reading the POS(0) and POS(1) registers from the slot that
is supposed to contain the card and comparing these values with what they are supposed to be for the
card.

2. Invoke the busresolve subroutine to ensure that the adapter's bus resource attributes, as represented
in the database, do not conflict with any of the configured adapters.

Additional guidelines must be followed when adding support for a new adapter card. They are discussed
in:

• Adapter-Specific Considerations for the Predefined Attributes (PdAt) object class
• Writing a Configure Method
• Adapter-Specific Considerations for the Predefined Devices (PdDv) object class

genmajor Device Configuration Subroutine

Purpose
Generates the next available major number for a device driver instance.

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int genmajor (device_driver_instance_name)
char *device_driver_instance_name;

Parameters

Item Description

device_driver_instance_name Points to a character string containing the device driver
instance name.

Description
The genmajor device configuration subroutine is one of the routines designated for accessing the
Customized Device Driver (CuDvDr) object class. If a major number already exists for the given device
driver instance, it is returned. Otherwise, a new major number is generated.

The genmajor subroutine creates an entry (object) in the CuDvDr object class for the major number
information. The lowest available major number or the major number that has already been allocated is
returned. The CuDvDr object class is locked exclusively by this routine until its completion.

Return Values
If the genmajor subroutine executes successfully, a major number is returned. This major number is
either the lowest available major number or the major number that has already been allocated to the
device instance.

A value of -1 is returned if the genmajor subroutine fails.

Kernel Services and Subsystem Operations 741

Files

Item Description

/usr/lib/libcfg.a Archive of device configuration subroutines.

genminor Device Configuration Subroutine

Purpose
Generates either the smallest unused minor number available for a device, a preferred minor number if it
is available, or a set of unused minor numbers for a device.

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int *genminor (device_instance, major_no, preferred_minor,
 minors_in_grp, inc_within_grp, inc_btwn_grp)
char * device_instance;
int major_no;
int preferred_minor;
int minors_in_grp;
int inc_within_grp;
int inc_btwn_grp;

Parameters

Item Description

device_instance Points to a character string containing the device instance name.

major_no Contains the major number of the device instance.

preferred_minor Contains a single preferred minor number or a starting minor number for
generating a set of numbers. In the latter case, the genminor subroutine
can be used to get a set of minor numbers in a single call.

minors_in_grp Indicates how many minor numbers are to be allocated.

inc_within_grp Indicates the interval between minor numbers.

inc_btwn_grp Indicates the interval between groups of minor numbers.

Description
The genminor device configuration subroutine is one of the designated routines for accessing the
Customized Device Driver (CuDv) object class. To ensure that unique numbers are generated, the object
class is locked by this routine until its completion.

If a single preferred minor number needs to be allocated, it should be given in the preferred_minor
parameter. In this case, the other parameters should contain an integer value of 1. If the desired number
is available, it is returned. Otherwise, a null pointer is returned, indicating that the requested number is in
use.

If the caller has no preference and only requires one minor number, this should be indicated by passing a
value of -1 in the preferred_minor parameter. The other parameters should all contain the integer value of
1. In this case, the genminor subroutine returns the lowest available minor number.

742 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

If a set of numbers is desired, then every number in the designated set must be available. An unavailable
number is one that has already been assigned. To get a specific set of minor numbers allocated, the
preferred_minor parameter contains the starting minor number. If this set has a minor number that is
unavailable, then the genminor subroutine returns a null pointer indicating failure.

If the set of minor numbers needs to be allocated with the first number beginning on a particular
boundary (that is, a set beginning on a multiple of 8), then a value of -1 should be passed in the
preferred_minor parameter. The inc_btwn_grp parameter should be set to the multiple desired. The
genminor subroutine uses the inc_btwn_grp parameter to find the first complete set of available minor
numbers.

If a list of minor numbers is to be returned, the return value points to the first in a list of preferred minor
numbers. This pointer can then be incremented to move through the list to access each minor number.
The minor numbers are returned in ascending sorted order.

Return Values
In the case of failure, a null pointer is returned. If the genminor subroutine succeeds, a pointer is
returned to the lowest available minor number or to a list of minor numbers.

Files

Item Description

/usr/lib/libcfg.a Archive of device configuration subroutines.

genseq Device Configuration Subroutine

Purpose
Generates a unique sequence number for creating a device's logical name.

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int genseq (prefix)
char *prefix;

Parameters

Item Description

prefix Points to the character string containing the prefix name of the device.

Description
The genseq device configuration subroutine generates a unique sequence number to be concatenated
with the device's prefix name. The device name in the Customized Devices (CuDv) object class is the
concatenation of the prefix name and the sequence number. The rules for generating sequence numbers
are as follows:

• A sequence number is a nonnegative integer. The smallest sequence number is 0.
• When deriving a device instance logical name, the next available sequence number (relative to a given
prefix name) is allocated. This next available sequence number is defined to be the smallest sequence
number not yet allocated to device instances using the same prefix name.

Kernel Services and Subsystem Operations 743

• Whether a sequence number is allocated or not is determined by the device instances in the CuDv
object class. If an entry using the desired prefix exists in this class, then the sequence number for that
entry has already been allocated.

It is up to the application to convert this sequence number to character format so that it can be
concatenated to the prefix to form the device name.

Return Values
If the genseq subroutine succeeds, it returns the generated sequence number in integer format. If the
subroutine fails, it returns a value of -1.

Files

Item Description

/usr/lib/libcfg.a Archive of device configuration subroutines.

getattr Device Configuration Subroutine

Purpose
Returns current values of an attribute object.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

struct CuAt *getattr (devname, attrname, getall, how_many)
char * devname;
char * attrname;
int getall;
int * how_many;

Parameters

Item Description

devname Specifies the device logical name.

attrname Specifies the attribute name.

getall Specifies a Boolean flag that, when set to True, indicates that a list of attributes is to
be returned to the calling routine.

how_many Points to how many attributes the getattr subroutine has found.

Description
The getattr device configuration subroutine returns the current value of an attribute object or a list
of current values of attribute objects from either the Customized Attribute (CuAt) object class or the
Predefined Attribute (PdAt) object class. The getattr device configuration subroutine queries the CuAt
object class for the attribute object matching the device logical name and the attribute name. It is the
application's responsibility to lock the Device Configuration object classes.

744 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The getattr subroutine allocates memory for CuAt object class structures that are returned. This memory
is automatically freed when the application exits. However, the application must free this memory if it
invokes getattr several times and runs for a long time.

To get a single attribute, the getall parameter should be set to False. If the object exists in the CuAt object
class, a pointer to this structure is returned to the calling routine.

However, if the object is not found, the getattr subroutine assumes that the attribute takes the default
value found in the PdAt object class. In this case, the PdAt object class is queried for the attribute
information. If this information is found, the relevant attribute values (that is, default value, flag
information, and the NLS index) are copied into a CuAt structure. This structure is then returned to the
calling routine. Otherwise, a null pointer is returned indicating an error.

To get all the customized attributes for the device name, the getall parameter should be set to True. In this
case, the attrname parameter is ignored. The PdAt and CuAt object classes are queried and a list of CuAt
structures is returned. The PdAt objects are copied to CuAt structures so that one list may be returned.

Note: The getattr device configuration subroutine will fail unless you first call the odm_initialize
subroutine.

Return Values
Upon successful completion, the getattr subroutine returns a pointer to a list of CuAt structures. If the
operation is unsuccessful, a null pointer is returned.

Files

Item Description

/usr/lib/libcfg.a Archive of device configuration subroutines.

getminor Device Configuration Subroutine

Purpose
Gets the minor numbers associated with a major number from the Customized Device Driver (CuDvDr)
object class.

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int *getminor (major_no, how_many, device_instance)
int major_no;
int * how_many;
char * device_instance;

Parameters

Item Description

major_no Specifies the major number for which the corresponding minor number or
numbers is desired.

how_many Points to the number of minor numbers found corresponding to the
major_no parameter.

device_instance Specifies a device instance name to use when searching for minor numbers.
This parameter is used in conjunction with the major_no parameter.

Kernel Services and Subsystem Operations 745

Description
The getminor device configuration subroutine is one of the designated routines for accessing the CuDvDr
object class. This subroutine queries the CuDvDr object class for the minor numbers associated with the
given major number or device instance or both.

If the device_instance parameter is null, then only the major_no parameter is used to obtain the minor
numbers. Otherwise, both the major_no and device_instance parameters should be used. The number of
minor numbers found in the query is returned in the how_many parameter.

The CuDvDr object class is locked exclusively by the getminor subroutine for the duration of the routine.

The return value pointer points to a list that contains the minor numbers associated with the major
number. This pointer is then used to move through the list to access each minor number. The minor
numbers are returned in ascending sorted order.

The getminor subroutine also returns the number of minor numbers in the list to the calling routine in the
how_many parameter.

Return Values
If the getminor routine fails, a null pointer is returned.

If the getminor subroutine succeeds, one of two possible values is returned. If no minor numbers are
found, null is returned. In this case, the how_many parameter points to an integer value of 0. However, if
minor numbers are found, then a pointer to a list of minor numbers is returned. The minor numbers are
returned in ascending sorted order. In the latter case, the how_many parameter points to the number of
minor numbers found.

Files

Item Description

/usr/lib/libcfg.a Archive of device configuration subroutines.

How Device Methods Return Errors
Device methods indicate errors to the Configuration Manager and run-time configuration commands by
exiting with a nonzero exit code. The Configuration Manager and configuration commands can understand
only the exit codes defined in the cf.h file.

More than one error code can describe a given error. This is because many exit codes correspond to
highly specific errors, while others are more general. Whenever possible, use the most specific error code
possible.

For example, if your Configure method obtains an attribute from the Customized Attributes (CuAt) object
class for filling in the device-dependent structure (DDS), but the value is invalid (possibly due to a
corrupted database), you might exit with an E_BADATTR error. Otherwise, you might choose the E_DDS
exit code, due to another error condition that occurred while building the DDS.

loadext Device Configuration Subroutine

Purpose
Loads or unloads kernel extensions, or queries for kernel extensions in the kernel.

Syntax

#include <sys/types.h>

746 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

mid_t loadext (dd_name, load, query)
char *dd_name;
int load, query;

Parameters

Item Description

dd_name Specifies the name of the kernel extension to be loaded, unloaded, or queried.

load Specifies whether the loadext subroutine should load the kernel extension.

query Specifies whether a query of the kernel extension should be performed.

Description
The loadext device configuration subroutine provides the capability to load or unload kernel extensions.
It can also be used to obtain the kernel module identifier (kmid) of a previously loaded object file.
The kernel extension name passed in the dd_name parameter is either the base name of the object
file or contains directory path information. If the kernel extension path name supplied in the dd_name
parameter has no leading ./ (dot, slash), ../ double-dot, slash), or / (slash) characters, then the loadext
subroutine concatenates the /usr/lib/drivers file and the base name passed in the dd_name parameter
to arrive at an absolute path name. Otherwise, the path name provided in the dd_name parameter is used
unmodified.

If the load parameter has a value of True, the specified kernel extension and its kmid are loaded. If the
specified object file has already been loaded into the kernel, its load count is incremented and a new copy
is not loaded.

If the load parameter has a value of False, the action taken depends on the value of the query parameter.
If query is False, the loadext routine requests an unload of the specified kernel extension. This causes the
kernel to decrement the load count associated with the object file. If the load count and use count of the
object file become 0, the kernel unloads the object file. If the query parameter is True, then the loadext
subroutine queries the kernel for the kmid of the specified object file. This kmid is then returned to the
caller.

If both the load and query parameters have a value of True, the load function is performed.

Attention: Repeated loading and unloading of kernel extensions may cause a memory leak.

Files

Item Description

/usr/lib/libcfg.a Archive of device configuration subroutines.

Return Values
Upon successful completion, the loadext subroutine returns the kmid. If an error occurs or if the queried
object file is not loaded, the routine returns a null value.

Loading a Device Driver
The loadext subroutine is used to load and unload device drivers. The name of the device driver is passed
as a parameter to the loadext routine. If the device driver is located in the /usr/lib/drivers directory, just
the device driver name without path information can be specified to the loadext subroutine. If the device
driver is located in another directory, the fully qualified path name of the device driver must be specified.

The Device Driver Name descriptor of Predefined Devices (PdDv) object class objects is intended to
contain only the device driver name and not the fully qualified path name. For device drivers located in
the /usr/lib/drivers directory, a Configure method can obtain the name of the driver from the Device

Kernel Services and Subsystem Operations 747

Driver Name descriptor to pass to the loadext routine. This is convenient since most drivers are located in
the /usr/lib/drivers directory.

If a device driver is located in a directory other than the /usr/lib/drivers directory, the path name must be
handled differently. The Configure method could be coded to assume a particular path name, or for more
flexibility the path name could be stored as an attribute in the Predefined Attribute (PdAt) object class.
The Configure method is responsible for knowing how to obtain the fully qualified path name to pass to
the loadext subroutine.

Files

Item Description

/usr/lib/drivers directory Contains device drivers.

Machine Device Driver
The machine device driver provides an interface to platform-specific hardware for the system
configuration and reliability, availability, and serviceability (RAS) subsystems. The machine device
driver supports these special files for accessing this hardware from user mode: /dev/nvram and /dev/
bus0 ... /dev/busN where N is the bus number. The /dev/nvram special file provides access to special
nonvolatile random access memory (RAM) for the purposes of storing or retrieving error information
and system boot information. The /dev/busN special files provide access to the I/O buses for system
configuration and diagnostic purposes. The presence and use of this device driver and its associated
special files are platform-specific and must not be used by general applications.

A program must have the appropriate privilege to open special files /dev/nvram or /dev/busN. It must
also have the appropriate privilege to open Common Hardware Reference Platform (CHRP) bus special
files /dev/pciN, or /dev/isaN.

Driver Initialization and Termination
Special initialization and termination requirements do not exist for the machine device driver. This driver
is statically bound to the operating system kernel and is initialized during kernel initialization. This device
driver does not support termination and cannot be unloaded.

/dev/nvram Special File Support
open and close Subroutines

The machine device driver supports the /dev/nvram special file as a multiplexed character special file.
This special file and the support for NVRAM is provided exclusively on this hardware platform to support
the system configuration and RAS subsystems. These subsystems open the /dev/nvram/n special file
with a channel name, n, specifying the data area to be accessed. An exception is the /dev/nvram file with
no channel specified, which provides access to general NVRAM control functions and the LED display on
the front panel.

A special channel name of base can be used to read the base customize information that is stored as
part of the boot record. This information was originally copied to the disk by the savebase command
and is only copied by the driver at boot time. The base customize information can be read only once.
When the /dev/nvram/base file is closed for the first time, the buffer that contains the base customize
information is freed. Subsequent opens return an ENOENT error code.

read and write Subroutines

The write subroutine is not supported and returns an ENODEV error code. The read subroutine is
supported after a successful open of the base channel only. The read subroutine transfers data from
the data area that is associated with the specified channel. The transfer starts at the offset (within the
channel's data area) specified by the offset field that is associated with the file pointer used on the
subroutine call.

748 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

On a read subroutine, if the end of the data area is reached before the transfer count is reached, the
number of bytes read before the end of the data area was reached is returned. If the read subroutine
starts at the end of the data area, zero bytes are read. If the read subroutine starts after the end of the
data area, an ENXIO error code is returned by the driver.

The lseek subroutine can be used to change the starting data-area offset to be used on a subsequent
read call.

ioctl Operations

The following ioctl operations can be issued to the machine device driver after a successful open of
the /dev/nvram/ special file:

Operation Description

IOCINFO Returns machine device driver information in the caller's devinfo structure
(pointed to by the arg parameter). This structure is defined in the /usr/
include/sys/devinfo.h file. The device type for this device driver is
DD_PSEU.

MIOGETKEY Returns the status of the keylock. The arg parameter must point to a
mach_dd_io structure. The md_data field must point to an integer; this
field contains the status of the keylock on return.

Note: Not all platforms have a physical keylock that software can read. For
these platforms, status is established at boot time.

MIOGETPS Returns the power status. The arg parameter must point to a mach_dd_io
structure. The md_data field must point to an integer; this field contains
the power status on return.

Note: Not all platforms provide power status.

MIOIPLCB Returns the contents of the boot control block. The arg parameter
is set to point to a mach_dd_io structure, which describes the data
area where the boot control block is to be placed. The format of this
control block is specified in the /usr/include/sys/iplcb.h file and the
mach_dd_io structure is defined in the /usr/include/sys/mdio.h file. This
ioctl operation uses the following fields in the mach_dd_io structure:
md_data

Points to a buffer at least the size of the value in the md_size field.
md_size

Specifies the size (in bytes) of the buffer pointed to by the md_data
field and is the number of bytes to be returned from the boot control
block.

md_addr
Specifies an offset into the boot control block where data is to be
obtained.

Note: Regions within this control block are platform-dependent.

MIONVGET Reads data from an NVRAM address and returns data in the buffer that is
provided by the caller. This operation is useful for reading the ROS area
of NVRAM. A structure that defines this area is in the /usr/include/sys/
mdio.h file.

Use of this ioctl operation is not supported for systems that are compliant
with the PowerPC Reference Platform or the Common Hardware Reference
Platform and, in AIX 4.2.1 and later, cause the operation to fail with an
EINVAL error code.

Kernel Services and Subsystem Operations 749

Operation Description

MIONVLED Writes the value found in the arg parameter to the system front panel LED
display. On this panel, three digits are available and the arg parameter value
can range from 0 to hex FFF. An explanation of the LED codes can be found
in the /usr/include/sys/mdio.h file.

Note: Not all platforms have an LED.

MIONVPUT Writes data to an NVRAM address from the buffer that is provided by the
caller. This operation is used only to update the ROS area of NVRAM and
only by system commands. Use of this operation in other areas of NVRAM
can cause unpredictable results to occur. If the NVRAM address provided is
within the ROS area, a new cyclic redundancy code (CRC) for the ROS area
is generated.

Use of this ioctl operation is not supported on systems that are compliant
with the PowerPC Reference Platform or the Common Hardware Reference
Platform and cause the operation to fail with an EINVAL error code.

ioctl Operations for Systems

The following four ioctl operations can be used only with the POWER® processor-based architecture. If
used with other systems, or if an invalid offset address, size, or slot number is supplied, these operations
return an EINVAL error code.

These ioctl operations can be called from user space or kernel space (by using the fp_ioctl kernel
service), but they are available only in the process environment.

The ioctl argument must be a pointer to a mach_dd_io structure.

The lock is obtained to serialize access to the bus slot configuration register.

MIOVPDGET

This ioctl operation allows read access to VPD/ROM address space.

The following structure members must be supplied:

Structure Member Description

ulong md_addr Specifies the offset into the feature or VPD address space to begin
reading.

ulong md_size Specifies the number of bytes to be transferred.

char md_data Specifies a pointer to user buffer for data.

int md_sla Specifies a slot number (bus slot configuration select).

int md_incr Requires byte access (MV_BYTE).

The read begins at base address 0xFFA00000. The offset is added to the base address to obtain the
starting address for reading.

The buc_info structure for the selected bus slot is used to obtain the word increment value. This value
performs correct addressing when it reads the data.

MIOCFGGET

This ioctl operation allows read access to the architected configuration registers.

The following structure members must be supplied:

Structure Member Description

ulong md_addr Specifies the offset into the configuration register address space.

750 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Structure Member Description

ulong md_size Specifies a value of 1.

char md_data Specifies a pointer to user buffer for data.

int md_sla Specifies a slot number (bus slot configuration select).

int md_incr Requires byte or word access (MV_BYTE, MV_SHORT, or MV_WORD).

The base address 0xFF200000 is added to the offset to obtain the address for the read.

MIOCFGPUT

This ioctl operation allows write access to the architected configuration registers.

The following structure members must be supplied:

Structure Member Description

ulong md_addr Specifies the offset into the configuration register address space.

ulong md_size Specifies a value of 1.

char md_data Specifies a pointer to user buffer of data to write.

int md_sla Specifies a slot number (bus slot configuration select).

int md_incr Requires byte or word access (MV_BYTE, MV_SHORT, or MV_WORD).

The base address 0xFF200000 is added to the offset to obtain the address for the read.

MIORESET

This ioctl operation allows access to the architected bus slot reset register.

The following structure members must be supplied:

Structure Member Description

ulong md_addr Specifies reset hold time (in nanoseconds).

ulong md_size Not used.

char md_data Not used.

int md_sla Specifies a slot number (bus slot configuration select).

int md_incr Not used.

The bus slot reset register bit corresponding to the specified bus slot is set to 0. After the specified delay,
the bit is set back to 1 and control returns to the calling program.

If a reset hold time of 0 is passed, the bus slot remains reset on return to the calling process.

ioctl Operations for the PowerPC Reference Platform Specification and the Common Hardware
Reference Platform

The following four ioctl operations can be used only with the PowerPC Reference Platform and the
Common Hardware Reference Platform.

MIOGEARD

Scans for the variable name in the Global Environment Area, and, if found, the null terminated string is
returned to the caller. A global variable is of the form "variablename=". The returned string is of the
form "variablename=string". If the supplied global variable is "*=", all of the variable strings in the
Global Environment Area is returned.

The following structure members must be supplied:

Kernel Services and Subsystem Operations 751

Structure Member Description

ulong md_addr Pointer to global variable string which is null terminated with an equal
sign as the last non-null character.

ulong md_size Number of bytes in data buffer.

int md_incr Not used.

char md_data Pointer to the data buffer.

int md_sla Not used.

ulong md_length It is a pointer to the length of the returned global variable strings
including the null terminators if md_length is non-zero.

MIOGEAUPD

The specified global variable is added to the Global Environment Area if it does not exist. If the specified
variable does exist in the Global Environment Area, the new contents replace the old after adjusting any
size deltas. Further, any information that is moved toward a lower address has the original area zeroed.
If there is no string that follows the variable name and equal sign, the specified variable is deleted. If
the variable to be deleted is not found, a successful return occurs. The new information is written to
NVRAM. Further, the header in the NVRAM operation is updated to include the update time of the Global
Environment Area and the CRC value are recomputed.

The following structure members must be supplied:

Structure Member Description

ulong md_addr Pointer to global variable string which is null terminated.

ulong md_size Not used.

int md_incr Not used.

char md_data Not used.

int md_sla Not used.

ulong md_length It is a pointer to the amount of space that is left in the Global
Environment Area after the update. It is computed as the size of the
area minus the length of all global variable strings minus the threshold
value.

MIOGEAST

The specified threshold is set so that any updates done do not exceed the Global Environment Area size
minus the threshold. In place of the mdio structure an integer value is used to specify the threshold. The
threshold does not persist across IPLs.

MIOGEARDA

The attributes of the Global Environment Area are returned to the data area specified by the caller. The
gea_attrib structure is added to mdio.h. It contains the following information:

Structure Member Description

long gea_length number of bytes in the Global Environment Area of NVRAM.

long gea_used number of bytes used in the Global Environment Area.

long gea_thresh Global Environment Area threshold value.

ulong md_addr Not used.

ulong md_size Size of the data buffer. It must be greater than or equal to the size
of (gea_attrib).

752 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Structure Member Description

int md_incr Not used.

char md_data Address of the buffer to copy the gea_attrib structure.

int md_sla Not used.

ulong md_length Not used.

MIONVPARTLEN

The length of the CHRP NVRAM partition is returned to the data area specified by the caller. The following
structure members must be supplied:

Structure Member Description

ulong md_addr Specifies the partition signature.

ulong *md_length Specifies a pointer to the name of the partition.

int md_incr Not used.

ulong md_size Specifies the data area for the returned partition length.

char *md_data Not used.

int md_sla Not used.

MIONVPARTRD

MIONVPARTRD performs read actions on CHRP NVRAM partitions. The following structure members
must be supplied:

Structure Member Description

ulong md_addr Specifies the partition signature.

ulong *md_length Specifies a pointer to the name of the partition.

int md_incr Specifies the start offset into the partition.

ulong md_size Specifies the number of bytes to be read.

char *md_data Specifies a pointer to the user buffer where data is to be copied.

int md_sla Not used.

MIONVPARTUPD

MIONVPARTUPD performs write actions to CHRP NVRAM partitions. The following structure members
must be supplied:

Structure Member Description

ulong md_addr Specifies the partition signature.

ulong *md_length Specifies a pointer to the name of the partition.

int md_incr Specifies the start offset into the partition.

ulong md_size Specifies the number of bytes to be read.

char *md_data Specifies a pointer to the user buffer for data to write.

int md_sla Not used.

Error Codes

Kernel Services and Subsystem Operations 753

The following error conditions might be returned when you access the machine device driver with
the /dev/nvram/n special file:

Error Condition Description

EACCES A write was requested to a file opened for read access only.

ENOENT An open of /dev/nvram/base was attempted after the first close.

EFAULT A buffer that is specified by the caller was invalid on a read, write, or ioctl
subroutine call.

EINVAL An invalid ioctl operation was issued.

ENXIO A read was attempted past the end of the data area that is specified by the
channel.

ENODEV A write was attempted.

ENOMEM A request was made with a user-supplied buffer that is too small for the requested
data or not enough memory can be allocated to complete the request.

Bus Special File Support
All models have at least one bus. For non-CHRP systems, the names are of the form /dev/busN. CHRP
systems have the form /dev/pciN and /dev/isaN.

open and close Subroutines

The machine device driver supports the bus special files as character special files. These special files, and
support for access to the I/O buses and controllers, are provided on this hardware platform to support
the system configuration and diagnostic subsystems, exclusively. The configuration subsystem accesses
the I/O buses and controllers through the machine device driver to determine the I/O configuration of the
system. This driver can also be used to configure the I/O controllers and devices as required for proper
system operation. If the system diagnostic tests are unable to access a device through the diagnostic
functions that are provided by the device's own device driver, they might use the machine device driver to
attempt further failure isolation.

read and write Subroutines

The read and write subroutines are not supported by the machine device driver through the bus special
files and, if called, return an ENOENT return code in the errno global variable.

ioctl Operations

The bus ioctl operations allow transfers of data between the system I/O controller or the system I/O bus
and a caller-supplied data area. Because these ioctl operations use the mach_dd_io structure, the arg
parameter on the ioctl subroutine must point to such a structure. The bus address, the pointer to the
caller's buffer, and the number and length of the transfer are all specified in the mach_dd_io structure.
The mach_dd_io structure is defined in the /usr/include/sys/mdio.h file and provides the following
information:

• The md_addr field contains an I/O controller or I/O bus address.
• The md_data field points to a buffer at least the size of the value in the md_size field.
• The md_size field contains the number of items to be transferred.
• The md_incr field specifies the length of the transferred item. It must be set to MV_BYTE, MV_SHORT,

or MV_WORD.

The following commands can be issued to the machine device driver after a successful open of the bus
special file:

754 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Command Description

IOCINFO Returns machine device driver information in the caller's devinfo structure,
as specified by the arg parameter. This structure is defined in the /usr/
include/sys/devinfo.h file. The device type for this device driver is
DD_PSEU.

MIOBUSGET Reads data from the bus I/O space and returns it in a caller-provided
buffer.

MIOBUSPUT Writes data that is supplied in the caller's buffer to the bus I/O space.

MIOMEMGET Reads data from the bus memory space and returns it to the caller-
provided buffer.

MIOMEMPUT Writes data that is supplied in the caller-provided buffer to the bus memory
space.

MIOPCFGET Reads data from the PCI bus configuration space and returns it in a caller-
provided buffer. The mach_dd_io structure field md_sla must contain the
Device Number and Function Number for the device to be accessed.

MIOPCFPUT Writes data that is supplied in the caller's buffer to the PCI bus
configuration space. The mach_dd_io structure field md_sla must contain
the Device Number and Function Number for the device to be accessed.

Error Codes

Item Description

EFAULT A buffer that is specified by the caller was invalid on an ioctl call.

EIO An unrecoverable I/O error occurred on the requested data transfer.

ENOME
M

No memory can be allocated by the machine device driver for use in the data transfer.

Files

Item Description

/dev/pciN Provides access to the I/O bus (CHRP and the AIX operating system).

/dev/isaN Provides access to the I/O bus (CHRP and the AIX operating system).

/dev/nvram Provides access to platform-specific nonvolatile RAM.

/dev/nvram/base Allows read access to the base customize information that is stored as part of
the boot record.

ODM Device Configuration Object Classes
A list of the ODM Device Configuration Object Classes follows:

Item Description

PdDv Predefined Devices

PdCn Predefined Connection

PdAt Predefined Attribute

Config_Rules Configuration Rules

CuDv Customized Devices

CuDep Customized Dependency

Kernel Services and Subsystem Operations 755

Item Description

CuAt Customized Attribute

CuDvDr Customized Device Driver

CuVPD Customized Vital Product Data

Predefined Attribute (PdAt) Object Class

Description
The Predefined Attribute (PdAt) object class contains an entry for each existing attribute for each
device represented in the Predefined Devices (PdDv) object class. An attribute, in this sense, is any
device-dependent information not represented in the PdDv object class. This includes information such
as interrupt levels, bus I/O address ranges, baud rates, parity settings, block sizes, and microcode file
names.

Each object in this object class represents a particular attribute belonging to a particular device class-
subclass-type. Each object contains the attribute name, default value, list or range of all possible values,
width, flags, and an NLS description. The flags provide further information to describe an attribute.

Note: For a device being defined or configured, only the attributes that take a nondefault value are copied
into the Customized Attribute (CuAt) object class. In other words, for a device being customized, if its
attribute value is the default value in the PdDv object class, then there will not be an entry for the attribute
in the CuAt object class.

Types of Attributes

There are three types of attributes. Most are regular attributes, which typically describe a specific
attribute of a device. The group attribute type provides a grouping of regular attributes. The shared
attribute type identifies devices that must all share a given attribute.

A shared attribute identifies another regular attribute as one that must be shared. This attribute is always
a bus resource. Other regular attributes (for example, bus interrupt levels) can be shared by devices
but are not themselves shared attributes. Shared attributes require that relevant devices have the same
values for this attribute. The Attribute Value descriptor for the shared attribute gives the name of the
regular attribute that must be shared.

A group attribute specifies a set of other attributes whose values are chosen as the group, as well
as the group attribute number used to choose default values. Each attribute listed within a group has
an associated list of possible values it can take. These values must be represented as a list, not as a
range. For each attribute within the group, the list of possible values must also have the same number
of choices. For example, if the possible number of values is n, the group attribute number itself can
range from 0 to n-1. The particular value chosen for the group indicates the value to pick for each of the
attributes in the group. For example, if the group attribute number is 0, then the value for each of the
attributes in the group is the first value from their respective lists.

Predefined Attribute Object Class Descriptors
The Predefined Attribute object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR uniquetype[UNIQUESIZE] Unique Type Required

ODM_CHAR attribute[ATTRNAMESIZE] Attribute Name Required

ODM_VCHAR deflt[DEFAULTSIZE] Default Value Required

ODM_VCHAR values[ATTRVALSIZE] Attribute Values Required

ODM_CHAR width[WIDTHSIZE] Width Optional

756 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR type[FLAGSIZE] Attribute Type
Flags

Required

ODM_CHAR generic[FLAGSIZE] Generic Attribute
Flags

Optional

ODM_CHAR rep[FLAGSIZE] Attribute
Representation
Flags

Required

ODM_SHORT nls_index NLS index Optional

These descriptors are described as follows:

Descriptor Description

Unique Type Identifies the class-subclass-type name of the device to which this
attribute is associated. This descriptor is the same as the Unique Type
descriptor in the PdDv object class.

Attribute Name Identifies the name of the device attribute. This is the name that can
be passed to the mkdev and chdev configuration commands and device
methods in the attribute-name and attribute-value pairs.

Default Value If there are several choices or even if there is only one choice for the
attribute value, the default is the value to which the attribute is normally
set. For groups, the default value is the group attribute number. For
example, if the possible number of choices in a group is n, the group
attribute number is a number between 0 and n-1. For shared attributes,
the default value is set to a null string.

When a device is defined in the system, attributes that take nondefault
values are found in the CuAt object class. Attributes that take the default
value are found in this object class; these attributes are not copied over
to the CuAt object class. Therefore, both attribute object classes must
be queried to get a complete set of customized attributes for a particular
device.

Kernel Services and Subsystem Operations 757

Descriptor Description

Attribute Values Identifies the possible values that can be associated with the attribute
name. The format of the value is determined by the attribute
representation flags. For regular attributes, the possible values can be
represented as a string, hexadecimal, octal, or decimal. In addition, they
can be represented as either a range or an enumerated list. If there
is only one possible value, then the value can be represented either
as a single value or as an enumerated list with one entry. The latter
is recommended, since the use of enumerated lists allows the attrval
subroutine to check that a given value is in fact a possible choice.

If the value is hexadecimal, it is prefixed with the 0x notation. If the
value is octal, the value is prefixed with a leading zero. If the value is
decimal, its value is represented by its significant digits. If the value
is a string, the string itself should not have embedded commas, since
commas are used to separate items in an enumerated list.

A range is represented as a triplet of values: lowerlimit, upperlimit, and
increment value. The lowerlimit variable indicates the value of the first
possible choice. The upperlimit variable indicates the value of the last
possible choice. The lowerlimit and upperlimit values are separated by
a - (hyphen). Values between the lowerlimit and upperlimit values are
obtained by adding multiples of the increment value variable to the
lowerlimit variable. The upperlimit and increment value variables are
separated by a comma.

Only numeric values are used for ranges. Also, discontinuous ranges (for
example, 1-3, 6-8) are disallowed. A combination of list and ranges is
not allowed.

An enumerated list contains values that are comma-separated.

If the attribute is a group, the Possible Values descriptor contains a list
of attributes composing the group, separated by commas.

If the attribute is shared, the Possible Values descriptor contains the
name of the bus resource regular attribute that must be shared with
another device.

For type T attributes, the Possible Values descriptor contains the
message numbers in a comma-separated list.

Width If the attribute is a regular attribute of type M for a bus memory address
or of type O for a bus I/O address, the Width descriptor can be used to
identify the amount in bytes of the bus memory or bus I/O space that
must be allocated. Alternatively, the Width field can be set to a null
string, which indicates that the amount of bus memory or bus I/O space
is specified by a width attribute, that is, an attribute of type W.

If the attribute is a regular attribute of type W, the Width descriptor
contains the name of the bus memory address or bus I/O address
attribute to which this attribute corresponds. The use of a type W
attribute allows the amount of bus memory or bus I/O space to be
configurable, whereas if the amount is specified in the bus memory
address or bus I/O address attribute's Width descriptor, it is fixed at that
value and cannot be customized.

For all other attributes, a null string is used to fill in this field.

758 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Descriptor Description

Attribute Type Identifies the attribute type. Only one attribute type must be specified.
The characters A, B, M, I, N, O, P, and W represent bus resources that are
regular attributes.

For regular attributes that are not bus resources, the following attribute
types are defined:

 L
Indicates the microcode file base name and the text from the label
on the diskette containing the microcode file. Only device's with
downloadable microcode have attributes of this type. The L attribute
type is used by the chkmcode program to determine whether a
device which is present has any version of its microcode installed.
If none is installed, the user is prompted to insert the microcode
diskette with the label identified by this attribute. The base name
is stored in the Default Value field and is the portion of the
microcode file name not consisting of the level and version numbers.
The label text is stored in the Possible Values field.

 T
Indicates message numbers corresponding to possible text
descriptions of the device. These message numbers are within the
catalog and set identified in the device's PdDv object.

A single PdDv object can represent many device types. Normally, the
message number in a device's PdDv object also identifies its text
description. However, there are cases where a single PdDv object
represents different device types. This happens when the parent
device which detects them cannot distinguish between the types.
For example, a single PdDv object is used for both the 120MB and
160MB Direct Attached Disk drives. For these devices, unique device
descriptions can be assigned by setting the message number in the
device's PdDv object to 0 and having a T attribute type, indicating
the set of possible message numbers. The device's configure method
determines the actual device type and creates a corresponding CuAt
object indicating the message number of the correct text description.

 R
Indicates any other regular attribute that is not a bus resource.

 Z
If the attribute name is led, than this indicates the LED number for
the device. Normally, the LED number for a device is specified in the
device's PdDv object. However, in cases where the PdDv object may
be used to respresent multiple device types, unique LED numbers
can be assigned to each device type by having a type Z attribute
with an attribute name of led. In this case, the LED number in the
PdDv object is set to 0. The device's configure method determines
the actual LED number for the device, possibly by obtaining the value
from the device, and creates a corresponding CuAt object indicating
the LED number. The default value specified in the type Z PdAt
object with the attribute name of led is the LED number to be used
until the device's configure method has determined the LED number
for the device.

 The following are the bus resources types for regular attributes:

Kernel Services and Subsystem Operations 759

Descriptor Description

 A
Indicates DMA arbitration level.

 B
Indicates a bus memory address which is not associated with DMA
transfers.

 M
Indicates a bus memory address to be used for DMA transfers.

 I
Indicates bus interrupt level that can be shared with another device.

 N
Indicates a bus interrupt level that cannot be shared with another
device.

 O
Indicates bus I/O address.

 P
Indicates priority class.

 W
Indicates an amount in bytes of bus memory or bus I/O space.

 For non-regular attributes, the following attribute types are defined:

G
Indicates a group.

S
Indicates a shared attribute.

Generic Attribute Flags Identifies the flags that can apply to any regular attribute. Any
combination (one, both, or none) of these flags is valid. This descriptor
should be a null string for group and shared attributes. This descriptor is
always set to a null string for type T attributes.

These are the defined generic attribute flags:

D
Indicates a displayable attribute. The lsattr command displays only
attributes with this flag.

U
Indicates an attribute whose value can be set by the user.

760 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Descriptor Description

Attribute Representation
Flags

Indicates the representation of the regular attribute values. For
group and shared attributes, which have no associated attribute
representation, this descriptor is set to a null string. Either the n or s
flag, both of which indicate value representation, must be specified.

The r, l, and m flags indicate, respectively, a range, an enumerated list,
and a multi-select value list, and are optional. If neither the r flag nor
the l flag is specified, the attrval subroutine will not verify that the value
falls within the range or the list.

These are the defined attribute representation flags:

n
Indicates that the attribute value is numeric: either decimal, hex, or
octal.

s
Indicates that the attribute value is a character string.

r
Indicates that the attribute value is a range of the form: lowerlimit-
upperlimit,increment value.

l
Indicates that the attribute value is an enumerated list of values.

m
Indicates that multiple values can be assigned to this attribute.
Multiple values for an attribute are represented as a comma
separated list.

b
Indicates that value is a boolean type, and can only have
2 values. Typical values are yes,no, true,false, on,off,
disable,enable or 0,1.

d
Indicates that the default value for the attribute has been altered by
the chdef command.

The attribute representation flags are always set to nl (numeric list) for
type T attributes.

NLS Index Identifies the message number in the NLS message catalog of
the message containing a textual description of the attribute. Only
displayable attributes, as identified by the Generic Attribute Flags
descriptor, need an NLS message. If the attribute is not displayable,
the NLS index can be set to a value of 0. The catalog file name and the
set number associated with the message number are stored in the PdDv
object class.

Predefined Attribute Extended (PdAtXtd) Object Class
The Predefined Attribute Extended (PdAtXtd) object class is used to supplement existing device attributes
that are represented in the Predefined Attribute (PdAt) object class with information that can be used by
Device Management User Interface.

Types of attributes to represent in PdAtXtd

Not all existing device attributes in PdAt must be represented in the PdAtXtd object class. Non-
displayable attributes (that is, attributes with a null string in the 'generic' field of the PdAt object class)
must not have a corresponding PdAtXtd entry, otherwise, it becomes displayable.

Kernel Services and Subsystem Operations 761

The PdAtXtd object class can also be used to override the current value or possible values of an attribute.

Predefined Attribute Extended Object Class Descriptors
The Predefined Attribute Extended object class contains the following descriptors:

ODM Type Descriptor Name Description Required

ODM_CHAR uniquetype Unique Type Yes

ODM_CHAR attribute Attribute Name No

ODM_CHAR classification Attribute Classification No

ODM_CHAR sequence Sequence number No

ODM_VCHAR operation Operation Name No

ODM_VCHAR operation_value Operation Value No

ODM_VCHAR description Attribute Description No

ODM_VCHAR list_cmd Command to list Attribute
value

No

ODM_VCHAR list_values_cmd Command to list Attribute
values

No

ODM_VCHAR change_cmd Command to change Attribute
value

No

ODM_VCHAR help Help text NO

ODM_VCHAR nls_values Translated Attribute values No

These descriptors are described as follows:

Descriptor Description

uniquetype Identifies the class-subclass-type name of the device to which this attribute
is associated. This descriptor is the same as the Unique Type descriptor in the
PdAt object class.

attribute Identifies the device attribute. This name can be passed to mkdev and
chdev configuration commands and device methods in the attribute-name
and attribute-value pairs.

classification Identifies the classification of the device attribute. The followings characters
are valid values:
B

Indicates a basic attribute.
A

Indicates an advanced attribute.
R

Indicates a required attribute.

sequence Identifies the number that is used to position the attribute in relation to
others on a panel or menu. This field is identical to the id_seq_num currently
in the sm_cmd_opt (SMIT Dialog/Selector Command Option) object class.

operation Identifies the type of operation that is associated with the unique device type.
Operation and attribute name fields are mutually exclusive.

762 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Descriptor Description

operation_value Identifies the value that is associated with the Operation field.

When the operation is add_device, the operation_value field can contain
the command that is used to make the device, if the mkdev command cannot
be used.

description Identifies the attribute description.

list_cmd Identifies the command to override the current value of the attribute, except
when the operation field is set. If the operation field is set, it identifies the
command to return information that is associated with the operation.

For example, in the case of the add_ttyoperation, the list_cmd field
contains the following value:

lsdev -P -c tty -s rs232 -Fdescription

list_values_cmd Identifies the command to obtain the possible values of an attribute. The
values that are returned override the values field in the Predefined Attribute
object class.

change_cmd Identifies the command to change the attribute value if the chdevcommand
cannot be used.

help Identifies the help text that is associated with the attribute. The help text
format follows:

message file,set id,msg id,default text

OR

a numeric string equal to a SMIT identifier tag.

nls_values Identifies the text that is associated with the attribute values. These values
are displayed in place of the values that are stored in the Predefined Attribute
object class. This field must be of the following form:

message file,set id,msg id,default text

The ordering of values must match the ordering in the Predefined Attribute
values field.

Predefined Connection (PdCn) Object Class

Description
The Predefined Connection (PdCn) object class contains connection information for intermediate devices.
This object class also includes predefined dependency information. For each connection location, there
are one or more objects describing the subclasses of devices that can be connected. This information is
useful, for example, in verifying whether a device instance to be defined and configured can be connected
to a given device.

Descriptors
The Predefined Connection object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR uniquetype[UNIQUESIZE] Unique Type Required

Kernel Services and Subsystem Operations 763

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR connkey[KEYSIZE] Connection Key Required

ODM_CHAR connwhere[LOCSIZE] Connection
Location

Required

These fields are described as follows:

Field Description

Unique Type Identifies the intermediate device's class-subclass-type name. For
a device with dependency information, this descriptor identifies
the unique type of the device on which there is a dependency.
This descriptor contains the same information as the Unique Type
descriptor in the Predefined Devices (PdDv) object class.

Connection Key Identifies a subclass of devices that can connect to the intermediate
device at the specified location. For a device with dependency
information, this descriptor serves to identify the device indicated by
the Unique Type field to the devices that depend on it.

Connection Location Identifies a specific location on the intermediate device where a child
device can be connected. For a device with dependency information,
this descriptor is not always required and consequently may be filled
with a null string.

The term location is used in a generic sense. For example, for a bus
device the location can refer to a specific slot on the bus, with values
1, 2, 3,.... For a multiport serial adapter device, the location can
refer to a specific port on the adapter with values 0, 1,....

Predefined Devices (PdDv) Object Class

Description
The Predefined Devices (PdDv) object class contains entries for all device types currently on the system.
It can also contain additional device types if the user has specifically installed certain packages that
contain device support for devices that are not on the system. The term devices is used generally to mean
both intermediate devices (for example, adapters) and terminal devices (for example, disks, printers,
display terminals, and keyboards). Pseudo-devices (for example, pseudo terminals, logical volumes, and
TCP/IP) are also included there. Pseudo-devices can either be intermediate or terminal devices.

Each device type, as determined by class-subclass-type information, is represented by an object in the
PdDv object class. These objects contain basic information about the devices, such as device method
names and instructions for accessing information contained in other object classes. The PdDv object class
is referenced by the Customized Devices (CuDv) object class using a link that keys into the Unique Type
descriptor. This descriptor is uniquely identified by the class-subclass-type information.

Typically, the Predefined database is consulted but never modified during system boot or run time, except
when a new device is added to the Predefined database. In this case, the predefined information for the
new device must be added into the Predefined database. However, any new predefined information for a
new base device must be written to the boot file system to be effective. This is done with the bosboot
command.

You build a Predefined Device object by defining the objects in a file in stanza format and then processing
the file with the odmadd command or the odm_add_obj subroutine. See the odmadd command or the
odm_add_obj subroutine for information on creating the input file and compiling the object definitions
into objects.

764 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Note: When coding an object in this object class, set unused empty strings to "" (two double-quotation
marks with no separating space) and unused integer fields to 0 (zero).

Descriptors
Each Predefined Devices object corresponds to an instance of the PdDv object class. The descriptors for
the Predefined Devices object class are as follows:

Predefined Devices

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR type[TYPESIZE] Device Type Required

ODM_CHAR class[CLASSIZE] Device Class Required

ODM_CHAR subclass[CLASSIZE] Device Subclass Required

ODM_CHAR prefix[PREFIXSIZE] Prefix Name Required

ODM_CHAR devid[DEVIDSIZE] Device ID Optional

ODM_SHORT base Base Device Flag Required

ODM_SHORT has_vpd VPD Flag Required

ODM_SHORT detectable Detectable/Non-
detectable Flag

Required

ODM_SHORT chgstatus Change Status Flag Required

ODM_SHORT bus_ext Bus Extender Flag Required

ODM_SHORT inventory_only Inventory Only Flag Required

ODM_SHORT fru FRU Flag Required

ODM_SHORT led LED Value Required

ODM_SHORT setno Set Number Required

ODM_SHORT msgno Message Number Required

ODM_VCHAR catalog[CATSIZE] Catalog File Name Required

ODM_CHAR DvDr[DDNAMESIZE] Device Driver
Name

Optional

ODM_METHOD Define Define Method Required

ODM_METHOD Configure Configure Method Required

ODM_METHOD Change Change Method Required

ODM_METHOD Unconfigure Unconfigure
Method

Optional*

ODM_METHOD Undefine Undefine Method Optional*

ODM_METHOD Start Start Method Optional

ODM_METHOD Stop Stop Method Optional

ODM_CHAR uniquetype[UNIQUESIZE] Unique Type Required

These descriptors are described as follows:

Kernel Services and Subsystem Operations 765

Descriptor Description

Device Type Specifies the product name or model number. For
example, IBM 3812-2 Model 2 Page printer and IBM
4201 Proprinter II are two types of printer device
types. Each device type supported by the system
should have an entry in the PdDv object class.

Device Class Specifies the functional class name. A functional
class is a group of device instances sharing the
same high-level function. For example, printer is
a functional class name representing all devices that
generate hardcopy output.

Device Subclass Identifies the device subclass associated with the
device type. A device class can be partitioned into
a set of device subclasses whose members share
the same interface and typically are managed by
the same device driver. For example, parallel and
serial printers form two subclasses within the class
of printer devices.

The configuration process uses the subclass
to determine valid parent-child connections. For
example, an rs232 8-port adapter has information
that indicates that each of its eight ports only
supports devices whose subclass is rs232. Also, the
subclass for one device class can be a subclass for a
different device class. In other words, several device
classes can have the same device subclass.

Prefix Name Specifies the Assigned Prefix in the Customized
database, which is used to derive the device instance
name and /dev name. For example, tty is a Prefix
Name assigned to the tty port device type. Names of
tty port instances would then look like tty0, tty1,
or tty2. The rules for generating device instance
names are given in the Customized Devices object
class under the Device Name descriptor.

Base Device Flag A base device is any device that forms part of
a minimal base system. During the first phase of
system boot, a minimal base system is configured
to permit access to the root volume group and hence
to the root file system. This minimal base system
can include, for example, the standard I/O diskette
adapter and a SCSI hard drive.

The Base Device flag is a bit mask representing the
type of boot for which the device is considered a
base device. The bosboot command uses this flag
to determine what predefined device information to
save in the boot file system. The savebase command
uses this flag to determine what customized device
information to save in the boot file system. Under
certain conditions, the cfgmgr command also uses
the Base Device flag to determine whether to
configure a device.

766 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Descriptor Description

VPD Flag Specifies whether device instances belonging to the
device type contain extractable vital product data
(VPD). Certain devices contain VPD that can be
retrieved from the device itself. A value of TRUE
means that the device has extractable VPD, and a
value of FALSE that it does not. These values are
defined in the /usr/include/sys/cfgdb.h file.

Detectable/Nondetectable Flag Specifies whether the device instance is detectable
or nondetectable. A device whose presence and type
can be electronically determined, once it is actually
powered on and attached to the system, is said to be
detectable. A value of TRUE means that the device is
detectable, and a value of FALSE that it is not. These
values are defined in the /usr/include/sys/cfgdb.h
file.

Change Status Flag Indicates the initial value of the Change Status flag
used in the Customized Devices (CuDv) object class.
Refer to the corresponding descriptor in the CuDv
object class for a complete description of this flag. A
value of NEW means that the device is to be flagged
as new, and a value of DONT_CARE means "it is
not important." These values are defined in the /usr/
include/sys/cfgdb.h file.

Bus Extender Flag Indicates that the device is a bus extender. The Bus
Configurator uses the Bus Extender flag descriptor
to determine whether it should directly invoke the
device's Configure method. A value of TRUE means
that the device is a bus extender, and a value of
FALSE that it is not. These values are defined in
the /usr/include/sys/cfgdb.h file.

This flag is further described in "Device Methods for
Adapter Cards: Guidelines" .

Inventory Only Flag Distinguishes devices that are represented solely for
their replacement algorithm from those that actually
manage the system. There are several devices that
are represented solely for inventory or diagnostic
purposes. Racks, drawers, and planars represent
such devices. A value of TRUE means that the device
is used solely for inventory or diagnostic purposes,
and a value of FALSE that it is not used solely for
diagnostic or inventory purposes. These values are
defined in the /usr/include/sys/cfgdb.h file

Kernel Services and Subsystem Operations 767

Descriptor Description

FRU Flag Identifies the type of field replaceable unit (FRU) for
the device. The three possible values for this field
are:
NO_FRU

Indicates that there is no FRU (for pseudo-
devices).

SELF_FRU
Indicates that the device is its own FRU.

PARENT_FRU
Indicates that the FRU is the parent.

These values are defined in the /usr/include/sys/
cfgdb.h file.

LED Value Indicates the hexadecimal value displayed on the
LEDs when the Configure method executes.

Catalog File Name Identifies the file name of the NLS message catalog
that contains all messages pertaining to this device.
This includes the device description and its attribute
descriptions. All NLS messages are identified by a
catalog file name, set number, and message number.

Set Number Identifies the set number that contains all
the messages for this device in the specified
NLS message catalog. This includes the device
description and its attribute descriptions.

Message Number Identifies the message number in the specified
set of the NLS message catalog. The message
corresponding to the message number contains the
textual description of the device.

Device Driver Name Identifies the base name of the device driver
associated with all device instances belonging to the
device type. For example, a device driver name for a
keyboard could be ktsdd. For the tape device driver,
the name could be tapedd. The Device Driver Name
descriptor can be passed as a parameter to the
loadext routine to load the device driver, if the device
driver is located in the /usr/lib/drivers directory. If
the driver is located in a different directory, the full
path must be appended in front of the Device Driver
Name descriptor before passing it as a parameter to
the loadext subroutine.

Define Method Names the Define method associated with the device
type. All Define method names start with the def
prefix.

Configure Method Names the Configure method associated with the
device type. All Configure method names start with
the cfg prefix.

Change Method Names the Change method associated with the
device type. All Change method names start with the
chg prefix.

768 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Descriptor Description

Unconfigure Method Names the Unconfigure method associated with the
device type. All Unconfigure method names start
with the ucfg prefix.

Note: The Optional* descriptor status indicates that
this field is optional for those devices (for example,
the bus) that are never unconfigured or undefined.
For all other devices, this descriptor is required.

Undefine Method Names the Undefine method associated with the
device type. All Undefine method names start with
the und prefix.

Note: The Optional* descriptor status indicates that
this field is optional for those devices (for example,
the bus) that are never unconfigured or undefined.
For all other devices, this descriptor is required.

Start Method Names the Start method associated with the device
type. All Start method names start with the stt prefix.
The Start method is optional and only applies to
devices that support the Stopped device state.

Stop Method Names the Stop method associated with the device
type. All Stop method names start with the stp
prefix. The Stop method is optional and only applies
to devices that support the Stopped device state.

Unique Type A key that is referenced by the PdDvLn link in CuDv
object class. The key is a concatenation of the Device
Class, Device Subclass, and Device Type values with
a / (slash) used as a separator. For example, for a
class of disk, a subclass of scsi, and a type of
670mb, the Unique Type is disk/scsi/670mb.

This descriptor is needed so that a device instance's
object in the CuDv object class can have a link to its
corresponding PdDv object. Other object classes in
both the Predefined and Customized databases also
use the information contained in this descriptor.

Files

Item Description

/usr/lib/drivers directory Contains device drivers.

putattr Device Configuration Subroutine

Purpose
Updates, deletes, or creates an attribute object in the Customized Attribute (CuAt) object class.

Library
Object Data Manager Library (libodm.a)

Kernel Services and Subsystem Operations 769

Syntax
#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int putattr (cuobj)
struct CuAt *cuobj;

Parameters

Item Description

cuobj Specifies the attribute object.

Description
The putattr device configuration subroutine either updates an old attribute object, creates a new object
for the attribute information, or deletes an existing object in the CuAt object class. The putattr subroutine
queries the CuAt object class to determine whether an object already exists with the device name and
attribute name specified by the cuobj parameter.

If the attribute is found in the CuAt object class and its value (as given in the cuobj parameter) is to
be changed back to the default value for this attribute, the customized object is deleted. Otherwise, the
customized object is simply updated.

If the attribute object does not already exist and its attribute value is being changed to a non-default
value, a new object is added to the CuAt object class with the information given in the cuobj parameter.

Note: The putattr device configuration subroutine will fail unless you first call the odm_initialize
subroutine.

Return Values

Item Description

0 Indicates a successful operation.

-1 Indicates a failed operation.

Files

Item Description

/usr/lib/libcfg.a Archive of device configuration subroutines.

reldevno Device Configuration Subroutine

Purpose
Releases the minor or major number, or both, for a device instance.

Syntax
#include <cf.h> #include <sys/cfgodm.h> #include <sys/cfgdb.h> int reldevno
(device_instance_name, release) char *device_instance_name; int release;

Parameters

770 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

device_instance_name Points to the character string containing the device instance
name.

release Specifies whether the major number should be released. A value
of True releases the major number; a value of False does not.

Description
The reldevno device configuration subroutine is one of the designated access routines to the Customized
Device Driver (CuDvDr) object class. This object class is locked exclusively by this routine until its
completion. All minor numbers associated with the device instance name are deleted from the CuDvDr
object class. That is, each object is deleted from the class. This releases the minor numbers for reuse.

The major number is released for reuse if the following two conditions exist:

• The object to be deleted contains the last minor number for a major number.
• The release parameter is set to True.

If you prefer to release the major number yourself, then the relmajor device configuration subroutine
can be called. In this case, you should also set the release parameter to False. All special files, including
symbolically linked special files, corresponding to the deleted objects are deleted from the file system.

Return Values

Item Description

0 Indicates successful completion.

-1 Indicates a failure to release the minor number or major number, or both.

Files

Item Description

/usr/lib/libcfg.a Archive of device configuration subroutines.

relmajor Device Configuration Subroutine

Purpose
Releases the major number associated with the specified device driver instance name.

Syntax
#include <cf.h> #include <sys/cfgodm.h> #include <sys/cfgdb.h> int relmajor
(device_driver_instance_name) char *device_driver_instance_name;

Parameter

Item Description

device_driver_instance_name Points to a character string containing the device driver
instance name.

Kernel Services and Subsystem Operations 771

Description
The relmajor device configuration subroutine is one of the designated access routines to the Customized
Device Driver (CuDvDr) object class. To ensure that unique major numbers are generated, the CuDvDr
object class is locked exclusively by this routine until the major number has been released.

The relmajor routine deletes the object containing the major number of the device driver instance name.

Return Values

Item Description

0 Indicates successful completion.

-1 Indicates a failure to release the major number.

Files

Item Description

/usr/lib/libcfg.a Archive of device configuration subroutines.

Writing a Change Method
This article describes how a Change device method works. It also suggests guidelines for programmers
writing their own Change device configuration methods.

Syntax
chgDev -l Name [-p Parent] [-w Connection] [-P | -T] [-a Attr=Value [-a Attr=Value ...] ...]

Description
The Change method applies configuration changes to a device. If the device is in the Defined state, the
changes are simply recorded in the Customized database. If the device is in the Available state, the
Change method must also apply the changes to the actual device by reconfiguring it.

A Change method does not need to support all the flags described for Change methods. For example, if
your device is a pseudo-device with no parent, it need not support parent and connection changes. For
devices that have parents, it may be desirable to disallow parent and connection changes. For printers,
such changes are logical because they are easily moved from one port to another. By contrast, an adapter
card is not usually moved without first shutting off the system. It is then automatically configured at its
new location when the system is rebooted. Consequently, there may not be a need for a Change method
to support parent and connection changes.

Note: In deciding whether to support the -T and -P flags, remember that these options allow a device's
configuration to get out of sync with the Configuration database. The -P flag is useful for devices that are
typically kept open by the system. The Change methods for most supported devices do not support the -T
flag.

In applying changes to a device in the Available state, the Change method could terminate the device
from the driver, rebuild the device-dependent structure (DDS) using the new information, and redefine the
device to the driver using the new DDS. The method may also need to reload adapter software or perform
other device-specific operations. An alternative is to invoke the device's Unconfigure method, update the
Customized database, and invoke the device's Configure method.

By convention, the first three characters of the name of the Change method should be chg. The remainder
of the name (Dev) can be any characters, subject to operating system file-name restrictions, that identify
the device or group of devices that use the method.

772 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Flags

Item Description

-l Name Identifies the logical name of the device to be changed.

-p Parent Identifies the logical name of a new parent for the device. This flag is used
to move a device from one parent to another.

-w Connection Identifies a new connection location for the device. This flag either
identifies a new connection location on the device's existing parent, or
if the -p flag is also used, it identifies the connection location on the new
parent device.

-P Indicates that the changes are to be recorded in the Customized database
without those changes being applied to the actual device. This is a useful
option for a device which is usually kept open by the system such that it
cannot be changed. Changes made to the database with this flag are later
applied to the device when it is configured at system reboot.

-T Indicates that the changes are to be applied only to the actual device
and not recorded in the database. This is a useful option for allowing
temporary configuration changes that will not apply once the system is
rebooted.

-a Attr=Value Specifies the device attribute value pairs used for changing specific
attribute values. The Attr=Value parameter contains one or more attribute
value pairs for the -a flag. If you use a -a flag with multiple attribute value
pairs, the list of pairs must be enclosed in quotes with spaces between
the pairs. For example, entering -a Attr=Value lists one attribute value
pair, while entering -a 'Attr1=Value1 Attr2=Value2' lists more than one
attribute value pair.

Guidelines for Writing a Change Method
This list of tasks is intended as a guideline for writing a Change method. When writing for a specific
device, some tasks may be omitted. For example, if a device does not support the changing of a parent
or connection, there is no need to include those tasks. A device may have special needs that are not
included in these tasks.

If the Change method is written to invoke the Unconfigure and Configure methods, it must:

1. Validate the input parameters. The -l flag must be supplied to identify the device that is to be
changed. If your method does not support the specified flag, exit with an error.

2. Initialize the Object Data Manager (ODM). Use the odm_initialize subroutine and lock the
Configuration database using the odm_lock subroutine. See "Writing a Define Method" for an
example.

3. Retrieve the Customized Device (CuDv) object for the device to be changed by getting the CuDv object
whose Device Name descriptor matches the name supplied with the -l flag. If no object is found with
the specified name, exit with an error.

4. Validate all attributes being changed. Make certain that the attributes apply to the specified device,
that they can be set by the user, and that they are being set to valid values. The attrval subroutine
can be used for this purpose. If some attributes have values that are dependent on each other, write
the code to cross check them. If invalid attributes are found, the method needs to write information
to standard error describing them.

5. Determine if a new parent device exists. If a new parent device has been specified, find out whether
it exists by querying the CuDv object class for an object whose Device Name descriptor matches the
new parent name. If no match is found, the method exits with an error.

6. If a new connection has been specified, validate that this device can be connected there. Do this by
querying the Predefined Connection (PdCn) object class for an object whose Unique Type descriptor

Kernel Services and Subsystem Operations 773

matches the link to the Predefined Devices (PdDv) object class descriptor of the parent's CuDv object.
The Connection Key descriptor of the CuDv object must match the subclass name of the device being
changed, and the Connection Location descriptor of the CuDv object must match the new connection
value. If no match is found, the method exits with an error.

7. If a match is found, the new connection is valid. If the device is in the Available state, then it should
still be available after being moved to the new connection. Since only one device can be available at a
particular connection, the Change method must check for other available devices at that connection.
If one is found, the method exits with an error.

8. If the device state is Available and the -P flag was not specified, invoke the device's Unconfigure
method using the odm_run_method command. This fails if the device has Available child devices,
which is why the Change method does not need to check explicitly for child devices.

9. If any attribute settings were changed, update the database to reflect the new settings. If a parent or
connection changed, update the Parent Device Logical Name, Location Where Connected on Parent
Device, and Location Code descriptors of the device's CuDv object.

10. If the device state was in the Available state before being unconfigured, invoke the device's
Configure method using the odm_run_method command. If this returns an error, leaving the device
unconfigured, the Change method should restore the Customized database to its pre-change state.

11. Close all object classes and terminate the ODM. Exit with an exit code of 0 if there were no errors.

Handling Invalid Attributes
If the Change method detects attributes that are in error, it must write information to the stderr file to
identify them. This consists of writing the attribute name followed by the attribute description. Only one
attribute and its description is to be written per line. If an attribute name was mistyped so that it does not
match any of the device's attributes, write the attribute name supplied on a line by itself.

The mkdev and chdev configuration commands intercept the information written to the standard error file
by the Change method. These commands write out the information following an error message describing
that there were invalid attributes. Both the attribute name and attribute description are needed to identify
the attribute. By invoking the mkdev or chdev command directly, the attributes can be identified by name.
When using SMIT, these attributes can be identified by description.

The attribute description is obtained from the appropriate message catalog. A message is identified by
catalog name, set number, and message number. The catalog name and set number are obtained from
the device's PdDv object. The message number is obtained from the NLS Index descriptor in either the
Predefined Attribute (PdAt) or Customized Attribute (CuAt) object corresponding to the attribute.

Writing a Configure Method
This article describes how a Configure device method works. It also suggests guidelines for programmers
writing their own Configure device configuration methods.

Syntax
cfgDev -l Name [-1 | -2]

Description
The Configure method moves a device from Defined (not available for use in the system) to Available
(available for use in the system). If the device has a driver, the Configure method loads the device driver
into the kernel and describes the device characteristics to the driver. For an intermediate device (such as
a SCSI bus adapter), this method determines which attached child devices are to be configured and writes
their logical names to standard output.

The Configure method is invoked by either the mkdev configuration command or by the Configuration
Manager. Because the Configuration Manager runs a second time in phase 2 system boot and can also
be invoked repeatedly at run time, a device's Configure method can be invoked to configure an Available

774 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

device. This is not an error condition. In the case of an intermediate device, the Configure method checks
for the presence of child devices. If the device is not an intermediate device, the method simply returns.

In general, the Configure method obtains all the information it needs about the device from the
Configuration database. The options specifying the phase of system boot are used to limit certain
functions to specific phases.

If the device has a parent device, the parent must be configured first. The Configure method for a device
fails if the parent is not in the Available state.

By convention, the first three characters of the name of the Configure method are cfg. The remainder of
the name (Dev) can be any characters, subject to operating system file-name restrictions, that identify the
device or group of devices that use the method.

Flags

Item Description

-l Name Identifies the logical name of the device to be configured.

-1 Specifies that the device is being configured in phase 1 of the System boot
processing. This option cannot be specified with the -2 flag. If neither the -1 nor
the -2 flags are specified, the Configure method is invoked at runtime.

-2 Specifies that the device is being configured in phase 2 of the system boot. This
option cannot be specified with the -1 flag. If neither the -1 nor the -2 flags are
specified, the Configure method is invoked at runtime.

Handling Device Vital Product Data (VPD)
Devices that provide vital product data (VPD) are identified in the Predefined Device (PdDv) object class
by setting the VPD flag descriptor to TRUE in each of the device's PdDv objects. The Configure method
must obtain the VPD from the device and store it in the Customized VPD (CuVPD) object class. Consult the
appropriate hardware documentation to determine how to retrieve the device's VPD. In many cases, VPD
is obtained from the device driver using the sysconfig subroutine.

Once the VPD is obtained from the device, the Configure method queries the CuVPD object class to see if
the device has hardware VPD stored there. If so, the method compares the VPD obtained from the device
with that from the CuVPD object class. If the VPD is the same in both cases, no further processing is
needed. If they are different, update the VPD in the CuVPD object class for the device. If there is no VPD in
the CuVPD object class for the device, add the device's VPD.

By first comparing the device's VPD with that in the CuVPD object class, modifications to the CuVPD object
class are reduced. This is because the VPD from a device typically does not change. Reducing the number
of database writes increases performance and minimizes possible data loss.

Understanding Configure Method Errors
For many of the errors detected, the Configure method exits with the appropriate exit code. In other
cases, the Configure method may need to undo some of the operations it has performed. For instance,
after loading the device driver and defining the device to the driver, the Configure method may encounter
an error while downloading microcode. If this happens, the method will terminate the device from the
driver using the sysconfig subroutine and unload the driver using the loadext subroutine.

The Configure method does not delete the special files or unassign the major and minor numbers if they
were successfully allocated and the special file created before the error was encountered. This is because
the operating system's configuration scheme allows both major and minor numbers and special files to be
maintained for a device even though the device is unconfigured.

If the device is configured again, the Configure method will recognize that the major and minor numbers
are allocated and that the special files exist.

Kernel Services and Subsystem Operations 775

By the time the Configure method checks for child devices, it has successfully configured the device.
Errors that occur while checking for child devices are indicated with the E_FINDCHILD exit code. The
mkdev command detects whether the Configure method completed successfully. If needed, it will display
a message indicating that an error occurred while looking for child devices.

Guidelines for Writing a Configure Method

The following tasks are guidelines for writing a Configure method. When writing for a specific device,
some tasks may be omitted. For example, if the device is not an intermediate device or does not have a
driver, the method is written accordingly. A device may also have special requirements not listed in these
tasks.

The Configure method must:

1. Validate the input parameters. The -l logical name flag must be supplied to identify the device that is
to be configured. The -1 and -2 flags cannot be supplied at the same time.

2. Initialize the Object Data Manager (ODM). Use the odm_initialize subroutine and lock the
Configuration database using the odm_lock subroutine. See "Writing a Define Method" for an
example.

3. Retrieve the Customized Device (CuDv) object for the device to be configured. The CuDv object's
Device Name descriptor must match the name supplied with the -l logical name flag. If no object is
found with the specified name, the method exits with an error.

4. Retrieve the Predefined Device (PdDv) object for the device to be configured. The PdDv object's
Unique Type descriptor must match the link to PdDv object class descriptor of the device's CuDv
object.

5. Obtain the LED value descriptor of the device's PdDv object. Retrieve the LED Value descriptor of
the device's PdDv object and display this value on the system LEDs using the setleds subroutine if
either the -1 or -2 flag is specified. This specifies when the Configure method will execute at boot
time. If the system hangs during configuration at boot time, the displayed LED value indicates which
Configure method created the problem.

If the device is already configured (that is, the Device State descriptor of the device's CuDv object
indicates the Available state) and is an intermediate device, skip to the task of detecting child
devices. If the device is configured but is not an intermediate device, the Configure method will exit
with no error.

If the device is in the Defined state, the Configure Method must check the parent device, check for
the presence of a device, obtain the device VPD, and update the device's CuDv object.

6. If the device has a parent, the Configure method validates the parent's existence and verifies that the
parent is in the Available state. The method looks at the Parent Device Logical Name descriptor of the
device's CuDv object to obtain the parent name. If the device does not have a parent, the descriptor
will be a null string.

When the device has a parent, the Configure method will obtain the parent device's CuDv object and
check the Device State descriptor. If the object does not exist or is not in the Available state, the
method exits with an error.

Another check must be made if a parent device exists. The Configure method must verify that no
other device connected to the same parent (at the same connection location) has been configured.
For example, two printers can be connected to the same port using a switch box. While each printer
has the same parent and connection, only one can be configured at a time.

The Configure method performs this check by querying the CuDv object class. It queries for objects
whose Device State descriptor is set to the Available state and whose Parent Device Logical Name
and Location Where Connected on Parent Device descriptors match those for the device being
configured. If a match is found, the method exits with an error.

7. Check the presence of the device. If the device is an adapter card and the Configure method has been
invoked at run time (indicated by the absence of both the -1 and -2 flags), the Configure method must
verify the adapter card's presence. This is accomplished by reading POS registers from the card. (The
POS registers are obtained by opening and accessing the /dev/bus0 or /dev/bus1 special file.) This

776 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

is essential, because if the card is present, the Configure method must invoke the busresolve library
routine to assign bus resources to avoid conflict with other adapter cards in the system. If the card is
not present or the busresolve routine fails to resolve bus resources, the method exits with an error.

8. Determine if the device has a device driver. The Configure method obtains the name of the device
driver from the Device Driver Name descriptor of the device's PdDv object. If this descriptor is a null
string, the device does not have a device driver.

If the device has a device driver, the Configure method must:

a. Load the device driver using the loadext subroutine.
b. Determine the device's major number using the genmajor subroutine.
c. Determine the device's minor number using the getminor or genminor subroutine or by your own

device-dependent routine.
d. Create special files in the /dev directory if they do not already exist. Special files are created with

the mknod subroutine.
e. Build the device-dependent structure (DDS). This structure contains information describing the

characteristics of the device to the device driver. The information is usually, but not necessarily,
obtained from the device's attributes in the Configuration database. Refer to the appropriate
device driver information to determine what the device driver expects the DDS to look like. The
"Device Dependent Structure (DDS) Overview" topic describes the DDS structure.

f. Use the sysconfig subroutine to pass the DDS to the device driver.
g. If code needs to be downloaded to the device, read in the required file and pass the code to the

device through the interface provided by the device driver. The file to be downloaded might be
identified by a Predefined Attribute (PdAt) or Customized Attribute (CuAt) object. By convention,
microcode files are in the /etc/microcode directory (which is a symbolic link to the /usr/lib/
microcode directory). Downloaded adapter software is in the /usr/lib/asw directory.

9. Obtain the device VPD. After the tasks relating to the device driver are complete, or if the device did
not have a device driver, the Configure method will determine if it needs to obtain vital product data
(VPD) from the device. The VPD Flag descriptor of the device's PdDv object specifies whether or not it
has VPD.

10. Update the CuDv object. At this point, if no errors have been encountered, the device is configured.
The Configure method will update the Device Status descriptor of the device's CuDv object to indicate
that it is in the Available state. Also, set the Change Status descriptor to SAME if it is currently set to
MISSING. This can occur if the device was not detected at system boot and is being configured at run
time.

11. Define detected child devices not currently represented in the CuDv object class. To accomplish this,
invoke the Define method for each new child device. For each detected child device already defined
in the CuDv object class, the Configure method looks at the child device's CuDv Change Status Flag
descriptor to see if it needs to be updated. If the descriptor's value is DONT_CARE, nothing needs to
be done. If it has any other value, it must be set to SAME and the child device's CuDv object must be
updated. The Change Status Flag descriptor is used by the system to indicate configuration changes.

If the device is an intermediate device but cannot detect attached child devices, query the CuDv
object class about this information. The value of the Change Status Flag descriptor for these
child devices should be DONT_CARE because the parent device cannot detect them. Sometimes
a child device has an attribute specifying to the Configure method whether the child device is to be
configured. The autoconfig attribute of TTY devices is an example of this type of attribute.

Regardless of whether the child devices are detectable, the Configure method will write the device
logical names of the child devices to be configured to standard output, separated by space
characters. If the method was invoked by the Configuration Manager, the Manager invokes the
Configure method for each of the child device names written to standard output.

12. Close all object classes and terminate the ODM. Close all object classes and terminate the ODM. If
there are no errors, use a 0 (zero) code to exit.

Kernel Services and Subsystem Operations 777

Files

Item Description

/dev/bus0 Contains POS registers.

/dev/bus1 Contains POS registers.

/etc/microcode directory Contains microcode files. A symbolic link to the /usr/lib/
microcode directory.

/usr/lib/asw directory Contains downloaded adapter software.

Writing a Define Method
This article describes how a Define device method works. It also suggests guidelines for programmers
writing their own Define device configuration methods.

Syntax
defDev -c Class -s SubClass -t Type [-p Parent -w Connection] [-l Name]

Description
The Define method is responsible for creating a customized device in the Customized database. It does
this by adding an object for the device into the Customized Devices (CuDv) object class. The Define
method is invoked either by the mkdev configuration command, by a node configuration program, or by
the Configure method of a device that is detecting and defining child devices.

The Define method uses information supplied as input, as well as information in the Predefined database,
for filling in the CuDv object. If the method is written to support a single device, it can ignore the class,
subclass, and type options. In contrast, if the method supports multiple devices, it may need to use these
options to obtain the PdDv device object for the type of device being customized.

By convention, the first three characters of the name of the Define method should be def. The remainder
of the name (Dev) can be any characters that identify the device or group of devices that use the method,
subject to operating system file-name restrictions.

Flags

Item Description

-c Class Specifies the class of the device being defined. Class, subclass, and type
are required to identify the Predefined Device object in the Predefined
Device (PdDv) object class for which a customized device instance is to
be created.

-s SubClass Specifies the subclass of the device being defined. Class, subclass, and
type are required to identify the Predefined Device object in the PdDv
object class for which a customized device instance is to be created.

-t Type Specifies the type of the device being defined. Class, subclass, and type
are required to identify the predefined device object in the PdDv object
class for which a customized device instance is to be created.

-p Parent Specifies the logical name of the parent device. This logical name is
required for devices that connect to a parent device. This option does not
apply to devices that do not have parents; for example, most pseudo-
devices.

-w Connection Specifies where the device connects to the parent. This option applies
only to devices that connect to a parent device.

778 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

-l Name Passed by the mkdev command, specifies the name for the device if the
user invoking the command is defining a new device and wants to select
the name for the device. The Define method assigns this name as the
logical name of the device in the Customized Devices (CuDv) object, if
the name is not already in use. If this option is not specified, the Define
method generates a name for the device. Not all devices support or need
to support this option.

Guidelines for Writing a Define Method
This list of tasks is meant to serve as a guideline for writing a Define method. In writing a method for a
specific device, some tasks may be omitted. For instance, if a device does not have a parent, there is no
need to include all of the parent and connection validation tasks. Additionally, a device may have special
needs that are not listed in these tasks.

The Define method must:

1. Validate the input parameters. Generally, a Configure method that invokes the child-device Define
method is coded to pass the options expected by the child-device Define method. However, the
mkdev command always passes the class, subclass, and type options, while only passing the other
options based on user input to the mkdev command. Thus, the Define method may need to ensure
that all of the options it requires have been supplied. For example, if the Define method expects
parent and connection options for the device being defined, it must ensure that the options are
supplied. Also, a Define method that does not support the -l name specification option will exit with
an error if the option is supplied.

2. Initialize the Object Data Manager (ODM) using the odm_initialize subroutine and lock the
configuration database using the odm_lock subroutine. The following code fragment illustrates this
process:

#include <cf.h>

if (odm_initialize() < 0)
 exit(E_ODMINIT); /* initialization failed */

if (odm_lock("/etc/objrepos/config_lock",0) == -1) {
 odm_terminate();
 exit(E_ODMLOCK); /* database lock failed */
}

3. Retrieve the predefined PdDv object for the type of device being defined. This is done by obtaining
the object from the PdDv object class whose class, subclass, and type descriptors match the class,
subclass, and type options supplied to the Define method. If no match is found, the Define method
will exit with an error. Information will be taken from the PdDv device object in order to create the
CuDv device object.

4. Ensure that the parent device exists. If the device being defined connects to a parent device and
the name of the parent has been supplied, the Define method must ensure that the specified device
actually exists. It does this by retrieving the CuDv object whose Device Name descriptor matches the
name of the parent device supplied using the -p flag. If no match is found, the Define method will exit
with an error.

5. If the device has a parent and that parent device exists in the CuDv object class, validate that
the device being defined can be connected to the specified parent device. To do this, retrieve the
predefined connection object from the Predefined Connection (PdCn) object class whose Unique
Type, Connection Key, and Connection Location descriptors match the Link to Predefined Devices
Object Class descriptor of the parent's CuDv object obtained in the previous step and the subclass
and connection options input into the Define method, respectively. If no match is found, an invalid
connection is specified. This may occur because the specified parent is not an intermediate device,
does not accept the type of device being defined (as described by subclass), or does not have the
connection location identified by the connection option.

Kernel Services and Subsystem Operations 779

6. Assign a logical name to the device. Each newly assigned logical name must be unique to the system.
If a name has been supplied using the -l flag, make certain it is unique before assigning it to the
device. This is done by checking the CuDv object class for any object whose Device Name descriptor
matches the desired name. If a match is found, the name is already used and the Define method
must exit with an error.

If the Define method is to generate a name, it can do so by obtaining the prefix name from the Prefix
Name descriptor of the device's PdDv device object and invoking the genseq subroutine to obtain a
unique sequence number for this prefix. Appending the sequence number to the prefix name results
in a unique name. The genseq routine looks in the CuDv object class to ensure that it assigns a
sequence number that has not been used with the specified prefix to form a device name.

In some cases, a Define method may need to ensure that only one device of a particular type has
been defined. For example, there can only be one pty device customized in the CuDv object class. The
pty Define method does this by querying the CuDv object class to see if a device by the name pty0
exists. If it does, the pty device has already been defined. Otherwise, the Define method proceeds to
define the pty device using the name pty0.

7. Determine the device's location code. If the device being defined is a physical device, it has a location
code.

8. Create the new CuDv object.

Set the CuDv object descriptors as follows:

Descriptor Setting

Device name Use the name as determined in step 6.

Device status flag Set to the Defined state.

Change status flag Set to the same value as that found in the Change Status Flag
descriptor in the device's PdDv object.

Device driver instance Set to the same value as the Device Driver Name descriptor in
the device's PdDv object. This value may be used later by the
Configure method.

Device location code Set to a null string if the device does not have a location code.
Otherwise, set it to the value computed.

Parent device logical name Set to a null string if the device does not have a parent. Otherwise,
set this descriptor to the parent name as specified by the parent
option.

Location where connected on
parent device

Set to a null string if the device does not have a parent. Otherwise,
set this descriptor to the value specified by the connection option.

Link to predefined devices
object class

Set to the value obtained from the Unique Type descriptor of the
device's PdDv object.

9. Write the name of the device to standard output. A blank should be appended to the device name to
serve as a separator in case other methods write device names to standard output. Either the mkdev
command or the Configure method that invoked the Define method will intercept standard output to
obtain the device name assigned to the device.

10. Close all object classes and terminate the ODM. Exit with an exit code of 0 if there were no errors.

Writing an Unconfigure Method
This article describes how an Unconfigure device method works. It also suggests guidelines for
programmers writing their own Unconfigure device configuration method.

Syntax
ucfgDev -l Name

780 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The Unconfigure method takes an Available device (available for use in the system) to a Defined state
(not available for use in the system). All the customized information about the device is retained in the
database so that the device can be configured again exactly as it was before.

The actual operations required to make a device defined depend on how the Configure method made the
device available in the first place. For example, if the device has a device driver, the Configure method
must have loaded a device driver in the kernel and described the device to the driver through a device
dependent structure (DDS). Then, the Unconfigure method must tell the driver to delete the device
instance and request an unload of the driver.

If the device is an intermediate device, the Unconfigure method must check the states of the child
devices. If any child device is in the Available state, the Unconfigure method fails and leaves the device
configured. To ensure proper system operation, all child devices must be unconfigured before the parent
can be unconfigured.

Although the Unconfigure method checks child devices, it does not check the device dependencies
recorded in the Customized Dependency (CuDep) object class.

The Unconfigure method also fails if the device is currently open. In this case, the device driver returns a
value for the errno global variable of EBUSY to the Unconfigure method when the method requests the
driver to delete the device. The device driver is the only component at that instant that knows the device
is open. As in the case of configured child devices, the Unconfigure method fails and leaves the device
configured.

When requesting the device driver to terminate the device, the errno global variable values other than
EBUSY can be returned. The driver should return ENODEV if it does not know about the device. Under
the best circumstances, however, this case should not occur. If ENODEV is returned, the Unconfigure
method should unconfigure the device so that the database and device driver are in agreement. If the
device driver returns any other errno global value, it deletes any stored characteristics for the specified
device instance. The Unconfigure method indicates that the device is unconfigured by setting the state to
Defined.

The Unconfigure method does not generally release the major and minor number assignments for a
device, or delete the device's special files in the /dev directory.

By convention, the first four characters of the name of the Unconfigure method should be ucfg. The
remainder of the name (Dev) can be any characters, subject to operating system file-name restrictions,
that identify the device or group of devices that use the method.

Flags

Item Description

-l Name Identifies the logical name of the device to be unconfigured.

Guidelines for Writing an Unconfigure Method
This list of tasks is intended as a guideline for writing an Unconfigure method. When you write a method
for a specific device, some tasks may be omitted. For example, if a device is not an intermediate device or
does not have a driver, the method can be written accordingly. The device may have special needs that are
not listed in these tasks.

The Unconfigure method must:

1. Validate the input parameters. The -l flag must be supplied to identify the device that is to be
unconfigured.

2. Initialize the Object Data Manager (ODM) using the odm_initialize subroutine and lock the
Configuration database using the odm_lock subroutine. See "Writing a Define Method" for an example.

Kernel Services and Subsystem Operations 781

3. Retrieve the customized device (CuDv) object for the device to be unconfigured. Use the CuDv object
whose Device Name descriptor matches the name supplied with the -l flag. If no object is found with
the specified name, the method exits with an error.

4. Check the state of the device. If the Device Status descriptor indicates that the device is in the Defined
state, then it is already unconfigured. In this case, exit.

5. Check for child devices in the available state. This can be done by querying the CuDv object class for
objects whose Parent Device Logical Name descriptor matches this device's name and whose Device
Status descriptor is not Defined. If a match is found, this method must exit with an error.

6. Retrieve the Predefined Device (PdDv) object for the device to be unconfigured by getting the PdDv
object whose Unique Type descriptor matches the Link to Predefined Devices Object Class descriptor
of the device's CuDv object. This object will be used to get the device driver name.

7. Delete device instance from driver and unload driver. Determine if the device has a driver. The
Unconfigure method obtains the name of the device from the Device Driver Name descriptor of the
PdDv object. If this descriptor is a null string, the device does not have a driver. In this situation, skip to
the task of updating the device's state.

If the device has a device driver, the Unconfigure method needs to include the following tasks:

a. Determine the device's major and minor numbers using the genmajor and getminor subroutines.
These are used to compute the device's devno, using the makedev macro defined in the /usr/
include/sysmacros.h file, in preparation for the next task.

b. Use the sysconfig subroutine to tell the device driver to terminate the device. If a value of EBUSY
for the errno global variable is returned, this method exits with an error.

c. Use the loadext routine to unload the device driver from the kernel. The loadext subroutine will not
actually unload the driver if there is another device still configured for the driver.

8. Set defined status. The device is now unconfigured. The Unconfigure method will update the Device
Status descriptor of the device's CuDv object to the Defined state.

9. Close all object classes and terminate the ODM. If there are no errors, exit with an exit code of 0 (zero).

Files

Item Description

/usr/include/sysmacros.h Contains macro definitions.

Writing an Undefine Method
This article describes how an Undefine device method works. It also suggests guidelines for programmers
writing their own Undefine device configuration methods.

Syntax
undDev -l Name

Description
The Undefine method deletes a Defined device from the Customized database. Once a device is deleted, it
cannot be configured until it is once again defined by the Define method.

The Undefine method is also responsible for releasing the major and minor number assignments for
the device instance and deleting the device's special files from the /dev directory. If minor number
assignments are registered with the genminor subroutine, the Undefine method can release the major
and minor number assignments and delete the special files by using the reldevno subroutine.

By convention, the first three characters of the name of the Undefine method are und. The remainder of
the name (Dev) can be any characters, subject to operating system file-name restrictions, that identify the
device or group of devices that use the method.

782 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Flags

Item Description

-l Name Identifies the logical name of the device to be undefined.

Guidelines for Writing an Undefine Method
This list of tasks is intended as a guideline for writing an Undefine method. Some devices may have
specials needs that are not addressed in these tasks.

The Undefine method must:

1. Validate the input parameters. The -l flag must be supplied to identify the device to be undefined.
2. Initialize the Object Data Manager (ODM) using the odm_initialize subroutine and lock the

configuration database using the odm_lock subroutine. See "Writing a Device Method" for an
example.

3. Retrieve the Customized Device (CuDv) object for the device to be undefined. This is done by getting
the CuDv object whose Device Name descriptor matches the name supplied with the -l flag. If no
object is found with the specified name, this method exits with an error.

4. Check the device's current state. If the Device Status descriptor indicates that the device is not in the
Defined state, then it is not ready to be undefined. If this is the case, this method exits with an error.

5. Check for any child devices. This check is accomplished by querying the CuDv object class for any
objects whose Parent Device Logical Name descriptor matches this device's name. If the device has
child devices, regardless of the states they are in, the Undefine method will fail. All child devices must
be undefined before the parent can be undefined.

6. Check to see if this device is listed as a dependency of another device. This is done by querying
the Customized Dependency (CuDep) object class for objects whose Dependency descriptor matches
this device's logical name. If a match is found, the method exits with an error. A device may not be
undefined if it has been listed as a dependent of another device.

7. Delete Special Files and major and minor numbers. If no errors have been encountered, the method
can delete customized information. First, delete the special files from the /dev directory. Next, delete
all minor number assignments. If the last minor number has been deleted for a particular major
number, release the major number as well, using the relmajor subroutine. The Undefine method
should never delete objects from the Customized Device Driver (CuDvDr) object class directly, but
should always use the routines provided. If the minor number assignments are registered with the
genminor subroutine, all of the above can be accomplished using the reldevno subroutine.

8. Delete all attributes for the device from the Customized Attribute (CuAt) object class. Simply delete
all CuAt objects whose Device Name descriptor matches this device's logical name. It is not an error
if the ODM routines used to delete the attributes indicate that no objects were deleted. This indicates
that the device has no attributes that have been changed from the default values.

9. Delete the Customized VPD (CuVPD) object for the device, if it has one.
10. Delete the Customized Dependency (CuDep) objects that indicate other devices that are dependents

of this device.
11. Delete the Customized Device (CuDv) object for the device.
12. Close all object classes and terminate the ODM. Exit with an exit code of 0 (zero) if there are no

errors.

Files

Item Description

/dev directory Contains the device special files.

Kernel Services and Subsystem Operations 783

Writing Optional Start and Stop Methods
This article describes how optional Start and Stop device methods work. It also suggests guidelines for
programmers writing their own optional Start and Stop device configuration methods.

Syntax
sttDev -l Name stpDev -l Name

Description
The Start and Stop methods are optional. They allow a device to support the additional device state of
Stopped. The Start method takes the device from the Stopped state to the Available state. The Stop
method takes the device from the Available state to the Stopped state. Most devices do not have Start and
Stop methods.

The Stopped state keeps a configured device in the system, but renders it unusable by applications. In
this state, the device's driver is loaded and the device is defined to the driver. This might be implemented
by having the Stop method issue a command telling the device driver not to accept any normal I/O
requests. If an application subsequently issues a normal I/O request to the device, it will fail. The Start
method can then issue a command to the driver telling it to start accepting I/O requests once again.

If Start and Stop methods are written, the other device methods must be written to account for the
Stopped state. For example, if a method checks for a device state of Available, it might now need to check
for Available and Stopped states.

Additionally, write the Configure method so that it takes the device from the Defined state to the Stopped
state. Also, the Configure method may invoke the Start method, taking the device to the Available state.
The Unconfigure method must change the device to the Defined state from either the Available or
Stopped states.

When used, Start and Stop methods are usually device-specific.

By convention, the first three characters of the name of the Start method are stt. The first three
characters of the name of the Stop method are stp. The remainder of the names (Dev) can be any
characters, subject to operating system file-name restrictions, that identify the device or group of devices
that use the methods.

Flags

Item Description

-l name Identifies the logical name of the device to be started or stopped.

SCSI Subsystem

IOCINFO (Device Information) tmscsi Device Driver ioctl Operation

Purpose
Returns a structure defined in the /usr/include/sys/devinfo.h file.

Note: This operation is not supported by all SCSI I/O controllers.

Description
The IOCINFO ioctl operation returns a structure defined in the /usr/include/sys/devinfo.h header file.
The caller supplies the address to an area of type struct devinfo in the arg parameter to the IOCINFO
operation. The device-type field for this component is DD_TMSCSI; the subtype is DS_TM. The

784 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

information returned includes the device's device dependent structure (DDS) information and the host
SCSI adapter maximum transfer size for initiator-mode requests. The IOCINFO ioctl operation is allowed
for both target and initiator modes. This command is not required for the caller, but it is useful for
programs that need to know what the maximum transfer length is for write subroutines. It is also useful
for calling programs that need the SCSI ID or logical unit number (LUN) of the device instance in use.

Files

Item Description

/dev/tmscsi0, /dev/tmscsi1,..., /dev/tmscsin Support processor-to-processor communications
through the SCSI target-mode device driver.

Parallel SCSI Adapter Device Driver

Purpose
Supports the SCSI adapter.

Syntax

<#include /usr/include/sys/scsi.h>
<#include /usr/include/sys/devinfo.h>

Description
The /dev/scsin and /dev/vscsin special files provide interfaces to allow SCSI device drivers to access
SCSI devices. These files manage the adapter resources so that multiple SCSI device drivers can access
devices on the same SCSI adapter simultaneously. The /dev/vscsin special file provides the interface
for the SCSI-2 Fast/Wide Adapter/A and SCSI-2 Differential Fast/Wide Adapter/A, while the /dev/scsin
special file provides the interface for the other SCSI adapters. SCSI adapters are accessed through the
special files /dev/scsi0, /dev/scsi1, and /dev/vscsi0, /dev/vscsi1,

The /dev/scsin and /dev/vscsin special files provide interfaces for access for both initiator and target
mode device instances. The host adapter is an initiator for access to devices such as disks, tapes, and
CD-ROMs. The adapter is a target when accessed from devices such as computer systems, or other
devices that can act as SCSI initiators.

Device-Dependent Subroutines
The SCSI adapter device driver supports only the open, close, and ioctl subroutines. The read and write
subroutines are not supported.

open and close Subroutines

The openx subroutine provides an adapter diagnostic capability. The openx subroutine provides an ext
parameter. This parameter selects the adapter mode and accepts the SC_DIAGNOSTIC value. This value
is defined in the /usr/include/sys/scsi.h file and places the adapter in Diagnostic mode.

Note: Some of the SCSI adapter device driver's open and close subroutines do not support the diagnostic
mode ext parameter. (SC_DIAGNOSTIC). If such an open is attempted, the subroutine returns a value of
-1 and the errno global value is set to EINVAL. The standalone diagnostic package provides all diagnostic
capability.

In Diagnostic mode, only the close subroutine and ioctl operations are accepted. All other valid
subroutines to the adapter return a value of -1 and set the errno global variable to a value of EACCES. In
Diagnostic mode, the SCSI adapter device driver can accept the following requests:

• Run various adapter diagnostic tests.
• Download adapter microcode.

Kernel Services and Subsystem Operations 785

The openx subroutine requires appropriate authority to run. Attempting to run this subroutine without the
proper authority causes the subroutine to return a value of -1, and set the errno global variable value
to EPERM. Attempting to open a device already opened for normal operation, or when another openx
subroutine is in progress, causes the subroutine to return a value of -1, and set the errno global variable
to a value of EACCES.

Any kernel process can open the SCSI adapter device driver in Normal mode. For Normal mode the ext
parameter is set to 0. However, a non-kernel process must have at least dev_config authority to open the
SCSI adapter device driver in Normal mode. Attempting to execute a normal open subroutine without the
proper authority causes the subroutine to return a value of -1, and set the errno global variable to a value
of EPERM.

ioctl Subroutine

Along with the IOCINFO operation, the SCSI device driver defines specific operations for devices in
non-diagnostic and diagnostic mode.

The IOCINFO operation is defined for all device drivers that use the ioctl subroutine, as follows:

• The operation returns a devinfo structure. This structure is defined in the /usr/include/sys/devinfo.h
file. The device type in this structure is DD_BUS, and the subtype is DS_SCSI. The flags field is not
used and is set to 0. Diagnostic mode is not required for this operation.

• The devinfo structure includes unique data such as the card SCSI ID and the maximum initiator mode
data transfer size allowed (in bytes). A calling SCSI device driver uses this information to learn the
maximum transfer size allowed for a device it controls on the SCSI adapter. In this way, the SCSI device
driver can control devices across various SCSI adapters, with each device possibly having a different
maximum initiator mode transfer size.

SCSI ioctl Operations for Adapters in Non-Diagnostic mode

The non-diagnostic operations are SCSI adapter device driver functions, rather than general device driver
facilities. SCSI adapter device driver ioctl operations require that the adapter device driver is not in
diagnostic mode. If these operations are attempted while the adapter is in diagnostic mode, a value of -1
is returned and the errno global variable is set to a value of EACCES.

The following SCSI operations are for adapters in non-diagnostic mode:

Operation Description

SCIODNLD Provides the means to download microcode to the adapter. The IBM SCSI-2 Fast/
Wide Adapter/A device driver does not support this operation. Microcode download
for the Fast/Wide adapter is supported in the standalone diagnostics package only.

SCIOEVENT Registers the selected SCSI device instance to receive asynchronous event
notification.

SCIOGTHW Allows the caller to verify SCSI adapter device driver support for gathered writes.

SCIOHALT Aborts the current command (if there is one), clears the queue of any pending
commands, and places the device queue in a halted state for a particular device.

SCIOINQU Provides the means to issue an inquire command to a SCSI device.

SCIOREAD Sends a single block read command to the selected SCSI device.

SCIORESET Allows the caller to force a SCSI device to release all current reservations, clear all
current commands, and return to an initial state.

SCIOSTART Opens a logical path to a SCSI target device. The host SCSI adapter acts as an
initiator.

SCIOSTARTTGT Opens a logical path to a SCSI initiator device. The host SCSI adapter acts as a
target.

SCIOSTOP Closes the logical path to a SCSI target device, where the SCSI adapter acts as an
initiator.

786 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Operation Description

SCIOSTOPTGT Closes the logical path to a SCSI initiator device, where the host SCSI adapter was
acting as a target.

SCIOSTUNIT Provides the means to issue a SCSI Start Unit command to a selected SCSI device.

SCIOTUR Sends a Test Unit Ready command to the selected SCSI device.

SCSI ioctl Operations for Adapters in Diagnostic Mode

The following operations for the ioctl subroutine are allowed only when the adapter has been successfully
opened in Diagnostic mode. If these commands are attempted for an adapter not in Diagnostic mode, a
value of -1 is returned and the errno global variable is set to a value of EACCES.

Operation Description

SCIODIAG Provides the means to issue adapter diagnostic commands.

SCIODNLD Provides the means to download microcode to the adapter.

SCIOTRAM Provides the means to issue various adapter commands to test the card DMA interface and
buffer RAM.

Note: Some of the SCSI adapter device drivers do not support the diagnostic mode ioctl operations.

To allow these operations to be run on multiple SCSI adapter card interfaces, a special return value is
defined. A return value of -1 with an errno value of ENXIO indicates that the requested ioctl subroutine
is not applicable to the current adapter card. This return value should not be considered an error for
commands that require Diagnostic mode for execution.

Summary of SCSI Error Conditions
Possible errno values for the adapter device driver are:

Value Description

EACCES Indicates that an openx subroutine was attempted while the adapter had one or
more devices in use.

EACCES Indicates that a subroutine other than ioctl or close was attempted while the
adapter was in Diagnostic mode.

EACCES Indicates that a call to the SCIODIAG command was attempted while the adapter
was not in Diagnostic mode.

EBUSY Indicates that a delete operation was unsuccessful. The adapter is still open.

EFAULT Indicates that the adapter is registering a diagnostic error in response to the
SCIODIAG command. The SCIODIAG resume option must be issued to continue
processing.

EFAULT Indicates that a severe I/O error has occurred during an SCIODNLD command.
Discontinue operations to this card.

EFAULT Indicates that a copy between kernel and user space failed.

EINVAL Indicates an invalid parameter or that the device has not been opened.

EIO Indicates an invalid command. A SCIOSTART operation must be executed prior to
this command, or an invalid SCSI ID and LUN combination must be passed in.

EIO Indicates that the command has failed due to an error detected on the adapter or the
SCSI bus.

EIO Indicates that the device driver was unable to pin code.

Kernel Services and Subsystem Operations 787

Value Description

EIO Indicates that a kernel service failed, or that an unrecoverable I/O error occurred.

ENOCONNECT Indicates that a SCSI bus fault occurred.

ENODEV Indicates that the target device cannot be selected or is not responding.

ENOMEM Indicates that the command could not be completed due to an insufficient amount of
memory.

ENXIO Indicates that the requested ioctl is not supported by this adapter.

EPERM Indicates that the caller did not have the required authority.

ETIMEDOUT Indicates that a SCSI command or adapter command has exceeded the time-out
value.

Reliability and Serviceability Information
Errors detected by the adapter device driver may be one of the following:

• Permanent adapter or system hardware errors
• Temporary adapter or system hardware errors
• Permanent unknown adapter microcode errors
• Temporary unknown adapter microcode errors
• Permanent unknown adapter device driver errors
• Temporary unknown adapter device driver errors
• Permanent unknown system errors
• Temporary unknown system errors
• Temporary SCSI bus errors

Permanent errors are either errors that cannot be retried or errors not recovered before a prescribed
number of retries has been exhausted. Temporary errors are either noncatastrophic errors that cannot be
retried or retriable errors that are successfully recovered before a prescribed number of retries has been
exhausted.

Error-Record Values for Permanent Hardware Errors

The error record template for permanent hardware errors detected by the SCSI adapter device driver is
described below. Refer to the rc structure for the actual definition of the detail data. The rc structure is
defined in the /usr/include/sys/scsi.h file:

SCSI_ERR1:

Field Description

Comment Permanent SCSI adapter hardware error.

Class H, indicating a hardware error.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type PERM, indicating a permanent failure.

Err_Desc 0x1010, indicating an adapter error.

788 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

SCSI_ERR1: (continued)

Field Description

Prob_Causes The following:
0x3330

Adapter hardware
0x3400

Cable
0x3461

Cable terminator
0x6000

Device

Fail_Causes The following:
0x3300

Adapter
0x3400

Cable loose or defective
0x6000

Device

Fail_Actions The following:
0x000

Perform problem determination procedures.
0x0301

Check the cable and its connections.

Detail_Data1 108, 11, and HEX

Error-Record Values for Temporary Hardware Errors

The error record template for temporary hardware errors detected by the SCSI adapter device driver
follows:

SCSI_ERR2:

Field Description

Comment Temporary SCSI adapter hardware error.

Class H, indicating a hardware error.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error-log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type TEMP, indicating a temporary failure.

Err_Desc 0x1010, indicating an adapter error.

Kernel Services and Subsystem Operations 789

SCSI_ERR2: (continued)

Field Description

Prob_Causes The following:
0x3330

Adapter hardware
0x3400

Cable
0x3461

Cable terminator
0x6000

Device

Fail_Causes The following:
0x3300

Adapter
0x3400

Cable loose or defective
0x6000

Device

Fail_Actions The following:
0x000

Perform problem-determination procedures.
0x0301

Check the cable and its connections.

Detail_Data1 108, 11, and HEX

Error-Record Values for Permanent Unknown Adapter Microcode Errors

The error-record template for permanent unknown SCSI adapter microcode errors detected by the SCSI
adapter device driver follows:

SCSI_ERR3:

Field Description

Comment Permanent SCSI adapter software error.

Class H, indicating a hardware error.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type PERM, indicating a permanent failure.

Err_Desc 0x6100, indicating an adapter error.

Prob_Causes 0x3331, indicating an adapter microcode.

Fail_Causes 0x3300, indicating the adapter.

790 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

SCSI_ERR3: (continued)

Field Description

Fail_Actions The following:
0x000

Perform problem determination procedures.
0x3301

If the problem persists (0x3000) contact the appropriate service
representatives.

Detail_Data1 108, 11 and HEX

Error-Record Values for Temporary Unknown Adapter Microcode Errors

The error-record template for temporary unknown SCSI adapter microcode errors detected by the SCSI
adapter device driver follows:

SCSI_ERR4:

Field Description

Comment Temporary unknown SCSI adapter software error.

Class H.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type TEMP, indicating a temporary failure.

Err_Desc Equal to 0x6100, indicating a microcode program error.

Prob_Causes 3331, indicating adapter microcode.

Fail_Causes 3300, indicating the adapter.

Fail_Actions The following:
0x000

Perform problem determination procedures.
0x3301

If the problem persists then (0x3000) contact the appropriate service
representatives.

Detail_Data1 108, 11, and HEX

Error-Record Values for Permanent Unknown Adapter Device Driver Errors

The error-record template for permanent unknown SCSI adapter device driver errors detected by the
SCSI adapter device driver follows:

SCSI_ERR5:

Field Description

Comment Permanent unknown driver error.

Class S.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Kernel Services and Subsystem Operations 791

SCSI_ERR5: (continued)

Field Description

Err_Type PERM, indicating a permanent failure.

Err_Desc 0x2100, indicating a software program error.

Prob_Causes 0X1000, indicating a software program.

Fail_Causes 0X1000, indicating a software program.

Fail_Actions 0x3301, indicating that if the problem persists, then (0x3000) contact the
appropriate service representatives.

Detail_Data1 108, 11, and HEX

Error-Record Values for Temporary Unknown Adapter Device Driver Errors

The error-record template for temporary unknown SCSI adapter device driver errors detected by the SCSI
adapter device driver follows:

SCSI_ERR6:

Field Description

Comment Temporary unknown driver error.

Class S.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type TEMP, indicating a temporary failure.

Err_Desc 0x2100, indicating a software program error.

Prob_Causes 0X1000, indicating a software program.

Fail_Causes 0X1000, indicating a software program.

Fail_Actions 0x3301, indicating that if the problem persists then (0x3000) contact the
appropriate service representatives.

Detail_Data1 108, 11, and HEX

Error-Record Values for Permanent Unknown System Errors

The error-record template for permanent unknown system errors detected by the SCSI adapter device
driver follows:

SCSI_ERR7:

Field Description

Comment Permanent unknown system error.

Class H.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type UNKN, indicating an unknown error.

Err_Desc 0xFE00, indicating an undetermined error.

792 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

SCSI_ERR7: (continued)

Field Description

Prob_Causes 0X1000, indicating a software program.

Fail_Causes 0X1000, indicating a software program.

Fail_Actions 0x0000 and 0x3301, indicating that problem-determination procedures should be
performed; if the problem persists, then (0x3000) contact the appropriate service
representatives.

Detail_Data1 108, 11, and HEX

Error-Record Values for Temporary Unknown System Errors

The error-record template for temporary unknown system errors detected by the SCSI adapter device
driver follows:

SCSI_ERR8:

Field Description

Comment Temporary unknown system error.

Class H.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type UNKN, indicating an unknown error.

Err_Desc 0xFE00, indicating an undetermined error.

Prob_Causes 0X1000, indicating a software program.

Fail_Causes 0X1000, indicating a software program.

Fail_Actions 0x0000 and 0x3301, indicating that problem-determination procedures should be
performed; if the problem persists, then (0x3000) contact the appropriate service
representatives.

Detail_Data1 108, 11, and HEX

Error-Record Values for Temporary SCSI Bus Errors

The error-record template for temporary SCSI bus errors by the SCSI adapter device driver follows:

SCSI_ERR10:

Field Description

Comment Temporary SCSI bus error.

Class H, indicating a hardware error.

Report True, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type TEMP, indicating a termporary failure.

Err_Desc 0x942, indicating a SCSI bus error.

Kernel Services and Subsystem Operations 793

SCSI_ERR10: (continued)

Field Description

Prob_Causes The following:
0x3400

Cable
0x3461

Cable terminator
0x6000

Device
0x3300

Adapter Hardware

Fail_Causes The following:
0x3400

Cable loose or defective
0x6000

Device
0x3300

Adapter

Fail_Actions The following:
0x000

Perform problem determination procedures.
0x0301

Check the cable and its connections.

Detail_Data 108, 11, and HEX.

Managing Dumps
The SCSI adapter device driver is a target for the system dump facility. The DUMPINIT and DUMPSTART
options to the dddump entry point support multiple or redundant calls.

The DUMPQUERY option returns a minimum transfer size of 0 bytes and a maximum transfer size equal to
the maximum transfer size supported by the SCSI adapter device driver.

To be processed, calls to the SCSI adapter device driver DUMPWRITE option should use the arg
parameter as a pointer to the sc_buf structure. Using this interface, a SCSI write command can be run
on a previously started (opened) target device. The uiop parameter is ignored by the SCSI adapter device
driver. Spanned, or consolidated, commands are not supported using DUMPWRITE.

Note: The various sc_buf status fields, including the b_error field, are not set at completion of the
DUMPWRITE. Error logging is, of necessity, not supported during the dump.

Successful completion of the dddump entry point is indicated by a 0. If unsuccessful, the entry point
returns one of the following:

Value Description

EINVAL Indicates that the adapter device driver was passed a request that was not valid, such as
attempting a DUMPSTART option before successfully executing a DUMPINIT option.

EIO Indicates that the adapter device driver was unable to complete the command due to a
lack of required resources or due to an I/O error.

ETIMEDOUT Indicates that the adapter did not respond with status before the passed command
time-out value expired.

794 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Files

Item Description

/dev/scsi0, /dev/scsi1,..., /dev/scsin Provide an interface to allow SCSI device drivers to
access SCSI devices or adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide
Adapter/A and SCSI-2 Differential Fast/Wide
Adapter/A device drivers to access SCSI devices or
adapters.

scdisk SCSI Device Driver

Purpose
Supports the small computer system interface (SCSI) hard disk, CD-ROM (compact-disc read-only
memory), and read/write optical (optical memory) devices.

Syntax

#include <sys/devinfo.h>
#include <sys/scsi.h>
#include <sys/scdisk.h>
#include <sys/pcm.h>
#include <sys/mpio.h>

Device-Dependent Subroutines
Typical hard disk, CD-ROM, and read/write optical drive operations are implemented by using the open,
close, read, write, and ioctl subroutines. The scdisk device driver has additional support added for MPIO
capable devices.

open and close Subroutines

The open subroutine applies a reservation policy that is based on the ODM reserve_policy attribute. In
the past, the open subroutine always applied an SCSI2 reserve. The open and close subroutines support
working with multiple paths to a device if the device is an MPIO capable device.

The openx subroutine is intended primarily for use by diagnostic commands and utilities. Appropriate
authority is required for execution. If an attempt is made to run the open subroutine without the proper
authority, the subroutine returns a value of -1 and sets the errno global variable to a value of EPERM.

The ext parameter that is passed to the openx subroutine selects the operation to be used for the target
device. The /usr/include/sys/scsi.h file defines possible values for the ext parameter.

The ext parameter can contain any combination of the following flag values logically ORed together:

Kernel Services and Subsystem Operations 795

Item Description

SC_DIAGNOSTIC Places the selected device in Diagnostic mode. This mode is
singularly entrant; that is, only one process at a time can open it.
When a device is in Diagnostic mode, SCSI operations are performed
during open or close operations, and error logging process is
disabled. In Diagnostic mode, only the close and ioctl subroutine
operations are accepted. All other device-supported subroutines
return a value of -1 and set the errno global variable to a value of
EACCES.

A device can be opened in Diagnostic mode only if the target
device is not currently opened. If an attempt is made to open a
device in Diagnostic mode and the target device is already open, the
subroutine returns a value of -1 and sets the errno global variable to a
value of EACCES.

SC_FORCED_OPEN_LUN On a device that supports Lun Level Reset, the device is reset
regardless of any reservation that is placed by another initiator
before the open sequence takes place. If the device does not
support Lun Level Reset, and both SC_FORCED_OPEN_LUN and
SC_FORCE_OPEN flags are set, then a target reset occurs before the
open sequence takes place.

SC_FORCED_OPEN Forces a bus device reset, regardless of whether another initiator
has the device reserved. The SCSI bus device reset is sent to the
device before the open sequence begins. In other respects, the open
operation runs normally.

SC_RETAIN_RESERVATION Retains the reservation of the device after a close operation by not
issuing the release. This flag prevents other initiators from using the
device unless they break the host machine's reservation.

SC_NO_RESERVE Prevents the reservation of a device during an openx subroutine
call to that device. This operation is provided so a device can be
controlled by two processors that synchronize their activity by their
own software means.

SC_SINGLE Places the selected device in Exclusive Access mode. Only one
process at a time can open a device in Exclusive Access mode.

A device can be opened in Exclusive Access mode only if the
device is not currently open. If an attempt is made to open a
device in Exclusive Access mode and the device is already open, the
subroutine returns a value of -1 and sets the errno global variable to
a value of EBUSY. If the SC_DIAGNOSTIC flag is specified along with
the SC_SINGLE flag, the device is placed in Diagnostic mode.

SC_PR_SHARED_REGISTER In a multi-initiator shared device environment, a Persistent Reserve
with service action Register and Ignore Key is sent to the
device as part of the open sequence. This feature is aimed at the
cluster environment, where an upper management software needs
to follow an advisory lock mechanism to control when the initiator
reads or writes. The device is required to support Persistent Reserve
(refer to SCSI Primary Command version 2 description of Persistent
Reserve).

SCSI Options to the openx Subroutine in Kernel Extensions and Device Support Programming Concepts
gives more specific information about the open operations.

readx and writex Subroutines

796 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The readx and writex subroutines provide additional parameters which affect the raw data transfer.
These subroutines pass the ext parameter, which specifies request options. The options are constructed
by logically ORing zero or more of the following values:

Item Description

HWRELOC Indicates a request for hardware relocation (safe relocation only)

UNSAFEREL Indicates a request for unsafe hardware relocation

WRITEV Indicates a request for write verification

ioctl Subroutine

ioctl subroutine operations that are used for the scdisk device driver are specific to the following
categories:

• Hard disk and read/write optical devices only
• CD-ROM devices only
• Hard disk, CD-ROM, and read/write optical devices

Hard disk and read/write optical devices

The following ioctl operations are available for the hard disk and read/write optical devices:

Item Description

DKIOWRSE Provides a means for issuing a write command to the device and obtaining the target-device sense data when an error occurs. If
the DKIOWRSE operation returns a value of -1 and the status_validity field is set to a value of sc_valid_sense, valid sense data
is returned. Otherwise, target sense data is omitted.

The DKIOWRSE operation is provided for diagnostic use. It allows the limited use of the target device when it is operating in an
active system environment. The arg parameter to the DKIOWRSE operation contains the address of an sc_rdwrt structure. This
structure is defined in the /usr/include/sys/scsi.h file.

The devinfo structure defines the maximum transfer size for a write operation. If an attempt is made to transfer more than
the maximum, the subroutine returns a value of -1 and sets the errno global variable to a value of EINVAL. Refer to the Small
Computer System Interface (SCSI) Specification for the format of the request-sense data for a particular device.

Kernel Services and Subsystem Operations 797

Item Description

DKLOGSENSE Provides a means to issue the LOG SENSE command on devices that is successfully opened. Any application that issues this
ioctl operation must pass the address of the struct sc_log_sense (defined in /usr/include/sys/scsi.h) and the structure is filled
as follows:

1. page_code and subpage_code for the requested LOG Page

2. pc set to the value CUMUL_VAL.

3. allocation_length – If this field is set to zero, only the log page header that consists of the page code and the log page
length is returned. If this field is nonzero, it must equal the length of the log page excluding the log page header of size 4
bytes. If the user specifies an allocation length less than the actual log page length, then only the requested length of log
data is returned.

4. log_data contains the allocated memory address for storing the data that is returned from the ioctl operation.

If the requested log page is SCSI_BSR_LOG_PAGE (defined in /usr/include/sys/scsi.h) then the log_data points to the struct
sc_bsr_log_data allocated by the caller. The caller also allocates the memory for the struct sc_bms_log_data such that total of
sizeof struct sc_bsr_log_data and memory allocated for the struct sc_bms_log_data is equal to the allocation_length.

Otherwise (for log pages other than SCSI_BSR_LOG_PAGE), it points to a chunk of memory equal to allocation_length.

Following is the example code for filling the sc_log_sense structure:

struct sc_log_sense log_sense;

melog_sense, '\0', sizeof(struct sc_log_sense));
log_sense.page_code = SCSI_BSR_LOG_PAGE ;
log_sense.subpage_code = 0;
log_sense.pc = CUMUL_VAL;
log_sense.allocation_length = 16;
if (log_sense.allocation_length)
 {
 if (log_sense.page_code == SCSI_BSR_LOG_PAGE)
 {
 log_sense.log_data = (struct sc_bsr_log_data *) malloc(sizeof(struct sc_bsr_log_data));
 }
 else
 {
 log_sense.log_data = (char *) malloc(log_sense.allocation_length);
 }
 if (log_sense.log_data == NULL)
 exit(-1);
 if (log_sense.page_code == SCSI_BSR_LOG_PAGE)
 {
 bms_param_len = log_sense.allocation_length - sizeof(struct sc_scan_status);
 ((struct sc_bsr_log_data *)(log_sense.log_data))-> bms_log_data = (struct
sc_bms_log_data *)
 malloc(bms_param_len);
 if (((struct sc_bsr_log_data *)(log_sense.log_data))-> bms_log_data == NULL)
 exit(-1);
 }
 }
 rc = ioctl(fd, DKLOGSENSE,&log_sense);

798 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

The DKLOGSENSE ioctl operation returns the following data by using the struct sc_log_sense (rc=0 indicates success):

1. returned_length field contains the length of the bytes requested or zero if the user specified an allocation length of zero.

2. adapter_status, scsi_status, sense_key, scsi_asc, scsi_ascq set with the error return status for the LOG SENSE
command.

3. log_data field points to the memory containing the data returned by the LOG SENSE command. Driver will parse and fill
fields for the struct sc_bsr_log_data and struct bms_log_data for the Background Scan Results log page. The ioctl caller
prints structure fields to view the data. Otherwise, this memory is a char * to the log data of returned_length. The data
excludes the log page header.

if (log_sense.page_code == SCSI_BSR_LOG_PAGE)
{
 bms_cnt = (log_sense.returned_length - 16)/24;
 printf("Background Scan Results Log Page:\n");
 printf("Scanning Status Parameter:\n");
 bsr_log_data = (struct sc_bsr_log_data *)log_sense.log_data;
 scan_status = &(bsr_log_data->scan_status);
 printf("Parameter Code \t:\t %x\n", scan_status->param_code);
 printf("Parameter Control Byte \t:\t %x",scan_status->param_ctrl_bits);
 printf("Parameter Length \t:\t %x\n", scan_status->param_length);
 printf("Power Age \t:\t %x\n", scan_status->power_age);
 printf("Scan Status \t:\t %x\n", scan_status->scan_status);
 printf("Scan Count \t:\t %x\n", scan_status->scan_count);
 printf("Scan Progress \t:\t %x \n", scan_status->scan_progress);
 printf("BMS Count \t:\t %x\n", scan_status->bms_count);
 printf("Background Medium Scan Parameter for %d Elements:\n",bms_cnt);

 for (i=0; <ibms_cnt; i++)
 {
 bms_data = bsr_log_data->bms_log_data;
 printf("Parameter Code \t:\t %x\n", bms_data->param_code);
 printf("Parameter Control Byte \t:\t%x",bms_data->param_ctrl_bits);
 printf("Parameter Length \t:\t %x\n", bms_data->param_length);
 printf("Power Age \t:\t %x\n", bms_data->power_age);
 printf("SenseKey & Reassign Status \t:\t %x\n",bms_data->status_snskey);
 printf("ASC \t:\t %x\n", bms_data->asc);
 printf("ASCQ \t:\t %x\n", bms_data->ascq);

 for (j=0; j<5; j++)
 printf("vendor_data[%d] \t:\t%x\n",j,bms_data->vendor_data[j]);

 printf("LBA \t:\t %llx\n", bms_data->lba);
 }

} else {
 Log data received is a char buffer of ‘returned_length' size.
 So print the data byte by byte.
}

DKLOGSELECT Provides a means to issue the LOG SELECT command.

Any application that issues the DKLOGSELECT ioctl operation is expected to pass the address of the DKLOGSELECT (defined
in /usr/include/sys/scsi.h) filled as follows:

1. page_code and subpage_code for the requested LOG Page

2. pcr, sp, pc, and param_length as per the SCSI Primary Commands Standard Version 4 (SPC4) requirements.

3. log_data points to the memory that contains the parameters that must be sent to the LOG SELECT command.

Following is an example for filling the sc_log_select structure to clear the SCSI_BSR_LOG_PAGE data**.

struct sc_log_select log_select;

memset(&log_select, '\0', sizeof(struct sc_log_select));
log_select.page_code = SCSI_BSR_LOG_PAGE;
log_select.subpage_code = 0;
log_select.pcr = 1;
log_select.sp = 0;
log_select.pc = CUMUL_VAL;
log_select.param_length = 0;
if (log_select.param_length)
{
 log_select.log_data = (char *)malloc(log_select.param_length);
 if (log_select.log_data == NULL) exit(-1);
}
rc = ioctl(fd, DKLOGSELECT,&log_select);

This ioctl operation returns the following data by using the struct sc_log_select (rc=0 indicates success)
adapter_status,scsi_status, sense_key, scsi_asc, and scsi_ascq fields reporting the error completion status of the LOG
SELECT command.

CD-ROM Devices Only

The following ioctl operation is available for CD-ROM devices only:

Kernel Services and Subsystem Operations 799

Item Description

CDIOCMD Allows SCSI commands to be issued directly to the attached CD-ROM device. The
CDIOCMD operation preserves binary compatibility for CD-ROM applications that were
compiled on earlier releases of the operating system. It is recommended that newly
written CD-ROM applications use the DKIOCMD operation instead. For the CDIOCMD
operation, the device must be opened in Diagnostic mode. The CDIOCMD operation
parameter specifies the address of a sc_iocmd structure. This structure is defined in
the /usr/include/sys/scsi.h file.

If this operation is attempted on a device other than CD-ROM, it is interpreted as
a DKIORDSE operation. In this case, the arg parameter is treated as an sc_rdwrt
structure.

If the CDIOCMD operation is attempted on a device not in Diagnostic mode, the
subroutine returns a value of -1 and sets the errno global variable to a value of EACCES.
Refer to the Small Computer System Interface (SCSI) Specification for the format of the
request-sense data for a particular device.

Note: Diagnostic mode is required only for the CDIOCMD and DKIOCMD operations.

Hard disk, CD-ROM, and read/write optical devices

The following ioctl operations are available for hard disk, CD-ROM, and read/write optical devices:

Item Description

IOCINFO Returns the devinfo structure that is defined in the /usr/include/sys/
devinfo.h file. The IOCINFO operation is the only operation that is defined
for all device drivers that use the ioctl subroutine. The remaining operations
are all specific to hard disk, CD-ROM, and read/write optical devices.

DKIORDSE Provides a means for issuing a read command to the device and obtaining
the target-device sense data when an error occurs. If the DKIORDSE
operation returns a value of -1 and the status_validity field is set to a value
of sc_valid_sense, valid sense data is returned. Otherwise, target sense
data is omitted.

The DKIORDSE operation is provided for diagnostic use. It allows the
limited use of the target device when it is operating in an active system
environment. The arg parameter to the DKIORDSE operation contains the
address of an sc_rdwrt structure. This structure is defined in the /usr/
include/sys/scsi.h file.

The devinfo structure defines the maximum transfer size for a read
operation. If an attempt is made to transfer more than the maximum,
the subroutine returns a value of -1 and sets the errno global variable to
a value of EINVAL. Refer to the Small Computer System Interface (SCSI)
Specification for the format of the request-sense data for a particular
device.

Note: The CDIORDSE operation might be substituted for the DKIORDSE
operation when you issue a read command to and obtain sense data from a
CD-ROM device. DKIORDSE is the recommended operation.

800 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

DKIOCMD When the device is successfully opened in the Diagnostic mode, the
DKIOCMD operation provides the means for issuing any SCSI command to
the specified device. If the DKIOCMD operation is issued when the device
is not in Diagnostic mode, the subroutine returns a value of -1 and sets the
errno global variable to a value of EACCES. The device driver performs no
error recovery or logging on failures of this operation.

The SCSI status byte and the adapter status bytes are returned through the
arg parameter, which contains the address of a sc_iocmd structure (defined
in the /usr/include/sys/scsi.h file). If the DKIOCMD operation fails, the
subroutine returns a value of -1 and sets the errno global variable to a
nonzero value. In this case, the caller must evaluate the returned status
bytes to determine why the operation was unsuccessful and what recovery
actions must be taken.

The devinfo structure defines the maximum transfer size for the command.
If an attempt is made to transfer more than the maximum, the subroutine
returns a value of -1 and sets the errno global variable to a value of EINVAL.
Refer to the Small Computer System Interface (SCSI) Specification for the
format of the request-sense data for a particular device.

Note: Diagnostic mode is required only for the CDIOCMD and DKIOCMD
operations.

DKPMR Issues a SCSI prevent media removal command when the device is
successfully opened. This command prevents media from being ejected
until the device is closed, powered off and back on, or until a DKAMR
operation is issued. The arg parameter for the DKPMR operation is null.
If the DKPMR operation is successful, the subroutine returns a value of
0. If the device is a SCSI hard disk, the DKPMR operation fails, and the
subroutine returns a value of -1 and sets the errno global variable to a
value of EINVAL. If the DKPMR operation fails for any other reason, the
subroutine returns a value of -1 and sets the errno global variable to a value
of EIO.

DKAMR Issues an allow media removal command when the device is successfully
opened. As a result media can be ejected by using either the drive's eject
button or the DKEJECT operation. The arg parameter for this ioctl is null.
If the DKAMR operation is successful, the subroutine returns a value of
0. If the device is a SCSI hard disk, the DKAMR operation fails, and the
subroutine returns a value of -1 and sets the errno global variable to a value
of EINVAL. For any other failure of this operation, the subroutine returns a
value of -1 and sets the errno global variable to a value of EIO.

DKEJECT Issues an eject media command to the drive when the device is
successfully opened. The arg parameter for this operation is null. If the
DKEJECT operation is successful, the subroutine returns a value of 0. If the
device is a SCSI hard disk, the DKEJECT operation fails, and the subroutine
returns a value of -1 and sets the errno global variable to a value of EINVAL.
For any other failure of this operation, the subroutine returns a value of -1
and sets the errno global variable to a value of EIO.

Kernel Services and Subsystem Operations 801

Item Description

DKFORMAT Issues a format unit command to the specified device when the device is
successfully opened.

If the arg parameter for this operation is null, the format unit sets the
format options valid (FOV) bit to 0 (that is, it uses the drive's default
setting). If the arg parameter for the DKFORMAT operation is not null, the
first byte of the defect list header is set to the value specified in the first
byte addressed by the arg parameter. It allows the creation of applications
to format a particular type of read/write optical media uniquely.

The driver initially tries to set the FmtData and CmpLst bits to 0. If that
fails, the driver tries the remaining 3 permutations of these bits. If all four
permutations fail, this operation fails, and the subroutine sets the errno
global variable to a value of EIO.

If the DKFORMAT operation is specified for a hard disk, the subroutine
returns a value of -1 and sets the errno global variable to a value of
EINVAL. If the DKFORMAT operation is attempted when the device is not
in Exclusive Access mode, the subroutine returns a value of -1 and sets the
errno global variable to a value of EACCES. If the media is write-protected,
the subroutine returns a value of -1 and sets the errno global variable to
a value of EWRPROTECT. If the format unit exceeds its timeout value, the
subroutine returns a value of -1 and sets the errno global variable to a
value of ETIMEDOUT. For any other failure of this operation, the subroutine
returns a value of -1 and sets the errno global variable to a value of EIO.

DKAUDIO Issues play audio commands to the specified device and controls the
volume on the device's output ports. Play audio commands include: play,
pause, resume, stop, determine the number of tracks, and determine the
status of a current audio operation. The DKAUDIO operation plays audio
only through the CD-ROM drive's output ports. The arg parameter of this
operation is the address of a cd_audio_cmds structure, which is defined in
the /usr/include/sys/scdisk.h file. Exclusive Access mode is required.

If DKAUDIO operation is attempted when the device's audio-supported
attribute is set to No, the subroutine returns a value of -1 and sets the
errno global variable to a value of EINVAL. If the DKAUDIO operation fails,
the subroutine returns a value of -1 and sets the errno global variable to
a nonzero value. In this case, the caller must evaluate the returned status
bytes to determine why the operation failed and what recovery actions must
be taken.

802 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

DK_CD_MODE Determines or changes the CD-ROM data mode for the specified device.
The CD-ROM data mode specifies what block size and special file are used
for data read across the SCSI bus from the device. The DK_CD_MODE
operation supports the following CD-ROM data modes:
CD-ROM Data Mode 1

512-byte block size through both raw (dev/rcd*) and block special
(/dev/cd*) files

CD-ROM Data Mode 2 Form 1
2048-byte block size through both raw (dev/rcd*) and block special
(/dev/cd*) files

CD-ROM Data Mode 2 Form 2
2336-byte block size through the raw (dev/rcd*) special file only

CD-DA (Compact Disc Digital Audio)
2352-byte block size through the raw (dev/rcd*) special file only

DVD-ROM
2048-byte block size through both raw (/dev/rcd*) and block special
(/dev/cd*) files

DVD-RAM
2048-byte block size through both raw (/dev/rcd*) and block special
(/dev/cd*) files

DVD-RW
2048-byte block size through both raw (/dev/rcd*) and block special
(/dev/cd*) files

The DK_CD_MODE arg parameter contains the address of the
mode_form_op structure that is defined in the /usr/include/sys/scdisk.h
file. To have the DK_CD_MODE operation determine or change the CD-ROM
data mode, set the action field of the change_mode_form structure to
one of the following values:

CD_GET_MODE
Returns the current CD-ROM data mode in the cd_mode_form field of
the mode_form_op structure, when the device is successfully opened.

CD_CHG_MODE
Changes the CD-ROM data mode to the mode specified in the
cd_mode_form field of the mode_form_op structure, when the device
is successfully opened in the exclusive access mode.

If a CD-ROM is not configured for different data modes (through mode-
select density codes), and an attempt is made to change the CD-ROM data
mode (by setting the action field of the change_mode_form structure set
to CD_CHG_MODE), the subroutine returns a value of -1 and sets the errno
global variable to a value of EINVAL. Attempts to change the CD-ROM mode
to any of the DVD modes also results in a return value of -1 and the errno
global variable set to EINVAL.

If the DK_CD_MODE operation for CD_CHG_MODE is attempted when the
device is not in Exclusive Access mode, the subroutine returns a value of
-1 and sets the errno global variable to a value of EACCES. For any other
failure of this operation, the subroutine returns a value of -1 and sets the
errno global variable to a value of EIO.

Kernel Services and Subsystem Operations 803

Item Description

DK_PASSTHRU When the device is successfully opened, the DK_PASSTHRU operation
provides the means for issuing any SCSI command to the specified device.
The device driver will perform limited error recovery if this operation
fails. The DK_PASSTHRU operation differs from the DKIOCMD operation
in that it does not require an openx command with the ext argument
of SC_DIAGNOSTIC. Because of this, a DK_PASSTHRU operation can be
issued to devices that are in use by other operations.

The SCSI status byte and the adapter status bytes are returned through
the arg parameter, which contains the address of a sc_passthru structure
(defined in the /usr/include/sys/scsi.h file). If the DK_PASSTHRU
operation fails, the subroutine returns a value of -1 and sets the errno
global variable to a nonzero value. If this happens the caller must evaluate
the returned status bytes to determine why the operation was unsuccessful
and what recovery actions must be taken.

If a DK_PASSTHRU operation fails because a field in the sc_passthru
structure has an invalid value, the subroutine returns a value of -1 and set
the errno global variable to EINVAL. The einval_arg field is set to the field
number (starting with 1 for the version field) of the field that had an invalid
value. A value of 0 for the einval_arg field indicates that no additional
information on the failure is available.

DK_PASSTHRU operations are further subdivided into requests which
quiesce other I/O requests before issuing the request and requests
that do not quiesce I/O requests. These subdivisions are based on the
devflags field of the sc_passthru structure. When the devflags field of
the sc_passthru structure has a value of SC_MIX_IO, the DK_PASSTHRU
operation will be mixed with other I/O requests. SC_MIX_IO requests that
write data to devices are prohibited and will fail. When this happens -1 is
returned, and the errno global variable is set to EINVAL. When the devflags
field of the sc_passthru structure has a value of SC_QUIESCE_IO, all other
I/O requests will be quiesced before the DK_PASSTHRU request is issued
to the device. If an SC_QUIESCE_IO request has its timeout_value field set
to 0, the DK_PASSTHRU request will be failed with a return code of -1, the
errno global variable will be set to EINVAL, and the einval_arg field will be
set to a value of SC_PASSTHRU_INV_TO (defined in the /usr/include/sys/
scsi.h file). If an SC_QUIESCE_IO request has a nonzero timeout value that
is too large for the device, the DK_PASSTHRU request will be failed with
a return code of -1, the errno global variable will be set to EINVAL, the
einval_arg field will be set to a value of SC_PASSTHRU_INV_TO (defined in
the /usr/include/sys/scsi.h file), and the timeout_value will be set to the
largest allowed value.

804 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

The version field of the sc_passthru structure can be set to the value of
SC_VERSION_2, and the user can provide the following fields:

• variable_cdb_ptr is a pointer to a buffer that contains the Variable SCSI
cdb.

• variable_cdb_length determines the length of the cdb variable to which
the variable_cdb_ptr field points.

On completion of the DK_PASSTHRU ioctl request, the residual field
indicates the leftover data that device did not fully satisfy for this request.
On a successful completion, the residual field would indicate that the
device does not have the all data that is requested or the device has less
than the amount of data that is requested. On a failure completion, the user
must check the status_validity field to determine whether a valid SCSI bus
problem exists. In this case, the residual field would indicate the number
bytes that the device failed to complete for this request.

The devinfo structure defines the maximum transfer size for the command.
If an attempt is made to transfer more than the maximum transfer
size, the subroutine returns a value of -1, sets the errno global variable
to a value of EINVAL, and sets the einval_arg field to a value of
SC_PASSTHRU_INV_D_LEN (defined in the /usr/include/sys/scsi.h file).

Refer to the Small Computer System Interface (SCSI) Specification for the
format of the request-sense data for a particular device.

DKPRES_READKEYS When the device is successfully opened, the DKPRES_READKEYS
operation provides a means to read the Persistent Reserve Registration
Keys on the device. The arg parameter to the DKPRES_READKEYS contains
the address of the dk_pres_in structure. This structure is defined in /usr/
include/sys/scdisk.h. The user must provide a buffer area and size for
the registered keys to be returned. The returned_length variable sets the
number of bytes returned.

In a shared-access or clustered environment, this operation identifies all
registered keys for a particular lun.

Note: For the DKPRES_READKEYS operation and following Persistent
Reserve related operation, the interpretation of the returned value and scsi
status is as follows:

• On successful attempt of the call, a 0 is returned.
• After a call fails, a -1 is returned and the errno global variable is set. For

a specific description of the errno value, refer to /usr/include/erno.h. In
addition, the SCSI status, along with the Sense Code, ASC and ASCQ, is
set to provide further information about why the command failed. Refer to
SCSI Specification on the interpretation of the SCSI status failure code.

DKPRES_READRES When the device is successfully opened, the DKPRES_READRES operation
provides a means to read the Persistent Reserve Reservation Keys on the
device. The arg parameter to the DKPRES_READKEYS contains the address
of the dk_pres_in structure. This structure is defined in /usr/include/sys/
scdisk.h. The user must provide a buffer area and size for the reservation
information to be returned. The returned_length variable sets the number of
bytes returned. In a shared-access or clustered environment, this operation
identifies the primary initiator that holds the reservation.

Kernel Services and Subsystem Operations 805

Item Description

DKPRES_CLEAR When the device is successfully opened, the DKPRES_CLEAR operation
provides a means to clear all Persistent Reserve Reservation Keys and
Registration Keys on the device. The arg parameter to DKPRES_CLEAR
contains the address of the dk_pres_clear structure. This structure is
defined in /usr/include/sys/scdisk.h.

Attention: Attention: Exercise care when issuing the
DKPRES_CLEAR operation. This operation leaves the device
unreserved, which could allow a foreign initiator to access the
device.

DKPRES_PREEMPT When the device is successfully opened, the DKPRES_PREEMPT
operation provides a means to preempt a Persistent Reserve Reservation
Key or Registration Key on the device. The arg parameter to the
DKPRES_PREEMPT contains the address of the dk_pres_preempt
structure. This structure is defined in /usr/include/sys/scdisk.h. The user
must provide the second party initiator key on the device to be preempted.
If the second party initiator holds the reservation to the device, then the
initiator that issues the preemption becomes the owner of the reservation.
Otherwise, the second party initiator access is revoked.

In order for this operation to succeed, the initiator must be registered with
the device first before any preemption can occur. In a shared-access or
clustered environment, this operation is used to preempt any operative or
inoperative initiator, or any initiator that is not recognized to be part of the
shared group.

DKPRES_PREEMPT_ABORT This operation is the same as the DKPRES_PREEMPT, except the device
follows the SCSI Primary Command Specification in aborting tasks that
belong to the preempted initiator.

DKPRES_REGISTER When the device is successfully opened, the DKPRES_REGISTER operation
provides a means to register a Key with the device. The Key is extracted
from ODM Customize Attribute and passed to the device driver during
configuration. The arg parameter to the DKPRES_REGISTER contains the
address of the dk_pres_register structure. This structure is defined in /usr/
include/sys/scdisk.h.

In a shared-access or clustered environment, this operation attempts
a registration with the device, then follows with a read reservation to
determine whether the device is reserved. If the device is not reserved,
then a reservation is placed with the device.

806 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

DK_RWBUFFER When the device is successfully opened, the DK_RWBUFFER operation
provides the means for issuing one or more SCSI Write Buffer commands
to the specified device. The device driver performs full error recovery upon
failures of this operation. The DK_RWBUFFER operation differs from the
DKIOCMD operation in that it does not require an exclusive open of the
device (for example, openx with the ext argument of SC_DIAGNOSTIC).
Thus, a DK_RWBUFFER operation can be issued to devices that are in use
by others. It can be used with the DK_PASSTHRU ioctl operation, which
(like DK_RWBUFFER) does not require an exclusive open of the device.

The arg parameter contains the address of a sc_rwbuffer structure
(defined in the /usr/include/sys/scsi.h file). Before the DK_RWBUFFER
ioctl is invoked, the fields of this structure must be set according to the
required behavior. The mode field corresponds to the mode field of the
SCSI Command Descriptor Block (CDB) as defined in the SCSI Primary
Commands (SPC) Specification. Supported modes are listed in the header
file /usr/include/sys/scsi.h.

The device driver quiesces all other I/O requests from the initiator that
issues the Write Buffer ioctl until the entire operation completes. Once the
write buffer ioctl completes, all quiesced I/O requests are resumed.

The SCSI status byte and the adapter status bytes are returned through
the arg parameter, which contains the address of a sc_rwbuffer structure
(defined in the /usr/include/sys/scsi.h file). If the DK_RWBUFFER
operation fails, the subroutine returns a value of -1 and sets the errno
global variable to a nonzero value. In this case, the caller must evaluate the
returned status bytes to determine why the operation was unsuccessful and
what recovery actions must be taken.

If a DK_RWBUFFER operation fails because a field in the sc_rwbuffer
structure has an invalid value, the subroutine returns a value of -1 and set
the errno global variable to EINVAL.

The DK_RWBUFFER ioctl allows the user to issue multiple SCSI Write
Buffer commands (CDBs) to the device through a single ioctl invocation.
It is useful for applications such as microcode download where the user
provides a pointer to the entire microcode image, but, because of size
restrictions of the device buffers, desires that the images be sent in
fragments until the entire download is complete.

If the DK_RWBUFFER ioctl is invoked with the fragment_size member
of the sc_rwbuffer struct equal to data_length, a single Write Buffer
command is issued to the device with the buffer_offset and buffer_ID of
the SCSI CDB set to the values provided in the sc_rwbuffer struct.

Kernel Services and Subsystem Operations 807

Item Description

If data_length is greater than fragment_size and fragment_size is a
nonzero value, multiple write buffer is issued to the device. The number
of Write Buffer commands (SCSI CDBs) issued is calculated by dividing the
data_length by the required fragment_size. This value is incremented by
1 if the data_length is not an even multiple of fragment_size, and the
final data transfer is the size of this residual amount. For each Write Buffer
command that is issued, the buffer_offset is set to the value provided in
the sc_rwbuffer struct (microcode downloads to SCSD devices requires
this value to be set to 0). For the first command issued, the buffer_ID is
set to the value provided in the sc_rwbuffer struct. For each subsequent
Write Buffer command that is issued, the buffer_ID is incremented by 1
until all fragments are sent. Writing to noncontiguous buffer_IDs through a
single DK_RWBUFFER ioctl is not supported. If this functionality is wanted,
multiple DK_RWBUFFER ioctls must be issued with the buffer_ID set
appropriately for each invocation.

Note: No I/O request is quiesced between ioctl invocations.

If fragment_size is set to zero, an errno of EINVAL is returned. If the desire
is to send the entire buffer with one SCSI Write buffer command, this field
must be set equal to data_length. An error of EINVAL is also returned if the
fragment_size is greater than the data_length.

The Parameter List Length (fragment_size) plus the Buffer Offset cannot
exceed the capacity of the specified buffer of the device. It is the
responsibility of the caller of the Write Buffer ioctl to ensure that the
fragment_size setting satisfies this requirement. A fragment_size larger
than the device can accommodate results in a SCSI error at the device, and
the Write Buffer ioctl reports this error but take no action to recover.

The devinfo structure defines the maximum transfer size for the command.
If an attempt is made to transfer more than the maximum transfer size,
the subroutine returns a value of -1 and sets the errno global variable to
a value of EINVAL. Refer to the Small Computer System Interface (SCSI)
Specification for the format of the request sense data for a particular device.

DKPATHIOCMD This command is only available for MPIO capable devices. The
DKPATHIOCMD command takes as input a pointer argument which points
to a single scdisk_pathiocmd structure. The DKPATHIOCMD command
behaves exactly like the DKIOCMD command, except that the input path
is used rather than normal path selection. The DKPATHIOCMD path is
used for the DKIOCMD command regardless of any path specified by a
DKPATHFORCE ioctl command. A path cannot be unconfigured while it is
being forced.

DKPATHFORCE This command is only available for MPIO capable devices. The
DKPATHFORCE command takes as input a ushort path id. The path id
must correspond to one of the path ids in CuPath ODM. The path id
specifies a path to be used for all subsequent I/O commands, overriding
any previous DKPATHFORCE path. A zero argument specifies that path
forcing is terminated and that normal MPIO path selection is to be resumed.
I/O commands sent in with the DKPATHIOCMD command overrides the
DKPATHFORCE option and send the I/O command down the path that is
specified in scdisk_pathiocmd structure.

808 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

DKPATHRWBUFFER This command is only available for MPIO capable devices. The
DKPATHRWBUFFER command takes as input a pointer argument which
points to a single scdisk_pathiocmd structure. The DKPATHRWBUFFER
command behaves exactly like the DKRWBUFFER command, except
that the input path is used rather than normal path selection. The
DKPATHRWBUFFER path is used for the DKRWBUFFER command
regardless of any path that is specified by a DKPATHFORCE ioctl command.

DKPATHPASSTHRU This command is only available for MPIO capable devices. The
DKPATHPASSTHRU command takes as input a pointer argument which
points to a single scdisk_pathiocmd structure. The DKPATHPASSTHRU
command behaves exactly like the DKPASSTHRU command, except
that the input path is used rather than normal path selection. The
DKPATHPASSTHRU path is used for the DKPASSTHRU command
regardless of any path that is specified by a DKPATHFORCE ioctl command.

DKPCMPASSTHRU This command is only available for MPIO capable devices. The
DKPCMPASSTHRU command takes as input a structure which is PCM-
specific, it is not defined by AIX. The PCM-specific structure is passed to
the PCM directly. This structure can be used to move information to or from
a PCM.

Device Requirements
SCSI hard disk, CD-ROM, and read/write optical drives have the following hardware requirements:

• SCSI hard disks and read/write optical drives must support a block size of 512 bytes per block.
• If mode sense is supported, the write-protection (WP) bit must also be supported for SCSI hard disks

and read/write optical drives.
• SCSI hard disks and read/write optical drives must report the hardware retry count in bytes 16 and

17 of the request sense data for recovered errors. If the hard disk or read/write optical drive does not
support it, the system error log might indicate premature drive failure.

• SCSI CD-ROM and read/write optical drives must support the 10-byte SCSI read command.
• SCSI hard disks and read/write optical drives must support the SCSI write and verify command and the

6-byte SCSI write command.
• To use the format command operation on read/write optical media, the drive must support setting the

format options valid (FOV) bit to 0 for the defect list header of the SCSI format unit command. If the
drive does not support this, the user can write an application for the drive so that it formats media by
using the DKFORMAT operation.

• If a SCSI CD-ROM drive uses CD_ROM Data Mode 1, it must support a block size of 512 bytes per block.
• If a SCSI CD-ROM drive uses CD_ROM data Mode 2 Form 1, it must support a block size of 2048 bytes

per block.
• If a SCSI CD-ROM drive uses CD_ROM data Mode 2 Form 2, it must support a block size of 2336 bytes

per block.
• If a SCSI CD-ROM drive uses CD_DA mode, it must support a block size of 2352 bytes per block.
• To control volume by using the DKAUDIO (play audio) operation, the device must support SCSI-2 mode

data page 0xE.
• To use the DKAUDIO (play audio) operation, the device must support the following SCSI-2 optional

commands:

– read subchannel
– pause resume
– play audio MSF

Kernel Services and Subsystem Operations 809

– play audio track index
– read TOC

Error Conditions
Possible errno values for ioctl, open, read, and write subroutines when you use the scdisk device driver
include:

Item Description

EACCES Indicates one of the following circumstances:

• An attempt was made to open a device currently open in Diagnostic or
Exclusive Access mode.

• An attempt was made to open a Diagnostic mode session on a device already
open.

• The user attempted a subroutine other than an ioctl or close subroutine while
in Diagnostic mode.

• A DKIOCMD or CDIOCMD operation was attempted on a device not in
Diagnostic mode.

• A DK_CD_MODE ioctl subroutine operation was attempted on a device not in
Exclusive Access mode.

• A DKFORMAT operation was attempted on a device not in Exclusive Access
mode.

EBUSY Indicates one of the following circumstances:

• An attempt was made to open a session in Exclusive Access mode on a device
already opened.

• The target device is reserved by another initiator.

EFAULT Indicates an invalid user address.

EFORMAT Indicates that the target device has unformatted media or media in an
incompatible format.

EINPROGRESS Indicates that a CD-ROM drive has a play-audio operation in progress.

810 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

EINVAL Indicates one of the following circumstances:

• A DKAUDIO (play-audio) operation was attempted for a device that is not
configured to use the SCSI-2 play-audio commands.

• The read or write subroutine supplied an nbyte parameter that is not an even
multiple of the block size.

• A sense data buffer length of greater than 255 bytes is not valid for a
CDIORDSE, DKIOWRSE, or DKIORDSE ioctl subroutine operation.

• The data buffer length exceeded the maximum defined in the devinfo
structure for a CDIORDSE, CDIOCMD, DKIORDSE, DKIOWRSE, or DKIOCMD
ioctl subroutine operation.

• An unsupported ioctl subroutine operation was attempted.
• A data buffer length greater than the allowed length by the CD-ROM drive is

not valid for a CDIOCMD ioctl subroutine operation.
• An attempt was made to configure a device that is still open.
• An incorrect configuration command is given.
• A DKPMR (Prevent Media Removal), DKAMR (Allow Media Removal), or

DKEJECT (Eject Media) command was sent to a device that does not support
removable media.

• A DKEJECT (Eject Media) command was sent to a device that currently has its
media that are locked in the drive.

• The data buffer length exceeded the maximum defined for a strategy
operation.

EIO Indicates one of the following circumstances:

• The target device cannot be located or is not responding.
• The target device indicated an unrecoverable hardware error.

EMEDIA Indicates one of the following circumstances:

• The target device indicated an unrecoverable media error.
• The media was changed.

EMFILE Indicates that an open operation was attempted for an adapter that already has
the maximum permissible number of opened devices.

ENODEV Indicates one of the following circumstances:

• An attempt was made to access an undefined device.
• An attempt was made to close an undefined device.

ENOTREADY Indicates that no media is in the drive.

ENXIO Indicates one of the following circumstances:

• The ioctl subroutine supplied an invalid parameter.
• A read or write operation was attempted beyond the end of the hard disk.

EPERM Indicates that the attempted subroutine requires appropriate authority.

ESTALE Indicates that a read-only optical disk was ejected (without first being closed by
the user) and then either reinserted or replaced with a second optical disk.

ETIMEDOUT Indicates an I/O operation exceeded the specified timer value.

Kernel Services and Subsystem Operations 811

Item Description

EWRPROTECT Indicates one of the following circumstances:

• An open operation that requested the read/write mode was attempted on
read-only media.

• A write operation was attempted to read-only media.

Reliability and Serviceability Information
SCSI hard disk devices, CD-ROM drives, and read/write optical drives return the following errors:

Item Description

ABORTED COMMAND Indicates that the device ended the command

ADAPTER ERRORS Indicates that the adapter returned an error

GOOD COMPLETION Indicates that the command completed successfully

HARDWARE ERROR Indicates that an unrecoverable hardware failure occurred during
command execution or during a self-test

ILLEGAL REQUEST Indicates an incorect command or command parameter

MEDIUM ERROR Indicates that the command ended with an unrecoverable media
error condition

NOT READY Indicates that the logical unit is offline or media is missing

RECOVERED ERROR Indicates that the command was successful after some recovery
was applied

UNIT ATTENTION Indicates that the device is reset or the power is turned on

Error Record Values for Media Errors

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
media errors are:

Item Description

Comment Indicates hard disk, CD-ROM, or read/write optical media error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error must be included when an error
report is generated.

Log Equals a value of True, which indicates an error log entry must be created when this
error occurs.

Alert Equals a value of False, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1312, which indicates a disk operation failure.

Prob_Causes Equals a value of 5000, which indicates media.

User_Causes Equals a value of 5100, which indicates the media is defective.

User_Actions Equals the following values:

• 0000, which indicates problem-determination procedures must be performed
• 1601, which indicates the removable media must be replaced and retried

Inst_Causes None.

812 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

Inst_Actions None.

Fail_Causes Equals the following values:

• 5000, which indicates a media failure
• 6310, which indicates a disk drive failure

Fail_Actions Equals the following values:

• 0000, which indicates problem-determination procedures must be performed
• 1601, which indicates the removable media must be replaced and tried again

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.
Note:

The Detail_Data field in the err_rec structure contains the sc_error_log_df
structure. The err_rec structure is defined in the /usr/include/sys/errids.h file.
The sc_error_log_df structure is defined in the /usr/include/sys/scsi.h file.

The sc_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that had
the error, if it is valid.

reserved2
Contains the segment count, which is the number of megabytes read from
the device at the time the error occurred.

reserved3
Contains the number of bytes read since the segment count was last
increased.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense
data for a particular device.

Error Record Values for Hardware Errors

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
hardware errors, as well as hard-aborted command errors are:

Item Description

Comment Indicates hard disk, CD-ROM, or read/write optical hardware error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error must be included when an error
report is generated.

Log Equals a value of True, which indicates an error log entry must be created when
this error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1312, which indicates a disk operation failure.

Prob_Causes Equals a value of 6310, which indicates disk drive.

User_Causes None.

User_Actions None.

Inst_Causes None.

Kernel Services and Subsystem Operations 813

Item Description

Inst_Actions None.

Fail_Causes Equals the following values:

• 6310, which indicates a disk drive failure
• 6330, which indicates a disk drive electronics failure

Fail_Actions Equals a value of 0000, which indicates problem-determination procedures must
be performed.

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.
Note:

The Detail_Data field in the err_rec structure contains the sc_error_log_df
structure. The err_rec structure is defined in the /usr/include/sys/errids.h
file. The sc_error_log_df structure is defined in the /usr/include/sys/scsi.h
file.

The sc_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that
had the error, if it is valid.

reserved2
Contains the segment count, which is the number of megabytes read
from the device at the time the error occurred.

reserved3
Contains the number of bytes read since the segment count was last
increased.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense
data for a particular device.

Error Record Values for Adapter-Detected Hardware Failures

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
media errors adapter-detected hardware errors are:

Item Description

Comment Indicates adapter-detected hard disk, CD-ROM, or read/write optical hardware
failure.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error must be included when an error
report is generated.

Log Equals a value of True, which indicates an error-log entry must be created when
this error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1312, which indicates a disk operation failure.

Prob_Causes Equals the following values:

• 3452, which indicates a device cable failure
• 6310, which indicates a disk drive failure

User_Causes None.

814 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals the following values:

• 3452, which indicates a storage device cable failure
• 6310, which indicates a disk drive failure
• 6330, which indicates a disk-drive electronics failure

Fail_Actions Equals a value of 0000, which indicates problem-determination procedures must
be performed.

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.
Note:

The Detail_Data field in the err_rec structure contains the sc_error_log_df
structure. The err_rec structure is defined in the /usr/include/sys/errids.h
file. The sc_error_log_df structure is defined in the /usr/include/sys/scsi.h
file.

The sc_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that had
the error, if it is valid.

reserved2
Contains the segment count, which is the number of megabytes read from
the device at the time the error occurred.

reserved3
Contains the number of bytes read since the segment count was last
increased.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense
data for a particular device.

Error Record Values for Recovered Errors

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
media errors recovered errors are:

Item Description

Comment Indicates hard disk, CD-ROM, or read/write optical recovered error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error must be included when an error
report is generated.

Log Equals a value of True, which indicates an error log entry must be created when
this error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Temp, which indicates a temporary failure.

Err_Desc Equals a value of 1312, which indicates a physical volume operation failure.

Kernel Services and Subsystem Operations 815

Item Description

Prob_Causes Equals the following values:

• 5000, which indicates a media failure
• 6310, which indicates a disk drive failure

User_Causes Equals a value of 5100, which indicates media is defective.

User_Actions Equals the following values:

• 0000, which indicates problem-determination procedures must be performed
• 1601, which indicates the removable media must be replaced and tried again

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals the following values:

• 5000, which indicates a media failure
• 6310, which indicates a disk drive failure

Fail_Actions Equals the following values:

• 0000, which indicates problem-determination procedures must be performed
• 1601, which indicates the removable media must be replaced and tried again

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.
Note:

The Detail_Data field in the err_rec structure contains the sc_error_log_df
structure. The err_rec structure is defined in the /usr/include/sys/errids.h
file. The sc_error_log_df structure is defined in the /usr/include/sys/scsi.h
file.

The sc_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that had
the error, if it is valid.

reserved2
Contains the segment count, which is the number of megabytes read from
the device at the time the error occurred.

reserved3
Contains the number of bytes read since the segment count was last
increased.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense
data for a particular device.

Error Record Values for Unknown Errors

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
media errors unknown errors are:

Item Description

Comment Indicates hard disk, CD-ROM, or read/write optical unknown failure.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error must be included when an error
report is generated.

816 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

Log Equals a value of True, which indicates an error log entry must be created when
this error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Unkn, which indicates the type of error is unknown.

Err_Desc Equals a value of FE00, which indicates an undetermined error.

Prob_Causes Equals the following values:

• 3300, which indicates an adapter failure
• 5000, which indicates a media failure
• 6310, which indicates a disk drive failure

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals a value of FFFF, which indicates the failure causes are unknown.

Fail_Actions Equals the following values:

• 0000, which indicates problem-determination procedures must be performed
• 1601, which indicates the removable media must be replaced and tried again

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.
Note:

The Detail_Data field in the err_rec structure contains the sc_error_log_df
structure. The err_rec structure is defined in the /usr/include/sys/errids.h
file. The sc_error_log_df structure is defined in the /usr/include/sys/scsi.h
file.

The sc_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that
had the error, if it is valid.

reserved2
Contains the segment count, which is the number of megabytes read from
the device at the time the error occurred.

reserved3
Contains the number of bytes read since the segment count was last
increased.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense
data for a particular device.

Special Files
The scdisk SCSI device driver uses raw and block special files in performing its functions.

Attention: Data corruption, loss of data, or loss of system integrity (system crash) occurs if devices
that support paging, logical volumes, or mounted file systems are accessed by using block special
files. Block special files are provided for logical volumes and disk devices and are solely for system
use in managing file systems, paging devices, and logical volumes. These files must not be used for
other purposes.

Kernel Services and Subsystem Operations 817

The special files that are used by the scdisk device driver include the following (listed by type of device):

• Hard disk devices:

Item Description

/dev/rhdisk0, /dev/
rhdisk1,..., /dev/rhdiskn

Provides an interface to allow SCSI device drivers character
access (raw I/O access and control functions) to SCSI hard disks.

/dev/hdisk0, /dev/
hdisk1,..., /dev/hdiskn

Provides an interface to allow SCSI device drivers block I/O
access to SCSI hard disks.

• CD-ROM devices:

Item Description

/dev/rcd0, /dev/rcd1,..., /dev/
rcdn

Provides an interface to allow SCSI device drivers character
access (raw I/O access and control functions) to SCSI CD-ROM
disks.

/dev/cd0, /dev/cd1,..., /dev/cdn Provides an interface to allow SCSI device drivers block I/O
access to SCSI CD-ROM disks.

• Read/write optical devices:

Item Description

/dev/romd0, /dev/romd1,..., /dev/romdn Provides an interface to allow SCSI device drivers
character access (raw I/O access and control
functions) to SCSI read/write optical devices.

/dev/omd0, /dev/omd1,..., /dev/omdn Provides an interface to allow SCSI device drivers
block I/O access to SCSI read/write optical devices.

Note: The prefix r on a special file name indicates that the drive is accessed as a raw device rather than
a block device. Performing raw I/O with a hard disk, CD-ROM, or read/write optical drive requires that
all data transfers be in multiples of the device block size. All lseek subroutines that are made to the raw
device driver must result in a file pointer value that is a multiple of the device block size.

SCIOCMD SCSI Adapter Device Driver ioctl Operation

Purpose
Provides a means to issue any SCSI command to a SCSI device.

Description
The SCIOCMD operation allows the caller to issue a SCSI command to a selected adapter. This command
can be used by system management routines to aid in the configuration of SCSI devices.

The arg parameter for the SCIOCMD operation is the address of a sc_passthru structure, which is defined
in the /usr/include/sys/scsi.h field. The sc_passthru parameter allows the caller to select which SCSI
and LUN IDS to send the command.

The SCSI status byte and the adapter status bytes are returned through the sc_passthru structure. If
the SCIOCMD operation returns a value of -1 and the errno global variable is set to a nonzero value,
the requested operation has failed. If it happens, the caller must evaluate the returned status bytes to
determine why the operation failed and what recovery actions must be taken.

If the SCIOCMD operation fails because a field in the sc_passthru structure has an invalid value, the
subroutine returns a value of -1, the errno global variable is set to EINVAL, and the einval_arg field is set
to the field number (starting with 1 for the version field) of the field that had an invalid value. A value of 0
for the einval_arg field indicates that no additional information is available.

818 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The version field of the sc_passthru structure can be set to the value of SC_VERSION_2 in the /usr/
include/sys/scsi.h file, and the user can provide the following fields:

• variable_cdb_ptr is a pointer to a buffer that contains the Variable SCSI cdb.
• variable_cdb_length determines the length of the cdb variable to which the variable_cdb_ptr field

points.

On completion of the SCIOCMD ioctl request, the residual field indicates the leftover data that device did
not fully satisfy for this request. On a successful completion, the residual field would indicate that the
device does not have the all data that is requested or the device has less than the amount of data that is
requested. On a failure completion, the user must check the status_validity field to determine whether a
valid SCSI bus problem exists. In this case, the residual field would indicate the number bytes that the
device failed to complete for this request.

The devinfo structure defines the maximum transfer size for the command. If an attempt is made to
transfer more than the maximum transfer size, the subroutine returns a value of -1, sets the errno global
variable to a value of EINVAL, and sets the einval_arg field to a value of 18.

Refer to the Small Computer System Interface (SCSI) Specification to find out the format of the request-
sense data for a particular device.

Return Values
The SCIOCMD operation returns a value of 0 when successfully completed. If unsuccessful, a value of -1
is returned, and the errno global variable is set to one of the following values:

Item Description

EIO A system error occurred. Consider trying the
operation several (three) times because another
attempt might be successful. If an EIO error
occurs and the status_validity field is set to
SC_SCSI_ERROR, the scsi_status field has a valid
value and must be inspected.

If the status_validity field is zero and remains
so on successive trials, an unrecoverable error
occurred.

If the status_validity field is SC_SCSI_ERROR and
the scsi_status field contains a Check Condition
status, a SCSI request sense must be issued by
using the SCIOCMD ioctl to recover the sense data.

EFAULT A user process copy failed.

EINVAL The device is not opened, or the caller set a field in
the sc_passthru structure to an invalid value.

EACCES The adapter is in diagnostics mode.

ENOMEM A memory request failed.

ETIMEDOUT The command timed out. Consider trying the
operation several times because another attempt
might be successful.

ENODEV The device is not responding.

ETIMEDOUT The operation did not complete before the timeout
value was exceeded.

Kernel Services and Subsystem Operations 819

Files
Item Description

/dev/scsi0, /dev/scsi1, ... /dev/scsin Provides an interface for all SCSI device drivers to
access SCSI devices or adapters.

SCIODIAG (Diagnostic) SCSI Adapter Device Driver ioctl Operation

Purpose
Provides the means to issue adapter diagnostic commands.

Description
The SCIODIAG operation allows the caller to issue various adapter diagnostic commands to the selected
SCSI adapter. These diagnostic command options are:

• Run the card Internal Diagnostics test
• Run the card SCSI Wrap test
• Run the card Read/Write Register test
• Run the card POS Register test
• Run the card SCSI Bus Reset test

An additional option allows the caller to resume the card Internal Diagnostics test from the point of a
failure, which is indicated by the return value. The arg parameter for the SCIODIAG operation specifies
the address of a sc_card_diag structure. This structure is defined in the /usr/include/sys/scsi.h file.

The actual adapter error-status information from each error reported by the card diagnostics is passed as
returned parameters to the caller. Refer to the sc_card_diag structure defined in the /usr/include/sys/
scsi.h file for the format of the returned data.

When the card diagnostics have completed (with previous errors), a value of ENOMSG is returned. At
this point, no further SCIODIAG resume options are required, as the card internal diagnostics test has
completed.

Adapter error status is always returned when a SCIODIAG operation results in an errno value of EFAULT.
Because this error information is returned for each such volume, the final ENOMSG value returned for
the card Internal Diagnostics test includes no error status information. Also, because this is a diagnostic
command, these errors are not logged in the system error log.

Note: The SCSI adapter device driver performs no internal retries or other error-recovery procedures
during execution of this operation. Error logging is also inhibited when running this command.

Return Values
When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

Value Description

EFAULT Indicates that a bad copy between user and kernel space occurred.

820 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Value Description

EFAULT For the integrated SCSI adapter on the 7008 and 7011 system models, this return value
also indicates that the SCSI adapter device driver detected an error while attempting to
run the SCIODIAG operation. In this case, the returned adapter status information must
be analyzed to discover the cause of the error. Because this is a diagnostic command,
this error is not logged in the system error log.

For all other SCSI adapters, this value indicates that the card internal diagnostics have
detected an error and paused. To continue, the caller must issue another SCIODIAG
operation with the resume option. In response to this option, the card continues the
diagnostics until either the end is reached or another error is detected. The caller must
continue to issue SCIODIAG operations until the EFAULT error no longer returns.

EINVAL Indicates a bad input parameter.

EIO Indicates that the SCSI adapter device driver detected an error while attempting to run
the SCIODIAG operation. In this case, the returned adapter status information must be
analyzed to discover the cause of the error. Because this is a diagnostic command, this
error is not logged in the system error log.

ENOMSG Indicates that the card Internal Diagnostics test has completed.

ENXIO Indicates that the operation or suboption selected is not supported on this adapter. This
should not be treated as an error. The caller must check for this return value first (before
checking for other errno values) to avoid mistaking this for a failing command.

ETIMEDOUT Indicates that the adapter did not respond with status before the passed command
time-out value expired. The SCIODIAG operation is a diagnostic command, so its errors
are not logged in the system error log.

Files

Item Description

/dev/scsi0, /dev/scsi1,..., /dev/scsin Provide an interface to allow SCSI
device drivers to access SCSI
devices/adapters.

SCIODNLD (Download) SCSI Adapter Device Driver ioctl Operation

Purpose
Provides the means to download microcode to the adapter.

Description
The SCIODNLD operation provides for downloading microcode to the selected adapter. This operation
can be used by system management routines to prepare the adapter for operation. The adapter can be
opened in Normal or Diagnostic mode when the SCIODNLD operation is run.

There are two options for executing the SCIODNLD operation. The caller can either download microcode
to the adapter or query the version of the currently downloaded microcode.

If the download microcode option is selected, a pointer to a download buffer and its length must be
supplied in the caller's memory space. The maximum length of this microcode is adapter-dependent.
If the adapter requires transfer of complete blocks, the microcode to be sent must be padded to the
next largest block boundary. The block size, if any, is adapter-dependent. Refer to the reference manual
for the particular SCSI adapter to find the adapter-specific requirements of the microcode buffer to be
downloaded.

Kernel Services and Subsystem Operations 821

The SCSI adapter device driver validates the parameter values for such things as maximum length and
block boundaries, as required. The arg parameter for the SCIODNLD operation specifies the address of a
sc_download structure. This structure is defined in the /usr/include/sys/scsi.h file.

If the query version option is selected, the pointer and length fields in the passed parameter block are
ignored. On successful completion of the SCIODNLD operation, the microcode version is contained in the
version_number field.

The SCSI adapter device driver performs normal error-recovery procedures during execution of the
SCIODNLD operation.

Return Values
When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

Value Description

EFAULT Indicates that a severe I/O error has occurred, preventing completion of the download.
In this case, further operations are not possible on the card, and the caller should
discontinue commands to the card. The adapter error-status information is logged in the
system error log.

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Indicates that the adapter device driver was unable to run the command due to incorrect
input parameters. Check microcode length and block boundary for errors.

EIO Indicates that the adapter device driver was unable to complete the command due to an
unrecoverable I/O error or microcode cyclical redundancy check (CRC) error. If the card
has on-board microcode, it may be able to continue running, and further commands may
still be possible on this adapter. The adapter error-status information is logged in the
system error log.

ENOMEM Indicates insufficient memory is available to complete the command.

ENXIO Indicates that the operation or suboption selected is not supported on this adapter and
should not be treated as an error. The caller must check for this return value first (before
checking for other errno values) to avoid mistaking this for a failing command.

ETIMEDOUT Indicates that the adapter did not respond with status before the passed command
time-out value expired. Since the download operation may not have completed, further
operations on the card may not be possible. The caller should discontinue sending
commands to the card. This error is also logged in the system error log.

Files

Item Description

/dev/scsi0, /dev/scsi1,..., /dev/scsin Provide an interface to allow SCSI
device drivers to access SCSI devices
and adapters.

SCIOEVENT (Event) SCSI Adapter Device Driver ioctl Operation

Purpose
Registers the selected SCSI device instance to receive asynchronous event notification.

822 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The SCIOEVENT operation registers the selected initiator or target-mode device for receiving
asynchronous event notification. Only kernel mode processes or device drivers can call this function.
If a user-mode process attempts an SCIOEVENT operation, the ioctl command is unsuccessful and the
errno global value is set to EPERM.

The arg parameter to the SCIOEVENT operation should be set to the address of an sc_event_struct
structure, which is in the /usr/include/sys/scsi.h file. If this is a target-mode instance, the
SCIOSTARTTGT operation was used to open the device session; the caller then fills in the ID field with
the SCSI ID of the SCSI initiator and sets the logical unit number (LUN) field to a value of 0. If this is
an initiator-mode instance, the SCIOSTART operation was used to open the device session; the ID field is
then set to the SCSI ID of the SCSI target, and the LUN is set to the LUN ID of the SCSI target. The device
must have been previously opened using one of the start ioctls for this operation to succeed. If the device
session is not opened, the ioctl command is unsuccessful and the returned errno global value is set to
EINVAL.

The event registration performed by this ioctl is only allowed once per device session; only the first
SCIOEVENT operation is accepted after the device is opened. Succeeding SCIOEVENT operations
are unsuccessful, and the errno global value is set to EINVAL. The event registration is cancelled
automatically when the device session is closed.

The caller fills in the mode field with one of the following values, which are defined in the /usr/
include/sys/scsi.h file:

#define SC_IM_MODE /* this is an initiator mode device */

#define SC_TM_MODE /* this is a target mode device */

The async_func field is filled in with the address of a pinned routine (in the calling program) that
should be called by the SCSI adapter device driver whenever asynchronous event status is available for
a registered device. The struct sc_event_info structure, defined in the /usr/include/sys/scsi.h file, is
passed by address to the caller's async_func routine.

The async_correlator field can optionally be used by the caller to provide an efficient means of
associating event information with the appropriate device. This field is saved by the SCSI adapter device
driver and is returned, unchanged, with information passed back to the caller's async_func routine.

Reserved fields must be set to 0 by the caller.

Return Values
When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

Value Description

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Either an SCIOSTART or SCIOSTARTTGT operator has not been issued to this device
instance, or this device is already registered for async events.

EPERM Indicates the caller is not running in kernel mode, which is the only mode allowed to execute
this operation.

Files

Item Description

/dev/scsi0, /dev/scsi1,..., /dev/scsin Provide an interface to allow SCSI device drivers to
access SCSI devices or adapters.

Kernel Services and Subsystem Operations 823

Item Description

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide
Adapter/A and SCSI-2 Differential Fast/Wide
Adapter/A device drivers to access SCSI devices or
adapters.

SCIOGTHW (Gathered Write) SCSI Adapter Device Driver ioctl Operation

Purpose
Allows the caller to verify that the SCSI adapter device driver to which this device instance is attached
supports gathered writes.

Description
This operation allows the caller to verify that the gathered write function is supported by the SCSI adapter
device driver before the caller attempts such an operation. The SCIOGTHW operation fails if a SCSI
adapter device driver does not support gathered writes.

The arg parameter to the SCIOGTHW operation is set to null by the caller to indicate no input parameter
is passed.

Note: This operation is not supported by all SCSI I/O Controllers. If not supported, errno is set to EINVAL
and a value of -1 is returned.

Return Values
When completed successfully, the SCIOGTHW operation returns a value of 0, meaning gathered writes
are supported. Otherwise, a value of -1 is returned and errno global variable is set to EINVAL.

Files

Item Description

/dev/scsi0, /dev/scsi1,..., /dev/scsin Provide an interface to allow SCSI device drivers to
access SCSI devices or adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide
Adapter/A and SCSI-2 Differential Fast/Wide
Adapter/A device drivers to access SCSI devices or
adapters.

SCIOHALT (Halt) SCSI Adapter Device Driver ioctl Operation

Purpose
Ends the current command (if there is one), clears the queue of any pending commands, and places the
device queue in a halted state.

Description
The SCIOHALT operation allows the caller to end the current command (if there is one) to a selected
device, clear the queue of any pending commands, and place the device queue in a halted state. The
command causes the attached SCSI adapter to execute a SCSI abort message to the selected target
device. This command is used by an upper-level SCSI device driver to end a running operation instead of
waiting for the operation to complete or time out.

824 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Once the SCIOHALT operation is sent, the calling device driver must set the SC_RESUME flag. This bit is
located in the flags field of the next sc_buf structure to be processed by the SCSI adapter device driver.
Any sc_buf structure sent without the SC_RESUME flag, after the device queue is in the halted state, is
rejected.

The arg parameter to the SCIOHALT operation allows the caller to specify the SCSI identifier of the device
to be reset. The least significant byte in the arg parameter is the LUN ID (logical unit number identifier) of
the LUN on the SCSI controller to be halted. The next least significant byte is the SCSI ID. The remaining
two bytes are reserved and must be set to a value of 0.

The SCSI adapter device driver performs normal error-recovery procedures during execution of this
command. For example, if the abort message causes the SCSI bus to hang, a SCSI bus reset is initiated to
clear the condition.

Return Values
When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned, and
the errno global variable is set to one of the following values:

Value Description

EINVAL Indicates a SCIOSTART operation was not issued prior to this operation.

EIO Indicates an unrecoverable I/O error occurred. In this case, the adapter error-status
information is logged in the system error log.

EIO Indicates either the device is already stopping or the device driver was unable to pin
code.

ENOCONNECT Indicates a SCSI bus fault occurred.

ENODEV Indicates the target SCSI ID could not be selected or is not responding. This
condition is not necessarily an error and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates the adapter did not respond with status before the internal command
time-out value expired. This error is logged in the system error log.

Files

Item Description

/dev/scsi0, /dev/scsi1, ..., /dev/scsin Provide an interface to allow SCSI device drivers to
access SCSI devices and adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide
Adapter/A and SCSI-2 Differential Fast/Wide
Adapter/A device drivers to access SCSI devices or
adapters.

SCIOINQU (Inquiry) SCSI Adapter Device Driver ioctl Operation

Purpose
Provides the means to issue an inquiry command to a SCSI device.

Description
The SCIOINQU operation allows the caller to issue a SCSI device inquiry command to a selected adapter.
This command can be used by system management routines to aid in configuration of SCSI devices.

Kernel Services and Subsystem Operations 825

The arg parameter for the SCIOINQU operation is the address of an sc_inquiry structure. This structure is
defined in the /usr/include/sys/scsi.h file. The sc_inquiry parameter block allows the caller to select the
SCSI and LUN IDs to be queried.

The SC_ASYNC flag byte of the parameter block must not be set on the initial call to this operation. This
flag is only set if a bus fault occurs and the caller intends to attempt more than one retry.

If successful, the returned inquiry data can be found at the address specified by the caller in the
sc_inquiry structure. Successful completion occurs if a device responds at the requested SCSI ID, but the
returned inquiry data must be examined to see if the requested LUN exists. Refer to the Small Computer
System Interface (SCSI) Specification for the applicable device for the format of the returned data.

Note: The SCSI adapter device driver performs normal error-recovery procedures during execution of this
command.

Return Values
When completed successfully this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

Value Description

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Indicates that a SCIOSTART command was not issued prior to this command.

EIO Indicates that an unrecoverable I/O error has occurred. If EIO is returned, the caller
should retry the SCIOINQU operation since the first command may have cleared
an error condition with the device. In case of an unrecovered error, the adapter
error-status information is logged in the system error log.

ENOCONNECT Indicates that a bus fault has occurred. The caller should respond by retrying with
the SC_ASYNC flag set in the flag byte of the passed parameters. If more than one
retry is attempted, only the last retry should be made with the SC_ASYNC flag set.
Generally the SCSI adapter device driver cannot determine which device caused the
SCSI bus fault, so this error is not logged.

ENODEV Indicates that no SCSI controller responded to the requested SCSI ID. This return
value implies that no LUNs exist on the requested SCSI ID. Therefore, when the
ENODEV return value is encountered, the caller can skip this SCSI ID (and all LUNs
on it) and go on to the next SCSI ID. This condition is not necessarily an error and is
not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates that the adapter did not respond with a status before the internal
command time-out value expired. On receiving the ETIMEDOUT return value, the
caller should retry this command at least once, since the first command may have
cleared an error condition with the device. This error is logged in the system error
log.

Files

Item Description

/dev/scsi0, /dev/scsi1, ..., /dev/scsin Provide an interface to allow SCSI device drivers to
access SCSI devices/adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide
Adapter/A and SCSI-2 Differential Fast/Wide
Adapter/A device drivers to access SCSI devices or
adapters.

826 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

SCIOREAD (Read) SCSI Adapter Device Driver ioctl Operation

Purpose
Issues a single block SCSI read command to a selected SCSI device.

Description
The SCIOREAD operation allows the caller to issue a SCSI device read command to a selected adapter.
System management routines use this command for configuring SCSI devices.

The arg parameter of the SCIOREAD operation is the address of an sc_readblk structure. This structure is
defined in the /usr/include/sys/scsi.h header file.

This command results in the SCSI adapter device driver issuing a 6-byte format ANSI SCSI-1 read
command. The command is set up to read only a single block. The caller supplies:

• Target device SCSI and LUN ID
• Logical block number to be read
• Length (in bytes) of the block on the device
• Time-out value (in seconds) for the command
• Pointer to the application buffer where the returned data is to be placed
• Flags parameter

The maximum block length for this command is 4096 bytes. The command will be rejected if the length is
found to be larger than this value.

The SC_ASYNC flag of the flag parameter must not be set on the initial call to this operation. This flag is
set only if a bus fault occurs and only if this is the caller's last retry attempt after this error occurs.

Note: The SCSI adapter device driver performs normal error-recovery procedures during execution of this
command.

Return Values
When completed successfully this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

Value Description

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Indicates that an SCIOSTART command was not issued prior to this command. If the
SCIOSTART command was issued, then this indicates the block length field value is
too large.

EIO Indicates that an I/O error has occurred. If an EIO value is returned, the caller
should retry the SCIOREAD operation since the first command may have cleared an
error condition with the device. In the case of an adapter error, the system error log
records the adapter error status information.

ENOCONNECT Indicates that a bus fault has occurred. The caller should respond by retrying with
the SC_ASYNC flag set in the flag byte of the passed parameters. If more than one
retry is attempted, only the last retry should be made with the SC_ASYNC flag set.
Generally, the SCSI adapter device driver cannot determine which device caused the
bus fault, so this error is not logged.

ENODEV Indicates that no SCSI controller responded to the requested SCSI ID. This return
value implies that no logical unit numbers (LUNs) exist on the specified SCSI ID. This
condition is not necessarily an error and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

Kernel Services and Subsystem Operations 827

Value Description

ETIMEDOUT Indicates the adapter did not respond with status before the internal time-out value
expired. The caller should retry this command at least once, since the first command
may have cleared an error condition with the device. The system error log records
this error.

Files

Item Description

/dev/scsi0, /dev/scsi1,..., /dev/scsin Provide an interface to allow SCSI device drivers to
access SCSI devices/adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide
Adapter/A and SCSI-2 Differential Fast/Wide
Adapter/A device drivers to access SCSI devices or
adapters.

SCIORESET (Reset) SCSI Adapter Device Driver ioctl Operation

Purpose
Allows the caller to force a SCSI device to release all current reservations, clear all current commands,
and return to an initial state.

Description
The SCIORESET operation allows the caller to force a SCSI device to release all current reservations,
clear all current commands, and return to an initial state. This operation is used by system management
routines to force a SCSI controller to release a competing SCSI initiator's reservation in a multi-initiator
environment.

This operation actually executes a SCSI bus device reset (BDR) message to the selected SCSI controller
on the selected adapter. The BDR message is directed to a SCSI ID. Therefore, all logical unit numbers
(LUNs) associated with that SCSI ID are affected by the execution of the BDR.

For the operation to work effectively, a SCSI Reserve command should be issued after the SCIORESET
operation through the appropriate SCSI device driver. Typically, the SCSI device driver open logic issues a
SCSI Reserve command. This prevents another initiator from claiming the device.

There is a finite amount of time between the release of all reservations (by a SCIORESET operation) and
the time the device is again reserved (by a SCSI Reserve command from the host). During this interval,
another SCSI initiator can reserve the device instead. If this occurs, the SCSI Reserve command from this
host fails and the device remains reserved by a competing initiator. The capability needed to prevent or
recover from this event is beyond the SCSI adapter device driver and SCSI device driver components.

The arg parameter to the SCIORESET operation allows the caller to specify the SCSI ID of the device to
be reset. The least significant byte in the arg parameter is the LUN ID of the LUN on the SCSI controller.
The device indicated by the LUN ID should have been successfully started by a call to the SCIOSTART
operation. The next least significant byte is the SCSI ID. The remaining two bytes are reserved and must
be set to a value of 0.

Examples
1. The following example demonstrates actual use of this command. A SCSI ID of 1 is assumed, and an

LUN of 0 exists on this SCSI controller.

open SCSI adapter device driver
SCIOSTART SCSI ID=1, LUN=0
SCIORESET SCSI ID=1, LUN=0 (to free any reservations)

828 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

SCIOSTOP SCSI ID=1, LUN=0
close SCSI adapter device driver
open SCSI device driver (normal open) for SCSI ID=1, LUN=0
...
Use device as normal
...

2. To make use of the SC_FORCED_OPEN flag of the SCSI device driver:

open SCSI device driver (with SC_FORCED_OPEN flag)
for SCSI ID=1, LUN=0
...

Use the device as normal.

Both examples assume that the SCSI device driver open call executes a SCSI Reserve command on the
selected device.

The SCSI adapter device driver performs normal error-recovery procedures during execution of this
command. For example, if the BDR message causes the SCSI bus to hang, a SCSI bus reset will be
initiated to clear the condition.

Return Values
When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

Value Description

EINVAL Indicates an SCIOSTART command was not issued prior to this command.

EIO Indicates an unrecoverable I/O error occurred. In this case, the adapter error-status
information is logged in the system error log.

EIO Indicates either the device is already stopping or the device driver is unable to pin
code.

ENOCONNECT Indicates that a bus fault has occurred. The caller should respond by retrying with
the SC_ASYNC flag set in the flag byte of the passed parameters. If more than one
retry is attempted, only the last retry should be made with the SC_ASYNC flag set.
Generally, the SCSI adapter device driver cannot determine which device caused the
bus fault, so this error is not logged in the system error log.

ENODEV Indicates the target SCSI ID could not be selected or is not responding. This
condition is not necessarily an error and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates the adapter did not respond with status before the internal command
time-out value expired. This error is logged.

Files

Item Description

/dev/scsi0, /dev/scsi1, ..., /dev/scsin Provide an interface to allow SCSI device drivers to
access SCSI devices or adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide
Adapter/A and SCSI-2 Differential Fast/Wide
Adapter/A device drivers to access SCSI devices or
adapters.

Kernel Services and Subsystem Operations 829

SCIOSTART (Start SCSI) Adapter Device Driver ioctl Operation

Purpose
Opens a logical path to a SCSI target device.

Description
The SCIOSTART operation opens a logical path to a SCSI device. The host SCSI adapter acts as an
initiator device. This operation causes the adapter device driver to allocate and initialize the data areas
needed to manage commands to a particular SCSI target.

The SCIOSTART operation must be issued prior to any of the other non-diagnostic mode operations,
such as SCIOINQU and SCIORESET. However, the SCIOSTART operation is not required prior to calling
the IOCINFO operation. Finally, when the caller is finished issuing commands to the SCSI target, the
SCIOSTOP operation must be issued to release allocated data areas and close the path to the device.

The arg parameter to SCIOSTART allows the caller to specify the SCSI and LUN (logical unit number)
identifier of the device to be started. The least significant byte in the arg parameter is the LUN, and the
next least significant byte is the SCSI ID. The remaining two bytes are reserved and must be set to a value
of 0.

Return Values
If completed successfully this operation returns a value of 0. Otherwise, a value of -1 is returned and the
errno global variable set to one of the following values:

Value Description

EIO Indicates either an unrecoverable I/O error, or the device driver is unable to pin code.

EINVAL Indicates either that the SCSI ID and LUN combination was incorrect (the combination may
already be in use) or that the passed SCSI ID is the same as that of the adapter.

If the SCIOSTART operation is unsuccessful, the caller must not attempt other operations to this SCSI ID
and LUN combination, since it is either already in use or was never successfully started.

Files

Item Description

/dev/scsi0, /dev/scsi1, ..., /dev/scsin Provide an interface to allow SCSI device drivers to
access SCSI devices or adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide
Adapter/A and SCSI-2 Differential Fast/Wide
Adapter/A device drivers to access SCSI devices or
adapters.

SCIOSTARTTGT (Start Target) SCSI Adapter Device Driver ioctl Operation

Purpose
Opens a logical path to a SCSI initiator device.

Description
The SCIOSTARTTGT operation opens a logical path to a SCSI initiator device. The host SCSI adapter acts
as a target. This operation causes the adapter device driver to allocate and initialize device-dependent
information areas needed to manage data received from the initiator. It also makes the adapter device

830 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

driver allocate system buffer areas to hold data received from the initiator. Finally, it makes the host
adapter ready to receive data from the initiator.

This operation may only be called from a kernel process or device driver, as it requires that both the caller
and the SCSI adapter device driver be able to directly access each other's code in memory.

Note: This operation is not supported by all SCSI I/O controllers. If not supported, errno is set to ENXIO
and a value of -1 is returned.

The arg parameter to the SCIOSTARTTGT ioctl operation should be set to the address of an sc_strt_tgt
structure, which is defined in the /usr/include/sys/scsi.h file. The caller fills in the ID field with the SCSI
ID of the SCSI initiator and sets the logical unit number (LUN) field to 0, as the initiator LUN is
ignored for received data.

The caller sets the buf_size field to the desired size for all receive buffers allocated for this host target
instance. This is an adapter-dependent parameter, which should be set to 4096 bytes for the SCSI I/O
Controller. The num_bufs field is set to indicate how many buffers the caller wishes to have allocated for
the device. This is also an adapter-dependent parameter. For the SCSI I/O Controller, it should be set to
16 or greater.

The caller fills in the recv_func field with the address of a pinned routine from its module, which the
adapter device driver calls to pass received-data information structures. These structures tell the caller
where the data is located and if any errors occurred.

The tm_correlator field can optionally be used by the caller to provide an efficient means of
associating received data with the appropriate device. This field is saved by the SCSI adapter device
driver and is returned, with information passed back to the caller's recv_func routine.

The free_func field is an output parameter for this operation. The SCSI adapter device driver fills
this field with the address of a pinned routine in its module, which the caller calls to pass processed
received-data information structures.

Currently, the host SCSI adapter acts only as LUN 0 when accessed from other SCSI initiators. This
means the remotely-attached SCSI initiator can only direct data at one logical connection per host SCSI
adapter. At most, only one calling process can open the logical path from the host SCSI adapter to a
remote SCSI initiator. This does not prevent a single process from having multiple target devices opened
simultaneously.

Note: Two or more SCSI target devices can have the same SCSI ID if they are physically attached to
separate SCSI adapters.

Return Values
When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

Value Description

EINVAL An SCIOSTARTTGT command has already been issued to this SCSI ID, the passed SCSI ID is
the same as that of the adapter, the LUN field is not set to 0, the buf_size field is greater
than 4096 bytes, the num_bufs field is less than 16, or the recv_func field is set to null.

EIO Indicates an I/O error or kernel service failure occurred, preventing the device driver from
enabling the selected SCSI ID.

ENOME
M

Indicates that a memory allocation error has occurred.

EPERM Indicates the caller is not running in kernel mode, which is the only mode allowed to execute
this operation.

Kernel Services and Subsystem Operations 831

Files

Item Description

/dev/scsi0, /dev/scsi1,...,/dev/scsin Provide an interface to allow SCSI device drivers to
access SCSI devices or adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide
Adapter/A and SCSI-2 Differential Fast/Wide
Adapter/A device drivers to access SCSI devices or
adapters.

SCIOSTOP (Stop) Device SCSI Adapter Device Driver ioctl Operation

Purpose
Closes the logical path to a SCSI target device.

Description
The SCIOSTOP operation closes the logical path to a SCSI device. The host SCSI adapter acts as an
initiator. The SCIOSTOP operation causes the adapter device driver to deallocate data areas allocated
in response to a SCIOSTART operation. This command must be issued when the caller wishes to cease
communications to a particular SCSI target. The SCIOSTOP operation should only be issued for a device
successfully opened by a previous call to an SCIOSTART operation.

The SCIOSTOP operation passes the arg parameter. This parameter allows the caller to specify the SCSI
and logical unit number (LUN) IDs of the device to be stopped. The least significant byte in the arg
parameter is the LUN, and the next least significant byte is the SCSI ID. The remaining two bytes are
reserved and must be set to 0.

Return Values
When completed successfully this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

Value Description

EINVAL Indicates that the device has not been opened. An SCIOSTART operation should be issued
prior to calling the SCIOSTOP operation.

EIO Indicates that the device drive was unable to pin code.

Files

Item Description

/dev/scsi0, /dev/scsi1, ..., /dev/scsin Provide an interface to allow SCSI device drivers to
access SCSI devices or adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide
Adapter/A and SCSI-2 Differential Fast/Wide
Adapter/A device drivers to access SCSI devices or
adapters.

SCIOSTOPTGT (Stop Target) SCSI Adapter Device Driver ioctl Operation

Purpose
Closes a logical path to a SCSI initiator device.

832 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
The SCIOSTOPTGT operation closes a logical path to a SCSI initiator device, where the host SCSI
adapter acts as a target. This operation causes the adapter device driver to deallocate device-dependent
information areas allocated in response to the SCIOSTARTTGT operation. It also causes the adapter
device driver to deallocate system buffer areas used to hold data received from the initiator. Finally, it
disables the host adapter's ability to receive data from the selected initiator.

This operation may only be called from a kernel process or device driver.

Note: This operation is not supported by all SCSI I/O Controllers. If not supported, errno is set to ENXIO
and a value of -1 is returned.

The arg parameter to the SCIOSTOPTGT operation should be set to the address of an sc_stop_tgt
structure, which is defined in the /usr/include/sys/scsi.h file. The caller fills in the id field with the SCSI
ID of the initiator and sets the logical unit number (LUN) field to 0 as the initiator LUN is ignored
for received data.

Note: The calling device driver should have previously freed any received-data areas by passing their
information structures to the SCSI adapter device driver's free_func routine. All buffers allocated for this
device are deallocated by the SCIOSTOPTGT operation regardless of whether the calling device driver has
finished processing those buffers and has called the free_func routine.

Return Values
When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

Item Description

EINVAL An SCIOSTOPTGT command has not been previously issued to this SCSI ID.

EPERM Indicates the caller is not running in kernel mode, which is the only mode allowed to execute
this operation.

Files

Item Description

/dev/scsi0, /dev/scsi1, ... Provide an interface to allow SCSI device drivers to
access SCSI devices or adapters.

/dev/vscsi0, /dev/vscsi1, ...,/dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide
Adapter/A and SCSI-2 Differential Fast/Wide
Adapter/A device drivers to access SCSI devices or
adapters.

SCIOSTUNIT (Start Unit) SCSI Adapter Device Driver ioctl Operation

Purpose
Provides the means to issue a SCSI Start Unit command to a selected SCSI device.

Description
The SCIOSTUNIT operation allows the caller to issue a SCSI Start Unit command to a selected SCSI
adapter. This command can be used by system management routines to aid in configuration of SCSI
devices. For the SCIOSTUNIT operation, the arg parameter operation is the address of an sc_startunit
structure. This structure is defined in the /usr/include/sys/scsi.h file.

Kernel Services and Subsystem Operations 833

The sc_startunit structure allows the caller to specify the SCSI and logical unit number (LUN) IDs of
the device on the SCSI adapter that is to be started. The SC_ASYNC flag (in the flag byte of the passed
parameter block) must not be set on the initial attempt of this command.

The start_flag field in the parameter block allows the caller to indicate the start option to the
SCIOSTUNIT operation. When the start_flag field is set to TRUE, the logical unit is to be made ready
for use. When FALSE, the logical unit is to be stopped.

Attention: When the immed_flag field is set to TRUE, the SCSI adapter device driver allows
simultaneous SCIOSTUNIT operations to any or all attached devices. It is important that
when executing simultaneous SCSI Start Unit commands, the caller should allow a delay of
at least 10 seconds between succeeding SCSI Start Unit command operations. The delay
ensures that adequate power is available to devices sharing a common power supply. Failure
to delay in this manner can cause damage to the system unit or to attached devices. Consult
the technical specifications manual for the particular device and the appropriate hardware
technical reference for your system.

The immed_flag field allows the caller to indicate the immediate option to the SCIOSTUNIT operation.
When the immed_flag field is set to TRUE, status is to be returned as soon as the command is received
by the device. When the field is set to FALSE, the status is to be returned after the operation is completed.
The caller should set the immed_flag field to TRUE to allow overlapping SCIOSTUNIT operations to
multiple devices on the SCSI bus. In this case, the SCIOTUR operation can be used to determine when
the SCIOSTUNIT has actually completed.

Note: The SCSI adapter device driver performs normal error-recovery procedures during execution of the
SCIOSTUNIT operation.

Return Values
When completed successfully, the SCIOSTUNIT operation returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to one of the following values:

Value Description

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Indicates that an SCIOSTART command was not issued prior to this command.

EIO Indicates that an unrecoverable I/O error has occurred. If EIO is received, the caller
should retry this command at least once, as the first command may have cleared
an error condition with the device. In case of an unrecovered error, the adapter
error-status information is logged in the system error log.

ENOCONNECT Indicates that a bus fault has occurred. The caller should respond by retrying with
the SC_ASYNC flag set in the flag byte of the passed parameters. If more than one
retry is attempted, only the last retry should be made with the SC_ASYNC flag set.
Generally the SCSI adapter device driver cannot determine which device caused the
SCSI bus fault, so this error is not logged.

ENODEV Indicates that no SCSI controller responded to the requested SCSI ID. This condition
is not necessarily an error and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates that the adapter did not respond with status before the internal command
time-out value expired. If ETIMEDOUT is received, the caller should retry this
command at least once, as the first command may have cleared an error condition
with the device. This error is logged in the system error log.

834 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Files

Item Description

/dev/scsi0, /dev/scsi1,..., /dev/scsin Provide an interface to allow SCSI device drivers to
access SCSI devices or adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide
Adapter/A and SCSI-2 Differential Fast/Wide
Adapter/A device drivers to access SCSI devices or
adapters.

SCIOTRAM (Diagnostic) SCSI Adapter Device Driver ioctl Operation

Purpose
Provides the means to issue various adapter commands to test the card DMA interface and buffer RAM.

Description
The SCIOTRAM operation allows the caller to issue various adapter commands to test the card DMA
interface and buffer RAM. The arg parameter block to the SCIOTRAM operation is the sc_ram_test
structure. This structure is defined in the /usr/include/sys/scsi.h file and contains the following
information:

• A pointer to a read or write test pattern buffer
• The length of the buffer
• An option field indicating whether a read or write operation is requested

Note: The SCSI adapter device driver is not responsible for comparing read data with previously written
data. After successful completion of write or read operations, the caller is responsible for performing a
comparison test to determine the final success or failure of this test.

The SCSI adapter device driver performs no internal retries or other error recovery procedures during
execution of this operation. Error logging is inhibited when running this command.

Return Values
When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and
the errno global variable is set to one of the following values:

Value Description

EIO Indicates that the adapter device driver detected an error. The specific adapter status is
returned in the sc_ram_test parameter block. The SCIOTRAM operation is a diagnostic
command and, as a result, this error is not logged in the system error log.

ENXIO Indicates that the operation or suboption selected is not supported on this adapter. This
should not be treated as an error. The caller must check for this return value first (before
other errno values) to avoid mistaking this for a failing command.

ETIMEDOUT Indicates the adapter did not respond with status before the passed command time-out
value expired. The SCIOTRAM operation is a diagnostic command, so this error is not
logged in the system error log.

Kernel Services and Subsystem Operations 835

Files

Item Description

/dev/scsi0, /dev/scsi1,..., /dev/scsin Provide an interface to allow SCSI
device drivers to access SCSI devices
or adapters.

SCIOTUR (Test Unit Ready) SCSI Adapter Device Driver ioctl Operation

Purpose
Sends a Test Unit Ready command to the selected SCSI device.

Description
The SCIOTUR operation allows the caller to issue a SCSI Test Unit Read (SCIOSTUNIT) command to a
selected SCSI adapter. This command is used by system management routines to help configure SCSI
devices.

The sc_ready structure allows the caller to specify the SCSI and the logical unit number (LUN) ID of the
device on the SCSI adapter that is to receive the SCIOTUR operation. The SC_ASYNC flag (in the flag byte
of the arg parameter block) must not be set during the initial attempt of this command. The sc_ready
structure provides two output fields: status_validity and scsi_status. Using these two fields,
the SCIOTUR operation returns the status to the caller. The arg parameter for the SCIOTUR operation
specifies the address of the sc_ready structure, defined in the /usr/include/sys/scsi.h file.

When an errno value of EIO is received, the caller should evaluate the returned status in the
status_validity and scsi_status fields. The status_validity field is set to the value
SC_SCSI_ERROR to indicate that the scsi_status field has a valid SCSI bus status in it. The /usr/
include/sys/scsi.h file contains typical values for the scsi_status field.

Following an SCIOSTUNIT operation, a calling program can tell by the SCSI bus status whether the
device is ready. If an errno value of EIO is returned and the status_validity field is set to 0, an
unrecovered error has occurred. If, on retry, the same result is obtained, the device should be skipped.
If the status_validity field is set to SC_SCSI_ERROR and the scsi_status field indicates a Check
Condition status, then another SCIOTUR command should be sent after a delay of several seconds.

After one or more attempts, the SCIOTUR operation should return a successful completion, indicating
that the device was successfully started. If, after several seconds, the SCIOTUR operation still returns a
scsi_status field set to a Check Condition status, the device should be skipped.

Note: The SCSI adapter device driver performs normal error-recovery procedures during execution of this
command.

Return Values
When completed successfully, this operation returns a value of 0. For the SCIOTUR operation, this
means the target device has been successfully started and is ready for data access. If unsuccessful, this
operation returns a value of -1 and the errno global variable is set to one of the following values:

Value Description

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Indicates the SCIOSTART operation was not issued prior to this command.

EIO Indicates the adapter device driver was unable to complete the command due to an
unrecoverable I/O error. If EIO is received, the caller should retry this command at
least once, as the first command may have cleared an error condition with the device.
Following an unrecovered I/O error, the adapter error status information is logged in
the system error log.

836 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Value Description

ENOCONNECT Indicates a bus fault has occurred. The caller should retry after setting the
SC_ASYNC flag in the flag byte of the passed parameters. If more than one retry
is attempted, only the last retry should be made with the SC_ASYNC flag set. In
general, the SCSI adapter device driver cannot determine which device caused the
SCSI bus fault, so this error is not logged.

ENODEV Indicates no SCSI controller responded to the requested SCSI ID. This condition is
not necessarily an error and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates the adapter did not respond with a status before the internal command
time-out value expired. If this return value is received, the caller should retry this
command at least once, as the first command may have cleared an error condition
with the device. This error is logged in the system error log.

Files

Item Description

/dev/scsi0, /dev/scsi1,..., /dev/scsin Provide an interface to allow SCSI device drivers to
access SCSI devices or adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsim Provide an interface to allow SCSI-2 Fast/Wide
Adapter/A and SCSI-2 Differential Fast/Wide
Adapter/A device drivers to access SCSI devices or
adapters.

scsesdd SCSI Device Driver

Purpose
Device driver supporting the SCSI Enclosure Services device.

Syntax

#include <sys/devinfo.h>
#include <sys/scsi.h>
#include <sys/scses.h>

Description
The special files /dev/ses0, /dev/ses1, ..., provide I/O access and control functions to the SCSI
enclosure devices.

Typical SCSI enclosure services operations are implemented using the open, ioctl, and close subroutines.

Open places the selected device in Exclusive Access mode. This mode is singularly entrant; that is, only
one process at a time can open it.

A device can be opened only if the device is not currently opened. If an attempt is made to open a device
and the device is already open, a value of -1 is returned and the errno global variable is set to a value of
EBUSY.

ioctl Subroutine
The following ioctl operations are available for SCSI Enclosure Services devices:

Kernel Services and Subsystem Operations 837

Operation Description

IOCINFO Returns the devinfo structure defined in the /usr/include/sys/devinfo.h file.

SESIOCMD When the device has been successfully opened, this operation provides the means for
issuing any SCSI command to the specified enclosure. The device driver performs no error
recovery or logging-on failures of this ioctl operation.

The SCSI status byte and the adapter status bytes are returned via the arg parameter,
which contains the address of a sc_iocmd structure (defined in the /usr/include/sys/
scsi.h file). If the SESIOCMD operation returns a value of -1 and the errno global variable
is set to a nonzero value, the requested operation has failed. In this case, the caller
should evaluate the returned status bytes to determine why the operation failed and what
recovery actions should be taken.

The devinfo structure defines the maximum transfer size for the command. If an attempt
is made to transfer more than the maximum, a value of -1 is returned and the errno global
variable set to a value of EINVAL. Refer to the Small Computer System Interface (SCSI)
Specification for the applicable device to get request sense information.

Device Requirements
The following hardware requirements exist for SCSI enclosure services devices:

• The device must support the SCSI-3 Enclosure Services Specification Revision 4 or later.
• The device can be addressed from a SCSI id different from the SCSI ids of the the SCSI devices inside

the enclosure.
• The device must be "well behaved", when receiving SCSI inquiries to page code 0xC7. This means that

if the device fails the inquiry to page code C7 with a check condition, then the check condition will be
cleared by the next SCSI command. An explicit request sense is not required.

• If the device reports its ANSI version to be 3 (SCSI-3) in the standard inquiry data, then it must correctly
reject all invalid requests for luns 8-31 (that is,the device cannot ignore the upper bits in Lun id and thus
cannot treat Lun 8 as being Lun 0, etc).

Error Conditions
Ioctl and open subroutines against this device fail in the following circumstances:

Error Description

EBUSY An attempt was made to open a device already opened.

EFAULT An illegal user address was entered.

EINVAL The data buffer length exceeded the maximum defined in the devinfo structure for a
SESIOCMD ioctl operation.

EINVAL An unsupported ioctl operation was attempted.

EINVAL An attempt was made to configure a device that is still open.

EINVAL An illegal configuration command has been given.

EIO The target device cannot be located or is not responding.

EIO The target device has indicated an unrecovered hardware error.

EMFILE An open was attempted for an adapter that already has the maximum permissible
number of opened devices.

ENODEV An attempt was made to access a device that is not defined.

ENODEV An attempt was made to close a device that has not been defined.

838 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Error Description

ENXIO The ioctl subroutine supplied an invalid parameter.

EPERM The attempted subroutine requires appropriate authority.

ETIMEDOUT An I/O operation has exceeded the given timer value.

Reliability and Serviceability Information
The following errors are returned from SCSI enclosure services devices:

Error Description

ABORTED COMMAN The device cancelled the command.

ADAPTER ERRORS The adapter returned an error.

GOOD COMPLETION The command completed successfully.

HARDWARE ERROR An unrecoverable hardware failure occurred during command execution or
during a self test.

ILLEGAL REQUEST An illegal command or command parameter.

MEDIUM ERROR The command terminated with a unrecovered media error condition.

NOT READY The logical unit is off-line or media is missing.

RECOVERED ERROR The command was successful after some recovery applied.

UNIT ATTENTION The device has been reset or the power has been turned on.

Files

Item Description

/dev/ses0,/dev/ses1...,/dev/sesn Provides an interface to allow SCSI device
drivers access to SCSI enclosure services
devices.

scsidisk SAM Device Driver

Purpose
Supports the Fibre Channel Protocol for SCSI (FCP), Serial Attached SCSI (SAS), and the SCSI protocol
over Internet (iSCSI) hard disk, CD-ROM (compact-disk read-only memory), and read/write optical
(optical memory) devices.

Syntax

#include <sys/devinfo.h>
#include <sys/scsi.h>
#include <sys/scdisk.h>
#include <sys/pcm.h>
#include <sys/mpio.h>

Device-Dependent Subroutines
Typical hard disk, CD-ROM, and read/write optical drive operations are implemented by using the open,
close, read, write, and ioctl subroutines. The scsidisk device driver has additional support added for
MPIO capable devices.

open and close Subroutines

Kernel Services and Subsystem Operations 839

The open subroutine applies a reservation policy that is based on the ODM reserve_policy attribute,
previously the open subroutine always applied an SCSI2 reserve. The open and close subroutines
support working with multiple paths to a device if the device is an MPIO capable device.

The openx subroutine is intended primarily for use by the diagnostic commands and utilities. Appropriate
authority is required for execution. If an attempt is made to run the open subroutine without the proper
authority, the subroutine returns a value of -1 and sets the errno global variable to a value of EPERM.

The ext parameter that is passed to the openx subroutine selects the operation to be used for the target
device. The /usr/include/sys/scsi.h file defines possible values for the ext parameter.

The ext parameter can contain any combination of the following flag values logically ORed together:

Item Description

SC_DIAGNOSTIC Places the selected device in Diagnostic mode. This mode is singularly entrant;
that is, only one process at a time can open it. When a device is in Diagnostic
mode, SCSI operations are performed during open or close operations,
and error logging is disabled. In Diagnostic mode, only the close and ioctl
subroutine operations are accepted. All other device-supported subroutines
return a value of -1 and set the errno global variable to a value of EACCES.

A device can be opened in Diagnostic mode only if the target device is not
currently opened. If an attempt is made to open a device in Diagnostic mode
and the target device is already open, the subroutine returns a value of -1 and
sets the errno global variable to a value of EACCES.

SC_FORCED_OPEN_LUN On a device that supports Lun Level Reset, the device is reset regardless of
any reservation that is placed by another initiator before the open sequence
takes place. If the device does not support Lun Level Reset, and both
SC_FORCED_OPEN_LUN and SC_FORCE_OPEN flags are set, then a target
reset occurs before the open sequence takes place.

SC_FORCED_OPEN Initiates actions during the open operation to break any reservation that might
exist on the device. This action might include a target reset.

Note: A target reset resets all luns on the SCSI ID.

SC_RETAIN_RESERVATION Retains the reservation of the device after a close operation by not issuing the
release. This flag prevents other initiators from using the device unless they
break the host machine's reservation.

SC_NO_RESERVE Prevents the reservation of a device during an openx subroutine call to that
device. This operation is provided so a device can be controlled by two
processors that synchronize their activity by their own software means.

SC_SINGLE Places the selected device in Exclusive Access mode. Only one process at a
time can open a device in Exclusive Access mode.

A device can be opened in Exclusive Access mode only if the device is not
currently open. If an attempt is made to open a device in Exclusive Access
mode and the device is already open, the subroutine returns a value of -1 and
sets the errno global variable to a value of EBUSY. If the SC_DIAGNOSTIC flag
is specified along with the SC_SINGLE flag, the device is placed in Diagnostic
mode.

SC_PR_SHARED_REGISTER In a multi-initiator shared device environment, a Persistent Reserve with
service action Register and Ignore Key is sent to the device as part
of the open sequence. This feature is aimed at the cluster environment, where
an upper management software must follow an advisory lock mechanism to
control when the initiator reads or writes. The device is required to support
Persistent Reserve (refer to SCSI Primary Command version 2 description of
Persistent Reserve).

840 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Options to the openx Subroutine in Kernel Extensions and Device Support Programming Concepts gives
more specific information about the open operations.

readx and writex Subroutines

The readx and writex subroutines provide additional parameters that affect the raw data transfer. These
subroutines pass the ext parameter, which specifies request options. The options are constructed by
logically ORing zero or more of the following values:

Item Description

HWRELOC Indicates a request for hardware relocation (safe relocation only).

UNSAFEREL Indicates a request for unsafe hardware relocation.

WRITEV Indicates a request for write verification.

ioctl Subroutine

ioctl subroutine operations that are used for the scsidisk device driver are specific to the following
categories:

• Hard disk and read/write optical devices only
• CD-ROM devices only
• Hard disk, CD-ROM, and read/write optical devices

Hard disk and read/write optical devices

The following ioctl operation is available for hard disk and read/write optical devices only:

Item Description

DKIOLWRSE Provides a means for issuing a write command to the device and obtaining the target-
device sense data when an error occurs. If the DKIOLWRSE operation returns a value
of -1 and the status_validity field is set to a value of SC_SCSI_ERROR, valid sense
data is returned. Otherwise, target sense data is omitted.

The DKIOLWRSE operation is provided for diagnostic use. It allows the limited use of the
target device when it operates in an active system environment. The arg parameter to the
DKIOLWRSE operation contains the address of an scsi_rdwrt structure. This structure is
defined in the /usr/include/sys/scsi_buf.h file.

The devinfo structure defines the maximum transfer size for a write operation. If an
attempt is made to transfer more than the maximum, the subroutine returns a value of
-1 and sets the errno global variable to a value of EINVAL. Refer to the Small Computer
System Interface (SCSI) Specification for the format of the request-sense data for a
particular device.

Hard disk, CD-ROM, and read/write optical devices

The following ioctl operations are available for hard disk, CD-ROM, and read/write optical devices:

Item Description

IOCINFO Returns the devinfo structure that is defined in the/usr/include/sys/devinfo.h
file. The IOCINFO operation is the only operation defined for all device drivers
that use the ioctl subroutine. The remaining operations are all specific to hard
disk, CD-ROM, and read/write optical devices.

Kernel Services and Subsystem Operations 841

Item Description

DKIOLRDSE Provides a means for issuing a read command to the device and obtaining the
target-device sense data when an error occurs. If the DKIOLRDSE operation
returns a value of -1 and the status_validity field is set to a value of
SC_SCSI_ERROR, valid sense data is returned. Otherwise, target sense data is
omitted.

The DKIOLRDSE operation is provided for diagnostic use. It allows the limited
use of the target device when it operates in an active system environment.
The arg parameter to the DKIOLRDSE operation contains the address of
an scsi_rdwrt structure. This structure is defined in the /usr/include/sys/
scsi_buf.h file.

The devinfo structure defines the maximum transfer size for a read operation.
If an attempt is made to transfer more than the maximum, the subroutine
returns a value of -1 and sets the errno global variable to a value of EINVAL.
Refer to the Small Computer System Interface (SCSI) Specification for the
format of the request-sense data for a particular device.

DKIOLCMD When the device is successfully opened in the Diagnostic mode, the
DKIOLCMD operation provides the means for issuing any SCSI command to
the specified device. If the DKIOLCMD operation is issued when the device
is not in Diagnostic mode, the subroutine returns a value of -1 and sets the
errno global variable to a value of EACCES. The device driver performs no error
recovery or logging on failures of this operation.

The SCSI status byte and the adapter status bytes are returned through the
arg parameter, which contains the address of a scsi_iocmd structure (defined
in the /usr/include/sys/scsi_buf.h file). If the DKIOLCMD operation fails,
the subroutine returns a value of -1 and sets the errno global variable to a
nonzero value. In this case, the caller must evaluate the returned status bytes
to determine why the operation was unsuccessful and what recovery actions
must be taken.

The version field of the scsi_iocmd structure can be set to the value of
SCSI_VERSION_2, and the user can provide the following fields:

• variable_cdb_ptr is a pointer to a buffer that contains the Variable SCSI cdb.
• variable_cdb_length determines the length of the cdb variable to which the

variable_cdb_ptr field points.

On completion of the DKIOLCMD ioctl request, the residual field indicates
that the leftover data that device did not fully satisfy for this request. On a
successful completion, the residual field would indicate that the device does
not have the all data that is requested or the device has less than the amount
of data that is requested. On a failure completion, the user must check the
status_validity field to determine if a valid SCSI bus problem exists. In this
case, the residual field would indicate the number bytes that the device failed
to complete for this request.

The devinfo structure defines the maximum transfer size for the command. If
an attempt is made to transfer more than the maximum, the subroutine returns
a value of -1 and sets the errno global variable to a value of EINVAL. Refer to
the Small Computer System Interface (SCSI) Specification for the format of the
request-sense data for a particular device.

842 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

DKPMR Issues a SCSI prevent media removal command when the device is
successfully opened. This command prevents media from being ejected until
the device is closed, powered off and then back on, or until a DKAMR operation
is issued. The arg parameter for the DKPMR operation is null. If the DKPMR
operation is successful, the subroutine returns a value of 0. If the device is a
SCSI hard disk, the DKPMR operation fails, and the subroutine returns a value
of -1 and sets the errno global variable to a value of EINVAL. If the DKPMR
operation fails for any other reason, the subroutine returns a value of -1 and
sets the errno global variable to a value of EIO.

DKAMR Issues an allow media removal command when the device is successfully
opened. As a result media can be ejected by using either the drives eject
button or the DKEJECT operation. The arg parameter for this ioctl is null. If
the DKAMR operation is successful, the subroutine returns a value of 0. If
the device is a SCSI hard disk, the DKAMR operation fails, and the subroutine
returns a value of -1 and sets the errno global variable to a value of EINVAL.
For any other failure of this operation, the subroutine returns a value of -1 and
sets the errno global variable to a value of EIO.

DKEJECT Issues an eject media command to the drive when the device is successfully
opened. The arg parameter for this operation is null. If the DKEJECT operation
is successful, the subroutine returns a value of 0. If the device is a SCSI hard
disk, the DKEJECT operation fails, and the subroutine returns a value of -1 and
sets the errno global variable to a value of EINVAL. For any other failure of this
operation, the subroutine returns a value of -1 and sets the errno variable to a
value of EIO.

DKFORMAT Issues a format unit command to the specified device when the device is
successfully opened.

If the arg parameter for this operation is null, the format unit sets the format
options valid (FOV) bit to 0 (that is, it uses the drives default setting). If the arg
parameter for the DKFORMAT operation is not null, the first byte of the defect
list header is set to the value specified in the first byte addressed by the arg
parameter. It allows the creation of applications to format a particular type of
read/write optical media uniquely.

The driver initially tries to set the FmtData and CmpLst bits to 0. If that
fails, the driver tries the remaining three permutations of these bits. If all
four permutations fail, this operation fails, and the subroutine sets the errno
variable to a value of EIO.

If the DKFORMAT operation is specified for a hard disk, the subroutine returns
a value of -1 and sets the errno global variable to a value of EINVAL. If the
DKFORMAT operation is attempted when the device is not in Exclusive Access
mode, the subroutine returns a value of -1 and sets the errno global variable
to a value of EACCES. If the media is write-protected, the subroutine returns
a value of -1 and sets the errno global variable to a value of EWRPROTECT.
If the format unit exceeds its timeout value, the subroutine returns a value of
-1 and sets the errno global variable to a value of ETIMEDOUT. For any other
failure of this operation, the subroutine returns a value of -1 and sets the errno
global variable to a value of EIO.

Kernel Services and Subsystem Operations 843

Item Description

DKAUDIO Issues play audio commands to the specified device and controls the volume
on the device's output ports. Play audio commands include: play, pause,
resume, stop, determine the number of tracks, and determine the status of a
current audio operation. The DKAUDIO operation plays audio only through the
CD-ROM drives output ports. The arg parameter of this operation is the address
of a cd_audio_cmds structure, which is defined in the /usr/include/sys/
scdisk.h file. Exclusive Access mode is required.

If DKAUDIO operation is attempted when the device's audio-supported
attribute is set to No, the subroutine returns a value of -1 and sets the
errnoglobal variable to a value of EINVAL. If the DKAUDIO operation fails,
the subroutine returns a value of -1 and sets the errno global variable to a
nonzero value. In this case, the caller must evaluate the returned status bytes
to determine why the operation failed and what recovery actions must be
taken.

DK_CD_MODE Determines or changes the CD-ROM data mode for the specified device. The
CD-ROM data mode specifies what block size and special file are used for
data read across the SCSI bus from the device. The DK_CD_MODE operation
supports the following CD-ROM data modes:
CD-ROM Data Mode 1

512-byte block size through both raw (dev/rcd*) and block special (/dev/
cd*) files

CD-ROM Data Mode 2 Form 1
2048-byte block size through both raw (dev/rcd*) and block special (/dev/
cd*) files

CD-ROM Data Mode 2 Form 2
2336-byte block size through the raw (dev/rcd*) special file only

CD-DA (Compact Disc Digital Audio)
2352-byte block size through the raw (dev/rcd*) special file only

DVD-ROM
2048-byte block size through both raw (/dev/rcd*) and block special
(/dev/cd*) files

DVD-RAM
2048-byte block size through both raw (/dev/rcd*) and block special
(/dev/cd*) files

DVD-RW
2048-byte block size through both raw (/dev/rcd*) and block special
(/dev/cd*) files

The DK_CD_MODE arg parameter contains the address of the mode_form_op
structure that is defined in the /usr/include/sys/scdisk.h file. To have the
DK_CD_MODE operation determine or change the CD-ROM data mode, set
the action field of the change_mode_form structure to one of the following
values:

844 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

CD_GET_MODE
Returns the current CD-ROM data mode in the cd_mode_form field of the
mode_form_op structure, when the device is successfully opened.

CD_CHG_MODE
Changes the CD-ROM data mode to the mode specified in the
cd_mode_form field of the mode_form_op structure, when the device is
successfully opened in the Exclusive Access mode.

If a CD-ROM is not configured for different data modes (through mode-select
density codes), and an attempt is made to change the CD-ROM data mode
(by setting the action field of the change_mode_form structure set to
CD_CHG_MODE), the subroutine returns a value of -1 and sets the errno global
variable to a value of EINVAL. Attempts to change the CD-ROM mode to any of
the DVD modes also result in a return value of -1 and the errno global variable
set to EINVAL.

If the DK_CD_MODE operation for CD_CHG_MODE is attempted when the
device is not in Exclusive Access mode, the subroutine returns a value of -1
and sets the errno global variable to a value of EACCES. For any other failure
of this operation, the subroutine returns a value of -1 and sets the errno global
variable to a value of EIO.

Kernel Services and Subsystem Operations 845

Item Description

DK_PASSTHRU When the device is successfully opened, DK_PASSTHRU provides the means
for issuing any SCSI command to the specified device. The device driver
performs limited error recovery if this operation fails. The DK_PASSTHRU
operation differs from the DKIOCMD operation in that it does not require
an openx command with the ext argument of SC_DIAGNOSTIC. As a result,
DK_PASSTHRU can be issued to devices that are in use by other operations.

The SCSI status byte and the adapter status bytes are returned through the
arg parameter, which contains the address of a sc_passthru structure (defined
in the /usr/include/sys/scsi.h file). If the DK_PASSTHRU operation fails, the
subroutine returns a value of -1 and sets the errno global variable to a nonzero
value. If it happens the caller must evaluate the returned status bytes to
determine why the operation was unsuccessful and what recovery actions
must be taken.

If a DK_PASSTHRU operation fails because a field in the sc_passthru structure
has an invalid value, the subroutine returns a value of -1 and sets the errno
global variable to EINVAL. The einval_arg field is set to the field number
(starting with 1 for the version field) of the field that had an invalid value.
A value of 0 for the einval_arg field indicates that no additional information
about the failure is available.

DK_PASSTHRU operations are further subdivided into requests which quiesce
other I/O before issuing the request and requests that do not quiesce I/O.
These subdivisions are based on the devflags field of the sc_passthru
structure. When the devflags field of the sc_passthru structure has a
value of SC_MIX_IO, the DK_PASSTHRU operation is mixed with other I/O
requests. SC_MIX_IO requests that write data to devices are prohibited
and fail. When it happens, -1 is returned, and the errno global variable
is set to EINVAL. When the devflags field of the sc_passthru structure
has a value of SC_QUIESCE_IO, all other I/O requests are quiesced before
the DK_PASSTHRU request is issued to the device. If an SC_QUIESCE_IO
request has its timeout_value field set to 0, the DK_PASSTHRU request fails
with a return code of -1, the errno global variable is set to EINVAL, and
the einval_arg field is set to a value of SC_PASSTHRU_INV_TO (defined in
the /usr/include/sys/scsi.h file). If an SC_QUIESCE_IO request has a nonzero
timeout value that is too large for the device, the DK_PASSTHRU request
fails with a return code of -1, the errno global variable is set to EINVAL,
the einval_arg field is set to a value of SC_PASSTHRU_INV_TO (defined in
the /usr/include/sys/scsi.h file), and the timeout_value is set to the largest
allowed value.

846 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

The version field of the sc_passthru structure can be set to the value of
SCSI_VERSION_2, and the user can provide the following fields:

• variable_cdb_ptr is a pointer to a buffer that contains the Variable SCSI cdb.
• variable_cdb_length determines the length of the cdb variable to which the

variable_cdb_ptr field points.

On completion of the DK_PASSTHRU ioctl request, the residual field indicates
that the leftover data that device did not fully satisfy for this request. On a
successful completion, the residual field would indicate the device does not
have the all data that is requested or the device has less than the amount
of data that is requested. On a failure completion, the user must check the
status_validity field to determine whether a valid SCSI bus problem exists. In
this case, the residual field indicates the number of bytes that the device failed
to complete for this request.

The devinfo structure defines the maximum transfer size for the command.
If an attempt is made to transfer more than the maximum transfer
size, the subroutine returns a value of -1, sets the errno global variable
to a value of EINVAL, and sets the einval_arg field to a value of
SC_PASSTHRU_INV_D_LEN (defined in the /usr/include/sys/scsi.h file).
Refer to the Small Computer System Interface (SCSI) Specification for the
format of the request-sense data for a particular device.

Note: Calling DK_PASSTHRU ioctl as a non-root user fails with EACCES
instead of EPERM.

DKPRES_READKEYS When the device is successfully opened, the DKPRES_READKEYS operation
provides a means to read the Persistent Reserve Registration Keys on the
device. The arg parameter to the DKPRES_READKEYS contains the address
of the dk_pres_in structure. This structure is defined in /usr/include/sys/
scdisk.h. The user must provide a buffer area and size for the registered keys
to be returned. The returned_length variable sets the number of bytes returned.

In a shared-access or clustered environment, this operation identifies all
registered keys for a particular lun.

Note: For the DKPRES_READKEYS operation and following Persistent Reserve
related operation, the interpretation of the returned value and scsi status is as
follows:

• On successful attempt of the call, a 0 is returned.
• After a call fails, a -1 is returned and the errno global variable is set. For

a specific description of the errno value, refer to /usr/include/erno.h. In
addition, the SCSI status, along with the Sense Code, ASC and ASCQ, is set
to provide further information about why the command failed. Refer to SCSI
Specification on the interpretation of the SCSI status failure code.

DKPRES_READRES When the device is successfully opened, the DKPRES_READRES operation
provides a means to read the Persistent Reserve Reservation Keys on the
device. The arg parameter to the DKPRES_READKEYS contains the address
of the dk_pres_in structure. This structure is defined in /usr/include/sys/
scdisk.h. The user must provide a buffer area and size for the reservation
information to be returned. The returned_length variable sets the number of
bytes returned. In a shared-access or clustered environment, this operation
identifies the primary initiator that holds the reservation.

Kernel Services and Subsystem Operations 847

Item Description

DKPRES_CLEAR When the device is successfully opened, the DKPRES_CLEAR operation
provides a means to clear all Persistent Reserve Reservation Keys and
Registration Keys on the device. The arg parameter to DKPRES_CLEAR
contains the address of the dk_pres_clear structure. This structure is defined
in /usr/include/sys/scdisk.h.

Attention: Exercise care when issuing the DKPRES_CLEAR operation.
This operation leaves the device unreserved, which allows a foreign
initiator to access the device.

DKPRES_PREEMPT When the device is successfully opened, the DKPRES_PREEMPT operation
provides a means to preempt a Persistent Reserve Reservation Key or
Registration Key on the device. The arg parameter to the DKPRES_PREEMPT
contains the address of the dk_pres_preempt structure. This structure is
defined in /usr/include/sys/scdisk.h. The user must provide the second party
initiator key on the device to be preempted. If the second party initiator holds
the reservation to the device, then the initiator that issues the preemption
becomes the owner of the reservation. Otherwise, the second party initiator
access is revoked.

In order for this operation to succeed, the initiator must be registered with the
device first before any preemption can occur. In a shared-access or clustered
environment, this operation is used to preempt any operative or inoperative
initiator, or any initiator that is not recognized to be part of the shared group.

DKPRES_PREEMPT_ABORT This operation is the same as the DKPRES_PREEMPT, except the device
follows the SCSI Primary Command Specification in canceling tasks that belong
to the preempted initiator.

DKPRES_REGISTER When the device is successfully opened, the DKPRES_REGISTER operation
provides a means to register a Key with the device. The Key is extracted from
ODM Customize Attribute and passed to the device driver during configuration.
The arg parameter to the DKPRES_REGISTER contains the address of the
dk_pres_register structure. This structure is defined in /usr/include/sys/
scdisk.h.

In a shared-access or clustered environment, this operation attempts a
registration with the device, then follows with a read reservation to determine
whether the device is reserved. If the device is not reserved, then a reservation
is placed with the device.

848 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

DK_RWBUFFER When the device is successfully opened, the DK_RWBUFFER operation
provides the means for issuing one or more SCSI Write Buffer commands
to the specified device. The device driver performs full error recovery upon
failures of this operation. The DK_RWBUFFER operation differs from the
DKIOCMD operation in that it does not require an exclusive open of the
device (for example, openx with the ext argument of SC_DIAGNOSTIC). Thus,
a DK_RWBUFFER operation can be issued to devices that are in use by others.
It can be used with the DK_PASSTHRU ioctl, which (like DK_RWBUFFER) does
not require an exclusive open of the device.

The arg parameter contains the address of a sc_rwbuffer structure (defined in
the /usr/include/sys/scsi.h file). Before the DK_RWBUFFER ioctl is invoked,
the fields of this structure must be set according to the required behavior. The
mode field corresponds to the mode field of the SCSI Command Descriptor
Block (CDB) as defined in the SCSI Primary Commands (SPC) Specification.
Supported modes are listed in the header file /usr/include/sys/scsi.h.

The device driver quiesces all other I/O from the initiator by issuing the Write
Buffer ioctl until the entire operation completes. Once the Write Buffer ioctl
completes, all quiesced I/O are resumed.

The SCSI status byte and the adapter status bytes are returned through the
arg parameter, which contains the address of a sc_rwbuffer structure (defined
in the /usr/include/sys/scsi.h file). If the DK_RWBUFFER operation fails,
the subroutine returns a value of -1 and sets the errno global variable to a
nonzero value. In this case, the caller must evaluate the returned status bytes
to determine why the operation was unsuccessful and what recovery actions
must be taken.

If a DK_RWBUFFER operation fails because a field in the sc_rwbuffer
structure has an invalid value, the subroutine returns a value of -1 and sets
the errno global variable to EINVAL.

Kernel Services and Subsystem Operations 849

Item Description

The DK_RWBUFFER ioctl allows the user to issue multiple SCSI Write Buffer
commands (CDBs) to the device through a single ioctl invocation. It is useful
for applications such as microcode download where the user provides a pointer
to the entire microcode image, but, because of size restrictions of the device
buffers, desires that the images be sent in fragments until the entire download
is complete.

If the DK_RWBUFFER ioctl is invoked with the fragment_size member of the
sc_rwbuffer struct equal to data_length, a single Write Buffer command is
issued to the device with the buffer_offset and buffer_ID of the SCSI CDB set
to the values provided in the sc_rwbuffer struct.

If data_length is greater than fragment_size and fragment_size is a nonzero
value, multiple Write Buffer commands are issued to the device. The number
of Write Buffer commands (SCSI CDBs) issued are calculated by dividing the
data_length by the required fragment_size. This value is incremented by 1 if
the data_length is not an even multiple of fragment_size, and the final data
transfer is the size of this residual amount. For each Write Buffer command
that is issued, the buffer_offset is set to the value provided in the sc_rwbuffer
struct (microcode downloads to SCSD devices requires this to be set to 0).
For the first command issued, the buffer_ID is set to the value provided in
the sc_rwbuffer struct. For each subsequent Write Buffer command that is
issued, the buffer_ID is incremented by 1 until all fragments are sent. Writing
to noncontiguous buffer_IDs through a single DK_RWBUFFER ioctl is not
supported. If this functionality is desired, multiple DK_RWBUFFER ioctls must
be issued with the buffer_ID set appropriately for each invocation.

Note: No I/O request is quiesced between ioctl invocations.

DK_RWBUFFER continued If fragment_size is set to zero, an errno of EINVAL is returned. If the desire
is to send the entire buffer with one SCSI Write buffer command, this field
must be set equal to data_length. An error of EINVAL is also returned if the
fragment_size is greater than the data_length.

The Parameter List Length (fragment_size) plus the Buffer Offset can not
exceed the capacity of the specified buffer of the device. It is the responsibility
of the caller of the Write Buffer ioctl to ensure that the fragment_size
setting satisfies this requirement. A fragment_size larger than the device can
accommodate results in an SCSI error at the device, and the Write Buffer ioctl
results this error but take no action to recover.

The devinfo structure defines the maximum transfer size for the command.
If an attempt is made to transfer more than the maximum transfer size, the
subroutine returns a value of -1 and sets the errno global variable to a value of
EINVAL. Refer to the Small Computer System Interface (SCSI) Specification for
the format of the request sense data for a particular device.

DKPATHIOLCMD This command is only available for MPIO capable devices. The
DKPATHIOLCMD command takes as input a pointer argument which points
to a single scsidisk_pathiocmd structure. The DKPATHIOLCMD command
behaves exactly like theDKIOLCMD command, except that the input path is
used instead of the normal path selection. The DKPATHIOLCMD path is used
for the DKIOLCMD command regardless of any path that is specified by a
DKPATHFORCE ioctl command. A path cannot be unconfigured while it is being
forced.

850 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

DKPATHFORCE This command is only available for MPIO capable devices. The DKPATHFORCE
command takes as input a ushort path id. The path id must correspond to one
of the path ids in CuPath ODM. The path id specifies a path to be used for
all subsequent I/O commands, overriding any previous DKPATHFORCE path. A
zero argument specifies that path forcing is terminated and that normal MPIO
path selection is to be resumed. The PCM KE tracks the forcing of I/O on a
path. The Device Driver is unaware of this state except I/O commands sent in
with the DKPATHIOLCMD command overrides the DKPATHFORCE option and
send the I/O down the path that is specified in scsidisk_pathiocmd structure.

DKPATHRWBUFFER This command is only available for MPIO capable devices. The
DKPATHRWBUFFER command takes as input a pointer argument which points
to a single scsidisk_pathiocmd structure. The DKPATHRWBUFFER command
behaves exactly like the DKRWBUFFER command, except that the input path
is used rather than normal path selection. The DKPATHRWBUFFER path is
used for the DKRWBUFFER command regardless of any path that is specified
by a DKPATHFORCE ioctl command.

DKPATHPASSTHRU This command is only available for MPIO capable devices. The
DKPATHPASSTHRU command takes as input a pointer argument which points
to a single scsidisk_pathiocmd structure. The DKPATHPASSTHRU command
behaves exactly like the DKPASSTHRU command, except that the input path is
used rather than normal path selection. The DKPATHPASSTHRU path is used
for the DKPASSTHRU command regardless of any path that is specified by a
DKPATHFORCE ioctl command.

DKPCMPASSTHRU This command is only available for MPIO capable devices. The
DKPCMPASSTHRU command takes as input a structure, which is PCM-specific,
it is not defined by AIX. The PCM-specific structure is passed to the PCM
directly. This structure can be used to move information to or from a PCM.

Device Requirements
SCSI architectural model hard disk, CD-ROM, and read/write optical drives have the following hardware
requirements:

• SAM hard disks and read/write optical drives must support a block size of 512 bytes per block.
• If mode sense is supported, the write-protection (WP) bit must also be supported for SAM hard disks

and read/write optical drives.
• SAM hard disks and read/write optical drives must report the hardware retry count in bytes 16 and 17 of

the request sense data for recovered errors. If the hard disk or read/write optical drive does not support
this feature, the system error log might indicate premature drive failure.

• SAM CD-ROM and read/write optical drives must support the 10-byte SCSI read command.
• SAM hard disks and read/write optical drives must support the SCSI write and verify command and the

6-byte SCSI write command.
• To use the format command operation on read/write optical media, the drive must support setting the

format options valid (FOV) bit to 0 for the defect list header of the SCSI format unit command. If the
drive does not support this feature, the user can write an application for the drive so that it formats
media by using the DKFORMAT operation.

• If a SAM CD-ROM drive uses CD_ROM Data Mode 1, it must support a block size of 512 bytes per block.
• If a SAM CD-ROM drive uses CD_ROM data Mode 2 Form 1, it must support a block size of 2048 bytes

per block.
• If a SAM CD-ROM drive uses CD_ROM data Mode 2 Form 2, it must support a block size of 2336 bytes

per block.
• If a SAM CD-ROM drive uses CD_DA mode, it must support a block size of 2352 bytes per block.

Kernel Services and Subsystem Operations 851

• To control volume by using the DKAUDIO (play audio) operation, the device must support SCSI-2 mode
data page 0xE.

• To use the DKAUDIO (play audio) operation, the device must support the following SCSI-2 optional
commands:

– read subchannel
– pause resume
– play audio MSF
– play audio track index
– read TOC

Error Conditions
Possible errno values for ioctl, open,read, and write subroutines when you use the scsidisk device driver
include:

Item Description

EACCES Indicates one of the following circumstances:

• An attempt was made to open a device currently open in Diagnostic or Exclusive Access
mode.

• An attempt was made to open a Diagnostic mode session on a device already open.
• The user attempted a subroutine other than an ioctl or close subroutine while in

Diagnostic mode.
• A DKIOLCMD operation was attempted on a device not in Diagnostic mode.
• A DK_CD_MODE ioctl subroutine operation was attempted on a device not in Exclusive

Access mode.
• A DKFORMAT operation was attempted on a device not in Exclusive Access mode.

EBUSY Indicates one of the following circumstances:

• An attempt was made to open a session in Exclusive Access mode on a device already
opened.

• The target device is reserved by another initiator.

EFAULT Indicates an invalid user address.

EFORMAT Indicates that the target device has unformatted media or media in an incompatible
format.

EINPROGRESS Indicates that a CD-ROM drive has a play-audio operation in progress.

852 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

EINVAL Indicates one of the following circumstances:

• A DKAUDIO (play-audio) operation was attempted for a device that is not configured to
use the SCSI-2 play-audio commands.

• The read or write subroutine supplied an nbyte parameter that is not an even multiple
of the block size.

• A sense data buffer length of greater than 255 bytes is not valid for a DKIOLWRSE, or
DKIOLRDSE ioctl subroutine operation.

• The data buffer length exceeded the maximum defined in the devinfo structure for a
DKIOLRDSE, DKIOLWRSE, or DKIOLCMD ioctl subroutine operation.

• An unsupported ioctl subroutine operation was attempted.
• An attempt was made to configure a device that is still open.
• An incorrect configuration command is given.
• A DKPMR (Prevent Media Removal), DKAMR (Allow Media Removal), or DKEJECT

(Eject Media) command was sent to a device that does not support removable media.
• A DKEJECT (Eject Media) command was sent to a device that currently has its media

locked in the drive.
• The data buffer length exceeded the maximum defined for a strategy operation.

EIO Indicates one of the following circumstances:

• The target device cannot be located or is not responding.
• The target device is indicated an unrecoverable hardware error.

EMEDIA Indicates one of the following circumstances:

• The target device is indicated an unrecoverable media error.
• The media was changed.

EMFILE Indicates that an open operation was attempted for an adapter that already has the
maximum permissible number of opened devices.

ENODEV Indicates one of the following circumstances:

• An attempt was made to access an undefined device.
• An attempt was made to close an undefined device.

ENOTREADY Indicates that no media is in the drive.

ENXIO Indicates one of the following circumstances:

• The ioctl subroutine supplied an invalid parameter.
• A read or write operation was attempted beyond the end of the hard disk.

EPERM Indicates that the attempted subroutine requires appropriate authority.

ESTALE Indicates that a read-only optical disk was ejected (without first being closed by the user)
and then either reinserted or replaced with a second optical disk.

ETIMEDOUT Indicates that an I/O operation exceeded the specified timer value.

EWRPROTECT Indicates one of the following circumstances:

• An open operation that requests read/write mode was attempted on read-only media.
• A write operation was attempted to read-only media.

Kernel Services and Subsystem Operations 853

Reliability and Serviceability Information
SCSI hard disk devices, CD-ROM drives, and read/write optical drives return the following errors:

Item Description

ABORTED COMMAND Indicates that the device ended the command.

ADAPTER ERRORS Indicates that the adapter returned an error.

GOOD COMPLETION Indicates that the command completed successfully.

HARDWARE ERROR Indicates an that unrecoverable hardware failure occurred during command
execution or during a self-test.

ILLEGAL REQUEST Indicates that an incorrect command or command parameter.

MEDIUM ERROR Indicates that the command ended with an unrecoverable media error condition.

NOT READY Indicates that the logical unit is offline or media is missing.

RECOVERED ERROR Indicates that the command was successful after some recovery was applied.

UNIT ATTENTION Indicates that the device is reset or the power is turned on.

Error Record Values for Media Errors

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
media errors are:

Item Description

Comment Indicates hard disk, CD-ROM, or read/write optical media error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error must be included when an error
report is generated.

Log Equals a value of True, which indicates an error log entry must be created when this
error occurs.

Alert Equals a value of False, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1312, which indicates a disk operation failure.

Prob_Causes Equals a value of 5000, which indicates media.

User_Causes Equals a value of 5100, which indicates the media is defective.

User_Actions Equals the following values:

• 1601, which indicates the removable media must be replaced and tried again
• 00E1 Perform problem determination procedures

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals the following values:

• 5000, which indicates a media failure
• 6310, which indicates a disk drive failure

Fail_Actions Equals the following values:

• 1601, which indicates the removable media must be replaced and tried again
• 00E1 Perform problem determination procedures

854 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the scsi_error_log_df
structure. The err_recstructure is defined in the /usr/include/sys/errids.h file. The
scsi_error_log_df structure is defined in the /usr/include/sys/scsi_buf.h file.

The scsi_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that had the
error, if it is valid.

dd1
Contains the segment count, which is the number of megabytes read from the
device at the time the error occurred.

dd2
Contains the number of bytes read since the segment count was last increased.

dd3
Contains the number of opens since the device was configured.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense
data for a particular device.

Error Record Values for Hardware Errors

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
hardware errors, as well as hard-aborted command errors are:

Item Description

Comment Indicates hard disk, CD-ROM, or read/write optical hardware error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error must be included when an error
report is generated.

Log Equals a value of True, which indicates an error log entry must be created when this
error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1312, which indicates a disk operation failure.

Prob_Causes Equals a value of 6310, which indicates disk drive.

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals the following values:

• 6310, which indicates a disk drive failure
• 6330, which indicates a disk drive electronics failure

Fail_Actions Equals a value of 00E1, which indicates problem-determination procedures must be
performed.

Kernel Services and Subsystem Operations 855

Item Description

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the scsi_error_log_df
structure. The err_recstructure is defined in the /usr/include/sys/errids.h file. The
scsi_error_log_df structure is defined in the /usr/include/sys/scsi_buf.h file.

The scsi_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that had the
error, if it is valid.

dd1
Contains the segment count, which is the number of megabytes read from the
device at the time the error occurred.

dd2
Contains the number of bytes read since the segment count was last increased.

dd3
Contains the number of opens since the device was configured.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense
data for a particular device.

Error Record Values for Adapter-Detected Hardware Failures

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
media errors adapter-detected hardware errors are:

Item Description

Comment Indicates adapter-detected hard disk, CD-ROM, or read/write optical hardware failure.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error must be included when an error report
is generated.

Log Equals a value of True, which indicates an error-log entry must be created when this
error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1312, which indicates a disk operation failure.

Prob_Causes Equals the following values:

• 3452, which indicates a device cable failure
• 6310, which indicates a disk drive failure

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals the following values:

• 3452, which indicates a storage device cable failure
• 6310, which indicates a disk drive failure
• 6330, which indicates a disk-drive electronics failure

856 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

Fail_Actions Equals a value of 0000, which indicates problem-determination procedures must be
performed.

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the scsi_error_log_df
structure. The err_recstructure is defined in the /usr/include/sys/errids.h file. The
scsi_error_log_df structure is defined in the /usr/include/sys/scsi_buf.h file.

The scsi_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that had the
error, if it is valid.

dd1
Contains the segment count, which is the number of megabytes read from the
device at the time the error occurred.

dd2
Contains the number of bytes read since the segment count was last increased.

dd3
Contains the number of opens since the device was configured.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense
data for a particular device.

Error Record Values for Recovered Errors

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
media errors recovered errors are:

Item Description

Comment Indicates hard disk, CD-ROM, or read/write optical recovered error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error must be included when an error report
is generated.

Log Equals a value of True, which indicates an error log entry must be created when this
error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Temp, which indicates a temporary failure.

Err_Desc Equals a value of 1312, which indicates a physical volume operation failure.

Prob_Causes Equals the following values:

• 5000, which indicates a media failure
• 6310, which indicates a disk drive failure

User_Causes Equals a value of 5100, which indicates media is defective.

User_Actions Equals the following values:

• 0000, which indicates problem-determination procedures must be performed
• 1601, which indicates the removable media must be replaced and tried again

Inst_Causes None.

Inst_Actions None.

Kernel Services and Subsystem Operations 857

Item Description

Fail_Causes Equals the following values:

• 5000, which indicates a media failure
• 6310, which indicates a disk drive failure

Fail_Actions Equals the following values:

• 1601, which indicates the removable media must be replaced and tried again
• 00E1 Perform problem determination procedures

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the scsi_error_log_df
structure. The err_rec structure is defined in the /usr/include/sys/errids.h file. The
scsi_error_log_df structure is defined in the /usr/include/sys/scsi_buf.h file.

The scsi_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that had the
error, if it is valid.

dd1
Contains the segment count, which is the number of megabytes read from the
device at the time the error occurred.

dd2
Contains the number of bytes read since the segment count was last increased.

dd3
Contains the number of opens since the device was configured.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense
data for a particular device.

Error Record Values for Unknown Errors

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
media errors unknown errors are:

Item Description

Comment Indicates hard disk, CD-ROM, or read/write optical unknown failure.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error must be included when an error report
is generated.

Log Equals a value of True, which indicates an error log entry must be created when this
error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Unkn, which indicates the type of error is unknown.

Err_Desc Equals a value of FE00, which indicates an undetermined error.

Prob_Causes Equals the following values:

• 3300, which indicates an adapter failure
• 5000, which indicates a media failure
• 6310, which indicates a disk drive failure

User_Causes None.

858 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals a value of FFFF, which indicates the failure causes are unknown.

Fail_Actions Equals the following values:

• 00E1 Perform problem determination procedures
• 1601, which indicates the removable media must be replaced and tired again

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the scsi_error_log_df
structure. The err_recstructure is defined in the /usr/include/sys/errids.h file. The
scsi_error_log_df structure is defined in the /usr/include/sys/scsi_buf.h file.

The scsi_error_log_df structure contains the following fields:

req_sense_data
Contains the request-sense information from the particular device that had the
error, if it is valid.

dd1
Contains the segment count, which is the number of megabytes read from the
device at the time the error occurred.

dd2
Contains the number of bytes read since the segment count was last increased.

dd3
Contains the number of opens since the device was configured.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense
data for a particular device.

Special Files
The scsidisk SCSI device driver uses raw and block special files in performing its functions.

Attention: Data corruption, loss of data, or loss of system integrity (system crash) occurs if devices that
support paging, logical volumes, or mounted file systems are accessed by using block special files. Block
special files are provided for logical volumes and disk devices and are solely for system use in managing
file systems, paging devices, and logical volumes. These files must not be used for other purposes.

The special files that are used by the scsidisk device driver include the following (listed by type of device):

• Hard disk devices:

Item Description

/dev/rhdisk0, /dev/
rhdisk1,..., /dev/rhdiskn

Provide an interface to allow SCSI device drivers character access (raw I/O
access and control functions) to SCSI hard disks.

/dev/hdisk0, /dev/
hdisk1,..., /dev/hdiskn

Provide an interface to allow SCSI device drivers block I/O access to SCSI
hard disks.

• CD-ROM devices:

Item Description

/dev/rcd0, /dev/rcd1,..., /dev/
rcdn

Provide an interface to allow SCSI device drivers character access (raw I/O
access and control functions) to SCSI CD-ROM disks.

Kernel Services and Subsystem Operations 859

Item Description

/dev/cd0, /dev/cd1,..., /dev/cdn Provide an interface to allow SCSI device drivers block I/O access to SCSI
CD-ROM disks.

• Read/write optical devices:

Item Description

/dev/romd0, /dev/romd1,..., /dev/romdn Provide an interface to allow SCSI device drivers character
access (raw I/O access and control functions) to SCSI read/write
optical devices.

/dev/omd0, /dev/omd1,..., /dev/omdn Provide an interface to allow SCSI device drivers block I/O access
to SCSI read/write optical devices.

– Note: The prefix r on a special file name indicates that the drive is accessed as a raw device rather
than a block device. Performing raw I/O with a hard disk, CD-ROM, or read/write optical drive requires
that all data transfers be in multiples of the device block size. Also, all lseek subroutines that are
made to the raw device driver must result in a file pointer value that is a multiple of the device block
size.

scsisesdd SAM Device Driver

Purpose
Supports the Serial Attached SCSI Enclosure Services device.

Syntax

#include <sys/devinfo.h>
#include <sys/scsi.h>
#include <sys/scses.h>

Description
The special files /dev/ses0, /dev/ses1 ... provide I/O access and control functions to the SCSI enclosure
devices.

Typical SCSI enclosure services operations are implemented using the open, ioctl, and close subroutines.

The open subroutine places the selected device in Exclusive Access mode. This mode is singularly
entrant; that is, only one process at a time can open it. A device can be opened only if it is not currently
opened. If an attempt is made to open a device that is already open, a value of -1 is returned and the
errno global variable is set to a value of EBUSY.

ioctl Subroutine

The following ioctl operations are available for SCSI Enclosure Services devices:

Operation Description

IOCINFO Returns the devinfo structure defined in the /usr/include/sys/devinfo.h
file.

860 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Operation Description

SESPASSTHRU When a device has been successfully opened, this operation provides the
means for issuing any SCSI command to the specified enclosure. The
device driver performs no error recovery or logging-on failures of this ioctl
operation.

The SCSI status byte and the adapter status bytes are returned through the
arg parameter, which contains the address of an sc_passthru structure
(defined in the /usr/include/sys/scsi.h file). If the SESPASSTHRU
operation returns a value of -1 and the errno global variable is set to a
nonzero value, the requested operation has failed. In this case, the caller
must evaluate the returned status bytes to determine why the operation
failed and what recovery actions must be taken.

The version field of the sc_passthru structure should be set to the value of
SCSI_VERSION_1, and SES does not support Variable length CDBs.

On completion of the SESPASSTHRU ioctl request, the residual field
indicates the leftover data that the device did not fully satisfy for this
request. Upon successful completion, the residual field indicates that the
device does not have all the data that was requested or the device has less
than the amount of data that was requested. Upon failure, the user needs
to check the status_validity field to determine if a valid SCSI bus problem
exists. In this case, the residual field indicates the number bytes that the
device failed to complete for this request.

The devinfo structure defines the maximum transfer size for the command.
If an attempt is made to transfer more than the maximum transfer
size, the subroutine returns a value of -1, sets the errno global variable
to a value of EINVAL, and sets the einval_arg field to a value of
SC_PASSTHRU_INV_D_LEN (defined in the /usr/include/sys/scsi.h file).
Refer to the Small Computer System Interface (SCSI) Specification for the
format of the request-sense data for a particular device.

Device Requirements
The following hardware requirements exist for SCSI enclosure services devices:

• The device must support the SCSI-3 Enclosure Services Specification Revision 4 or later.
• The device can be addressed from an SCSI ID different from the SCSI IDs of the SCSI devices inside the

enclosure.
• The device must be "well behaved", when receiving SCSI inquiries to page code 0xC7. This means that if

the device fails the inquiry to page code C7 with a check condition, then the check condition is cleared
by the next SCSI command. An explicit request sense is not required.

• If the device reports its ANSI version to be 3 (SCSI-3) in the standard inquiry data, then it must correctly
reject all requests that are not valid for luns 8-31 (that is, the device cannot ignore the upper bits in Lun
ID and thus cannot treat Lun 8 as being Lun 0, and so on).

Examples
This is the example code for filling the sc_passthru structure for the SESPASSTHRU ioctl to issue
Standard Inquiry SCSI CDB:

 struct sc_passthru passthru;
 passthru.version = SCSI_VERSION_1;
 passthru.timeout_value = 30;
 passthru.command_length = 6;
 passthru.q_tag_msg = SC_SIMPLE_Q;
 passthru.flags = B_READ;
 passthru.autosense_length = SENSE_LEN;

Kernel Services and Subsystem Operations 861

 passthru.autosense_buffer_ptr = &sense_data[0]; /* Buffer for Auto Sense Data */
 passthru.data_length = 0xFF;
 passthru.buffer = data; /* Data buffer address to store inquiry data */
 passthru.scsi_cdb[0] = SCSI_INQUIRY;
 passthru.scsi_cdb[1] = 0x00;
 passthru.scsi_cdb[2] = 00; /* Page Code */
 passthru.scsi_cdb[3] = 00;
 passthru.scsi_cdb[4] = 0xFF;
 passthru.scsi_cdb[5] = 0x00;

Error Conditions
ioctl and open subroutines against this device fail in the following circumstances:

Error Description

EBUSY An attempt was made to open a device already opened.

EEXIST Device already exists in the device table.

ENOMEM Memory allocation failed.

EFAULT An illegal user address was entered.

EINVAL The data buffer length exceeded the maximum defined in the devinfo structure
for a SESPASSTHRU ioctl operation.

EINVAL An unsupported ioctl operation was attempted.

EINVAL An attempt was made to configure a device that is still open.

EINVAL An illegal configuration command was given.

EINVAL The variable_cdb_ptr or variable_cdb_length fields are set in the sc_passthru
struct.

EIO The target device cannot be located or is not responding.

EIO The target device has indicated an unrecovered hardware error.

EMFILE An open operation was attempted for an adapter that already has the maximum
permissible number of opened devices.

ENODEV An attempt was made to access a device that was not defined.

ENODEV An attempt was made to close a device that was not defined.

ENXIO The parameter or device number supplied by the ioctl subroutine is not valid, or
the device is not configured.

EPERM The attempted subroutine requires appropriate authority.

ETIMEDOUT An I/O operation has exceeded the given timer value.

Files
Item Description

/dev/ses0, /dev/
ses1... /dev/sesn

Provides an interface to allow SCSI device drivers access to SCSI
enclosure services devices.

sctape FC Device Driver
Note: The /dev/rmt0 through /dev/rmt255 special files provide access to magnetic tapes. Magnetic
tapes are used primarily for backup, file archives, and other offline storage.

862 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Purpose
Supports the Fibre Channel Protocol for SCSI (FCP) for sequential access bulk storage medium device
driver.

Syntax

#include <sys/devinfo.h>
#include <sys/scsi.h>
#include <sys/tape.h>
#include <sys/pcm.h>
#include <sys/mpio.h>

Device-Dependent Subroutines
Most tape operations are implemented using the open, read, write, and close subroutines. However, the
openx subroutine must be used if the device is to be opened in Diagnostic mode.

open and close Subroutines

The openx subroutine is intended for use by the diagnostic commands and utilities. Appropriate authority
is required for execution. Attempting to execute this subroutine without the proper authority causes the
subroutine to return a value of -1 and sets the errno global variable to EPERM.

The openx subroutine allows the device driver to enter Diagnostic mode and disables command-retry
logic. This action allows for execution of ioctl operations that perform special functions associated with
diagnostic processing. Other openx capabilities, such as forced opens and retained reservations, are also
available.

The open subroutine applies a reservation policy based on the ODM reserve_policy attribute.

The ext parameter passed to the openx subroutine selects the operation to be used for the target
device. The ext parameter is defined in the /usr/include/sys/scsi.h file. This parameter can contain any
combination of the following flag values logically ORed together:

Item Description

SC_DIAGNOSTIC Places the selected device in Diagnostic mode. This mode is singularly
entrant. When a device is in Diagnostic mode, SCSI operations are
performed during open or close operations, and error logging is disabled.
In Diagnostic mode, only the close and ioctl operations are accepted. All
other device-supported subroutines return a value of -1 and set the errno
global variable to a value of EACCES.

A device can be opened in Diagnostic mode only if the target device is not
currently opened. If an attempt is made to open a device in Diagnostic
mode and the target device is already open, the subroutine returns a value
of -1 and sets the errno global variable to a value of EACCES.

SC_FORCED_OPEN Forces a bus device reset (BDR) regardless of whether another initiator
has the device reserved. The SCSI bus device reset is sent to the device
before the open sequence begins. Otherwise, the open operation executes
normally.

SC_RETAIN_RESERVATION Retains the reservation of the device after a close operation by not issuing
the release. This flag prevents other initiators from using the device unless
they break the host machine's reservation.

FCP Options to the openx Subroutine in Kernel Extensions and Device Support Programming Concepts
gives more specific information on the open operations.

ioctl Subroutine

Kernel Services and Subsystem Operations 863

The STIOCMD ioctl operation provides the means for sending SCSI commands directly to a tape device.
This allows an application to issue specific SCSI commands that are not directly supported by the tape
device driver.

To use the STIOCMD operation, the device must be opened in Diagnostic mode. If this command is
attempted while the device is not in Diagnostic mode, a value of -1 is returned and the errno global
variable is set to a value of EACCES. The STIOCMD operation passes the address of a sc_iocmd structure.
This structure is defined in the /usr/include/sys/scsi.h file.

The following ioctl operations are only available for MPIO capable FC tape devices:

Item Description

STPATHIOCMD The STPATHIOCMD command will take as input a pointer argument which points to a
single sctape_pathiocmd structure. The STPATHIOCMD command will behave exactly
like the STIOCMD command, except that the input path is used rather than normal path
selection performed by the PCM. The STPATHIOCMD path is used for the STIOCMD
command regardless of any path specified by a STPATHFORCE ioctl command. A path
cannot be unconfigured while it is being forced.

STPATHFORCE The STPATHFORCE command takes as input a ushort path ID. The path ID should
correspond to one of the path IDs in the CuPath ODM. The path ID specifies a path to
be used for all subsequent I/O commands, overriding any previous STPATHFORCE paths.
A zero (0) argument specifies that path forcing is terminated and that normal MPIO path
selection is to be resumed. The PCM KE keeps track of the forcing of I/O on a path.
The Device Driver is unaware of this state. I/O commands sent in with STPATHIOCMD
will override the STPATHFORCE option and send the I/O down the path specified in the
st_pathiocmd structure.

STPATHPASSTHRU The STPATHPASSTHRU command takes as input a pointer argument that points to
a single sctape_pathiocmd structure. The STPATHPASSTHRU command will behave
exactly like STIOCMD, except that the input path is used rather than normal path
selection.

STPCMPASSTHRU The STPCMPASSTHRU command takes as input a structure that is PCM-specific; it is not
defined by AIX. The PCM-specific structure is passed to the PCM directly. This structure
can be used to move information to or from a PCM.

Error Conditions
In addition to those errors listed, ioctl, open, read, and write subroutines against this device are
unsuccessful in the following circumstances:

Item Description

EAGAIN Indicates that an attempt was made to open a device that was already
open.

EBUSY Indicates that the target device is reserved by another initiator.

EINVAL Indicates that a value of O_APPEND is supplied as the mode in which to
open.

EINVAL Indicates that the nbyte parameter supplied by a read or write operation is
not a multiple of the block size.

EINVAL Indicates that a parameter to an ioctl operation is not valid.

EINVAL Indicates that the requested ioctl operation is not supported on the
current device.

EIO Indicates that the tape drive has been reset or that the tape has been
changed. This error is returned on open if the previous operation to tape
left the tape positioned beyond the beginning of the tape upon closing.

864 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

EIO Indicates that the device could not space forward or reverse the number of
records specified by the st_count field before encountering an EOM (end of
media) or a file mark.

EMEDIA Indicates an open operation was attempted for an adapter that already has
the maximum permissible number of opened devices.

ENOTREADY Indicates that there is no tape in the drive or the drive is not ready.

ENXIO Indicates that there was an attempt to write to a tape that is at EOM.

EPERM Indicates that this subroutine requires appropriate authority.

ETIMEDOUT Indicates a command has timed out.

EWRPROTECT Indicates an open operation requesting read/write mode was attempted
on a read-only tape.

EWRPROTECT Indicates that an ioctl operation that affects the media was attempted on a
read-only tape.

Reliability and Serviceability Information
Errors returned from tape devices are as follows:

Item Description

ABORTED COMMAND Indicates the device ended the command.

BLANK CHECK Indicates that a read command encountered a blank tape.

DATA PROTECT Indicates that a write was attempted on a write-protected tape.

GOOD COMPLETION Indicates the command completed successfully.

HARDWARE ERROR Indicates an unrecoverable hardware failure occurred during command
execution or during a self-test.

ILLEGAL REQUEST Indicates an illegal command or command parameter.

MEDIUM ERROR Indicates the command ended with an unrecoverable media error
condition. This condition may be caused by a tape flaw or a dirty head.

NOT READY Indicates the logical unit is offline.

RECOVERED ERROR Indicates the command was successful after some recovery was applied.

UNIT ATTENTION Indicates the device has been reset or the power has been turned on.

Medium, hardware, and aborted command errors from the preceding list are to be logged every time they
occur. The ABORTED COMMAND error might be recoverable, but the error is logged if recovery fails. For
the RECOVERED ERROR and recovered ABORTED COMMAND error types, thresholds are maintained;
when they are exceeded, an error is logged. The thresholds are then cleared.

Note: There are device-related adapter errors that are logged every time they occur.

Error Record Values for Tape Device Media Errors

The fields defined in the error record template for tape-device media errors are:

Item Description

Comment Equal to tape media error.

Class Equal to H, indicating a hardware error.

Kernel Services and Subsystem Operations 865

Item Description

Report Equals a value of True, which indicates this error should be included when
an error report is generated.

Log Equals a value of True, which indicates an error log entry should be created
when this error occurs.

Alert Equals a value of False, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1332, which indicates a tape operation failure.

Prob_Causes Equals a value of 5003, which indicates tape media.

User_Causes Equals a value of 5100 and 7401, which indicates a cause originating with
the tape and defective media, respectively.

User_Actions Equal to 1601 and 0000, which indicates, respectively, that the removable
media should be replaced and the operation retried, and that problem
determination procedures should be performed.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equal to 5003, which indicates tape media.

Fail_Actions Equal to 1601 and 0000, which indicates, respectively, that the removable
media should be replaced and the operation retried and that problem
determination procedures should be performed.

The Detail_Data field contains the command type, device and adapter status, and the request-sense
information from the particular device in error. The Detail_Data field is contained in the err_rec structure.
This structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df structure, which
describes information contained in the Detail_Data field, is defined in the /usr/include/sys/scsi.h file.

Error Record Values for Tape or Hardware Aborted Command Errors

The fields in the err_hdr structure, as defined in the /usr/include/sys/erec.h file for hardware errors and
aborted command errors, are:

Item Description

Comment Equal to a tape hardware or aborted command error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when
an error report is generated.

Log Equals a value of True, which indicates an error log entry should be
created when this error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1331, which indicates a tape drive failure.

Prob_Causes Equals a value of 6314, which indicates a tape drive error.

User_Causes None.

User_Actions Equal to 0000, indicating that problem determination procedures should
be performed.

Inst_Actions None.

866 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

Fail_Causes Equal to 5003 and 6314, indicating the failure cause is the tape and the
tape drive, respectively.

Fail_Actions Equal to 0000 to perform problem determination procedures.

The Detail_Data field contains the command type, device and adapter status, and the request-sense
information from the particular device in error. The Detail_Data field is contained in the err_rec structure.
This structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df structure, which
describes information contained in the Detail_Data field, is defined in the /usr/include/sys/scsi.h file.

Error Record Values for Tape-Recovered Error Threshold Exceeded

The fields defined in the err_hdr structure, as defined in the /usr/include/sys/erec.h file for recovered
errors that have exceeded the threshold counter, are:

Item Description

Comment Indicates the tape-recovered error threshold has been exceeded.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when
an error report is generated.

Log Equals a value of True, which indicates an error-log entry should be
created when this error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of TEMP, which indicates a temporary failure.

Err_Desc Equals a value of 1331, which indicates a tape drive failure.

Prob_Causes Equal to 6314, which indicates the probable cause is the tape drive.

User_Causes Equal to 5100 and 7401, which indicates that the media is defective and
the read/write head is dirty, respectively.

User_Actions Equal to 1601 and 0000, which indicates that removable media should
be replaced and the operation retried and that problem-determination
procedures should be performed, respectively.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equal to 5003 and 6314, which indicates the cause is the tape and tape
drive, respectively.

Fail_Actions Equals a value of 0000, which indicates problem-determination
procedures should be performed.

The Detail_Data field contains the command type, device and adapter status, and the request-sense
information from the particular device in error. This field is contained in the err_rec structure. The err_rec
structure is defined in the /usr/include/sys/errids.h file. The Detail_Data field also specifies the error
type of the threshold exceeded. The sc_error_log_df structure, which describes information contained in
the Detail_Data field, is defined in the /usr/include/sys/scsi.h file.

Error Record Values for Tape SCSI Adapter-Detected Errors

The fields in the err_hdr structure, as defined in the /usr/include/sys/erec.h file for adapter-detected
errors, are:

Item Description

Comment Equal to a tape FC adapter-detected error.

Kernel Services and Subsystem Operations 867

Item Description

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when
an error report is generated.

Log Equals a value of True, which indicates an error log entry should be
created when this error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of PERM, which indicates a permanent failure.

Err_Desc Equals a value of 1331, which indicates a tape drive failure.

Prob_Causes Equals values of 3300 and 6314, which indicates an adapter and tape
drive failure, respectively.

User_Causes None.

User_Actions Equals a value of 0000, which indicates that problem determination
procedures should be performed.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals values of 3300 and 6314, which indicates an adapter and tape
drive failure, respectively.

Fail_Actions Equals a value of 0000, which indicates problem-determination
procedures should be performed.

The Detail_Data field contains the command type and adapter status. This field is contained in the
err_rec structure, which is defined by the /usr/include/sys/err_rec.h file. Request-sense information is
not available with this type of error. The sc_error_log_df structure describes information contained in the
Detail_Data field and is defined in the /usr/include/sys/scsi.h file.

Error Record Values for Tape Drive Cleaning Errors

Some tape drives return errors when they need cleaning. Errors that occur when the drive needs cleaning
are grouped under this class.

Item Description

Comment Indicates that the tape drive needs cleaning.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when
an error report is generated.

Log Equals a value of True, which indicates an error log entry should be
created when this error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of TEMP, which indicates a temporary failure.

Err_Desc Equals a value of 1332, which indicates a tape operation error.

Prob_Causes Equals a value of 6314, which indicates that the probable cause is the
tape drive.

User_Causes Equal to 7401, which indicates a dirty read/write head.

User_Actions Equals a value of 0000, which indicates that problem determination
procedures should be performed.

868 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals a value of 6314, which indicates that the cause is the tape drive.

Fail_Actions Equals a value of 0000, which indicates problem-determination
procedures should be performed.

The Detail_Data field contains the command type and adapter status, and also the request-sense
information from the particular device in error. This field is contained in the err_rec structure, which
is defined by the /usr/include/sys/errids.h file. The sc_error_log_df structure describes information
contained in the Detail_Data field and is defined in the /usr/include/sys/scsi.h file.

Error Record Values for Unknown Errors

Errors that occur for unknown reasons are grouped in this class. Data-protect errors fall into this class.
These errors, detected by the tape device driver, are never seen at the tape drive.

The err_hdr structure for unknown errors describes the following fields:

Item Description

Comment Equal to a tape unknown error.

Class Equal to all error classes.

Report Equals a value of True, which indicates this error should be included when
an error report is generated.

Log Equals a value of True, which indicates an error log entry should be created
when this error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of UNKN, which indicates the type of error is unknown.

Err_Desc Equals a value of 0xFE00, which indicates the error description is
unknown.

Prob_Causes Equals the following values:

• 3300, which indicates a tape drive failure
• 5003, which indicates a tape failure
• 6314, which indicates an adapter failure

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals a value of 0xFFFF, which indicates the failure causes are unknown.

Fail_Actions Equals 0000, which indicates that problem-determination procedures
should be performed.

The Detail_Data field contains the command type and adapter status, and the request-sense information
from the particular device in error. The Detail_Data field is contained in the err_rec structure. This field
is contained in the /usr/include/sys/errids.h file. The sc_error_log_df structure describes information
contained in the Detail_Data field and is defined in the /usr/include/sys/scsi.h file.

Refer to the Fibre Channel (FC) Specification for the applicable device for the format of the particular
request-sense information.

Kernel Services and Subsystem Operations 869

tape SCSI Device Driver

Purpose
Supports the sequential access bulk storage medium device driver.

Syntax

#include <sys/devinfo.h>
#include <sys/scsi.h>
#include <sys/tape.h>

Note: The /dev/rmt0 through /dev/rmt255 special files provide access to magnetic tapes. Magnetic
tapes are used primarily for backup, file archives, and other offline storage.

Device-Dependent Subroutines
Most tape operations are implemented using the open, read, write, and close subroutines. However, the
openx subroutine must be used if the device is to be opened in Diagnostic mode.

open and close Subroutines

The openx subroutine is intended for use by the diagnostic commands and utilities. Appropriate authority
is required for execution. Attempting to execute this subroutine without the proper authority causes the
subroutine to return a value of -1 and sets the errno global variable to EPERM.

The openx subroutine allows the device driver to enter Diagnostic mode and disables command-retry
logic. This action allows for execution of ioctl operations that perform special functions associated with
diagnostic processing. Other openx capabilities, such as forced opens and retained reservations, are also
available.

The ext parameter passed to the openx subroutine selects the operation to be used for the target
device. The ext parameter is defined in the /usr/include/sys/scsi.h file. This parameter can contain any
combination of the following flag values logically ORed together:

Flag Value Description

SC_DIAGNOSTIC Places the selected device in Diagnostic mode. This mode is
singularly entrant. When a device is in Diagnostic mode, SCSI
operations are performed during open or close operations and
error logging is disabled. In Diagnostic mode, only the close
and ioctl operations are accepted. All other device-supported
subroutines return a value of -1, with the errno global variable set
to a value of EACCES.

A device can be opened in Diagnostic mode only if the target device
is not currently opened. If an attempt is made to open a device in
Diagnostic mode and the target device is already open, a value of -1
is returned and the errno global variable is set to EACCES.

SC_FORCED_OPEN Forces a bus device reset (BDR) regardless of whether another
initiator has the device reserved. The SCSI bus device reset is sent
to the device before the open sequence begins. Otherwise, the
open operation executes normally.

SC_RETAIN_RESERVATION Retains the reservation of the device after a close operation by not
issuing the release. This flag prevents other initiators from using
the device unless they break the host machine's reservation.

"SCSI Options to the openx Subroutine" in Kernel Extensions and Device Support Programming Concepts
gives more specific information on the open operations.

870 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

ioctl Subroutine

The STIOCMD ioctl operation provides the means for sending SCSI commands directly to a tape device.
This allows an application to issue specific SCSI commands that are not directly supported by the tape
device driver.

To use the STIOCMD operation, the device must be opened in Diagnostic mode. If this command is
attempted while the device is not in Diagnostic mode, a value of -1 is returned and the errno global
variable is set to a value of EACCES. The STIOCMD operation passes the address of a scsi_iocmd
structure. This structure is defined in the /usr/include/sys/scsi_buf.h file.

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for
information on issuing the parameters.

Error Conditions

In addition to those errors listed, ioctl, open, read, and write subroutines against this device are
unsuccessful in the following circumstances:

Error Description

EACCES Indicates that a diagnostic command was issued to a device not in Diagnostic mode.

EAGAIN Indicates that an attempt was made to open a device that was already open.

EBUSY Indicates that the target device is reserved by another initiator.

EINVAL Indicates that a value of O_APPEND is supplied as the mode in which to open.

EINVAL Indicates that the nbyte parameter supplied by a read or write operation is not a
multiple of the block size.

EINVAL Indicates that a parameter to an ioctl operation is not valid.

EINVAL Indicates that the requested ioctl operation is not supported on the current device.

EIO Indicates that the tape drive has been reset or that the tape has been changed. This
error is returned on open if the previous operation to tape left the tape positioned
beyond beginning of tape upon closing.

EIO Indicates that the device could not space forward or reverse the number of records
specified by the st_count field before encountering an EOM (end of media) or a file
mark.

EMEDIA Indicates that the tape device has encountered an unrecoverable media error.

EMFILE Indicates that an open operation was attempted for a SCSI adapter that already has
the maximum permissible number of open devices.

ENOTREADY Indicates that there is no tape in the drive or the drive is not ready.

ENXIO Indicates that there was an attempt to write to a tape that is at EOM.

EPERM Indicates that this subroutine requires appropriate authority.

ETIMEDOUT Indicates a command has timed out.

EWRPROTECT Indicates an open operation requesting read/write mode was attempted on a read-
only tape.

EWRPROTECT Indicates that an ioctl operation that affects the media was attempted on a read-only
tape.

Reliability and Serviceability Information

Errors returned from tape devices are as follows:

Error Description

ABORTED COMMAND Indicates the device ended the command.

Kernel Services and Subsystem Operations 871

Error Description

BLANK CHECK Indicates that a read command encountered a blank tape.

DATA PROTECT Indicates that a write was attempted on a write-protected tape.

GOOD COMPLETION Indicates that the command completed successfully.

HARDWARE ERROR Indicates that an unrecoverable hardware failure occurred during command
execution or during a self-test.

ILLEGAL REQUEST Indicates an illegal command or command parameter.

MEDIUM ERROR Indicates that the command terminated with a unrecovered media error
condition. This condition may be caused by a tape flaw or a dirty head.

NOT READY Indicates that the logical unit is offline.

RECOVERED ERROR Indicates that the command was successful after some recovery was applied.

UNIT ATTENTION Indicates the device has been reset or powered on.

Medium, hardware, and aborted command errors from the above list are to be logged every time they
occur. The ABORTED COMMAND error may be recoverable, but the error is logged if recovery fails. For the
RECOVERED ERROR and recovered ABORTED COMMAND error types, thresholds are maintained; when
they are exceeded, an error is logged. The thresholds are then cleared.

Note: There are device-related adapter errors that are logged every time they occur.

Error Record Values for Tape Device Media Errors

The fields defined in the error record template for tape-device media errors are:

Field Description

Comment Equal to tape media error.

Class Equal to H, indicating a hardware error.

Report Equal to TRUE, indicating this error should be included when an error report is
generated.

Log Equal to TRUE, indicating an error log entry should be created when this error
occurs.

Alert Equal to FALSE, indicating this error is not alertable.

Err_Type Equal to PERM, indicating a permanent failure.

Err_Desc Equal to 1332, indicating a tape operation failure.

Prob_Causes Equal to 5003, indicating tape media.

User_Causes Equal to 5100 and 7401, indicating a cause originating with the tape and defective
media, respectively.

User_Actions Equal to 1601 and 0000, indicating respectively that the removable media should
be replaced and the operation retried, and that problem determination procedures
should be performed.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equal to 5003, indicating tape media.

Fail_Actions Equal to 1601 and 0000, indicating respectively that the removable media should
be replaced and the operation retried and that problem determination procedures
should be performed.

872 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The Detail_Data field contains the command type, device and adapter status, and the request-sense
information from the particular device in error. The Detail_Data field is contained in the err_rec
structure. This structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df structure,
which describes information contained in the Detail_Data field, is defined in the /usr/include/sys/
scsi.h file.

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for the format
of the particular request-sense information.

Error-Record Values for Tape or Hardware Aborted Command Errors

The fields in the err_hdr structure, as defined in the /usr/include/sys/erec.h file for hardware errors and
aborted command errors, are:

Field Description

Comment Equal to a tape hardware or aborted command error.

Class Equal to H, indicating a hardware error.

Report Equal to TRUE, indicating this error should be included when an error report is
generated.

Log Equal to TRUE, indicating an error log entry should be created when this error
occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type Equal to PERM, indicating a permanent failure.

Err_Desc Equal to 1331, indicating a tape drive failure.

Prob_Causes Equal to 6314, indicating a tape drive error.

User_Causes None.

User_Actions Equal to 0000, indicating that problem determination procedures should be
performed.

Inst_Actions None.

Fail_Causes Equal to 5003 and 6314, indicating the failure cause is the tape and the tape drive,
respectively.

Fail_Actions Equal to 0000 to perform problem determination procedures.

The Detail_Data field contains the command type, device and adapter status, and the request-sense
information from the particular device in error. The Detail_Data field is contained in the err_rec
structure. This structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df structure,
which describes information contained in the Detail_Data field, is defined in the /usr/include/sys/
scsi.h file.

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for the format
of the particular request-sense information.

Error-Record Values for Tape-Recovered Error Threshold Exceeded

The fields defined in the err_hdr structure, as defined in the /usr/include/sys/erec.h file for recovered
errors that have exceeded the threshold counter, are:

Field Description

Comment Indicates the tape-recovered error threshold has been exceeded.

Class Equal to H, indicating a hardware error.

Report Equal to TRUE, indicating this error should be included when an error report is
generated.

Kernel Services and Subsystem Operations 873

Field Description

Log Equal to TRUE, indicating an error log entry should be created when this error
occurs.

Alert Equal to FALSE, indicating this error is not alertable.

Err_Type Equal to PERM, indicating a permanent failure.

Err_Desc Equal to 1331, indicating a tape drive failure.

Prob_Causes Equal to 5003 and 6314, indicating the probable cause is the tape and tape drive,
respectively.

User_Causes Equal to 5100 and 7401, indicating that the media is defective and the read/write
head is dirty, respectively.

User_Actions Equal to 1601 and 0000, indicating that removable media should be replaced
and the operation retried and that problem-determination procedures should be
performed, respectively.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equal to 5003 and 6314, indicating the cause is the tape and tape drive,
respectively.

Fail_Actions Equal to 0000, to perform problem determination procedures.

The Detail_Data field contains the command type, device and adapter status, and the request-sense
information from the particular device in error. This field is contained in the err_rec structure. The err_rec
structure is defined in the /usr/include/sys/errids.h file. The Detail_Data field also specifies the error
type of the threshold exceeded. The sc_error_log_df structure, which describes information contained in
the Detail_Data field, is defined in the /usr/include/sys/scsi.h file.

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for the format
of the particular request-sense information.

Error Record Values for Tape SCSI Adapter-Detected Errors

The fields in the err_hdr structure, as defined in the /usr/include/sys/erec.h file for adapter-detected
errors, are:

Field Description

Comment Equal to a tape SCSI adapter-detected error.

Class Equal to H, indicating a hardware error.

Report Equal to TRUE, indicating this error should be included when an error report is
generated.

Log Equal to TRUE, indicating an error log entry should be created when this error
occurs.

Alert Equal to FALSE, indicating this error is not alertable.

Err_Type Equal to PERM, indicating a permanent failure.

Err_Desc Equal to 1331, indicating a tape drive failure.

Prob_Causes Equal to 3300 and 6314, indicating an adapter and tape drive failure, respectively.

User_Causes None.

User_Actions Equal to 0000, indicating that problem determination procedures should be
performed.

Inst_Causes None.

874 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Field Description

Inst_Actions None.

Fail_Causes Equal to 3300 and 6314, indicating an adapter and tape drive failure, respectively.

Fail_Actions Equal to 0000, to perform problem-determination procedures.

The Detail_Data field contains the command type and adapter status. This field is contained in the
err_rec structure, which is defined by the /usr/include/sys/err_rec.h file. Request-sense information is
not available with this type of error. The sc_error_log_df structure describes information contained in the
Detail_Data field and is defined in the /usr/include/sys/scsi.h file.

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for the format
of the particular request-sense information.

Error-Record Values for Tape Drive Cleaning Errors

Some tape drives return errors when they need cleaning. Errors that occur when the drive needs cleaning
are grouped under this class.

Field Description

Comment Indicates that the tape drive needs cleaning.

Class Equal to H, indicating a hardware error.

Report Equal to TRUE, indicating that this error should be included when an error report is
generated.

Log Equal to TRUE, indicating that an error-log entry should be created when this error
occurs.

Alert Equal to FALSE, indicating this error is not alertable.

Err_Type Equal to TEMP, indicating a temporary failure.

Err_Desc Equal to 1332, indicating a tape operation error.

Prob_Causes Equal to 6314, indicating that the probable cause is the tape drive.

User_Causes Equal to 7401, indicating a dirty read/write head.

User_Actions Equal to 0000, indicating that problem determination procedures should be
performed.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equal to 6314, indicating that the cause is the tape drive.

Fail_Actions Equal to 0000, indicating to perform problem-determination procedures.

The Detail_Data field contains the command type and adapter status and also the request-sense
information from the particular device in error. This field is contained in the err_rec structure, which
is defined by the /usr/include/sys/errids.h file. The sc_error_log_df structure describes information
contained in the Detail_Data field and is defined in the /usr/include/sys/scsi.h file.

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for the format
of the particular request-sense information.

Error-Record Values for Unknown Errors

Errors that occur for unknown reasons are grouped in this class. Data-protect errors fall into this class.
These errors, detected by the tape device driver, are never seen at the tape drive.

The err_hdr structure for unknown errors describes the following fields:

Kernel Services and Subsystem Operations 875

Field Description

Comment Equal to tape unknown error.

Class Equal to all error classes.

Report Equal to TRUE, indicating this error should be included when an error report is
generated.

Log Equal to TRUE, indicating an error-log entry should be created when this error
occurs.

Alert Equal to FALSE, indicating this error is not alertable.

Err_Type Equal to UNKN, indicating the error type is unknown.

Err_Desc Equal to 0xFE00, indicating the error description is unknown.

Prob_Causes None.

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equal to 0xFFFF, indicating the failure cause is unknown.

Fail_Actions Equal to 0000, indicating that problem-determination procedures should be
performed.

The Detail_Data field contains the command type and adapter status, and the request- sense
information from the particular device in error. The Detail_Data field is contained in the err_rec
structure. This field is contained in the /usr/include/sys/errids.h file. The sc_error_log_df structure
describes information contained in the Detail_Data field and is defined in the /usr/include/sys/scsi.h
file.

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for the format
of the particular request-sense information.

Files
/dev/rmt0, /dev/rmt0.1, /dev/rmt0.2, ..., /dev/rmt0.7,

/dev/rmt1, /dev/rmt1.1, /dev/rmt1.2, ..., /dev/rmt1.7,...,

Item Description

/dev/rmt255, /dev/rmt255.1, /dev/
rmt255.2, ..., /dev/rmt255.7

Provide an interface to allow SCSI device drivers to
access SCSI tape drives.

TMCHGIMPARM (Change Parameters) tmscsi Device Driver ioctl Operation

Purpose
Allows the caller to change parameters used by the target-mode device driver.

Note: This operation is not supported by all SCSI I/O controllers.

Description
The TMCHGIMPARM ioctl operation allows the caller to change certain parameters used by the
target-mode device driver for a particular device instance. This operation is allowed only for the

876 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

initiator-mode device. The arg parameter to the TMCHGIMPARM operation specifies the address of the
tm_chg_im_parm structure defined in /usr/include/sys/tmscsi.h file.

Default values used by the device driver for these parameters usually do not require change. However, for
certain calling programs, default values can be changed to fine-tune timing parameters related to error
recovery.

The initiator-mode device must be open for this command to succeed. Once a parameter is changed
through the TMCHGIMPARM operation, it remains changed until another TMCHGIMPARM operation is
received or until the device is closed. At open time, these parameters are set to the default values.

Parameters that can be changed with this operation are the amount of delay (in seconds) between device
driver-initiated retries of SCSI send commands and the amount of time allowed before the running of any
send command times out. To indicate which of the possible parameters are being changed, the caller sets
the appropriate bit in the chg_option field. Values of 0, 1, or multiple flags can be set in this field to
indicate which parameters are being changed.

To change the delay between send command retries, the caller sets the TM_CHG_RETRY_DELAY flag
in the chg_option field and places the desired delay value (in seconds) in the new_delay field of the
structure. The retry delay can be changed with this command to any value between 0 and 255, inclusive,
where 0 instructs the device driver to use as little delay as possible between retries. The default value is
approximately 2 seconds.

To change the send command timeout value, the caller sets the TM_CHG_SEND_TIMEOUT flag in the
chg_option field, sets the desired flag in the timeout_type field, and places the desired timeout value
in the new_timeout field of the structure. A single flag must be set in the time_out field to indicate
the desired form of the timeout. If the TM_FIXED_TIMEOUT flag is set in the timeout_type field,
then the value placed in the new_timeout field is a fixed timeout value for all send commands. If the
TM_SCALED_TIMEOUT flag is set in the timeout_type field, then the value placed in the new_timeout
field is a scaling-factor used in the calculation for timeout as shown under the description of the write
entry point. The default send command timeout value is a scaled timeout with scaling factor of 10.

Regardless of the value of the timeout_type field, if the new_timeout field is set to a value of 0, the
caller specifies "no timeout" for the send command, allowing the command to take an indefinite amount
of time. If the calling program wants to end a write operation, it generates a signal.

Files

Item Description

/dev/tmscsi0, /dev/tmscsi1,..., /dev/tmscsin Support processor-to-processor communications
through the SCSI target-mode device driver.

TMGETSENS (Request Sense) tmscsi Device Driver ioctl Operation

Purpose
Runs a SCSI request sense command and returns the sense data to the user.

Note: This operation is not supported by all SCSI I/O controllers.

Description
The TMGETSENS ioctl operation runs a SCSI request sense command and returns the sense data to the
user. This operation is allowed only for the initiator-mode device. It is issued by the caller in response to a
write subroutine errno global variable set to a value of ENXIO. This operation must be the next command
issued to the device for this initiator or the sense data is lost. The arg parameter to the ioctl operation
is the address of the tm_get_sens structure defined in the /usr/include/sys/tmscsi.h file. The caller
must supply the address and length of a buffer used for holding the returned device-sense data in this
structure. The maximum length for request-sense data is 255 bytes. The caller should refer to the SCSI
specification for the target device to determine the correct length for the device's request-sense data. The

Kernel Services and Subsystem Operations 877

lesser of either the sense data length requested or the actual sense data length is returned in the buffer
passed by the caller. For the definition of the returned data, refer to the detailed SCSI specification for the
device in use.

After each TMGETSENS operation, the target-mode device driver generates the appropriate errno global
variable. If an error occurs, the return value is set to a value of -1 and the errno global variable is set to
the value generated by the target-mode device driver. The device driver also updates a status area that is
kept for the last command to each device. For certain errors, and upon successful completion, the caller
can read this status area to get more detailed error status for the command. The TMIOSTAT operation can
be used for this purpose. The errno global variables covered by this status include EIO, EBUSY, ENXIO,
and ETIMEDOUT.

Files

Item Description

/dev/tmscsi0, /dev/tmscsi1,..., /dev/tmscsin Support processor-to-processor communications
through the SCSI target-mode device driver.

TMIOASYNC (Async) tmscsi Device Driver ioctl Operation

Purpose
Allows future initiator-mode commands for an attached target device to use asynchronous data transfer.

Note: This operation is not supported by all SCSI I/O controllers.

Description
The TMIOASYNC ioctl operation enables asynchronous data transfer for future initiator-mode commands
on attached target devices. Only an initiator-mode device may use this operation. The arg parameter of
the TMIOASYNC operation is set to a null value by the caller.

This operation is required when the caller is intending to retry a previous initiator SCSI command (other
than those sent through the TMIOCMD operation) that was unsuccessful with a SC_SCSI_BUS_FAULT
status in the general_card_status field in the status structure returned by the TMIOSTAT operation.
If more than one retry is attempted, this operation should be issued only before the last retry attempt.

This operation allows the device to run in asynchronous mode if the device does not negotiate for
synchronous transfers. This operation affects all future initiator commands for this device. However, a
SCSI reset or power-on to the device results in an attempt to again run synchronous data transfers. At
open time, synchronous data transfers are attempted.

Files

Item Description

/dev/tmscsi0, /dev/tmscsi1,..., /dev/tmscsin Support processor-to-processor communications
through the SCSI target-mode device driver.

TMIOCMD (Direct) tmscsi Device Driver ioctl Operation

Purpose
Sends SCSI commands directly to the attached device.

Note: This operation is not supported by all SCSI I/O controllers.

878 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
Attention: The TMIOCMD operation is a very powerful operation. Extreme care must be taken
by the caller before issuing any general SCSI command, as this may adversely affect the
attached device, other SCSI devices on the SCSI bus, or even general system availability.
It should only be used when no other means are available to run the required function or
functions on the attached device. This operation requires at least dev_config authority to run.

The TMIOCMD operation provides a means of sending SCSI commands directly to the attached device.
This operation is only allowed for the initiator-mode device. It enables a caller to issue specific SCSI
commands that are not directly supported by the device driver. The caller is responsible for any and all
error recovery associated with the sending of the SCSI command. No error recovery is performed by the
device driver when the command is issued. The device driver does not log errors that occur while running
the command.

The arg parameter to this command specifies the address of the sc_iocmd structure defined in the /usr/
include/sys/scsi.h file. The caller fills in the SCSI command descriptor block area, command length
(SCSI command block length), the time-out value for the command, and a flags field. If a data transfer
is involved, the data length and buffer pointer areas, as well as the B_READ flag in the flags field, must
be filled in. The B_READ is set to a value of 1 to indicate the command's data transfer is incoming, and
B_READ is set to a value of 0 to indicate the data is outgoing. If there is no data transfer, these fields and
flags are set to 0 values.

The target-mode device driver builds the appropriate command block to execute this operation, including
ORing in the 3-bit logical unit number (LUN) identifier in the SCSI command based on the configuration
information for this device instance. The returned errno global variable is generated and the status
validity, SCSI bus status, and adapter status fields are updated to reflect the completion
status for the command. These status areas are defined in the /usr/include/sys/scsi.h file.

Files

Item Description

/dev/tmscsi0, /dev/tmscsi1,..., /dev/tmscsin Support processor-to-processor communications
through the SCSI target-mode device driver.

TMIOEVNT (Event) tmscsi Device Driver ioctl Operation

Purpose
Allows the caller to query the device driver for event status.

Note: This operation is not supported by all SCSI I/O controllers.

Description
The TMIOEVNT ioctl operation allows the caller to query the device driver for status on certain events.
The arg parameter to the TMIOEVNT operation specifies the address of the tm_event_info structure
defined in the /usr/include/sys/tmscsi.h file. This operation conveys status that is generally not tied
to a specific application program subroutine and would not otherwise be known to the application. For
example, failure of an adapter function not associated directly with a SCSI command is reported through
this facility.

Although this operation can be used independently of other commands to the target-mode device driver,
it is most effective when issued in conjunction with the select entry point POLLPRI option. For this device
driver, the POLLPRI option indicates an event has occurred that is reported through the TMIOEVNT
operation. This allows the caller to be asynchronously notified of events occurring to the device instance,
which means the TMIOEVNT operation need only be issued when an event occurs. Without the select
entry point, it would be necessary for the caller to issue the TMIOEVNT operation after every read or

Kernel Services and Subsystem Operations 879

write subroutine to know when an event has occurred. The select entry point allows the caller to monitor
events on one or more target or initiator devices.

Because the caller is not generally aware of which adapter a particular device is attached to, event
information in the TMIOEVNT operation is maintained for each device instance. Application programs
should not view any information from one device's TMIOEVNT operation as necessarily affecting other
devices opened through this device driver. Rather, the application must base its error recovery for each
device on that device's particular TMIOEVNT information.

Event information is reported through the events field of the tm_event_info structure and can have the
following values:

Value Description

TM_FATAL_HDW_ERR Adapter fatal hardware failure

TM_ADAP_CMD_FAILED Unrecoverable adapter command failure

TM_SCSI_BUS_RESET SCSI Bus Reset detected

TM_BUFS_EXHAUSTED Maximum buffer usage detected

Some of the events that can be reported apply to any SCSI device, whether they are initiator-mode
or target-mode devices. These events include adapter fatal hardware failure, unrecoverable adapter
command failure, and SCSI BUS Reset detected. The maximum buffer usage detected event applies
only to the target mode device and is never reported for an initiator-mode device instance.

The adapter fatal hardware failure event is intended to indicate a fatal condition. This means no further
commands are likely to complete successfully to or from this SCSI device, as the adapter it is attached to
has failed. In this case, the application should end the session with the device.

The unrecoverable adapter command failure event is not necessarily a fatal condition but can indicate
that the adapter is not functioning properly. The application program has these possible actions:

• End the session with the device in the near future.
• End the session after multiple (two or more) such events.
• Attempt to continue the session indefinitely.

The SCSI Bus Reset detection event is mainly intended as information only but can be used by the
application to perform further actions, if necessary. The Reset information can also be conveyed to the
application during command execution, but the Reset must occur during the SCSI command for this to
occur.

The maximum buffer usage detected event only applies to a given target-mode device; it is not be
reported for an initiator device. This event indicates to the application that this particular target-mode
device instance has filled its maximum allotted buffer space. The application should perform read
subroutines fast enough to prevent this condition. If this event occurs, data is not lost, but it is delayed to
prevent further buffer usage. Data reception is restored when the application empties enough buffers to
continue reasonable operations. The num_bufs attribute may need to be increased from the default value
to help minimize this problem.

Return Values

Item Description

EFAULT Operation failed due to a kernel service error.

EINVAL Attempted to execute an ioctl operation for a device instance that is not configured, not
open, or is not in the proper mode (initiator versus target) for this operation.

EIO An I/O error occurred during the operation.

EPERM For the TMIOCMD operation, the caller did not have dev_config authority.

ETIMEDOUT The operation did not complete before the timeout expired.

880 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Files

Item Description

/dev/tmscsi0, /dev/tmscsi1,..., /dev/tmscsin Support processor-to-processor communications
through the SCSI target-mode device driver.

TMIORESET (Reset Device) tmscsi Device Driver ioctl Operation

Purpose
Sends a Bus Device Reset (BDR) message to an attached target device.

Note: This operation is not supported by all SCSI I/O controllers.

Description
The TMIORESET ioctl operation allows the caller to send a Bus Device Reset (BDR) message to a selected
target device. Only an initiator-mode device may use this operation. The arg parameter of the TMIORESET
operation is set to a null value by the caller.

The attached target device typically uses this BDR message to reset certain operating characteristics.
Such an action may be needed during severe error recovery between the host initiator and the attached
target device. The specific effects of the BDR message are device dependent. Since the effects of this
operation are potentially adverse to the target device, care should be taken by the caller before issuing
this message. To run this operation requires at least dev_config authority.

Files

Item Description

/dev/tmscsi0, /dev/tmscsi1,..., /dev/tmscsin Support processor-to-processor communications
through the SCSI target-mode device driver.

TMIOSTAT (Status) tmscsi Device Driver ioctl Operation

Purpose
Allows the caller to get detailed status about the previous write or TMGETSENS operation.

Note: This operation is not supported by all SCSI I/O controllers.

Description
The TMIOSTAT operation allows the caller to get detailed status about a previous write or TMGETSENS
operation. This operation is allowed only for the initiator-mode device. The arg parameter to this
operation specifies the address of the tm_get_stat structure defined in /usr/include/sys/tmscsi.h
file. The status returned by the TMIOSTAT operation is updated for both successful and unsuccessful
completions of these commands. This status is not valid for all errno global variables.

Files

Item Description

/dev/tmscsi0,/dev/tmscsi1,..., /dev/tmscsin Support processor-to-processor communications
through the SCSI target-mode device driver.

Kernel Services and Subsystem Operations 881

tmscsi SCSI Device Driver

Purpose
Supports processor-to-processor communications through the SCSI target-mode device driver.

Note: This operation is not supported by all SCSI I/O controllers.

Syntax

#include </usr/include/sys/devinfo.h>
#include </usr/include/sys/tmscsi.h>
#include </usr/include/sys/scsi.h>

Description
The Small Computer Systems Interface (SCSI) target-mode device driver provides an interface to allow
processor-to-processor data transfer using the SCSI send command. This single device driver handles
both SCSI initiator and SCSI target mode roles.

The user accesses the data transfer functions through the special files /dev/tmscsi0.xx, /dev/
tmscsi1.xx, These are all character special files. The xx can be either im, initiator-mode interface,
or tm, target-mode interface. The initiator-mode interface is used by the caller to transmit data, and the
target-mode interface is used to receive data.

The least significant bit of the minor device number indicates to the device driver which mode interface is
selected by the caller. When the least significant bit of the minor device number is set to a value of 1, the
target-mode interface is selected. When the least significant bit is set to a value of 0, the initiator-mode
interface is selected. For example, tmscsi0.im should be defined as an even-numbered minor device
number to select the initiator-mode interface, and tmscsi0.tm should be defined as an odd-numbered
minor device number to select the target-mode interface.

When the caller opens the initiator-mode special file a logical path is established, allowing data to
be transmitted. The user-mode caller issues a write, writev, writex, or writevx system call to initiate
data transmission. The kernel-mode user issues an fp_write or fp_rwuio service call to initiate data
transmission. The SCSI target-mode device driver then builds a SCSI send command to describe the
transfer, and the data is sent to the device. Once the write entry point returns, the calling program can
access the transmit buffer.

When the caller opens the target-mode special file a logical path is established, allowing data to be
received. The user-mode caller issues a read, readv, readx, or readvx system call to initiate data
reception. The kernel-mode caller issues an fp_read or fp_rwuio service call to initiate data reception.
The SCSI target-mode device driver then returns data received for the application.

The SCSI target mode device driver allows access as an initiator mode device through the write entry
point. Target mode device access is made through the read entry point. Simultaneous access to the read
and write entry points is possible by using two separate processes, one running read subroutines and the
other running write subroutines.

The SCSI target mode device driver does not implement any protocol to manage the sending and
receiving of data, with the exception of attempting to prevent an application from excessive received-data
buffer usage. Any protocol required to maintain or otherwise manage the communications of data must be
implemented in the calling program. The only delays in sending or receiving data through the target mode
device driver are those inherent to the hardware and software driver environment.

Configuration Information
When the tmscsi0 special file is configured, both the tmscsi0.im and tmscsi0.tm special files are
created. An initiator-mode/target-mode pair for each device instance should exist, even if only one of
the modes is being used. The target-mode SCSI ID for an attached device should be the same as the

882 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

initiator-mode SCSI ID, but the logical unit number (LUN) is ignored in target mode, because the host SCSI
adapter can only respond as LUN 0.

If multiple LUNs are supported on the attached initiator device, a pair of tmscsin special files (where
n is the device instance) are generated for each SCSI ID/LUN combination. The initiator-mode special
files allow simultaneous access to the associated SCSI ID/LUN combinations. However, only one of the
target-mode special files for this SCSI ID can be opened at one time. This is because only one LUN 0 is
supported on the host adapter and only one logical connection can be actively using this ID at one time. If
a target-mode special file is open for a given SCSI ID, attempts to open other target-mode special files for
the same ID will fail.

The target-mode device driver configuration entry point must be called only for the initiator-mode device
number. The driver configuration routine automatically creates the configuration data for the target-mode
device minor number based on the initiator-mode data.

Device-Dependent Subroutines
The target-mode device driver supports the open, close, read, write, select, and ioctl subroutines.

open Subroutine

The open subroutine allocates and initializes target or initiator device-dependent structures. No SCSI
commands are sent to the device as a result of running the open subroutine.

The SCSI initiator or target-mode device must be configured and not already opened for that mode for
the open subroutine to work. For the initiator-mode device to be successfully opened, its special file must
be opened for writing only. For the target-mode device to be successfully opened, its special file must be
opened for reading only.

Possible return values for the errno global variable include:

Value Description

EAGAIN Lock kernel service failed.

EBUSY Attempted to execute an open for a device instance that is already open.

EINVAL Attempted to execute an open for a device instance using an incorrect open flag, or device is
not yet configured .

EIO An I/O error occurred.

ENOME
M

The SCSI device is lacking memory resources.

close Subroutine

The close subroutine deallocates resources local to the target device driver for the target or initiator
device. No SCSI commands are sent to the device as a result of running the close subroutine. Possible
return values for the errno global variable include:

Value Description

EINVAL Attempted to execute a close for a device instance that is not configured.

EIO An I/O error occurred.

read Subroutine

The read subroutine is supported only for the target-mode device. Data scattering is supported through
the user-mode readv or readvx subroutine, or the kernel-mode fp_rwuio service call. If the read
subroutine is unsuccessful, the return value is set to a return value of -1, and the errno global variable is
set to the return value from the device driver. If the return value is something other than -1, then the read
was successful and the return code indicates the number of bytes read. This should be validated by the
caller. File offsets are not applicable and are therefore ignored for target-mode reads.

Kernel Services and Subsystem Operations 883

SCSI send commands provide the boundary for satisfying read requests. If more data is received in the
send command than is requested in the current read operation, the requested data is passed to the
caller, and the remaining data is retained and returned for the next read operation for this target device.
If less data is received in the send command than is requested, the received data is passed for the read
request, and the return value indicates how many bytes were read.

If a send command has not been completely received when a read request is made, the request blocks
and waits for data. However, if the target device is opened with the O_NDELAY flag set, then the read does
not block; it returns immediately. If no data is available for the read request, the read is unsuccessful and
the errno global variable is set to EAGAIN. If data is available, it is returned and the return value indicates
the number of bytes received. This is true even if the send command for this data has not ended.

Note: Without the O_NDELAY flag set, the read subroutine can block indefinitely, waiting for data. Since
the read data can come at any time, the device driver does not maintain an internal timer to interrupt the
read. Therefore, if a time-out function is desired, it must be implemented by the calling program.

If the calling program wishes to break a blocked read subroutine, the program can generate a signal. The
target-mode device driver receives the signal and ends the current read subroutine with failure. The errno
global variable is then set to EINTR. The read returns with whatever data has been received, even if the
send command has not completed. If and when the remaining data for the send command is received,
it is queued, waiting for either another read request or a close. When the target receives the signal and
the current read is returned, another read can be initiated or the target can be closed. If the read request
that the calling program wishes to break completes before the signal is generated, the read completes
normally and the signal is ignored.

The target-mode device driver attempts to queue received data ahead of requests from the application.
A read-ahead buffer area (whose length is determined by the product of 4096 and the num_bufs
attribute value in the configuration database) is used to store the queued data. As the application program
executes read subroutines, the queued data is copied to the application data buffer and the read-ahead
buffer space is again made available for received data. If an error occurs while copying the data to the
caller's data buffer, the read fails and the errno global variable is set to EFAULT. If the read subroutines
are not executed quickly enough, so that almost all the read-ahead buffers for the device are filled, data
reception will be delayed until the application runs a read subroutine again. When enough area is freed,
data reception is restored from the device. Data may be delayed, but it is not lost or ignored. If almost
all the read-ahead buffers are filled, status information is saved indicating this condition. The application
may optionally query this status through the TMIOEVNT operation. If the application uses the optional
select/poll operation, it can receive asynchronous notification of this and other events affecting the
target-mode instance.

The target-mode device driver handles only received data in its read entry point. All other initiator-sent
SCSI commands are handled without intervention by the target-mode device driver. This also means the
target-mode device driver does not directly generate any SCSI sense data or SCSI status.

The read entry point may optionally be used in conjunction with the select entry point to provide a means
of asynchronous notification of received data on one or more target devices.

Possible return values for the errno global variable include:

Value Description

EAGAIN Indicates a non-blocking read request would have blocked, because no data is available.

EFAULT An error occurred while copying data to the caller's buffer.

EINTR Interrupted by a signal.

EINVAL Attempted to execute a read for a device instance that is not configured, not open, or is not a
target-mode minor device number.

EIO I/O error occurred.

write Subroutine

884 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The write entry point is supported only for the initiator-mode device driver. The write entry point
generates a single SCSI send command in response to a calling program's write request. If the write
request is for a length larger than the host SCSI adapter's maximum transfer length or if the request
cannot be pinned as a single request, then the write request fails with the errno global variable set to
EINVAL. The maximum transfer size for this device is discovered by issuing an IOCINFO ioctl call to the
target-mode device driver.

Some target mode capable adapters support data gathering of writes through the user_mode writev or
writevx subroutine or the kernel-mode fp_wruio service call. The write buffers are gathered so that they
are transferred, in order, as a single send command. The target-mode device driver passes information to
the SCSI adapter device driver to allow it to perform the gathered write. Since the SCSI adapter device
driver can be performing the gather function in software (when the hardware does not directly support
data gathering), it is possible for the function to be unsuccessful because of a lack of memory or a copy
error. The returned errno global variable is set to ENOMEM or EFAULT. Due to how gathered writes are
handled, it is not possible for the target-mode device driver to perform retries. When an error does occur,
the caller must retry or otherwise recover the operation.

If the write operation is unsuccessful, the return value is set to -1 and the errno global variable is set to
the value of the return value from the device driver. If the return value is a value other than -1, the write
operation was successful and the return value indicates the number of bytes written. The caller should
validate the number of bytes sent to check for any errors. Since the entire data transfer length is sent in a
single send command, a return code not equal to the expected total length should be considered an error.
File offsets are not applicable and are ignored for target-mode writes.

If the calling program needs to break a blocked write operation, a signal should be generated. The
target-mode device driver receives the signal and ends the current write operation. A write operation in
progress fails, and the errno global variable is set to EINTR. The calling program may then continue by
issuing another write operation, an ioctl operation, or may close the device. If the write operation the
caller attempts to break completes before the signal is generated, the write completes normally and the
signal is ignored.

The target-mode device driver automatically retries (up to the number of attempts specified by the value
TM_MAXRETRY defined in the /usr/include/sys/tmscsi.h file) the send command if either a SCSI Busy
response or no device response status is received for the command. By default, the target mode device
driver delays each retry attempt by approximately two seconds to allow the target device to respond
successfully. The caller can change the amount of time delayed through the TMCHGIMPARM operation. If
retries are exhausted and the command is still unsuccessful, the write fails. The calling program can retry
the write operation or perform other appropriate error recovery. All other error conditions are not retried
but are returned with the appropriate errno global variable.

The target-mode device driver, by default, generates a time-out value, which is the amount of time
allowed for the send command to complete. If the send command does not complete before the time-out
value expires, the write fails. The time-out value is based on the length of the requested transfer, in bytes,
and calculated as follows:

timeout_value = ((transfer_length / 65536) +1) *
10

In the calculation, 10 is the default scaling factor used to generate the time-out value. The caller can
customize the time-out value through the TMCHGIMPARM operation.

One of the errors that can occur during a write is a SCSI status of check condition. A check-condition
error requires a SCSI request sense command to be issued to the device. This returns the device's SCSI
sense data, which must be examined to discover the exact cause of the check condition. To allow the
target-mode device driver to work with a variety of target devices when in initiator mode, the device
driver does not evaluate device sense data on check conditions. Therefore, the caller is responsible for
evaluating the sense data to determine the appropriate error recovery. The TMGETSENS operation is
provided to allow the caller to get the sense data. A unique errno global variable, ENXIO, is used to
identify check conditions so that the caller knows when to issue the TMGETSENS operation. This error
is not logged in the system error log by the SCSI device driver. The writer of the calling program must
be aware that according to SCSI standards, the request sense command must be the next command

Kernel Services and Subsystem Operations 885

received by the device following a check-condition error. If any other command is sent to the device by
this initiator, the sense data is cleared and the error information lost.

After each write subroutine, the target-mode device driver generates the appropriate return value and
errno global variable. The device driver also updates a status area that is kept for the last command
to each device. On certain errors, as well as successful completions, the caller may optionally read this
status area to get more detailed error status for the command. The TMIOSTAT operation can be used
for this purpose. The errno global variables covered by this status include EIO, EBUSY, ENXIO, and
ETIMEDOUT.

Other possible return values for the errno global variable include:

Value Description

EBUSY SCSI reservation conflict detected. Try again later or make sure device reservation is
ended before proceeding.

EFAULT This is applicable only during data gathering. The write operation was unsuccessful
due to a kernel service error.

EINTR Interrupted by signal.

EINVAL Attempted to execute a write operation for a device instance that is not configured,
not open, or is not an initiator-mode minor device number.

Transfer length too long, or could not pin entire transfer. Try command again with a
smaller transfer length.

EIO I/O error occurred. Either an unreproducible error occurred or retries were exhausted
without success on an unreproducible error. Perform appropriate error recovery.

ENOCONNECT Indicates a SCSI bus fault has occurred. The caller should respond by retrying with
asynchronous data transfer allowed. This is accomplished by issuing a TMIOASYNC
operation to this device prior to the retry. If more than one retry is attempted, the
TMIOASYNC operation should be performed only before the last retry.

ENOMEM This is applicable only during data gathering. The write operation was unsuccessful
due to lack of system memory.

ENXIO SCSI check condition occurred. Execute a TMGETSENS operation to get the device
sense data and then perform required error recovery.

ETIMEDOUT The command has timed out. Perform appropriate error recovery.

ioctl Subroutine

The following ioctl operations are provided by the target-mode device driver. Some are specific to either
the target-mode device or the initiator-mode device. All require the respective device instance be open for
the operation run.

Operation Description

IOCINFO Returns a structure defined in the /usr/include/sys/devinfo.h file.

TMCHGIMPARM Allows the caller to change certain parameters used by the target mode device driver
for a particular device instance.

TMGETSENS Runs a SCSI request sense command and returns the sense data to the user.

TMIOASYNC Allows succeeding initiator-mode commands to a particular target-mode device to
use asynchronous data transfer.

TMIOCMD Sends SCSI commands directly to the attached device.

TMIOEVNT Allows the caller to query the device driver for status on certain events.

TMIORESET Sends a Bus Device Reset message to an attached target-mode device.

886 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Operation Description

TMIOSTAT Allows the caller to get detailed status information about the previously-run write or
TMGETSENS ioctl operation.

select Entry Point

The select entry point allows the caller to know when a specified event has occurred on one or more
target-mode devices. The events input parameter allows the caller to specify which of one or more
conditions it wants to be notified of by a bitwise OR of one or more flags. The target-mode device driver
supports the following select events:

Event Description

POLLIN Check if received data is available.

POLLPRI Check if status is available.

POLLSYNC Return only events that are currently pending. No asynchronous notification occurs.

An additional event, POLLOUT, is not applicable and therefore is not supported by the target-mode device
driver.

The reventp output parameter points to the result of the conditional checks. A bitwise OR of the following
flags can be returned by the device driver:

Flag Description

POLLIN Received data is available.

POLLPRI Status is available.

The chan input parameter is used for specifying a channel number. This is not applicable for non-
multiplexed device drivers and should be set to a value of 0 for the target-mode device driver.

The POLLIN event is indicated by the device driver when any data is received for this target instance.
A non-blocking read subroutine, if subsequently issued by the caller, returns data. For a blocking read
subroutine, the read does not return until either the requested length is received or the send command
completes, whichever comes first.

The POLLPRI event is indicated by the device driver when an exceptional event occurs. To determine the
cause of the exceptional event, the caller must issue a TMIOEVNT operation to the device reporting the
POLLPRI event.

The possible return value for the errno global variable includes:

Value Description

EINVAL A specified event is not supported, or the device instance is either not configured or not open.

Error Logging

Errors detected by the target-mode device driver can be one of the following:

• Unreproducible hardware error while receiving data
• Unreproducible hardware error during initiator command
• Unrecovered hardware error
• Recovered hardware error
• Device driver-detected software error

The target-mode device driver passes error-recovery responsibility for most detected errors to the caller.
For these errors, the target-mode device driver does not know if this type of error is permanent or
temporary. These types of errors are logged as temporary errors.

Kernel Services and Subsystem Operations 887

Only errors the target-mode device driver can itself recover through retries can be determined to be either
temporary or permanent. The error is logged as temporary if it succeeds during retry (a recovered error)
or as permanent if retries are unsuccessful (an unrecovered error). The return code to the caller indicates
success if a recovered error occurs or failure if an unrecovered error occurs. The caller can elect to retry
the command or operation, but the probability of retry success is low for unrecovered errors.

NVMe subsystem
Provides device driver support for Non-Volatile Memory Express (NVMe). The device driver supports
Peripheral Component Interconnect Express (PCIe) attachment of storage that conforms to the NVMe
specification.

The NVMe protocol stack consists of a single device driver that supports interfaces to both the PCIe-
attached NVMe controller device and corresponding NVMe storage (hdisk) devices.

NVMe storage (hdisk) device driver

Purpose
Supports Peripheral Component Interconnect Express (PCIe)-attached Non-Volatile Memory Express
(NVMe) storage devices.

Syntax
<#include /usr/include/sys/nvme.h>
<#include /usr/include/sys/devinfo.h>

Description
The /dev/hdiskn special file provides interfaces to the NVMe storage device driver.

Device-dependent subroutines
The NVMe storage device driver supports the open, close, read, write, and ioctl subroutines.

ioctl subroutine
Along with the IOCINFO operation, the NVMe storage device driver defines operations for NVMe storage
devices.

The IOCINFO operation is defined for all device drivers that use the ioctl subroutine, as follows:

The IOCINFO operation returns a devinfo structure. The devinfo structure is defined in the /usr/
include/sys/devinfo.h header file. The device type in this structure is DD_SCDISK, and the subtype
is DS_PV. The flags field is used to indicate the values DF_SSD and DF_NVME. When the DF_4B_ALINGED
flag is preset, the flag indicates that all host data buffer addresses must be aligned to a 4 byte address.

NVMe storage ioctl operations
The following ioctl operations are supported for NVMe storage devices:
NVME_PASSTHRU

Provides options to send a passthru command to an NVMe storage device. The arg parameter for
the NVME_PASSTHRU operation is the address of an NVME_PASSTHRU structure that is defined in
the /usr/include/sys/nvme.h header file.

Note: You can send an admin command only to the adapter device, and an NVM command only to
the storage (hdisk) device. Otherwise, the commands can result in undefined behavior such as data

888 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

corruption. The opcodes of all the NVMe commands are unique only within a command set and the
opcode value can be used for different operations in different command sets.

When an NVMe passthru command is issued to the NVMe storage device, a specific path_id can
be specified. If you want to use specific path_id for the passthru command, you need to configure
both the NVME_PASS_PASSTHRU flag in the flags field and the path_id to be used in the path_id
field.

You can write the dword_10 to dword_15 data in endian format that is used by the host such that
(leftmost) bit 31 is the most significant bit and (rightmost) bit 0 is the least significant bit according to
the NVMe specification. For example, to read 0xAC blocks and to set FUA, dword_10 in the passthru
structure is set to 0x400000AB.

You must byte reverse any two fields in the data that is transferred by using the passthru command.
For example, to read the name space size (NSZE) from data that is returned by Identify Namespace,
bytes 0 - 7 in the data buffer must be byte reversed.

The passthru command is unsuccessful if the ioctl subroutine returns -1. A return value of -1
indicates that the driver failed to send the command to the controller or the controller did not
respond before the timeout occurred. If the errno flag is set to the EINVAL value, the resp.status
parameter contains a code that indicates the invalid field.

The passthru command is successful if the ioctl subroutine returns 0 and if the resp.status
parameter contains 0. The passthru command runs in parallel with commands that are initiated by
another user by running read or write operation.

NVMe controller device driver

Purpose
Supports the Non-Volatile Memory Express (NVMe) controller.

Syntax
<#include /usr/include/sys/nvme.h>
<#include /usr/include/sys/devinfo.h>

Description
The /dev/nvmen special file provides interfaces to the NVMe controller device driver.

Device-dependent subroutines
The NVMe controller device driver supports the open, close, and ioctl subroutines only. The read and
write subroutines are not supported by the NVMe controller special file.

ioctl Subroutine
Along with the IOCINFO operation, the NVMe controller device driver defines operations for NVMe
controller devices.

The IOCINFO operation is defined for all device drivers that use the ioctl subroutine as follows:

• The IOCINFO operation returns a devinfo structure. The devinfo structure is defined in the /usr/
include/sys/devinfo.h header file. The device type in this structure is DD_BUS, and the subtype is
DS_NVME. The flags field is not used and it is set to 0.

• The devinfo structure includes unique data such as version information and the data transfer size that
is allowed in the maximum initiator mode. The transfer size is specified in bytes.

Kernel Services and Subsystem Operations 889

NVMe controller ioctl operations
The following ioctl operations are supported for NVMe controller devices:
NVME_PASSTHRU

Provides options to send a passthru command to an NVMe controller device. The arg parameter
for the NVME_PASSTHRU operation is the address of an NVME_PASSTHRU structure that is defined in
the /usr/include/sys/nvme.h header file.

Note: You can send an admin command only to the adapter device, and an NVM command only to
the storage (hdisk) device. Otherwise, the commands can result in undefined behavior such as data
corruption. The opcodes of all the NVMe commands are unique only within a command set and the
opcode value can be used for different operations in different command sets.

When an NVMe passthru command is issued to the NVMe controller device, a specific path_id can
be specified. If you want to use specific path_id for the passthru command, you need to configure
both the NVME_PASS_PASSTHRU flag in the flags field and the path_id to be used in the path_id
field.

You can write the dword_10 to dword_15 data in the endian format that is used by the host such that
(leftmost) bit 31 is the most significant bit and (rightmost) bit 0 is the least significant bit according to
the NVMe specification. For example, to read 0xAC blocks and to set FUA, dword_10 in the passthru
structure is set to 0x400000AB.

You must byte reverse any fields in the data that is transferred by using the passthru command. For
example, to read the name space size (NSZE) from data that is returned by Identify Namespace, bytes
0 - 7 in the data buffer must be byte reversed.

The passthru command is unsuccessful if the ioctl subroutine returns -1. A return value of -1
indicates that the driver failed to send the command to the controller or the controller did not
respond before the timeout occurred. If the errno flag is set to the EINVAL value, the resp.status
parameter contains a code that indicates the invalid field.

The passthru command is successful if the ioctl subroutine returns 0 and if the resp.status
parameter contains 0. The passthru command runs in parallel with commands that are initiated by
another user by running read or write operation.

NVME_CNTL
Provides the options to submit a control request to the NVMe controller device driver. The arg
parameter of the NVME_CNTL operation is the address of an nvme_cntl structure that is defined in
the /usr/include/sys/nvme.h header file. The types of control operations that are supported for
the NVMe controller device driver are documented in the nvme_cntl structure.

USB Subsystem
The protocol stack of the Universal Serial Bus (USB) device driver for the AIX operating system consists
of several drivers that communicate with each other in a layered fashion. These layers of drivers in the
USB subsystem work together to support the attachment of a range of USB devices, such as flash drives,
removable disk drive (RDX), tape, keyboard, mouse, speakers, and optical devices (for example, CD-ROM,
CD-R, CD-RW, DVD-R, DVD-RW, and DVD-RAM).

Extensible Host Controller Adapter Device Driver

Purpose
Supports the Universal Serial Bus (USB) 3.0 Extensible Host Controller Interface (xHCI) specification for
adapter device drivers.

890 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/hcdi.h>
#include <sys/usbdi.h>
#include <sys/usb.h>

Description
The /dev/usbhcn special files provide interfaces that allow access to the USB host controller adapter
devices. These files manage the adapter resources so that multiple USB client drivers and the USB
system (or the protocol driver) can access the USB devices on the same USB host controller adapter
simultaneously.

The AIX operating system supports the USB host controllers with various interface architectures, such
as the Open Host Controller Interface (OHCI) and the Enhanced Host Controller Interface (EHCI). The
binary interface to the USB 3.0 adapters is called the Extensible Host Controller Interface (xHCI).
The AIX operating system currently supports the 0.96 and 1.0 versions of the xHCI specification. The
xHCI specification defines a new host controller architecture that replaces the existing OHCI or EHCI
specification and also extends to new specifications, for example, USB Version 3.0, or later.

The /usr/lib/drivers/pci/xhcidd device driver handles the xHCI adapters and the /usr/lib/
methods/cfgxhci device driver is the corresponding AIX configuration method.

The max_slots Object Data Manager (ODM) attribute for the adapter driver specifies the maximum
number of USB devices that are supported by an xHCI adapter. The default value of the attribute is 8. You
can modify this value to a maximum value of 32 to support more devices.

Note: If the max_slots values is set to 8 and if you connect more than 8 USB devices to the USB adapter,
the adapter configures only 8 devices. The configuration for the remaining device fails.

Adapter device driver entry point subroutines
The USB adapter device driver supports only the open, close, ioctl, and config entry points. The
read and write entry points are not supported.

open and close subroutines

The open subroutine associates the device number, which is specified as a parameter to the open
system call, with the internal adapter device structure. If the open subroutine finds an adapter structure,
it verifies that the corresponding adapter device is configured and is not marked inactive. If the open
subroutine does not find an adapter structure, it returns an error. If the Enhanced Error Handling (EEH)
feature is enabled, the open subroutine prevents access to the device when an EEH event is being
processed.

ioctl subroutine

The xHCI adapter device driver supports the following ioctl suboperation:

Operation Description

HCD_REGISTER_HC Registers the call vectors between the USB system (or the protocol
driver) and the host controller driver. After the call vectors are
registered, all further communication between the USB system (or
protocol driver) and the host controller driver is handled by these
vectors.

Summary of error conditions returned by the xHCI adapter device driver
The following Transfer Request Block (TRB) completion status codes are returned by the xHCI during
status update if the associated error condition is detected. The TRB status values are specified in the
xHCI specification. These completion codes in turn are mapped to the following USBstatus values:

Kernel Services and Subsystem Operations 891

TRB status
USBstatus
value Description

XHCI_TRB_STATUS_BAB_DET_ERR USBD_STALL Babbling during transaction

XHCI_TRB_STATUS_BW_ERR USBD_ERROR Bandwidth is not available for
periodic endpoint connection

XHCI_TRB_STATUS_BW_OVERRUN_ERR USBD_ERROR Isochronous transfer descriptor
(TD) exceeded bandwidth of the
endpoints

XHCI_TRB_STATUS_CMDRING_ABORT_ERR USBD_ERROR Command abort operation

XHCI_TRB_STATUS_CMDRING_STOP_ERR USBD_ERROR Command ring stopped

XHCI_TRB_STATUS_CTXT_STATE_ERR USBD_ERROR Invalid context state change
command

XHCI_TRB_STATUS_DATA_BUF_ERR USBD_ERROR Overrun or underrun

XHCI_TRB_STATUS_EP_NE_ERR USBD_ERROR Endpoint is in a disabled state

XHCI_TRB_STATUS_EVENT_LOST_ERR USBD_ERROR Internal event overrun

XHCI_TRB_STATUS_EVTRING_FULL_ERR USBD_ERROR Event ring is full

XHCI_TRB_STATUS_INCOMPAT_DEV_ERR USBD_ERROR Incompatible device

XHCI_TRB_STATUS_INVALID USBD_ERROR Completion update error

XHCI_TRB_STATUS_INVALID_SID_ERR USBD_ERROR Invalid stream ID

XHCI_TRB_STATUS_INVALID_STR_TYP_ERR USBD_ERROR Invalid stream of context (Ctxt)
type

XHCI_TRB_STATUS_ISOCH_BUF_OVR_ERR USBD_ERROR Isochronous buffer overrun

XHCI_TRB_STATUS_MAXEL_LARGE_ERR USBD_ERROR Maximum exit latency is too
large

XHCI_TRB_STATUS_MIS_SERV_ERR USBD_ERROR Isochronous endpoint is not
serviced

XHCI_TRB_STATUS_NOPING_RESP_ERR USBD_ERROR No ping response within
endpoint service interval time
(ESIT)

XHCI_TRB_STATUS_NOSLOTS_ERR USBD_ERROR Exceeded maximum slots

XHCI_TRB_STATUS_PARAM_ERR USBD_ERROR Context parameter is invalid

XHCI_TRB_STATUS_RESOURCE_ERR USBD_ERROR No adequate resources

XHCI_TRB_STATUS_RING_OVERRUN_ERR USBD_ERROR Ring overrun

XHCI_TRB_STATUS_RING_UNDERRUN_ERR USBD_ERROR Ring underrun

XHCI_TRB_STATUS_SEC_BW_ERR USBD_ERROR Secondary bandwidth error

XHCI_TRB_STATUS_SHORT_PKT_ERR USBD_SUCCES
SS

The packet size is lesser than
the transfer descriptor size in
the transfer request.

XHCI_TRB_STATUS_SLOT_DISABLED_ERR USBD_ERROR Slot is in a disabled state

XHCI_TRB_STATUS_SPLIT_TR_ERR USBD_ERROR Split transaction error

XHCI_TRB_STATUS_STALL_ERR USBD_STALL Delay detected on TRB

892 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

TRB status
USBstatus
value Description

XHCI_TRB_STATUS_STOP_LEN_ERR USBD_ERROR Transfer event length is invalid

XHCI_TRB_STATUS_STOPPED_ERR USBD_ERROR Stop endpoint command is
received

XHCI_TRB_STATUS_SUCCESS USBD_SUCCES
S

Command success

XHCI_TRB_STATUS_TRB_ERR USBD_ERROR TRB parameter error

XHCI_TRB_STATUS_UNDEFINED_ERR USBD_ERROR Undefined error condition

XHCI_TRB_STATUS_USB_TSX_ERR USBD_ERROR No valid response from the
device

XHCI_TRB_STATUS_VF_EVTRING_FULL_ERR USBD_ERROR Virtual Function (VF) event ring
is full

Call vectors
Whenever the USB configuration method is run, it opens the /dev/usb0 USB system driver (USBD)
special file and attempts to register each detected and available USB host controller with the USBD
by using a USBD_REGISTER_HC ioctl operation. When the USBD_REGISTER_HC ioctl operation is
processed, the USBD opens the host controller driver and requests for the registration of call vectors
stored within the host controller driver by using an HCD_REGISTER_HC ioctl operation. After the
call vectors are registered with the USBD, all further communication between the USBD and the host
controller driver is handled by the call vectors. The summary of call vectors follows:

Call vector Description

hcdConfigPipes This call vector is provided by the USBD during the enumeration of USB
logical device.

This call vector supports the xHCD with USBD, however it does
not support EHCI or OHCI drivers. It issues a configure endpoint
command to the USB device to make the non-control endpoints on
the device operational. This call vector is called by the USBD after the
configuration selection is complete on the USB device.

hcdDevAlloc Detects the attachment of a USB logical device. This call vector is
provided by the USBD.

This call vector supports the Extensible Host Controller Driver (xHCD)
with USBD, however it does not support EHCI or OHCI drivers. It
enables the slot, sets the USB device address, and allocates the HCD
driver resources to use the USB device. It returns the USB address
value to the USBD. After this call, the default control endpoint on the
USB device is enabled to query the USB protocol-specific data.

hcdDevFree Detects the removal of a USB logical device. This call vector is provided
by the USBD.

This call vector supports the xHCD with USBD, however it does not
support EHCI or OHCI drivers. It disables the slot and also deallocates
the resources that are allocated by the hcdDevAlloc call vector.

hcdGetFrame Obtains the current frame number from the connected host controller.
This call vector is provided by the USBD.

Kernel Services and Subsystem Operations 893

Call vector Description

hcdPipeAbort Cancels the processing of an I/O buffer. The pipe that is specified by
the I/O buffer is already halted before the hcdPipeAbort call vector
is called. This call vector is provided by the USBD.

hcdPipeAddIOB Increases the maximum number of outstanding I/O buffers. This call
vector is provided by the USBD.

hcdPipeClear Clears, unhalts, and restarts the I/O operations on a specific endpoint.
When this call vector is called, the function checks whether the ring is
in the halted state.

hcdPipeConnect Creates a pipe connection to an endpoint on a specific USB device.

hcdPipeDisconnect Removes the previously established pipe connection with the endpoint
on a specific USB device.

hcdPipeHalt Halts a pipe from the perspective of the host controller. All pending I/O
operations remain in a pending state. This call vector is provided by the
USBD.

hcdPipeIO Performs the I/O operations on the USB device. The I/O operations
can be of the following transfer types: control, bulk, isochronous, and
interrupt.

hcdPipeResetToggle Resets the data synchronization toggle bit to DATA0. This call vector is
provided by the USBD.

hcdPipeStatus Obtains the status of the pipe from the host perspective. This call
vector is provided by the USBD.

hcdShutdownComplete Informs the host controller driver that the usbdReqHCshutdown
request is completed. This call vector is provided by the USBD.

hcdUnconfigPipes Detects that a device is removed from the system. This call vector is
provided by the USBD.

This call vector supports the xHCD with USBD, however it does not
support EHCI or OHCI drivers. It issues a configure endpoint command
with the Unconfig bit set to disable all the non-control endpoints on
the USB device and deallocate the resources that are allocated by the
hcdConfigPipes call vector.

hcdUnregisterHC Unregisters a host controller from the USBD.

usbdBusMap Maps the memory for bus mastering. This call vector is provided by the
xHCD.

usbdPostIOB Retires an I/O buffer. This call vector is provided by the adapter driver.

usbdReqHCrestart This call is provided when an error is detected with the adapter and
the recovery of adapter driver from this error requires you to restart the
adapter.

usbdReqHCshutdown This call vector is provided during the removal of host controller.

usbdReqHCunregister The CFG TERM function of the adapter driver requests the USBD to
unregister the host controller. This call vector is provided during the
removal of the host controller.

894 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Enhanced Host Controller Adapter Device Driver

Purpose
Supports the Enhanced Host Controller Interface (EHCI) specification for adapter device drivers.

Syntax

#include <sys/hcdi.h>
#include <sys/usbdi.h>
#include <sys/usb.h>

Description
The /dev/usbhcn special files provide interfaces that allow access to the Universal Serial Bus (USB) host
controller adapter devices. These files manage the adapter resources so that multiple USB client drivers
and the USB system (or the protocol driver) can access the USB devices on the same USB host controller
adapter simultaneously.

In the USB 2.0 design, the USB Implementers Forum (USB-IF) implemented single specification, which
is known as EHCI, that supports only high-speed data transfers. EHCI-based adapters are multi-function
Peripheral Component Interconnect (PCI) devices that consist of virtual host controller functions that are
called companion controllers to support Open Host Controller Interface (OHCI) connectivity to USB 1.0
and 1.1 devices. The Object Data Manager (ODM) alt_usb_ctrl attribute of the EHCI adapter provides
the location values for the companion OHCI controllers.

Adapter device driver entry point subroutines
The USB adapter device driver supports only the open, close, ioctl, and config entry points. The
read and write entry points are not supported.

open and close subroutines

The open subroutine associates the device number, which is specified as a parameter to the open
system call, with the internal adapter device structure. If the open subroutine finds an adapter structure,
it verifies that the corresponding adapter device is configured and is not marked inactive. If the open
subroutine does not find an adapter structure, it returns an error. If the Enhanced Error Handling
(EEH) feature is enabled, the open subroutine does not access the device when an EEH event is being
processed.

ioctl subroutine

The EHCI adapter device driver supports the following ioctl suboperations:

Operation Description

HCD_REGISTER_HC Registers the call vectors between the USB system (or the protocol
driver) and the host controller driver. After the call vectors are
registered, all further communication between the USB system (or
the protocol driver) and the host controller driver is handled by these
vectors.

HCD_REQUEST_COMPANIONS Requests port routing information about the companion OHCI host
controllers.

Summary of error conditions returned by the EHCI adapter device driver
Possible values of the USBstatus return value for the EHCI adapter device driver are as follows:

Kernel Services and Subsystem Operations 895

Error code Description

USBD_ABORTED The associated IRP has ended.

USBD_ABORTING The associated I/O request packet (IRP) is failing.

USBD_ACTIVE The logical pipe is in operation and is not halted.

USBD_BADHANDLE The handle that is passed as parameter through the call vector
interface is invalid.

USBD_BANDWIDTH The logical pipe connection has failed because of bandwidth
requirements.

USBD_CONNECT The logical pipe is already connected.

USBD_DATA Invalid response from the device.

USBD_DISCONNECT The device that is associated with the transaction is disconnected or
removed.

USBD_ERROR General error condition.

USBD_HALTED The logical pipe that is associated with the transaction is halted.

USBD_POWER The device exceeded power budget.

USBD_SPEED The port reset operation has failed because of device speed mismatch.

USBD_STALL The logical pipe that is associated with the transaction is delayed.

USBD_TIMEOUT The I/O operation has timed out.

Call vectors
Whenever the USB configuration method is run, it opens the /dev/usb0 USB system driver (USBD)
special file, and attempts to register each detected and available USB host controller with the USBD
by using a USBD_REGISTER_HC ioctl operation. When the USBD_REGISTER_HC ioctl operation is
processed, the USBD opens the host controller driver and requests for the registration of call vectors
that are stored within the host controller driver by using an HCD_REGISTER_HC ioctl operation. After
the call vectors are registered with the USBD, all further communication between the USBD and the host
controller driver is handled by the call vectors. The summary of call vectors follows:

Call vector Description

hcdGetFrame Obtains the current frame number from the connected host controller.
This call vector is provided by the USBD.

hcdPipeAbort Cancels the processing of an I/O buffer. The pipe that is specified by
the I/O buffer is already halted before the hcdPipeAbort call vector
is called. This call vector is provided by the USBD.

hcdPipeAddIOB Increases the maximum number of outstanding I/O buffers. This call
vector is provided by the USBD.

hcdPipeClear Clears, unhalts, and restarts the I/O operations on a specific endpoint.
When this call vector is called, the function checks whether the ring is
in the halted state.

hcdPipeConnect Creates a pipe connection to an endpoint on a specific USB device.

hcdPipeDisconnect Removes the previously established pipe connection with the endpoint
on a specific USB device.

896 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Call vector Description

hcdPipeHalt Halts a pipe from the perspective of the host controller. All pending I/O
operations remain in the pending state. This call vector is provided by
the USBD.

hcdPipeIO Performs the I/O operations on the USB device. The I/O operations
can be of the following transfer types: control, bulk, isochronous, and
interrupt.

hcdPipeResetToggle Resets the data synchronization toggle bit to DATA0. This call vector is
provided by the USBD.

hcdPipeStatus Obtains the status of the pipe from the perspective of the host
controller. This call vector is provided by the USBD.

hcdShutdownComplete Informs the host controller driver that the usbdReqHCshutdown
request is completed. This call vector is provided by the USBD.

hcdUnregisterHC Unregisters a host controller from the USBD.

usbdBusMap Maps the memory for bus-mastering. This call vector is provided by the
Extensible Host Controller Driver (xHCD).

usbdPostIOB Retires an I/O buffer. This call vector is provided by the adapter driver.

usbdReqHCrestart This call vector is provided when an error is detected in the adapter
and the recovery of adapter driver from this error requires you to
restart the adapter.

usbdReqHCshutdown This call vector is provided during the removal of the host controller.

usbdReqHCunregister The CFG TERM function of the adapter driver requests the USBD to
unregister the host controller. This call vector is provided during the
removal of the host controller.

HCD_REQUEST_COMPANIONS Adapter Device Driver ioctl Operation

Purpose
Requests port routing information about the Open Host Controller Interface (OHCI) companion
controllers.

Description
This ioctl command is used by the configuration application to determine information about the OHCI
companion controller. This information includes the number of root hub ports, the number of companion
controllers, and the number of ports per companion controller.

Return values
The following return values are supported:

Value Description

0 Successful completion.

DEFAULT The user has insufficient authority to access the data.

EIO A permanent I/O error occurred.

Kernel Services and Subsystem Operations 897

Open Host Controller Adapter Device Driver

Purpose
Supports the Open Host Controller Interface (OHCI) specification for adapter device drivers.

Syntax

#include <sys/hcdi.h>
#include <sys/usbdi.h>
#include <sys/usb.h>

Description
The /dev/usbhcn special files provide interfaces that allow access to the Universal Serial Bus (USB) host
controller adapter devices. These files manage the adapter resources so that multiple USB client drivers
and the USB system (or the protocol driver) can access low and full speed of the USB devices on the same
USB host controller adapter simultaneously.

The OHCI adapter supports the USB devices (for example, keyboard and mouse) that operate at USB 1.0
and USB 1.1 speeds.

Adapter device driver entry point subroutines
The USB adapter device driver supports only the open, close, ioctl, and config entry points. The
read and write entry points are not supported.

open and close subroutines

The open subroutine associates the device number, which is specified as a parameter to the open
system call, with the internal adapter device structure. If the open subroutine finds an adapter structure,
it verifies that the corresponding adapter device is configured and is not marked inactive. If the open
subroutine does not find an adapter structure, it returns an error. If the Enhanced Error Handling (EEH)
feature is enabled, the open subroutine prevents access to the device when an EEH event is being
processed.

ioctl subroutine

The OHCI adapter device driver supports the following ioctl suboperation:

Operation Description

HCD_REGISTER_HC Registers the call vectors between the USB system (or the protocol
driver) and the host controller driver. After the call vectors are
registered, all further communication between the USB system (or
protocol driver) and the host controller driver is handled by these
vectors.

Summary of error conditions returned by the OHCI adapter device driver
The following error condition codes for OHCI are translated into a USBstatus value to inform the USB
protocol driver and the client drivers about the error condition. Possible OHCI error conditions and the
corresponding USBstatus values follow:

OHCI error condition code USBstatus value Description

OHCI_CC_BitStuffing USBD_ERROR General error condition

OHCI_CC_BufferOverrun USBD_ERROR General error condition

OHCI_CC_BufferUnderrun USBD_ERROR General error condition

898 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

OHCI error condition code USBstatus value Description

OHCI_CC_CRC USBD_ERROR General error condition

OHCI_CC_DataOverrun USBD_ERROR General error condition

OHCI_CC_DataToggleMismatch USBD_ERROR General error condition

OHCI_CC_DataUnderrun USBD_ERROR General error condition

OHCI_CC_DeviceNotRespondin
g

USBD_ERROR General error condition

OHCI_CC_NotAccessed_0 USBD_ERROR General error condition

OHCI_CC_NotAccessed_1 USBD_ERROR General error condition

OHCI_CC_NoError USBD_SUCCESS Completion of successful transaction

OHCI_CC_PIDCheckFailure USBD_ERROR General error condition

OHCI_CC_STALL USBD_STALL The logical pipe is delayed

OHCI_CC_UnexpectedPID USBD_ERROR General error condition

Call vectors
Whenever the USB configuration method is run, it opens the /dev/usb0 USB system driver (USBD)
special file and attempts to register each detected and available USB host controller with the USBD
by using a USBD_REGISTER_HC ioctl operation. When the USBD_REGISTER_HC ioctl operation is
processed, the USBD opens the host controller driver and requests for the registration of call vectors
stored within the host controller driver by using an HCD_REGISTER_HC ioctl operation. After the
call vectors are registered with the USBD, all further communication between the USBD and the host
controller driver is handled by the call vectors. The summary of the call vectors follows:

Call vector Description

hcdGetFrame Obtains the current frame number from the connected host controller.
This call vector is provided by the USBD.

hcdPipeAbort Cancels the processing of an I/O buffer. The pipe that is specified by
the I/O buffer is already halted before the hcdPipeAbort call vector
is called. This call vector is provided by the USBD.

hcdPipeAddIOB Increases the maximum number of outstanding I/O buffers. This call
vector is provided by the USBD.

hcdPipeClear Clears, unhalts, and restarts the I/O operations on a specific endpoint.
When this call vector is called, the function checks whether the ring is
in halted state. This call vector is provided by the USBD.

hcdPipeConnect Creates a pipe connection to an endpoint on a specific USB device.

hcdPipeDisconnect Removes the previously established pipe connection with the endpoint
on a specific USB device.

hcdPipeHalt Halts a pipe from the perspective of the host controller. All pending I/O
operations remain in a pending state. This call vector is provided by the
USBD.

hcdPipeIO Performs I/O operations on the USB device. The I/O operation can
be of the following transfer types: control, bulk, isochronous, and
interrupt.

Kernel Services and Subsystem Operations 899

Call vector Description

hcdPipeResetToggle Resets the data synchronization toggle bit to DATA0. This call vector is
provided by the USBD.

hcdPipeStatus Obtains the status of the pipe from the host perspective. This call
vector is provided by the USBD.

hcdShutdownComplete Informs the host controller driver that the usbdReqHCshutdown
request is completed. This call vector is provided by the USBD.

hcdUnregisterHC Unregisters a host controller from the USBD.

usbdBusMap Maps memory for bus mastering by the host controller. This call vector
is provided by the Extensible Host Controller Driver (xHCD).

usbdPostIOB Retires an I/O buffer. This call vector is provided by the adapter driver.

usbdReqHCrestart This call is provided when an error is detected with the adapter and
the recovery of adapter driver from this error requires you to restart the
adapter.

usbdReqHCshutdown This call vector is provided during the removal of host controller.

usbdReqHCunregister The CFG TERM function of the adapter driver requests the USBD to
unregister the host controller. This call vector is provided during the
removal of the host controller.

HCD_REGISTER_HC Adapter Device Driver ioctl Operation

Purpose
Registers the host controller with the Universal Serial Bus (USB) protocol driver.

Description
This ioctl command is issued by the USB system driver (USBD) during the registration of host controller
with the USBD. During the processing of this ioctl operation, the call vectors of the adapter device driver
are registered with USBD. After the call vectors are registered with the USBD, all further communication
between the USBD and the Host Controller Driver (HCD) is handled by these call vectors.

Return values
The following return values are supported:

Value Description

0 Successful completion.

DEFAULT Incorrect size of the call vector or incorrect version of the call vector data
structure.

EBUSY Adapter hardware is inaccessible.

EINVAL Host controller is already registered with the USBD.

USB Audio Device Driver

Purpose
Supports the Universal Serial Bus (USB) audio devices.

900 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

#include <sys/usbdi.h>

Description
The USB audio device driver supports isochronous USB devices such as USB audio speakers. Each USB
audio device is represented as the following interfaces: audio control and audio streaming. Although
these interfaces are associated with the single device, the interfaces are treated as separate devices
virtually. The /dev/paud0 special file is created for audio control interface and the /dev/paudas0
special file is created for audio streaming interface.

The audio control interface is used to access the internal functions of an audio device. Any request to
change the audio controls within the audio function's units or terminals is directed to the audio control
interface of the function.

The audio streaming interface can be configured to operate in mono or stereo mode. The number of
input channel data streams varies based on the selected mode. Audio streaming interface must have
isochronous endpoint. This interface can have alternative settings that can be used to change some
characteristics of the endpoint.

Note: You must use external or third-party audio software to stream and play audio files on the supported
USB audio devices.

The following table lists the ioctl operations:

ioctl operation Description

AUDIO_INIT The driver searches the interfaces and alternative settings to
determine the setting that can support the requested sample rate,
bits per sample, mode, and channels.

AUDIO_STATUS The driver returns information about its internal data structures.

AUDIO_CONTROL The driver handles requests to change the audio properties, for
example, start, stop, and pause.

AUDIO_BUFFER The driver calculates and returns the values that are based on
the information about its data structures, the amount of data in
buffers, the amount of data in requests, the time delay that is
specified in the bDelay field, and general class-specific interface
descriptor.

AUDIO_WAIT The driver waits until the requests for all remaining playback data
are complete. If the bDelay field is specified, it waits for that
amount of time. This operation must be called just before the
AUDIO_STOP operation to avoid interruption in the last remaining
samples in the playback buffer.

AUDIO_SET_CHANNELS The driver updates its copies of the record and playback settings in
the driver's internal data structures.

• If a record path is active and one of the record settings is
changed, the driver sends requests to the USB audio device to
change the settings in the units.

• If the playback path is active and one of the playback settings is
changed, the driver sends requests to the USB audio device to
change the settings in the units for the playback and playback
rider paths. For the playback path, the master settings volume
must be included in the calculations before you set the playback
path volume.

Kernel Services and Subsystem Operations 901

ioctl operation Description

AUDIO_GET_CHANNELS The driver returns information that is based on the four input and
one output device models.

AUDIO_CHANNEL_STATUS The driver returns information that is stored in its internal data
structures.

AUDIO_SET_GAIN The driver updates its copy of the settings in its internal data
structures. If a record path is active, the driver sends requests to
the USB audio device to change the settings in the units.

AUDIO_MODIFY_LIMITS The driver updates the values in its internal data structures. If a
select() call is pending and one of the conditions to unblock the
select() call is met, the select() call is unblocked.

AUDIO_MASTER_VOLUME The driver saves the new master volume value. It calculates the
new unit volume value that is based on the new master volume
value and the playback volume value. If playback is active, the
driver sends requests to the USB audio device to change the
settings in the units for the playback and playback rider paths.

USB Keyboard Client Device Driver

Purpose
Supports the Universal Serial Bus (USB) keyboard devices.

Syntax

#include <sys/usbdi.h>

Description
The keyboard client consists of a back end that interfaces with the USB system driver (USBD) and a
front end that interfaces with the AIX applications such as the low function terminal (LFT) and X server
applications. The USB keyboard client driver has no knowledge of the underlying USB adapter hardware.
Instead, the client driver sends control requests to the USB keyboard through the USBD and receives
input events through the USBD. The keyboard client driver identifies itself as a generic keyboard driver by
setting the devid field in its Object Data Manager (ODM) predefined data to 030101. The parent device
of the keyboard client is the pseudo device, usb0. The keyboard client does not have any child. Each
keyboard device that is connected to the AIX system is represented as /dev/kbd0, /dev/kbd1, and so
on.

The USB keyboard client driver supports the attachment of multiple USB keyboard devices. Each device
is enumerated in the ODM and is marked as available. The client driver treats all keyboards as a single
logical device. Light-emitting diode (LED) settings are sent to all keyboards and input events from all
keyboards are sent to a single input ring. State tracking by the client driver ensures that a key does not
generate consecutive break events and that typematic delay and repeat are handled appropriately.

Special files (for example, /dev/kbd0, /dev/kbd1, and so on) are created for each USB keyboard
device. If there is at least one available USB keyboard device, an application (typically the LFT or X server
application) can open any one of the USB keyboard special files.

Special treatment for the keyboard is provided by the USB system device driver configuration method
because of the strict configuration and ordering rules of the graphics subsystem. When both the USB host
controller and the graphics adapter are in an available state and no existing keyboard is present, the USBD
ensures that at least one USB keyboard instance is defined. The USB keyboard client driver uses the
USBD_OPEN_DEVICE_EXT ioctl operation to open the device that generates a valid handle even when
no USB keyboard is attached to the system. The EAGAIN value is returned by the ioctl operation if there

902 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

is no keyboard device and the client driver treats the device as disconnected. When you plug in a USB
keyboard, a reconnect call back is made to the keyboard client by the USBD and the device is initialized
allowing input events to flow to the LFT and X server applications.

Device-dependent subroutines
The USB adapter device driver supports only the open, close, ioctl, and config subroutines.

open and close subroutines

The open subroutine is used to create a channel between the caller and the keyboard client driver. The
keyboard special file supports two such channels. The open subroutine call is processed normally except
that the OFlag and Mode parameters are ignored. The keyboard supports an fp_open request from a
kernel process. The keyboard client driver is multiplexed for an orderly change of control between the LFT
and the X server applications. The most recently opened keyboard channel is the active channel to which
the input events are sent. Only one channel can be open in the kernel mode at a time. The USB keyboard
client supports the attachment of multiple USB keyboard devices. Thus, one or more special files can be
defined. If there is at least one available USB keyboard device, an application (typically the LFT or the
X server) can open any one special file of the USB keyboard because the keyboard client driver ignores
the minor number specification. However, only two channels can be defined regardless of the number of
available USB keyboard devices.

The close subroutine call is used to end a channel.

Read and write operations

The keyboard client driver does not support read and write operations. A read or write operation to
the special file of the driver behaves as if a read operation or a write operation was made to the /dev/
null file.

ioctl subroutine

The keyboard device driver supports the following ioctl suboperations:

Operation Description

IOCINFO Returns a devinfo structure, which is defined in the sys/devinfo.h
header file, that describes the device. The first field of the structure
(devtype) is set to the DD_INPUT value; the remaining structure is set
to zero.

KSQUERYID Queries keyboard device identifier.

KSQUERYSV Queries keyboard service vector.

KSREGRING Registers input ring.

KSRFLUSH Flushes input ring.

KSLED Sets or resets keyboard LEDs.

KSVOLUME Sets alarm volume.

KSALARM Sounds alarm.

KSTRATE Sets typematic rate.

KSTDELAY Sets typematic delay.

KSKAP Enables or disables keep-alive poll.

Kernel Services and Subsystem Operations 903

USB Mass Storage Client Device Driver

Purpose
Supports the Universal Serial Bus (USB) protocol for mass storage and bulk type hard disk, Removable
Disk Drive (RDX), flash drives, CD-ROM, DVD-RAM, Blu-ray read-only, and read/write optical memory
devices.

Syntax

#include <sys/devinfo.h>
#include <sys/scsi.h>
#include <sys/scdisk.h>
#include <sys/ide.h>
#include <sys/usb.h>
#include <sys/usbdi.h>
#include <sys/mstor.h>

Description
Typical USB hard disk, RDX, flash drives, CD-ROM, DVD-RAM, Blu-ray read-only, and read/write optical
drive operations are implemented by using the open, close, read, write, and ioctl subroutines.

Device-dependent subroutines
The USB mass storage device driver supports only the open, close, ioctl, and config subroutines.

open and close subroutines

The openx subroutine is primarily used by the diagnostic commands and utilities. Appropriate authority
is required to run the subroutine. If you run the open subroutine without the required authority, the
subroutine returns a value of -1 and sets the errno global variable to a value of EPERM.

The ext parameter that is specified in the openx subroutine selects the operation to be used for the target
device. The /usr/include/sys/usb.h file defines the possible values for the ext parameter.

The ext parameter can contain any logical combination of the following flag values:

Item Description

SC_DIAGNOSTIC Places the selected device in the Diagnostic mode. This mode is singularly
entrant, which means that only one process at a time can open the device
at a time. When a device is in the Diagnostic mode, the USB devices are
initialized during the open or close operations, and error logging is disabled.
In the Diagnostic mode, only the close and ioctl subroutine operations
are accepted. All other device-supported subroutines return a value of -1 and
set the errno global variable to a value of EACCES.

A device can be opened in the Diagnostic mode only if the target device is
not currently opened. If you open a device in the Diagnostic mode when
the target device is already open, the subroutine returns a value of -1 and
sets the errno global variable to a value of EACCES.

SC_SINGLE Places the selected device in the Exclusive Access mode. Only one
process can open a device in the Exclusive Access mode at a time.

A device can be opened in the Exclusive Access mode only if the device
is not currently open. If you open a device in the Exclusive Access mode
and the device is already open, the subroutine returns a value of -1 and
sets the errno global variable to a value of EBUSY. If the SC_DIAGNOSTIC
flag is specified along with the SC_SINGLE flag, the device is placed in
Diagnostic mode.

904 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

readx and writex subroutines

The readx and writex subroutines are not supported on USB devices. Even if they are called, the ext
parameter is not processed.

ioctl subroutine

The ioctl subroutine operations that are used for the usbcd device driver are specific to the following
categories of USB devices:

• Common ioctl operations for all USB devices
• USB hard disk, flash drive, and RDX devices
• USB CD-ROM and read/write optical devices

Common ioctl operations supported for all USB devices

The following ioctl operations are available for hard disk, flash drive, RDX, CD-ROM, and read/write
optical devices:

Operation Description

DKIORDSE Issues a read command to the device and obtains the target-device sense
data when an error occurs. If the DKIORDSE operation returns a value of
-1 and if the status_validity field is set to the SC_SCSI_ERROR value,
valid sense data is returned. Otherwise, target sense data is omitted.

The DKIORDSE operation is provided for diagnostic use. It allows the limited
use of the target device while operating in an active system environment.
The arg parameter of the DKIORDSE operation contains the address of a
sc_rdwrt structure. This structure is defined in the /usr/include/sys/
scsi.h file.

The devinfo structure defines the maximum transfer size for a read
operation. If you transfer more than the maximum limit, the subroutine
returns a value of -1 and sets the errno global variable to a value of EINVAL.

Note: The CDIORDSE operation can be substituted for the DKIORDSE
operation when the read command is issued to obtain sense data from a
CD-ROM device. The DKIORDSE operation is the recommended operation.

DKIOCMD When the device is successfully opened in the Normal or Diagnostic
mode, the DKIOCMD operation can issue any Small Computer System
Interface (SCSI) command to the specified device. The device driver does
not log any error recovery or failures of this operation.

The SCSI status byte and the adapter status bytes are returned through the
arg parameter that contains the address of a sc_iocmd structure, which is
defined in the /usr/include/sys/scsi.h file. If the DKIOCMD operation
fails, the subroutine returns a value of -1 and sets the errno global variable
to a nonzero value. In this case, the caller must evaluate the returned status
bytes to determine the cause of operation failure and the recovery actions.

The devinfo structure defines the maximum transfer size for the
command. If you transfer more than the maximum value, the subroutine
returns a value of -1 and sets the errno global variable to a value of EINVAL.

Kernel Services and Subsystem Operations 905

Operation Description

DKIOCMD (continued) The following example code issues the DKIOCMD ioctl operation to the
usbms0 device to get the SCSI standard inquiry data:

 char sense_data[255];
 char *data_buffer=NULL;
 struct sc_iocmd sciocmd;
....

 fd = open("/dev/usbms0", O_RDWR);
 if (fd == -1){
 printf("\niocmd: Open FAIL\n");
 exit(-1);
 }

 memset(&sciocmd, '\0', sizeof(struct scsi_iocmd));
 sciocmd.version = SCSI_VERSION_1;
 sciocmd.timeout_value = 30;
 sciocmd.command_length = 6;
 sciocmd.flags = B_READ;
 sciocmd.autosense_length = 255;
 sciocmd.autosense_buffer_ptr = &sense_data[0];

 sciocmd.data_length = 0xFF;
 sciocmd.buffer = inq_data;
 sciocmd.scsi_cdb[0] = SCSI_INQUIRY;
 sciocmd.scsi_cdb[1] = 0x00; /* Standard Inquiry*/
 sciocmd.scsi_cdb[2] = 0x00;
 sciocmd.scsi_cdb[3] = 0x00;
 sciocmd.scsi_cdb[4] = 0xFF;
 sciocmd.scsi_cdb[5] = 0x00;

 if ((rc=ioctl(fd, DKIOCMD, &sciocmd)) != 0){
 printf("iocmd: Ioctl FAIL errno %d\n",errno);
 printf("status_validity: %x, scsi_status: %x,
adapter_status:%x\n",
 sciocmd.status_validity, sciocmd.scsi_bus_status,
 sciocmd.adapter_status);
 hexdump(sense_data, (long)20);
 close(fd);
 exit(-1);
 } else {
 printf("cdiocmd : Ioctl PASS\n");
 if (cmd = SCSI_INQUIRY)
 hexdump(inq_data,0x20);
 }

 close(fd);

906 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Operation Description

DKIOLCMD When the device is successfully opened in the Normal or Diagnostic
mode, the DKIOLCMD operation can issue any SCSI command to the
specified device. The device driver does not log any error recovery failures of
this operation.

This ioctl operation is similar to the DKIOCMD16 operation that is used to
issue 16-byte SCSI commands to the USB mass storage device.

The SCSI status byte and the adapter status bytes are returned through the
arg parameter that contains the address of a sc_iocmd16cdb structure.
This structure is defined in the /usr/include/sys/scsi.h file. If the
DKIOLCMD operation fails, the subroutine returns a value of -1 and sets
the errno global variable to a nonzero value. In this case, the caller must
evaluate the returned status bytes to determine the cause of operation
failure and the recovery actions.

On completion of the DKIOLCMD ioctl request, the residual field indicates
the leftover data that the device did not fully satisfy for this request.
On a successful completion, the residual field indicates that the device
does not have all of the data that is requested or the device has less
amount of data than requested. On a request failure, you must check the
status_validity field to determine whether a valid SCSI bus problem
exists. In this case, the residual field indicates the number of bytes that the
device failed to complete for this request.

The devinfo structure defines the maximum transfer size for the
command. If you transfer more than the maximum value, the subroutine
returns a value of -1 and sets the errno global variable to a value of EINVAL.

Kernel Services and Subsystem Operations 907

Operation Description

DKIOLCMD (continued) The following example code issues the DKIOLCMD ioctl operation to the
usbms0 device to get the SCSI standard inquiry data:

 char sense_data[255];
 char *data_buffer=NULL;
 struct sc_iocmd16cdb sciocmd;
....

 fd = open("/dev/usbms0", O_RDWR);
 if (fd == -1){
 printf("\niocmd: Open FAIL\n");
 exit(-1);
 }

 memset(&sciocmd, '\0', sizeof(struct scsi_iocmd));
 sciocmd.version = SCSI_VERSION_1;
 sciocmd.timeout_value = 30;
 sciocmd.command_length = 6;
 sciocmd.flags = B_READ;
 sciocmd.autosense_length = 255;
 sciocmd.autosense_buffer_ptr = &sense_data[0];

 sciocmd.data_length = 0xFF;
 sciocmd.buffer = inq_data;
 sciocmd.scsi_cdb[0] = SCSI_INQUIRY;
 sciocmd.scsi_cdb[1] = 0x00; /* Standard Inquiry*/
 sciocmd.scsi_cdb[2] = 0x00;
 sciocmd.scsi_cdb[3] = 0x00;
 sciocmd.scsi_cdb[4] = 0xFF;
 sciocmd.scsi_cdb[5] = 0x00;

 if ((rc=ioctl(fd, DKIOCMD, &sciocmd)) != 0){
 printf("iocmd: Ioctl FAIL errno %d\n",errno);
 printf("status_validity: %x, scsi_status: %x,
adapter_status:%x\n",
 sciocmd.status_validity, sciocmd.scsi_bus_status,
 sciocmd.adapter_status);
 hexdump(sense_data, (long)20);
 close(fd);
 exit(-1);
 } else {
 printf("cdiocmd : Ioctl PASS\n");
 if (cmd = SCSI_INQUIRY)
 hexdump(inq_data,0x20);
 }

 close(fd);

908 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Operation Description

DK_PASSTHRU When the device is successfully opened, the DK_PASSTHRU operation can
issue any SCSI command to the specified device. The device driver performs
limited error recovery if this operation fails. The DK_PASSTHRU operation
differs from the DKIOCMD operation such that it does not require an openx
command with the ext argument of the SC_DIAGNOSTIC field. Because of
this, the DK_PASSTHRU operation can be issued to devices that are in use by
other operations.

The SCSI status byte and the adapter status bytes are returned through
the arg parameter that contains the address of a sc_passthru structure.
This structure is defined in the /usr/include/sys/scsi.h file. If the
DK_PASSTHRU operation fails, the subroutine returns a value of -1 and sets
the errno global variable to a nonzero value. In this case, the caller must
evaluate the returned status bytes to determine the cause of operation
failure and the recovery actions.

If a DK_PASSTHRU operation fails because a field in the sc_passthru
structure has an invalid value, the subroutine returns a value of -1 and set
the errno global variable to EINVAL. The einval_arg field is set to the field
number (starting with 1 for the version field) of the field that had an invalid
value. A value of 0 for the einval_arg field indicates that no additional
information about the failure is available.

The version field of the sc_passthru structure can be set to the value of
SCSI_VERSION_2 and you can specify the following fields:

• The variable_cdb_ptr field is a pointer to a buffer that contains the
cdb variable.

• The variable_cdb_length field determines the length of the cdb
variable to which the variable_cdb_ptr field points.

On completion of the DK_PASSTHRU request, the residual field indicates
the leftover data that the device did not fully satisfy for this request.
On a successful completion, the residual field indicates that the device
does not have all of the data that is requested or the device has less
amount of data than requested. On a request failure, you must check the
status_validity field to determine if a valid SCSI bus problem exists. In
this case, the residual field indicates the number of bytes that the device
failed to complete for this request.

The devinfo structure defines the maximum transfer size for the
command. If an attempt is made to transfer more than the maximum
transfer size, the subroutine returns a value of -1, sets the errno global
variable to a value of EINVAL, and sets the einval_arg field to a
value of SC_PASSTHRU_INV_D_LEN. These values are defined in the /usr/
include/sys/scsi.h file.

Note: If you call the DK_PASSTHRU operation as a non-root user, the
operation fails with the EACCES error value instead of the EPERM value.

Kernel Services and Subsystem Operations 909

Operation Description

DK_PASSTHRU
(continued)

The following example code issues the DK_PASSTHRU ioctl operation to
the usbms0 device to get the SCSI standard inquiry data:

 char sense_data[255];
 char *data_buffer=NULL;
 struct sc_passthru sciocmd;
....

 fd = open("/dev/usbms0", O_RDWR);
 if (fd == -1){
 printf("\npassthru: Open FAIL\n");
 exit(-1);
 }

 memset(&sciocmd, '\0', sizeof(struct sc_passthru));
 sciocmd.version = SCSI_VERSION_1;
 sciocmd.timeout_value = 30;
 sciocmd.command_length = 6;
 sciocmd.autosense_length = 255;
 sciocmd.autosense_buffer_ptr = &sense_data[0];

 sciocmd.data_length = 0xFF;
 sciocmd.buffer = inq_data;

 sciocmd.flags = B_READ;

 sciocmd.scsi_cdb[0] = SCSI_INQUIRY;
 sciocmd.scsi_cdb[1] = 0x00; /* Standard Inquiry*/
 sciocmd.scsi_cdb[2] = 0x00;
 sciocmd.scsi_cdb[3] = 0x00;
 sciocmd.scsi_cdb[4] = 0xFF;
 sciocmd.scsi_cdb[5] = 0x00;

 if ((rc=ioctl(fd, DK_PASSTHRU, &sciocmd)) != 0){
 if (sciocmd.adap_set_flags & SC_AUTOSENSE_DATA_VALID) {
 /* look at sense data */
 } /* end SC_AUTOSENSE_DATA_VALID */

 printf("passthru: Ioctl FAIL errno %d\n",errno);
 printf("status_validity: %x, scsi_status: %x,
adapter_status:%x\n",
 sciocmd.status_validity, sciocmd.scsi_bus_status,
 sciocmd.adapter_status);
 printf("Residual: %x\n", sciocmd.residual);
 exit(-1);
 } else {
 printf("passthru: Ioctl PASS\n");
 printf("status_validity: %x, scsi_status: %x,
adapter_status:%x\n",
 sciocmd.status_validity, sciocmd.scsi_bus_status,
 sciocmd.adapter_status);
 printf("Residual: %x\n", sciocmd.residual);
 /* inq_data buffer has valid Standard Inquiry data */
 }

ioctl operations for USB hard disk, flash drive, and RDX devices

The following ioctl operations are available for USB hard disk, flash drive, and RDX devices only:

910 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Operation Description

IOCINFO Returns the devinfo structure that is defined in the /usr/include/sys/
devinfo.h file. The IOCINFO operation is the only operation that is defined
for all device drivers that use the ioctl subroutine. The following values are
returned:

devinfo.devtype = DD_SCDISK;
devinfo.flags =(uchar)DF_RAND;
devinfo.devsubtype = 0x00;
devinfo.un.scdk.max_request =
Maximum_transfer_supported_by_usbcd_driver;
devinfo.un.scdk.numblks = Largest_LBA_supported_by_device+1;
devinfo.un.scdk.blksize = Block_size_set_for_the_USB_Disk/Flash/
RDX_Device;

DKPMR Issues an SCSI prevent media removal (PMR) command when the device
is successfully opened. This command prevents media from being ejected
until the device is closed, powered off and restarted, or until a DKAMR
operation is issued. The arg parameter for the DKAMR operation is null.
If the DKAMR operation is successful, the subroutine returns a value of 0. If
the device is an SCSI hard disk, the DKAMR operation fails, the subroutine
returns a value of -1, and sets the errno global variable to a value of EINVAL.
If the DKAMR operation fails for any other reason, the subroutine returns a
value of -1 and sets the errno global variable to a value of EIO.

Note: This function is provided to support the USB RDX devices that support
ejecting the media cartridges.

DKAMR Issues an allow media removal (AMR) command when the device is
successfully opened. The media can then be ejected by using either the
driver's eject button or the DKEJECT operation. The arg parameter for this
ioctl operation is null. If the DKAMR operation is successful, the subroutine
returns a value of 0. If the device is an SCSI hard disk, the DKAMR operation
fails. In addition, the subroutine returns a value of -1 and sets the errno
global variable to a value of EINVAL. For any other cause of failure of this
operation, the subroutine returns a value of -1, and sets the errno global
variable to a value of EIO.

Note: This function is provided to support the USB RDX devices that support
ejecting the media cartridges.

ioctl operations for CD-ROM and read/write optical devices

The following ioctl operations are available for CD-ROM and read/write optical devices:

Operation Description

IOCINFO Returns the devinfo structure that is defined in the /usr/include/sys/
devinfo.h file. The IOCINFO operation is the only operation that is defined
for all device drivers that use the ioctl subroutine. The following values are
returned:

devinfo.devtype = DD_CDROM;
devinfo.flags = (uchar)DF_RAND;
devinfo.devsubtype = 0x00;
devinfo.un.idecd.numblks =
 Largest logical block addressing (LBA) supported by device + 1;
devinfo.un.idecd.blksize = Block size set for the USB Disk, flash,
or RDX device;

Kernel Services and Subsystem Operations 911

Operation Description

IDEPASSTHRU Issues an AT Attachment Packet Interface (ATAPI) command to the
specified device when the device is successfully opened. The IDEPASSTHRU
operation does not require an openx command with the ext argument of
the SC_DIAGNOSTIC value. Therefore, an IDEPASSTHRU operation can be
issued to devices that are in use by other operations.

The AT Attachment (ATA) status bytes and the ATA error bytes are returned
through the arg parameter. This parameter contains the address of an
ide_ata_passthru structure that is defined in the /usr/include/sys/
ide.h file. If the IDEPASSTHRU operation fails, the subroutine returns a
value of -1 and sets the errno global variable to a nonzero value. In this
case, the caller evaluates the returned status bytes to determine the cause
of operation failure and the recovery actions.

If the IDEPASSTHRU operation fails, the device driver performs limited error
recovery. If this operation fails because a field in the ide_ata_passthru
structure has an invalid value, the subroutine returns a value of -1 and sets
the errno global variable to EINVAL.

On successful completion of the IDEPASSTHRU request, the residual field
indicates that the device does not have all of the data that is requested,
or the device has less than the amount of data that is requested. If the
IDEPASSTHRU request fails, the residual field indicates the number bytes
that the device failed to complete for this request.

912 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Operation Description

IDEPASSTHRU
(continued)

The following example code issues an SCSI inquiry command that uses the
IDEPASSTHRU operation:

 struct ide_atapi_passthru atapicmd;
 char inq_buffer[255];
 uchar sense_data[255];

 /* set up the arg parameter block */
 memset(&atapicmd, '\0', sizeof(struct ide_atapi_passthru));
 memset(sense_data, '\0', 255);

 atapicmd.ide_device = 0;
 atapicmd.flags = IDE_PASSTHRU_READ;
 atapicmd.timeout_value = 30;
 atapicmd.rsv0 = IDE_PASSTHRU_VERSION_01;
 atapicmd.rsv1 = 0;
 atapicmd.atapi_cmd.length = 12;
 atapicmd.atapi_cmd.resvd = 0;
 atapicmd.atapi_cmd.resvd1 = 0;
 atapicmd.atapi_cmd.resvd2 = 0;

 atapicmd.data_ptr = inq_buffer;
 atapicmd.buffsize = 0xFF;

 atapicmd.atapi_cmd.packet.opcode = SCSI_INQUIRY;
 atapicmd.atapi_cmd.packet.byte[0] = (0x00 | vpd) ; /*Standard
Inquiry */
 atapicmd.atapi_cmd.packet.byte[1] = page_code; /*Page Code–Valid
if vpd=1 */
 atapicmd.atapi_cmd.packet.byte[2] = 0x00;
 atapicmd.atapi_cmd.packet.byte[3] = 0xFF;
 atapicmd.atapi_cmd.packet.byte[4] = 0x00;

 atapicmd.sense_data = sense_data;
 atapicmd.sense_data_length = 255;

 fd = openx(“/dev/cd0”, O_RDWR, NULL, SC_DIAGNOSTIC);
 if (fd == -1) {
 printf("IDEPASSTHRU: Openx failed with errno %x \n",
errno);
 exit(-1);
 }

 if ((rc = ioctl(fd, IDEPASSTHRU, &atapicmd) != 0)) {
 printf("IDEPASSTHRU: IOCTL Failed");
 printf("errno %d\n",errno);
 printf("ata_status: %x, ata_error:%x\n",
 atapicmd.ata_status, atapicmd.ata_error);
 close(fd);
 exit(-1);
 } else {
 printf("IDEPASSTHRU : Ioctl PASS\n");
 printf("ata_status: %x, ata_error: %x\n",
 atapicmd.ata_status, atapicmd.ata_error);
 }
 close(fd);

DKPMR Issues a Small Computer System Interface (SCSI) prevent media removal
command when the device is successfully opened. This command prevents
media from ejecting until the device is closed, powered off and then
powered on, or until a DKAMR operation is issued. The arg parameter for the
DKPMR operation is null. If the DKPMR operation is successful, the subroutine
returns a value of 0. If the device is an SCSI hard disk, the DKPMR operation
fails, the subroutine returns a value of -1, and sets the errno global variable
to a value of EINVAL. If the DKPMR operation fails because of any other
reason, the subroutine returns a value of -1 and sets the errno global
variable to a value of EIO.

Kernel Services and Subsystem Operations 913

Operation Description

DKAMR Issues an allow media removal command when the device is successfully
opened. The media can be ejected by using either the drives eject button
or the DKEJECT operation. The arg parameter for this operation is null. If
the DKAMR operation is successful, the subroutine returns a value of 0. If the
device is an SCSI hard disk, the DKAMR operation fails, and the subroutine
returns a value of -1 and sets the errno global variable to a value of EINVAL.
For any other cause of operation failure, the subroutine returns a value of -1
and sets the errno global variable to a value of EIO.

DKEJECT Issues an eject media command to the drive when the device is successfully
opened. The arg parameter for this operation is null. If the DKEJECT
operation is successful, the subroutine returns a value of 0. If the device
is an SCSI hard disk, the DKEJECT operation fails, the subroutine returns
a value of -1, and sets the errno global variable to a value of EINVAL. For
any other cause of operation failure, the subroutine returns a value of -1 and
sets the errno variable to a value of EIO.

DKAUDIO Issues a play audio command to the specified device and controls the
volume on the device's output ports. Play audio commands can play, pause,
resume, stop, determine the number of tracks, and determine the status of
a current audio operation. The DKAUDIO operation plays audio only through
the CD-ROM drive's output ports. The arg parameter of this operation is
the address of a cd_audio_cmds structure that is defined in the /usr/
include/sys/scdisk.h file. Exclusive access mode is required.

If the DKAUDIO operation is attempted when the device's audio-supported
attribute is set to No, the subroutine returns a value of -1 and sets the
errno global variable to a value of EINVAL. If the DKAUDIO operation fails,
the subroutine returns a value of -1 and sets the errno global variable to
a nonzero value. In this case, the caller must evaluate the returned status
bytes to determine the cause of operation failure and recovery actions.

DK_CD_MODE Issues one of the following commands:
CD_GET_MODE

Returns the current CD-ROM data mode in the cd_mode_form field of
the mode_form_op structure when the device is successfully opened.

CD_CHG_MODE
Changes the CD-ROM data mode to the mode that is specified in the
cd_mode_form field of the mode_form_op structure when the device is
successfully opened in the exclusive access mode.

If a CD-ROM is not configured for different data modes by using the mode-
select density codes, and if you change the CD-ROM data mode by setting
the action field of the change_mode_form structure to the CD_CHG_MODE
command, the subroutine returns a value of -1 and sets the errno global
variable to a value of EINVAL. Attempts to change the CD-ROM mode to
any of the DVD modes also results in a return value of -1 and the errno
global variable is set to EINVAL. If the DK_CD_MODE operation for the
CD_CHG_MODE command is attempted when the device is not in exclusive
access mode, the subroutine returns a value of -1 and sets the errno global
variable to a value of EACCES. For any other cause of operation failure, the
subroutine returns a value of -1 and sets the errno global variable to a value
of EIO.

Device hardware requirements

914 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

USB hard disk, flash drive, RDX, CD-ROM, and read/write optical drives have the following hardware
requirements:

• These drives must support a block size of 512 bytes per block.
• If mode sense is supported, the write-protection (WP) bit must also be supported for sequential access

memory (SAM) hard disks and read/write optical drives.
• USB hard disks, flash drives, RDX, and read/write optical drives must report the hardware retry count

in bytes of the request sense data for recovered errors. If the USB hard disk or read/write optical drive
does not support this feature, the system error log might indicate premature drive failure.

• USB CD-ROM and read/write optical drives must support the 10-byte SCSI read command.
• USB hard disks, flash drives, RDX, and read/write optical drives must support the SCSI write and verify

command and the 6-byte SCSI write command.
• The read/write optical drive must set the format options valid (FOV) bit to 0 for the defect list header of

the SCSI format unit command to use the format command operation. If the drive does not support this
feature, you can write an application for the drive so that it formats the media by using the DKFORMAT
operation.

• If a USB CD-ROM drive uses CD_ROM Data Mode 1 format, it must support a block size of 512 bytes per
block.

• If a USB CD-ROM drive uses CD_ROM data Mode 2 Form 1 format, it must support a block size of 2048
bytes per block.

• If a USB CD-ROM drive uses CD_ROM data Mode 2 Form 2 format, it must support a block size of 2336
bytes per block.

• If a USB CD-ROM drive uses CD_DA mode, it must support a block size of 2352 bytes per block.
• To control the volume by using the DKAUDIO (play audio) operation, the device must support the SCSI-2

mode data page 0xE.
• To use the DKAUDIO (play audio) operation, the device must support the following SCSI-2 optional

commands:

– read sub-channel
– pause resume
– play audio mail summary file (.msf)
– play audio track index
– read table of contents (TOC)

Note: Only the International Organization for Standardization (ISO) file system (read-only ISO 9660),
Universal Disk Format (UDF) file system Version 2.01, or earlier, are supported on USB devices for the AIX
operating system. However, you can create a system backup or data archival on the drives by using the
mksysb, tar, cpio, backup, or restore commands. You can also use the dd command to add the ISO
images to the drives.

To use the USB flash drive, RDX, CD-ROM, DVD-RAM, and Blu-ray read-only devices, install the following
device package:

devices.usbif.08025002

The AIX operating system does not support plug-and-play feature for USB devices. To make a flash drive,
RDX, CD-ROM, Blu-ray, or DVD-RAM drive available to the AIX users, a root user must connect the drive to
a system USB port and run the following command:

cfgmgr -l usb0

Note: Use caution when you remove the flash drives from ports. If the drives are not properly closed or
unmounted before you remove the drives, the data on the drives can be corrupted.

After you remove the drives, the drives remain in the available state in the Object Data Manager (ODM)
until the root user runs the following command:

Kernel Services and Subsystem Operations 915

rmdev -l usbmsn

or

#rmdev –l cdn

When a drive is in the available state, you can reconnect the drive to the system, and the drive can be
remounted or reopened. If a drive is disconnected from a system USB port while it is still open for a user,
that drive is not reusable until you close and reopen it.

AIX Version 6.1 with the 6100-06 Technology Level recognizes and configures USB attached Blu-ray
drives as read-only. The AIX operating system does not support the write operation to CD, DVD, or Blu-ray
media that are present in the USB Blu-ray drive. Although the write operation is not prevented (if the drive
is write-capable), no support is provided for any issues that are encountered during the write operation.

The capability of the AIX operating system to operate on USB original equipment manufacturer (OEM)
flash drive, Blu-ray, and optical devices is validated against a sample of industry standard OEM USB
devices that are compliant with the USB standards. You might encounter issues with certain USB devices
that are not compliant and the AIX operating system does not provide any support for those issues.

Error Conditions for USB Mass Storage Client Device Driver
Possible errno values for ioctl, open, read, and write subroutines when you use the scsidisk device
driver include the following values:

Value Description

EACCES Indicates one of the following conditions:

• An attempt was made to open a device that is currently open in
the Diagnostic or Exclusive Access mode.

• An attempt was made to open a Diagnostic mode session on a
device that is already open.

• You attempted to run a subroutine other than an ioctl or
close subroutine while in Diagnostic mode.

• A DKIOLCMD operation was attempted on a device that is not in
the Diagnostic mode.

• A DK_CD_MODE ioctl subroutine operation was attempted on a
device that is not in the Exclusive Access mode.

EBUSY Indicates one of the following conditions:

• An attempt was made to open a session in the Exclusive
Access mode on a device that is already opened.

• The target device is reserved by another initiator.

EFAULT Indicates an invalid user address.

EFORMAT Indicates that the target device has unformatted media or the
media is in an incompatible format.

EINPROGRESS Indicates that a CD-ROM drive has a play-audio operation in
progress.

916 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Value Description

EINVAL Indicates one of the following circumstances:

• A DKAUDIO (play-audio) operation was attempted for a device
that is not configured to use the SCSI-2 play-audio commands.

• The read or write subroutine supplied an nbyte parameter that
is not an even multiple of the block size.

• A sense data buffer length of greater than 255 bytes is not valid
for a DKIORDSE ioctl subroutine operation.

• The data buffer length exceeded the maximum value that is
defined in the devinfo structure for a DKIORDSE or DKIOLCMD
ioctl subroutine operation.

• An unsupported ioctl subroutine operation was attempted.
• An attempt was made to configure a device that is still open.
• An invalid configuration command is provided.
• A DKPMR (prevent media removal), DKAMR (allow media removal),

or DKEJECT (eject media) command was sent to a device that
does not support removable media.

• A DKEJECT (eject media) command was sent to a device that
currently has its media locked in the drive.

• The data buffer length exceeded the maximum value that is
defined for a strategy operation.

EIO Indicates one of the following circumstances:

• The target device cannot be located or is not responding.
• The target device indicates an unrecoverable hardware error.

EMEDIA Indicates one of the following circumstances:

• The target device indicates an unrecoverable media error.
• The media was changed.

EMFILE Indicates that an open operation was attempted for an adapter
that already has the maximum permissible number of opened
devices.

ENODEV Indicates one of the following circumstances:

• An attempt was made to access an undefined device.
• An attempt was made to close an undefined device.

ENOTREADY Indicates that there is no media in the drive.

ENXIO Indicates one of the following circumstances:

• The ioctl subroutine supplied an invalid parameter.
• A read or write operation was attempted beyond the end of

the hard disk.

EPERM Indicates that the attempted subroutine requires appropriate
authority.

ESTALE Indicates that a read-only optical disk was ejected (without first
being closed by the user) and then either reinserted or replaced
with a second optical disk.

Kernel Services and Subsystem Operations 917

Value Description

ETIMEDOUT Indicates that an I/O operation exceeded the specified timer
value.

EWRPROTECT Indicates one of the following circumstances:

• An open operation that requires read/write mode was attempted
on a read-only media.

• A write operation was attempted to a read-only media.

Reliability and serviceability information

USB hard disk, flash drive, RDX devices, CD-ROM drives, and read/write optical drives return the following
errors:

Error Description

ABORTED COMMAND Indicates that the device ended the command.

ADAPTER ERRORS Indicates that the adapter returned an error.

GOOD COMPLETION Indicates that the command completed successfully.

HARDWARE ERROR Indicates that an unrecoverable hardware failure occurred when
the command was run or during a self-test.

ILLEGAL REQUEST Indicates an invalid command or command parameter.

MEDIUM ERROR Indicates that the command ended with an unrecoverable media
error condition.

NOT READY Indicates that the logical unit is offline or the media is missing.

RECOVERED ERROR Indicates that the command was successful after some recovery
was applied.

UNIT ATTENTION Indicates that the device is reset or the power is turned on.

The fields that are defined in the error record template for hard disk, flash drive, RDX, CD-ROM, and
read/write optical media errors are logged as per the following structure:

/* Bulk transfer cmd and status blocks */
typedef struct mstor_cbw {
 uint32_t cbw_signature; /* Always "USBC" little endian */
 uint32_t cbw_tag; /* Command identification */
 fld32_t cbw_dlen; /* Data length */
 uchar cbw_flags; /* Indicates data in or data out */
 uchar cbw_lun; /* Logical unit number, 0-15 */
 uchar cbw_cblen; /* Significant bytes of the cmd blk */
 uchar cbw_cb[16]; /* Command block itself */
 uchar cbw_rsvd;
} mstor_cbw_t;

/* For error logging */
struct mstor_err_rec {
 struct err_rec0 log;
 uint cmd_error;
 mstor_cbw_t cbw;
 char sense_data[128];
};

LABEL: DISK_ERRx
IDENTIFIER: xxxxxxxx

Date/Time: Wed Aug 4 11:40:43 CDT 2010
Sequence Number: 80
Machine Id: 00000A2AD400
Node Id: node10
Class: H
Type: PERM

918 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Resource Name: usbms0
Resource Class: usbms
Resource Type: 0806500b
Location: U78A5.001.WIH00AD-P1-T1-L1-L2-L3

Description
Probable Causes
User Causes
Failure Causes

SENSE DATA
1111 2222 2222 3333 3333 4444 4444 5566 LLCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC
CCRR SSSS KKSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS
SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS
SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS
SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSOO SSNN

Data Representation Legend

 cmd_error 1 Command Error Value
 (cmd_error values can be negative which are logged as 2's complement.
 For these USB specific error values refer below or /usr/include/sys/usbdi.h.
 For error values which are positive Please refer to /usr/include/sys/errno.h file for error
description)

Bulk transfer Command and Status Blocks
 cbw_signature 2 Always .USBC. in ASCII – “5553 4243”
 cbw_tag 3 Command Identification
 cbw_dlen 4 Data Length
 cbw_flags 5 Indicates Data IN or OUT
 cbw_lun 6 LUN Id
 cbw_cblen L CDB (Command Descriptor Bytes) length
 cbw_cb C CDB – SCSI/ATAPI Command Set
 cbw_rsvd R Reserved

Sense data
 Sense data S
 Sense key K
 ASC c
 ASCQ q
 Driver Open Count O
 Location N Device Driver log location

Error record values for media errors

Value Description

Comment Indicates hard disk, flash drive, RDX, CD-ROM, or read/write optical media
error.

Class Equals a value of H that indicates a hardware error.

Report Equals a value of True that indicates this error must be included when an error
report is generated.

Log Equals a value of True that indicates an error log entry must be created when
this error occurs.

Alert Equals a value of False that indicates this error cannot have an alert.

Err_Type Equals a value of Perm that indicates a permanent failure.

Err_Desc Equals a value of 1312 that indicates a disk operation failure.

Prob_Causes Equals a value of 5000 that indicates media.

User_Causes Equals a value of 5100 that indicates the media is defective.

User_Actions Equals the following values:

• 1601, which indicates the removable media must be replaced and tried again.
• 00E1, which instructs to perform problem determination procedures.

Inst_Causes None.

Kernel Services and Subsystem Operations 919

Value Description

Inst_Actions None.

Fail_Causes Equals the following values:

• 5000, which indicates a media failure.
• 6310, which indicates a disk drive failure.

Fail_Actions Equals the following values:

• 1601, which indicates that the removable media must be replaced and tried
again.

• 00E1, which instructs to perform problem determination procedures.

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the
mstor_err_rec structure. The err_rec field is defined in the /usr/
include/sys/errids.h file. The Detail_Data field follows the same
legend as mentioned in the preceding structure example.

Refer to the Small Computer System Interface (SCSI) specifications for the format of the request-sense
data for a particular device.

Error record values for hardware errors

The fields that are defined in the error record template for hard disk, CD-ROM, and read/write optical
hardware errors and for hard-aborted command errors are listed in the following table:

Value Description

Comment Indicates hard disk, flash drive, RDX, CD-ROM, or read/write optical hardware
error.

Class Equals a value of H that indicates a hardware error.

Report Equals a value of True that indicates this error must be included when an error
report is generated.

Log Equals a value of True that indicates an error log entry must be created when
this error occurs.

Alert Equals a value of False that indicates this error cannot be alerted.

Err_Type Equals a value of Perm that indicates a permanent failure.

Err_Desc Equals a value of 1312 that indicates a disk operation failure.

Prob_Causes Equals a value of 6310 that indicates disk drive.

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals the following values:

• 6310, which indicates a disk drive failure.
• 6330, which indicates a disk drive electronics failure.

Fail_Actions Equals a value of 00E1 that indicates problem-determination procedures must
be performed.

920 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Value Description

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the
mstor_err_rec structure. The err_rec field is defined in the /usr/
include/sys/errids.h file. It follows the same legend as mentioned in the
preceding structure example.

Error record values for adapter-detected hardware failures

The following fields are defined in the error record template for hard disk, CD-ROM, and read/write optical
media errors and for adapter-detected hardware errors:

Value Description

Comment Indicates adapter-detected hard disk, flash drive, RDX, CD-ROM, or read/write
optical hardware failure.

Class Equals a value of H that indicates a hardware error.

Report Equals a value of True that indicates that this error must be included when an
error report is generated.

Log Equals a value of True that indicates that an error-log entry must be created
when this error occurs.

Alert Equals a value of False that indicates this error cannot be alerted.

Err_Type Equals a value of Perm that indicates a permanent failure.

Err_Desc Equals a value of 1312 that indicates a disk operation failure.

Prob_Causes Equals the following values:

• 3452, which indicates a device cable failure
• 6310, which indicates a disk drive failure

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals the following values:

• 3452, which indicates a storage device cable failure
• 6310, which indicates a disk drive failure
• 6330, which indicates a disk-drive electronics failure

Fail_Actions Equals a value of 0000 that indicates that the problem-determination
procedures must be performed.

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the
mstor_err_rec structure. The err_rec field is defined in the /usr/
include/sys/errids.h file. It follows the same legend as mentioned in the
preceding structure example.

Error record values for recovered errors

Kernel Services and Subsystem Operations 921

The following fields are defined in the error record template for hard disk, CD-ROM, and read/write optical
media recovered errors:

Item Description

Comment Indicates hard disk, CD-ROM, or read/write optical recovered error.

Class Equals a value of H that indicates a hardware error.

Report Equals a value of True that indicates this error must be included when an error
report is generated.

Log Equals a value of True that indicates an error log entry must be created when
this error occurs.

Alert Equal to a value of False that indicates this error cannot be alerted.

Err_Type Equals a value of Temp that indicates a temporary failure.

Err_Desc Equals a value of 1312 that indicates a physical volume operation failure.

Prob_Causes Equals the following values:

• 5000, which indicates a media failure
• 6310, which indicates a disk drive failure

User_Causes Equals a value of 5100 that indicates that the media is defective.

User_Actions Equals the following values:

• 0000, which indicates that the problem-determination procedures must be
performed

• 1601, which indicates that the removable media must be replaced and tried
again

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals the following values:

• 5000, which indicates a media failure
• 6310, which indicates a disk drive failure

Fail_Actions Equals the following values:

• 1601, which indicates that the removable media must be replaced and tried
again

• 00E1, which performs problem determination procedures

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the
mstor_err_rec structure. The err_rec field is defined in the /usr/
include/sys/errids.h file. It follows the same legend as other errors.

Error record values for unknown errors

The following fields are defined in the error record template for hard disk, CD-ROM, and read/write optical
media unknown errors:

Value Description

Comment Indicates hard disk, CD-ROM, or read/write optical unknown failure.

922 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Value Description

Class Equals a value of H that indicates a hardware error.

Report Equals a value of True that indicates this error must be included when an
error report is generated.

Log Equals a value of True that indicates an error log entry must be created
when this error occurs.

Alert Equal to a value of False that indicates this error cannot be alerted.

Err_Type Equals a value of Unkn that indicates the type of error is unknown.

Err_Desc Equals a value of FE00 that indicates an undetermined error.

Prob_Causes Equals the following values:

• 3300, which indicates an adapter failure
• 5000, which indicates a media failure
• 6310, which indicates a disk drive failure

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals a value of FFFF that indicates the failure causes are unknown.

Fail_Actions Equals the following values:

• 00E1, which performs problem determination procedures
• 1601, which indicates the removable media must be replaced and tried

again

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the
mstor_err_rec structure. The err_rec field is defined in the /usr/
include/sys/errids.h file. It follows the same legend as other errors.

Special Files
The usbcd USB client device driver uses raw and block special files for its functions. The special files that
are used by the usbcd device driver are listed by the type of device in the following table:

Table 2. Special files for the usbcd device driver

Device Special file Description

Hard disk, flash drive,
RDX devices

/dev/rusbms0, /dev/
rusbms1, ..., /dev/
rusbmsn

Provides an interface for USB client device drivers
to access character (raw I/O access and control
functions).

/dev/usbms0, /dev/
usbms1, ..., /dev/
usbmsn

Provides an interface for USB client device drivers
to access block I/O.

Kernel Services and Subsystem Operations 923

Table 2. Special files for the usbcd device driver (continued)

Device Special file Description

CD-ROM, DVD-RAM, Blu-
ray read-only devices:

/dev/rcd0, /dev/
rcd1, ..., /dev/rcdn

Provides an interface for USB client device drivers
to access character (raw I/O access and control
functions).

/dev/cd0, /dev/
cd1, ..., /dev/cdn

Provides an interface for USB client device drivers
to access block I/O.

Note: The prefix r on a special file name indicates that the drive is accessed as a raw device rather than
a block device. Performing raw I/O with a hard disk, flash drive, RDX, CD-ROM, or read/write optical drive
requires all data transfers to be in multiples of the device block size. Also, all the lseek subroutines that
are made to the raw device driver must result in a file pointer value that is a multiple of the device block
size.

USB Mouse Client Device Driver

Purpose
Supports the Universal Serial Bus (USB) mouse device.

Syntax

#include <sys/usbdi.h>

Description
The USB mouse client device driver consists of a back end that interfaces with the USB system driver
(USBD) and a front end that interfaces with an AIX application such as the X server application. The client
driver has no knowledge of the underlying USB adapter hardware. Instead, the client driver sends control
requests to the USB mouse through the USBD and receives input events through the USBD. The USB
mouse client driver supports the attachment of multiple USB mouse devices. Each device is enumerated
in the Object Data Manager (ODM) and marked available. The client driver treats all the mouse devices as
a single logical device. Input events from all the devices are sent to a single input ring.

A device special file is created for each USB mouse device. Until there is at least one USB mouse device
that is marked available, an application (typically the X server application) can open any one of the USB
mouse special files because the client driver ignores the minor number specification. A USB mouse device
that is added and configured after the open operation is automatically added to the open set. The device
special files (for example, /dev/mouse0, /dev/mouse1, and so on) are created for each USB mouse
device.

Special treatment for the mouse is provided by the USBD configuration method because of the strict
configuration and ordering rules of the graphics subsystem. When a USB host controller and a graphics
adapter are marked available, and no existing mouse is present, the USBD ensures that at least one
USB mouse instance is defined. The USB mouse client driver uses the USBD_OPEN_DEVICE_EXT ioctl
operation to open the device that generates a valid handle even when there is no USB mouse that is
attached to the system. The EAGAIN error code is returned by the USBD_OPEN_DEVICE_EXT operation
if there is no mouse device and the client driver treats the device as disconnected. When you plug in a
USB mouse, a reconnect call back operation is made to the mouse client by the USBD and the device is
initialized for the input events to flow to the X server application.

The following input device driver ioctl operations are used for the USB mouse operations:

924 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Operation Description

IOCINFO Returns a devinfo structure, which is defined in the sys/devinfo.h
header file, that describes the device. The first field of the structure
(devtype) is set to DD_INPUT; the rest of the structure is set to zero.

MQUERYID Queries mouse device identifier.

MREGRING Registers input ring.

MREGRINGEXT Registers extended input ring.

MRFLUSH Flushes input ring.

MTHRESHOLD Sets mouse reporting threshold.

MRESOLUTION Sets mouse resolution.

MSCALE Sets mouse scale factor.

MSAMPLERATE Sets mouse sample rate.

USB Tape Client Device Driver

Purpose
Supports the Universal Serial Bus (USB) protocol for sequential access tape device driver.

Syntax

#include <sys/devinfo.h>
#include <sys/usb.h>
#include <sys/tape.h>
#include <sys/usbdi.h>

Device-dependent subroutines
Most of the tape operations are implemented by using the open, close, read, and write subroutines.
However, the openx subroutine must be used if the device must be opened in the Diagnostic mode.

open and close subroutines

The openx subroutine is primarily used for the diagnostic commands and utilities. Appropriate authority
is required for to run the subroutine. If you run the openx subroutine without the required authority, the
subroutine returns a value of -1 and sets the errno global variable to a value of EPERM.

The openx subroutine enables the Diagnostic mode for the device driver and disables command-retry
logic. This action allows the ioctl operations that perform special functions that are associated with
diagnostic processing. The openx subroutine can also force-open and retain reservations.

The open subroutine applies a reservation policy that is based on the Object Data Manager (ODM)
reserve_policy attribute. The USB tape devices might not support Small Computer System Interface
(SCSI) reservation command and therefore, these commands might be ignored.

The ext parameter that is passed to the openx subroutine selects the operation to be used for the target
device. The /usr/include/sys/scsi.h file defines the possible values for the ext parameter.

The ext parameter can contain any logical combination of the following flag values:

Kernel Services and Subsystem Operations 925

Item Description

SC_FORCED_OPEN Forces access to a device by removing any type of reservation on the device
that can inhibit access. The type of action to remove the reservation depends
upon the specific type of the established reservation. If this flag is specified,
a mass storage reset command is issued for a USB tape, which is a mass
storage bulk device.

SC_DIAGNOSTIC Places the selected device in the Diagnostic mode. This mode is singularly
entrant. It means when a device is in the Diagnostic mode, SCSI
operations are performed during the open or close operations, and error
logging is disabled. In the Diagnostic mode, only the close and ioctl
operations are accepted. All other device-supported subroutines return a
value of -1 and set the errno global variable to a value of EACCES.

A device can be opened in the Diagnostic mode only if the target device is
not currently opened. If you open a device in the Diagnostic mode and the
target device is already open, the subroutine returns a value of -1 and sets
the errno global variable to a value of EACCES.

ioctl subroutine

The following ioctl operations are supported on USB tape devices:

Operation Description

IOCINFO Populates the devinfo argument that is passed by the caller with the
following values:

 devinfo.devtype = DD_SCTAPE;
 devinfo.flags = 0;
 devinfo.devsubtype = 0x00;
 devinfo.un.scmt.type = DT_STREAM;
 devinfo.un.scmt.blksize = Block Size Set for the Tape Device;

926 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Operation Description

STIOCTOP Specifies the address of a stop structure that is defined in the
src/bos/usr/include/sys/tape.h file. The operation that is found in
the st_op field in the stop structure is run st_count times, except for rewind,
erase, and retention operations.

This ioctl command supports the following operations with the respective
implementation details:

STREW
Issues the REWIND command to the tape device to rewind the tape.

STERASE
Issues the SCSI ERASE command to erase the contents of the tape
media. Erase is not allowed with a read-only tape.

STRETEN or STINSRT
Issues the SCSI LOAD command with Load and Reten bits that are set
in byte 4 of the command.

STWEOF
Writes the end-of-file mark to the tape. The Write End-of-Filemark
operation is not allowed with a read-only tape.

STDEOF
Disables the end-of-tape checking command.

STFSF
Issues the Forward Space File command. The st_count field
specifies the number of file marks that the tape advances.

STFSR
Issues the Forward Space Record command. The st_count field is
the number of records that the tape advances.

STRSF
Issues the Reverse Space File command. The st_count field is the
number of file marks that the tape reverses.

STRSR
Issues the Reverse Space Record command. The st_count field is
the number of records that the tape reverses.

STOFFL or STEJECT
Ejects the tape from the tape drive. This operation issues the SCSI LOAD
command with Load bit in byte 4 of Command Descriptor Block (CDB)
that is set to zero.

STIOCHGP
Defines the ioctl command to dynamically change the block size
for this tape device. The block size is changed for the length of the
open operation and is returned to the original values on the next open
operation. The tape is forced to BOT (beginning-of-tape) when this
operation is performed.

The parameter to this ioctl command specifies the address of a
stchgp structure that is defined in the src/bos/usr/include/sys/
tape.h file. The st_blksize field in the structure specifies the block
size value to be set.

Kernel Services and Subsystem Operations 927

Operation Description

STIOCTOP (continued) STIOCMD
When the device is successfully opened, the STIOCMD operation issues
an SCSI command to the specified tape device.

The SCSI status byte and the adapter status bytes are returned through
the arg parameter that contains the address of a scsi_iocmd structure.
This structure is defined in the /usr/include/sys/scsi_buf.h file.
The STIOCMD operation receives the SCSI command in the scsi_cdb
section of the scsi_iocmd structure and issues it to the USB tape
device. If the STIOCMD operation fails, the subroutine returns a value
of -1 and sets the errno global variable to a nonzero value. In this case,
the caller must evaluate the returned status bytes to determine the cause
of operation failure and the recovery actions.

The version, command_length, and timeout_value values that are
passed by the user is validated and error value EINVAL is returned if they
are not valid.

If you transfer more than 1 MB of the maximum I/O transfer size, the
subroutine returns a value of -1 and sets the errno global variable to a
value of EINVAL.

On a check condition, the following error status values are set in the
sc_passthru structure:

 status_validity = SC_SCSI_ERROR
 scsi_bus_status = SC_CHECK_CONDITION
 adap_set_flags will have SC_AUTOSENSE_DATA_VALID flag set.

The following example is a pseudo code to issue the STIOCMD operation
to the USB tape to issue an INQUIRY SCSI command:

 struct scsi_iocmd cmd;
 char inq_data[255];
 char sense_data[255];
..
 fd = open(“/dev/rmt0”, O_RDWR);
..
 memset(&cmd, '\0', sizeof(struct sc_passthru));
 cmd.version = SCSI_VERSION_1;
 cmd.timeout_value = 30;
 cmd.command_length = 6;
 cmd.autosense_length = 255;
 cmd.autosense_buffer_ptr = &sense_data[0];
 cmd.data_length = 0xFF;
 cmd.buffer = inq_data;

 cmd.flags = B_READ;

 cmd.scsi_cdb[0] = SCSI_INQUIRY;
 cmd.scsi_cdb[1] = (0x00 | vpd); /* Standard Inquiry – vpd=1
 for Extended Inquiry */
 cmd.scsi_cdb[2] = page_code; /* Page Code – valid if vpd=1 */
 cmd.scsi_cdb[3] = 0x00;
 cmd.scsi_cdb[4] = 0xFF;
 cmd.scsi_cdb[5] = 0x00;

 if ((rc=ioctl(fd, STIOCMD, &cmd)) != 0){
 if (cmd.adap_set_flags & SC_AUTOSENSE_DATA_VALID) {
 /* look at sense data */
 } /* end SC_AUTOSENSE_DATA_VALID */

 printf("STPASSTHRU: Ioctl FAIL errno %d\n",errno);
 printf("status_validity: %x, scsi_status: %x, adapter_status:%x\n",
 cmd.status_validity, cmd.scsi_bus_status, cmd.adapter_status);
 printf("Residual: %x\n", cmd.residual);
 exit(-1);
 } else {
 printf("STPASSTHRU : Ioctl PASS\n");
 printf("status_validity: %x, scsi_status: %x, adapter_status:%x\n",
 cmd.status_validity, cmd.scsi_bus_status, cmd.adapter_status); }

928 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Operation Description

STPASSTHRU Takes the SCSI command in the scsi_cdb section of the sc_passthru
structure and issues it to the USB tape driver. This operation is similar to the
STIOCMD ioctl operation with the only exception of additional informative
fields in the sc_passthru structure that provides more information on the
error.

The following example is a pseudo code to issue the STPASSTHRU operation
to the USB tape to issue an INQUIRY SCSI command:

 struct sc_passthru cmd;
 char inq_data[255];
 char sense_data[255];
..
 fd = open(“/dev/rmt0”, O_RDWR);
..
 memset(&cmd, '\0', sizeof(struct sc_passthru));
 cmd.version = SCSI_VERSION_1;
 cmd.timeout_value = 30;
 cmd.command_length = 6;
 cmd.autosense_length = 255;
 cmd.autosense_buffer_ptr = &sense_data[0];
 cmd.data_length = 0xFF;
 cmd.buffer = inq_data;

 cmd.flags = B_READ;

 cmd.scsi_cdb[0] = SCSI_INQUIRY;
 cmd.scsi_cdb[1] = (0x00 | vpd); /* Standard Inquiry – vpd=1
 for Extended Inquiry */
 cmd.scsi_cdb[2] = page_code; /* Page Code – valid if vpd=1 */
 cmd.scsi_cdb[3] = 0x00;
 cmd.scsi_cdb[4] = 0xFF;
 cmd.scsi_cdb[5] = 0x00;

 if ((rc=ioctl(fd, STPASSTHRU, &cmd)) != 0){
 if (cmd.adap_set_flags & SC_AUTOSENSE_DATA_VALID) {
 /* look at sense data */
 } /* end SC_AUTOSENSE_DATA_VALID */

 printf("STPASSTHRU: Ioctl FAIL errno %d\n",errno);
 printf("status_validity: %x, scsi_status: %x, adapter_status:%x\n",
 cmd.status_validity, cmd.scsi_bus_status, cmd.adapter_status);
 printf("Residual: %x\n", cmd.residual);
 exit(-1);
 } else {
 printf("STPASSTHRU : Ioctl PASS\n");
 printf("status_validity: %x, scsi_status: %x, adapter_status:%x\n",
 cmd.status_validity, cmd.scsi_bus_status, cmd.adapter_status);
 }

Error Conditions for USB Tape Client Device Driver
In addition to the listed errors, the ioctl, open, read, and write subroutines for USB tape device are
unsuccessful in the following circumstances:

Value Description

EAGAIN Indicates that an attempt is made to open a device, which is
already open.

EBUSY Indicates that the target device is reserved by another initiator.

EINVAL • Indicates that the O_APPEND value is supplied as the mode in
which the device is to be opened.

• Indicates that the nbyte parameter that is supplied by a read or
write operation is not a multiple of the block size.

• Indicates that a parameter to an ioctl operation is not valid.
• Indicates that the requested ioctl operation is not supported

on the current device.

Kernel Services and Subsystem Operations 929

Value Description

EIO • Indicates that the tape drive is reset or the tape is changed.
This error is returned during the open operation if the tape is
positioned beyond the beginning of the tape upon closing as a
result of the previous operation to the tape.

• Indicates that the device cannot space forward or reverse the
number of records that is specified by the st_count field before
it encounters an end-of-media (EOM) or a file mark.

EMEDIA Indicates an open operation is attempted for an adapter that
already has the maximum permissible number of opened devices.

ENOTREADY Indicates that there is no tape in the drive or the drive is not ready.

ENXIO Indicates that there was an attempt to write to a tape, which has
already reached EOM.

EPERM Indicates that the subroutine requires appropriate authority.

ETIMEDOUT Indicates that a command has timed out.

EWRPROTECT • Indicates that an open operation is attempted for the read/write
mode on a read-only tape.

• Indicates that an ioctl operation, which affects the media, was
attempted on a read-only tape.

Reliability and serviceability information

The following errors are returned from the tape devices:

Error Description

ABORTED COMMAND Indicates that the device ended the command.

BLANK CHECK Indicates that a read command encountered a blank tape.

DATA PROTECT Indicates that a write operation was attempted on a write-
protected tape.

GOOD COMPLETION Indicates the command completed successfully.

HARDWARE ERROR Indicates that an unrecoverable hardware failure occurred during
the command execution or during a self-test.

ILLEGAL REQUEST Indicates an invalid command or an invalid command parameter.

MEDIUM ERROR Indicates that the command ended with an unrecoverable media
error condition. This condition can be caused by a tape flaw or a
dirty head.

NOT READY Indicates that the logical unit is offline.

RECOVERED ERROR Indicates the command is successful after some recovery
operations were applied.

UNIT ATTENTION Indicates that the device is reset or the power is turned on.

Medium, hardware, and unsuccessful command errors from the preceding list must be logged every time
they occur. The ABORTED COMMAND error might be recoverable, but the error is logged if recovery fails.

930 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

For the RECOVERED ERROR and recovered ABORTED COMMAND error types, thresholds are maintained;
when they are exceeded, an error is logged. The thresholds are then cleared.

/* Bulk transfer cmd and status blocks */
typedef struct mstor_cbw {
 uint32_t cbw_signature; /* Always "USBC" little endian */
 uint32_t cbw_tag; /* Command identification */
 fld32_t cbw_dlen; /* Data length */
 uchar cbw_flags; /* Indicates data in or data out */
 uchar cbw_lun; /* Logical unit number, 0-15 */
 uchar cbw_cblen; /* Significant bytes of the cmd blk */
 uchar cbw_cb[16]; /* Command block itself */
 uchar cbw_rsvd;
} mstor_cbw_t;

/* For error logging */
struct usbtape_err_rec {
 struct err_rec0 log;
 uint cmd_error;
 mstor_cbw_t cbw;
 char sense_data[168];
 uint dd1; /* reserved for dd use */
 uint dd2; /* reserved for dd use */
 uint dd3; /* reserved for dd use */
 uint dd4; /* reserved for dd use */
 uint dd5; /* reserved for dd use */
 uint dd6; /* reserved for dd use */
 uint dd7; /* reserved for dd use */
 uint dd8; /* reserved for dd use */
};

LABEL: SC_TAPE_ERRx
IDENTIFIER: xxxxxxxx
Date/Time: Thu Mar 12 05:20:27 CDT 2009
Sequence Number: 3829
Machine Id: 0000097AD400
Node Id: sitar04
Class: H
Type: PERM
Resource Name: rmt0
Resource Class: tape
Resource Type: 0806500c
Location:

Description
Probable Causes
Failure Causes

 Recommended Actions

Detail Data

SENSE DATA
1111 1111 2222 2222 3333 3333 4444 4444 5566 7788 8888 8888 8888 8888 8888 8888
8888 8899 aaaa kkaa aaaa aaaa aaaa aaaa ccqq aaaa aaaa aaaa aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa bbbb bbbb cccc cccc dddd dddd

Data Representation Legend

 cmd_error 1 Command Error Value
(cmd_error values can be negative which are logged as 2's complement.
 For these USB specific error values refer below or /usr/include/sys/usbdi.h.
 For error values which are positive Please refer to /usr/include/sys/errno.h file for error
description)

Bulk transfer Command and Status Blocks
 cbw_signature 2 Always .USBC. in ASCII – “5553 4243”
 cbw_tag 3 Command Identification
 cbw_dlen 4 Data Length
 cbw_flags 5 Indicates Data IN or OUT
 cbw_lun 6 LUN Id
 cbw_cblen 7 CDB (Command Descriptor Bytes) length
 cbw_cb 8 CDB
 cbw_rsvd 9 Reserved

Sense data
 Sense data a

Kernel Services and Subsystem Operations 931

 Sense key k
 ASC c
 ASCQ q
 Read Transfer Count b In bytes
 Write Transfer Count c In bytes
 Location d Device Driver log location

Note: Device-related adapter errors are logged every time the errors occur.

Error record values for tape device errors

The following table lists the fields that are defined in the error record template for tape device errors:

Error ID Description

SC_TAPE_ERR1 Permanent tape error. This error is logged when tape medium error is
encountered.

SC_TAPE_ERR2 Permanent tape hardware error. This error is logged when tape hardware
error is encountered or command is aborted by the drive and all attempts
to resolve the error have failed.

SC_TAPE_ERR3 Temporary tape drive failure. This error is not logged in Universal Serial
Bus (USB) tape driver.

SC_TAPE_ERR4 Permanent tape drive failure. This error is logged when adapter failure is
detected and all attempts have failed.

SC_TAPE_ERR5 Unknown tape error. This error is logged when tape returns a check
condition but the sense data does not contain valid information.

SC_TAPE_ERR6 Temporary tape operation error. Tape drive needs to be cleaned.

SC_TAPE_ERR7 Informational error. Remote Access Service (RAS) related error logs due
to internal driver sanity check failures.

SC_TAPE_ERR8 Temporary tape drive failure. This error is not logged in USB tape driver.

Error record values for tape device media errors

The following table lists the fields that are defined in the error record template for tape device media
errors:

Item Description

Comment The tape media error.

Class A value of H that indicates a hardware error.

Report A value of True that indicates this error must be included when an error
report is generated.

Log A value of True that indicates an error log entry must be created when
this error occurs.

Alert A value of False that indicates this error cannot be alerted.

Err_Type A value of Perm that indicates a permanent failure.

Err_Desc A value of 1332 that indicates a tape operation failure.

Prob_Causes A value of 5003 that indicates tape media.

User_Causes A value of 5100 that indicates an error with the tape device and a value
of 7401 that indicates an error with the defective media.

932 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

User_Actions A value of 1601 that indicates that the removable media must be
replaced and the operation must be tried again.

Or, it equals a value of 0000 that indicates that problem determination
procedures must be performed.

Inst_Causes None.

Inst_Actions None.

Fail_Causes A value of 5003 that indicates tape media.

Fail_Actions A value of 1601 that indicates that the removable media must be
replaced and the operation must be tried again.

Or, it equals a value of 0000 that indicates that problem determination
procedures must be performed.

The Detail_Data field contains the command type, device and adapter status, and the request-sense
information from the particular device in error. The Detail_Data field is contained in the err_rec
structure. This structure is defined in the /usr/include/sys/errids.h file.

Error record values for tape or hardware aborted command errors

The following fields in the err_hdr structure are defined in the /usr/include/sys/erec.h file for
hardware errors and aborted command errors:

Item Description

Comment A value of tape hardware or aborted command error.

Class A value of H that indicates a hardware error.

Report A value of True that indicates this error must be included when an error
report is generated.

Log A value of True that indicates an error log entry must be created when
this error occurs.

Alert A value of FALSE that indicates this error cannot be alerted.

Err_Type A value of Perm that indicates a permanent failure.

Err_Desc A value of 1331 that indicates a tape drive failure.

Prob_Causes A value of 6314 that indicates a tape drive error.

User_Causes None.

User_Actions A value of 0000 that indicates that problem determination procedures
must be performed.

Inst_Actions None.

Fail_Causes A value of 5003 that indicates the failure case is the tape and a value of
6314 that indicates the failure case is the tape drive.

Fail_Actions A value of 0000 that indicates that problem determination procedures
must be performed.

The Detail_Data field contains the command type, device and adapter status, and the request-sense
information from the particular device in error. The Detail_Data field is contained in the err_rec
structure. This structure is defined in the /usr/include/sys/errids.h file. The usbtape_err_rec
structure describes information that is contained in the Detail_Data field.

Kernel Services and Subsystem Operations 933

Error record values for tape-recovered error threshold exceeded

The following fields are defined in the err_hdr structure that are defined in the /usr/include/sys/
erec.h file for recovered errors that have exceeded the threshold counter:

Item Description

Comment Indicates that the threshold for the tape-recovered errors is exceeded.

Class A value of H that indicates a hardware error.

Report A value of True that indicates this error must be included when an error
report is generated.

Log A value of True that indicates an error-log entry must be created when
this error occurs.

Alert A value of False that indicates this error cannot be alerted.

Err_Type A value of TEMP that indicates a temporary failure.

Err_Desc A value of 1331 that indicates a tape drive failure.

Prob_Causes A value of 6314 that indicates the probable cause is the tape drive.

User_Causes A value of 5100 that indicates the media is defective and a value of 7401
that indicates the read/write head is dirty.

User_Actions A value of 1601 that indicates that the removable media must be
replaced and the operation must be tried again.

Or, it equals a value of 0000 that indicates that problem determination
procedures must be performed.

Inst_Causes None.

Inst_Actions None.

Fail_Causes A value of 5003 that indicates the failure cause is the tape and a value of
6314 that indicates the failure cause is tape drive.

Fail_Actions A value of 0000 that indicates problem-determination procedures must
be performed.

The Detail_Data field contains the command type, device and adapter status, and the request-sense
information from the particular device in error. This field is contained in the err_rec structure. The
err_rec structure is defined in the /usr/include/sys/errids.h file. The Detail_Data field
also specifies the error type of the threshold exceeded. The usbtape_err_rec structure describes
information contained in the Detail_Data field.

Error record values for tape USB adapter-detected errors

The following fields in the err_hdr structure are defined in the /usr/include/sys/erec.h file for
adapter-detected errors:

Item Description

Comment A tape Fibre Channel adapter-detected error.

Class A value of H that indicates a hardware error.

Report A value of True that indicates this error must be included when an error
report is generated.

Log A value of True that indicates an error log entry must be created when
this error occurs.

934 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Item Description

Alert A value of FALSE that indicates this error cannot be alerted.

Err_Type A value of PERM that indicates a permanent failure.

Err_Desc A value of 1331 that indicates a tape drive failure.

Prob_Causes The values of 3300 that indicates adapter failure and a value of 6314
that indicates tape drive failure.

User_Causes None.

User_Actions A value of 0000 that indicates that problem determination procedures
must be performed.

Inst_Causes None.

Inst_Actions None.

Fail_Causes A value of 3300 that indicates adapter failure and a value of 6314 that
indicates tape drive failure.

Fail_Actions A value of 0000 that indicates problem-determination procedures must
be performed.

The Detail_Data field contains the command type and adapter status. This field is contained in
the err_rec structure that is defined by the /usr/include/sys/err_rec.h file. Request-sense
information is not available with this type of error. The usbtape_err_rec structure describes
information contained in the Detail_Data field.

Error record values for tape drive cleaning errors

Some tape drives return errors when they need cleaning. Errors that occur when the drive needs cleaning
are grouped under this class.

Item Description

Comment Indicates that the tape drive needs cleaning.

Class A value of H that indicates a hardware error.

Report A value of True that indicates this error must be included when an error
report is generated.

Log A value of True that indicates an error log entry must be created when
this error occurs.

Alert A value of FALSE that indicates this error cannot be alerted.

Err_Type A value of TEMP that indicates a temporary failure.

Err_Desc A value of 1332 that indicates a tape operation error.

Prob_Causes A value of 6314 that indicates that the probable cause is the tape drive.

User_Causes A value of 7401 that indicates a dirty read/write head.

User_Actions A value of 0000 that indicates that problem determination procedures
must be performed.

Inst_Causes None.

Inst_Actions None.

Fail_Causes A value of 6314 that indicates that the cause is the tape drive.

Kernel Services and Subsystem Operations 935

Item Description

Fail_Actions A value of 0000 that indicates problem-determination procedures must
be performed.

The Detail_Data field contains the command type and adapter status, and also the request-sense
information from the particular device in error. This field is contained in the err_rec structure that
is defined by the /usr/include/sys/errids.h file. The usbtape_err_rec structure describes
information contained in the Detail_Data field.

Error record values for unknown errors

Errors that occur for unknown reasons are grouped in this class. Data-protect errors fall into this class.
These errors, which are detected by the tape device driver, are never seen at the tape drive.

The err_hdr structure for unknown errors describes the following fields:

Item Description

Comment A tape unknown error.

Class All error classes.

Report A value of True that indicates this error must be included when an error
report is generated.

Log A value of True that indicates an error log entry must be created when
this error occurs.

Alert A value of FALSE that indicates this error cannot be alerted.

Err_Type A value of UNKN that indicates the type of error is unknown.

Err_Desc A value of 0xFE00 that indicates the error description is unknown.

Prob_Causes Specifies the following values:

• 3300, which indicates a tape drive failure
• 5003, which indicates a tape failure
• 6314, which indicates an adapter failure

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes A value of 0xFFFF that indicates the causes for failure are unknown.

Fail_Actions A value of 0000 that indicates that problem-determination procedures
must be performed.

The Detail_Data field contains the command type and adapter status, and the request-sense
information from the particular device in error. The Detail_Data field is contained in the err_rec
structure. This field is contained in the /usr/include/sys/errids.h file. The usbtape_err_rec
structure describes information that is contained in the Detail_Data field.

Refer to the SCSI specification for the applicable device for the format of the particular request-sense
information.

936 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

USBD Protocol Driver

Purpose
Supports the USB system driver (USBD) protocol.

Syntax

#include <sys/usb.h>
#include <sys/usbdi.h>
#include <sys/hubClass.h>
#include <sys/hidClass.h>

Description
The USBD protocol driver is the layer between the host controller the and client drivers. The /dev/
usb0 special file provides interface to allow communication between the host controller and the client
drivers. This driver is responsible for the device communication to appropriate host controller. The device
connection, disconnection, and re-connection are performed at this level. There is no parent for this
device and the device's CuDv entry is created by the /usr/lib/methods/startusb script that is
invoked from the ConfigRules field.

The /usr/lib/drivers/usb/usbd driver implements the USB protocol and the /usr/lib/methods/
cfgusb file is the usbd file's configuration method. The USB protocol driver updates the speed ODM
attribute that is specific to each individual USB devices. The speed is updated when the USB devices are
enumerated during the AIX configuration.

Device-dependant subroutines
The USBD protocol driver supports only the open, close, and ioctl subroutines. The read and write
subroutines are not supported.

open and close subroutines

The open subroutine associates a specific device number that is passed in as a parameter to the open
system call with the internal adapter device structure. If it finds an adapter structure, it verifies that the
corresponding adapter device is configured and sets the state as open. Otherwise, the subroutine returns
an error.

ioctl subroutine

The ioctl operations for USBD protocol drivers are exposed to kernel and user environments.

USBD ioctl operations

The following USBD ioctl operations are exposed to kernel threads that are used to open a specific USB
logical device:

• USBD_OPEN_DEVICE
• USBD_OPEN_DEVICE_EXT

The following USBD ioctl operations are exposed to user threads:

Operation Description

USBD_REGISTER_MULTI
_HC

Registers all the USB host controllers with USB system driver.

USBD_REGISTER_SINGLE
_HC

Registers only a single USB host controller with USB system driver.

USBD_ENUMERATE_DEVI
CE

Gets a list of USB logical devices (excluding hubs) that are connected to a
host controller.

Kernel Services and Subsystem Operations 937

Operation Description

USBD_ENUMERATE_ALL Gets a list of all the USB logical devices that are connected to a host
controller.

USBD_ENUMERATE_CFG Gets a list of USB logical devices that are connected to a host controller
along with the client device selection information.

USBD_GET_DESCRIPTOR
S

Gets standard USB descriptors for a logical device.

USBD_CFG_CLIENT_UPDA
TE

Updates client connection information.

Summary of USBD error conditions

Possible errno values for the adapter device driver are as follows:

Value Description

EACCES An openx subroutine was attempted to run while the adapter had one or
more devices in use.

EEXIST The device is already configured.

EINVAL An invalid parameter or that the device is not opened.

EIO • The command failed due to an error detected.
• The device driver was unable to pin code.
• A kernel service failed or an unrecoverable I/O error occurred.

ENOCONNECT A USB bus fault occurred.

ENODEV The target device cannot be selected or is not responding.

ENOMEM The command cannot be completed because of an insufficient amount of
memory.

ENXIO The requested ioctl operation is not supported by this adapter.

EPERM The caller does not have the required authority.

USBD ioctl Operations
There is a set of input and output control (ioctl) system calls to control I/O operations for Universal Serial
Bus (USB) devices.

An ioctl call contains the following parameters:

• An open file descriptor.
• A request code.
• An integer value, possibly unsigned that is assigned to the driver.
• A pointer to data that is available in the host controller structure.

USBD_OPEN_DEVICE

Purpose
Opens a specific Universal Serial Bus (USB) logical device.

938 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Syntax

int fp_ioctl (file, USBD_OPEN_DEVICE, arg, ext)

Parameters
Item Description

file File descriptor that is obtained when the USB system driver (USBD) special file was
opened.

arg Address of an initialized DEVOPEN structure.

ext Not used and must be set to zero.

Description
The client driver uses this fp_ioctl operation to establish a connection to a specific USB logical device
that is identified by the information within the DEVSELECTOR structure. A USB logical device can be
opened by only one client driver at a time. If a client opens the device, it must connect to a pipe before
the data can flow to or from the device. This data includes, but is not limited to, the default control
pipe. The client driver must close any device that it opened by calling the usbdCloseDevice operation
when it no longer wants to manage the device. Typically, a client driver must open the USBD, issue a
USBD_OPEN_DEVICE ioctl operation to open a specific USB device, and close the USBD. Then, the
client must communicate with the USBD by using the handle that is returned by the USBD_OPEN_DEVICE
ioctl operation and the interface macros that are located within the usbdi.h file. To properly track the
USB device when the device needs to be moved or replaced, the client must open the device when the
client is configured, and the client must close the USB device when the client is unconfigured.

Execution environment
This function can be called from the kernel process environment only.

Return values
Value Description

0 Success.

Nonzero values Failure.

USBD_OPEN_DEVICE_EXT

Purpose
Opens a specific Universal Serial Bus (USB) logical device.

Syntax

int fp_ioctl (file, USBD_OPEN_DEVICE_EXT, arg, ext)

Parameters
Item Description

file File descriptor that is obtained when the USBD special file was opened.

arg Address of an initialized DEVOPEN structure.

Kernel Services and Subsystem Operations 939

Item Description

ext Not used and must be set to zero.

Description
The client driver uses this fp_ioctl operation to establish a connection to a USB logical device that is
identified by the information within the DEVSELECTOR structure. The ioctl operation is similar to the
USBD_OPEN_DEVICE ioctl operation except that a client handle is allocated even when a USB logical
device that matches the criteria that is specified in the DEVSELECTOR structure is not available. The USB
system driver (USBD) returns the EAGAIN error value to indicate this condition. When the EAGAIN value
is returned, the client driver must treat the device as disconnected and wait for connection before it
proceeds with device initialization.

Execution environment
This function can be called from the kernel process environment only.

Return values
Value Description

0 Success.

EAGAIN No device matched the criteria. The client handle is valid but the device is
treated as being in the disconnected state.

All other values Failure.

USBD_REGISTER_MULTI_HC

Purpose
Registers the Universal Serial Bus (USB) host controller with the USB system driver (USBD).

Syntax

int ioctl (file, USBD_REGISTER_MULTI_HC, arg)

Parameters
Item Description

file File descriptor that is obtained when the USBD special file was opened.

arg Pointer to the information structure of the USB host controller.

Description
This ioctl operation registers all the USB host controllers that are listed in the usb_adapterhc_info
structure with the USBD and allows the clients to communicate to the devices that are connected
to the controller. There is no specific ioctl operation to unregister a hardware controller. It stays
registered until either the USBD is unconfigured or the host controller is unconfigured. In the latter
case, the host controller driver requests the USBD to unregister the host controller through the
usbdReqHCunregister call vector. This ioctl operation must be invoked only by the cfgusb
configuration method during enumeration and individual USB adapter configuration methods must use
the USBD_REGISTER_SINGLE_HC operation to register single host controller instance.

940 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Execution environment
This function can be called from the user process environment only.

Return values
Value Description

0 Success.

-1 Failure. Check the errno value for specific failure causes.

USBD_REGISTER_SINGLE_HC

Purpose
Registers single Universal Serial Bus (USB) host controller with the USB system driver (USBD).

Syntax

int ioctl (file, USBD_REGISTER_SINGLE_HC, arg)

Parameters
Item Description

file File descriptor that is obtained when the USBD special file was opened.

arg Pointer to the integer that contains 32-bit devno structure of the USB host
controller.

Description
This ioctl operation registers the specified host controller with the USBD and allows clients to
communicate to the devices that are connected to the controller. There is no specific ioctl operation
to unregister a hardware controller. It stays registered until either the USBD is unconfigured or the host
controller is unconfigured. In the latter case, the host controller driver requests the USBD to unregister
the host controller through the usbdReqHCunregister call vector.

Execution environment
This function can be called from the user process environment only.

Return values
Value Description

0 Success.

-1 Failure. Check the errno value for specific failure causes.

USBD_ENUMERATE_DEVICE

Purpose
Gets a list of USB logical devices (excluding hubs) that are connected to a host controller.

Kernel Services and Subsystem Operations 941

Syntax

int ioctl (file, USBD_ENUMERATE_DEVICE, arg)

Parameters
Item Description

file File descriptor that is obtained when the USBD special file was opened.

arg Address of the USBENUM structure that is aligned on a 4-byte boundary.

Description
This ioctl operation returns a description of each logical USB device that is connected to the specified
host controllers without any hubs. The description is returned in the form of a usb_device_t structure.
The array of returned structures is encapsulated within a USBENUM structure whose length is specified by
the caller. When this function is started, the devno and buffSize fields within the USBENUM structure
must be initialized. The devno field must contain the 32-bit devno value of the host controller to be
enumerated while the buffSize field must indicate the number of bytes that are available to buffer the
returned array of usb_device_t structures. If the area is too small, the number of returned structures
is truncated to fit the available space. The caller can detect this condition by noting that the number of
returned usb_device_t structures is less than the number of discovered logical devices.

Execution environment
This function can be called from the user process environment only.

Return values
Value Description

0 Success.

-1 Failure. Check the errno value for specific failure causes.

USBD_ENUMERATE_ALL

Purpose
Gets a list of all the Universal Serial Bus (USB) logical devices that are connected to a host controller.

Syntax

int ioctl (file, USBD_ENUMERATE_ALL, arg)

Parameters
Item Description

file File descriptor that is obtained when the USB system driver (USBD) special file was
opened.

arg Address of the USBENUM structure that is aligned with a 4-byte boundary.

942 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Description
This ioctl operation behaves in the same manner as the USBD_ENUMERATE_DEVICE ioctl operation
except that it includes all hubs other than the root hub.

Execution environment
This function can be called from the user process environment only.

Return values
Value Description

0 Success.

-1 Failure. Check the errno value for specific failure causes.

USBD_ENUMERATE_CFG

Purpose
Gets a list of Universal Serial Bus (USB) logical devices that are connected to a host controller.

Note: This ioctl operation is used only by the USB system device driver’s configuration method.

Syntax

int ioctl (file, USBD_ENUMERATE_CFG, arg)

Parameters
Item Description

file File descriptor that is obtained when the USB system driver (USBD) special file was
opened.

arg Address of the USBENUMCFG structure that is aligned with a 4-byte boundary.

Description
This ioctl operation behaves in the same manner as the USBD_ENUMERATE_DEVICE ioctl operation
except that it also returns the client device selection information. The selection information uniquely
identifies device-client pairing and allows the configuration method to correlate enumerated devices with
their Object Data Manager (ODM) instances.

Execution environment
This function can be called from the user process environment only.

Return values
Value Description

0 Success.

-1 Failure. Check the errno value for specific failure causes.

Kernel Services and Subsystem Operations 943

USBD_GET_DESCRIPTORS

Purpose
Gets standard Universal Serial Bus (USB) descriptors for a logical device.

Syntax

int ioctl (file, USBD_GET_DESCRIPTORS, arg)

Parameters
Item Description

file File descriptor that is obtained when the USB system driver (USBD) special file was
opened.

arg Address of the USBDGD structure that is aligned on a 4-byte boundary.

Description
After a successful return from the ioctl operation, a DESCIDX structure is placed at the start of the
specified buffer that is followed by the standard device descriptor, configuration descriptor, interface
descriptor, endpoint descriptors, human interface device (HID) descriptor (if an HID device is used), hub
descriptor (if hub device is used), and string descriptors of the specified logical USB device. The DESCIDX
structure provides direct addressability to the individual descriptors. String descriptors are reformed to
null terminated American Standard Code for Information Interchange (ASCII) strings for ease of use.
All other descriptors adhere to the standard USB format. Since the size of the returned data is typically
unknown, the ioctl operation must be called twice. The first time that you call the ioctl operation, set
the bufferLength field equal to zero and the buffer field to null. The ioctl operation might fail with
the ENOSPC error, however the minBuffLength value is returned that indicates the required size of the
buffer. The caller can then allocate the buffer and call the ioctl operation again with the bufferLength
field set to the correct value.

Execution environment
This function can be called from the user process environment only.

Return values
Value Description

0 Success.

-1 Failure. Check the errno value for specific failure causes.

USBD_CFG_CLIENT_UPDATE

Purpose
Updates the client connection information.

Note: This ioctl operation is used only by the USB system driver (USBD) configuration method.

Syntax

int ioctl (file, USBD_CFG_CLIENT_UPDATE, arg)

944 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Parameters
Item Description

file File descriptor that is obtained when the USBD special file was opened.

arg Address of the USBENUMCFG structure that is aligned with a 4-byte boundary.

Description
This ioctl operation is used by the USBD’s defined children configuration procedure to update the
device selection criteria that is used by the client driver. Specifically, it updates the hcdevno, addr, cfg,
and intfc fields to reflect the current values for the device that are managed by the client.

Execution environment
This function can be called from the user process environment only.

Return values
Value Description

0 Success.

-1 Failure. Check the errno value for specific failure causes.

USBLIBDD Passthru Driver

Purpose
Supports the application drivers that are written by using the libusb APIs.

Syntax

#include <usbdi.h>
#include <usb.h>

Description
The libusb passthru driver is the layer between the user-level application driver and the USB protocol
driver (USBD). The /dev/usblibdevX special file provides interface to libusb applications to communicate
directly with the device through the passthru driver. The passthru driver converts the libusb APIs to the
USBD function vectors that interact with the appropriate Universal Serial Bus (USB) host controllers such
as Open Host Controller Interface (OHCI), Enhanced Host Controller Interface (EHCI), or eXtensible Host
Controller Interface (xHCI).

The libusb devices are created in the /dev file system irrespective of the presence of built-in AIX client
USB drivers. The parent for this device is the usb0 and the libusb devices that are enumerated by
the /usr/lib/methods/cfgusb file.

The /usr/lib/drivers/usb/usblibdd driver implements the libusb passthru driver. The passthru driver
uses the /usr/lib/methods/cfgusblibke configuration method. These devices have two Object Data
Manager (ODM) attributes called usbdevice and speed. If a device belongs to standard classes such
as Mass Storage, Tape, human interface device (HID), these devices are claimed by the built-in USB client
driver of the AIX operating system. In such case, a libusb device is created as a pseudo device. The
usbdevice attribute identifies the device of the client driver that is associated with a pseudo device. If
a device belongs to other classes and if client drivers are not associated with the device, the usbdevice
attribute is not valid.

Kernel Services and Subsystem Operations 945

For every libusb device, which has an AIX operating system built-in client driver, a new attribute that
is called usbdevice is created in the ODM to identify the client driver device that is associated with the
libusb device. The following example shows how the device is displayed:

lsattr -El usblibdev0

speed highspeed USB Protocol Speed of Device False

usbdevice usbms0 Actual USB Device with Client Driver False

In this example, the USB device that is connected is a flash drive, which has the AIX operating system
built-in /usr/lib/drivers/usb/usbcd Mass Storage Class client driver. The device of the client driver
associated with the usblibdev0 device is usbms0.

By default, this device is claimed by the built-in client driver. The same device is also claimed by the
libusb passthru driver. Therefore, for one physical USB device, you have two OS devices (usbms0 and
usblibdev0) located in the /dev file system after you run the configuration method of the parent device,
which is USBD protocol driver.

Note: Only the built-in client driver or the libusb passthru driver can use this device at a time. You cannot
run simultaneous operations on both drivers.

Use the following command to display the USB devices in this scenario:

lsdev -C | grep usb

An output similar to the following example is displayed:

usb0 Available USB System Software

usbhc0 Available 00-00 PCIe2 USB 3.0 xHCI 4-Port Adapter (4c10418214109e04)

usblibdev0 Available USB Library Interface Device

usbms0 Available 0.3 USB Mass Storage

In the this example, a USB encryption device (vendor-defined class) is connected to the AIX system. The
device does not have a built-in client driver. This device is only claimed by the libusb passthru driver and
only a single device is displayed. Another example to display the USB devices follows:

lsdev -C | grep usb

An output similar to the following example is displayed:

usb0 Available USB System Software

usbhc0 Available 00-00 PCIe2 USB 3.0 xHCI 4-Port Adapter (4c10418214109e04)

usblibdev1 Available 0.4 USB Library Interface Device

In this example, usblibdev1 device is the encryption device of the libusb driver.

Device-dependant subroutines
The libusb passthru driver supports the following subroutines:

• open
• close
• ioctl

Note: The read and write subroutines are not supported.

open and close subroutines

946 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

The open and close subroutines are not directly supported on usblibdevX devices. You can open and
close subroutines by using the libusb APIs.

ioctl subroutine

The libusb driver exposes the ioctl subroutine to the libusb user environments. The libusb
implementation of operating system backend use these ioctl subroutines. The ioctl subroutine acts as
a pass through between the application and the protocol driver.

The following USBD ioctl operations are supported by the libusb drivers:

Table 3. USBD ioctl operations

Operations Description

USBLIB_PIPE_IO Issues I/O on the wanted endpoint through the
aix_pipeio structure.

USBLIB_HALT_CLEAR Issues a request to halt an endpoint.

USBLIB_GETIRP_STATUS Read the status of the I/O request packet (IRP)
that was issued.

USBLIB_SET_CONFIGURATION Issues a set configuration on a device.

USBLIB_CLAIM_INTERFACE Ensures sure that the interface is being used by the
libusb passthru driver.

USBLIB_RELEASE_INTERFACE Sets the interface to alternate setting value of zero.

USBLIB_SET_ALT_INTFC Sets the alternate setting on an interface.

USBLIB_RESET_DEVICE Resets on the device.

USBLIB_ABORT_IO Aborts or cancels to the submitted I/O.

USBLIB_GET_CONFIG_DESC Issues request to read the entire configuration
descriptor. If a device has X configurations, X
number of total configuration descriptor is read
and stored in a single buffer.

USBD error conditions

Possible errno values for the adapter device driver follow:

Table 4. USBD error conditions

Value Description

EAGAIN Indicates that the operation has been to retried.

EEXIST The device is already configured.

EINVAL An invalid parameter or the device is not opened.

EIO • The command failed due to an error.
• The device driver was unable to pin code.
• A kernel service failed or an unrecoverable I/O

error occurred.

ENOCONNECT A USB bus fault occurred.

ENODEV The target device cannot be selected or is not
responding.

Kernel Services and Subsystem Operations 947

Table 4. USBD error conditions (continued)

Value Description

ENOMEM The command cannot be completed because of
insufficient memory.

ENXIO The requested ioctl operation is not supported by
this adapter.

EPERM The caller does not have the required authority.

Non-responsive USB devices
USB devices that are associated to libusb applications on the AIX operating system might not respond
on non-control endpoints. This condition might be because of default behavior of AIX USB protocol driver
to send the CLEAR_FEATURE request when the USB devices are opened.

Note: The CLEAR_FEATURE request is a standard USB command to remove the halt condition on the
device.

To resolve the issues associated with the non-responsive USB devices, the following attributes must be
set:
PdAt class object

The Predefined Attribute (PdAt), object class contains an entry for each existing attribute for each
USB device. This includes information such as interrupt levels, bus I/O address ranges, baud rates,
parity settings, block sizes, and microcode file names. To initialize the PdAt class object set the
following values:

 uniquetype = "generic/usbif/usblibke"
 attribute = "<vendorid>_<productid>"
 deflt = "toggle_no"
 values = "toggle_yes,toggle_no"
 width = ""
 type = "R"
 generic = "U"
 rep = "sl"
 nls_index = 0

VendorId
Vendor ID of the USB device that can be obtained from the descriptor data of the USB device.
VendorID must be a hexadecimal number.

ProductID
Product ID of the USB device that can be obtained from the descriptor data of the USB device.
ProductID must be a hexadecimal number.

toggle_no
Indicates that the CLEAR_FEATURE request is not sent to the device during pipe initialization.

toggle_yes
Indicates the default behavior of the USB device to send the CLEAR_FEATURE request.

Note: The ODM entry must be added to each device that does not respond on non-control endpoints.

An example ODM attribute follows. This example considers the Kingston USB flash drive (DataTraveler
Ultimate G2). The vendor ID of Kingston USB flash drive is 0951 and Product ID is 1656.

PdAt:
 uniquetype = "generic/usbif/usblibke"
 attribute = "0951_1656"
 deflt = "toggle_no"
 values = "toggle_yes,toggle_no"
 width = ""
 type = "R"
 generic = "U"

948 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

 rep = "sl"
 nls_index = 0

To add predefined attributes to the PdAt object class complete the following steps:

1. Run the following command to remove a non-responsive USB device from the ODM entries.

rmdev -Rl usb0

The output might be similar to the following example:

usbms0 Defined
usblibdev0 Defined
usblibdev1 Defined
usb0 Defined

2. Add the odm PdAt entry in to a file by using any standard file edit command such as vi.
3. Run the following command.

odmadd entry

The output is not displayed.
4. Run the following command.

cfgmgr -l usb0

The output is not displayed.
5. Run the libusb application. Following example shows the execution of a USB application.

./xusb -k XXXX:YYYY
Opening device XXXX:YYYY...
found /dev/usbhc0
found 1 devices
found /dev/usbhc1
found 0 devices
found /dev/usbhc2
found 1 devices

Reading device descriptor:
 length: 18
 device class: 0
 S/N: 0
 VID:PID: XXXX:YYYY
 bcdDevice: 0303
 iMan:iProd:iSer: 1:2:0
 nb confs: 1

Reading BOS descriptor: no descriptor

Reading first configuration descriptor:
 nb interfaces: 1
 interface[0]: id = 0
interface[0].altsetting[0]: num endpoints = 1
 Class.SubClass.Protocol: 03.00.00
 endpoint[0].address: 81
 max packet size: 0008
 polling interval: 0A

Claiming interface 0...

 in aix_claim_interface

Reading string descriptors:
 String (0x01): "DeviceName"
 String (0x02): "Elitename"

Releasing interface 0...
Closing device...

Kernel Services and Subsystem Operations 949

6. Run the following command to delete the PdAt entry of the non-responsive USB device:

odmdelete -o PdAt -q 'attribute=0951_1656 and uniquetype="generic/usbif/usblibke"'

The output might be similar to the following example:

0518-307 odmdelete: 1 object deleted

950 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 2015, 2018 951

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as follows:
© (your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as the customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

952 Notices

For more information about the use of various technologies, including cookies, for these purposes,
see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies”
and the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Notices 953

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/us/en/copytrade.shtml

954 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

Index

Special Characters
__pag_getid system call 418
__pag_getname System Call 419
__pag_getvalue system call 420
__pag_setname System Call 421
__pag_setvalue system call 421
/dev/nvram special file

machine device driver and 748

A
access control lists

retrieving 692, 694
setting 670, 719, 722

acct_add_LL Kernel Service 1
acct_get_projid Kernel Service 2
acct_get_usage Kernel Service 2
acct_interval_register Kernel Service 4
acct_interval_unregister Kernel Service 4
acct_put Kernel Service 5
acct_zero_LL Kernel Service 1
adapter cards

device method guidelines for 740
adapters

bus resources 761
PdAt object class

considerations 729
add_domain_af kernel service 7
add_input_type kernel service 8
add_netisr kernel service 10
add_netopt macro 11
address families

adding 7
deleting 65
searching for 425

address ranges
pinning 371, 427, 631
setting storage protect key for 586
unpinning 372, 543, 632

address space
kernel memory

allocating 11
deallocating 12
mapping 11, 21
obtaining handles 13–15
releasing 20
unmapping 12

advanced accounting
acct_add_LL Kernel Service 1
acct_get_projid Kernel Service 2
acct_get_usage Kernel Service 2
acct_interval_register Kernel Service 4
acct_interval_unregister Kernel Service 4
acct_put Kernel Service 5
acct_zero_LL Kernel Service 1

allocate memory

allocate memory (continued)
rmalloc 468

allocated memory
freeing 637

allocating memory
rmfree 469

as_att64 kernel service
described 11

as_det64 kernel service 12
as_geth kernel service 13
as_geth64 kernel service 14
as_getsrval64 kernel service 15
as_lw_att64 Kernel Service 16
as_lw_det64 Kernel Service 18
as_lw_pool_init Kernel Service 19
as_puth64 kernel service 20
as_seth64 kernel service 21
asynchronous processing

notify routine and 175
asynchronous requests

registering 485
attach-device queue management routine 22
attrval subroutine 729
audit records

appending to 23
completing 24
initiating 24
writing 24

audit_svcbcopy kernel service 23
audit_svcfinis kernel service 24
audit_svcstart kernel service 24

B
bawrite kernel service 26
bdwrite kernel service 26
bflush kernel service 27
binding a process to a processor 28
bindprocessor kernel service 28
binval kernel service 29
blkflush kernel service 30
block I/O

buf headers
completion of 548
preparing 547

buf structures 641
calling 548
character I/O for blocks

performing 546
completion

waiting for 243
requests

completing 237
block I/O buffer cache

assigning blocks 31
assigning buffer 189
buf structures 641

Index 955

block I/O buffer cache (continued)
buffers

header address 194
purging block from 439

clearing 43
flushing 30
freeing 33
nonreclaimable blocks 29
read-ahead block 32
reading blocks into 31, 32
releasing 26
write-behind blocks 27
writing 37
writing contents asynchronously 26
zeroing-out 43

blocked processes
clearing 531

blocks
purging from buffer 439

bread kernel service 31
breada kernel service 32
brelse kernel service 33
bsr_alloc Kernel Service 34
bsr_free Kernel Service 35
bsr_query Kernel Service 36
buf headers

completion of 548
preparing 547
sending to a routine 550

buf structures 641
buffer cache 26
buffers

allocating 194
determining status 194
freeing 443
freeing buffer lists 443
header address of 194

bufx structure 644
bus interrupt levels

disabling 228
enabling 248

bus resources
allocating 730

bus special file
machine device driver 748

busresolve subroutine 730
bwrite kernel service 37
bytes

storing 499

C
caller's buffer

md_restart_block_read 391
callout table entries

registering changes in 513
cancel pending timer requests 545
cancel-queue-element queue management routine 38
cascade processing 175
CD-ROM SCSI device driver 795
cfg device method 774
cfgnadd kernel service 38
cfgncb control block

adding 38

cfgncb control block (continued)
removing 41

cfgncb kernel service 39
cfgndel kernel service 41
chan parameter 641
Change method

handling invalid attributes 772
channel numbers

finding 152
character data

reading from device 658
character device driver

character lists 646
clist structure 646

character I/O
freeing buffers 192
getting buffer addresses 190
performing for blocks 546
placing character buffers 441
placing characters 442, 444
placing characters in list 440
retrieving a character 190
retrieving from buffers 553
retrieving last character 193
retrieving multiple characters 191
uio structures 667
writing to buffers 552

character lists
removing first buffer 190
structure of 646
using 646

check-parameters queue management routine 41
chg device method 772
close subroutine

/dev/bus special file 748
/dev/nvram special file and 748
device driver 647
rmt SCSI device driver and 870
scdisk SCSI device driver and 795
SCSI adapter device driver and 785
tmscsi SCSI device driver and 882

clrbuf kernel service 43
clrjmpx kernel service 43
common_reclock kernel service 44
communication I/O device

handler
opening 396

communications device handlers
closing 397
transmitting data to 402

compare_and_swap kernel service 46
compare_and_swaplp kernel service 46
Config_Rules object class 732
Configuration Manager

rules
configuration 732

configuration notification control block 39
Configure method

and errors 774
and VPD 774
described 774
guidelines 774

contexts
saving 488, 489

956 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

conventional locks
locking 359

coprocessor_user_register kernel service 47
coprocessor_user_unregister kernel service 48
copyin kernel service 49
copying to NVAM header

md_restart_block_upd Kernel Service 392
copyinstr kernel service 50
copyout kernel service 51
cpu_speculation_barrier Kernel service 52
creatp kernel service 55
cross-memory move

performing 635
ctlinput function

invoking 424
CuAt object class

attribute information
updating 769

creating objects 769
deleting objects 769
described 734
descriptors 734
getattr subroutine 744
putattr subroutine 769
querying attributes 744

CuDep object class
descriptors 735
introduction 735

CuDv object class
descriptors 737
generating logical names 743
genminor subroutine 742
subroutines

genseq 743
CuDvDr object class

descriptors 736
genmajor subroutine 741
getminor subroutine 745
major numbers

releasing 770, 771
minor numbers

releasing 770
querying minor numbers 745
reldevno subroutine 770
relmajor subroutine 771

curtime kernel service 61
CuVPD object class

descriptors 740
introduction 740

D
d_align kernel service 62
d_alloc_dmamem kernel service 62
d_cflush kernel service 63
d_free_dmamem kernel service 78
d_map_attr kernel service 81
d_map_clear kernel service 82
d_map_disable kernel service 83
d_map_enable 84
d_map_init kernel service 84
d_map_init_ext kernel service 85
d_map_list kernel service 87
d_map_page kernel service 89

d_map_query kernel service 91
d_map_slave 93
d_roundup kernel service 108
d_sync_mem kernel service 109
d_unmap_list kernel service 110
d_unmap_page kernel service 112
d_unmap_slave 111
data

memory
moving to kernel global memory 634

moving
from kernel global memory 635

moving between VMO and buffer 575
retrieving a byte 187
sending to DLC 180
word

retrieving 188
data blocks

moving 539
ddclose entry point 647
ddconfig entry point 649
dddump entry point

calling 70
writing to a device 651

ddioctl entry point 653
ddmpx entry point 655
ddopen entry point 657
ddread entry point

reading data from a character device 658
ddrevoke entry point 660
ddselect entry point

occurring on a device 661
ddselect routine

calling fp_select kernel service 174
ddstrategy entry point

block-oriented I/O
663
calling 71

ddwrite entry point
writing to a character device 664

de-allocate resource
d_unmap_slave 111

deallocates resources
d_map_clear 82
d_unmap_list 110

def device method 778
Define method 778
del_domain_af kernel service 65
del_input_type kernel service 66
del_netisr kernel service 67
delay kernel service 65
destination addresses

locating 221
devdump kernel service 70
device attributes

creating 769
deleting 769
predefined 756
querying class 744
specific 734
updating 769
verifying ranges 729

device configuration methods
guidelines for writing 784

Index 957

device configuration subroutines
attrval 729
busresolve 730
genmajor 741
genminor 742
genseq 743
getattr 744
getminor 745
loadext 746
putattr 769
reldevno 770
relmajor 771

device driver
access

revoking 660
buf structures 641
character data

reading 658
closing 647
configuration data

requesting 649
configuring 649
data

writing 664
events

checking for 661
iodone kernel service 237
loading 747
machine

/dev/bus special file 748
/dev/nvram special file 748,
753
bus special file 748
initialization 748
overview 748
termination 748

major numbers
generating 741

memory buffers 667
multiplexed

allocating channels 655
deallocating channels 655

names
obtaining 746

performing block-oriented I/O 663
performing special operations 653
preparing for control functions 657
preparing for reading 657
preparing for writing 657
read logic

reads and writes 666
select logic

reads and writes 666
terminating 649
uio structures 666

device driver entry points
ddclose 647
ddconfig

writing to a device 649
dddump

writing to a device 651
ddioctl 653
ddmpx 655
ddopen 657

device driver entry points (continued)
ddread 658
ddrevoke 660
ddselect 661
ddstrategy 663
ddwrite 664
standard parameters 640

device driver management
dddump entry point

calling 70
ddstrategy entry point

calling 71
device entry

status 77
disk driver tasks 240
dkstat structure 238
entry points

adding 72
deleting 75
function pointers 291

exception handlers
deleting system-wide
532
system-wide 528

exception information
retrieving 195

kernel object files
loading 292
unloading 295

notification routines
adding 435
deleting 436

poll request
support for 484

processes
blocking 530
clearing blocked 531

registering asynchronous requests 485
registering notification routine 38
removing control blocks 41
select request

support for 484
statistics structures

registering 238
removal 242

symbol binding support 294
ttystat structure 238
u_error fields 199
ut_error field

setting 490
device drivers

sctape FC 862
device handlers

ending a start 401
starting network ID on 400

device methods
adapter card guidelines 740
Change 772
Configure 774
Define 778
returning errors 746
Start 784
Stop 784
Undefine 782

958 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

device numbers
finding 152

device queue management
attchq kernel service support 22
control block structure 39
detchq kernel service support 69
queue elements

placing into queue 142
waiting for 609

virtual interrupt handlers
defining 557
removing 556

device switch table
altering a 74

devices
critical resource information

storing 736
defined state

resolving attributes of 730
dependencies 735
generating minor numbers 742
intermediate

connection information 763
logical names

generating 743
major numbers

releasing 770
minor numbers

releasing 770
select request on 173
types of 764

devno parameter 640
devstrat kernel service 71
devswadd kernel service 72
devswchg kernel service 74
devswdel kernel service 75
devswqry kernel service 77
direct memory access 62
directories

creating 705
entries

reading 709
removing 716
renaming 714
unlinking 713

disable DMA
d_map_disable 83

disable_lock kernel service 79
disablement_checking_resume Kernel Service 80
disablement_checking_suspend Kernel Service 81
disk driver support 240
dkstat structure 238
DLC kernel services

fp_ioctl 157
fp_open 163
fp_write 180
trcgenkt 517

DLC management
channel

disabling 150
device manager

opening 163
file pointers

sending kernel data to 180

DLC management (continued)
trace channels

recording events 517
transferring commands to 157

DMA
disable

d_map_disable 83
enable

d_map_enable 84
DMA management

address ranges
pinning 427, 631
unpinning 632

buffer cache
maintaining 108

cache
flushing 63

cache-line size 62
processor cache

flushing 559
DMA master devices

deallocates resources
d_unmap_page 112

mapping
d_map_page 89

DMA operations
allocates and initializes resources

d_map_init 84
dmp_add kernel service 94
dmp_compext kernel service 96
dmp_compspec kernel service 96
dmp_context kernel service 104
dmp_ct kernel service 104
dmp_ctl kernel service 99
dmp_del kernel service 103
dmp_eaddr kernel service 104
dmp_errbuf kernel service 104
dmp_kernext kernel service 107
dmp_mtrc kernel service 104
dmp_pid kernel service 104
dmp_systrace kernel service 104
dmp_tid kernel service 104
dr_reconfig system call 113
DTOM kernel service 110

E
e_assert_wait kernel service 116
e_block_thread kernel service 117
e_clear_wait kernel service 117
e_sleep kernel service 118
e_sleep_thread kernel service 121
e_sleepl kernel service 120
e_wakeup kernel service 125
e_wakeup_one kernel service 125
e_wakeup_w_result kernel service 125
e_wakeup_w_sig kernel service 126
EEH Kernel Services

eeh_broadcast 127
eeh_clear 128
eeh_disable_slot 129
eeh_enable_dma 130
eeh_enable_pio 131
eeh_enable_slot 132

Index 959

EEH Kernel Services (continued)
eeh_init 133
eeh_init_multifunc 134
eeh_read_slot_state 137
eeh_reset_slot 139
eeh_slot_error 140

eeh_broadcast Kernel Service 127
eeh_clear Kernel Service 128
eeh_disable_slot Kernel Service 129
eeh_enable_dma Kernel Service 130
eeh_enable_pio Kernel Service 131
eeh_enable_slot Kernel Service 132
eeh_init Kernel Service 133
eeh_init_multifunc Kernel Service 134
eeh_read_slot_state Kernel Service 137
eeh_reset_slot Kernel Service 139
eeh_slot_error Kernel Service 140
EHCI 895
enable DMA

d_map_enable 84
End of Interrupt (EOI) kernel services

i_eoi 220
Enhanced Host Controller Interface

adapter device driver 895
enque kernel service 142
entry points

function pointers
obtaining 291

error logs
writing entries 144

error logs, writing entries 436
errresume kernel service 143
errsave kernel service 144
et_post kernel service 123
et_wait kernel service 124
event management

shared events
waiting for 118

exception handlers
system-wide

deleting 532
systemwide 528

exception information
retrieving 195

exception management
contexts

saving 488, 489
creating a process 55
execution flows

modifying 367
internationalized kernel message requests

submitting 404
locking 359
parent

setting to init process 489
putting process to sleep 497
sending a signal 426
states

saving 488
unmasked signals

determining if received 494
exceptions 55
execution flows

modifying 367

execution states
saving 488, 489

ext parameter 641
Extensible Host Controller Interface

adapter device driver 890
external storage

freeing 383

F
fetch_and_add kernel services 144
fetch_and_and kernel service 145
fetch_and_or kernel service 145
fidtovp kernel service 147
file attributes

getting 150
file operation requirements 534
file systems 154, 204
file-mode creation mask 200
files

access control lists
retrieving 692
setting 719

accessing blocks 723
attributes

getting 693
checking access permission 148
closing 149
creating 685
descriptor flags 200
descriptors 537, 538
determining if changed 587
hard links

requesting 697
interface to kernel services 533
mappings

validating 702
opening 153, 157, 158, 162
opening for reading 707
opening for writing 707
pointers

retrieving 154
read subroutine 169
reading 169, 170, 172
readv subroutine 170
releasing portions of 687
renaming 714
size limit

retrieving 196
truncating 691
unlinking 713
unmapping 725
writing 172, 180

find_input_type kernel service 147
fp_access kernel service 148
fp_close kermel service

GDLC 150
fp_close kernel service

device driver 647
fp_fstat kernel service 150
fp_fsync kernel service 151
fp_get_path kernel service 155
fp_getdevno kernel service 152
fp_getea kernel service

960 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

fp_getea kernel service (continued)
opening regular files 153

fp_getf kernel service 154
fp_hold kernel service 156
fp_ioctl kernel service 157
fp_ioctlx kernel service 158
fp_listea subroutine

support for 159
fp_lseek kernel service 161
fp_open kernel service

opening GDLC 163
opening regular files 162

fp_opendev kernel service 165
fp_poll kernel service 167
fp_read kernel service 169
fp_readv kernel service 170
fp_removeea kernel service

opening regular files 171
fp_rwuio kernel service 172
fp_select kernel service

cascaded support 173
invoking 174
notify routine and 175
returning from 176

fp_select kernel service notify routine 176
fp_setea kernel service

opening regular files 177
fp_statea kernel service 178
fp_write kernel service

data sent to DLC 180
open files 179

fp_writev kernel service 182
free-pinned character buffers

sizing 429
fskv_reg kernel service

kv_open() callout function 183
kv_setattr() callout function 183

fstatx subroutine
fp_fstat kernel service 150

fubyte kernel service 187
func subroutine 233
fuword kernel service 188

G
GDLC channels

disabling 150
genmajor subroutine 741
genminor subroutine 742
genseq subroutine 743
get_pag Kernel Service 197
get_pag64 Kernel Service 197
get_umask kernel service 200
getattr subroutine 744
getblk kernel service 189
getc kernel service 190
getcb kernel service 190
getcbp kernel service 191
getcf kernel service 192
getcx kernel service 193
geteblk kernel service 194
geterror kernel service 194
getexcept kernel service 195
getfslimit kernel service 196

getminor subroutine 745
getpid kernel service 198
getppidx kernel service 198
getuerror kernel service 199
getufdflags kernel service 200
gfsadd kernel service 201
gfsdel kernel service 204
gn_closecnt Subroutine 204
gn_common_memcntl Subroutine 205
gn_mapcnt Subroutine 206
gn_opencnt Subroutine 207
gn_unmapcnt Subroutine 208
groupmember Subroutine 209
groupmember_cr Subroutine 209

H
HCD_REGISTER_HC

ioctl operation 900
HCD_REQUEST_COMPANIONS

ioctl operation 897
heap_create kernel service 210
heap_destroy kernel service 212
heap_modify kernel service 213
heaps

initializing virtual memory 230
hkeyset_restore_userkeys kernel service 215
hkeyset_update_userkeys kernel service 215
host names

obtaining 278
hread_set_smtpriority system call 509

I
i_clear kernel service 216
i_disable kernel service 217
i_enable kernel service 219
i_eoi Kernel Service 220
i_init kernel service 227
i_mask kernel service 228
i_sched kernel service 247
i_unmask kernel service 248
I/O

buffer cache
purging block from 439

buffers
freeing 443

character
retrieving 193

character buffer
waiting for free 608

character lists
using 646

characters
placing 440, 444

completion
waiting for 243

early power-off warning 228
free-pinned character buffers 429
freeing buffer lists 443
header memory buffers

allocating 388
interrupt handler

Index 961

I/O (continued)
interrupt handler (continued)

coding an 228
mbreq structures 373
mbuf chains

adjusting 390
appending 375
copying data from 380
freeing 383

mbuf clusters
allocating 377
allocating a page-sized 377

mbuf structures
allocating 376, 384, 385, 387, 388
attaching 386
clusters 389
converting pointers 394
creating 381
cross-memory descriptors 394
deregistering 382
freeing 383
initial requirements 391
pointers 393
removing 379
usage statistics 374

off-level processing
enabling 247

placing character buffers 441
placing characters 442

I/O levels
waiting on 599

identifiers
message queue 300

idle to ready 231
IDs

getting current process 198
getting parent 198

idscsi 881, 882
if_attach kernel service 223
if_detach kernel service 224
if_down kernel service 224
if_nostat kernel service 225
ifa_ifwithaddr kernel service 220
ifa_ifwithdstaddr kernel service 221
ifa_ifwithnet kernel service 222
ifnet structures

address of 367
ifunit kernel service 226
init_heap kernel service 230
initp kernel service 231
initp kernel service func subroutine 233
input packets

building header for 457
input types

adding new 8
interface 222
interface drivers

error handling 398
interfaces

files 533
network

adding 223
intermediate devices

connection information 763

internationalized kernel message requests
submitting 404

interrupt environment services
d_cflush 63
getcx 193
if_attach 223
net_start_done 401
tstart 520

interrupt handlers
avoiding delays 247
coding 228
defining 227
removing 216

interrupt priorities
disabling 217
enabling 219

io_map kernel service 233
io_map_clear kernel service 234
io_map_init kernel service 235
io_unmap kernel service 236
IOCINFO operation

tmscsi 784
ioctl operations

/dev/nvram special file
748

ioctl subroutine
rmt SCSI device driver and 870
scdisk SCSI device driver and 795
SCSI adapter device driver and 785
tmscsi SCSI device driver and 882

ioctl subroutines
/dev/bus special file 748
/dev/nvram special file
748

iodone kernel service 237
iodone routine

setting up 238
iostadd kernel service 238
iostdel kernel service 242
iowait kernel service 243
ip filtering hooks 244
ip_fltr_in_hook, ip_fltr_out, ipsec_decap_hook kernel service
244
ipthreadsn 708, 709
IS64U kernel service 249

K
k_cpuextintr_ctl kernel service 249
kcap_is_set kernel service 251
kcap_is_set_cr kernel service 251
kcid_curproc kernel service 251
kcred_genpagvalue Kernel Service 252
kcred_getpag Kernel Service 255
kcred_getpag64 Kernel Service 255
kcred_getpagid kernel service 255
kcred_getpaginfo Kernel Service 256
kcred_getpagname kernel service 257
kcred_getppriv kernel service 258
kcred_setpag Kernel Service 261
kcred_setpag64 Kernel Service 261
kcred_setpagname kernel service 262
kcred_setppriv kernel service 263
kern_soaccept kernel service 264

962 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

kern_sobind kernel service 266
kern_soclose kernel service 267
kern_soconnect kernel service 268
kern_socreate kernel service 269
kern_sogetopt kernel service 270
kern_solisten kernel service 271
kern_soreceive kernel service 272
kern_soreserve kernel service 274
kern_sosend kernel service 275
kern_sosetopt kernel service 276
kern_soshutdown kernel service 277
kernel buffers 641
kernel extensions

loading 746
unloading 746

kernel memory
address ranges

pinning 371, 427, 631
releasing intersecting pages 590
setting storage protect key for 586
unpinning 372, 543, 632

address space
allocating 11
deallocating 12
deselecting 12
mapping 11, 21
obtaining handles 15
releasing 20
selecting 11
unmapping 12

bytes
retrieving 187

character data
copying into 50

characters
retrieving from buffers 553
writing to buffers 552

copying from 51
copying into 49
data

moving between VMO and buffer 575
retrieving a byte 187
retrieving a word 188
storing bytes 499

files
determining if changed 587

header memory buffers
allocating 388

heaps
initializing 230

I/O levels
waiting on 599

mbuf chains
adjusting 390
adjusting size of 373
appending 375
copying data from 380
freeing 383
reducing structures in 378

mbuf clusters
allocating 377
allocating a page-sized 377

mbuf structures
allocating 376, 384, 385, 388

kernel memory (continued)
mbuf structures (continued)

attaching 386
clusters 389
converting addresses in 110
converting pointers 394
copying 379
creating 381
cross-memory descriptors 394
deregistering 382
freeing 383
initial requirements 391
pointers 393
removing 379

object modules
pinning 430

page ranges
initiating page-out 603

page-out
determining I/O level
599

page-ranges
initiating page-out 604

pages
making without page-in 570
releasing several 591

paging device tables
adding file system to 573
freeing entries in 602

pin counts
decrementing 544

storing words 501
user buffer

preparing for access 625
user-address space, 64-bit det 249
virtual memory handles

constructing 567
virtual memory manager 327
virtual memory objects

creating 597
deleting 598
mapping to a region 558

virtual memory resources
releasing 591

words
retrieving 188

kernel messages
printing to terminals 550

kernel object files
loading 292
unloading 295

kernel process state
changing 231

kernel processes
creation support 233

kernel service
pin_context_stack 429
unpin_context_stack 429

kernel services
as_att64 kernel service 11
as_det64 kernel service 12
as_geth kernel service 13
as_geth64 kernel service 14
as_getsrval64 kernel service 15

Index 963

kernel services (continued)
as_puth64 kernel service 20
as_seth64 kernel service 21
bindprocessor 28
compare_and_swap 46
compare_and_swaplp 46
disable_lock 79
e_assert_wait 116
e_block_thread 117
e_clear_wait 117
e_sleep_thread 121
e_wakeup 125
e_wakeup_one 125
e_wakeup_w_result 125
e_wakeup_w_sig 126
et_post 123
et_wait 124
fetch_and_add 144
fetch_and_addlp 144
fetch_and_and 145
fetch_and_or 145
file interface to 533
IS64U 249
kcred_getpagid 255
kcred_getpagname 257
kcred_setpagname 262
kthread_kill 325
kthread_start 326
limit_sigs 353
lock_addr 361
lock_alloc 354
lock_clear_recursive 356
lock_done 356
lock_free 357
lock_init 358
lock_islocked 359
lock_read 362
lock_read_to_write 363
lock_set_recursive 364
lock_try_read 362
lock_try_read_to_write 363
lock_try_write 365
lock_write 365
lock_write_to_read 366
ltpin 371
ltunpin 372
rusage_incr 482
simple_lock 494
simple_lock_init 495
simple_lock_try 494
simple_unlock 496
thread_create 506
thread_setsched 508
thread_terminate 511
tstop 521
tuning 522
ufdgetf 537
ufdhold 538
ufdrele 538
unlock_enable 541
user-mode exception handler for uexadd 529

kgethostname kernel service 278
kgetpname Kernel Service 279
kgetrlimit64 kernel service 280

kgetsystemcfg subroutine 282
kgettickd kernel service 282
kkey_assign_private kernel service 283
kkeyset_add_key kernel service 284
kkeyset_add_set kernel service 285
kkeyset_create kernel service 286
kkeyset_delete kernel service 287
kkeyset_remove_key kernel service 288
kkeyset_remove_set kernel service 289
kkeyset_to_hkeyset kernel service 289
klpar_get_info kernel service 290
kmod_entrypt kernel service 291
kmod_load kernel service 292
kmod_unload kernel service 295
kmod_util kernel service 296
kmsgctl kernel service 299
kmsgget kernel service 300
kmsgsnd kernel service 304
kmsrcv kernel service 302
kprobe kernel service 436
kra_attachrset Subroutine 306
kra_creatp subroutine 308
kra_detachrset Subroutine 309
kra_getrset Subroutine 311
krs_alloc Subroutine 312
krs_free Subroutine 313
krs_get_homesrad Subroutine 315
krs_getassociativity Subroutine 313
krs_getinfo Subroutine 315
krs_getpartition Subroutine 316
krs_getrad Subroutine 317
krs_init Subroutine 318
krs_numrads Subroutine 319
krs_op Subroutine 320
krs_setpartition Subroutine 321
ksettickd kernel service 323
ksettimer kernel service 324
kthread_kill kernel service 325
kthread_start kernel service 326
kv_open() callout function 183
kv_setattr() callout function 183
kvm_pattr Kernel Service 578
kvmgetinfo kernel service 327
kwpar_checkpoint_status kernel service 329
kwpar_err kernel service 330
kwpar_getname Kernel Service 332
kwpar_getrootpath Kernel Service 332
kwpar_isappwpar Kernel Service 333
kwpar_r2vmap_devno kernel service 334
kwpar_r2vmap_pid kernel service 335
kwpar_r2vmap_tid kernel service 336
kwpar_regdevno kernel service 337
kwpar_reghook kernel service 338
kwpar_unregdevno kernel service 340
kwpar_unreghook kernel service 341
kwpar_v2rmap_devno kernel service 342
kwpar_v2rmap_pid kernel service 343
kwpar_v2rmap_tid kernel service 344

L
ldata_alloc Kernel Service 345
ldata_create Kernel Service 345
ldata_destroy Kernel Service 347

964 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

ldata_free Kernel Service 348
ldata_grow Kernel Service 348
ldmp_bufest kernel service 349
ldmp_errstr kernel service 349
ldmp_freeparms kernel service 351
ldmp_setupparms kernel service 352
ldmp_timeleft kernel service 349
ldmp_xmalloc kernel service 349
ldmp_xmfree kernel service 349
limit_sigs kernel service 353
livedump kernel service 354
loadext subroutine 746
lock_addr kernel service 361
lock_alloc kernel service 354
lock_clear_recursive kernel service 356
lock_done kernel service 356
lock_free kernel service 357
lock_init kernel service 358
lock_islocked kernel service 359
lock_read kernel service 362
lock_read_to_write kernel service 363
lock_set_recursive kernel service 364
lock_try_read kernel service 362
lock_try_read_to_write kernel service 363
lock_try_write kernel service 365
lock_write kernel service 365
lock_write_to_read kernel service 366
locking 44
lockl kernel service 359
logical file system

channel numbers
finding 152

device numbers
finding 152

file attributes
getting 150

file descriptors
status of 167

file pointers
retrieving 154
status of 167

files
checking access permissions 148
closing 149
opening 153, 157, 158, 162
reading 170, 172
writing 172, 179, 182

fp_listea subroutine
support for 159

fp_removeea subroutine
support for 171

message queues
status of 167

notify routine
registering 176

offsets
changing 161

open subroutine
support for 153, 162, 177, 178

poll request 173
read subroutine

interface to 169
readv subroutine

interface to 170

logical file system (continued)
select operation 173
special files

opening 165
use count

incrementing 156
write subroutine 180
writev subroutine

interface to 182
logical names 743
loifp kernel service 367
longjmpx kernel service 367
lookupname kernel service 368
lookupname_cur kernel service 368
lookupvp kernel service 368
looutput kernel service 370
ltpin kernel service 371
ltunpin kernel service 372

M
m_adj kernel service 373
m_cat kernel service 375
m_clattach kernel service 376
m_clget macro 377
m_clgetm kernel service 377
m_collapse kernel service 378
m_copy macro 379
m_copydata kernel service 380
m_copym kernel service 381
m_dereg kernel service 382
m_freem kernel service 383
m_get kernel service 384
m_getclr kernel service 385
m_getclust macro 386
m_getclustm kernel service 387
m_gethdr kernel service 388
M_HASCL kernel service 389
m_pullup kernel service 390
m_reg kernel service 391
M_XMEMD macro 394
machine device drivers 748
macros

add_netopt 11
del_netopt 68
DTOM 110
m_clget 377
m_getclust 386
M_HASCL 389
MTOCL 393
MTOD 394

magnetic tape access
tape SCSI device driver and 870

major numbers
generating 741
releasing 770, 771

maps DMA master devices
d_map_page 89

mbreq structure
format of 373

mbuf chains
adjusting 390
adjusting size of 373
appending 375

Index 965

mbuf chains (continued)
copying 380
freeing 383
removing structures from 379

mbuf clusters
allocating 377
allocating a page-sized 377
page-sized

attaching 386
mbuf structures

address to header 110
allocating 376, 384–386, 388
attaching a cluster 387
clusters

determining presence of 389
converting pointers 394
copying 379, 381
cross-memory descriptors

obtaining address of 394
deregistering 382
freeing 383
initial requirements 391
mbreq structure 373
mbstat structure 374
pointers

converting 393
registration information 373
removing 379
usage statistics 374

memory
allocating 624
buffers (device drivers) 666
freeing 637
pages

preparing for DMA 627, 629
processing after DMA I/O 627,
629

performing a cross-memory move 634, 635
rmfree 469
uio structures 667
user buffer

detaching from 627
memory allocation

rmalloc 468
memory manager

kvmgetinfo 327
memory mapped I/O

rmmap_create 470
rmmap_remove 474

message queues
control operations

providing 299
identifiers

obtaining 300
messages

reading 302
sending 304

microcode
downloading to SCSI adapter 821

minor numbers
generating 742
getting 745
releasing 770

MTOCL macro 393

MTOD macro 394
multiplexed device driver

allocating 655
deallocating 655

mycpu kernel service 395

N
nameToXfid() kernel service 396
net_attach kernel service 396
net_detach kernel service 397
net_error kernel service 398
net_sleep kernel service 399
net_start kernel service 400
net_start_done kernel service 401
net_wakeup kernel service 402
net_xmit kernel service 402
net_xmit_trace kernel service 403
network

ctlinput function
invoking 424

current host name 278
demuxers

adding 408
deleting 414
disabling 415
enabling 409

destination addresses
locating 221

device drivers
allocating 413
relenquishing 418

device handlers
closing 397
ending a start 401
opening 396
starting ID on 400

devices
attaching 413
detaching 417

ID
ending a start 401

ifnet structures
address of 367

input packets
building header for 457

interface
adding 223

interface drivers
error handling 398

putting caller to sleep 399
raw protocols

implementing user requests for 458
raw_header structures

building 457
receive filters

adding 409
deletiing 415

routes
allocating 474, 475

routing table entries
changing 479, 480
creating 477
forcing through gateway 478

966 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

network (continued)
routing table entries (continued)

freeing 476
software interrupt service routines

invoking 483
scheduling 483

start operation
ending 401

status filters
adding 411
deleting 416

transmit packets
tracing 403

waking sleeping processes 402
network address families

adding 7
deleting 65
searching for 425

network device handlers
transmitting packets 402

network input types
adding 8
deleting 66

network interfaces
deleting 224
locating 220, 222
marking as down 224
pointers

obtaining 226
software loopback

obtaining address 367
sending data through 370

zeroing statistic elements 225
network option structures

adding 11
deleting 68

network packet types
finding 147

network software interrupt service
adding 10
deleting 67

NLuprint kernel service 404
notify routine

registering
from fp_select kernel service 175

ns_add_demux network service 408
ns_add_filter network service 409
ns_add_status network service 411
ns_alloc network service 413
ns_attach network service 413
ns_del_demux network service 414
ns_del_filter network service 415
ns_del_status network service 416
ns_detach network service 417
ns_free network service 418
NVMe

controller
Device Driver 889

storage (hdisk)
Device Driver 888

NVMe controller Device Driver 889
NVMe storage (hdisk) Device Driver 888

O
object modules

pinning 430
ODM

object classes 755
off-level processing 247
offset

changing 161
OHCI 898
Open Host Controller Interface

adapter device driver 898
open subroutine

/dev/bus special file 748
/dev/nvram special file and 748
rmt SCSI device driver and 870
scdisk SCSI device driver and 795
SCSI adapter device driver and 785
support for 153, 162
tmscsi SCSI device driver and 882

P
packet types

finding 147
packets

transmitting 402
page-out

determining I/O level
599

page-ranges
initiating page-out 603

pages
making without page-in 570
releasing several 591

paging device tables
adding file system to 573
freeing entries in 602

panic kernel service 422
PCI bus slot configuration registers 423
pci_cfgrw kernel service 423
PdAt object class

attrval subroutine 729
descriptors 756, 761
getattr subroutine 744
loading devices 747
querying attributes 744
types of attributes 756

PdCn object class 763
PdDv object class

adapter-specific considerations 729
descriptors 764
loadext subroutine 746
loading devices 747

pfctlinput kernel service 424
pffindproto kernel service 425
pgsignal kernel service 426
pidsig kernel service 427
pin counts

decrementing 544
pin kernel service 427
pin_context_stack kernel service 429
pincf kernel service 429
pincode kernel service 430

Index 967

pipes
select request on 173

poll request
registering asynchronous 485
support for 484

power-off warnings
registering early 228

predefined attributes 756
privileges

checking effective 500
probe kernel service 436
process 55
process environment services

d_cflush 63
ddread entry point 658
getcx 193
i_disable 217
if_attach 223
iostdel 242
net_attach 396
net_start_done 401
tstart 520

process management
blocking a process 530
calling process IDs 198
checking effective privileges 500
clearing blocked processes 531
contexts

removing 43
saving 488

creating a process 55
execution flows

modifying 367
forcing a wait 118
idle to ready

transition of 231
internationalized kernel message requests

submitting 404
locking 359
parent

setting to init process 489
parent process IDs

getting 198
process initialization routine

directing 233
process state-change notification routine 435
putting process to sleep 497
shared events

waiting for 120
signals

sending 426, 427
signals, sending 427
state transition notification 431
state-change notification routine

deleting 436
states

saving 488
suspending processing 65
unlocking

conventional processes 542
unmasked signals

determining if received 494
wait

for shared event 120

process management (continued)
waking up processes 484

process state-change notification routine 431
processor cache

flushing 559
proch structure 435
proch_unreg kernel service 434
prochadd kernel service 435
prochdel kernel service 436
purblk kernel service 439
putattr subroutine 769
putc kernel service 440
putcb kernel service 441
putcbp kernel service 442
putcf kernel service 443
putcfl kernel service 443
putcx kernel service 444

Q
query_proc_info kernel service 445
queue elements

checking validity 41
cleanup 38
placing into queue 142
waiting for 609

queue management routines
attach-device 22
cancel-queue-element 38
detach-device 69
parameter checking 41

R
RAS kernel services

error logs
writing entries in 144

master dump table
deleting entry from 103

RAS services
system crash

performing system dump of 422
trace events

recording 515, 516
RAS_BLOCK_NULL Exported Data Structure 446
ras_control Exported Kernel Service 446
ras_customize Exported Kernel Service 447
ras_path_control Exported Kernel Service 448
ras_register Exported Kernel Service 449
ras_ret_query_parms kernel service 452
ras_unregister Exported Kernel Service 449
raschk_eaddr_hkeyset kernel service 453
raschk_eaddr_kkey kernel service 454
raschk_stktrace kernel service 455
raw protocols

implementing user requests for 458
raw_header structures

building 457
raw_input kernel service 457
raw_usrreq kernel service 458
rawinch field 240
read subroutine

/dev/bus special file 748

968 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

read subroutine (continued)
/dev/nvram special file 748
interface to 169
tmscsi SCSI device driver and 882

read-ahead block
starting I/O on 32

readv subroutine
interface to 170

readx subroutine
scdisk SCSI device driver and 795

ready to idle 231
reconfig_complete kernel service 459
reconfig_register kernel service 459
reconfig_register_ext kernel service 459
reconfig_unregister kernel service 459
record locking 44
record locks

controlling 698
refmon kernel service 465
regions

unmapping virtual memory 560
reldevno subroutine 770
remajor subroutine 771
Resource Set APIs

kra_attachrset 306
kra_creatp 308
kra_detachrset 309
kra_getrset 311
krs_alloc 312
krs_free 313
krs_get_homesrad 315
krs_getassociativity 313
krs_getinfo 315
krs_getpartition 316
krs_getrad 317
krs_init 318
krs_numrads 319
krs_op 320
krs_setpartition 321

resources
virtual file system

releasing 558
rmalloc kernel service 468
rmfree kernel service 469
rmmap_create kernel service 470
rmmap_remove kernel service 474
rmt SCSI device driver

close subroutine and 870
device-dependent subroutines 870
error conditions 870
error record values 870
ioctl subroutine and 870
open subroutine and 870
reliability and serviceability 870

routes
allocating 474, 475

routing table entries
changing 479, 480
creating 477
forcing through gateway 478
freeing 476

rtalloc kernel service 474, 475
rtfree kernel service 476
rtinit kernel service 477

rtredirect kernel service 478
rtrequest kernel service 479, 480
rusage_incr kernel service 482

S
scdisk SCSI device driver

close subroutine and 795
device requirements 795
device-dependent subroutines 795
error conditions 795
error record values 795
ioctl subroutine and 795
open subroutine and 795
physical volume and CD-ROM 795
readx subroutine and 795
reliability and serviceability 795
writex subroutine and 795

schednetisr kernel service 483
scheduling functions 511
SCIOCMD operation 818
SCIODIAG operation 820
SCIODNLD operation 821
SCIOEVENT operation 822
SCIOGTHW operation 824
SCIOHALT operation 824
SCIOINQU operation 825
SCIOREAD operation 827
SCIORESET operation 828
SCIOSTART operation 830
SCIOSTARTTGT operation 830
SCIOSTOP operation 832
SCIOSTOPTGT operation 832
SCIOSTUNIT operation 833
SCIOTRAM operation 835
SCIOTUR operation 836
scsesdd SCSI Device Driver 837
SCSI adapter device driver

close subroutine and 785
closing logical paths 832
device registration 822
device-dependent subroutines 785
downloading microcode 821
error conditions 785
error-record values 785
halting a device 824
ioctl subroutine and 785
issuing commands 818
issuing diagnostic commands 820
issuing inquiry commands 825
issuing read command 827
managing dumps 785
open subroutine and 785
opening logical paths 830
reliability and serviceability 785
resetting a device 828
starting devices 833
supporting the SCSI adapter 785
testing a unit 836
testing buffer RAM 835
testing card DMA interface 835
verifying gathered write support 824

SCSI ioctl operations
SCIOCMD 818

Index 969

SCSI ioctl operations (continued)
SCIODIAG 820
SCIODNLD 821
SCIOEVENT 822
SCIOGTHW 824
SCIOHALT 824
SCIOINQU 825
SCIOREAD 827
SCIORESET 828
SCIOSTART 830
SCIOSTARTTGT 830
SCIOSTOP 832
SCIOSTOPTGT 832
SCIOSTUNIT 833
SCIOTRAM 835
SCIOTUR 836

SCSI subsystem 822
sctape FC device driver 862
security subroutines

kcred_genpagvalue 252
select entry point

tmscsi SCSI device driver and 882
select request

registering asynchronous 485
support for 484

selnotify kernel service 484
selreg kernel service 485
set_pag Kernel Service 487
set_pag64 Kernel Service 487
setioctlrv Subroutine 488
setjmpx kernel service 488
setpinit kernel service 489
setuerror kernel service 490
setufdflags kernel service 200
shared events

waiting for 120
shared memory

controlling access to 359
shared object modules

symbol resolution 294
shutdown kernel services

shutdown_notify_reg 491
shutdown_notify_unreg 493

shutdown_notify_reg kernel kervice 491
shutdown_notify_unreg kernel service 493
sig_chk kernel service 494
signals

sending 426
simple_lock kernel service 494
simple_lock_init kernel service 495
simple_lock_try kernel service 494
simple_unlock kernel service 496
sleep kernel service 497
sockets

select request on 173
software interrupt service routines

invoking 483
scheduling 483

software loopback interfaces
obtaining address of 367
sending data through 370

software-interrupt level 10
special files

creating 706

special files (continued)
opening 165
requesting I/O control operations
696

standard parameters
device driver 640

Start method 784
statistics structures

registering 238
removal 242

Stop method 784
stp device method 784
strategy routine

calling 548
stt device method 784
subyte kernel service 499
suser kernel service 500
suword kernel service 501
switch table 77
symbol binding support 294
symbol resolution and shared object modules 294
symbolic links

reading contents of 711
synchronization functions

providing 282
system call events

auditing 24
system calls

__pag_getid 418
__pag_getname 419
__pag_getvalue 420
__pag_setname 421
__pag_setvalue 421
thread_set_smtpriority 509

system dump kernel services
dmp_add 94
dmp_ctl 99

system dumps
adding and removing master dump table entries 99
adding to master dump table 94
performing 422
specifying contents 94

systemwide time
setting 324

T
talloc kernel service 505
tape device media errors 870
tape SCSI device driver

introduced 870
TE_verify_reg kernel service 502
TE_verify_unreg kernel service 504
tfree kernel service 505
thread_create kernel service 506
thread_read_smtpriority system calls 509
thread_self subroutine 507
thread_setsched kernel service 508
thread_terminate kernel service 511
time

allocating time request blocks 505
callout table entries

registering changes in 513
canceling pending timer requests 545

970 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

time (continued)
current

reading 61
scheduling functions 511
submitting timer request 520
suspending processing 65
synchronization functions

providing 282
systemwide

setting 324
time request blocks

deallocating 505
time-adjustment value

updating 323
watchdog timers

registering 612
removing 611, 613
stopping 615

timeout kernel service 511
timeoutcf kernel subroutine 513
timer

watchdog timers
starting 614

TIMIORESET operation 881
TMCHGIMPARM operation 876
TMGETSENS operation 877
TMIOASYNC operation 878
TMIOCMD operation 878
TMIOEVNT operation 879
TMIOSTAT operation 881
tmscsi ioctl operations

IOCINFO 784
TMCHGIMPARM 876
TMGETSENS 877
TMIOASYNC 878
TMIOCMD 878
TMIOEVNT 879
TMIORESET 881
TMIOSTAT 881

tmscsi SCSI device driver
changing parameters 876
close subroutine and 882
configuring 882
device-dependent subroutines 882
error logging 882
getting device information 784
getting device status 881
ioctl subroutine and 882
open subroutine and 882
processor-to-processor communications 882
querying event status 879
read subroutine and 882
requesting sense data 877
select entry point and 882
sending bus device resets 881
sending direct commands 878
transferring data asynchronously 878
write subroutine and 882

trace events
recording 515–517

transfer requests
tailoring 550

transmit packets
tracing 403

trc_ishookon Exported Kernel Service 514
trcgenk kernel service 515
trcgenkt kernel service

DLC 517
recording for a generic trace channel 516

tstart kernel service 520
tstop kernel service 521
tty device driver support 240
ttystat structure 238
tuning kernel service 522

U
udef device method 782
ue_proc_check kernel service 526
ue_proc_register subroutine 526
ue_proc_unregister subroutine 527
uexadd kernel service

adding an exception handler 528
uexblock kernel service 530
uexclear kernel service 531
uexdel kernel service 532
ufdcreate kernel service 533
ufdgetf kernel service 537
ufdhold kernel service 538
ufdrele kernel service 538
uio structures 402, 666
uiomove kernel service 539
Unconfigure method 780
Undefine method 782
unlock_enable kernel service 541
unlocking conventional processes 542
unlockl kernel service 542
unpin kernel service 543
unpin_context_stack kernel service 429
unpincode kernel service 544
untimeout kernel service 545
uphysio kernel mincnt service 550
uphysio kernel service

described 546
error detection by 549
mincnt routine 550

uprintf kernel service 550
uprintf structure 405
ureadc kernel service 552
USB audio

device driver 900
USB keyboard

device driver 902
USB mass storage

device driver 904
error conditions 916

USB mouse
device driver 924

USB subsystem 890
USB tape

error conditions 929
USBD ioctl operation

USBD_CFG_CLIENT_UPDATE 944
USBD_ENUMERATE_ALL 942
USBD_ENUMERATE_CFG 943
USBD_GET_DESCRIPTORS 944
USBD_OPEN_DEVICE 938
USBD_OPEN_DEVICE_EXT 939

Index 971

USBD ioctl operation (continued)
USBD_REGISTER_MULTI_HC 940
USBD_REGISTER_SINGLE_HC 941

USBD IOCTL operation
USBD_ENUMERATE_DEVICE 941

USBD ioctl operations 938
USBD protocol driver 937, 945
use count

incrementing 156
user buffer

detaching from 627
preparing for access 625

user-address space 249
user-mode exception handler for uexadd kernel service 529
ut_error field

retrieving 199
ut_error fields

setting 490
uwritec kernel service 553

V
v-node operations

retrieving 368
v-nodes

allocating 606
closing associated files 684
count

incrementing 696
file identifier conversion to 681
file identifiers

building 688
finding by name 700
freeing 605
modifications

flushing to storage 690
obtaining root 676
polling 718
releasing references 712
validating access to 682

validate_pag Kernel Service 555
validate_pag64 Kernel Service 555
vec_clear kernel service 556
vec_init kernel service 557
VFS

access control lists
retrieving 692

allocating virtual nodes 606
building file identifiers 688
changes

writing to storage 679
checking record locks 698
control operations

implementing 672
creating directories 705
creating special files 706
file attributes

getting 693
file system types

adding 201
removing 204

files
accessing blocks 723
converting identifiers 681

VFS (continued)
files (continued)

creating 685
hard links 697
opening 707
releasing portions of 687
renaming 714
requesting I/O 708
setting access control 719
setting attributes 720
truncating 691
validating mapping requests 702

finding v-nodes by name 700
flushing v-node modifications 690
freeing virtual nodes 605
incrementing v-node counts 696
initializing 674
mounting 674
nodes

pointer to root 676
retrieving 368

polling v-nodes 718
querying record locks 698
reading directory entries 709
releasing v-node references 712
removing directories 716
renaming directories 714
resources

releasing 558
revoking access 715
searching 677
setting record locks 698
special files

I/O control operations on
696

statistics
obtaining 678

structures, holding and releasing 673
unmounting 679

VFS operations
vfs_cntl 672
vfs_hold 673
vfs_init 674
vfs_mount 674
vfs_root 676
vfs_search 677
vfs_statfs 678
vfs_sync 679
vfs_umount 679
vfs_unhold 673
vfs_vget 681
vnop_access 682
vnop_close 684
vnop_create 685
vnop_fclear 687
vnop_fid 688
vnop_fsync 690
vnop_fsync_range 690
vnop_ftrunc 691
vnop_getacl 692
vnop_hold 696
vnop_link 697
vnop_lockctl 698
vnop_mknod 706

972 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

VFS operations (continued)
vnop_open 707
vnop_rdwr 708
vnop_rdwr_attr 708
vnop_readdir 709
vnop_readlink 711
vnop_remove 713
vnop_rename 714
vnop_select 718
vnop_setacl 719
vnop_setattr 720
vnop_strategy 723
vnop_symlink 724
vnop_unmap 725

vfs_aclxcntl entry point 670
vfsrele kernel service 558
virtual file system 201, 692
virtual interrupt handlers

defining 557
removing 556

virtual memory
regions

unmapping 560
virtual memory handles

constructing 567
virtual memory objects

creating 597
deleting 598
managing addresses 11
mapping 21
mapping to a region 558
obtaining handles 13–15
page-out for range in 604
releasing 20
unmapping 12

virtual memory resources
releasing 590

vital product data 774
vm_att kernel service 558
vm_cflush kernel service 559
vm_det kernel service 560
vm_flushp kernel service 561
vm_guatt Kernel Service 564
vm_gudet Kernel Service 565
vm_handle kernel service 567
vm_invalidatep kernel service 567
vm_ioaccessp kernel service 569
vm_makep kernel service 570
vm_mount kernel service 573
vm_mounte kernel service 574
vm_mvc kernel service 576
vm_pattr System Call 578
vm_protect_kkey kernel service 584
vm_protectp kernel service 586
vm_qmodify kernel service 587
vm_qpages kernel service 588
vm_readp kernel service 589
vm_release kernel service 590
vm_releasep kernel service 591
vm_segmap kernel service 592
vm_setdevid kernel service 593
vm_setseg_kkey kernel service 595
vm_thrpgio_pop kernel service 595
vm_thrpgio_push kernel service 596

vm_umount kernel service 602
vm_write kernel service 603
vm_writep kernel service 604
vms_create kernel service 597
vms_delete kernel service 598
vms_iowait kernel service 599
vms_iowaitf kernel service 599
vn_free kernel service 605
vn_get kernel service 606
vnop_getxacl entry point 694
vnop_ioctl entry point 696
vnop_memcntl Entry Point 704
vnop_seek Entry Point 717
vnop_setxacl entry point 722
vnop_symlink entry point 724
VPD

handling 774
vsx_disable kernel service 607
vsx_enable kernel service 608

W
w_clear kernel service 611
w_init kernel service 612
w_setattr kernel service 613
w_start kernel service 614
w_stop kernel service 615
wait channels

putting caller to sleep on 399
waitcfree kernel service 608
waiting for free buffer 608
waitq kernel service 609
waking sleeping processes 402
watchdog timers

registering 612
removing 611, 613
starting 614
stopping 615

words
retrieving 188
storing in kernel memory 501

write subroutine
/dev/bus special file 748
/dev/nvram special file 748
interface to 179
tmscsi SCSI device driver and 882

writev subroutine
interface to 182

writex subroutine
scdisk SCSI device driver and 795

X
xfidToName() kernel service 616
XHCI 890
xlate_create kernel service 617
xlate_pin kernel service 618
xlate_remove kernel service 619
xlate_unpin kernel service 620
xm_det kernel service 621
xm_mapin 621
xm_maxmap Kernel Service 623
xmalloc kernel service

Index 973

xmalloc kernel service (continued)
described 624

xmattach kernel service 625
xmdetach kernel service 627
xmemdma kernel service 627
xmemdma64 kernel service 629
xmemin kernel service 634
xmemout kernel service 635
xmempin kernel service 631
xmempsize Kernel Service 636
xmemunpin kernel service 632
xmemzero kernel service 633
xmfree kernel service 637
xmgethkeyset kernel service 638
xmsethkeyset kernel service 639

974 AIX Version 7.1 Technical Reference: Kernel Services and Subsystem Operations

IBM®

	Contents
	About this document
	Highlighting
	Case sensitivity in AIX
	ISO 9000

	Kernel Services and Subsystem Operations
	What's new
	Kernel Services
	a
	acct_add_LL or acct_zero_LL Kernel Service
	acct_get_projid Kernel Service
	acct_get_usage Kernel Service
	acct_interval_register or acct_interval_unregister Kernel Service
	acct_put Kernel Service
	add_domain_af Kernel Service
	add_input_type Kernel Service
	add_netisr Kernel Service
	add_netopt Macro
	as_att64 Kernel Service
	as_det64 Kernel Service
	as_geth Kernel Service
	as_geth64 Kernel Service
	as_getsrval64 Kernel Service
	as_lw_att64 Kernel Service
	as_lw_det64 Kernel Service
	as_lw_pool_init Kernel Service
	as_puth64 Kernel Service
	as_seth64 Kernel Service
	attach Device Queue Management Routine
	audit_svcbcopy Kernel Service
	audit_svcfinis Kernel Service
	audit_svcstart Kernel Service

	b
	bawrite Kernel Service
	bdwrite Kernel Service
	bflush Kernel Service
	bindprocessor Kernel Service
	binval Kernel Service
	blkflush Kernel Service
	bread Kernel Service
	breada Kernel Service
	brelse Kernel Service
	bsr_alloc Kernel Service
	bsr_free Kernel Service
	bsr_query Kernel Service
	bwrite Kernel Service

	c
	cancel Device Queue Management Routine
	cfgnadd Kernel Service
	cfgncb Configuration Notification Control Block
	cfgndel Kernel Service
	check Device Queue Management Routine
	clrbuf Kernel Service
	clrjmpx Kernel Service
	common_reclock Kernel Service
	compare_and_swap Kernel Services
	coprocessor_user_register Kernel Service
	coprocessor_user_unregister Kernel Service
	copyin Kernel Service
	copyinstr Kernel Service
	copyout Kernel Service
	cpu_speculation_barrier kernel service
	crcopy Kernel Service
	crdup Kernel Service
	creatp Kernel Service
	CRED_GETEUID, CRED_GETRUID, CRED_GETSUID, CRED_GETLUID, CRED_GETEGID, CRED_GETRGID, CRED_GETSGID and CRED_GETNGRPS Macros
	crexport Kernel Service
	crfree Kernel Service
	crget Kernel Service
	crhold Kernel Service
	crref Kernel Service
	crset Kernel Service
	curtime Kernel Service

	d
	d_align Kernel Service
	d_alloc_dmamem Kernel Service
	d_cflush Kernel Service
	delay Kernel Service
	del_domain_af Kernel Service
	del_input_type Kernel Service
	del_netisr Kernel Service
	del_netopt Macro
	detach Device Queue Management Routine
	devdump Kernel Service
	devstrat Kernel Service
	devswadd Kernel Service
	devswchg Kernel Service
	devswdel Kernel Service
	devswqry Kernel Service
	d_free_dmamem Kernel Service
	disable_lock Kernel Service
	disablement_checking_resume Kernel Service
	disablement_checking_suspend Kernel Service
	d_map_attr Kernel Service
	d_map_clear Kernel Service
	d_map_disable Kernel Service
	d_map_enable Kernel Service
	d_map_init Kernel Service
	d_map_init_ext Kernel Service
	d_map_list Kernel Service
	d_map_page Kernel Service
	d_map_query Kernel Service
	d_map_slave Kernel Service
	dmp_add Kernel Service
	dmp_compspec and dmp_compext Kernel Services
	dmp_ctl Kernel Service
	dmp_del Kernel Service
	dmp_eaddr, dmp_context, dmp_tid, dmp_pid, dmp_errbuf, dmp_mtrc, dmp_systrace, and dmp_ct Kernel Services
	dmp_kernext Kernel Service
	d_roundup Kernel Service
	d_sync_mem Kernel Service
	DTOM Macro for mbuf Kernel Services
	d_unmap_list Kernel Service
	d_unmap_slave Kernel Service
	d_unmap_page Kernel Service
	dr_reconfig System Call

	e
	e_assert_wait Kernel Service
	e_block_thread Kernel Service
	e_clear_wait Kernel Service
	e_sleep Kernel Service
	e_sleepl Kernel Service
	e_sleep_thread Kernel Service
	et_post Kernel Service
	et_wait Kernel Service
	e_wakeup, e_wakeup_one, or e_wakeup_w_result Kernel Service
	e_wakeup_w_sig Kernel Service
	eeh_broadcast Kernel Service
	eeh_clear Kernel Service
	eeh_disable_slot Kernel Service
	eeh_enable_dma Kernel Service
	eeh_enable_pio Kernel Service
	eeh_enable_slot Kernel Service
	eeh_init Kernel Service
	eeh_init_multifunc Kernel Service
	eeh_read_slot_state Kernel Service
	eeh_reset_slot Kernel Service
	eeh_slot_error Kernel Service
	enque Kernel Service
	errresume Kernel Service
	errsave or errlast Kernel Service

	f
	fetch_and_add Kernel Services
	fetch_and_and or fetch_and_or Kernel Services
	fidtovp Kernel Service
	find_input_type Kernel Service
	fp_access Kernel Service
	fp_close Kernel Service
	fp_close Kernel Service for Data Link Control (DLC) Devices
	fp_fstat Kernel Service
	fp_fsync Kernel Service
	fp_getdevno Kernel Service
	fp_getea Kernel Service
	fp_getf Kernel Service
	fp_get_path Kernel Service
	fp_hold Kernel Service
	fp_ioctl Kernel Service
	fp_ioctl Kernel Service for Data Link Control (DLC) Devices
	fp_ioctlx Kernel Service
	fp_listea Kernel Service
	fp_lseek, fp_llseek Kernel Service
	fp_open Kernel Service
	fp_open Kernel Service for Data Link Control (DLC) Devices
	fp_opendev Kernel Service
	fp_poll Kernel Service
	fp_read Kernel Service
	fp_readv Kernel Service
	fp_removeea Kernel Service
	fp_rwuio Kernel Service
	fp_select Kernel Service
	fp_select Kernel Service notify Routine
	fp_setea Kernel Service
	fp_statea Kernel Service
	fp_write Kernel Service
	fp_write Kernel Service for Data Link Control (DLC) Devices
	fp_writev Kernel Service
	fskv_reg Kernel Service
	fskv_unreg Kernel Service
	fubyte Kernel Service
	fuword Kernel Service

	g
	getblk Kernel Service
	getc Kernel Service
	getcb Kernel Service
	getcbp Kernel Service
	getcf Kernel Service
	getcx Kernel Service
	geteblk Kernel Service
	geterror Kernel Service
	getexcept Kernel Service
	getfslimit Kernel Service
	get_pag or get_pag64 Kernel Service
	getpid Kernel Service
	getppidx Kernel Service
	getuerror Kernel Service
	getufdflags and setufdflags Kernel Services
	get_umask Kernel Service
	gfsadd Kernel Service
	gfsdel Kernel Service
	gn_closecnt Subroutine
	gn_common_memcntl Subroutine
	gn_mapcnt Subroutine
	gn_opencnt Subroutine
	gn_unmapcnt Subroutine
	groupmember, groupmember_cr Subroutines

	h
	heap_create Kernel Service
	heap_destroy Kernel Service
	heap_modify Kernel Service
	hkeyset_add, hkeyset_replace, hkeyset_restore, or hkeyset_get Kernel Service
	hkeyset_restore_userkeys Kernel Service
	hkeyset_update_userkeys Kernel Service

	i
	i_clear Kernel Service
	i_disable Kernel Service
	i_enable Kernel Service
	i_eoi Kernel Service
	ifa_ifwithaddr Kernel Service
	ifa_ifwithdstaddr Kernel Service
	ifa_ifwithnet Kernel Service
	if_attach Kernel Service
	if_detach Kernel Service
	if_down Kernel Service
	if_nostat Kernel Service
	ifunit Kernel Service
	i_init Kernel Service
	i_mask Kernel Service
	in_localaddr Kernel Service
	init_heap Kernel Service
	initp Kernel Service
	initp Kernel Service func Subroutine
	io_map Kernel Service
	io_map_clear Kernel Service
	io_map_init Kernel Service
	io_unmap Kernel Service
	iodone Kernel Service
	iostadd Kernel Service
	iostdel Kernel Service
	iowait Kernel Service
	ip_fltr_in_hook, ip_fltr_out_hook, ipsec_decap_hook, inbound_fw, outbound_fw Kernel Service
	i_sched Kernel Service
	i_unmask Kernel Service
	IS64U Kernel Service

	k
	k_cpuextintr_ctl Kernel Service
	kcap_is_set and kcap_is_set_cr Kernel Service
	kcid_curproc Kernel Service
	kcred_genpagvalue Kernel Service
	kcred_getcap Kernel Service
	kcred_getgroups Kernel Service
	kcred_getpag or kcred_getpag64 Kernel Service
	kcred_getpagid Kernel Service
	kcred_getpaginfo Kernel Service
	kcred_getpagname Kernel Service
	kcred_getppriv Kernel Service
	kcred_getpriv Kernel Service
	kcred_setcap Kernel Service
	kcred_setgroups Kernel Service
	kcred_setpag or kcred_setpag64 Kernel Service
	kcred_setpagname Kernel Service
	kcred_setppriv Kernel Service
	kcred_setpriv Kernel Service
	kern_soaccept Kernel Service
	kern_sobind Kernel Service
	kern_soclose Kernel Service
	kern_soconnect Kernel Service
	kern_socreate Kernel Service
	kern_sogetopt Kernel Service
	kern_solisten Kernel Service
	kern_soreceive Kernel Service
	kern_soreserve Kernel Service
	kern_sosend Kernel Service
	kern_sosetopt Kernel Service
	kern_soshutdown Kernel Service
	kgethostname Kernel Service
	kgetpname Kernel Service
	kgetrlimit64 Kernel Service
	kgetsystemcfg Kernel Service
	kgettickd Kernel Service
	kkey_assign_private Kernel Service
	kkeyset_add_key Kernel Service
	kkeyset_add_set Kernel Service
	kkeyset_create Kernel Service
	kkeyset_delete Kernel Service
	kkeyset_remove_key Kernel Service
	kkeyset_remove_set Kernel Service
	kkeyset_to_hkeyset Kernel Service
	klpar_get_info Kernel Service
	kmod_entrypt Kernel Service
	kmod_load Kernel Service
	kmod_unload Kernel Service
	kmod_util Kernel Service
	kmsgctl Kernel Service
	kmsgget Kernel Service
	kmsgrcv Kernel Service
	kmsgsnd Kernel Service
	kra_attachrset Subroutine
	kra_creatp Subroutine
	kra_detachrset Subroutine
	kra_getrset Subroutine
	krs_alloc Subroutine
	krs_free Subroutine
	krs_getassociativity Subroutine
	krs_get_homesrad Subroutine
	krs_getinfo Subroutine
	krs_getpartition Subroutine
	krs_getrad Subroutine
	krs_init Subroutine
	krs_numrads Subroutine
	krs_op Subroutine
	krs_setpartition Subroutine
	ksettickd Kernel Service
	ksettimer Kernel Service
	kthread_kill Kernel Service
	kthread_start Kernel Service
	kvmgetinfo Kernel Service
	kwpar_checkpoint_status Kernel Service
	kwpar_err Kernel Service
	kwpar_getname Kernel Service
	kwpar_getrootpath Kernel Service
	kwpar_isappwpar Kernel Service
	kwpar_r2vmap_devno Kernel Service
	kwpar_r2vmap_pid Kernel Service
	kwpar_r2vmap_tid Kernel Service
	kwpar_regdevno Kernel Service
	kwpar_reghook Kernel Service
	kwpar_unregdevno Kernel Service
	kwpar_unreghook Kernel Service
	kwpar_v2rmap_devno Kernel Service
	kwpar_v2rmap_pid Kernel Service
	kwpar_v2rmap_tid Kernel Service

	l
	ldata_alloc Kernel Service
	ldata_create Kernel Service
	ldata_destroy Kernel Service
	ldata_free Kernel Service
	ldata_grow Kernel Service
	ldmp_bufest, ldmp_timeleft, ldmp_xmalloc, ldmp_xmfree, and ldmp_errstr Kernel Services
	ldmp_freeparms Kernel Service
	ldmp_setupparms Kernel Service
	limit_sigs or sigsetmask Kernel Service
	livedump Kernel Service
	lock_alloc Kernel Service
	lock_clear_recursive Kernel Service
	lock_done Kernel Service
	lock_free Kernel Service
	lock_init Kernel Service
	lock_islocked Kernel Service
	lockl Kernel Service
	lock_mine Kernel Service
	lock_read or lock_try_read Kernel Service
	lock_read_to_write or lock_try_read_to_write Kernel Service
	lock_set_recursive Kernel Service
	lock_write or lock_try_write Kernel Service
	lock_write_to_read Kernel Service
	loifp Kernel Service
	longjmpx Kernel Service
	lookupvp, lookupname, lookupname_cur Kernel Services
	looutput Kernel Service
	ltpin Kernel Service
	ltunpin Kernel Service

	m
	m_adj Kernel Service
	mbreq Structure for mbuf Kernel Services
	mbstat Structure for mbuf Kernel Services
	m_cat Kernel Service
	m_clattach Kernel Service
	m_clget Macro for mbuf Kernel Services
	m_clgetm Kernel Service
	m_collapse Kernel Service
	m_copy Macro for mbuf Kernel Services
	m_copydata Kernel Service
	m_copym Kernel Service
	m_dereg Kernel Service
	m_free Kernel Service
	m_freem Kernel Service
	m_get Kernel Service
	m_getclr Kernel Service
	m_getclust Macro for mbuf Kernel Services
	m_getclustm Kernel Service
	m_gethdr Kernel Service
	M_HASCL Macro for mbuf Kernel Services
	m_pullup Kernel Service
	m_reg Kernel Service
	md_restart_block_read Kernel Service
	md_restart_block_upd Kernel Service
	MTOCL Macro for mbuf Kernel Services
	MTOD Macro for mbuf Kernel Services
	M_XMEMD Macro for mbuf Kernel Services
	mycpu Kernel Service

	n
	nameToXfid() Kernel Service
	net_attach Kernel Service
	net_detach Kernel Service
	net_error Kernel Service
	net_sleep Kernel Service
	net_start Kernel Service
	net_start_done Kernel Service
	net_wakeup Kernel Service
	net_xmit Kernel Service
	net_xmit_trace Kernel Service
	NLuprintf Kernel Service
	ns_add_demux Network Kernel Service
	ns_add_filter Network Service
	ns_add_status Network Service
	ns_alloc Network Service
	ns_attach Network Service
	ns_del_demux Network Service
	ns_del_filter Network Service
	ns_del_status Network Service
	ns_detach Network Service
	ns_free Network Service

	p
	__pag_getid System Call
	__pag_getname System Call
	__pag_getvalue System Call
	__pag_setname System Call
	__pag_setvalue System Call
	panic Kernel Service
	pci_cfgrw Kernel Service
	pfctlinput Kernel Service
	pffindproto Kernel Service
	pgsignal Kernel Service
	pidsig Kernel Service
	pin Kernel Service
	pin_context_stack or unpin_context_stack Kernel Service
	pincf Kernel Service
	pincode Kernel Service
	Process State-Change Notification Routine
	proch_reg Kernel Service
	proch_unreg Kernel Service
	prochadd Kernel Service
	prochdel Kernel Service
	probe or kprobe Kernel Service
	purblk Kernel Service
	putc Kernel Service
	putcb Kernel Service
	putcbp Kernel Service
	putcf Kernel Service
	putcfl Kernel Service
	putcx Kernel Service

	q
	query_proc_info Kernel Service

	r
	RAS_BLOCK_NULL Exported Data Structure
	ras_control Exported Kernel Service
	ras_customize Exported Kernel Service
	ras_path_control Exported Kernel Services
	ras_register and ras_unregister Exported Kernel Services
	ras_ret_query_parms Kernel Service
	raschk_eaddr_hkeyset Kernel Service
	raschk_eaddr_kkey Kernel Service
	raschk_stktrace Kernel Service
	raw_input Kernel Service
	raw_usrreq Kernel Service
	reconfig_register, reconfig_register_ext, reconfig_unregister, or reconfig_complete, reconfig_register_list Kernel Service
	refmon Kernel Service
	register_HA_handler Kernel Service
	rmalloc Kernel Service
	rmfree Kernel Service
	rmmap_create Kernel Service
	rmmap_getwimg Kernel Service
	rmmap_remove Kernel Service
	rtalloc Kernel Service
	rtalloc_gr Kernel Service
	rtfree Kernel Service
	rtinit Kernel Service
	rtredirect Kernel Service
	rtrequest Kernel Service
	rtrequest_gr Kernel Service
	rusage_incr Kernel Service

	s
	schednetisr Kernel Service
	selnotify Kernel Service
	selreg Kernel Service
	set_pag or set_pag64 Kernel Service
	setioctlrv Subroutine
	setjmpx Kernel Service
	setpinit Kernel Service
	setuerror Kernel Service
	shutdown_notify_reg Kernel Service
	shutdown_notify_unreg Kernel Service
	sig_chk Kernel Service
	simple_lock or simple_lock_try Kernel Service
	simple_lock_init Kernel Service
	simple_unlock Kernel Service
	sleep Kernel Service
	sleepx Kernel Service
	subyte Kernel Service
	suser Kernel Service
	suword Kernel Service

	t
	TE_verify_reg Kernel Service
	TE_verify_unreg Kernel Service
	talloc Kernel Service
	tfree Kernel Service
	thread_create Kernel Service
	thread_self Kernel Service
	thread_setsched Kernel Service
	thread_set_smt_priority or thread_read_smt_priority System Call
	thread_terminate Kernel Service
	timeout Kernel Service
	timeoutcf Subroutine for Kernel Services
	trc_ishookon Exported Kernel Service
	trcgenk Kernel Service
	trcgenkt Kernel Service
	trcgenkt Kernel Service for Data Link Control (DLC) Devices
	tstart Kernel Service
	tstop Kernel Service
	tuning Kernel Service

	u
	ue_proc_check Kernel Service
	ue_proc_register Subroutine
	ue_proc_unregister Subroutine
	uexadd Kernel Service
	User-Mode Exception Handler for the uexadd Kernel Service
	uexblock Kernel Service
	uexclear Kernel Service
	uexdel Kernel Service
	ufdcreate Kernel Service
	ufdgetf Kernel Service
	ufdhold and ufdrele Kernel Service
	uiomove Kernel Service
	unlock_enable Kernel Service
	unlockl Kernel Service
	unpin Kernel Service
	unpincode Kernel Service
	unregister_HA_handler Kernel Service
	untimeout Kernel Service
	uphysio Kernel Service
	uphysio Kernel Service mincnt Routine
	uprintf Kernel Service
	ureadc Kernel Service
	uwritec Kernel Service

	v
	validate_pag or validate_pag64 Kernel Service
	vec_clear Kernel Service
	vec_init Kernel Service
	vfsrele Kernel Service
	vm_att Kernel Service
	vm_cflush Kernel Service
	vm_det Kernel Service
	vm_flushp Kernel Service
	vm_galloc Kernel Service
	vm_gfree Kernel Service
	vm_guatt Kernel Service
	vm_gudet Kernel Service
	vm_handle Kernel Service
	vm_invalidatep Kernel Service
	vm_ioaccessp Kernel Service
	vm_makep Kernel Service
	vm_mem_policy System Call
	vm_mount Kernel Service
	vm_mounte Kernel Service
	vm_move Kernel Service
	vm_mvc Kernel Service
	vm_pattr System Call and kvm_pattr Kernel Service
	vm_protect_kkey Kernel Service
	vm_protectp Kernel Service
	vm_qmodify Kernel Service
	vm_qpages Kernel Service
	vm_readp Kernel Service
	vm_release Kernel Service
	vm_releasep Kernel Service
	vm_segmap Kernel Service
	vm_setdevid Kernel Service
	vm_setseg_kkey Kernel Service
	vm_thrpgio_pop Kernel Service
	vm_thrpgio_push Kernel Service
	vms_create Kernel Service
	vms_delete Kernel Service
	vms_iowait, vms_iowaitf Kernel Services
	vm_uiomove Kernel Service
	vm_umount Kernel Service
	vm_write Kernel Service
	vm_writep Kernel Service
	vn_free Kernel Service
	vn_get Kernel Service
	vsx_disable Kernel Service
	vsx_enable Kernel Service

	w
	waitcfree Kernel Service
	waitq Kernel Service
	WPAR_CKPT_QUERY (Checkpoint Query) Device Driver ioctl Operation
	w_clear Kernel Service
	w_init Kernel Service
	w_setattr Kernel Service
	w_start Kernel Service
	w_stop Kernel Service

	x
	xfidToName() Kernel Service
	xlate_create Kernel Service
	xlate_pin Kernel Service
	xlate_remove Kernel Service
	xlate_unpin Kernel Service
	xm_det Kernel Service
	xm_mapin Kernel Service
	xm_maxmap Kernel Service
	xmalloc Kernel Service
	xmattach Kernel Service
	xmdetach Kernel Service
	xmemdma Kernel Service
	xmemdma64 Kernel Service
	xmempin Kernel Service
	xmemunpin Kernel Service
	xmemzero Kernel Service
	xmemin Kernel Service
	xmemout Kernel Service
	xmempsize Kernel Service
	xmfree Kernel Service
	xmgethkeyset Kernel Service
	xmsethkeyset Kernel Service

	Device Driver Operations
	Standard Parameters to Device Driver Entry Points
	buf Structure
	bufx Structure
	Character Lists Structure
	ddclose Device Driver Entry Point
	ddconfig Device Driver Entry Point
	dddump Device Driver Entry Point
	ddioctl Device Driver Entry Point
	ddmpx Device Driver Entry Point
	ddopen Device Driver Entry Point
	ddread Device Driver Entry Point
	ddrevoke Device Driver Entry Point
	ddselect Device Driver Entry Point
	ddstrategy Device Driver Entry Point
	ddwrite Device Driver Entry Point
	Select/Poll Logic for ddwrite and ddread Routines
	uio Structure

	Virtual File System Operations
	vfs_aclxcntl Entry Point
	vfs_cntl Entry Point
	vfs_hold or vfs_unhold Kernel Service
	vfs_init Entry Point
	vfs_mount Entry Point
	vfs_root Entry Point
	vfs_search Kernel Service
	vfs_statfs Entry Point
	vfs_sync Entry Point
	vfs_umount Entry Point
	vfs_vget Entry Point
	vnop_access Entry Point
	vnop_close Entry Point
	vnop_create Entry Point
	vnop_create_attr Entry Point
	vnop_fclear Entry Point
	vnop_fid Entry Point
	vnop_finfo Entry Point
	vnop_fsync, vnop_fsync_range Entry Points
	vnop_ftrunc Entry Point
	vnop_getacl Entry Point
	vnop_getattr Entry Point
	vnop_getxacl Entry Point
	vnop_hold Entry Point
	vnop_ioctl Entry Point
	vnop_link Entry Point
	vnop_lockctl Entry Point
	vnop_lookup Entry Point
	vnop_map Entry Point
	vnop_map_lloff Entry Point
	vnop_memcntl Entry Point
	vnop_mkdir Entry Point
	vnop_mknod Entry Point
	vnop_open Entry Point
	vnop_rdwr, vnop_rdwr_attr Entry Points
	vnop_readdir Entry Point
	vnop_readdir_eofp Entry Point
	vnop_readlink Entry Point
	vnop_rele Entry Point
	vnop_remove Entry Point
	vnop_rename Entry Point
	vnop_revoke Entry Point
	vnop_rmdir Entry Point
	vnop_seek Entry Point
	vnop_select Entry Point
	vnop_setacl Entry Point
	vnop_setattr Entry Point
	vnop_setxacl Entry Point
	vnop_strategy Entry Point
	vnop_symlink Entry Point
	vnop_unmap Entry Point

	Configuration Subsystem
	Adapter-Specific Considerations for the Predefined Attribute (PdAt) Object Class
	Adapter-Specific Considerations for the Predefined Devices (PdDv) Object Class
	attrval Device Configuration Subroutine
	busresolve Device Configuration Subroutine
	Configuration Rules (Config_Rules) Object Class
	Customized Attribute (CuAt) Object Class
	Customized Dependency (CuDep) Object Class
	Customized Device Driver (CuDvDr) Object Class
	Customized Devices (CuDv) Object Class
	Customized VPD (CuVPD) Object Class
	Device Methods for Adapter Cards: Guidelines
	genmajor Device Configuration Subroutine
	genminor Device Configuration Subroutine
	genseq Device Configuration Subroutine
	getattr Device Configuration Subroutine
	getminor Device Configuration Subroutine
	How Device Methods Return Errors
	loadext Device Configuration Subroutine
	Loading a Device Driver
	Machine Device Driver
	ODM Device Configuration Object Classes
	Predefined Attribute (PdAt) Object Class
	Predefined Attribute Extended (PdAtXtd) Object Class
	Predefined Connection (PdCn) Object Class
	Predefined Devices (PdDv) Object Class
	putattr Device Configuration Subroutine
	reldevno Device Configuration Subroutine
	relmajor Device Configuration Subroutine
	Writing a Change Method
	Writing a Configure Method
	Writing a Define Method
	Writing an Unconfigure Method
	Writing an Undefine Method
	Writing Optional Start and Stop Methods

	SCSI Subsystem
	IOCINFO (Device Information) tmscsi Device Driver ioctl Operation
	Parallel SCSI Adapter Device Driver
	scdisk SCSI Device Driver
	SCIOCMD SCSI Adapter Device Driver ioctl Operation
	SCIODIAG (Diagnostic) SCSI Adapter Device Driver ioctl Operation
	SCIODNLD (Download) SCSI Adapter Device Driver ioctl Operation
	SCIOEVENT (Event) SCSI Adapter Device Driver ioctl Operation
	SCIOGTHW (Gathered Write) SCSI Adapter Device Driver ioctl Operation
	SCIOHALT (Halt) SCSI Adapter Device Driver ioctl Operation
	SCIOINQU (Inquiry) SCSI Adapter Device Driver ioctl Operation
	SCIOREAD (Read) SCSI Adapter Device Driver ioctl Operation
	SCIORESET (Reset) SCSI Adapter Device Driver ioctl Operation
	SCIOSTART (Start SCSI) Adapter Device Driver ioctl Operation
	SCIOSTARTTGT (Start Target) SCSI Adapter Device Driver ioctl Operation
	SCIOSTOP (Stop) Device SCSI Adapter Device Driver ioctl Operation
	SCIOSTOPTGT (Stop Target) SCSI Adapter Device Driver ioctl Operation
	SCIOSTUNIT (Start Unit) SCSI Adapter Device Driver ioctl Operation
	SCIOTRAM (Diagnostic) SCSI Adapter Device Driver ioctl Operation
	SCIOTUR (Test Unit Ready) SCSI Adapter Device Driver ioctl Operation
	scsesdd SCSI Device Driver
	scsidisk SAM Device Driver
	scsisesdd SAM Device Driver
	sctape FC Device Driver
	tape SCSI Device Driver
	TMCHGIMPARM (Change Parameters) tmscsi Device Driver ioctl Operation
	TMGETSENS (Request Sense) tmscsi Device Driver ioctl Operation
	TMIOASYNC (Async) tmscsi Device Driver ioctl Operation
	TMIOCMD (Direct) tmscsi Device Driver ioctl Operation
	TMIOEVNT (Event) tmscsi Device Driver ioctl Operation
	TMIORESET (Reset Device) tmscsi Device Driver ioctl Operation
	TMIOSTAT (Status) tmscsi Device Driver ioctl Operation
	tmscsi SCSI Device Driver

	NVMe Subsystem
	NVMe storage (hdisk) device driver
	NVMe controller device driver

	USB Subsystem
	Extensible Host Controller Adapter Device Driver
	Enhanced Host Controller Adapter Device Driver
	HCD_REQUEST_COMPANIONS

	Open Host Controller Adapter Device Driver
	HCD_REGISTER_HC
	USB Audio Device Driver
	USB Keyboard Client Device Driver
	USB Mass Storage Client Device Driver
	Error Conditions

	USB Mouse Client Device Driver
	USB Tape Client Device Driver
	Error Conditions

	USBD Protocol Driver
	USBD ioctl Operations
	USBD_OPEN_DEVICE
	USBD_OPEN_DEVICE_EXT
	USBD_REGISTER_MULTI_HC
	USBD_REGISTER_SINGLE_HC
	USBD_ENUMERATE_DEVICE
	USBD_ENUMERATE_ALL
	USBD_ENUMERATE_CFG
	USBD_GET_DESCRIPTORS
	USBD_CFG_CLIENT_UPDATE

	USBLIBDD Passthru Driver

	Notices
	Privacy policy considerations
	Trademarks

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

