
AIX Version 7.1

Files Reference

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
1119 .

This edition applies to AIX Version 7.1 and to all subsequent releases and modifications until otherwise indicated in new
editions.
© Copyright International Business Machines Corporation 2010, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this document...xi
Highlighting..xi
Case sensitivity in AIX... xi
ISO 9000..xi

Files Reference..1
What's new... 1
System Files... 1

access_lists File..3
acct.cfg File...4
admin File... 5
aliases File for Mail... 7
audit File for BNU... 8
/etc/security/authorizations File..8
autosecrets File.. 10
backup File... 11
bincmds File... 13
BOOTP Relay Agent Configuration File.. 15
bootparams File for NFS.. 17
ca.cfg File..17
cdromd.conf File Format.. 18
ClientHostName.info File... 20
clsnmp.conf File... 21
Command (C.*) Files for BNU... 24
compver File... 26
config File... 27
consdef File.. 33
copyright File.. 34
ct_class_ids File... 34
ct_cssk.kf File... 35
ct_has.pkf File.. 35
ct_has.qkf File.. 37
ct_has.thl File... 38
ctfile.cfg File... 40
ctgroups File... 42
ctcas_hba2.map File.. 43
ctcasd.cfg File...44
ctrmc.acls File.. 46
ctrmc.rio File...47
ctsec.cfg File...48
ctsec_map.global File.. 49
ctsec_map.local File...53
Data (D.*) Files for BNU.. 57
/dev/hty File..58
/dev/rhp File... 58
DHCP Client Configuration File.. 59
DHCP Server Configuration File... 62
depend File... 73
devexports File... 74
dir File... 75

 iii

/etc/security/domains File...76
/etc/security/domobjs File...77
dpid2.conf File..79
dsinfo File... 80
dumpdates File...83
e789_ctbl File for HCON.. 84
e789_ktbl File for HCON.. 85
eimadmin.conf File .. 85
environ File... 87
environment File...88
errors File for BNU..94
ethers File for NIS.. 95
events File...95
Execute (X.*) Files for BNU...97
exports File for NFS..100
.fig File.. 106
filesystems File...106
Foreign File for BNU... 109
.forward File... 110
ftpaccess.ctl File.. 111
/etc/group File ... 112
/etc/security/group File... 114
Workload Manager groupings File... 117
hostmibd.conf File..118
image.data File... 120
/etc/security/.ids File... 124
INed Files... 125
.info File.. 126
inittab File...128
isns_servers File...131
irs.conf File... 132
ispaths File... 137
isprime File...139
.kshrc File... 140
lapi_subroutines Information.. 142
ldapid.ldif.template File .. 144
limits File ... 145
local_domain File... 147
login.cfg File... 147
lpacl Information..153
.maildelivery File for MH.. 161
/usr/lib/security/methods.cfg File...164
mhl.format File...168
.mh_profile File.. 170
mibII.my File.. 175
mkuser.default File...177
mtstailor File for MH...178
mrouted.conf File... 179
netgroup File for NIS..181
netmasks File for NIS...182
netmon.cf File.. 183
netsvc.conf File.. 183
networks File for NFS...185
NLSvec File... 186
/etc/nscontrol.conf File..188
ntp.conf File..191
ntp.conf4 File... 201
Network Time Protocol (NTP).. 214

iv

ntp.keys File... 215
objects File... 216
pam_aix Module... 217
pam_allow Module...219
pam_allowroot Module.. 220
pam_ckfile Module...221
pam_mkuserhome Module..222
pam_permission Module... 222
pam_prohibit Module...224
pam_rhosts_auth Module..225
pam.conf File..226
/etc/passwd File...228
passwd_policy File...231
/etc/security/passwd File.. 232
pcnfsd.conf Configuration File...234
pkginfo File... 237
pkgmap File.. 240
policy.cfg File..243
portlog File... 244
/etc/security/privcmds File..245
/etc/security/privdevs File...248
/etc/security/privfiles File..250
/proc File.. 251
proxy.ldif.template File.. 268
prtglobalconfig File.. 268
pwdhist File.. 269
publickey File for NIS...270
/etc/security/pwdalg.cfg File...271
qconfig File .. 272
raspertune File... 276
rc.boot File..276
rc.tcpip File for TCP/IP... 277
realm.map File... 278
remote.unknown File for BNU... 278
resource_data_input Information... 279
rmccli Information... 281
rndc.conf File..285
roles File... 287
rpc File for NFS...290
sectoldif.cfg Configuration File.. 290
security_default File...291
sendmail.cf File.. 292
setinfo File..342
setup.csh File... 343
setup.sh File... 344
slp.conf File.. 345
smbctune.conf File...347
smi.my File... 348
smitacl.group File...348
smitacl.user File... 350
snmpd.conf File..351
snmpd.boots File..360
snmpdv3.conf File..361
snmpmibd.conf File..374
socks5c.conf File..375
space File..376
.srf File..377
streamcmds File...377

 v

sysck.cfg File.. 378
syslog.conf File...380
targets File..382
Temporary (TM.*) Files for BNU... 383
Workload Manager .times File... 384
unix.map File.. 385
updaters File for NIS.. 386
user File.. 387
user.roles File... 398
vfs File.. 400
Workload Manager classes File... 401
Workload Manager limits File.. 403
Workload Manager rules File... 406
Workload Manager shares File...409
xferstats File for BNU... 411
xtab File for NFS...412

File Formats... 412
.3270keys File Format for TCP/IP... 415
acct File Format..417
ar File Format (Big)...419
ar File Format (Small)...421
ate.def File Format... 423
audit File Format.. 428
bootptab File Format..431
cgaparams.sec File Format for TCP/IP.. 431
Character Set Description (charmap) Source File Format.. 433
core File Format... 439
cpio File Format..442
cronlog.conf File...443
Devices File Format for BNU..444
Dialcodes File Format for BNU...449
Dialers File Format for BNU... 450
Dialing Directory File Format for ATE...454
DOMAIN Cache File Format for TCP/IP... 456
DOMAIN Data File Format for TCP/IP..457
DOMAIN Local Data File Format for TCP/IP.. 460
DOMAIN Reverse Data File Format for TCP/IP..462
eqnchar File Format... 464
/etc/ftpd.cnf File Format for TCP/IP.. 465
/etc/security/rtc/rtcd.conf file format for real-time compliance..466
/etc/security/rtc/rtcd_policy.conf file format for real-time compliance.. 468
/etc/ftpd.cnf File Format for TCP/IP.. 468
/etc/tnc_config File ... 470
.ftpcnf File Format for TCP/IP.. 470
ftpusers File Format for TCP/IP... 471
gated.conf File Format for TCP/IP... 472
gateways File Format for TCP/IP... 515
hosts File Format for TCP/IP..517
hosts.equiv File Format for TCP/IP..519
hosts.lpd File Format for TCP/IP..522
hty_config File Format..523
inetd.conf File Format for TCP/IP.. 524
lastlog File Format..526
ldap.cfg File Format... 528
LDAP Attribute Mapping File Format... 535
Locale Definition Source File Format...537
LC_COLLATE Category for the Locale Definition Source File Format..538
LC_CTYPE Category for the Locale Definition Source File Format..542

vi

LC_MESSAGES Category for the Locale Definition Source File Format.. 545
LC_MONETARY Category for the Locale Definition Source File Format..546
LC_NUMERIC Category for the Locale Definition Source File Format.. 552
LC_TIME Category for the Locale Definition Source File Format.. 553
Locale Method Source File Format.. 559
magic File Format ..564
.mailrc File Format... 565
map3270 File Format for TCP/IP...569
Maxuuscheds File Format for BNU.. 573
Maxuuxqts File Format for BNU...574
.mh_alias File Format...574
mib.defs File Format.. 577
named.conf File Format for TCP/IP... 579
ndpdh.cnf File Format for TCP/IP.. 629
netcd.conf File Format for netcd... 630
.netrc File Format for TCP/IP... 633
networks File Format for TCP/IP... 635
nroff or troff Input File Format...635
nterm File Format ..636
Permissions File Format for BNU...639
phones File Format for tip..648
Poll File Format for BNU...649
profile File Format.. 650
protocols File Format for TCP/IP... 651
queuedefs File Format .. 651
rc.net File Format for TCP/IP... 653
rc.ntx File Format... 656
remote File Format for tip.. 657
resolv.conf File Format for TCP/IP...661
resolv.ldap File Format for TCP/IP...663
rfc1108 table ...664
.rhosts File Format for TCP/IP... 665
sccsfile File Format.. 666
sendh_anchor File Format for TCP/IP... 671
sendr_anchor File Format for TCP/IP.. 672
services File Format for TCP/IP... 672
setmaps File Format.. 673
simprof File Format.. 675
Standard Resource Record Format for TCP/IP..677
Sysfiles File Format for BNU.. 686
Systems File Format for BNU...688
telnet.conf File Format for TCP/IP... 694
tempaddr.conf File Format for TCP/IP...695
tepolicies.dat File Format.. 696
terminfo Directory.. 696
.tiprc File Format for tip... 753
trcfmt File Format.. 754
troff File Format..760
troff Font File Format... 762
tunables File Format.. 766
uconvdef Source File Format... 769
UIL File Format...771
utmp, wtmp, failedlogin File Format..791
vgrindefs File Format... 792
WML File Format.. 794
XCOFF Object File Format..799

Special Files... 868
3270cn Special File..869

 vii

bus Special File.. 877
cd Special File.. 877
console Special File..879
dials Special File...882
dump Special File...883
entn Special File...884
Error Logging Special Files...885
fd Special File... 886
fddin Special File..889
GIO Special File..890
ide Special File... 891
kbd Special File.. 891
lft Special File...893
lp Special File... 895
lpfk Special File.. 898
lvdd Special File... 899
mem or kmem Special File.. 905
mouse Special File... 908
mpcn Special File... 909
mpqi Special File.. 912
mpqn Special File...912
mstor Special File...915
null Special File.. 917
nvram Special File.. 918
random and urandom Devices...919
omd Special File... 920
opn Special File.. 922
ops0 Special File.. 923
pty Special File... 925
rcm Special File.. 927
rhdisk Special File.. 927
rmt Special File...929
scsi Special File.. 933
secvars.cfg File...934
tablet Special File...936
tap Special File... 938
tmscsi Special File..939
tokn Special File... 940
trace Special File.. 942
tty Special File.. 942
urandom and random Devices...943
usb0 Special File.. 944
usbhc Special File.. 944
usblibdev Special File.. 944
usbms Special File... 945
vty_server Special File... 945

Header Files...947
List of Major Control Block Header Files... 949
ct_ffdc.h File...951
dirent.h File.. 953
dlfcn.h File..953
eucioctl.h File... 954
fcntl.h File...955
filsys.h File ...957
flock.h File.. 961
fullstat.h File...963
grp.h File...964
iconv.h File..964

viii

inode.h File... 965
inttypes.h File...968
ipc.h File... 968
iso646.h File...969
ldr.h File.. 970
limits.h File... 972
libperfstat.h File... 974
math.h File... 1019
mode.h File...1020
msg.h File... 1022
mtio.h File...1024
param.h File... 1024
pmapi.h File..1025
poll.h File..1031
pthread.h File... 1032
pwd.h File...1034
pwdpolicy.h File... 1034
sem.h File... 1036
sgtty.h File.. 1038
shm.h File...1045
spc.h File.. 1046
srcobj.h File..1050
stat.h File..1051
statfs.h File...1054
statvfs.h File...1056
systemcfg.h File... 1057
tar.h File ...1059
termio.h File... 1064
termios.h File... 1072
termiox.h File... 1083
threads.h File... 1085
trace.h File..1087
types.h File...1090
uchar.h File...1092
unistd.h File..1092
utmp.h File... 1093
values.h File... 1095
vmount.h File... 1096
wctype.h File.. 1098
wlm.h File...1099

Directories... 1108
/etc/locks Directory... 1110
/usr/lib/hcon Directory.. 1111
/var/spool/mqueue Directory for Mail...1112
/var/spool/uucp Directory for BNU..1113
/var/spool/uucp/.Admin Directory for BNU.. 1114
/var/spool/uucp/.Corrupt Directory for BNU...1114
/var/spool/uucp/.Log Directories for BNU...1114
/var/spool/uucp/.Old Directory for BNU..1115
/var/spool/uucp/.Status Directory for BNU...1116
/var/spool/uucp/SystemName Directories for BNU... 1116
/var/spool/uucp/.Workspace Directory for BNU... 1117
/var/spool/uucp/.Xqtdir Directory for BNU... 1117
/var/spool/uucppublic Directory for BNU..1118

Notices..1119
Privacy policy considerations..1120

 ix

Trademarks..1121

Index.. 1123

x

About this document

This topic collection contains sections on the system files, special files, header files, and directories
that are provided with the operating system and optional program products. File formats required for
certain files that are generated by the system or by an optional program are also presented in this topic
collection.

Highlighting
The following highlighting conventions are used in this document:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other
items whose names are predefined by the system. Bold highlighting also identifies
graphical objects, such as buttons, labels, and icons that the you select.

Italics Identifies parameters for actual names or values that you supply.

Monospace Identifies examples of specific data values, examples of text similar to what you
might see displayed, examples of portions of program code similar to what you might
write as a programmer, messages from the system, or text that you must type.

Case sensitivity in AIX
Everything in the AIX® operating system is case sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS,
the system responds that the command is not found. Likewise, FILEA, FiLea, and filea are three
distinct file names, even if they reside in the same directory. To avoid causing undesirable actions to be
performed, always ensure that you use the correct case.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 2010, 2016 xi

xii AIX Version 7.1: Files Reference

Files Reference
This topic collection contains sections on the system files, special files, header files, and directories
that are provided with the operating system and optional program products. File formats required for
certain files that are generated by the system or by an optional program are also presented in this topic
collection.

The AIX operating system is designed to support The Open Group's Single UNIX Specification Version 3
(UNIX 03) for portability of operating systems based on the UNIX operating system. Many new interfaces,
and some current ones, have been added or enhanced to meet this specification. To determine the correct
way to develop a UNIX 03 portable application, see The Open Group's UNIX 03 specification on The UNIX
System website (http://www.unix.org).

What's new in Files Reference
Read about new or significantly changed information for the File Reference topic collection.

How to see what's new or changed
In this PDF file, you might see revision tags (>| and |<) surrounding new and changed information.

August 2019
The following information is a summary of the updates made to this topic collection:

• Added information about the tunable parameters settings file for the Server Message Block (SMB) client
file system in the smbctune.conf file topic.

January 2018
The following information is a summary of the updates made to this topic collection:

• Added a Netcd dns configuration for negative response section to the netcd.conf File Format for netcd
topic.

October 2017
The following information is a summary of the updates made to this topic collection:

• Updated information about the Ignorenonexistentity attribute in the “config File” on page 27.
• Updated information about the rbac stanza in the “secvars.cfg File” on page 934.
• Updated information about the LDAP_Value_Unit field in the “LDAP Attribute Mapping File Format”

on page 535 topic.

October 2016
The following information is a summary of the updates made to this topic collection:

• Updated the perf_disk_data_t structure information in the “libperfstat.h File” on page 974 topic.

System Files
The files in this section are system files. These files are created and maintained by the operating
system and are necessary for the system to perform its many functions. System files are used by many

© Copyright IBM Corp. 2010, 2016 1

http://www.unix.org

commands and subroutines to perform operations. These files can only be changed by a user with root
authority.

A file is a collection of data that can be read from or written to. A file can be a program you create, text you
write, data you acquire, or a device you use. Commands, printers, terminals, and application programs are
all stored in files. This allows users to access diverse elements of the system in a uniform way and gives
the operating system great flexibility. No format is implied when a file is created.

Files are used for all input and output (I/O) of information in this operating system. This standardizes
access to both software and hardware. Input occurs when the content of a file is modified or written to.
Output occurs when the content of one file is read or transferred to another file. For example, to create a
hardcopy printout of a text file, the system reads the information from the text file and writes the data to
the file representing the printer.

Collections of files are stored in directories. These collections of files are often related to each other, and
storing them in a structure of directories keeps them organized.

There are many ways to create, use, and manipulate files. Files in Operating system and device
management introduces the commands that control files.

Types of Files
There are three basic types of files:

File Type Description

regular Stores data (text, binary, and executable).

directory Contains information used to access other files.

special Defines a FIFO (first-in, first-out) file or a physical device.

All file types recognized by the system fall into one of these categories. However, the operating system
uses many variations of these basic types.

Regular files are the most common. When a word processing program is used to create a document, both
the program and the document are contained in regular files.

Regular files contain either text or binary information. Text files are readable by the user. Binary files are
readable by the computer. Binary files can be executable files that instruct the system to accomplish a
job. Commands, shell scripts, and other programs are stored in executable files.

Directories contain information the system needs to access all types of files, but they do not contain the
actual file data. As a result, directories occupy less space than a regular file and give the file-system
structure flexibility and depth. Each directory entry represents either a file or subdirectory and contains
the name of a file and the file's i-node (index node reference) number. The i-node number represents the
unique i-node that describes the location of the data associated with the file. Directories are created and
controlled by a separate set of commands.

Special files define devices for the system or temporary files created by processes. There are three basic
types of special files: FIFO (first-in, first-out), block, and character. FIFO files are also called pipes. Pipes
are created by one process to temporarily allow communication with another process. These files cease
to exist when the first process finishes. Block and character files define devices.

Every file has a set of permissions (called access modes) that determine who can read, modify, or execute
the file. To learn more about file access modes, see File ownership and user groups in Operating system
and device management.

File-Naming Conventions
The name of each file must be unique within the directory where it is stored. This insures that the file also
has a unique path name in the file system. File-naming guidelines are:

• A file name can be up to 255 characters long and can contain letters, numbers, and underscores.

2 AIX Version 7.1: Files Reference

• The operating system is case-sensitive which means it distinguishes between uppercase and lowercase
letters in file names. Therefore, FILEA, FiLea, and filea are three distinct file names, even if they
reside in the same directory.

• File names should be as descriptive as possible.
• Directories follow the same naming conventions as files.
• Certain characters have special meaning to the operating system, and should be avoided when naming
files. These characters include the following:

/ \ " ' * ; - ? [] () ~ ! $ { } < > # @ & |

• A file name is hidden from a normal directory listing if it begins with a . (dot). When the ls command is
entered with the -a flag, the hidden files are listed along with regular files and directories.

The path name of a file consists of the name of every directory that precedes it in the file tree structure.
Only the final component of a path name can contain the name of a regular file. All other components in a
path name must be directories. Path names can be absolute or relative. See File path names in Operating
system and device management to learn more about the complete name of a file within the file system.

Related information
Files
Files, Directories, and File Systems for Programmers

access_lists File

Purpose
Configures access control lists for the iSCSI target driver.

Description
The access_lists file is used to configure access control lists for the iSCSI target driver. You can use
comments in the access_lists file. The comment character is "#", and must be the first character on
the line.

This file contains one entry per target. Each entry has the following format:

target_name|lun_name iSCSI_name,iSCSI_name,...

target_name
The target ODM name on which access control is applied.

lun_name
The logical unit number (LUN) ODM name on which access control is applied.

iSCSI_name
The list of iSCSI names (iqn or eui format) of initiators that can access this target or LUN.

You can use two default keywords in this file:
all

Used for the target_name or lun_name field. It indicates that the Access Control List is the same for
all targets and LUNs on the server. An entry containing all overrides other entries.

any
Used for the iSCSI_name field. It indicates that one target or LUN is visible by any initiator connecting
to the server.

You can use the line continuation character backslash (\) to make each entry easier to read.

Attention: If an access list grants an initiator the access to a LUN, the access list must also
explicitly grant the access to the target that owns the LUN.

Files Reference 3

Files
Item Description

/etc/tmiscsi/
access_lists

Configures Access Control Lists.

acct.cfg File

Purpose
The acct.cfg file consists of CA stanzas and LDAP stanzas. The CA stanzas contain private CA information
not suitable for the publicly readable ca.cfg file. LDAP stanzas contain LDAP information such as LDAP
administrative names and passwords.

Description
For every CA stanza in the ca.cfg file, the acct.cfg file should contain an equivalently named CA stanza,
and all CA stanzas must be uniquely named. On the other hand, all LDAP stanzas are named ldap. For this
reason, a CA stanza cannot be named ldap. Also, no stanza can be named default. An LDAP stanza must
exist and at least one CA stanza, named local must exist.

Examples

* CA Stanzas:
*

* carefnum Specifies the CA's reference number used while communicating
* with the CA through CMP. This value must be the same value as
* the one that is specified while configuring the CA. (Required)
*
* capasswd Specifies the CA's password used while commuinicating with
* the CA. The length of the password must be at least 12
* characters long. This value must be the same value as the one
* that is specified while configuring the CA.(Required)
*
* rvrefnum Specifies the revocation reference number used for revoking
* a certificate
*
* rvpasswd Specifies the revocation password used for CMP. The length of
* the password must be at least 12 character long.
*
* keylabel Defines the name of the key label in the trusted keystore.
* (Required)
*
* keypasswd Defines the password of the trusted keystore. (Required)
*

* ldap Stanzas:
*
* ldappkiadmin Specifies the PKI LDAP administrator account name.
*
* ldappkiadmpwd Specifies the PKI LDAP administrator account password.
*
* ldapservers Specifies the LDAP server machine name or IP address.
*
* ldapsuffix Specifies the LDAP DN suffix for the root of the LDAP branch
* where the PKI data resides.
*

local:
 carefnum = 12345678
 capasswd = password1234
 rvrefnum = 9999997
 rvpasswd = password
 keylabel = "Trusted Key"
 keypasswd = somepassword

ldap:
 ldappkiadmin = "cn=admin"

4 AIX Version 7.1: Files Reference

 ldappkiadmpwd = password
 ldapservers = myserver.mydomain.com
 ldapsuffix = "ou=cert,cn=aixsecdb"

File
/usr/lib/security/pki/acct.cfg

Related reference
ca.cfg File
policy.cfg File
Related information
certcreate command
certrevoke command

admin File

Purpose
Describes the format of an installation defaults file.

Description
admin is a generic name for an ASCII file that defines default installation actions by assigning values to
installation parameters. For example, it allows administrators to define how to proceed when the package
being installed already exists on the system.

/var/sadm/install/admin/default is the default admin file delivered with your system. The default file is
not writable, so to assign values different from this file, create a new admin file. There are no naming
restrictions for admin files. Name the file when installing a package with the -a flag of the pkgadd
command. If the -a flag is not used, the default admin file is used.

Each entry in the admin file is a line that establishes the value of a parameter in the following form:

 param=value

Eleven parameters can be defined in an admin file. A file is not required to assign values to all eleven
parameters. If a value is not assigned, pkgadd asks the installer how to proceed.

The eleven parameters and their possible values are shown below except as noted. They may be specified
in any order. Any of these parameters can be assigned the value ask, which means that, if the situation
occurs, the installer is notified and asked to supply instructions at that time.

Parameter Description

basedir Indicates the base directory where relocatable packages are to be installed. The value
may contain $PKGINST to indicate a base directory that is to be a function of the package
instance.

mail Defines a list of users to whom mail should be sent following installation of a package. If
the list is empty or if the parameter is not present in the admin file, the default value of
root is used. The ask value cannot be used with this parameter.

runlevel Indicates resolution if the run level (system state) is not correct for the installation or
removal of a package. Options are:
nocheck

Do not check for run level (system state).
quit

Abort installation if run level (system state) is not met.

Files Reference 5

Parameter Description

conflict Specifies what to do if an installation expects to overwrite a previously installed file, thus
creating a conflict between packages. Options are:
nocheck

Do not check for conflict; files in conflict are overwritten.
quit

Abort installation if conflict is detected.
nochange

Override installation of conflicting files; conflicting files are not installed.

setuid Checks for executables that have setuid or setgid bits enabled after installation. Options
are:
nocheck

Do not check for setuid executables.
quit

Abort installation if setuid processes are detected.
nochange

Override installation of setuid processes; processes are installed without setuid bits
enabled.

action Determines if action scripts provided by package developers contain possible security
impact. Options are:
nocheck

Ignore security impact of action scripts.
quit

Abort installation if action scripts may have a negative security impact.

partial Checks to see if a version of the package is already partially installed on the system.
Options are:
nocheck

Do not check for a partially installed package.
quit

Abort installation if a partially installed package exists.

idepend Controls resolution if other packages depend on the one to be installed. Options are:
nocheck

Do not check package dependencies.
quit

Abort installation if package dependencies are not met.

rdepend Controls resolution if other packages depend on the one to be removed. Options are:
nocheck

Do not check package dependencies.
quit

Abort removal if package dependencies are not met.

space Controls resolution if disk space requirements for package are not met. Options are:
nocheck

Do not check space requirements (installation fails if it runs out of space).
quit

Abort installation if space requirements are not met.

6 AIX Version 7.1: Files Reference

The value ask cannot be defined in an admin file that is used for non-interactive installation (since by
definition, there is no installer interaction). Doing so causes installation to fail when input is needed.

Related reference
depend File
pkginfo File
Related information
pkgadd command

aliases File for Mail

Purpose
Contains alias definitions for the sendmail command.

Description
The /etc/mail/aliases file contains the required aliases for the sendmail command. Do not change these
defaults, as they are required by the system. The file is formatted as a series of lines in the form:

name: name_1, name_2, name_3,...

The name: is the name of the alias, and the name_n are the aliases for that name. Lines beginning with
white space are continuation lines. Lines beginning with a # (pound sign) are comments.

Aliasing occurs only on local names. System-wide aliases are used to redirect mail. For example, if you
receive mail at three different systems, you can use the /etc/mail/aliases file to redirect your mail to one
of the systems. As an individual user, you can also specify aliases in your .mailrc file.

Aliases can be defined to send mail to a distribution list. For example, you can send mail to all of the
members of a project by sending mail to a single name.

The sender of a message is not included when the sendmail command expands an alias address. For
example, if amy sends a message to alias D998 and she is defined as a member of that alias, the sendmail
command does not send a copy of the message to amy.

The /etc/mail/aliases file is a raw data file. The sendmail command uses a database version of this file.
You must build a new alias database by running the sendmail -bi command or the newaliases command
before any changes made to the /etc/mail/aliases file become effective.

As long as you do not rebuild the aliases database, sendmail will continue to read it in its old
DBM format. This consists of two files: /etc/mail/aliases.dir and /etc/mail/aliases.pag. However, the
moment you rebuild the aliases database, sendmail will change this format to Berkeley DB. This file will
be stored in /etc/mail/aliases.db.

Note: Upper case characters on the left hand side of the alias are converted to lowercase before being
stored in the aliases database. In the following example, mail sent to the testalias user alias fails,
since TEST is converted to test when the second line is stored.

TEST: user@machine
testalias: TEST

To preserve uppercase in user names and alias names, add the u flag to the local mailer description in
the /etc/mail/sendmail.cf file. Thus, in the example above, mail to the testalias user alias would
succeed.

Files

Item Description

/etc/mail/aliases Contains systemwide aliases.

Files Reference 7

Item Description

/etc/mail/aliasesDB directory Contains the binary files created by the newaliases
command, including the DB.dir and DB.pag files.

/etc/mail/aliases.db Contains the binary file storing the aliases database in
Berkeley DB format, created by the newaliases command

Related reference
.mailrc File Format
Related information
newaliases command
sendmail command
Alias database building

audit File for BNU

Purpose
Contains debug messages from the uucico daemon.

Description
The /var/spool/uucp/.Admin/audit file contains debug messages from the uucico daemon when it is
invoked as a result of a call from another system. If the uucico daemon is invoked from the local system,
the debug messages are sent to either the /var/spool/uucp/.Admin/errors file or to standard output.

Files

Item Description

/var/spool/uucp/.Admin/audit Specifies the path of the audit file.

/var/spool/uucp/.Admin/errors Contains a record of uucico daemon errors.

Related information
uudemon.cleanu command
cron command
BNU log files
BNU File and Directory Structure

/etc/security/authorizations File

Purpose
Contains the list of valid, user-defined authorizations.

Description
The /etc/security/authorizations file stores the list of valid, user-defined authorizations available
on a system. An authorization administrator can modify user-defined authorizations. System-defined
authorizations do not appear in this file. You can add new authorizations to this file using the mkauth
command and modify authorizations using the chauth command.

The /etc/security/authorizations file is an ASCII file that uses a stanza for each user-defined
authorization. Each stanza is identified by the authorization name followed by a colon (:). You can list

8 AIX Version 7.1: Files Reference

authorization attributes individually as Attribute=Value pairs on subsequent lines. Each attribute pair ends
with a newline character, as does each stanza. For an example of a stanza, see “Examples” on page 10.

When the system is operating in Enhanced RBAC Mode, changes that you make to the authorizations
file do not impact security considerations until you send the entire authorization database to the Kernel
Security Tables using the setkst command, or until the system is rebooted.

Modifying and listing entries in the authorizations file

Do not directly edit the /etc/security/authorizations file. Use the following commands and subroutines
to manipulate the authorization database:
mkauth

Adds new authorizations to the /etc/security/authorizations file.
chauth

Changes user-defined authorization attributes.
lsauth

Displays authorizations that are defined in this file and system-defined authorizations.
rmauth

Removes entries from this file.

To write programs that affect entries in the /etc/security/authorizations file, use one or more of the
following subroutines:

• getauthattr
• getauthattrs
• putauthattr
• putauthattrs

Attributes
A stanza in this file contains one or more of the following attributes:

Attribute Description

id Specifies the unique numeric ID of the authorization. This is a required attribute
and is used internally for security decisions. Do not modify this ID after creating
the authorization. The value is a unique decimal integer greater than 10000.
Values below 10000 are reserved for system-defined authorizations.

dfltmsg Specifies the default authorization-description text if message catalogs are not
in use. The value is a character string.

msgcat Specifies the file name of the message catalog that contains the one-line
description of the authorization. The value is a character string.

msgset Specifies the message set that contains the authorization description in the
message catalog. The value is a decimal integer.

msgnum Specifies the message ID that contains the authorization description in the
message catalog. The value is a decimal integer.

Security
The root user and the security group own this file. This files grants read and write access to the root user.
Access for other users and groups depends on the security policy for the system.

Files Reference 9

Examples
The following example for the custom authorization displays a typical stanza in the file:

custom:
 id = 11000
 dfltmsg = "Custom Authorization"
 msgcat = "custom_auths.cat"
 msgset = 1
 msgnum = 5

Related reference
/etc/nscontrol.conf File
Related information
getauthattr subroutine
mkauth command
chauth command
rmauth command
Role Based Access Control (RBAC)

autosecrets File

Purpose
Configures iSCSI target passwords.

Description
The autosecrets file is used to configure iSCSI target passwords. You can use comments in the
autosecrets file. The comment character is "#", and must be the first character on the line.

This file contains one entry per target. Each entry has the following format:

target_name chap_name chap_secret

target_name
The ODM name of the target.

chap_name
The CHAP name associated with this password. The iSCSI initiator identifies itself by sending this
name to the iSCSI target during the authentication process.

chap_secret
The password, enclosed in double quotation marks.

You can use the line continuation character backslash (\) to make each entry easier to read.

Examples
If the target ODM name is target0, the CHAP name is iqn.com.ibm-K167-42.fc1a, and the
chap_name is secret.fc1a, the entry looks like the following example:

target0 iqn.com.ibm-K167-42.fc1a "secret.fc1a"

The following example has the same target, chap_name, and chap_secret, but with a line continuation
character.

target0 iqn.com.ibm-K167-42.fc1a \
 "secret.fc1a"

10 AIX Version 7.1: Files Reference

Files
Item Description

/etc/tmiscsi/
autosecrets

Configures iSCSI target passwords.

backup File

Purpose
Copies the file system onto temporary storage media.

Description
A backup of the file system provides protection against substantial data loss due to accidents or error.
The backup command writes file system backups in the backup file format, and conversely, the restore
command reads file system backups. The backup file contains several different types of header records
along with the data in each file that is backed up.

Header Records
The different types of header records for by-name backups are:

Header
Record

Description

FS_VOLUME Exists on every volume and holds the volume label.

FS_NAME_X Holds a description of a file backed up by name.

FS_END Indicates the end of the backup. This header appears at the end of the last volume.

The different types of header records for by-inode and name backups are:

Header
Record

Description

TS_TAPE Exists on every volume and holds the volume label.

TS_BITS Describes the directory structure.

TS_CLRI Describes the unused i-node numbers on the backup system.

TS_INODE Describes the file.

TS_ADDR Indicates a continuation of the preceding file.

TS_END Indicates the end of the backup.

The descriptions of the fields of the header structure for by-inode backups are:

Header Record Description

c_type The header type.

c_date The current dump date.

c_ddate The file system dump date.

c_volume The volume number.

c_tapea The number of the current header record.

c_inumber The i-node number on this record.

Files Reference 11

Header Record Description

c_magic The magic number.

c_checksum The value that would make the record sum to the CHECKSUM value.

bsd_c_dinode A copy of the BSD i-node as it appears on the BSD file system.

c_count The number of characters in the c_addr field.

c_addr A character array that describes the blocks being dumped for the file.

xix_flag Set to the XIX_MAGIC value if doing the backup of a file system.

xix_dinode The real di-node from the file system.

Each volume except the last ends with a tape mark (read as an end of file). The last volume ends with a
TS_END record and then the tape mark.

By-Name Format
The format of a by-name backup is:

FS_VOLUME

FS_NAME_X (before each file)

File Data

FS_END

By-Inode Format
The format of a by-inode backup follows:

TS_VOLUME

TS_BITS

TS_CLRI

TS_INODE

TS_END

A detailed description of the by-inode header file follows:

union u_spcl {
 char dummy[TP_BSIZE];
 struct s_spcl {
 int c_type; /* 4 */
 time_t c_date; /* 8 * /
 time_t c_ddate; /* 12 */
 int c_volume; /* 16 */
 daddr_t c_tapea; /* 20 */
 ino_t c_inumber; /* 24 */
 int c_magic; /* 28 */
 int c_checksum; /* 32 */
 struct bsd_dinode bsd_c_dinode; /* 160 */
 int c_count; /* 164 */
 char c_addr[TP_NINDIR]; /* 676 */
 int xix_flag; /* 680 */
 struct dinode xix_dinode; /* 800 */
 } s_spcl;
} u_spcl;

12 AIX Version 7.1: Files Reference

Constants
Constants used to distinguish these different types of headers and define other variables are:

#define OSF_MAGIC (int)60011
#define NFS_MAGIC (int)60012 /* New File System Magic */
#define XIX_MAGIC (int)60013 /* Magic number for v3 */
#define BYNAME_MAGIC (int)60011 /* 2.x magic number */
#define PACKED_MAGIC (int)60012 /* 2.x magic number for */
 /* Huffman packed format */
#define CHECKSUM (int)84446 /* checksum magic number */
#define TP_BSIZE 1024 /* tape block size */
#define TP_NINDIR (TP_BSIZE/2) /* num of indirect pointers */
 /* in an inode record */
#define FS_VOLUME 0 /* denotes a volume header */
#define FS_END 7 /* denotes an end of backup */
#define FS_NAME_X 10 /* denotes file header */
#define SIZSTR 16 /* string size in vol header*/
#define DUMNAME 4 /* dummy name length for */
 /* FS_NAME_X */
#define FXLEN 80 /* length of file index */

Related reference
filesystems File
Related information
backup command
pack command
restore command
File systems
Backup methods

bincmds File

Purpose
Contains the shell commands that process audit bin data.

Description
The /etc/security/audit/bincmds file is an ASCII template file that contains the backend commands that
process audit binfile records. The path name of this file is defined in the bin stanza of the /etc/security/
audit/config file.

This file contains command lines each composed of one or more commands with input and output that
can be piped together or redirected. Although the commands usually are one or more of the audit system
commands (the auditcat command, the auditpr command, the auditselect command), this is not a
requirement.

As each bin file is filled by the kernel, the auditbin daemon invokes each command to process the bin
records, substituting the names of the current bin file and the audit trail file for any $trail and $bin strings
in the commands. Upon startup, if the auditbin daemon detects that the bin files require a recovery
procedure, the command will prepend a -r to the bin file's name in $bin.

Note: The commands are executed by the trusted shell (TSH) when on the trusted path. This means that
the path names in the commands must be absolute, and that environment variable substitution may be
limited. See the discussion of the tsh command for more information.

Audit-related parameters are configured in the /etc/security/audit/config file. When the size of
the /audit/bin1 or /audit/bin2 file reaches the value of the binsize parameter that is defined in
the config file, the audit log information is written to the target path or target file system that is defined
in the config file. The size of the system audit-trail file is limited by the size of the root (/) file system.
If the root (/) file system does not have enough space to log events, the event logging operation is

Files Reference 13

stopped. To solve this problem, the following tunable parameters are defined in the /etc/security/
audit/config file:
backupsize

A backup of the system audit-trail file is saved when the size of the system audit-trail file reaches
the value of the backupsize parameter. The existing system audit-trail file is truncated. The system
audit-trail file is located in the /audit/trail path. You must specify the size of the backupsize
parameter in units of 512-byte blocks.

backuppath
A valid directory path, where a backup of the system audit-trail file will be saved.

Security
Access Control: This file should grant read (r) access to the root user and members of the audit group and
grant write (w) access only to the root user.

Examples
1. To compress audit bin records and append them to the system audit trail file, include the following line

in the /etc/security/audit/bincmds file:

/usr/sbin/auditcat -p -o $trail $bin

When the command runs, the names of the current bin file and the system audit-trail file are
substituted for the $bin and $trail strings. Records are compressed and appended to the /audit/trail
file.

2. To select the audit events from each bin file that are unsuccessful because of authentication or
privilege reasons and append the events to the /audit/trail.violations file, you must include the
following line in the /etc/security/audit/bincmds file:

/usr/sbin/auditselect -e "result == FAIL_AUTH || \
result == FAIL_PRIV" $bin >> /audit/trail.violations

3. To create a hardcopy audit log of all local user authentication audit events, include the following line in
the /etc/security/audit/bincmds file:

/usr/sbin/auditselect -e "event == USER_Login || \
event == USER_SU" $bin | \
/usr/sbin/auditpr -t2 -v >/dev/lpr3

Adjust the printer name to fit your requirements.

Note: The auditselect command does not support the -r flag (recovery). To process the $bin string,
use the auditcat command before using the auditselect command.

4. To replace the values of $backupsize and $backuppath tunable parameters with the values that are
specified in the /etc/security/audit/config file, run the following command:

/usr/sbin/auditcat -p -s $backupsize -d $backuppath -o $trail $bin

5. To enter values for the $backupsize and $backuppath tunable parameters from command line, enter
the following command:

/usr/sbin/auditcat -p -s <size value> -d <path value> -o $trail $bin

14 AIX Version 7.1: Files Reference

Files

Item Description

/etc/security/audit/bincmds Specifies the path to the file.

/etc/security/audit/config Contains audit-system configuration information.

/etc/security/audit/events Contains the audit events of the system.

/etc/security/audit/objects Contains audit events for audited objects (files).

/etc/security/audit/streamcmds Contains auditstream commands.

Related information
audit command
auditselect command
Security Administration
Auditing overview

BOOTP Relay Agent Configuration File

Purpose
Default configuration information for the BOOTP (boot protocol) relay agent program (dhcprd).

Description
The dhcprd configuration file contains entries for logging information and servers to receive BOOTP
packets.

This file is part of TCP/IP in Network Support Facilities in Base Operating System (BOS) Runtime.

Following are the formats for the data in the configuration file.

Format Meaning

Comment line The # character means that there is a comment from that
point to the end of the line.

numLogFiles n Specifies the number of log files. If 0 is specified, no log
file will be maintained, and no log message is displayed
anywhere. n is the maximum number of log files maintained
as the size of the most recent log file reaches its maximum
size and a new log file is created.

logFileSize n Maximum size of a log file. When the size of the most recent
log file reaches this value, it is renamed and a new log file is
created. n is measured in kilobytes(KB).

logFileName filename Name and path of the most recent log file. Less recent log files
have the number 1 to (n - 1) appended to their names; the
larger the number, the older the file.

Files Reference 15

Format Meaning

logItem <option name> One item that will be logged. Multiple of these lines are
allowed. This allows for the specified logging level to be
turned on. The following are option names:
SYSERR

System error, at the interface to the platform
OBJERR

Object error, in between objects in the process
PROTERR

Protocol error, between client and server
WARNING

Warning, worth attention from the user
EVENT

Event occurred to the process
ACTION

Action taken by the process
INFO

Information that might be useful
ACNTING

Who was served, and when
TRACE

Code flow, for debugging.

server <ip address> The address of a server to receive the DHCP or BOOTP packet.
Multiple servers may be specified, and all will receive the
packet.

Example
The following example sets the logging parameters and configures two servers to receive BOOTP and
DHCP packets. The servers are specified singly and with their ip addresses. The logging statements below
tell the daemon to use at most four logfiles, rotate the log files after their size is 100 kilobytes of data, and
place the files in the local directory and use dhcpsd.log as the base name. On rotation, the old file will be
moved to dhcpsd.log1, and the daemon will start logging to an empty dhcpsd.log.

numLogFiles 4
logFileSize 100
logFileName dhcpsd.log
logItem SYSERR
logItem OBJERR
logItem PROTERR
logItem WARNING
logItem EVENT
logItem ACTION
logItem INFO
logItem ACNTING
logItem TRACE

server 129.35.128.43
server 9.3.145.5

Related information
dhcprd command
bootpd command
TCP/IP address and parameter Assignment - Dynamic Host Configuration Protocol
TCP/IP problems with Dynamic Host Configuration Protocol

16 AIX Version 7.1: Files Reference

bootparams File for NFS

Purpose
Contains the list of client entries that diskless clients use for booting.

Description
The /etc/bootparams file for Network File System (NFS) contains a list of client entries that diskless
clients use for booting. The first item of each entry is the name of the diskless client. Each entry should
contain the following information:

• Name of client
• List of keys, names of servers, and path names

Items are separated by tab characters.

Examples
The following is an example of a /etc/bootparams file:

myclient root=myserver:/nfsroot/myclient \
 swap=myserver:/nfsswar/myclient \
 dump=myserver:/nfsdump/myclient

Files

Item Description

/etc/bootparams Specifies the path of the bootparams file.

Related information
Network File System Overview

ca.cfg File

Purpose
The ca.cfg file consists of CA stanzas. The CA stanzas contain public CA information used by the
Certificate Authentication Services for generating certificate requests and certificate revocation requests.

Description
For every CA stanza in the ca.cfg file, the acct.cfg file should contain an equivalently named CA stanza.
Each CA stanza name in the ca.cfg file must be unique. At least one stanza named local must exist. No
stanza should be named ldap or default.

Examples
* Multiple components of the PKI implementation use this file for configuration
* information.
*
* algorithm Defines the encryption algorithm used for CMP requests.
* Supported values are RSA and DSA. The default is RSA.
*
* crl Specifies the CA's root certificate file.
*
* dn Defines the default Distinguished Name value for newly
* created certificates. (Optional) Example:
* dn = "c=US, o=ZZZ Corp., ou=Sales OEM, sp=Texas, l=Austin"
*
* keysize Defines the minimum number of bits required when generating

Files Reference 17

* an encryption/signing key. The default is 1024.
*
* program Specifies the PKI service module file name.
* (Required)
*
* retries Defines the number of retry attempts when contacting a CA.
* The default is 5.
*
* server Defines the URL address of the CA server. Example:
* "cmp:://9.53.149.39:1077".

* signinghash Specifies the hash algorithm used to verify keys and to
* perform trusted certificate signing when validating users.
* Supported values are MD2, MD5, and SHA1. The default is MD5.
*
* trustedkey Defines the keystore location containing the system-wide
* trusted signing key used to sign/verify user certificates.
*
* url Defines the default subject alternate name URI value to be
* added to new certificates.
*
local:
 program = /usr/lib/security/pki/JSML
 trustedkey = file:/usr/lib/security/pki/trusted.p15
 server = "cmp://9.53.149.39:1077"
 crl = ldap://9.53.149.39/o=XYZ, c=us
 dn = "c=US, o=XYZ"
 url = "http://www.ibm.com/"
 algorithm = RSA
 keysize = 512
 retries = 5
 signinghash = MD5

File
/usr/lib/security/pki/ca.cfg

Related reference
acct.cfg File
policy.cfg File
Related information
certcreate command

cdromd.conf File Format

Purpose
Defines for the cdromd daemon the managed devices and supported file system types.

Description
The /etc/cdromd.conf is the configuration file for the cdromd daemon. This file enables you to specify
the devices to manage and the file system types to handle.

If you change the /etc/cdromd.conf file, run refresh -s cdromd or kill -1 CdromdPID command to inform
the daemon of the changes to its configuration file.

The cdromd daemon reads its configuration file only when it starts, when the cdromd daemon receives a
SIGHUP signal, or when the SRC refresh -s cdromd command is entered.

An information line in the cdromd configuration file defines either a device to manage or a file system type
to handle. Lines starting with the pound sign (#) are comment lines. Fields in information lines must be
separated by spaces or tabs. A device information line starts with <device> keyword and is of the form:

device device_name mount_point

18 AIX Version 7.1: Files Reference

Item Description

device_name Contains a valid device name, as printed by the lsdev command, such as:

lsdev -Cc cdrom -F name

mount_point Contains the path of the directory for the mount operation. It must begin with a /

If there is no line in the configuration file beginning with the device keyword, all the CD-ROM and DVD
devices available on the system will be managed by cdromd, and a media inserted in the cd<x> drive will
be automatically mounted on /cdrom/cd<x> directory.

A file system type information line starts with the fstype keyword and is of the form:

fstype VfsName fs_options

Item Description

VfsName Contains the VFS type used with the -V flag of the mount command.Only cdrfs
and udfs types can be used.

fs_options Contains the comma separated list of options used with the -o flag of the mount
command (see mount command man page).

If there is no line beginning with the fstype keyword in the configuration file, the mount command will be
called with one of the following options:

-V cdrfs -o ro

or

-V udfs -o ro

If you want the UDFS file system to be mounted in read/write mode by default, add the following line to
the cdromd.conf file:

fstype udfs rw

Examples
The following example of cdromd.conf file is for a cdromd daemon that:

• Manages cdrom cd0 with inserted media mounted on /mnt with either -V cdrfs -o ro or -V udfs -o ro
options.

• Manages cdrom cd1 with inserted media mounted on /install with either -V cdrfs -o ro or -V udfs -o ro
options.

 device cd0 /mnt
 device cd1 /install
 fstype cdrfs ro
 fstype udfs ro

Related information
cdmount command
cdumount command
cdcheck command
mount command
cdromd command

Files Reference 19

ClientHostName.info File

Purpose
Created by the Network Installation Management (NIM) software to deliver information to the boot
environment of NIM client machines.

Note: In AIX Version 4, this is an internal file to the Network Installation Management software and
should not be modified manually.

Description
The NIM software creates the ClientHostName.info file to deliver information to the boot environment of
NIM client machines. The file resides in the /tftpboot directory on the server of the NIM Shared Product
Object Tree (SPOT), with a format of ClientHostName.info where ClientHostName is the hostname of the
client machine.

After the client machine performs a network boot, it retrieves a copy of the ClientHostName.info file from
the boot server using tftp. The client machine then uses the contents of the ClientHostName.info file to
define environment variables for further processing in the boot process.

The ClientHostName.info file is used to support network boot for the following NIM operations:

• Installing the Base Operating System onto standalone machines
• Initializing diskless/dataless machines
• Diagnostics boot

Some of the variables defined in the ClientHostName.info file are common to all operations while others
are operation-specific.

The following variables may be defined in the ClientHostName.info file:

Note: These variables are managed by the nim command and should not be modified by other means.

Variable Description

NIM_NAME Identifies the client machine in the NIM environment.

NIM_HOSTNAME Identifies hostname of the client machine.

NIM_CONFIGURATION Describes the configuration of the client's resource requirements.
Possible values are standalone, diskless, and dataless.

NIM_MASTER_HOSTNAME Identifies the hostname of the NIM master in the network.

NIM_MASTER_PORT Specifies the port number on the NIM master that should be used for
NIM communications.

RC_CONFIG Specifies the file that defines the configuration procedures the client
machine should follow as it boots. Possible values are rc.bos_inst,
rc.dd_boot, and rc.diag.

NIM_BOSINST_RECOVER Specifies the script that initializes the BOS installation environment for
NIM.

SPOT Specifies the location of the Shared Product Object Tree resource that
will be used during the boot process.

ROOT Specifies the location of the root filesystem that will be mounted by
diskless/dataless machines.

DUMP Specifies the location of the dump resource that will be mounted by
diskless/dataless machines.

NIM_CUSTOM Names the command to execute a NIM script during post-installation
processing.

20 AIX Version 7.1: Files Reference

Variable Description

NIM_BOS_IMAGE Specifies the image from which the Base Operating System will be
installed.

NIM_BOS_FORMAT Specifies the format of the image that will be used to install the Base
Operating System.

NIM_HOSTS Specifies the IP addresses and hostnames of the NIM machines that
will participate in the operation.

NIM_MOUNTS Specifies the filesystems that will be mounted during the operation.

ROUTES Specifies the routes from the client machine to other networks in the
NIM environment. The format of each value is a colon-separated list of
the network IP address, the network subnet mask, and the IP address
of the gateway to the network.

Example
This example shows the contents of the file /tftpboot/devon.austin.ibm.com.info after a bos installation
has been enabled via the following command:

 nim -o bos_inst -a source=rte devon

export NIM_NAME=devon
export NIM_HOSTNAME=devon.austin.ibm.com
export NIM_CONFIGURATION=standalone
export NIM_MASTER_HOSTNAME=redfish.austin.ibm.com
export NIM_MASTER_PORT=1058
export RC_CONFIG=rc.bos_inst
export
NIM_BOSINST_RECOVER="/../SPOT/usr/lpp/bos.sysmgt/nim/methods/
 c_bosinst_env -a
hostname=devon.austin.ibm.com"
export SPOT=redfish.austin.ibm.com:/spot/myspot/usr
export
NIM_CUSTOM="/../SPOT/usr/lpp/bos.sysmgt/nim/methods/c_script -a
location=redfish.austin.ibm.com:/export/nim/scripts/devon.script"
export NIM_BOS_IMAGE=/SPOT/usr/sys/inst.images/bos
export NIM_BOS_FORMAT=rte
export NIM_HOSTS=" 129.35.134.9:devon.austin.ibm.com
9.3.84.202:redfish.austin.ibm.com "
export NIM_MOUNTS="
redfish.austin.ibm.com:/lppsource/imagedir:/SPOT/usr/sys/inst.images:dir "
export ROUTES=" 9.3.84.128:255.255.255.128:129.35.128.201 "

Files

Item Description

/tftpboot/ClientHostName.info Default location of the ClientHostName.info file.

Related information
nim command

clsnmp.conf File

Purpose
Contents are used by the clsnmp command to identify a host on which an SNMP agent is running.

Description
The contents of the clsnmp.conf file used by the clsnmp command are as follows. Each entry identifies:

Files Reference 21

• a host on which an SNMP agent is running,
• the administrative model used to communicate with the host at that agent,
• and the security parameters to be used in the communication.

An entry in the clsnmp.conf file has the following syntax:

winSnmpName targetAgent admin secName password context secLevel authProto
authKey privProto privKey

where:
winSnmpName

An administrative name by which the winSNMP code used by clsnmp can locate an entry in this
configuration file. This value is to be specified on the -h keyword for the clsnmp command. The valid
value must be a character string of 1 to 32 characters. There is no default value.

targetAgent
Identification of the target SNMP agent. By default, the port at which the agent is to receive requests
is 161. To specify a port other than 161, use the syntax of:

host:port_number (host colon port_number)

The attribute must have one of the following values:

• A host name of 1 to 80 characters.
• An IPv4 address that must be in the form of a.b.c.d , where a, b, c, and d are in the range of 0

through 255.
• An IPv6 address. If the port number is specified, it must be of a value that ranges from 1 through

65535.

admin
Specifies the administrative model supported by the targetAgent. The following values are valid:
snmpv1

Indicates community based security with SNMPv1 message protocol data units.
snmpv2c

Indicates community based security with SNMPv2 message protocol data units.
snmpv3

Indicates user based security (USM) with SNMPv3 message protocol data units.
There is no default value.

secName
Specifies the security name of the principal using this configuration file entry. For user-based security,
this is the userName. The user must be defined at the targetAgent. This field is ignored unless
snmpv3 is specified for the admin keyword. The valid value must be a user name of 1 to 32
characters. There is no default value.

password
Specifies the password to be used in generating the authentication and privacy keys for this user. If a
password is specified, the values of the authKey and privKey fields will be ignored.

Note: the use of password instead of keys in this configuration file is not recommended, as storing
passwords in this file is less secure than using keys.

This field is ignored unless snmpv3 is specified for the admin keyword. The valid value must be a
password of 8 to 64 characters. A '-' (dash) indicates the default. The default value is no password.

context
Specifies the SNMP contextName to be used at the target agent. Note, the contextName is needed
only at agents that support multiple contexts. Otherwise, the only context supported is the null
context, which is the default value of this keyword. The CS for OS/390® SNMP agent does not support
multiple contexts. This field is ignored unless snmpv3 is specified for the admin keyword. The valid

22 AIX Version 7.1: Files Reference

value must be a contextName of 1 to 40 32 characters. A '-' (dash) indicates the default. The default
value is the null context ("").

secLevel
Specifies the security level to be used in communicating with the target SNMP agent when this entry is
used. This field is ingored unless snmpv3 is specified for the admin keyword.

Note: Privacy will be supported on CS for OS/390 V2R7 only in a separately orderable FMID. It will not
be supported in the base FMID.

These values are valid: noAuthNoPriv or none which indicates no authentication or privacy
requested. AuthNoPriv or auth indicates authentication is requested, but privacy is not requested.
AuthPriv or priv indicates both authentication and privacy are requested (only supported in
the additional encryption product) . A '-' (dash) indicates the default. The default value is none
(noAuthNoPriv).

authProto
Specifies the SNMP authentication protocol to be used in communicating with the target SNMP agent
when this entry is used. This field is ignored unless snmpv3 is specified for the admin keyword. The
following values are valid:
HMAC-MD5

Indicates HMAC mode MD5.
HMAC-SHA

Indicates HMAC mode SHA.
A '-' (dash) indicates the default. The default value is no authentication.

authKey
Specifies the SNMP authentication key to be used in communicating with the target SNMP agent
when this entry is used. This key must be the non-localized key. This field is ignored if the password
keyword is used. This field is ignored unless snmpv3 is specified for the admin keyword and a
non-default value is specified for authProto. The following values are valid:

• A key of 16 bytes (32 hex digits) when authProto is HMAC-MD5
• A key of 20 bytes (40 hex digits) when authProto is HMAC-SHA

A '-' (dash) indicates the default. The default value is no key.
privProto

Specifies the SNMP privacy protocol to be used in communicating with the target SNMP agent when
this entry is used.

Note: Privacy will be supported on CS for OS/390 V2R7 only in a separately orderable FMID. It will not
be supported in the base FMID.

If privacy is not supported, this keyword will be ignored. This field is ignored unless snmpv3 is
specified for the admin keyword. The following values are valid:

• DES - for CBC-DES (only supported in the additional encryption product)

A '-' (dash) indicates the default. The default value is no privacy.
privKey

Specifies the SNMP privacy key to be used in communicating with the target SNMP agent when this
entry is used. This key must be the non-localized key. This field is ignored if the password keyword is
used. If privacy is not supported, this keyword will be ignored. The privacy and authentication keys are
assumed to have been generated using the same authentication protocol (e.g., both with HMAC-MD5
or both with HMAC-SHA). This field is ignored unless snmpv3 is specified for the admin keyword and
a non-default value is specified for privProto. The following values are valid:

• A key of 16 bytes (32 hex digits) when authProto is HMAC-MD5
• A key of 20 bytes (40 hex digits) when authProto is HMAC-SHA

A '-' (dash) indicates the default. The default value is no key.

General Usage Rules

Files Reference 23

• All parameters for an entry must be contained on one line in the # configuration file.
• A "-" (dash) is used to indicate the default value for a keyword.
• Sequence numbers are not allowed on the statements.
• Comments may be included in the file beginning with a pound sign (#) in column 1.
• The secName and password parameters are case-sensitive.

As the clsnmp command supports both issuance of SNMP requests and receipt of SNMP traps, the entries
in the clsnmp.conf file must be defined for both uses. Multiple entries for the same USM user are allowed
within the file. This may be useful to define different security levels for the same user. If multiple entries
for the same USM user are defined, be aware that only the first one in the file can be used for receiving
notifications. If multiple entries for the same USM user are defined and the user will be used for receiving
notifications, the definition with the highest (most stringent) securityLevel should be defined first. Doing
so will allow the user to be used for any level of security equal to or lower (less stringent) than the
securityLevel defined.

Related reference
snmpdv3.conf File
Related information
snmpdv3 command
clsnmp command
pwtokey command
SNMP trap processing

Command (C.*) Files for BNU

Purpose
Contains file transfer directions for the uucico daemon.

Description
Command (C.*) files contain the directions that the Basic Networking Utilities (BNU) uucico daemon
follows when transferring files. The full path name of a command file is a form of the following:

/var/spool/uucp/SystemName/C.SystemNameNxxxx

The SystemName variable indicates the name of the remote system. The N character represents the grade
of the work. The xxxx notation is the four-digit hexadecimal transfer-sequence number; for example,
C.merlinC3119.

The grade of the work specifies when the file is to be transmitted during a particular connection. The
grade notation characteristics are:

• A single number (0-9) or letter (A-Z, a-z)
• Lower sequence characters cause the file to be transmitted earlier in the connection than do higher

sequence characters. Sequence is established using ASCII order, beginning with 0 and ending with z.
• The number 0 is the highest grade (that is, the lowest character in the sequence), signifying the earliest

transmittal; z is the lowest grade, specifying the latest transmittal.
• The default grade is N.

A command file consists of a single line that includes the following kinds of information in the following
order:

1. An S (send) or R (receive) notation.

Note: A send command file is created by the uucp or uuto commands; a receive command file is
created by the uux command.

24 AIX Version 7.1: Files Reference

2. The full path name of the source file being transferred. A receive command file does not include this
entry.

3. The full path name of the destination file, or a path name preceded by ~user, where user is a login
name on the specified system. Here, the ~ (tilde) is shorthand for the name of the user's home
directory.

4. The sender's login name.
5. A list of the options, if any, included with the uucp, uuto, or uux command.
6. The name of the data file associated with the command file in the spooling directory. This field must

contain an entry. If one of the data-transfer commands (such as the uucp command with the default -c
flag) does not create a data file, the BNU program instead creates a placeholder with the name D.0 for
send files or the name dummy for receive files.

7. The source file permissions code, specified as a three-digit octal number (for example, 777).
8. The login name of the user on the remote system who is to be notified when the transfer is complete.

Examples
The following are two examples of using the command (C.*) files.

Two Send Command Files

1. The send command file /var/spool/uucp/venus/C.heraN1133, created with the uucp command,
contains the following fields:

S /home/amy/f1 /var/spool/uucppublic/f2 amy -dC D.herale73655 777 lgh

where:

a. S denotes that the uucp command is sending the file.
b. The full path name of the source file is /home/amy/f1.
c. The full path name of the destination is /var/spool/uucppublic/f2, where /var/spool/
uucppublic is the name of the BNU public spooling directory on the remote computer and f2 is
the new name of the file.

Note: The destination name may be abbreviated as ~/f2. Here, the ~ (tilde) is a shorthand way of
designating the public directory.

d. The person sending the file is amy.
e. The sender entered the uucp command with the -C flag, specifying that the uucp command

program should transfer the file to the local spooling directory and create a data file for it. (The -d
flag, which specifies that the command should create any intermediate directories needed to copy
the source file to the destination, is a default.)

f. The name of the data (D.*) file is D.herale73655, which the uucp command assigns.
g. The octal permissions code is 777.
h. The lgh login name of the user on system hera, who is to be notified of the file arrival.

2. The /var/spool/uucp/hera/C.zeusN3130 send command file, produced by the uuto command,
is as follows:

S /home/amy/out ~/receive/msg/zeus amy -dcn D.0 777 msg

The S denotes that the /home/amy/out source file was sent to the receive/msg subdirectory in the
public spooling directory on system zeus by user amy.

Note: The uuto command creates the receive/msg directory if it does not already exist.

The uuto command used the default flags -d (create directories), -c (transfer directly, no spooling
directory or data file), and -n (notify recipient). The D.0 notation is a placeholder, 777 is the
permissions code, and msg is the recipient.

Files Reference 25

Receive Command File
The format of a receive command file is somewhat different from that of a send command file. When
files required to run a specified command on a remote system are not present on that system, the uux
command creates a receive command file.

For example, the following command:

uux - "diff /home/amy/out hera!/home/amy/out2 > ~/DF"

produces the /var/spool/uucp/zeus/C.heraR1e94 receive command file.

Note: The command in this example invokes the uux command to run a diff command on the local
system, comparing file /home/amy/out with file /home/amy/out2, which is stored on the remote
system hera. The output of the comparison is placed in the DF file in the public directory on the local
system.

The actual receive command file looks like this:

R /home/amy/out2 D.hera1e954fd amy - dummy 0666 amy

The R denotes a receive file. The uucico daemon, called by the uux command, gets the /home/amy/
out2 file from system hera and places it in a data file called D.hera1e954fd for the transfer. Once the
files are transferred, the uuxqt daemon executes the command on the specified system.

User amy issued the uux command with the - (minus sign) flag, which makes the standard input to the
uux command the standard input to the actual command string. No data file was created in the local
spooling directory, so the BNU program uses dummy as a placeholder. The permissions code is 666 (the
BNU program prefixes the three-digit octal code with a 0), and user amy is to be notified when the
command has finished executing.

Files

Item Description

/etc/uucp/Permissions Describes access permissions for
remote systems.

/etc/uucp/Systems Describes accessible remote systems.

/etc/uucp/Sysfiles file Specifies possible alternative files
for /etc/uucp/Systems.

/var/spool/uucp/SystemName/D.* Contains data to be transferred.

/var/spool/uucp/SystemName directory Contains BNU command, data, and
execute files.

/var/spool/uucppublic/* directory Contains transferred files.

Related information
uucp command
cron daemon
uuto command
uux command
BNU File and Directory Structure

compver File

Purpose
Describes the format of a compatible versions file.

26 AIX Version 7.1: Files Reference

Description
The compver file is an ASCII file used to specify previous versions of the associated package which are
upward compatible. It is created by a package developer.

Each line of the file specifies a previous version of the associated package with which the current version
is backward compatible.

Since some packages may require installation of a specific version of another software package,
compatibility information is extremely crucial. Consider, for example, a package called "A" which requires
version "1.0" of application "B" as a prerequisite for installation. If the customer installing "A" has a newer
version of "B" (1.3), the compver file for "B" must indicate that "1.3" is compatible with version "1.0" in
order for the customer to install package "A."

The comparison of the version string disregards white space and tabs. It is performed on a word-by-word
basis. Thus Version 1.3 and Version 1.3 would be considered the same.

Examples
An example of a compver file is shown below.

 Version 1.3
 Version 1.0

Related reference
depend File

config File

Purpose
Contains audit system configuration information.

Description
The /etc/security/audit/config file is an ASCII stanza file that contains audit system configuration
information. This file contains five stanzas: start, bin, stream, classes, and users.

start Stanza

The start stanza contains the attributes that are used by the audit start command to initialize the audit
system. The following format follows:

start:
 fullpath = off | on
 binmode = off | on | panic
 streammode = off | on
 ignorenonexistentity = no | yes

The attributes are defined as follows:

Files Reference 27

Attribute Definition

binmode Controls whether bin collection, as defined in the bin stanza, is used.
off

Bin collection is not used. This is the default value.
on

Bin collection is used. This value starts the auditbin daemon.
panic

Bin collection is used. This value starts the auditbin daemon. If
an audit record cannot be written to a bin, the kernel shuts down
the operating system. This mode should be specified for conditions
during which the system must be working properly.

fullpath Captures the full path name of a file for the FILE_Open, FILE_Read, and
FILE_Write auditing events.
off

Full path name is not recorded. This is the default value.
on

Full path name is recorded.

ignorenonexistentity Controls whether nonexistent entities that are listed in the etc/
security/audit/config file are ignored during the audit operation.
The ignorenonexistentity attribute contains the following valid
values:
no

The audit operation is not started if nonexistent entities are found
during the audit start command. This is the default value.

yes
The audit operation ignores nonexistent entries.

streammode Controls whether stream data collection, as defined in the file specified in
the stream stanza (normally the /etc/security/audit/streamcmds file),
is configured at the start up of the audit system.
off

Stream data collection is not enabled. It is the default value.
on

Stream data collection is enabled.

Note: If neither collection mode is defined or if both modes are in the off state, only subsystem
configuration is done.

bin Stanza

The bin stanza contains the attributes used by the auditbin daemon to set up bin mode auditing. The
format follows:

bin:
 trail = PathName
 bin1 = PathName
 bin2 = PathName
 binsize = DecimalString
 cmds = PathName
 bytethreshold = DecimalString
 eventthreshold = DecimalString
 freespace = DecimalString
 backuppath = DirectoryPath
 backupsize = DecimalString
 virtual_log = PathName
 bincompact = off | on

28 AIX Version 7.1: Files Reference

Bin mode parameters are defined as follows:

Parameter Definition

trail Specifies the path name of the audit trail file. When this is defined, the auditbin
daemon can substitute the path name of the audit trail file for the $trail string
in the backend commands that it calls.

bin1 Specifies the path name that the auditbin daemon uses for its primary bin file.
If the $bin string is the parameter value, the auditbin daemon substitutes the
name of the current bin file.

bin2 Specifies the path name that the auditbin daemon uses for its secondary bin
file. If the $bin string is the parameter value, the auditbin daemon substitutes
the name of the current bin file.

bincompact Specifies if compact audit log mode should be enabled for the bin mode
auditing. The two possible values are on and off. The default value is off.

binsize Specifies a decimal integer string that defines the threshold size (in bytes) of
each audit bin. If the binsize parameter is set to 0, no bin switching will occur,
and all bin collection will go to bin1.

cmds Specifies the path name of the file that contains the audit backend commands
called by the auditbin daemon. The file contains command lines, each
composed of one or more backend commands with input and output that can
be piped together or redirected. See the description of the /etc/security/audit/
bincmds file for more information.

bytethreshold Specifies the decimal integer string that defines the approximate number of
bytes written to an audit bin before a synchronous update is performed. If the
bytethreshold is set to 0, this function is disabled. Both bytethreshold and
eventthreshold can be used simultaneously.

eventthreshold Specifies a decimal integer string that defines the maximum number of events
written to an audit bin before a synchronous update is performed. If the
eventthreshold is set to 0, this function is disabled. Both eventthreshold and
bytethreshold can be used simultaneously.

freespace Specifies a decimal integer string that defines the recommended number of
512-byte free blocks in the file system where the audit trail file is located. If the
free space of file system is below this value, audit generates a warning message
through the syslog subsystem every time that the audit bin is switched. The
default value is 65536 blocks (64 megabytes). The maximum possible value is
4194303 (about 2GB of free disk space). If this value is set to 0, no warning
message is generated. If the valid backuppath is mentioned and free space of
file system is below this value, auditcat will take the backup of the trail file in
this path every time auditbin invokes the auditcat.

backuppath Specifies the absolute path name of the directory, where the backup of
the system audit-trail file must be copied when size of the system audit-
trail file reaches the value of the backupsize parameter. If you set this
parameter, the auditcat command in the bincmds file must contain the -d
$backuppath statement for the change of the absolute path name of the
directory to take effect. See the description of the auditcat command for
more information.

Note: The directory that is specified in the backuppath parameter must
not be located in the same file system in which the system audit-trail file is
located.

Files Reference 29

Parameter Definition

backupsize Specifies a decimal integer string that defines the recommended number of
512-byte blocks in the system audit-trail file. If the trail file size is equal to or
greater than this value, backup of the trail is taken. The default value is empty
(backup is disabled). The maximum possible value is 4194303 (about 2 GB of
free disk space). If the value is set to less than equal to zero or set to any
invalid value, this parameter will be ignored. If you set this parameter, the
auditcat command in the bincmds file must contain the -d $backupsize
statement for the change in the size of the system audit-trail file to take
effect. See the description of the auditcat command for more information.

virtual_log Specifies the path name for a virtual_log device. The virtual log facility can be
used by the auditbin daemon to write audit records into an attached VIOS
system. To enable the virtual_log device on a client LPAR, first configure the
corresponding vlog device on attached VIOS system, and then specify a newly
created device on a client (for example, /dev/vlog0 device can be specified).

Note: The target file system for bin1, bin2, and trail files must be different from the root (/) file
system so that these files do not occupy the root (/) file system completely.

stream Stanza

The stream stanza contains the attributes that the audit start command uses to set up initial stream
mode auditing. The format follows:

cmds = PathName

The PathName parameter identifies the file that contains the stream commands that are executed at
the initialization of the audit system. These commands can use shell piping and redirection, but no
substitution of path names is performed on $trail or $bin strings.

classes Stanza

The classes stanza defines audit classes (sets of audit events) to the system.

Each audit class name must be less than 16 characters and be unique on the system. Each class definition
must be contained in a single line, with a new line acting as a delimiter between classes. The system
supports up to 32 audit classes, with ALL as the last class. The audit events in the class must be defined
in the /etc/security/audit/events file.

classes:
 auditclass = auditevent, ...auditevent

users Stanza

The users stanza defines audit classes (sets of events) for each user. The classes are defined to the
operating system kernel.

The format is as follows:

users:
 UserName = auditclass, ... auditclass

Each UserName attribute must be the login name of a system user or the string default, and each
auditclass parameter should be defined in the classes stanza.

To establish the audit activities for a user, use the chuser command with the auditclasses attribute.

role Stanza

30 AIX Version 7.1: Files Reference

The role stanza defines audit classes (sets of events) for each role. The classes are defined for the
operating system kernel.

The format of the role stanza is as follows:

role:
 RoleName = auditclass, ... auditclass

Each RoleName attribute must be the name of a system role or the string default, and each auditclass
parameter must be defined in the classes stanza.

To establish the audit activities for a role, use the chrole command with the auditclasses attribute.

WPARS Stanza

The WPARS stanza defines audit classes (sets of events) for each workload partition (WPAR). The classes
are defined to the operating system kernel.

The WPARS stanza has the following format:

WPARS:
 wpar_name = auditclass, ... auditclass

Each wpar_name must be the WPAR name of a system. You must define each auditclass parameter in the
classes stanza.

Security
Access Control: This file should grant read (r) access to the root user and members of the audit group and
write (w) access only to the root user.

Event Information

AUD_CONFIG_WR file name

Examples
1. To define audit classes, add a line to the classes stanza of the /etc/security/audit/config file for each

set of events that you want to assign to a class:

classes:
 general = USER_SU,PASSWORD_Change,FILE_Unlink,
 FILE_Link,FILE_Remove
 system = USER_Change,GROUP_Change,USER_Create,
 GROUP_Create
 init = USER_Login, USER_Logout

These specific audit events and audit classes are described in "Setting Up Auditing" in Operating
system and device management.

2. To establish the audit activities for each user, use the chuser command with the auditclasses attribute
for each user for whom you want to define audit classes (sets of audit events):

chuser "auditclasses=general,init,system" dave
chuser "auditclasses=general,init" mary

These chuser commands create the following lines in the users stanza of the /etc/security/audit/
config file:

users:
 dave=general,init,system
 mary=general,init

This configuration includes dave, the administrator of the system, and mary, an employee who updates
information.

Files Reference 31

3. To enable the auditing system, turn on bin data collection, and turn off initial stream data collection,
add the following to the start stanza of the /etc/security/audit/config file:

start:
 binmode = on
 streammode = off

4. To enable the auditbin daemon to set up bin collection, add attributes to the bin stanza of the /etc/
security/audit/config file:

bin:
 trail = /audit/trail
 bin1 = /audit/bin1
 bin2 = /audit/bin2
 binsize = 25000
 cmds = /etc/security/audit/bincmds

The attribute values in the preceding stanza enable the audit system to collect bin files of data and
store the records in a long-term audit trail.

5. To enable the auditbin daemon to set up stream collection, add lines to the start and stream stanzas
of the /etc/security/audit/config file:

start:
 streammode = on
stream:
 cmds = /etc/security/audit/streamcmds

6. To enable the wpar1 WPAR to audit the general, tcpip, and lvm classes, add the following lines to
the WPARS stanza of the /etc/security/audit/config file:

WPARS:
 wpar1 = general,tcpip,lvm

7. To enable the virtual logs in the auditbin daemon for capturing audit records in a centralized place,
such as a Virtual I/O Server (VIOS) system, add the following attribute to the bin stanza of the /etc/
security/audit/config file:

bin:
 virtual_log = /dev/vlog0

Note: The /dev/vlog0 device path is an example. The real device name might be different on each
client logical partition (LPAR), based on how the virtual logs are configured from an attached VIOS
system.

Files

Item Description

/etc/security/audit/config Specifies the path to the file.

/etc/security/audit/objects Contains audit events for audited objects.

/etc/security/audit/events Contains the audit events of the system.

/etc/security/audit/bincmds Contains auditbin backend commands.

/etc/security/audit/streamcmds Contains auditstream commands.

Related information
audit command
auditproc subroutine
Security Administration
Auditing overview

32 AIX Version 7.1: Files Reference

consdef File

Purpose
Enables asynchronous tty devices to be console candidates at system boot when no console device is
defined or available.

Description
The /etc/consdef file enables tty devices such as terminals and modems to be chosen as the console
device. When the console device is undefined, the system displays a message on all natively attached
graphics displays and the tty on native serial port S1. The console device is undefined when:

• The system is first installed and started.
• The console definition has been deleted from the ODM database.
• The console device has been physically removed from the system.

If any of these conditions occur, the system displays the following message:

******* Please define the System Console. *******
Type a Number and press <Enter> to use this terminal as the system console.

For high function terminals (HFTs)graphics displays, the Number variable refers to a function key. For
asynchronous ttys, this variable is a number.

The selected item becomes the system console. To choose a non-default tty device as the system
console, you must first configure the /etc/consdef file. This file contains stanzas that define various
console attributes. Each line, or entry, in a stanza must take the form of Attribute=Value, and the line must
not exceed 80 characters. The following attributes must be defined for each terminal device:

Attribute Definition

connection Identifies the type of tty interface. Valid values are rs232 and rs422.

location Specifies the location code of the terminal. Location codes of 00-00-S1-00 or
00-00-S2-00 indicate that the tty device is attached to the S1 or S2 serial port,
respectively. Any other location code indicates the tty device is attached to an adapter
card other than the standard I/O planar. You can display valid location values with the
lsdev -C | grep tty command.

You can also specify other terminal attributes such as speed, bpc, stops, parity, and term. If you do
not define these attributes, the system uses the default values stored in the ODM database. The consdef
file contains a sample stanza for the S1 port. To enable this stanza, or parts of it, remove the comment
delimiters (#) from each applicable line.

Examples
To display the console selection message on the ttys attached to the S1 and S2 ports:

ALTTTY:
 connection=rs232
 location=00-00-S1-00
 speed=9600
 bpc=8
 stops=1
 parity=none
 term=ibm3163

ALTTTY:
 connection=rs232
 location=00-00-S2-00
 speed=9600
 bpc=8
 stops=1

Files Reference 33

 parity=none
 term=ibm3163

Note: For compatibility with earlier versions, the ALTTTY: keyword is not required for the first entry.

Files

Item Description

/etc/consdef Specifies the path of the consdef file.

/dev/console Provides access to the system console.

Related reference
console Special File
Related information
chcons command
lsdev command
Device location codes

copyright File

Purpose
Describes the format of a copyright information file.

Description
The copyright file is an ASCII file used to provide a copyright notice for a package. The text may be in any
format. The full file contents (including comment lines) is displayed on the terminal at the time of package
installation.

ct_class_ids File

Purpose
Contains the mapping of resource class names to resource class IDs for the RMC subsystem.

Description
The ct_class_ids file contains the mapping of resource class names to resource class IDs for the RMC
subsystem. This file is a read-only file; the contents cannot be modified.

Implementation specifics
This file is part of the Reliable Scalable Cluster Technology (RSCT) fileset for AIX.

Location
/opt/rsct/cfg/ct_class_ids
Related information
mkcimreg Command

34 AIX Version 7.1: Files Reference

ct_cssk.kf File

Purpose
Contains the cluster shared secret key.

Description
In a peer domain with the cluster shared secret key (CSSK) function enabled, the configuration resource
manager creates a file called ct_cssk.kf in the /var/ct/domain_name/cfg directory and stores the
initial CSSK in it. A ct_cssk.kf file is then created on each node that is online in the peer domain.

The topology services subsystem uses the CSSK to provide message authentication, which ensures the
integrity of messages that are sent between nodes within the peer domain. Once the CSSK function is
enabled for a peer domain, all RMC, topology services, and group services message traffic is signed for
authentication using the CSSK.

Any changes to the CSSK are coordinated across all nodes that are online in the peer domain and any
offline nodes when they join the peer domain. The new key is distributed to all online nodes in the peer
domain using the current CSSK. On each online node, the configuration resource manager replaces the
key value in /var/ct/domain_name/cfg/ct_cssk.kf with the new value, and then refreshes the
topology services subsystem to pick up the new key. Once refreshed, the new key is in effect for message
authentication.

Security
The permissions of this file are 000. Effectively, only root has read and write access to this file.

Restrictions
The configuration resource manager manages this file automatically. It must not be modified by any other
user or program.

Implementation specifics
This file is part of the Reliable Scalable Cluster Technology (RSCT) fileset for AIX.

Location
/var/ct/domain_name/cfg/ct_cssk.kf

Related information
mkrpdomain Command
rmrpdomain Command
rmrpnode Command
startrpdomain Command
startrpnode Command

ct_has.pkf File

Purpose
Default location for the local node's cluster security services public key file.

Description
The /var/ct/cfg/ct_has.pkf file is the default location where the ctcasd daemon will expect to find
the local node's public key file. The public key is stored in a proprietary binary format.

Files Reference 35

The ctcasd.cfg file permits the system administrator to specify an alternate location for this file. The
ctskeygen -p command permits the administrator to create this file in an alternate location. If an
alternate location is used, the file must meet all the criteria listed in the Security section of this man
page. The file must not be recorded to a read-only file system, because this will prohibit the system
administrator for modifying the contents of this file in the future.

If the ctcasd daemon cannot locate this file during its startup, it will check for the presence of the
ct_has.qkf file. If both files are missing, the daemon assumes that it is being started for the first time
after installation, and create an initial private and public key file for the node. The daemon also creates
the initial trusted host list file for this node. This file contains an entry for localhost and the host
names (or IP addresses) associated with all AF_INET-configured adapters that the daemon can detect.
This may cause inadvertent authentication failures if the public and private key files were accidentally or
intentionally removed from the local system before the daemon was restarted. ctcasd will create new
keys for the node, which will not match the keys stored on the other cluster nodes. If UNIX-identity-based
authentication suddenly fails after a system restart, this is a possible source of the failure.

If the public key file is missing but the private key file is detected, the daemon concludes that the local
node is misconfigured and terminates. A record is made to persistent storage to indicate the source of the
failure.

Security
This file is readable to all users on the local system. Write permission is not granted to any system user.

By default, this file is stored in a locally-mounted file system. The ctcasd.cfg file permits system
administrators to change the location of the file. Should system administrators use a different location,
it is the administrator's responsibility to assure that the file is always accessible to the local node, and
that all users from this local node can read the file. If the storage location does not meet these criteria,
users and applications will be unable to authenticate to trusted services using UNIX-identity-based
authentication.

If the system administrator chooses to place this file in a networked file system, the administrator must
assure that no two nodes are attempting to use the same physical file as their own public key file.
Because public keys differ between nodes, if two nodes attempt to use the same public key file, at least
one of them will always obtain the incorrect value for its public key. This will cause applications and users
from that node to fail authentication to trusted services within the cluster.

Restrictions
Cluster security services supports only its own private and public key formats and file formats. Secured
Remote Shell formats are currently unsupported. Settings for the HBA_USING_SSH_KEYS attribute are
ignored.

Examples
This example shows the default contents of the configuration file:

TRACE= ON
 TRACEFILE= /var/ct/IW/log/ctsec/ctcasd/trace
 TRACELEVELS= _SEC:Info=1,_SEC:Errors=1
 TRACESIZE= 1003520
 RQUEUESIZE=
 MAXTHREADS=
 MINTHREADS=
 THREADSTACK= 131072
 HBA_USING_SSH_KEYS= false
 HBA_PRVKEYFILE=
 HBA_PUBKEYFILE=
 HBA_THLFILE=
 HBA_KEYGEN_METHOD= rsa512
 SERVICES=hba CAS

After modification, the contents of the configuration file might look like this:

36 AIX Version 7.1: Files Reference

TRACE= ON
 TRACEFILE= /var/ct/IW/log/ctsec/ctcasd/trace
 TRACELEVELS= _SEC:Perf=1,_SEC:Errors=8
 TRACESIZE= 1003520
 RQUEUESIZE= 64
 MAXTHREADS= 10
 MINTHREADS= 4
 THREADSTACK= 131072
 HBA_USING_SSH_KEYS= false
 HBA_PVTKEYFILE= /var/ct/cfg/qkey
 HBA_PUBKEYFILE= /var/ct/cfg/pkey
 HBA_THLFILE= /var/ct/cfg/thl
 HBA_KEYGEN_METHOD= rsa512
 SERVICES= hba CAS

Location
/var/ct/cfg/ct_has.pkf

Contains the ct_has.pkf file

Files
/opt/rsct/cfg/ctcasd.cfg

Default location of the ctcasd.cfg file

ct_has.qkf File

Purpose
Default location for the cluster security services private key file for the local node.

Description
The /var/ct/cfg/ct_has.qkf file is the default location where the ctcasd demon expects to find the
local node's private key file. The private key is stored in a proprietary binary format.

The ctcasd.cfg file permits the system administrator to specify an alternate location for this file. The
ctskeygen -q command permits the administrator to create this file in an alternate location. If an
alternate location is used, the file must meet all the criteria listed in the Security section of this man
page. The file must not be recorded to a read-only file system, because this will prohibit the system
administrator for modifying the contents of this file in the future

If the ctcasd demon cannot locate this file during its startup, it will check for the presence of the
ct_has.pkf file. If both files are missing, the demon will assume that it is being started for the first time
after installation, and create an initial private and public key file for the node. The demon also creates
the initial trusted host list file for this node. This file contains an entry for localhost and the host
names (or IP addresses) associated with all AF_INET-configured adapters that the demon can detect.
This may cause inadvertent authentication failures if the public and private key files were accidentally
or intentionally removed from the local system before the demon was restarted. ctcasd will create new
keys for the node, which will not match the keys stored on the other cluster nodes. If UNIX-identity-based
authentication suddenly fails after a system restart, this is a possible source of the failure.

If the private key file is missing but the public key file is detected, the deemon concludes that the local
node is not configured accurately and terminates. A record is made to persistent storage to indicate the
source of the failure.

Security
This file is readable and accessible only to the root user. Access to all other users is not provided.

By default, this file is stored in a locally mounted file system. The ctcasd.cfg file permits system
administrators to change the location of the file. Should system administrators use a different location, it
is the administrator's responsibility to assure that the file is always accessible to the local node, and that

Files Reference 37

only the root user from this local node can access the file. If the storage location does not meet these
criteria, the security of the node and the cluster should be considered compromised.

Restrictions
Cluster security services supports only its own private and public key formats and file formats. Secured
Remote Shell formats are currently unsupported. Settings for the HBA_USING_SSH_KEYS attribute are
ignored.

Examples
This example shows the default contents of the configuration file:

TRACE= ON
 TRACEFILE= /var/ct/IW/log/ctsec/ctcasd/trace
 TRACELEVELS= _SEC:Info=1,_SEC:Errors=1
 TRACESIZE= 1003520
 RQUEUESIZE=
 MAXTHREADS=
 MINTHREADS=
 THREADSTACK= 131072
 HBA_USING_SSH_KEYS= false
 HBA_PRVKEYFILE=
 HBA_PUBKEYFILE=
 HBA_THLFILE=
 HBA_KEYGEN_METHOD= rsa512
 SERVICES=hba CAS

After modification, the contents of the configuration file might look like this:

TRACE= ON
 TRACEFILE= /var/ct/IW/log/ctsec/ctcasd/trace
 TRACELEVELS= _SEC:Perf=1,_SEC:Errors=8
 TRACESIZE= 1003520
 RQUEUESIZE= 64
 MAXTHREADS= 10
 MINTHREADS= 4
 THREADSTACK= 131072
 HBA_USING_SSH_KEYS= false
 HBA_PVTKEYFILE= /var/ct/cfg/qkey
 HBA_PUBKEYFILE= /var/ct/cfg/pkey
 HBA_THLFILE= /var/ct/cfg/thl
 HBA_KEYGEN_METHOD= rsa512
 SERVICES= hba CAS

Location
/opt/rsct/bin/ct_has.qkf

Location of the ct_has.qkf file.

Files
/opt/rsct/cfg/ctcasd.cfg

Default location of the ctcasd.cfg file

ct_has.thl File

Purpose
Default location for the local node's cluster security services trusted host list file.

Description
The /var/ct/cfg/ct_has.thl file is the default location where the ctcasd daemon expects to find
the local node's trusted host list file. The contents of this file are stored in a proprietary binary format.

38 AIX Version 7.1: Files Reference

The trusted host list maps each host identity within the peer domain or management domain to the host's
cluster security services public key. The ctcasd daemon uses this list to determine which nodes on
the network are trusted, and to locate the public keys for these nodes in order to decrypt UNIX-identity-
based credentials transmitted from another host within the cluster. If a host is not listed in a node's
trusted host list, or if the public key recorded for that host is incorrect, the host will not be able to
authenticate to that node using UNIX-identity-based authentication.

The ctcasd.cfg file permits the system administrator to specify an alternate location for this file. If an
alternate location is used, the file must meet all the criteria listed in the Security section of this man
page. The file must not be recorded to a read-only file system, because this will prohibit the system
administrator for modifying the contents of this file in the future.

If the ctcasd daemon cannot locate this file during its startup, it will check for the presence of the
ct_has.pkf file. If both files are missing, the daemon will assume that it is being started for the first
time after installation, and create an initial private and public key file for the node. The daemon also
creates the initial trusted host list file for this node. This file contains an entry for localhost, along with
the IP addresses and the host names associated with all AF_INET-configured adapters that the daemon
can detect. This may cause inadvertent authentication failures if the public and private key files were
accidentally or intentionally removed from the local system before the daemon was restarted. The ctcasd
daemon creates new keys for the node, which will not match the keys stored on the other cluster nodes.
If UNIX-identity-based authentication suddenly fails after a system restart, this is a possible source of the
failure.

Security
This file is readable by all users on the local system. Write access is not provided to any system user.

By default, this file is stored in a locally-mounted file system. The ctcasd.cfg file permits system
administrators to change the location of the file. If the system administrator uses a different location, it
is the administrator's responsibility to make sure the file is always accessible to the local node, and that
all users from this local node can access the file. If the storage location does not meet these criteria,
users and applications will be unable to authenticate to trusted services using UNIX-identity-based
authentication.

If the system administrator chooses to place this file in a networked file system, the administrator must
assure that no two nodes are attempting to use the same physical file as their own trusted host list file,
or that the file does not contain an entry for localhost. By default, the trusted host list contains an entry
for localhost, which maps the local system's public key to this value. If multiple hosts share the same
trusted host list file, attempts by users or applications to contact localhost for trusted services may fail
because the entry maps to an incorrect public key value.

Restrictions
• Cluster security services supports only its own private and public key formats and file formats.
• Cluster security services does not provide an automated utility for creating, managing, and maintaining

trusted host lists throughout the cluster. This is a procedure left to either the system administrator or
the cluster management software.

Examples
This example shows the default contents of the configuration file:

TRACE= ON
 TRACEFILE= /var/ct/IW/log/ctsec/ctcasd/trace
 TRACELEVELS= _SEC:Info=1,_SEC:Errors=1
 TRACESIZE= 1003520
 RQUEUESIZE=
 MAXTHREADS=
 MINTHREADS=
 THREADSTACK= 131072
 HBA_USING_SSH_KEYS= false
 HBA_PRVKEYFILE=
 HBA_PUBKEYFILE=

Files Reference 39

 HBA_THLFILE=
 HBA_KEYGEN_METHOD= rsa512
 SERVICES=hba CAS

After modification, the contents of the configuration file might look like this:

TRACE= ON
 TRACEFILE= /var/ct/IW/log/ctsec/ctcasd/trace
 TRACELEVELS= _SEC:Perf=1,_SEC:Errors=8
 TRACESIZE= 1003520
 RQUEUESIZE= 64
 MAXTHREADS= 10
 MINTHREADS= 4
 THREADSTACK= 131072
 HBA_USING_SSH_KEYS= false
 HBA_PVTKEYFILE= /var/ct/cfg/qkey
 HBA_PUBKEYFILE= /var/ct/cfg/pkey
 HBA_THLFILE= /var/ct/cfg/thl
 HBA_KEYGEN_METHOD= rsa512
 SERVICES= hba CAS

Location
/opt/rsct/bin/ct_has.thl

Location of the ct_has.thl file.

Files
/opt/rsct/cfg/ctcasd.cfg

Default location of the ctcasd.cfg file

ctfile.cfg File

Purpose
Controls tracing and logging for various RSCT components.

Description
To initiate tracing and logging control, system administrators can create the RSCT file configuration (RFC)
file, /etc/ctfile.cfg. A system administrator can copy a sample configuration file, /opt/rsct/cfg/
ctfile.cfg, to the /etc directory, and then modify it. The control information in the configuration file
takes effect the next time a specified component, a daemon, for example, is started.

RSCT components that support tracing and logging control, which are listed in the sample configuration
file, obtain the following information from /etc/ctfile.cfg:

• An absolute path to a directory tree under which the component trace files and log files are to be
written. This path can refer to a remote file system.

• A flag that indicates whether tracing is to be disabled for each component.
• A flag that indicates whether tracing is to be disabled for all RSCT components.
• When tracing is enabled, the size of a trace file for each component and each trace file. Some

components write to several trace files.
• The amount of information to be traced.
• A flag that indicates whether logging is to be disabled for each component.
• A flag that indicates whether logging is to be disabled for all RSCT components.

Lines that consist of only the characters NL or white space are ignored. If the first non-white-space
character of a line is the number sign character (#), the line is a comment, so it is ignored. All other lines
must contain one or more tokens. If there is more than one token on a line, the tokens must be separated

40 AIX Version 7.1: Files Reference

by white space. A token line can contain leading or trailing white space. White space is any mix of the
blank and tab characters.

The trace and log root directory token

The trace and log root directory token is a name/value pair. The format is:

CT_TRACE_LOG_ROOT_DIR=path_name

The path name must be absolute. If this token is not specified, the trace and log root directory is assumed
to be /var/ct. In either case, all trace and log file path names are constructed with the trace and log root
directory as the path name prefix.

The trace disable token

The trace disable token is a name/value pair followed by an optional component name. The format is:

CT_TRACE_DISABLE={true|false} [component_name]

This token can be specified more than once, each on a separate line. If this token is not specified then
tracing is enabled for all components that reference this file and are not otherwise specified in another
trace disable token line. If this token is specified with a value of true, and no component name is
specified, tracing is disabled for all components that reference this file and are not otherwise specified
in another trace disable token line. If this token is specified with a value of false, and no component
name is specified, then tracing is enabled for all components that reference this file and are not otherwise
specified in another trace disable token line. If a component name is specified then tracing for that
component is enabled or disabled to match the value false or true, respectively. For a component, the
token line that specifies that component has precedence over any token line that does not specify a
component. If more than one token line specifies the same component, the last such token line has
precedence. Component names are the resource manager names in the case of resource managers (as
derived from the resource manager .mdef file), mc in the case of the RMC daemon and ctcasd in the
case of the cluster authentication services daemon. Specifically, the component name must be the name
used in constructing the full path name of a trace file. Here is an example:

CT_TRACE_DISABLE=true
CT_TRACE_DISABLE=false mc
CT_TRACE_DISABLE=false IBM.MgmtDomainRM

Tracing is enabled for the management domain resource manager and the RMC daemon. For all other
components trace is disabled.

The trace file size token

The trace file size token is a name/value pair followed by a component name and trace file name. It has
the following form:

CT_TRACE_FILE_SIZE=nnn[K] component_name file_name

where nnn is the size of the specified trace file in bytes. If the optional K suffix is specified, the size is
specified in units of 1024 bytes. The RSCT trace facility rounds up file sizes to a page boundary. If a trace
file size token is not specified, components use the file sizes that are programmed into the component.

The trace level token

The trace level token is a name/value pair followed by a component name. The format is:

CT_TRACE_LEVELS=string component_name

The level string is in standard trace facility format, for example, Comp_ID:category=level. If a trace level
token is not specified, components use the trace levels programmed into the component. Trace levels
determine the amount of information recorded in a trace file.

The logging disable token

The logging disable token is a name/value pair followed by an optional component name. The format is:

Files Reference 41

CT_LOGGING_DISABLE={true|false} [component_name]

This token can be specified more than once, each on a separate line. If this token is not specified, logging
is enabled for all components that refer to this file and are not otherwise specified in another logging
disable token line. If this token is specified with a value of true and no component name is specified,
logging is disabled for all components that refer to this file and are not otherwise specified in another
logging disable token line. If this token is specified with a value of false and no component name is
specified, logging is enabled for all components that refer to this file and are not otherwise specified
in another logging disable token line. If a component name is specified, logging for that component is
enabled or disabled to match the value false or true, respectively. For a component, the token line
that specifies that component has precedence over any token line that does not specify a component.
If more than one token line specifies the same component, the last such token line has precedence.
Component names are the resource manager names in the case of resource managers (as derived from
the resource manager's .mdef file), mc in the case of the RMC daemon and ctcasd in the case of the
cluster authentication services daemon. Specifically, the component name must be the name that is used
in constructing the full path name of a logging file.

Files
/etc/ctfile.cfg

Location of the RSCT file configuration (RFC) file that is created by the system administrator
/opt/rsct/cfg/ctfile.cfg

Location of the sample ctfile.cfg file

Implementation specifics
This file is part of the Reliable Scalable Cluster Technology (RSCT) fileset for AIX.

Location
/etc/ctfile.cfg
Related information
ctsnap Command

ctgroups File

Purpose
Contains the group name of the cluster administration group.

Description
The ctgroups file stores the group name of the cluster administration group. In addition, ctgroups
caches the corresponding group ID.

Implementation specifics
This file is part of the Reliable Scalable Cluster Technology (RSCT) cluster security services. It is shipped
as part of the rsct.core.sec fileset for AIX.

Location
/var/ct/cfg/ctgroups

Contains the ctgroups file
Related information
ctadmingroup Command

42 AIX Version 7.1: Files Reference

ctcas_hba2.map File

Purpose
Defines the operating system identity that the RSCT enhanced host-based authentication (HBA2) security
mechanism uses for service provider applications on a node.

Description
Applications that use the cluster security services library must obtain an identity from the security
mechanisms supported by the library. These identities are specific to the individual security mechanisms
supported by cluster security services. Because cluster security services support multiple security
mechanisms and multiple applications, the cluster security services library must be informed of which
identity to use for an application when interacting with a specific security mechanism on its behalf.

The ctcas_hba2.map file defines the identities that the core cluster applications use when they
interact with RSCT HBA2. The cluster security services library expects to find this file in /var/ct/cfg/
ctcas_hba2.map (preferred) or /opt/rsct/cfg/ctcas_hba2.map (default).

This file is ASCII-text formatted, and can be modified with a standard text editor. However, this file
must not be modified unless the administrator is instructed to do so by the cluster software service
provider. If this configuration file is to be modified, the default /opt/rsct/cfg/ctcas_hba2.map file
must not be modified directly. Instead, the file must be copied to /var/ct/cfg/ctcas_hba2.map, and
modifications must be made to this copy. The default configuration file must never be modified.

All entries within this file use the following format:

SERVICE:service_name:user_name_running_the_service

Attribute Definition

SERVICE Required keyword

service_name Specifies the name commonly used to refer to the
application. For example, it can be the name used
by the system resource controller to refer to this
application.

user_name_running_the_service Specifies the operating system user identity used
to run the application process. It is the owner
identity that would be seen for the application
process in the ps command output.

Files
/var/ct/cfg/ctcas_hba2.map

Restrictions
This file must not be modified unless the administrator is instructed to do so by the cluster software
service provider. Incorrect modification of this file results in authentication failures for the applications
listed in this file and possibly their client applications. If this configuration file is to be modified, the
default /opt/rsct/cfg/ctcas_hba2.map file must not be modified directly. Instead, the file must be
copied to /var/ct/cfg/ctcas_hba2.map, and modifications must be made to this copy. The default
configuration file must never be modified.

Implementation specifics
This file is part of the Reliable Scalable Cluster Technology (RSCT) cluster security services. It is shipped
as part of the rsct.core.sec fileset for AIX.

Files Reference 43

Location
/opt/rsct/cfg/ctcas_hba2.map

Examples
This example shows the default contents of the configuration file:

SERVICE:ctrmc:root
SERVICE:rmc:root
SERVICE:ctloadl:loadl
SERVICE:ctdpcl:root
SERVICE:ctpmd:root

Related information
ps Command
ctcasd Command

ctcasd.cfg File

Purpose
Provides operational parameters to the cluster security services daemon ctcasd.

Description
The ctcasd.cfg configuration file defines the operational parameters to the cluster security services
daemon ctcasd. The ctcasd daemon reads this file when it (the daemon) initializes. The ctcasd
daemon expects to find this configuration file in either the /var/ct/cfg directory (preferred) or in
the /opt/rsct/cfg directory (default). System administrators can modify the contents of the file stored
in the /var/ct/cfg directory, but should not modify the default version of the file in /opt/rsct/cfg
unless instructed to do so by the cluster software service provider.

This file is ASCII-formatted, and can be modified using any available text editor. One attribute can be
defined per line within this file. Attributes are specified as follows:

attribute=value

The following attributes are defined:
Attribute

Definition
TRACE

Indicates whether daemon tracing is activated. Acceptable values are ON and OFF. If the TRACE
attribute is not listed in the ctcasd.cfg file, tracing is not activated. For coexistence with earlier
versions of RSCT, TRACE= false is interpreted as TRACE= OFF.

TRACEFILE
Specifies the fully-qualified path name where daemon tracing information is to be recorded.

TRACELEVELS
Indicates the tracing granularity employed by the daemon when tracing is activated. The possible
trace categories are:
_SEC:Errors

Captures error information in the trace log. Possible values are: 1, 2, 4, and 8.
_SEC:API

Tracks the entry and exit of subroutines within the daemon. Possible values are: 1 and 8.
_SEC:Perf

Captures performance-related information. Possible values are: 1, 4, and 8.

44 AIX Version 7.1: Files Reference

_SEC:Info
Traces the general execution progress of the daemon. Possible values are: 1, 2, 3, 4, and 7.

When setting the values of these trace categories, keep in mind that the lower the number is, the less
intrusive (and less detailed) the trace will be. Multiple traces can be enabled at once. For example,
if an administrator wants to enable a trace that captures basic performance data and highly-detailed
error data, the specification for TRACELEVELS would be:

TRACELEVELS=_SEC:Perf=1,_SEC:Errors=8

TRACESIZE
Specifies the size of the trace file in bytes. The default value is 1 megabyte.

RQUEUESIZE
Indicates the maximum length permitted for the daemon's internal run queue. If this value is not set,
a default value of 64 is used.

MAXTHREADS
The limit to the number of working threads that the daemon may create and use at any given time (the
"high water mark"). If this value is not set, a default value of 10 is used.

MINTHREADS
The number of idle threads that the daemon will retain if the daemon is awaiting further work (the
"low water mark"). If this value is not, set, a default value of 4 is used.

THREADSTACK
Sets the internal memory used by the daemon for thread stack space. The value is expressed in bytes.
If no value is specified, the default system thread stack size is used. This value should not be modified
by the administrator unless instructed to do so by IBM® Service.

HBA_USING_SSH_KEYS
Indicates whether the daemon is making use of Secured Remote Shell keys. Acceptable values are
true and false. If this value is not defined, a default value of false is used. See Restrictions.

HBA_PRVKEYFILE
Provides the full path name of the file that contains the local node's private key. If this value is not set,
the default location of /var/ct/cfg/ct_has.qkf is used.

HBA_PUBKEYFILE
Provides the full path name of the file that contains the local node's public key. If this value is not set,
the default location of /var/ct/cfg/ct_has.pkf is used.

HBA_THLFILE
Provides the full path name of the file that contains the local node's trusted host list. If this value is
not set, the default location of /var/ct/cfg/ct_has.thl is used.

HBA_KEYGEN_METHOD
Indicates the method to be used by ctcasd to generate the private and public keys of the local node
if the files containing these keys do not exist. Acceptable values are those that can be provided as
arguments to the ctskeygen -m command. If no value is provided for this attribute, the default value
of rsa1024 is used.

SERVICES
Lists the internal cluster security services library services that the daemon supports. This entry should
not be modified by system administrators unless they are explicitly instructed to do so by the cluster
security software service provider.

Restrictions
Cluster security services supports only its own private and public key formats and file formats. Secured
Remote Shell formats are currently unsupported. Settings for the HBA_USING_SSH_KEYS attribute are
ignored.

Files Reference 45

Examples
This example shows the default contents of the configuration file:

TRACE= ON
 TRACEFILE= /var/ct/IW/log/ctsec/ctcasd/trace
 TRACELEVELS= _SEC:Info=1,_SEC:Errors=1
 TRACESIZE= 1003520
 RQUEUESIZE=
 MAXTHREADS=
 MINTHREADS=
 THREADSTACK= 131072
 HBA_USING_SSH_KEYS= false
 HBA_PRVKEYFILE=
 HBA_PUBKEYFILE=
 HBA_THLFILE=
 HBA_KEYGEN_METHOD= rsa512
 SERVICES=hba CAS

After modification, the contents of the configuration file might look like this:

TRACE= ON
 TRACEFILE= /var/ct/IW/log/ctsec/ctcasd/trace
 TRACELEVELS= _SEC:Perf=1,_SEC:Errors=8
 TRACESIZE= 1003520
 RQUEUESIZE= 64
 MAXTHREADS= 10
 MINTHREADS= 4
 THREADSTACK= 131072
 HBA_USING_SSH_KEYS= false
 HBA_PVTKEYFILE= /var/ct/cfg/qkey
 HBA_PUBKEYFILE= /var/ct/cfg/pkey
 HBA_THLFILE= /var/ct/cfg/thl
 HBA_KEYGEN_METHOD= rsa512
 SERVICES= hba CAS

Location
/var/ct/cfg/ctcasd.cfg

Contains the ctcasd.cfg file

Files
/opt/rsct/cfg/ctcasd.cfg

Default location of the ctcasd.cfg file

ctrmc.acls File

Purpose
Contains a node's resource monitoring and control (RMC) access control list (ACL).

Description
RMC implements authorization using an access control list (ACL) file. Specifically, RMC uses the ACL file
on a particular node to determine the permissions that a user must have in order to access resource
classes and their resource instances. A node's RMC ACL file is named ctrmc.acls and is installed in
the directory /opt/rsct/cfg. You can allow RMC to use the default permissions set in this file, or you
can modify the file after copying it to the directory /var/ct/cfg/. For more information, see the RSCT:
Administration Guide.

For information about how access controls are implemented for the IBM.LPCommands resource class and
its resources, see the lpacl information file.

46 AIX Version 7.1: Files Reference

Implementation Specifics
This file is part of the Reliable Scalable Cluster Technology (RSCT) fileset for AIX.

Location
/var/ct/cfg/ctrmc.acls

Contains the ctrmc.acls file

Files
/opt/rsct/cfg/ctrmc.acls

Default location of the ctrmc.acls file
/var/ct/IW/log/mc/default

Location of any errors found in the modified ctrmc.acls file

ctrmc.rio File

Purpose
Adjusts reporting intervals for resource dynamic attributes.

Description
To adjust the reporting intervals for resource dynamic attributes that are defined in a class definition file,
you can create a reporting interval override file called ctrmc.rio. A reporting interval is the amount of
time between a resource manager's sampling of values. You can set reporting intervals for all classes, a
single class, or a single attribute of a class. Information in the ctrmc.rio file applies only to resource
dynamic attributes that have reporting intervals, which have a variable type of Counter or Quantity.

The ctrmc.rio file is a plain text file, in which a line in the file contains two white-space-separated
tokens, as follows:

class_name[:attr_name] reporting_interval

The first token is a class name as returned by the lsrsrc command, or, a class name followed
immediately by a colon, which is followed by an optional resource dynamic attribute name as returned by
the lsrsrcdef command. If only a class name is specified, the reporting interval applies to all resource
dynamic attributes of the class that have reporting intervals. If a class name and attribute name are
specified, the reporting interval applies to the named attribute only, if appropriate. If the attribute does
not have a reporting interval, the line is ignored. The second token, the reporting interval, is an unsigned
integral value that is interpreted as a number of seconds. If the class name, without any attribute names,
is the keyword ALL, the reporting interval applies to all dynamic resource attributes of all resource
classes. The last specification for an attribute applies.

In the following example:

Foo:larry 10
Foo 15
Foo:curly 20

the reporting interval would be 15 for larry and 20 for curly. All other dynamic attributes of the Foo
class would have a reporting interval of 15. Blank lines, lines that begin with the number sign (#), and
lines that contain unrecognized tokens are ignored.

The reporting interval override file is read by the RMC daemon upon start. If the refresh -s ctrmc
command is started, the file is reread. In this case, any new reporting intervals apply only to future event
registrations.

Files Reference 47

Implementation specifics
This file is part of the Reliable Scalable Cluster Technology (RSCT) fileset for AIX.

Location
/var/ct/cfg/ctrmc.rio

ctsec.cfg File

Purpose
Provides configuration information about the authentication methods that cluster security services can
use for client or server authentication.

Description
The ctsec.cfg configuration file provides configuration information about the authentication methods
that cluster security services can use for client-server authentication. Each authentication method is
handled by a mechanism pluggable module (MPM). Each MPM configuration is defined by a one-line entry
in the ctsec.cfg file. The entry contains information about:

• The priority of the MPM when cluster security services choose the authentication method for the
client-server authentication

• The numeric code of the MPM, which is unique among all of the MPMs in the configuration file
• The mnemonic of the MPM, which is unique among all of the MPMs in the configuration file
• The name of the binary module that implements the function of the MPM
• Miscellaneous flags used by cluster security services mechanism abstract layer (MAL) when handling

the MPM

Cluster security services include a default ctsec.cfg file in the /opt/rsct/cfg/ directory. Use the
ctscfg command to modify a working copy of this configuration file. ctscfg does not modify the default
configuration file in /opt/rsct/cfg/. Instead, ctscfg makes a copy (if one does not exist already)
of the default ctsec.cfg file and copies it to the /var/ct/cfg/ directory. If a working copy of this
file does exist already and there is enough space, the previous version is recorded to /var/ct/cfg/
ctsec.cfg.bak.

Files
/var/ct/cfg/ctsec.cfg

Working copy of the MAL configuration file
/var/ct/cfg/ctsec.cfg.bak

Backup of the working copy of the MAL configuration file

Implementation specifics
This file is part of the Reliable Scalable Cluster Technology (RSCT) cluster security services. It is shipped
as part of the rsct.core.sec fileset for AIX.

Location
/opt/rsct/cfg/ctsec.cfg

48 AIX Version 7.1: Files Reference

ctsec_map.global File

Purpose
Associates operating system user identifiers on the local system with network security identifiers for
authorization purposes.

Description
RSCT trusted services use the identity mapping definition files ctsec_map.global and
ctsec_map.local to determine whether an RSCT client application's user should be granted access
to specific RSCT functions and resources. The file is used to associate security network identifiers that
are used by RSCT's cluster security services with user identifiers on the local system. RSCT trusted
services use these files to determine what association, if any, exists for the RSCT client, and then use this
association while examining the RSCT access controls to determine whether the RSCT client should be
granted access.

Two identity mapping definition files can be used:

• The ctsec_map.global file contains associations that are to be recognized on all nodes within the
cluster configuration

• The ctsec_map.local file contains associations that are specific to a particular node

In a cluster configuration, all ctsec_map.global files should be the same. Any local system additions
that are required for that specific system should be made in the ctsec_map.local file.

RSCT provides a default ctsec_map.global file in the /opt/rsct/cfg directory. Do not change this
file. If you need to add more associations for the cluster, copy this file to the /var/ct/cfg directory.
Make any changes to this new file: /var/ct/cfg/ctsec_map.global. Any entries that exist in the
default ctsec_map.global file must exist in the replacement version of the file in the /var/ct/cfg
directory, or the RSCT trusted services may refuse access to other RSCT trusted services peers. RSCT
does not provide a default ctsec_map.local file. The administrator can create this file, which must
reside in the /var/ct/cfg directory as well.

ctsec_map.global and ctsec_map.local are ASCII-formatted files that can be viewed and modified
using a text editor. Each line in the file constitutes an entry. Blank lines and lines that start with a pound
sign (#) are ignored. Each entry is used to either associate a security network identifier with a local
operating system user identifier, or to expressly state that no association is allowed for a security network
identifier.

Ordering of entries within these files is important. Cluster security services parses the
ctsec_map.globaland ctsec_map.local files as follows:

1. If the /var/ct/cfg/ctsec_map.local file exists, cluster security services checks for associations
in this file

2. If the /var/ct/cfg/ctsec_map.global file exists, cluster security services checks for associations
in this file

3. Otherwise, cluster security services checks for associations within the /opt/rsct/cfg/
ctsec_map.global, if this file exists

The first entry that successfully grants or denies an association for a security network identifier in this
search path is the one that cluster security services uses. If entries in both the ctsec_map.globaland
ctsec_map.local files grant differing associations to the same security network identifier, cluster
security services will use the association stated by the entry in the ctsec_map.local file. Also, if two
entries within the ctsec_map.global file grant different associations to the same security network
identifier, cluster security services will use the association granted by the entry listed earlier in the
ctsec_map.global file. You can use the ctsidmck command to verify the association rule that is used
by cluster security services for specific security network identifiers.

Cluster security services recognizes these characters as reserved: <, >, :, =, !, @, *, and considers these,
along with white space characters, as token separators. The wildcard character * is permitted, but should

Files Reference 49

not be used multiple times between other token separator characters. Contents of the identity mapping
definition files use the following Backus-Nour format:

<mapping_entry> ::= <mechanism_mnemonic> ':' <mapping>>

<mechanism_mnemonic> ::= 'unix', 'krb5'

<mapping> ::= <explicit mapping> | <mapping_rule>

<explicit_mapping> ::= <source_mapping> '=' <local_user_identity>
 | '!' <source_mapping>

<source_mapping> ::= <network_identity> | <match_pattern>'*'

<target_mapping> ::= <mapped_identity> | '*'

<network_identity> ::= <user_name>'@'<registry_name>

<user_name> ::= <match_pattern>'*' | '*'

<registry_name> ::= <match_pattern> | '*' | <mpm_defined_reserved_word>

<mpm_defined_reserved_word> ::= '<'<alphanumeric_string>'>'

<mapped_identity> ::= <alphanumeric_string>

<match_pattern> ::= null string | <alphanumeric_string>

<alphanumeric_string> ::= any non-empty array of alphanumeric characters not
 consisting of the reserved token separator characters

An <mpm_defined_reserved_word> is a special instruction to the underlying security mechanism
associated with the security network identifier that instructs the mechanism to interpret the identifier
in a specific manner. The following reserved words are defined:
<iw>

A reserved word for security network identities using the RSCT host-based authentication (HBA)
security mechanism. This keyword maps the HBA root network identity of the local node
to the root user. When the cluster security services identity mapping program processes the
ctsec_map.global file, it replaces the <iw> keyword with the node ID of the node.

<cluster>
A reserved word for security network identities using the HBA security mechanism. The mapping entry
is applied to a security network identifier if the identifier is known to originate from any host within the
cluster that is currently active for the local node.

<any_cluster>
A reserved word for security network identities using the HBA security mechanism. The mapping entry
is applied to a security network identifier if the identifier is known to originate from any host within
any cluster that the local node is currently defined. The local node does not need to be active within
that cluster when the mapping is applied.

<realm>
A reserved word for security network identities using the Kerberos version 5 mechanism. The
mapping entry is applied to a security network identity if the identifier is known to originate within the
Kerberos realm that is currently active. See Restrictions.

Security
• The default identity mapping definition file /opt/rsct/cfg/ctsec_map.global is readable by all

system users, but permissions prevent this file from being modified by any system user.
• When creating the override identity mapping definition files /var/ct/cfg/ctsec_map.global

and /var/ct/cfg/ctsec_map.local, make sure that the files can be read by any system user, but
that they can only be modified by the root user or other restrictive user identity not granted to normal
system users.

• By default, these files reside in locally-mounted file systems. While it is possible to mount
the /var/ct/cfg directory on a networked file system, this practice is discouraged. If
the /var/ct/cfg/ctsec_map.local file were to reside in a networked file system, any node with

50 AIX Version 7.1: Files Reference

access to that networked directory would assume that these definitions were specific to that node alone
when in reality they would be shared.

Restrictions
RSCT does not support the Kerberos version 5 mechanism. Any entries using the mechanism mnemonic
krb5 or the reserved word <realm> will not be applied.

Implementation Specifics
These files are part of the Reliable Scalable Cluster Technology (RSCT) cluster security services. The
default file is shipped as part of the rsct.core.sec fileset for AIX.

Location
/opt/rsct/cfg/ctsec_map.global

Contains the default identity mapping definition file.
/var/ct/cfg/ctsec_map.global

Contains the replacement for the default global identity mapping definition file. Any entries that exist
in the default ctsec_map.global file must be replicated in this file, or necessary access required by
RSCT trusted services clients will be refused. This file contains identity mapping definitions expected
to be recognized by all nodes within the cluster. It is expected that this file will have the same
contents for each node within the cluster.

/var/ct/cfg/ctsec_map.local
Contains additional identity mapping definitions specific to the local node. This file adds identity
mapping definitions to the set recognized for the entire cluster. Entries within this file are applied
before entries from the ctsec_map.global file. It is expected that the contents of this file will vary
from node to node within the cluster, and provide mappings required for clients that access the local
node only.

Example
These reserved characters: <, >, :, =, !, and @, are interpreted as token separators, as are white space
characters.

Examples of valid identity mapping definition entries:
unix:zathras@epsilon3.ibm.com=zathras

This entry grants the association for the RSCT HBA or HBA2 security mechanism identity
zathras@epsilon3.ibm.com to the local user identifier zathras. This entry is not applied to other
RSCT HBA or HBA2 identities.

unix:!zathras@greatmachine.net
This entry denies any local user identity association for the RSCT HBA or HBA2 identity
zathras@greatmachine.net. This entry is not applied to other RSCT HBA or HBA2 identities.

unix:entilzah@cluster=root
The cluster reserved word matches any RSCT HBA or HBA2 identity containing the user
name entilzah that originates from any host within the currently-active cluster. This grants
associations for such RSCT HBA or HBA2 identities as entilzah@anglashok.ibm.com and
entilzah@mimbar.ibm.com to the local user root when the local node is active within the cluster
that also contains the hosts anglashok.ibm.com and mimbar.ibm.com. Associations will not
be granted for such RSCT HBA or HBA2 identities as entilzah@whitestar.ibm.com if the host
whitestar.ibm.com is not part of the cluster that is currently active.

unix:entilzah@any_cluster=root
The cluster reserved word matches any RSCT HBA or HBA2 identity containing the user
name entilzah that originates from any host within the currently-active cluster. This grants
associations for RSCT HBA or HBA2 identities such as entilzah@anglashok.ibm.com and
entilzah@mimbar.ibm.com to the local user root when the local node is active within the cluster

Files Reference 51

that also contains the hosts anglashok.ibm.com and mimbar.ibm.com. Associations will also be
granted for RSCT HBA or HBA2 identities such as entilzah@whitestar.ibm.com to the local user
root if the host whitestar.ibm.com is part of any cluster known to the local host.

unix:zathras@*=zathras
The * character in this entry matches any RSCT HBA or HBA2 identity that contains the user name
zathras from any host to the local user identifier zathras. This grants associations for RSCT HBA or
HBA2 identities such as zathras@epsilon3.ibm.com and zathras@greatmachine.net to the
local user identifier zathras.

unix:zathras@*.ibm.com=zathras
The * character in this entry will match any RSCT HBA or HBA2 identity that contains the
user name zathras and a host name ending with an ibm.com® network domain to the local
user identifier zathras. This grants associations for RSCT HBA or HBA2 identities such as
zathras@epsilon3.ibm.com and zathras@newibm.com to the local user identifier zathras.

unix:*@epsilon3.ibm.com=zathras
The * character in this entry matches any RSCT HBA or HBA2 identity from the host
epsilon3.ibm.com and associate that client to the local user zathras. This will grant
associations for RSCT HBA or HBA2 identities such as zathras@epsilon3.ibm.com and
draal@epsilon3.ibm.com to the local user identifier zathras.

unix:*@epsilon3.ibm.com=*
The * characters in this entry matches any RSCT HBA or HBA2 identity from the host
epsilon3.ibm.com and associate that client to the local user whose name matches the user name
from the security network identifier. This will grant associations for RSCT HBA or HBA2 identities such
as zathras@epsilon3.ibm.com to the local user zathras and draal@epsilon3.ibm.com to
the local user identifier draal.

unix:!*@epsilon3.ibm.com
The * characters in this entry matches any RSCT HBA or HBA2 identity from the host
epsilon3.ibm.com and deny any association for that client to any local user. This will deny
associations for RSCT HBA or HBA2 identities such as zathras@epsilon3.ibm.com and
draal@epsilon3.ibm.com, but will not deny associations for the UNIX HBA network identifier
zathras@greatmachine.net.

unix:*@*=*
The * characters in this entry matches any RSCT HBA or HBA2 identity from any host and associate
that client to the local user whose name matches the user name from the security network identifier.
This grants associations for RSCT HBA or HBA2 identities such as zathras@epsilon3.ibm.com to
the local user zathras and entilzah@anglashok.ibm.com to the local user identifier entilzah.

Examples of identity mapping definition entries that are not valid:
*:zathras@epsilon3.ibm.com=zathras

The security mechanism cannot be determined. Each entry must explicitly name a security
mechanism that needs to be applied to interpret the entry.

unix:zathras@epsilon3.ibm.com=z*
The local user identity to use is ambiguous.

unix:zathras@*.ibm.*=zathras
This entry repeats wildcard characters between the token separators @ and =, which makes the entry
ambiguous.

unix:*athra*@epsilon3.ibm.com=zathras
This entry repeats wildcard characters between the token separators : and @, which makes the entry
ambiguous.

unix:*=*
The wildcard character * is ambiguous. It cannot be determined if the wildcard character applies to
the identity name or the identity location.

52 AIX Version 7.1: Files Reference

ctsec_map.local File

Purpose
Associates operating system user identifiers on the local system with network security identifiers for
authorization purposes.

Description
RSCT trusted services use the identity mapping definition files ctsec_map.global and
ctsec_map.local to determine whether an RSCT client application's user should be granted access
to specific RSCT functions and resources. The file is used to associate security network identifiers that
are used by RSCT's cluster security services with user identifiers on the local system. RSCT trusted
services use these files to determine what association, if any, exists for the RSCT client, and then use this
association while examining the RSCT access controls to determine whether the RSCT client should be
granted access.

Two identity mapping definition files can be used:

• The ctsec_map.global file contains associations that are to be recognized on all nodes within the
cluster configuration

• The ctsec_map.local file contains associations that are specific to a particular node

In a cluster configuration, all ctsec_map.global files should be the same. Any local system additions
that are required for that specific system should be made in the ctsec_map.local file.

RSCT provides a default ctsec_map.global file in the /opt/rsct/cfg directory. Do not change this
file. If you need to add more associations for the cluster, copy this file to the /var/ct/cfg directory.
Make any changes to this new file: /var/ct/cfg/ctsec_map.global. Any entries that exist in the
default ctsec_map.global file must exist in the replacement version of the file in the /var/ct/cfg
directory, or the RSCT trusted services may refuse access to other RSCT trusted services peers. RSCT
does not provide a default ctsec_map.local file. The administrator can create this file, which must
reside in the /var/ct/cfg directory as well.

ctsec_map.global and ctsec_map.local are ASCII-formatted files that can be viewed and modified
using a text editor. Each line in the file constitutes an entry. Blank lines and lines that start with a pound
sign (#) are ignored. Each entry is used to either associate a security network identifier with a local
operating system user identifier, or to expressly state that no association is allowed for a security network
identifier.

Ordering of entries within these files is important. Cluster security services parses the
ctsec_map.globaland ctsec_map.local files as follows:

1. If the /var/ct/cfg/ctsec_map.local file exists, cluster security services checks for associations
in this file

2. If the /var/ct/cfg/ctsec_map.global file exists, cluster security services checks for associations
in this file

3. Otherwise, cluster security services checks for associations within the /opt/rsct/cfg/
ctsec_map.global, if this file exists

The first entry that successfully grants or denies an association for a security network identifier in this
search path is the one that cluster security services uses. If entries in both the ctsec_map.globaland
ctsec_map.local files grant differing associations to the same security network identifier, cluster
security services will use the association stated by the entry in the ctsec_map.local file. Also, if two
entries within the ctsec_map.global file grant different associations to the same security network
identifier, cluster security services will use the association granted by the entry listed earlier in the
ctsec_map.global file. You can use the ctsidmck command to verify the association rule that is used
by cluster security services for specific security network identifiers.

Cluster security services recognizes these characters as reserved: <, >, :, =, !, @, *, and considers these,
along with white space characters, as token separators. The wildcard character * is permitted, but should

Files Reference 53

not be used multiple times between other token separator characters. Contents of the identity mapping
definition files use the following Backus-Nour format:

<mapping_entry> ::= <mechanism_mnemonic> ':' <mapping>>

<mechanism_mnemonic> ::= 'unix', 'krb5'

<mapping> ::= <explicit mapping> | <mapping_rule>

<explicit_mapping> ::= <source_mapping> '=' <local_user_identity>
 | '!' <source_mapping>

<source_mapping> ::= <network_identity> | <match_pattern>'*'

<target_mapping> ::= <mapped_identity> | '*'

<network_identity> ::= <user_name>'@'<registry_name>

<user_name> ::= <match_pattern>'*' | '*'

<registry_name> ::= <match_pattern> | '*' | <mpm_defined_reserved_word>

<mpm_defined_reserved_word> ::= '<'<alphanumeric_string>'>'

<mapped_identity> ::= <alphanumeric_string>

<match_pattern> ::= null string | <alphanumeric_string>

<alphanumeric_string> ::= any non-empty array of alphanumeric characters not
 consisting of the reserved token separator characters

An <mpm_defined_reserved_word> is a special instruction to the underlying security mechanism
associated with the security network identifier that instructs the mechanism to interpret the identifier
in a specific manner. The following reserved words are defined:
<iw>

A reserved word for security network identities using the RSCT host-based authentication (HBA)
security mechanism. This keyword maps the HBA root network identity of the local node
to the root user. When the cluster security services identity mapping program processes the
ctsec_map.global file, it replaces the <iw> keyword with the node ID of the node.

<cluster>
A reserved word for security network identities using the HBA security mechanism. The mapping entry
is applied to a security network identifier if the identifier is known to originate from any host within the
cluster that is currently active for the local node.

<any_cluster>
A reserved word for security network identities using the HBA security mechanism. The mapping entry
is applied to a security network identifier if the identifier is known to originate from any host within
any cluster that the local node is currently defined. The local node does not need to be active within
that cluster when the mapping is applied.

<realm>
A reserved word for security network identities using the Kerberos version 5 mechanism. The
mapping entry is applied to a security network identity if the identifier is known to originate within the
Kerberos realm that is currently active. See Restrictions.

Security
• The default identity mapping definition file /opt/rsct/cfg/ctsec_map.global is readable by all

system users, but permissions prevent this file from being modified by any system user.
• When creating the override identity mapping definition files /var/ct/cfg/ctsec_map.global

and /var/ct/cfg/ctsec_map.local, make sure that the files can be read by any system user, but
that they can only be modified by the root user or other restrictive user identity not granted to normal
system users.

• By default, these files reside in locally-mounted file systems. While it is possible to mount
the /var/ct/cfg directory on a networked file system, this practice is discouraged. If
the /var/ct/cfg/ctsec_map.local file were to reside in a networked file system, any node with

54 AIX Version 7.1: Files Reference

access to that networked directory would assume that these definitions were specific to that node alone
when in reality they would be shared.

Restrictions
RSCT does not support the Kerberos version 5 mechanism. Any entries using the mechanism mnemonic
krb5 or the reserved word <realm> will not be applied.

Implementation Specifics
These files are part of the Reliable Scalable Cluster Technology (RSCT) cluster security services. The
default file is shipped as part of the rsct.core.sec fileset for AIX.

Location
/opt/rsct/cfg/ctsec_map.global

Contains the default identity mapping definition file.
/var/ct/cfg/ctsec_map.global

Contains the replacement for the default global identity mapping definition file. Any entries that exist
in the default ctsec_map.global file must be replicated in this file, or necessary access required by
RSCT trusted services clients will be refused. This file contains identity mapping definitions expected
to be recognized by all nodes within the cluster. It is expected that this file will have the same
contents for each node within the cluster.

/var/ct/cfg/ctsec_map.local
Contains additional identity mapping definitions specific to the local node. This file adds identity
mapping definitions to the set recognized for the entire cluster. Entries within this file are applied
before entries from the ctsec_map.global file. It is expected that the contents of this file will vary
from node to node within the cluster, and provide mappings required for clients that access the local
node only.

Example
These reserved characters: <, >, :, =, !, and @, are interpreted as token separators, as are white space
characters.

Examples of valid identity mapping definition entries:
unix:zathras@epsilon3.ibm.com=zathras

This entry grants the association for the RSCT HBA or HBA2 security mechanism identity
zathras@epsilon3.ibm.com to the local user identifier zathras. This entry is not applied to other
RSCT HBA or HBA2 identities.

unix:!zathras@greatmachine.net
This entry denies any local user identity association for the RSCT HBA or HBA2 identity
zathras@greatmachine.net. This entry is not applied to other RSCT HBA or HBA2 identities.

unix:entilzah@cluster=root
The cluster reserved word matches any RSCT HBA or HBA2 identity containing the user
name entilzah that originates from any host within the currently-active cluster. This grants
associations for such RSCT HBA or HBA2 identities as entilzah@anglashok.ibm.com and
entilzah@mimbar.ibm.com to the local user root when the local node is active within the cluster
that also contains the hosts anglashok.ibm.com and mimbar.ibm.com. Associations will not
be granted for such RSCT HBA or HBA2 identities as entilzah@whitestar.ibm.com if the host
whitestar.ibm.com is not part of the cluster that is currently active.

unix:entilzah@any_cluster=root
The cluster reserved word matches any RSCT HBA or HBA2 identity containing the user
name entilzah that originates from any host within the currently-active cluster. This grants
associations for RSCT HBA or HBA2 identities such as entilzah@anglashok.ibm.com and
entilzah@mimbar.ibm.com to the local user root when the local node is active within the cluster

Files Reference 55

that also contains the hosts anglashok.ibm.com and mimbar.ibm.com. Associations will also be
granted for RSCT HBA or HBA2 identities such as entilzah@whitestar.ibm.com to the local user
root if the host whitestar.ibm.com is part of any cluster known to the local host.

unix:zathras@*=zathras
The * character in this entry matches any RSCT HBA or HBA2 identity that contains the user name
zathras from any host to the local user identifier zathras. This grants associations for RSCT HBA or
HBA2 identities such as zathras@epsilon3.ibm.com and zathras@greatmachine.net to the
local user identifier zathras.

unix:zathras@*.ibm.com=zathras
The * character in this entry will match any RSCT HBA or HBA2 identity that contains the
user name zathras and a host name ending with an ibm.com network domain to the local
user identifier zathras. This grants associations for RSCT HBA or HBA2 identities such as
zathras@epsilon3.ibm.com and zathras@newibm.com to the local user identifier zathras.

unix:*@epsilon3.ibm.com=zathras
The * character in this entry matches any RSCT HBA or HBA2 identity from the host
epsilon3.ibm.com and associate that client to the local user zathras. This will grant
associations for RSCT HBA or HBA2 identities such as zathras@epsilon3.ibm.com and
draal@epsilon3.ibm.com to the local user identifier zathras.

unix:*@epsilon3.ibm.com=*
The * characters in this entry matches any RSCT HBA or HBA2 identity from the host
epsilon3.ibm.com and associate that client to the local user whose name matches the user name
from the security network identifier. This will grant associations for RSCT HBA or HBA2 identities such
as zathras@epsilon3.ibm.com to the local user zathras and draal@epsilon3.ibm.com to
the local user identifier draal.

unix:!*@epsilon3.ibm.com
The * characters in this entry matches any RSCT HBA or HBA2 identity from the host
epsilon3.ibm.com and deny any association for that client to any local user. This will deny
associations for RSCT HBA or HBA2 identities such as zathras@epsilon3.ibm.com and
draal@epsilon3.ibm.com, but will not deny associations for the UNIX HBA network identifier
zathras@greatmachine.net.

unix:*@*=*
The * characters in this entry matches any RSCT HBA or HBA2 identity from any host and associate
that client to the local user whose name matches the user name from the security network identifier.
This grants associations for RSCT HBA or HBA2 identities such as zathras@epsilon3.ibm.com to
the local user zathras and entilzah@anglashok.ibm.com to the local user identifier entilzah.

Examples of identity mapping definition entries that are not valid:
*:zathras@epsilon3.ibm.com=zathras

The security mechanism cannot be determined. Each entry must explicitly name a security
mechanism that needs to be applied to interpret the entry.

unix:zathras@epsilon3.ibm.com=z*
The local user identity to use is ambiguous.

unix:zathras@*.ibm.*=zathras
This entry repeats wildcard characters between the token separators @ and =, which makes the entry
ambiguous.

unix:*athra*@epsilon3.ibm.com=zathras
This entry repeats wildcard characters between the token separators : and @, which makes the entry
ambiguous.

unix:*=*
The wildcard character * is ambiguous. It cannot be determined if the wildcard character applies to
the identity name or the identity location.

56 AIX Version 7.1: Files Reference

Data (D.*) Files for BNU

Purpose
Contain data to be sent to remote systems.

Description
Data (D.*) files contain the data to be sent to remote systems by the Basic Networking Utilities (BNU)
uucico daemon. The full path name of a data file is a form of the following:

/var/spool/uucp/SystemName/D.SystemNamexxxx###

where the SystemName directory and the SystemName portion of the file name indicate the name of the
remote system. The xxxx### notation is the hexadecimal sequence number of the command (C.*) file
associated with that data file, for example: D.venus471afd8.

After a set period of time (specified by the uusched daemon), the uucico daemon transfers the data file
to the designated system. It places the original data file in a subdirectory of the BNU spooling directory
named /var/spool/uucp/SystemName, where the SystemName directory is named for the computer that
is transmitting the file, and creates a temporary (TM.*) file to hold the original data file.

After receiving the entire file, the BNU program takes one of the three following actions:

• If the file was sent with the uucp command and there were no transfer problems, the program
immediately renames the TM.* file with the appropriate data file name, such as D.venus471afd8,
and sends it to the specified destination.

• If the file was sent with the uuto command, the BNU program also renames the temporary data file
with the appropriate D.* file name. The program then places the data file in the /var/spool/uucppublic
public directory, where the user receives the data file and handles it with one of the uupick command
options.

• If there were transfer problems (such as a failed login or an unavailable device), the temporary data
file remains in the spooling subdirectory. The uudemon.cleanu command, a shell procedure, removes
these files automatically at specified intervals. They can also be removed manually.

Files

Item Description

/etc/uucp/Systems Describes accessible remote systems.

/var/spool/uucp/SystemName directory Contains BNU command, data, and
execute files.

/var/spool/uucp/SystemName/C.* Contains instructions for file transfers.

/var/spool/uucp/SystemName/TM.* Stores data files temporarily after they
have been transferred to a remote
system.

/var/spool/uucppublic/* directory Contains files that the BNU program has
transferred.

Related information
uucp command
uupick command
uuto command
uux command
BNU File and Directory Structure

Files Reference 57

/dev/hty File

Purpose
Defines the Network Terminal Accelerator adapter tty interface.

Description
The /dev/hty* device files define, for the host computer, the interface-to-host adapter communication
channels. For each I/O device connected to the host computer through a host adapter, there must be
a /dev/hty* device file created to allow communication between the host computer and the I/O device.

To allow for future expansion, there may be more /dev/hty* files than actual physical devices connected
through the host adapter.

The hty ports are functionally equivalent to /dev/tty* device files. The minor number corresponds to the
channel number, as defined in the hty_config file.

Files

Item Description

/dev/hty Specifies the path to the file.

/dev/rhp* Adapter raw device.

Related reference
/dev/rhp File

/dev/rhp File

Purpose
Defines the Network Terminal Accelerator adapter raw interface.

Description
The /dev/rhp* device files define, for the host computer, the interface to the host adapters. For each host
adapter installed in the host computer, there must be a /dev/rhp* device file created in order to allow
communication between the host computer and the host adapter board.

The /dev/rhp* device file corresponding to a respective host adapter is used as an argument in many of
the utility programs.

Files

Item Description

/dev/rhp Specifies the path to the file

/dev/hty Defines the Network Terminal Accelerator adapter tty interface.

Related reference
/dev/hty File

58 AIX Version 7.1: Files Reference

DHCP Client Configuration File

Purpose
Default configuration information for the Dynamic Host Configuration Protocol (DHCP) client program
(dhcpcd).

Description
The dhcpcd configuration file contains entries for logging information, requested options, interfaces to
configure, and other items.

Following are the formats for the data in the configuration file.

Comment line
The # character means that there is a comment from that point to the end of the line.

numLogFiles n
Specifies the number of log files. If 0 is specified, no log file will be maintained and no log message is
displayed anywhere. n is the maximum number of log files maintained as the size of the most recent
log file reaches its maximum size and a new log file is created.

logFileSize n
Maximum size of a log file. When the size of the most recent log file reaches this value, it is renamed
and a new log file is created. n is measured in kilobytes(KB).

logFileName filename
Name and path of the most recent log file. Less recent log files have the number 1 to (n - 1) appended
to their names; the larger the number, the older the file.

logItem <option name>
One item that will be logged. Multiple of these lines are allowed. This allows for the specified logging
level to be turned on. The following are option names:
SYSERR

System error, at the interface to the platform
OBJERR

Object error, in between objects in the process
PROTERR

Protocol error, between client and server
WARNING

Warning, worth attention from the user
EVENT

Event occurred to the process
ACTION

Action taken by the process
INFO

Information that might be useful
ACNTING

Who was served, and when
TRACE

Code flow, for debugging.
interface <ifName>

The interface to configure DHCP on. This may be the interface that is to be configured. Multiples of
these are allowed. There is a special entry, any. This tells the DHCP client to configure the first one
it finds and completes successfully. If the any option is used, there should not be any other interface
specified. The interface statement may be immediately followed by a pair of curly braces, in which the

Files Reference 59

options requested for this interface can be specified. Options requested within interface curly braces
apply only to this interface. See DHCP Server Configuration File for a list of options and formats.

clientid <MAC | HOSTNAME>
Specifies the client id to use in all communication with the server. MAC denotes that the hardware
address for the particular interface should be used as the client id. HOSTNAME denotes that the
domain host name should be used as the client id. The default is MAC.

sniffer <exec string>
Specifies a string enclosed in quotes, indicating a program to execute to detect hardware failure/
recovery for an interface. The dhcp client will look for signal 23(SIGIO) to indicate that the network
interface is up and signal 16(SIGURG) to indicate that the network interface is down.

option <code> [<value>] [exec <string>]
Specifies an option requested by this client. Its scope is determined by whether it is inside a set of
curly braces for a particular interface, or if it is outside all curly braces. If outside, it applies to all
interfaces. code is the option code of the option requested. value is the requested value for that
option. This value is passed to the server with the option. The value is not required. The keyword exec
denotes a string following which should be executed if this option is returned by the server. This string
is expected to be an executable shell script or program. An "%s" may be included in the string. If
present, the value returned by the server will be provided in ascii.

vendor
Specifies the special syntax for the specification of the vendor extensions field. It is followed by a set
of curly braces. Inside the curly braces, the options and values for the vendor extensions field are
specified. The exec string on an option inside the vendor extensions options is not valid. It is ignored.

reject <code>
Specifies that if this option code is returned by the server, this option should be ignored by the client.
Its value should not be used.

otherOptions <accept | reject>
Specifies how all other options should be handled by the client. This refers to any options not
specifically requested with an "option" statement or rejected with a "reject" statement. The default is
that all options are accepted.

updateDNS <string>
A string enclosed in quotes, indicating a program to execute to update the DNS server with the new
inverse mapping for the IP address and names served by dhcp. This string should include four %s's to
indicate the placement of the following information from the dhcp client:
hostname

Value of option 12. The value returned by the dhcp server is used, if one is supplied. Else, if the
client specified a value in this file, the client-requested value is used. If neither the client specified
a requested hostname nor the server supplied one, this exec string will not be executed.

domainname
Value of option 15. The value returned by the dhcp server is used, if one is supplied. Else, if the
client specified a value in this file, the client-requested value is used. If neither the client specified
a requested hostname nor the server supplied one, a null string (" ") will be supplied by dhcp.
Therefore, this value is optional.

Ip Address
IP address leased to this client by the server. The string is supplied in dotted notation, for
example, 9.2.23.43.

leasetime
Lease time granted by the server. This string is a decimal number representing the number of
seconds of the lease.

These values are output by dhcp in this order:

hostname domainname Ip Address leasetime

A script /usr/sbin/dhcpaction has been provided with this function, as well as actions to help NIM
interact with DHCP clients. Run the script as follows:

60 AIX Version 7.1: Files Reference

/usr/sbin/dhcpaction hostname domainname ipaddress
leasetime < A | PTR | BOTH | NONE > NONIM

The first four parameters are what will be used to update the DNS server. The fifth parameter tells
dhcpaction to update the A record, the PTR record, or both, or none. The options are A, PTR, BOTH,
NONE. The sixth parameter is used to tell servers that NIM is being used, and processing needs to be
done when a client changes address. The options for this are NIM and NONIM. On clients, this must
be set to NONIM.

An example follows:

updateDNS "/usr/sbin/dhcpaction %s %s %s %s %s PTR
NONIM 2>&1 >>/tmp/updns.out"

initTimeout <timeout>
Specifies the timeout value in minutes. If the dhcp client fails to configure an address for an interface
within this timeout value, it stops making further attempts. This entry applies to systems running the
AIX operating system.

This file is part of TCP/IP in Network Support Facilities in Base Operating System (BOS) Runtime.

Example
This example tells the dhcpcd daemon to use log files of a maximum of 100Kb in size and at most four of
them.

The base name for the log files is /usr/tmp/dhcpsd.log. The user also would like to only log four of
the nine possible log entry types. The user also specified a string to use for updating the Dynamic
Domain Name Server. The user also specified that the clientid to the server should be based on the
mac-address of the interface adapter that is trying to be configured. The user also specified that all
options should be accepted and instantiated (otheroptions accept), except for option 9 (reject 9).

The options the user specified were the domain (option 15), but since this option is global to the interface
keywords, it applies to both interfaces.

Inside each interface, the hostname is specified with option 12.

numLogFiles 4
logFileSize 100
logFileName /usr/tmp/dhcpsd.log
logItem SYSERR
logItem OBJERR
logItem PROTERR
logItem TRACE

updateDNS "nsupdate -h%s -d%s -i% %s"

clientid MAC
otheroptions accept
reject 9

option 15 "austin.ibm.com"

interface en0
{
 option 12 "e-chisos"
}

interface tr0
{
 option 12 "t-chisos"
}

Related reference
DHCP Server Configuration File

Files Reference 61

Related information
dhcpcd command
TCP/IP address and parameter Assignment - Dynamic Host Configuration Protocol
TCP/IP problems with Dynamic Host Configuration Protocol

DHCP Server Configuration File

Purpose
Defines default configuration information for the Dynamic Host Configuration Protocol (DHCP) server
program (dhcpsd).

Description
The dhcpsd configuration file contains entries for logging information, options to return, machines to
configure, and other items.

Following are the formats for the data in the configuration file.

Comment line
The # character means that there is a comment from that point to the end of the line.

"Name of Resource" "<Keyword> <value> <value> ..."
The ## characters denote a named resource. This is used by the dhcpsconf program to allow the
user to create specific resources. The data is stored in the server file so that it can be read in with the
configuration file and displayed as the name and not the value in the viewing window of dhcpsconf.

The format of the ## line is a quoted string that is the name of the resource followed by a double-
quoted string representing a valid possible line for a configuration file. The second quoted string
should be syntactically correct for a line in a DHCP server configuration file. The keyword can only be
option, network, subnet, class, and client.

"DHCP Server" "Any line from a server file"
The ### characters denote a server configuration file. This allows for multiple server files to be saved
in one file. The dhcpsconf program uses this to present multiple server datasets in a master. This
would be useful, if you were to define a network with 10 servers and wanted to save all the server
information in one file and maintain a default server. The default server would go into the master file,
and the servers would be saved in the master file with the ### characters. The dhcpsconf program
has a function that allows you to create a specific server configuration out of the master file.

numLogFiles n
Specifies the number of log files. If 0 is specified, no log file will be maintained and no log message is
displayed anywhere. n is the maximum number of log files maintained as the size of the most recent
log file reaches its maximum size and a new log file is created.

logFileSize n
Maximum size of a log file. When the size of the most recent log file reaches this value, it is renamed
and a new log file is created. n is measured in kilobytes(KB).

logFileName filename
Name and path of the most recent log file. Less recent log files have the number 1 to (n - 1) appended
to their names; the larger the number, the older the file.

logItem <option name>
One item that will be logged. Multiple of these lines are allowed. This allows for the specified logging
level to be turned on. The following are option names:
SYSERR

System error, at the interface to the platform
OBJERR

Object error, in between objects in the process

62 AIX Version 7.1: Files Reference

PROTERR
Protocol error, between client and server

WARNING
Warning, worth attention from the user

EVENT
Event occurred to the process

ACTION
Action taken by the process

INFO
Information that might be useful

ACNTING
Who was served, and when

TRACE
Code flow, for debugging.

clientrecorddb <filename>
This is the path to a file to substitute for /etc/dhcps.cr. Configurations that support a large number
of addresses should set clientrecorddb and addressrecorddb database files in a file system with
substantial free space.

addressrecorddb <filename>
This is the path to a file to substitute for /etc/dhcps.ar.

network <Network address> [<Subnet Mask>|<range>]
Specifies one network administered by this server. Network address is the address of this network.
This address is specified in the dotted notation (for example, 9.0.0.0, 128.81.0.0, or 192.81.20.0).
Full four-byte value should be specified (for example, 9, 128.81, or 192.81.20 is not legal).

Network address may optionally be followed by the subnet mask, a range, or nothing.

If a subnet mask is specified, one or more subnet statements should appear in the succeeding lines
within a pair of curly braces. The subnet mask may be specified either in the dotted notation (for
example, 255.255.255.128) or as a number indicating the number of 1 bits in the mask (for example,
25, which is equivalent to 255.255.255.128). The means that a network is not a collection of all
subnet for a network, but all subnets with the same length subnet for that network "prefix."

If a range is specified, it determines, within the network, the range of hosts that are administered by
this server, and it implies that there is no subnetting. A range is specified by the host addresses, in the
dotted notation, at the lower end and the higher end of the range, respectively, separated by a hyphen
with no spaces before or after it (for example, 192.81.20.1-129.81.20.128). A range must encompass
all addresses to be administered because multiple network statements to define the same network
are not allowed. Use the "client" statement to exclude any addresses in the range that the server
should not administer.

If nothing is specified after Network address, all hosts in that network are administered by this server.

A network statement may be immediately followed by a pair of curly braces, in which parameters (for
example, options) particular to this network can be specified.

subnet <Subnet address> [<range>]
One or more subnet statements are enclosed by a pair of curly braces that immediately follows a
network statement with subnet mask. A subnet statement specifies one subnet within that network.

Subnet address is the address of this subnet. This address is specified in the dotted notation (for
example, 9.17.32.0 or 128.81.22.0).

Subnet address may be followed by a range or nothing.

If a range is specified, it determines, within the subnet, the range of hosts that are administered by
this server. A range is specified by the host addresses, in the dotted notation, at the lower end and
the higher end of the range, respectively, separated by a hyphen with no spaces before or after it. A
range must encompass all addresses to be administered since multiple subnet statements to define

Files Reference 63

the same subnet are not allowed. Use the "client" statement to exclude any addresses in the range
which the server should not administer.

If nothing is specified after Subnet address, all hosts in that subnet are administered by this server.

The ranges in two servers administering the same subnet cannot overlap. Otherwise, two hosts may
be assigned the same address.

A subnet statement may be immediately followed by a pair of curly braces, in which parameters (for
example, options) particular to this subnet can be specified.

class <class_name> [<range>]
Specifies a class. The class name is a simple ascii string. A class's scope is determined by the curly
braces in which it is enclosed. If it is outside all curly braces, then its scope is the entire file.

A class name may be followed by a range or nothing. If a range of Ip Addresses is specified, then
only addresses in that range will be assigned to clients who request this class. Note that clients
who request this class, for which the subnet does not match the range, will not be processed. Bad
addresses will not be given out by the server. If an address range is not specified, then addresses will
be given to clients using the usual rules of assignment (by network clauses).

The class statement may be immediately followed by a pair of curly braces, in which the options
particular to this class can be specified. A class may be defined within the curly braces of a subnet,
but a subnet may not be defined within the curly braces of a class.

Options set up in the network or subnet containing a class definition will also apply to the class.

client <id_type> <id_value> <address>
Specifies a definition of client/address processing.

<id_type> is 0 for a string, otherwise it is one of the hardware types defined in RFC 1340 (for
example, 6 for IEEE 802 networks.)

<id_value> is a character string for <id_type>=0. Typically, this would be a domain name. For a
non-zero <id_type>, the <id_value> is a hexadecimal string representing the hardware address of
the client.

Note: An <id_type> of 0 and an <id_value> of 0 indicates that the <address> specified should
not be distributed by this server.

The <address> can be the string "none" to indicate that the client with <id_type> and
<id_value> should not be serviced by this server. The <address> can be the string "any" to
indicate that the server should choose an appropriate address for this client. The <address> can be
an internet address in dotted notation (for example, 9.2.15.82). This will be the Ip address given to
the particular client specified by <id_type> and <id_value>. As mentioned above, an <id_type>
of 0 and an <id_value> of 0 indicates that the <address> specified should not be distributed by
this server.

Note: If a client is configured in this way on the server, then any class information requested by the
client will be ignored. No class-specific information will be processed for these clients.

The client statement may be immediately followed by a pair of curly braces, in which the options
particular to this client can be specified.

A client statement with an address specified that is not part of the address pool specified in a
network/subnet elsewhere in this file must contain the subnet mask option(1). For all other clients,
the server will compute the subnet mask option to send the client based on the network/subnet
definitions.

Note: All clients inherit all globally defined options. A client defined in a network scope will inherit
options defined for that network. A client defined in a subnet scope, will inherit options defined for
that subnet and encompassing network.

A class definition inside a client scope is not allowed.

64 AIX Version 7.1: Files Reference

The client statement may be used to configure bootp clients. To do this, specify all the bootp options
using the option syntax defined below. In addition, specify an infinite lease time in the client scope
with "option 51 0xffffffff". DHCP options will not be served to the bootp client.

nakoutofrange <option>

Specifies the behavior of the DHCP server when a client requests an IP address that this server does
not administer.

When a DHCP client moves from one DHCP domain to a new DHCP domain, the client requests its
previous IP address from the new DHCP server. By default, the DHCP server ignores such requests
without sending a refusal (DHCP NAK). The nakoutofrange policy in the AIX DHCP server enables the
DHCP administrator to force the server to send refusals to clients in such situations, and to force the
clients to request new addresses and configurations.

You can place the nakoutofrange option either inside a subnet scope or in the global scope. Each
option and its placement have specific implications to the behavior of the DHCP server. The following
options are available:

none
This is the default setting when the nakoutofrange keyword is not present. A DHCP server sends a
DHCP NAK response when a client asks for an address that the server controls and that the client
cannot use. For example, a client requests an address that another client is using.

Note: To use a policy other than none in the global area, you must understand the network
topology and ensure that clients of the DHCP server can reach the DHCP server from any network
access point.

insubnet
If a client requests an address that matches the subnet from which the client is broadcasting, but
the address does not fall within the controlled IP address ranges of that subnet, the DHCP server
sends a DHCP NAK response to the client.

Note: Do not use this option when multiple DHCP servers are controlling separate IP address
ranges on the same subnet, unless every access point to the subnet can only reach one of the
DHCP servers.

notinsubnet
The DHCP server sends a DHCP NAK response to a client that is requesting an address that does
not match the subnet from which the client is broadcasting. When this option is placed outside
the subnet scope, the DHCP NAK response is sent when the client's broadcast is received from a
subnet that is not controlled by the server.

Note: When this option is placed inside the subnet scope, it should be used when there are no
other logical subnets on the client's network segment that are administered through any DHCP
server.

both
The DHCP server sends a DHCP NAK response to a client that is requesting an address that
the server cannot assign to the client. Placing this option inside a subnet scope combines the
implications of placing the notinsubnet option and the insubnet option inside the subnet scope.
Place this option inside a subnet scope when the configured DHCP server is the only DHCP server
capable of assigning an address to a client broadcasting from any of the network access points
on the subnet. This option should be placed globally only when the configured DHCP server is the
only reachable DHCP server from any of the network access points.

The following is an example of the nakoutofrange option:

nakoutofrange none
 subnet 192.1.1.0 255.255.255.0 192.1.1.5-192.1.1.254
 {
 nakoutofrange both
 # ... options ...
 }
 subnet 12.1.10.0 255.255.255.0 12.1.10.5-12.1.10.150
 {

Files Reference 65

 # another server controls addresses 12.1.10.151-12.1.10.254
 nakoutofrange notinsubnet
 # ... options ...
 }

Note: A typical configuration is to use the both option inside all subnet scopes and to leave the default
none option enforced in the global scope.

option <code> <value>
This parameter specifies the value of an option defined in "DHCP Options and BOOTP Vendor
Extensions" (RFC 1533) and supported by this server.

An option is specified by the "option" keyword followed by the option code of this option and its data
field, in a single line. One or more of this parameter may be specified.

The scope within which an option applies is delimited by a pair of curly braces ({, }) surrounding this
parameter.

Two or more options with the same option code may be specified. Their data fields are concatenated
in a single option in a packet generated by the server if the options have the same scope or one's
scope includes that of another.

Some of the defined options do not need to be specified by this parameter. These options are either
mandated by the protocol or this implementation to be present in proper packets, or only generated
by a client. These options are:

Option Code Name

0 Pad Option

255 End Option

1 Subnet Mask

50 Request IP Address

51 IP Address Lease Time

52 Option Overload

53 DHCP Message Type

54 Server Identifier

55 Parameter Request List

57 Maximum DHCP Message Size

58 Renewal (T1) Time Value

59 Rebinding (T2) Time Value

60 Class identifier of client

61 Client identifier

The other options may be specified by this parameter.

When specifying an option, its data field takes one of the following formats:

IP Address
xxx.xxx.xxx.xxx

IP Addresses
[xxx.xxx.xxx.xxx ...]

IP Address Pair
[ip address:ip address]

66 AIX Version 7.1: Files Reference

IP Address Pairs
[[ip address:ip address] ...]

Boolean
[0, 1]

Byte
[-128, 127]

Unsigned Byte
[0, 255]

Unsigned Bytes
[[0, 255] [0, 255] ...]

Short
[-32768, 32767]

Unsigned Short
[0, 65535]

Unsigned Shorts
[[0, 65535] [0, 65536]

Long
[-2147483648, 2147483647]

Unsigned Long
[0, 4294967295]

String
"Value Here"

Note: All IP addresses are specified in dotted-decimal form.

Each of the defined options is listed below by its code and name, followed by the format of its data
field. These are specified in latest Vendor Extensions RFC.

Cod
e

Name Data Field Format and Notes

0 Pad Option No need to specify

255 End Option No need to specify

1 Subnet Mask Unsigned Long

2 Time Offset Long

3 Router Option IP Addresses

4 Timer Server Option IP Addresses

5 Name Server Option IP Addresses

6 Domain Name Server Option IP Addresses

7 Log Server Option IP Addresses

8 Cookie Server Option IP Addresses

9 LPR Server Option IP Addresses

10 Impress Server Option IP Addresses

11 Resource Location Server Option IP Addresses

12 Host Name Option String

13 Boot File Size Option Unsigned Short

14 Merit Dump File String

Files Reference 67

Cod
e

Name Data Field Format and Notes

15 Domain Name String

16 Swap Server IP Address

17 Root Path String

18 Extensions Path String

IP Layer Parameters per Host

Code Name Data Field Format and Notes

19 IP Forwarding Enable/Disable
Option

Boolean

20 Non-local Source Routing
Enable/Disable Option

Boolean

21 Policy Filter Option IP Address Pairs

22 Maximum Datagram Reassembly
Size

Unsigned Short

23 Default IP Time-to-live Unsigned Byte

24 Path MTU Aging Timeout Option Unsigned Long

25 Path MTU Plateau Table Unsigned Shorts

IP Layer Parameters per Interface

Cod
e

Name Data Field Format and Notes

26 Interface MTU Option Unsigned Short

27 All Subnets are Local Option Boolean

28 Broadcast Address Option IP Address

29 Perform Mask Discovery Option Boolean

30 Mask Supplier Option Boolean

31 Perform Router Discovery Option Boolean

32 Router Solicitation Address Option IP Address

33 Static Route Option IP Address Pairs

Link Layer Parameters per Interface

Code Name Data Field Format and Notes

34 Trailer Encapsulation Option Boolean

35 ARP Cache Timeout Option Unsigned Long

36 Ethernet Encapsulation Option Boolean

TCP Parameters

68 AIX Version 7.1: Files Reference

Code Name Data Field Format and Notes

37 TCP Default TTL Option Unsigned Byte

38 TCP Keepalive Interval Option Unsigned Long

39 TCP Keepalive Garbage Option Boolean

Application and Service Parameters

Code Name Data Field Format and Notes

40 NIS Domain Option String

41 NIS Option IP Addresses

42 Network Time Protocol Servers
Option

IP Addresses

43 Vendor Specific Information Unsigned Bytes

44 NetBIOS over TCP/IP Name
Server Option

IP Addresses

45 NetBIOS over TCP/IP Datagram
Distribution Server

IP Addresses

46 NetBIOS over TCP/IP Node Type
Option

Unsigned Byte

47 NetBIOS over TCP/IP Scope
Option

Unsigned Bytes

48 X Window System Font Server
Option

IP Addresses

49 X Window System Display
Manager Option

IP Addresses

DHCP Extensions

Code Name Data Field Format and Notes

50 Request IP Address No need to specify

51 IP Address Lease Time Unsigned Long

52 Option Overload No need to specify

53 DHCP Message Type No need to specify

54 Server Identifier No need to specify

55 Parameter Request List No need to specify

56 Message String

57 Maximum DHCP Message Size No need to specify

58 Renewal (T1) Time Value No need to specify

59 Rebinding (T2) Time Value No need to specify

60 Class Identifier of Client Generated by client

61 Client Identifier Generated by client

BOOTP Specific Options

Files Reference 69

Code Name Data Field Format and Notes

sa Server Address for the BOOTP
client to use

IP Address

bf Bootfile for the BOOTP client to
use

String

hd Home Directory for the BOOTP
client to search for the bootfile

String

Following is an example of BOOTP specific options:

option sa 1.1.2.2
option hd "/vikings/native"
option bf "bootfile.asdg"

Other option numbers may be specified, up to a maximum of 255. The options not listed above must be
specified with the unsigned byte list type. Following is an example:

option 178 01 34 53 # Means place tag 178 with value
0x013553

leaseTimeDefault <amount>[<unit>]
Specifies the default lease duration for the leases issued by this server. In the absence of any more
specific lease duration (for example, lease duration for specific client(s) or class of clients), the lease
duration specified by this parameter takes effect.

The amount is specified by a decimal number. The unit is one of the following (plural is accepted):

• year
• month
• week
• day
• hour
• minute (default if unit is absent)
• second

There is at least one white space in between the amount and unit. Only the first amount following the
keyword has effect.

If this parameter is not specified, the default lease duration is one (1) hour.

This parameter should appear outside of any pair of curly braces, for example, it applies to all leases
issued by this server.

Note: This keyword only applies to the default for all addresses. To specify a specific lease time
for a subnet, network, class or client, use the usual "option 51 value" to specify that lease time (in
seconds).

leaseExpireInterval <amount> [<unit>]
Specifies the time interval at which the lease expiration condition is examined, and if a running lease
meets such condition, it is expired. The value of this parameter applies to all leases administered by
this server.

The amount is specified by a decimal number. The unit is one of the following (plural is accepted):

• year
• month
• week
• day

70 AIX Version 7.1: Files Reference

• hour
• minute (default if unit is absent)
• second

There is at least one white space in between the amount and unit. Only the first amount following the
keyword has effect.

If this parameter is not specified, the default interval is one (1) minute.

This parameter should appear outside of any pair of curly braces, for example it applies to all leases
issued by this server.

The value of this parameter should be in proportion with that of parameter leaseTimeDefault so
that the expirations of leases are recognized in time.

supportBOOTP [yes | no]
Indicates to the server whether or not to support requests from BOOTP clients.

If yes is specified, the server will support BOOTP clients.

If the value field is not a yes, or the keyword is omitted, the server will not support BOOTP clients.

The scope of this parameter covers all the networks and subnets administered by this server.

If the server previously supported BOOTP clients and has been reconfigured not to support BOOTP
clients, the address binding for a BOOTP client established before the reconfiguration, if any, will still
be maintained until the time when that BOOTP client sends a request again (when it is rebooting.) At
that time, the server will not respond, and the binding will be removed.

supportunlistedClients [yes | no]
Indicates to the server whether or not to support requests from clients that are not specifically
configured with their own individual client statements in the server.

If yes is specified, the server will support unlisted clients.

If the value field is anything other than yes, the server will not support unlisted clients.

If this keyword is not found in the file, the server will support clients not specifically configured with a
client statement.

updateDNS <string>
A string enclosed in quotes, indicating a program to execute to update the DNS server with the new
inverse mapping for the IP address and names served by dhcp. This string should include four %s's to
indicate the placement of the following information from the dhcp client:
hostname

Value of option 12. The value returned by the dhcp server is used, if one is supplied. Else, if the
client specified a value in this file, the client-requested value is used. If neither the client specified
a requested hostname nor the server supplied one, this exec string will not be executed.

domainname
Value of option 15. The value returned by the dhcp server is used, if one is supplied. Else, if the
client specified a value in this file, the client-requested value is used. If neither the client specified
a requested hostname nor the server supplied one, a null string (" ") is supplied by dhcp. This may
cause the update of address records to fail.

Ip Address
IP address leased to this client by the server. The string is supplied in dotted notation, for
example, 9.2.23.43.

leasetime
Lease time granted by the server. This string is a decimal number representing the number of
seconds of the lease.

These values are output by dhcp in this order:

hostname domainname Ip Address leasetime

Files Reference 71

A script /usr/sbin/dhcpaction has been provided with this function, as well as actions to help NIM
interact with DHCP clients. Run the script as follows:

/usr/sbin/dhcpaction hostname domainname ipaddress
leasetime < A | PTR | BOTH | NONE > < NONIM | NIM >

The first four parameters are what will be used to update the DNS server. The fifth parameter tells
dhcpaction to update the A record, the PTR record, or both, or none. The options are A, PTR, BOTH,
NONE. The sixth parameter is used to tell servers that NIM is being used, and processing needs to be
done when a client changes address. The options for this are NIM and NONIM.

An example follows:

updateDNS "/usr/sbin/dhcpaction %s %s %s %s %s PTR
NONIM 2>&1 >>/tmp/updns.out"

Examples
1. In this example, we are setting up a server with a default lease time of 30 minutes. This means that

any address that doesn't explicitly have a lease time set in a network, class, client, or subnet scope,
will get 30 minutes. We are also setting the time between server address expiration checks to 3
minutes. This means that every 3 minutes, the server will check to see if an address has expired and
mark it as expired. We are also saying the server should accept BOOTP requests and accept any client
that matches the normal address assignment scheme. The normal address assignment scheme means
that an address and options are assigned based on the network/subnet that the client is on.

We are also setting up two global options that should apply to all clients we serve. We are saying that
there is a printer at 10.11.12.13 for everyone to use and the global domain name is dreampark. We
are defining one network that has subnetting on the first 24 bits.

Thus, the network we are defining has some number of subnets and all the subnets we are specifying
in this network scope have netmask of 255.255.255.0. Under that network, we are defining some
options for that network and some subnets. The subnets define the actual addresses available for
distribution. There are two subnets. Inside the second subnet, there is a class. The class information
only applies to hosts on the second subnet that request that class. If that class is asked for the host,
it will get two netbios options. If the address is in the first subnet, it will get the options in the subnet
clause, which are nothing. If the host is in the second subnet, it will get all the options in the clause for
the second subnet. If it also has the class, it will get the class options. If options are repeated with the
same scope or a sub-scope, these options are concatenated together and set as one option. All hosts
given an address from one of the two subnets will receive the options that are in the network scope.

leaseTimeDefault 30 minutes
leaseExpireInterval 3 minutes
supportBOOTP yes
supportUnlistedClients yes

option 9 10.11.12.13 # printer for all
option 15 dreampark # domain
name

network 9.0.0.0 24
{
 subnet 9.2.218.0 9.2.218.1-9.2.218.128
 subnet 9.67.112.0 9.67.112.1-9.67.112.64
 {
 option 28 9.67.112.127 # broadcast address
 option 9 9.67.112.1 # printer 1
 option 9 9.67.112.2 # printer 2
 option 15 sandbox. # domain name
 class netbios_host
 {
 #Netbi ov tcp/ip name server
 option 44 9.67.112.125
 Netbi over tcp/ip node type
 option 46 2
 }
 }

72 AIX Version 7.1: Files Reference

 option 15 toyland # domain name
 option 9 9.68.111.128 # printer 3
 option 33 1.2.3.4:9.8.7.1 # route to the moon
 option 33 5.6.7.8:9.8.7.2 # route to the mars
 # routes to black holes
 option 3 11.22.33.44 55.66.77.88
}

2. In this example, we see the output of the dhcpsconf command. This format is more used by the
dhcpsconf GUI to store information. This format allows for multiple configurations. The dhcpsconf
GUI can in turn generate the specific server files for an individual server. The file specifies two of DHCP
Servers, Greg and Fred. Each contain the definitions for the two servers. The dhcpsconf command
can generate files specifically for Greg or Fred. The dhcpsconf command will also use the named
resources (## sections) to display network pieces that have been named by the administrator.

The DHCP server Greg is responsible for network 9.3.145.0, subnet mask 255.255.255.192. The
DHCP server Fred is responsible for network 9.3.146.128, subnet mask 255.255.255.240. Each
server provides its own domain name. Other options named and unnamed may be placed in the
server's configuration section.

Note: This format is used by dhcpsconf, which generateS the appropriate configuration files for DHCP
servers Greg and Fred.

Named resources Section
"Network 1 Subnet Netmask" "option 1 255.255.255.192"
"Network 2 Subnet Netmask" "option 1 255.255.255.240"
"Network 1 Domain Name" "option 15 "bizarro.austin.ibm.com""
"Network 2 Domain Name" "option 15 "superman.austin.ibm.com""
"Network 1 Network" "network 9.3.145.0 26"
"Network 2 Network" "network 9.3.146.128 27"

"DHCP Server Greg" "logItem SYSERR"
"DHCP Server Greg" "numlogfiles 6"
"DHCP Server Greg" "logfilesize 100"
"DHCP Server Greg" "logfilename /usr/tmp/dhcpgreg.log"
"DHCP Server Greg" "network 9.3.145.0 26"
"DHCP Server Greg" "{"
"DHCP Server Greg" "option 15 "bizarro.austin.ibm.com""
"DHCP Server Greg" "}"
"DHCP Server Fred" "logItem SYSERR"
"DHCP Server Fred" "logItem OBJERR"
"DHCP Server Fred" "numlogfiles 3"
"DHCP Server Fred" "logfilesize 50"
"DHCP Server Fred" "logfilename /usr/tmp/dhcpfred.log"
"DHCP Server Fred" "network 9.3.146.128 27"
"DHCP Server Fred" "{"
"DHCP Server Fred" "option 15 "superman.austin.ibm.com""
"DHCP Server Fred" "}"

Related reference
DHCP Client Configuration File
Related information
dhcpsd command
TCP/IP Address and Parameter Assignment - Dynamic Host Configuration Protocol

depend File

Purpose
Describes the format of a software dependencies file.

Description
The depend file is an ASCII file used to specify information concerning software dependencies for a
particular package. The file is created by a software developer.

Files Reference 73

Each entry in the depend file describes a single software package. The instance of the package is
described after the entry line by giving the package architecture and/or version. The format of each entry
and subsequent instance definition is:

 type pkg name

The fields are:

Entry Definition

type Defines the dependency type. This must be one of the following:
P

Indicates a prerequisite for installation, for example, the referenced package or versions must
be installed.

I
Implies that the existence of the indicated package or version is incompatible. See also the X
tag.

X
Implies that the existence of the indicated package or version is incompatible. This tag should
be used instead of the I tag.

R
Indicates a reverse dependency. Instead of defining the packages own dependencies, this
designates that another package depends on this one. This type should be used only when
an old package does not have a depend file but it relies on the newer package nonetheless.
Therefore, the present package should not be removed if the designated old package is still
on the system since, if it is removed, the old package will no longer work.

S
Indicates a superseding dependency. It should be used when an earlier package has been
superseded by the current package.

pkg Indicates the package abbreviation.

nam
e

Specifies the full package name.

Dependency checks may be disabled using the admin file.

Examples
Shown below is an example of a depend file (for the NFS package):

 P base Base System
 P nsu Networking Support Utilities
 P inet Internet Utilities
 P rpc Remote Procedure Call Utilities
 P dfs Distributed File System Utilities

Related reference
compver File
admin File

devexports File

Purpose
Lists all devices that can be exported into workload partitions, and lists the devices that are exported by
default.

74 AIX Version 7.1: Files Reference

Description
A devexports file is a stanza file containing a list of global devices that can be legally exported to
workload partitions (WPAR). Devices are specified by name, which can contain shell-style wildcards.
devexports stanzas have the following format:

name:
 value = "{/dev/devname}"
 auto = "{yes|no}"

The stanza header is always name. The value attribute contains the full path to the device (for
example, /dev/null) or a shell-style pattern representing multiple devices (for example, /dev/
*random). The existence of the stanza in the file indicates that one or more devices can be exported. The
auto attribute indicates whether the device is exported by default. If the auto attribute is not specified,
auto=yes is assumed.

You can configure a workload partition with a devexports file using the -b flag of the mkwpar command
or the restwpar command. If you do not specify the file, the /etc/wpars/devexports file is used by
default.

The -D flag of the mkwpar command can override the default exporting behavior that the auto attribute
indicates. However, devices that are not represented in the devexports file related to the WPAR cannot be
exported.

Device exports are synchronized when you run the startwpar command, in case configurations have
changed since the last run command. Device exports are resynchronized when you run the chwpar
command to change device-related settings using the -D flag.

Related information
chwpar command
mkwpar command
restwpar command
startwpar command
wparexec command

dir File

Purpose
Describes the format of a directory.

Syntax
#include <sys/dir.h>

Description
A directory is a file that contains information and structures necessary to define a file hierarchy. A file is
interpreted as a directory by the system if it has the S_IFDIR file mode. All modifications to the structure
of a directory must be performed under the control of the operating system.

The directory file format accommodates component names of up to 256 characters. This is accomplished
through the use of a variable-length structure to describe individual directory entries. The structure of a
directory entry follows.

Note: This structure is a file system-specific data structure. It is recommended that file system-
independent application programs use the file system-independent direct structure and its associated
library support routines.

struct direct {
 ino_t d_ino;
 ushort d_reclen;

Files Reference 75

 ushort d_namelen;
 char d_name[256];
 };

By convention, the first two entries in each directory are . (dot) and .. (dot dot). The . (dot) is an entry
for the directory itself. The .. (dot dot) entry is for the parent directory. Within the root (/) directory the
meaning of .. (dot dot) is modified; because there is no parent directory, the .. (dot dot) entry has the
same meaning as the . (dot) entry.

The DIRSIZ (dp) macro gives the amount of space required to represent a directory entry. The dp
argument is a pointer to a direct structure.

Related reference
dirent.h File
Related information
opendir, readdir, telldir, seekdir, rewindir, or closedir subroutines
File systems
Directories command

/etc/security/domains File

Purpose
Contains the list of valid domains.

Description
The /etc/security/domains file stores the list of valid, user-defined domains available on a system.
A domain administrator can modify domains. You can add new domains to this file using the mkdom
command and modify authorizations using the chdom command.

A maximum of 1024 domains are supported.

The /etc/security/domains is an ASCII file that uses a stanza for each domain. Each stanza is identified
by the domain name followed by a colon (:) . You can list domain attributes individually as Attribute=Value
pairs on subsequent lines. Each attribute pair ends with a newline character, as does each stanza. For an
example of a stanza, see “Examples” on page 77.

When the system is operating in EnhancedRBAC Mode, changes that you make to the domains file do not
impact security considerations until you send the entire domain database to the Kernel Security Tables
using the setkst command, or until the system is rebooted.

Modifying and listing entries in the domains file
Do not directly edit the /etc/security/domobs file file. Use the following commands and subroutines to
manipulate the authorization database:
mkdom

Adds new domains to the /etc/security/domains file.
chdom

Changes domain attributes.
lsdom

Displays domain that are defined in this file.
rmdom

Removes entries from this file.

To write programs that affect entries in the /etc/security/domains use one or more of the following
subroutines:

• getdomattr

76 AIX Version 7.1: Files Reference

• getdomattrs
• putdomattr
• putdomattrs

Attributes
A stanza in /etc/security/domains file contains one or more of the following attributes :

Attribute Definition

id Specifies the unique numeric ID of the domain. This is a required attribute and
is used internally for security decisions. Do not modify this ID after creating the
domain. The value is a unique decimal integer greater than 0. The maximum
value of the id can be 1024.

dfltmsg Specifies the default domain-description text if message catalogs are not in
use. The value is a character string.

msgcat Specifies the file name of the message catalog that contains the one-line
description of the authorization. The value is a character string.

msgset Specifies the message set that contains the authorization description in the
message catalog. The value is a decimal integer.

msgnum Specifies the message ID that contains the domain description in the message
catalog. The value is a decimal integer.

Security
The root user and the security group own this file. This files grants read and write access to the root user.
Access for other users and groups depends on the security policy for the system.

Examples
The following example for the custom authorization displays a typical stanza in the file:

INTRANET:
id = 1
dfltmsg = "Custom Authorization"
msgcat = "custom_auths.cat"
msgset = 1
msgnum = 5

Related information
getdomattr subroutine
chdom command
rmdom command
lsdom command
Role Based Access Control (RBAC)

/etc/security/domobjs File

Purpose
Contains security attributes for domain-assigned objects.

Description
The /etc/security/domobjs file is an ASCII stanza file that contains domain-assigned objects and their
security attributes. Each stanza in the /etc/security/domobjs file is identified by the full path name to the

Files Reference 77

command, followed by a colon (:) . Each stanza contains attributes in the Attribute=Value form. The path
name must be the absolute path to the objects if the object is of type file or device and cannot contain
symbolic links . Each Attribute=Value pair is ended by a newline character, and each stanza is ended by an
additional newline character. For an example of a stanza, see “Examples” on page 79 .

Note: Domains are not inheritable.

Changes made to the domobjs file do not impact security considerations until the entire domain-assigned
object database is sent to the Kernel Security Tables through the setkst command or until the system is
rebooted.

Modifying and Listing Entries in the privcmds File

Do not directly edit the /etc/security/domobjs file. Use the following commands and subroutines to
manipulate the authorization database:
setsecattr

Adds a command entry to, or changes a command entry in, the /etc/security/domobjs file.
lssecattr

Displays attributes and their values.
rmsecattr

Removes a command from the domobjs file.

To write programs that affect entries in the /etc/security/domobjs file, use one or more of the following
subroutines:

• getobjattr
• getobjattrs
• putobjattr
• putobjattrs

Attributes
A stanza in this file contains one or more of the following security attributes:

Attribute Definition

domains Defines the list of domains that are allowed access to the object.

conflictsets Defines the list of domains that are forbidden from accessing the object.

objtype Defines the type of the object. Valid values are :
netint

For network interfaces
device

For block and other devices. The full path to the device should be provided.
files

For regular files and directories. The full path should be provided to the
object name.

netport
For ports and port ranges. The port number or range of ports should be
prefixed with TCP_ or UDP_

78 AIX Version 7.1: Files Reference

Attribute Definition

secflags The security flags for the object. Valid values are FSF_DOM_ALL and
FSF_DOM_ANY. It modifies the access behaviour only for the domains
attribute. If the value is FSF_DOM_ANY any user/process having any of
the domains listed in the attribute domains can access the object. The
FSF_DOM_ALL mandates that the user/process accessing the object must have
all the domains as listed in the domains attribute.

If not provided the default of FSF_DOM_ALL is assumed.

Security
The root user and the security group own this file. Read and write access is granted to the root user.
Access for other users and groups depends on the security policy for the system.

Examples
The following example for an object displays a typical stanza in the file:

/usr/local/share/myfile:
domains=INTRANET,APPLICATION
conflictsets=INTERNET
objtype=file
secflags=FSF_DOM_ANY

This entry indicates that a user or process desiring access to this object must belong to one of the
domains INTRANET or APPLICATION and should not belong to the INTERNET domain

Related information
getobjattr subroutine
setsecattr command
lssecattr command
rmsecattr command
Role Based Access Control (RBAC)

dpid2.conf File

Purpose
Defines the configuration parameters for the dpid2 daemon.

Description
The dpid2.conf file provides the configuration information for the dpid2 daemon. Stop the daemon using
the stopsrc command and start it using the startsrc command if there are changes to the configuration
file. The daemon should be under the System Resource Control (SRC) for issuing these start or stop
commands.

Keywords

The directives are specified in the form <keyword>=<value>. The following keyword is case-insensitive:
dpiTimeOut

Specifies the timeout in seconds that the dpid2 daemon waits for the arrival of data from subagents.
The default value is 8 seconds. The maximum timeout value is 600 seconds. If you specify any value
less than or equal to zero, the default value is taken for processing.

Note: This sample configuration file is in the /usr/samples/snmpd/dpi2 directory. You must copy the
configuration file to the /etc directory to use the configurable parameter dpiTimeOut.

Files Reference 79

Examples
The following example sets the configurable parameter dpiTimeOut to the maximum value of 600
seconds.

dpiTimeOut=600

Files
Item Description

/etc/dpid2.conf Defines the configuration parameters for the dpid2 daemon.

Related information
dpid2 command

dsinfo File

Purpose
Contains the terminal descriptions for the Dynamic Screen utility.

Description
The dsinfo file is a database of terminal descriptions used by the Dynamic Screen utility. A terminal
description typically contains the following configuration information:

• Keys defined for specific use with the Dynamic Screen utility and their function
• Number of pages of screen memory available to the terminal
• Code sequences that must be sent or received to access and use Dynamic Screen features

The dscreen command reads the appropriate configuration information from the dsinfo file to start the
Dynamic Screen utility.

Entry Format

Line entries in the dsinfo file consist of a number of definition fields separated by commas. The first-line
field entries are alternate screen names for the terminal. The screen name fields are separated by a |
(pipe symbol).

Other line fields are strings describing the capabilities of the terminal definition to the Dynamic Screen
utility. The following escape codes are recognized within these strings:

Escape Code Meaning

\E,\e Escape

\n,\l New line

\r Carriage return

\t Tab

\b Backspace

\f Form feed

\s Space

\nnn Character with octal value nnn

^x Ctrl-x for any appropriate x.

80 AIX Version 7.1: Files Reference

Any other character preceded by a \ (backslash) yields the character itself.

Strings must be entered as the type=string parameter, where type is the string type and string is the string
value.

If information is not entered into a string field, a comma is still used to designate the existence of the
field.

String Types and String Values

The following string types are available:

Strin
g
Type

Meaning

dskx Describes the action assigned to a key. This string type contains 4 characters. The 4th character
indicates the action to be taken when the keystroke is received by the screen:

Key Type Action

dskb Block input and output.

dskc Start a new screen.

dske End the Dynamic Screen utility (exit code 0).

dskl List keys and actions.

dskp Switch to previous screen.

dskq Quit Dynamic Screen utility (exit code 1).

dsks Select a specific screen.

Currently, the only valid dsk string type endings are b, c, e, l, p, q, and s. Any
other key definitions used at this time are interpreted as null values and cause
no internal Dynamic Screen action for the terminal definition. Other keys may be
assigned values within the Dynamic Screen utility at a later time.

Note: The dskn string type (n for null or no operation) is guaranteed not to be
used for any function assignments in future versions. It is recommended that
the dskn string type be used instead of other null characters when no internal
Dynamic Screen action is desired for a terminal definition.

The value string for each dskx string type has three substrings, separated by a |
(pipe symbol). (To include a | in one of the substrings, use \| [backslash, pipe
symbol].)

The first substring is the sequence of characters the terminal sends when the key
is pressed. The second substring is a label for the key as displayed in the key
listing (for example, the Shift-F1 key sequence). The third substring is a sequence
of characters the Dynamic Screen utility sends to the terminal when the key is
pressed, before performing the requested action.

Files Reference 81

Key Type Action

dsp Describes a physical screen in the terminal. A dsp string type must be present for
each physical screen in the terminal.

The value string for each physical screen has two substrings, separated by a |
(pipe symbol). (To include a | in one of the substrings, use \| [backslash, pipe
symbol].)

The first substring is the sequence of characters to send to the terminal to
display and output to the particular named physical page on the terminal. The
second substring is usually set to clear the screen sequence. It is sent under the
following two conditions:

• The creation of new terminal session
• More terminals are running than there are physical screens.

If your selection of a terminal causes the Dynamic Screen utility to reuse one
of the physical screens, the clear-the-screen sequence is sent to the screen
to indicate that the screen content does not match the output of the terminal
connected to it.

Note: Running with more terminals than there are physical screens is not
recommended. Avoid this situation by defining no more screen selection keys
(dsks=...) than physical screens (dsp=...).

dst Adjusts the Dynamic Screen utility's input timeout. The value of the string must
be a decimal number. The timeout value is in tenths of a second and has a
maximum value of 255. The default timeout value is 1, or one tenth of a second.

When the Dynamic Screen utility recognizes a prefix of an input sequence
but has not yet received all the characters in the sequence, it waits for more
characters. If the timeout occurs before more characters are received, the
received characters are sent to the screen, and the Dynamic Screen utility
does not consider these characters as part of an input key sequence. Consider
increasing the value of the dsp string if one or more of the keys to which the
utility has to respond is actually a number of key combinations (for example,
<Ctrl-Z> 1, <Ctrl-Z> 2, <Ctrl-Z> 3, and so on, for screen selection, or <Ctrl-Z> N,
for new screen).

Examples
1. The following dsinfo entry describes a WYSE 60 terminal with three screens:

wy60|wyse60|wyse model 60,
 dsks=^A`^M|Shift-F1|,
 dsks=^Aa^M|Shift-F2|,
 dsks=^Ab^M|Shift-F3|,
 dskc=\200|Ctrl-F1|,
 dske=\201|Ctrl-F2|\Ew0\E+,
 dskl=\202|Ctrl-F3|,
 dsp=\Ew0|\E+,
 dsp=\Ew1|\E+,
 dsp=\Ew2|\E+,

The <Shift-F1> through <Shift-F3> key combinations are used for selecting screens 1 through 3.
<Ctrl-F1> creates a new screen. <Ctrl-F2> sends the key sequence <Esc> w 0 <Esc> + to the screen.
As a result, the terminal switches to window 0, the screen is cleared, and the Dynamic Screen utility
ends. <Ctrl-F3> lists the keys and their functions. The three physical screens are displayed by sending
the key sequences <Esc> w 0 , <Esc> w 1, and <Esc > w 2, respectively. Each time a physical screen is
used for a new screen the <Esc> + key sequence is sent to the terminal to clear the screen.

2. The following dsinfo entry describes a WYSE 60 terminal with three screens, one of which is on a
second computer communicating through the second serial port on the terminal. The Dynamic Screen

82 AIX Version 7.1: Files Reference

utility must be run on both computers, with terminal type WY60-1 on the first computer and terminal
type WY60-2 on the second computer (to do so specify the -t flag in the dscreen command).

wy60-1|wyse60-1|wyse model 60 - first
serial port
 dsks=^A`^M|Shift-F1|,
 dsks=^Aa^M|Shift-F2|,
 dskb=^Ab^M|Shift-F3|\Ed#^Ab\r^T\Ee9,
 dskc=\200|Ctrl-F1|,
 dske=\201|Ctrl-F2|\Ed#\201^T\Ew0\E+,
 dskl=\202|Ctrl-F3|,
 dsp=\Ew0|\E+,dsp=\Ew1|\E+,
wy60-2|wyse60-2|wyse model 60 - second
serial port
 dskb=^A`^M|Shift-F1|\Ed#^A`\r^T\Ee8,
 dskb=^Aa^M|Shift-F2|\Ed#^Aa\r^T\Ee8,
 dsks=^Ab^M|Shift-F3|
 dskc=\200|Ctrl-F1|,
 dske=\201|Ctrl-F2|\Ed#\201^T\Ew0\E+,
 dskl=\202|Ctrl-F3|,
 dsp=\Ew2|\E+,

The first two key entries for terminal type WY60-1 are identical to the entry in example 1. The third
key entry, of type dskb, specifies that input and output are blocked when the <Esc> d # <Ctrl-A> b
<CR> <Ctrl-T> <Esc> e 9 key sequence is sent to the terminal. As a result, output is blocked, and the
Dynamic Screen utility continues to scan input for key sequences but discards

all other input. The <Esc> d # sequence puts the terminal in transparent print mode, which echoes
all keystrokes up to <Ctrl-T> out the other serial port. The <Ctrtl-A> b <CR> key sequence is sent out
to the other serial port, informing the Dynamic Screen utility on the second computer that it should
activate the window associated with the <Shift-F3> key. The <Ctrl-T> key sequence takes the terminal
out of transparent print mode, and the <Esc> e 9 key sequence informs the terminal to switch to the
other serial port for data communications.

The other computer takes over and sends the <Esc> w 2 key sequence to switch to the third physical
screen and then resumes normal communication.

The WY60-2 entry follows the same general pattern for the <Shift-F1> and <Shift-F2> key
combinations, which switch to transparent print mode, send a function key string to the other
computer, switch transparent print off, and switch to the other serial port.

The end key <Ctrl-F2> works the same for both computers. It sends the end key sequence to the other
computer through the transparent print mechanism, switches the terminal to window 0, clears the
screen, and exits.

Files

Item Description

/etc/dsinfo Contains the terminal descriptions for the Dynamic Screen utility.

Related information
dscreen command

dumpdates File

Purpose
Describes the format of the dumpdates file.

Description
The /etc/dumpdates file holds filesystem backup information for the backup and rdump commands. The
dumpdates file is maintained by using the -u option when performing file system backups. The following
is the dumpdates data structure:

Files Reference 83

struct idates {
 char id_name[MAXNAMLEN+3];
 char id_incno;
 time_t id_ddate;
}

The struct idates describes an entry in the /etc/dumpdates file where the backup history is kept.
The fields of the structure are:

Item Description

id_name The name of the file system.

id_incno The level number of the last backup.

id_ddate The date of the incremental backup in system format.

MAXNAMLEN The maximum value of this variable is 255.

Files

Item Description

/etc/dumpdates Specifies the path name of the symbolic link to the dumpdates file.

Related information
backup command
rdump command
Backup methods

e789_ctbl File for HCON

Purpose
Contains the default binary color definition table for HCON.

Description
The /usr/lib/hcon/e789_ctbl file contains the default color definition table for the Host Connection
Program (HCON) in binary form.

Instances of the e789_ctbl file can also occur in user $HOME directories. The color definition table can
be customized using the hconutil command. If the user issuing the hconutil command does not specify
a name for the new table, the command names the e789_ctbl table and places it in the user $HOME
directory. To use a customized table, an HCON user must specify the file name of the table in an HCON
session profile.

Files

Item Description

/usr/lib/hcon/e789_ctbl Specifies the path of the e789_ctbl file.

Related information
chhcons command

84 AIX Version 7.1: Files Reference

e789_ktbl File for HCON

Purpose
Contains the default binary keyboard definition table used by HCON.

Description
The /usr/lib/hcon/e789_ktbl file contains the default keyboard definition table used by the Host
Connection Program (HCON) in binary form.

HCON key names are mapped to specific keys on each supported keyboard. The HCON emulator program
uses these key mappings to generate the correct key function on all the supported keyboards. HCON key
mappings can be customized using the hconutil command.

Instances of the e789_ktbl file can also occur in user $HOME directories. The keyboard definition table
can be customized using the hconutil command. If the user issuing the hconutil command does not
specify a name for the new table, the command names the e789_ktbl table and places it in the user
$HOME directory. To use a customized table, an HCON user must specify the file name of the table in an
HCON session profile.

Files

Item Description

/usr/lib/hcon/e789_ktbl Specifies the path of the e789_ktbl file.

Related information
chhcons command

eimadmin.conf File

Purpose
Stores system Enterprise Identity Mapping (EIM) connection information from the eimadmin command.

Description
This file is used to store system Enterprise Identity Mapping (EIM) connection information from the
eimadmin command. Use the eimadmin command to create and update this file. The connection
information stored by the eimadmin.conf file includes the EIM domain and its controlling server, the
identity with which to authenticate (bind) to the server, and the authentication method.

The meanings of the eimadmin.conf file's fields are as follows:

Item Description

LdapURL Specifies the URL and port for the LDAP server controlling the EIM data. This field
takes the following format:

ldap://some.ldap.host:389
ldaps://secure.ldap.host:636

KerberosRegistry Specifies the name of a Kerberos registry.

Files Reference 85

Item Description

LocalRegistry
EimDomain

Specifies the full distinguished name (DN) of the EIM domain. This name begins
with ibm-eimDomainName= and consists of the following elements:
domainName

The name of the EIM domain you are creating. For example, MyDomain.
parent distinguished name

The distinguished name for the entry immediately above the given entry in the
directory information tree hierarchy, such as o=ibm,c=us. For example:

ibm-eimDomainName=MyDomain,o=ibm,c=us

ConnectionMethod Specifies the method of authentication to the LDAP server. You can select one of
the following methods:

• SIMPLE (bind DN and password). (DEFAULT method).
• CRAM-MD5 (bind DN and protected password).
• EXTERNAL (digital certificate).
• GSSAPI (Kerberos). Uses the default Kerberos credential. The credential must be

established using a service such as kinit before running EIM.

BindDn The distinguished name to use for the simple bind to LDAP. For example,
cn=admin. The bind distinguished name has one of the following EIM authorities:

• EIM administrator
• EIM registries administrator
• EIM registry X administrator
• EIM identifiers administrator

BindPassword Specifies the password associated with the bind DN.

SSLKeyFile The name of the SSL key database file, including the full path name. If the file
cannot be found, the name of a RACF® key ring that contains authentication
certificates is used. This value is required for SSL communications with a secure
LDAP host. For example:

 /u/eimuser/ldap.kdb

SSLKeyPassword The password required to access the encrypted information in the key database
file. As an alternative, you can specify an SSL password stash file by prefixing the
stash file name with file://. For example:

file:///u/eimuser/ldapclient.sth

SSLKeyCert Identifies which certificate to use from the key database file or RACF key ring. If a
certificate label is not specified, the default certificate in the file or ring is used.

Example

-> /usr/bin/eimadmin -X -d ibm-eimDomainName='ibm-eimDomainName=MyDomain,o=ibm,c=us'
 -h 'ldap://keystone.austin.ibm.com:389' -S 'SIMPLE'-b 'cn=admin' -w 'secret'
-> cat /etc/eimadmin.conf
EimConfiguration:
 LdapURL="ldap://keystone.austin.ibm.com:389"
 KerberosRegistry=""
 LocalRegistry=""
 EimDomain="ibm-eimDomainName=MyDomain,o=ibm,c=us"
 ConnectionMethod="SIMPLE-b"
 BindDn=""
 BindPassword=""
 SSLKeyFile=""

86 AIX Version 7.1: Files Reference

 SSLKeyPassword=""
 SSLKeyCert=""
->

Location

Item Description

/etc/eimadmin.conf Contains the eimadmin.conf file.

Related information
eimadmin command

environ File

Purpose
Defines the environment attributes for users.

Description
The /etc/security/environ file is an ASCII file that contains stanzas with the environment attributes for
users. Each stanza is identified by a user name and contains attributes in the Attribute=Value form, with
a comma separating the attributes. Each attribute is ended by a new-line character, and each stanza is
ended by an additional new-line character.

If environment attributes are not defined, the system uses default values. Each user stanza can have the
following attributes:

Attribute Definition

usrenv Defines variables to be placed in the user environment when the initial login
command is given or when the su command resets the environment. The value is
a list of comma-separated attributes. The default value is an empty string.

sysenv Defines variables to be placed in the user protected state environment when the
initial login command is given or when the su command resets the environment.
These variables are protected from access by unprivileged programs so other
programs can depend on their values. The default value is an empty string.

For a description of environment variables, refer to the /etc/environment file.

Access to all the user database files should be through the system commands and subroutines defined for
this purpose. Access through other commands or subroutines may not be supported in future releases.

The mkuser command creates a user stanza in this file. The initialization of the attributes depends
upon their values in the /usr/lib/security/mkuser.default file. The chuser command can change these
attributes, and the lsuser command can display them. The rmuser command removes the entire record
for a user.

Security
Access Control:

This command should grant read (r) access to the root user, members of the security group, and others
consistent with the security policy for the system. Only the root user should have write (w) access.

Auditing Events:

Event Information

S_ENVIRON_WRITE file name

Files Reference 87

Examples
A typical stanza looks like the following example for user dhs:

dhs:
 usrenv = "MAIL=/home/spool/mail/dhs,MAILCHECK=600"
 sysenv = "NAME=dhs@delos"

Files

Item Description

/etc/security/environ Specifies the path to the file.

/etc/environment Specifies the basic environment for all
processes.

/etc/group Contains the basic attributes of groups.

/etc/security/group Contains the extended attributes of groups.

/etc/passwd Contains the basic attributes of users.

/etc/security/passwd Contains password information.

/etc/security/user Contains the extended attributes of users.

/etc/security/limits Contains the process resource limits of users.

/usr/lib/security/mkuser.default Contains the default values for user accounts.

/etc/security/lastlog Contains last login information.

Related information
chuser command
lsuser command
su command
getpenv subroutine
File and system security

environment File

Purpose
Sets up the user environment.

Description
The /etc/environment file contains variables specifying the basic environment for all processes. When
a new process begins, the exec subroutine makes an array of strings available that have the form
Name=Value. This array of strings is called the environment. Each name defined by one of the strings is
called an environment variable or shell variable. The exec subroutine allows the entire environment to be
set at one time.

Environment variables are examined when a command starts running. The environment of a process is
not changed by altering the /etc/environment file. Any processes that were started prior to the change to
the /etc/environment file must be restarted if the change is to take effect for those processes. If the TZ
variable is changed, the cron daemon must be restarted, because this variable is used to determine the
current local time.

The following restrictions apply, when modifying the environment file:

88 AIX Version 7.1: Files Reference

• Ensure that newly created environment variables do not conflict with standard variables such as MAIL,
PS1, PS2, and IFS.

• Ensure that the information in the environment file is in the Name=Value format. Unlike profile scripts,
the environment file is not a shell script and does not accept data in any format other than the
Name=Value format.

The Basic Environment
When you log in, the system sets environment variables from the environment file before reading your
login profile, .profile.

The following variables make up the basic environment:

Variable Description

HOME The full path name of the user login or HOME directory. The login program
sets this to the name specified in the /etc/passwd file.

LANG The locale name currently in effect. The LANG variable is set in the /etc/
environment file at installation time.

NLSPATH The full path name for message catalogs. The default is:

/usr/lib/nls/msg/%L/%N:

/usr/lib/nls/msg/%L/%N.cat:

where %L is the value of the LC_MESSAGES category and %N is the
catalog file name.

Note: See the chlang command for more information about changing
message catalogs.

LC__FASTMSG If LC_FASTMEG is set to false, POSIX-compliant message handling is
performed. If LC__FASTMSG is set to true, it specifies that default
messages should be used for the C and POSIX locales and that NLSPATH
is ignored. If this variable is set to anything other than false or unset,
it is considered the same as being set to true. The default value is
LC__FASTMSG=true in the /etc/environment file.

LOCPATH The full path name of the location of National Language Support tables. The
default is /usr/lib/nls/loc and is set in the /etc/profile file. If the LOCPATH
variable is a null value, it assumes that the current directory contains the
locale files.

Note: All setuid and setgid programs will ignore the LOCPATH environment
variable.

PATH The sequence of directories that commands such as the sh, time, nice and
nohup commands search when looking for a command whose path name is
incomplete. The directory names are separated by colons.

Files Reference 89

Variable Description

TZ The time-zone information. The TZ environment variable is set by the /etc/
environment file. The TZ environment variable has the following format
(spaces inserted for readability):

std offset dst offset , rule

The fields within the TZ environment variable are defined as follows:

std and dst
Designate the standard (std) and summer (dst) time zones. Only the
std value along with the appropriate offset value is required. If the
dst value is not specified, summer time does not apply. The values
specified may be no less than three and no more than TZNAME_MAX
bytes in length. The length of the variables corresponds to the %Z field
of the date command; for libc and libbsd, TZNAME_MAX equals three
characters. Any nonnumeric ASCII characters except the following may
be entered into each field: a leading : (colon), a , (comma), a - (minus
sign), a + (plus sign), or the ASCII null character.

Note: POSIX 1.0 reserves the leading : (colon) for an implementation-
defined TZ specification. The operating system disallows the leading
colon, selecting CUT0 and setting the %Z field to a null string.

An example of std and dst format is as follows:

EST5EDT

Note: If the value set is invalid or unrecognized, the time zone defaults
to UTC/GMT.

EST Specifies Eastern U.S. standard time.

5 Specifies the offset, which is 5 hours behind Coordinated Universal Time
(CUT).
EDT

Specifies the corresponding summer time zone abbreviation.

Note: See "Time Zones" for a list of time zone names defined for the
system.

offset
Denotes the value added to local time to equal Coordinated Universal
Time (CUT). CUT is the international time standard that has largely
replaced Greenwich Mean Time. The offset variable has the following
format:

hh:mm:ss

The fields within the offset variable are defined as follows:

hh Specifies the dst offset in hours. This field is required. The hh value can
range between the integers -12 and +11. A negative value indicates the
time zone is east of the prime meridian; a positive value or no value
indicates the time zone is west of the prime meridian.

90 AIX Version 7.1: Files Reference

Variable Description

mm Specifies the dst offset detailed to the minute. This field is optional. If the
mm value is present, it must be specified between 0 and 59 and preceded by
a : (colon).
ss

Specifies the dst offset detailed to the second. The ss field is optional.
If the ss value is present, it must be specified between 0 and 59 and
preceded by a : (colon).

An offset variable must be specified with the std variable. An offset
variable for the dst variable is optional. If no offset is specified with the
dst variable, the system assumes that summer time is one hour ahead of
standard time.

As an example of offset syntax, Zurich is one hour ahead of CUT, so its
offset is -1. Newfoundland is 1.5 hours ahead of eastern U.S. standard time
zones. Its syntax can be stated as any of the following: 3:30, 03:30, +3:30,
or 3:30:00.

rule
The rule variable indicates when to change to and back from summer
time. The rule variable has the following format:

start/time,end/time

The fields within the rule variable are defined as follows:

start Specifies the change from standard to summer time.

end Specifies the return to standard time from summer time.

time Specifies when the time changes occur within the time zone. For example,
if the time variable is encoded for 2 a.m. then the time changes when the
time zone reaches 2 a.m. on the date specified in the start variable.

Files Reference 91

Variable Description

/ Delimits the start date, end date, and time variables.
,

(Comma) Delimits two date and time pairs.

The start and end variables support a syntax for Julian time (J) and a
syntax for leap years (M):

Jn
Mm.n.d

In the J syntax, the n variable has the value of 1 through 365. Leap days are
not counted. In the M syntax, m is the month, n the week, and d the day of
the week starting from day 0 (Sunday).

The rule variable has the same format as the offset variable except no
leading - (minus sign) or + (plus sign) is allowed. The default of the start
variable is 02:00:00 (2 a.m.).

Note: The time zone offsets and time change points are interrelated
and context-dependent. The rule variable's runtime execution semantics
change as a function of the offsets. For example, if the summer time zone
changes one hour, as in CST6CDT5, (the default 2 a.m.) summer time
changes instantaneously from 2 a.m. to 3 a.m. CDT. The fall change is
from 2 a.m. CDT to 1 a.m. CST. The respective changes for a time zone of
CST6CDT4 are 2 a.m. CST to 4 a.m. CDT and 2 a.m. CDT to 12 a.m. CST.

In an example of the rule variable, if the law changed so that the Central
United States experienced summer time between Julian 129 and Julian
131, the TZ variable would be stated as follows:

TZ=CST6CDT5,J129,J131

In this example, the dates indicated are May 09 and May 11,1993,
respectively. (Use the date +%j command to get the Julian date number.)

In another example, if the time changes were to occur at 2 a.m. CST and
19:30 CDT, respectively, the variables would be stated as follows:

TZ=CST6CDT5,J129,J131/19:30

In nonleap years, the fallback time change would be from 19:30 CDT to
18:30 CST on May 11 (1993).

For the leap year (M) syntax, the spring ahead date would be 2 May and the
fallback date is 9 May. The variables are stated as follows:

TZ=CST6CDT5,M5.1.0,M5.2.0

Time Zones

The system defines the following time zones and time zone names:

Note: Coordinated Universal Time (CUT) is the international time standard.

Table 1. Time Zones Defined on the System

Name Time Zone CUT Offset

CUT0GDT Coordinated Universal Time CUT

GMT0BST United Kingdom CUT

92 AIX Version 7.1: Files Reference

Table 1. Time Zones Defined on the System (continued)

Name Time Zone CUT Offset

WET0WEST Western Europe CUT

AZOREST1AZOREDT Azores, Cape Verde CUT -1

FALKST2FALKDT Falkland Islands CUT -2

GRNLNDST3GRNLNDDT Greenland, East Brazil CUT -3

AST4ADT Central Brazil CUT -4

EST5EDT Eastern United States, Colombia CUT -4

CST6CDT Central United States, Honduras CUT -6

MST7MDT Mountain United States CUT -7

PST8PDT Pacific United States, Yukon CUT -8

AST9ADT Alaska CUT -9

HST10HDT Hawaii, Aleutian Islands CUT -10

BST11BDT Bering Strait CUT -11

NZST-12NZDT New Zealand CUT +12

Item Description

MET-11METDT Solomon Islands CUT +11

EET-10EETDT Eastern Australia CUT +10

JST-9JSTDT Japan CUT +9

KORST-9KORDT Korea CUT +9

WAUST-8WAUDT Western Australia CUT +8

TAIST-8TAIDT Taiwan CUT +8

THAIST-7THAIDT Thailand CUT +7

TASHST-6TASHDT Central Asia CUT +6

PAKST-5PAKDT Pakistan CUT +5

WST-4WDT Gorki, Central Asia, Oman CUT +4

MEST-3MEDT Turkey CUT +3

SAUST-3SAUDT Saudi Arabia CUT +3

EET-2EEST Eastern Europe CUT +2

USAST-2USADT South Africa CUT +2

CET-1CEST Central Europe CUT +1

Files

Item Description

/etc/profile Specifies variables to be added to the environment by the shell.

/etc/environment Specifies the basic environment for all processes.

Files Reference 93

Item Description

$HOME/.profile Specifies the environment for specific user needs.

/etc/passwd Specifies user IDs.

Related information
at command
env command
login command
sh command
exec subroutine

errors File for BNU

Purpose
Contains a record of uucico daemon errors.

Description
The /var/spool/uucp/.Admin/errors file contains a record of uucico daemon errors that the Basic
Networking Utilities (BNU) program cannot correct. For example, if the uucico daemon is unable to access
a directory that is needed for a file transfer, the BNU program records this in the errors file.

If debugging is enabled for the uucico daemon, the BNU program sends the error messages to standard
output instead of to the errors file.

Examples
The text of an error which might appear in the errors file is:

ASSERT ERROR (uucico) pid: 303 (7/18-8:25:09) SYSTAT OPEN FAIL /v
ar/spool/uucp/.Status/ (21) [SCCSID: @(#)systat.c 7.2 87/07/08
16:43:37, FILE: systat.c, LINE:100]

This error occurred on July 18 at 8:25:09 a.m. [(7/18-8:25:09)] when the uucico daemon, running
as process 303 [(uucico) pid: 303], could not open the /var/spool/uucp/.Status directory [SYSTAT
OPEN FAIL /var/spool/uucp/.Status/]. To prevent this error from occurring again, you should
make sure the permissions for the .Status directory are correct. It should be owned by the uucp login ID
and group uucp, with permissions of 777 (read, write, and execute for owner, group, and all others).

Files

Item Description

/var/spool/uucp/.Admin directory Contains the errors file and other BNU
administrative files.

/var/spool/uucp/.Status/SystemName Lists the last time a remote system was
contacted and the minimum time until the
next retry.

/var/spool/uucp/.Admin/errors Specifies the path of the errors file.

Related information
uudemon.cleanu command
uucico command
BNU File and Directory Structure

94 AIX Version 7.1: Files Reference

BNU maintenance

ethers File for NIS

Purpose
Contains the Ethernet addresses of hosts on the Internet network.

Description
The /etc/ethers file contains information regarding the known (48-bit) Ethernet addresses of hosts on the
Internet. The file contains an entry for each host. Each entry consists of the following information:

• Ethernet address
• Official host name

Items are separated by any number of blanks or tab characters. A # (pound sign) indicates the beginning
of a comment that extends to the end of the line.

The standard form for Ethernet addresses is x:x:x:x:x:x: where x is a hexadecimal number between
0 and ff, representing one byte. The address bytes are always in network order. Host names may contain
any printable character other than a space, tab, new line, or comment character. It is intended that host
names in the /etc/ethers file correspond to the host names in the /etc/hosts file.

This file is part of NFS in Network Support Facilities.

Files

Item Description

/etc/ethers Specifies the path of the ethers file.

/etc/hosts Contains Internet addresses.

Related reference
hosts File Format for TCP/IP
Related information
NFS Services

events File

Purpose
Contains information about system audit events.

Description
The /etc/security/audit/events file is an ASCII stanza file that contains information about audit events.
The file contains just one stanza, auditpr, which lists all the audit events in the system. The stanza also
contains formatting information that the auditpr command needs to write an audit tail for each event.

Each attribute in the stanza is the name of an audit event, with the following format:

AuditEvent = FormatCommand

The root users can edit the events file using the vi editor. The comments in an events file begin with an
asterisk sign (*).

The format command can have the following parameters:

Files Reference 95

Parameter Description

(empty) The event has no tail.

printf Format The tail is formatted according to the string supplied for the Format
parameter. The %x symbols within the string indicate places for the
audit trail to supply data.

Program -i n Arg ... The tail is formatted by the program specified by the Program
parameter. The -i n parameter is passed to the program as its
first parameter, indicating that the output is to be indented by n
spaces. Other formatting information can be specified with the Arg
parameter. The audit event name is passed as the last parameter.
The tail is written to the standard input of the program.

Audit Event Formatting Information

Format Description

%A Formatted output is similar to the aclget command.

%c Format a single byte as a character.

%D Formatted as a device major and minor number.

%d Formatted as a 32-bit signed decimal integer

%G Formatted as a comma-separated list of group names or numerical identifiers.

%L Formatted as a text string which describes the identity associated with an Internet
socket and the socket itself.

%ld Formatted as a 64-bit signed decimal integer

%lo Formatted as a 64-bit octal value.

%lx %lx Formatted as a 64-bit hexadecimal value.

%lX Formatted as a 64-bit hexadecimal value with uppercase letters.

%o Formatted as 32-bit octal integer.

%P Formatted output is similar to the pclget command.

%S Formatted as a text string which describes an Internet socket.

%s Formatted as a text string.

%T Formatted as a text string giving include date and time with 6 significant digits for the
seconds DD Mmm YYYY HH:MM:SS:mmmuuu).

%u Formatted as a 32-bit unsigned integer.

%x Formatted as a 32-bit hexadecimal integer.

%X Formatted as a 32-bit hexadecimal integer with upper case letters.

%% A single '%' character.

Security
Access Control: This file should grant read (r) access to the root user and members of the audit group, and
grant write (w) access only to the root user.

96 AIX Version 7.1: Files Reference

Examples
To format the tail of an audit record for new audit events, such as FILE_Open and PROC_Create, add
format specifications like the following to the auditpr stanza in the /etc/security/audit/events file:

auditpr:
 FILE_Open = printf "flags: %d mode: %o \
 fd: %d filename: %s"
 PROC_Create = printf "forked child process %d"

Files

Item Description

/etc/security/audit/events Specifies the path to the file.

/etc/security/audit/config Contains audit system configuration information.

/etc/security/audit/objects Contains information about audited objects.

/etc/security/audit/bincmds Contains auditbin backend commands.

/etc/security/audit/streamcmds Contains auditstream commands.

Related information
audit command
auditpr command
Setting Up Auditing
Auditing overview
Security Administration

Execute (X.*) Files for BNU

Purpose
Contains instructions for running commands that require the resources of a remote system.

Description
The execute (X.*) files of the Basic Networking Utilities (BNU) contain instructions for running commands
that require the resources of a remote system. They are created by the uux command.

The full path name of a uux command execute file is a form of the following:

/var/spool/uucp/SystemName/X.RemoteSystemNxxxx

where the SystemName directory is named for the local computer and the RemoteSystem directory is
named for the remote system. The N character represents the grade of the work, and the xxxx notation is
the four-digit hexadecimal transfer-sequence number; for example, X.zeusN2121.

Note: The grade of the work specifies when the file is to be transmitted during a particular connection.
The grade notation is a single number (0-9) or letter (A-Z, a-z). Lower sequence characters cause the
file to be transmitted earlier in the connection than do higher sequence characters. The number 0 is the
highest grade, signifying the earliest transmittal; z is the lowest grade, specifying the latest transmittal.
The default grade is N.

Standard Entries in an Execute File

An execute file consists of several lines, each with an identification character and one or more entries:

User Line

Files Reference 97

Identification Character Description

U UserName SystemName Specifies the login name of the user issuing the uux command and
the name of the system that issued the command.

Error Status Line

Identificatio
n Character

Description

N or Z Indicates the error status.

N Indicates that a failure message is not sent to the user issuing the uux command if the
specified command does not execute successfully on the remote system.

Z Indicates that a failure message is sent to the user issuing the uux command if the
specified command does not execute successfully on the remote system.

Requester Name

Identification
Character

Description

R UserName Specifies the login ID of the user requesting the remote command execution.

Required File Line

Identification
Character

Description

F FileName Contains the names of the files required to execute the specified command on the
remote system. The FileName parameter can be either the complete path name of
the file, including the unique transmission name assigned by the BNU program, or
simply the transmission name without any path information.

The required file line can contain zero or more file names. The uuxqt daemon checks
for the existence of all listed files before running the specified command.

Standard Input Line

Identification
Character

Description

I FileName Specifies the standard input to be used.

The standard input is either specified by a < (less than) symbol in the command string
or inherited from the standard input of the uux command if that command was issued
with the - (minus sign) flag.

If standard input is specified, the input source is also listed in an F (Required File) line.
If standard input is not specified, the BNU program uses the /dev/null device file.

Standard Output Line

Identification Character Description

O FileName SystemName Specifies the names of the file and system that are to receive
standard output from the command execution. Standard output is
specified by a > (greater than) symbol within the command string.
(The >> sequence is not valid in uux commands.) As is the case
with standard input, if standard output is not specified, the BNU
program uses the /dev/null device file.

98 AIX Version 7.1: Files Reference

Command Line

Identification Character Description

C CommandString Gives the command string that the user requests to be run on the specified
system. The BNU program checks the /etc/uucp/Permissions file on the
designated computer to see whether the login ID can run the command on
that system.

All required files go to the execute file directory, usually /var/spool/
uucp/.Xqtdir. After execution, the standard output is sent to the requested
location.

Examples
1. User amy on local system zeus issued the following command:

uux - "diff /home/amy/out hera!/home/amy/out2 > ~/DF"

The command in this example invokes the uux command to run a diff command on the local system,
comparing the /home/amy/out file with the /home/amy/out2 file, which is stored on remote
system hera. The output of the comparison is placed in the DF file in the public directory on the
local system.

The preceding command produces the /var/spool/uucp/hera/X.zeusN212F execute file, which
contains the following information:

The user line identifies the user amy on the system zeus. The error-status line indicates that amy will
receive a failure status message if the diff command fails to execute. The requestor is amy, and the file
required to execute the command is the following data file:

U amy zeus
return status on failure
Z
return address for status or input return
R amy
F /var/spool/uucp/hera/D.herale954fd out2
O ~/DF zeus
C diff /home/amy/out out2
/var/spool/uucp/hera/D.herale954fd out2

The output of the command is to be written to the public directory on the system zeus with the file
name DF. (The ~ (tilde) is the shorthand way of specifying the public directory.) The final line is the
command string that the user amy entered with the uux command.

2. The following is another example of an execute file:

U uucp hera
don't return status on failure
N
return address for status or input return
R uucp
F D.hera5eb7f7b
I D.hera5eb7f7b
C rmail amy

This indicates that user uucp on system hera is sending mail to user amy, who is also working on
system hera.

Files

Item Description

/etc/uucp/Permissions Describes access permissions for
remote systems.

Files Reference 99

Item Description

/etc/uucp/Systems Describes accessible remote systems.

/var/spool/uucp/SystemName directory Contains BNU command, data, and
execute files.

/var/spool/uucp/SystemName/C.* Contains instructions for transfers.

/var/spool/uucp/.Xqtdir directory Contains lists of commands that remote
systems are permitted to execute.

/var/spool/uucppublic/* directory Contains transferred files.

Related information
diff command
uux command
uuxqt command
BNU File and Directory Structure
BNU maintenance commands

exports File for NFS

Purpose
Contains a list of directories that can be exported to Network File System (NFS) clients.

Description
The /etc/exports file contains an entry for each directory that can be exported to NFS clients. This file is
read automatically by the exportfs command. If you change this file, you must run the exportfs command
before the changes can affect the way the daemon operates.

Only when this file is present during system startup does the rc.nfs script execute the exportfs command
and start the nfsd and mountd daemons.

Restriction: You cannot export either a parent directory or a subdirectory of an exported directory within
the same file system.

If there are two entries for the same directory with different NFS versions 2 (or 3) and NFS versions 4 in
the /etc/exports file, the exportfs command exports both of the two entries.

If the options for NFS versions 2 (or 3) and 4 are the same for a directory, there can be one entry in
the /etc/exports file specifying -vers=3:4.

Entries in the file are formatted as follows:

Directory-Option [, Option] ...

These entries are defined as follows:

Entry Definition

Directory Specifies the directory name.

100 AIX Version 7.1: Files Reference

Entry Definition

Option Specifies the optional characteristics for the directory being exported. You can enter
more than one variable by separating them with commas. For options taking a Client
parameter, Client can specify a hostname, a dotted IP address, a network name, or
a subnet designator. A subnet designator is of the form @host/mask, where host is
either a hostname or a dotted IP address and mask specifies the number of bits
to use when checking access. If mask is not specified, a full mask is used. For
example, the designator @client.group.company.com/16 will match all Clients
on the company.com subnet. A designator of @client.group.company.com/24
will match only the Clients on the group.company.com subnet. Choose from the
following options:
ro

Exports the directory with read-only permission. If not specified, the directory is
exported with read-write permission.

ro=Client[:Client]
Exports the directory with read-only permission to the specified Clients. Exports
the directory with read-write permissions to Clients not specified in the list. A
read-only list cannot be specified if a read-write list has been specified.

rw
Exports the directory with read-write permission to all Clients.

rw = Client [:Client]
Exports the directory with read-write permission to the specified Clients.
Exports the directory read-only to Clients not in the list. A read-write list cannot
be specified if a read-only list has been specified.

access = Client[:Client,...]
Gives mount access to each Client listed. If not specified, any Client is allowed
to mount the specified directory. The ro option and the rw option can be
combined on a single exports entry. See the following examples:

access=x, ro=y
indicates that x has the rw option and y has the ro option
access=x, rw=y
indicates that x has the ro option and y has the rw option

anon= UID
If a request comes from a root user, use the user identification (UID) value as
the effective user ID.

The default value for this option is -2. Setting the value of the anon option
to -1 disables anonymous access. Note that, by default, secure NFS accepts
nonsecure requests as anonymous, and users who want more security can
disable this feature by setting anon to a value of -1.

Files Reference 101

Entry Definition

root=Client[:Client]
Allows root access from the specified clients in the list. Putting a host in the
root list does not override the semantics of the other options. For example, this
option denies the mount access from a host present in the root list but absent in
the access list.

secure
Requires clients to use a more secure protocol when accessing the directory.

A # (pound sign) anywhere in the file indicates a comment that extends to the
end of the line.

deleg={yes|no}
Enable or disable file delegation for the specified export. This option overrides
the system-wide delegation enablement for this export. The system-wide
enablement is done through the nfso command.

vers=version[:version]
Exports the directory for clients using the specified nfs protocol versions.
Allowable values are 2, 3, and 4. Versions 2 and 3 cannot be enforced
separately. Specifying version 2 or 3 allows access by clients using either nfs
protocol versions 2 or 3. Version 4 can be specified independently and must be
specified to allow access by clients using version 4 protocol. The default is 2
and 3.

exname=external-name
Exports the directory by the specified external name. The external name must
begin with the nfsroot name. See below for a description of the nfsroot
and nfspublic paths. This applies only to directories exported for access by
version 4 protocol only.

102 AIX Version 7.1: Files Reference

Entry Definition

Option (continued) sec=flavor[:flavor...]
This option is used to specify a list of security methods that may be used
to access files under the exported directory. Most exportfs options can be
clustered using the sec option. Options following a sec option are presumed
to belong with the preceding sec option. Any number of sec stanzas may be
specified, but each security method can be specified only once. Within each
sec stanza the ro, rw, root, and access options may be specified once. Only
the public, anon and vers options are considered global for the export. If the
sec option is used to specify any security method, it must be used to specify
all security methods. In the absence of any sec option, UNIX authentication is
assumed.

Allowable flavor values are:
sys

UNIX authentication.
dh

DES authentication.
krb5

Kerberos. Authentication only.
krb5i

Kerberos. Authentication and integrity.
krb5p

Kerberos. Authentication, integrity, and privacy.
none

Allow mount requests to proceed with anonymous credentials if the mount
request uses an authentication flavor not specified in the export. Otherwise
a weak auth error is returned. By default, all flavors are allowed.

The secure option may be specified, but not in conjunction with a sec option.
The secure option is deprecated and may be eliminated. Use sec=dh instead.

refer=rootpath@host [+host][:rootpath@host [+host]]
A namespace referral is created at the specified path. This referral directs
clients to the specified alternate locations where the clients can continue
operations. A referral is a special object. If a non-referral object exists at the
specified path, the export is not allowed and an error message is printed.
If nothing exists at the specified path, a referral object is created there;
this referral object includes the pathname directories that lead to the object.
Multiple referrals can be created within a file system. A referral cannot be
specified for nfsroot. The name localhost cannot be used as a hostname.

Unexporting the referral object has the effect of removing the referral locations
information from the referral object. Unexporting the referral object does not
remove the referral object itself. The object can be removed using rm if desired.
The administrator must ensure that appropriate data is available at the referral
servers.

This option is available only on AIX version 5.3.0.30 or later, and is allowed only
for version 4 exports. If the export specification allows version 2 or version 3
access, an error message will be printed and the export will be disallowed.

Note: A referral export can only be made if replication is enabled on the server.
Use chnfs -R on to enable replication.

Files Reference 103

Entry Definition

Option (continued) replicas=rootpath@host [+host][:rootpath@host [+host]]
Replica location information is associated with the export path. The replica
information can be used by NFS version 4 clients to redirect operations to the
specified alternate locations if the current server becomes unavailable. You
should ensure that appropriate data is available at the replica servers. Since
replica information applies to an entire file system, the specified path must be
the root of a file system. If the path is not a file system root, the export is not
allowed and an error message is printed. The name localhost cannot be used as
a hostname.

If the directory being exported is not in the replica list, the entry
ExportedDirectory@CurrentHost is added as the first replica location. A replica
export can only be made if replication is enabled on the server. By default,
replication is not enabled. If replica exports are made at system boot,
replication should be enabled using chnfs -R on. Replica locations can also
be specified for the nfsroot. The chnfs command must be used for this purpose.
In this case, the command is chnfs -R host [+ host]. If the current host is not
specified in the list, it will be added as the first replica host. The rootpath is
not needed or allowed in this case. The reason is that the nfsroot is replicated
only to the nfsroots of the specified hosts. The replication mode can only be
changed if there are no active NFS version 4 exports. If the server's replication
mode is changed, any filehandles issued by the server during the previous
replication mode will not be honored by the server. This can cause application
errors on clients with old filehandles. Care must be taken when changing the
replication mode of the server. If possible, all client mounts to the server should
be unmounted before the server's replication mode is changed. The replica
location information associated with the directory can be changed by modifying
the replica list and reexporting the directory. The new replica information will
replace the old replica information.

NFS clients are expected to refresh replica information on a regular basis. If the
server changes the replica information for an export, it may take some time for
the client to refresh its replica information. This is not a serious problem if new
replica locations are added, since clients with old replica information will still
have correct, though possibly incomplete, replica information. Removing replica
information can be problematic since it can result in clients having incorrect
replica information for some period of time. To aid clients in detecting the
new information, exportfs attempts to touch the replicated directory. This will
change the timestamps on the directory, which in turn causes the client to
refetch the directory's attributes. This operation may not be possible, however,
if the replicated file system is read-only. When changing replica information for
a directory, you should be aware that there may be a period of time between
the changing of the replica information and clients getting the new replica
information.

This option is available only on AIX version 5.3.0.30 or later, and is meaningful
only for version 4 exports. If the option is used on an export that allows version
2 or version 3 access, the operation is allowed, but the replica information is
ignored by the version 2 and version 3 servers.

noauto
Accepts the replicas specification as-is. Does not automatically insert the
primary hostname as one of the replica locations if it has not been specified.

104 AIX Version 7.1: Files Reference

nfsroot and nfspublic
In order to allow the NFS server administrator to hide some detail of the local file system from clients, the
nfsroot and nfspublic attributes were added to the NFS version 4 implementation. The nfsroot and
nfspublic may be specified independently, but nfspublic must be a subdirectory of nfsroot. When
the nfsroot is set, a local directory can be exported so that it appears to the client to be a subdirectory
of the nfsroot. Restrictions must be placed on the exported directories in order to avoid problems:

• The nfsroot must not be "/".
• Either all version 4 exports must specify an external name, or none must specify an external name.
• The external name must start with the nfsroot name. For example, if the nfsroot has been set

to /export/server, the directory /export/server/abc can be used as an external name, but the
directory /abc cannot be used as an external name. In this example, the /tmp directory might be
exported as /export/server/tmp, but /tmp cannot be exported as /xyz.

• If the -exname option is used, only one directory can be exported per file system.
• If a directory is exported with an external name, any descendant of that directory that is also

exported must maintain the same path between the two directories. For example, if /a is exported as /
export/dira, the directory /a/b/c/d can only be exported as /export/dira/b/c/d, provided /a
and /a/b/c/d are different file systems or members of different file systems.

• If a directory is exported with an external name, any parent of that directory that is also exported
must maintain the same path between the two directories. For example, if /a/b is exported as /
export/a/b, the directory /a can only be exported as /export/a, provided /a and /a/b are
different file systems or members of different file systems. Also, if /a/b is exported as /export/b,
the directory /a cannot be exported because it does not exist in the path from the root node to export a
pathname of /b.

• The exportfs command will only allow the exname option when the -vers=4 options is also present.

Administration of nfsroot, nfspublic, and replication is performed using the chnfs command.

Examples
1. To export to netgroup clients, enter:

/usr -access=clients

2. To export to the world, enter:

/usr/local

3. To export to only these systems, enter:

/usr2 -access=hermes:zip:tutorial

4. To give root access only to these systems, enter:

/usr/tps -root=hermes:zip

5. To convert client root users to guest UID=100, enter:

/usr/new -anon=100

6. To export read-only to everyone, enter:

/usr/bin -ro

7. To allow several options on one line, enter:

/usr/stuff -access=zip,anon=-3,ro

Files Reference 105

8. To create a referral at /usr/info to the /usr/info directory on the host infoserver, add the following line
to /etc/exports and then export /usr/info:

/usr/info -vers=4,refer=/usr/info@infoserver

9. To specify replicas for the directory /common/info at hosts backup1 and backup2, add the following
line to /etc/exports and then export /common/info:

/common/info -vers=4,replicas=/common/info@backup1:/common/info@backup2,<other options>

Files

Item Description

/etc/xtab Lists currently exported directories.

/etc/hosts Contains an entry for each host on the network.

/etc/netgroup Contains information about each user group on the network.

Related information
chnfs command
exportfs command
nfsd command
List of NFS files
NFS Services

.fig File

Purpose
Contains a list of F file names.

Description
The .fig file is one of several intermediate files produced for each document by InfoCrafter. The .fig file
is an ASCII file that contains a list of F file names created for the document. F files are files containing
artwork.

Files

Item Description

.fig Contains a list of F file names.

Related reference
.srf File

filesystems File

Purpose
Centralizes file system characteristics.

Description
A file system is a complete directory structure, including a root (/) directory and any directories and
files beneath it. A file system is confined to a logical volume. All of the information about the file system

106 AIX Version 7.1: Files Reference

is centralized in the /etc/filesystems file. Most of the file system maintenance commands take their
defaults from this file. The file is organized into stanza names that are file system names and contents
that are attribute-value pairs specifying characteristics of the file system.

The filesystems file serves two purposes:

• It documents the layout characteristics of the file systems.
• It frees the person who sets up the file system from having to enter and remember items such as the

device where the file system resides, because this information is defined in the file.

Requirements:

1. Name and value pairs must have some form of indentation. For example, a space or a tab.
2. Blank spaces and comma characters are not allowed in the file system mount point. Commas are used

only as delimiters for multiple values to a name.
3. Do not place text before or after quotation marks. For example, dev=abc"/dev/fd0"def is not

allowed and will result in undefined behavior.

File System Attributes

Each stanza names the directory where the file system is normally mounted. The file system attributes
specify all the parameters of the file system. The attributes currently used are:

Attribute Description

account Used by the dodisk command to determine the file systems to be processed by the
accounting system. This value can be either the True or False value.

boot Used by the mkfs command to initialize the boot block of a new file system. This specifies
the name of the load module to be placed into the first block of the file system.

check Used by the fsck command to determine the default file systems to be checked. The True
value enables checking while the False value disables checking. If a number, rather than
the True value is specified, the file system is checked in the specified pass of checking.
Multiple pass checking, described in the fsck command, permits file systems on different
drives to be checked in parallel.

dev Identifies, for local mounts, either the block special file where the file system resides or
the file or directory to be mounted. System management utilities use this attribute to map
file system names to the corresponding device names. For remote mounts, it identifies
the file or directory to be mounted.

free This value can be either true or false. Obsolete and ignored.

Files Reference 107

Attribute Description

mount Used by the mount command to determine whether this file system should be mounted
by default. The possible values of the mount attribute are:
automatic

Automatically mounts a file system when the system is started. Unlike the true value,
filesystems which are mounted with the automatic value are not mounted with the
mount all command or unmounted with the unmount all command. By default,
the '/', '/usr', '/var', and '/tmp' filesystems use the automatic value.

false
This file system is not mounted by default.

readonly
Mounts a file system as a read-only file system.

removable
Mounts a file system as a removable file system. While open files are on it, a
removable mounted file system works the same as a normally mounted file system.
However, when no files are open, and no process has a current directory on the file
system, all of the file system disk buffers in the file system are written to the medium,
and the operating system cannot access the file system.

true
This file system is mounted by the mount all command. It is unmounted by the
unmount all command. The mount all command is issued during system initialization
to mount automatically all such file systems.

nodename Used by the mount command to determine which node contains the remote file system.
If this attribute is not present, the mount is a local mount. The value of the nodename
attribute should be a valid node nickname. This value can be overridden with the mount
-n command.

options Comma-separated list of keywords that have meaning specific to a file system type. The
options are passed to the file system at mount time.

size Used by the mkfs command for reference and to build the file system. The value is the
number of 512-byte blocks in the file system.

type Used to group related mounts. When the mount -t String command is issued, all of the
currently unmounted file systems with a type attribute equal to the String parameter are
mounted.

vfs Specifies the type of mount. For example, vfs=nfs specifies the virtual file system being
mounted is an NFS file system.

vol Used by the mkfs command when initializing the label on a new file system. The value is a
volume or pack label using a maximum of 6 characters.

log The LVName must be the full path name of the filesystem logging logical volume name to
which log data is written as this file system is modified. This is only valid for journaled file
systems.

Examples
The following is an example of a typical /etc/filesystems file:

Note: Modifying this file can cause several effects to file systems.

*
* File system information
*
default:
 vol = "OS"
 mount = false
 check = false

108 AIX Version 7.1: Files Reference

/:
 dev = /dev/hd4
 vol = "root"
 mount = automatic
 check = true
 log = /dev/hd8

/home:
 dev = /dev/hd1
 vol = "u"
 mount = true
 check = true
 log = /dev/hd8

/home/joe/1:
 dev = /home/joe/1
 nodename = vance
 vfs = nfs

/usr:
 dev = /dev/hd2
 vol = "usr"
 mount = true
 check = true
 log = /dev/hd8

/tmp:
 dev = /dev/hd3
 vol = "tmp"
 mount = true
 check = true
 log = dev/hd8

Note: The asterisk (*) is the comment character used in the /etc/filesystems file.

Files

Item Description

/etc/filesystems Lists the known file systems and defines their characteristics.

/etc/vfs Contains descriptions of virtual file system types.

Related reference
backup File
Related information
backup command
fsck command
mkfs command
umount command
Files

Foreign File for BNU

Purpose
Logs contact attempts from unknown systems.

Description
The /var/spool/uucp/.Admin/Foreign file lists access attempts by unknown systems. The /usr/sbin/
uucp/remote.unknown shell script appends an entry to the Foreign file each time a remote computer
that is not listed in the local /etc/uucp/Systems file attempts to communicate with that local system.

Someone with root user authority can customize entries in the Foreign file to fit the needs of a specific
site by modifying the remote.unknown shell script.

Files Reference 109

Examples
This is a sample entry in the Foreign file:

Wed Sep 20 20:38:22 CDT 1989: call from the system merlin

System merlin, which is not listed in the /etc/uucp/Systems file, attempted to log in September 20 at
20:38 hours (10:38 p.m.). BNU did not allow the unknown system to log in.

Files

Item Description

/var/spool/uucp/.Admin/Foreign Specifies the path of the Foreign file.

/etc/uucp/Permissions Describes access permissions for remote
systems.

/etc/uucp/Systems Describes accessible remote systems.

/usr/sbin/uucp/remote.unknown Records contacts from unknown systems in the
Foreign file.

/var/spool/uucp/.Admin directory Contains BNU administrative files.

Related information
uucp command
uudemon.cleanu command
uux command
cron command
uucico command
uuxqt command
BNU File and Directory Structure
BNU maintenance

.forward File

Purpose
Automatically forwards mail as it is received.

Description
When mail is sent to a local user, the sendmail command checks for the $HOME/.forward file. The
$HOME/.forward file can contain one or more addresses or aliases. If the file exists, the message is not
sent to the user. The message is sent to the addresses or aliases in the .forward file. For example, if user
mickey's .forward file on host disney contains:

donald@wonderful.world.disney
pluto

Copies of messages sent to mickey are forwarded to user donald on host wonderful.world.disney,
and to pluto on the local system.

Note:

1. The addresses listed in the .forward file can be a comma-separated list of addresses; for example:

donald@wonderful.world.disney, pluto

110 AIX Version 7.1: Files Reference

2. Addresses can specify programs. The following example forwards a message to the vacation
command:

mickey, "|/usr/bin/vacation mickey"

This example sends a message to user mickey and to the vacation program.
3. This file must be created by the user in the $HOME directory.

To stop forwarding mail, use the rm command to remove the .forward file from your home directory:

rm .forward

The .forward file is deleted. Incoming mail is delivered to the user's system mailbox.

Files

Item Description

$HOME/.forward Specifies the path of the file.

Related information
mail command
vacation command
Aliases and distribution lists
Mail program customization options

ftpaccess.ctl File

Purpose
Specifies FTP host access parameters.

Description
The /etc/ftpaccess.ctl file is searched for lines that start with allow:, deny:, readonly:, writeonly:,
readwrite:, useronly:, grouponly:, herald: and/or motd:. Other lines are ignored. If the file doesn't
exist, then ftp access is allowed for all hosts. The allow: and deny: lines are for restricting host access.
The readonly:, writeonly: and readwrite: lines are for restricting ftp reads (get) and writes (put). The
useronly: and grouponly: lines are for defining anonymous users. The herald: and motd: lines are for
multiline messages before and after login.

Syntax
The syntax for all lines in /etc/ftpaccess.ctl are in the form:

keyword: value, value, ...

where one can specify one or more values for every keyword. One can have multiple lines with the same
keyword. The lines in /etc/ftpaccess.ctl are limited to 1024 characters and anything greater than 1024
characters will be ignored. The syntax for the allow: and deny: lines are:

allow: host, host, ... dent: host, host, ...

If an allow: line is specified, than only the hosts listed in all the allow: lines are allowed ftp access. All
other hosts will be refused ftp access. If there are no allow: line(s), then all hosts will be given ftp access
except those hosts specified in the deny: line(s). The host can be specified as either a hostname or IP
address.

Files Reference 111

The syntax for the readonly:, writeonly: and readwrite: lines are:

readonly: dirname, dirname, ... writeonly: dirname, dirname, ... readwrite: dirname,
dirname, ...

The readonly: lines list the readonly directories and the writeonly: lines list the writeonly directories. If
one wants read access in a writeonly directory or if one wants write access in a readonly directory, then
access is denied. All other directories are granted access except when a readwrite: line(s) is specified. If
a readwrite: line(s) is specified, only directories listed in the readwrite: line and/or listed in the readonly:
line are granted access for reading, and only directories listed in the readwrite: line and/or listed in the
writeonly: line are granted access for writing. Also, these lines can have a value of ALL or NONE.

The syntax for the useronly: and grouponly: lines are:

useronly: username, username, ... grouponly: groupname, groupname, ...

The username is from /etc/passwd and the groupname is from /etc/group. The useronly: line defines an
anonymous user. The grouponly: line defines a group of anonymous users. These anonymous users are
similar to the user anonymous in that ftp activity is restricted to their home directories.

The syntax for the herald: and motd: lines are:

 herald: path motd: on|off

The path is the full path name of the file that contains the multiline herald that will be displayed before
login. When the motd: line has a value of ON, then the $HOME/motd file contains the multiline message
that will displayed after login. If the user is a defined anonymous user, then the /etc/motd file contains
the multiline message that will displayed after login. (Note that /etc/motd is in the anonymous user's
chroot'ed home directory). The default for the motd: line is OFF.

/etc/group File

Purpose
Contains basic group attributes.

Description
The /etc/group file contains basic group attributes. This is an ASCII file that contains records for system
groups. Each record appears on a single line and is the following format:

Name:Password:ID:User1,User2,...,Usern

You must separate each attribute with a colon. Records are separated by new-line characters. The
attributes in a record have the following values:

Attribute Description

Name Specifies a group name that is unique on the system. See the
mkgroup command for information on the restrictions for naming
groups.

Password Not used. Group administrators are provided instead of group
passwords. See the /etc/security/group file for more information.

ID Specifies the group ID. The value is a unique decimal integer string.
The maximum value is 4,294,967,295 (4 GB).

User1,User2,...,Usern Identifies a list of one or more users. Separate group member
names with commas. Each user must already be defined in the
local database configuration files.

112 AIX Version 7.1: Files Reference

Do not use a : (colon) in any of the attribute fields. For an example of a record, see the "Examples"
section . Additional attributes are defined in the /etc/security/group file.

Note: Certain system-defined group and user names are required for proper installation and update of
the system software. Exercise care before replacing the /etc/group file to ensure that no system-supplied
groups or users are removed.

You should access the /etc/group file through the system commands and subroutines defined for this
purpose. You can use the following commands to manage groups:

• chgroup
• chgrpmem
• chuser
• lsgroup
• mkgroup
• mkuser
• rmgroup

To change the Name parameter, you first use the mkgroup command to add a new entry. Then, you use
the rmgroup command to remove the old group. To display all the attributes in the file, use the lsgroup
command.

You can use the chgroup, chgrpmem, or chuser command to change all user and group attributes. The
mkuser command adds a user whose primary group is defined in the /usr/lib/security/mkuser.default
file and the rmuser command removes a user. Although you can change the group ID with the chgroup
command, this is not recommended.

The following table lists all the possible group names and what functions the group controls.

Group name Description

system This group is used for configuration and maintenance for hardware
and software.

printq This group is used for managing queuing functions such as, enable,
disable, qadm, and qpri.

security This group is used for handling password and limits control.

adm This group is used for monitoring functions such as, performance,
cron, and accounting.

staff This group is the default group assigned to all new users.

audit This group is used for auditing.

shutdown This group allows users access to the shutdown command.

bin This group is used for the system internal group.

sys This group is used for the system internal group.

uucp This group manages the UUCP system.

mail This group allows users to access the mail command.

cron This group allows users to access the crontab command.

nobody This group is for user that do not owns any files and can be used as
the default user for unprivileged operations.

kmem This group allows users virtual memory read and write access such
as, /dev/mem, /dev/port, and /dev/kmem.

log This group allows users access to log files in /var/log.

lp This group allows users access to the lp command.

Files Reference 113

Group name Description

network This group allows users access to use the NetworkManager
functions such as NM-Applet and KNetwrokmanager.

power This group allows users access to suspend power.

root This group allows users access to all system functions.

tty This group allows users access to serial and USB devices.

users This group is the default users group. This is the recommended
group name you should use for users.

Security
Access Control: This file should grant read (r) access to all users and grant write (w) access only to the
root user and members of the security group.

Examples
A typical record looks like the following example for the staff group:

staff:!:1:shadow,cjf

In this example, the GroupID parameter is 1 and the users are defined to be shadow and cjf.

Files

Item Description

/etc/group Contains basic group attributes.

/etc/security/group Contains the extended attributes of groups.

/etc/passwd Contains the basic attributes of users.

/etc/security/passwd Contains password information.

/etc/security/user Contains the extended attributes of users.

/etc/security/environ Contains the environment attributes of users.

/etc/security/limits Contains the process resource limits of users.

/etc/security/audit/config Contains audit system configuration information.

Related information
chgroup command
mkgroup command
setgroups command
getgroupattr subroutine
File and system security

/etc/security/group File

Purpose
Contains extended group attributes.

114 AIX Version 7.1: Files Reference

Description
The /etc/security/group file contains extended group attributes. This is an ASCII file that contains a
stanza for each system group. Each stanza is identified by a group name from the /etc/group file followed
by a : (colon) and contains attributes in the form Attribute=Value. Each attribute pair ends with a new-line
character as does each stanza. The file supports a default stanza. If an attribute is not defined for a group,
the default value for the attribute is used.

A stanza can contain one or more of the following attributes:

Attribute Description

adms Defines the group administrators. Administrators are users who can perform
administrative tasks for the group, such as setting the members and
administrators of the group. This attribute is ignored if admin = true, since only
the root user can alter a group defined as administrative. The value is a list of
comma-separated user login-names. The default value is an empty string.

admin Defines the administrative status of the group. Possible values are:
true

Defines the group as administrative. Only the root user can change the
attributes of groups defined as administrative.

false
Defines a standard group. The attributes of these groups can be changed by
the root user or a member of the security group. This is the default value.

dce_export Allows the DCE registry to overwrite the local group information with the DCE
group information during a DCE export operation. Possible values are:
true

Local group information will be overwritten.
false

Local group information will not be overwritten.

efs_initialks_mode Defines the initial mode of the group keystore. You can specify the following
values:
guard

When a group keystore is in root guard mode, the keys contained in this
keystore can be retrieved only with the correct access key of this keystore.

admin
When a keystore is in root admin mode, the keys contained in this keystore
can be retrieved with the EFS (Encrypted File System) admin key.

Notes:

• This attribute is valid only if the system is EFS-enabled.
• This attribute defines the initial mode of the keystore. Changing this value

using the chuser command, the chgroup command, or the chsec command, or
with manual editing, does not change the mode of the keystore. This attribute
is used only when the keystore is created and is not used again until the
keystore is deleted and a new one is created. To change the keystore mode,
use the efskeymgr command.

Files Reference 115

Attribute Description

efs_keystore_access Defines the group keystore location. You can specify the following values:
none

There is no keystore.
file

Keystore is stored in the /var/efs/groups/ directory.

Note: This attribute is valid only if the system is EFS-enabled.

efs_keystore_algo Defines the algorithm that is used to generate the group private key. You can
specify the following values:

• RSA_1024
• RSA_2048
• RSA_4096

Notes:

• This attribute is valid only if the system is EFS-enabled.
• Changing the value of this attribute using the chuser command, the chgroup

command, or the chsec command, or with manual editing, does not regenerate
the private key. This attribute is used only when the keystore is created and
is not used again until the keystore is deleted and a new one is created. To
change the algorithm for the keys, use the efskeymgr command.

projects Defines the list of projects that the user's processes can be assigned to. The
value is a list of comma-separated project names and is evaluated from left to
right. The project name should be a valid project name as defined in the system.
If an invalid project name is found in the list, it will be reported as an error by the
group commands.

For a typical stanza, see the "Examples" section:

You should access the /etc/security/group file through the system commands and subroutines defined
for this purpose. You can use the following commands to manage groups:

• mkgroup
• chgroup
• chgrpmem
• lsgroup
• rmgroup

The mkgroup command adds new groups to the /etc/group file and the /etc/security/group file. Use this
command to create an administrative group. You can also use the mkgroup to set the group administrator.

Use the chgroup command to change all the attributes. If you are an administrator of a standard group,
you can change the adms attribute for that group with the chgrpmem command.

The lsgroup command displays both the adms and the admin attributes. The rmgroup command
removes the entry from both the /etc/group file and the /etc/security/group file.

To write programs that affect attributes in the /etc/security/group file, use the subroutines listed in
Related Information.

Security
Access Control: This file should grant read (r) access to the root user and members of the security group,
and to others as permitted by the security policy for the system. Only the root user should have write (w)
access.

116 AIX Version 7.1: Files Reference

Auditing Events:

Event Information

S_GROUP_WRITE file name

Examples
A typical stanza looks like the following example for the finance group:

finance:
 admin = false
 adms = cjf, scott, sah

Files

Item Description

/etc/security/group Specifies the path to the file.

/etc/group Contains the basic attributes of groups.

/etc/passwd Contains the basic attributes of users.

/etc/security/passwd Contains password information.

/etc/security/user Contains the extended attributes of users.

/etc/security/environ Contains the environment attributes of users.

/etc/security/limits Contains the process resource limits of users.

/etc/security/audit/config Contains audit system configuration information.

/etc/security/lastlog Contains last login information.

Related information
chgroup command
rmgroup command
enduserdb subroutine
getgroupattr subroutine
File and system security

Workload Manager groupings File

Purpose
Defines attribute value groupings along with their associated values.

Description
The attribute value groupings file is in the configuration directory. It resides along with the rules file in the
SuperConf and SubConf directories.

The attribute value groupings file is formatted as a flat ASCII file list with attribute grouping names
followed by an equal (=) sign and the list of all attribute values in the group, separated by commas. The
list of attribute values will be terminated by a carriage return. The list of attribute values can be continued
onto multiple lines by preceding carriage returns with a backslash. The only whitespace that is significant
in the groupings file is a carriage return. Other whitespace characters are removed during file parsing.
Comments are lines preceded by an asterisk.

Each attribute grouping definition is limited to WLM_GROUPING_LEN characters. The attribute grouping
name and the list of attribute values cannot be an empty string.

Files Reference 117

Use of Attribute Groupings

Attribute groupings can be used as element of a selection criteria in the rules file for superclasses or
subclasses. The attribute grouping name must be preceded by a dollar sign ($) and will be replaced by the
list of all attribute values associated with itself. No special character (*,[,],-,?) except exclusion character '!'
can be applied to an attribute grouping name. Attribute groupings cannot been used in the class field.

"rules" files:
* class resvd user group application type tag
classA - $trusted,!$nottrusted - - - -
classB - - - $shell,!/bin/zsh - -
classC - - $rootgroup -

Syntax
The syntax of the attribute values is the same as in the rules file, including potential wildcards ([,],*,-,?,+).
The use of the exclusion character '!' in the attribute values list is not allowed. This restriction is necessary
to avoid a confusing interpretation of an attribute value grouping used in the class assignement file
preceded by an exclusion character. Syntax is checked only when attribute groupings are used (rules
processing during a configuration load or explicit check with wlmcheck command). The groupings file is
not mandatory. By default, no attribute grouping is defined. Attribute value groupings of a groupings file
are defined and usable only in the scope of their configuration directory (SuperConfDir or SubConfDir
level). If it exists, the groupings file is copied in the .running directory when the configuration is loaded
into the kernel as it is done with other configuration files. No command interface is provided to update the
attribute groupings file.

Example
"groupings" file:
* attribute groupings definition
* will be used in the rules file
trusted = user[0-9][0-9],admin*
nottrusted = user23, user45
shell=/bin/?sh,\
 /bin/sh,\
 /bin/tcsh
rootgroup=system,bin,sys,security,cron,audit

Files
Item Description

$HOME/.groupings Defines attribute value groupings along with their associated values.

Related reference
Workload Manager rules File

hostmibd.conf File

Purpose
Defines the configuration parameters for hostmibd dpi2 sub-agent.

Description
The hostmibd.conf file provides the configuration information for the hostmibd dpi2 sub-agent. This file
can be changed while the hostmibd dpi2 sub-agent is running. If the refresh command is issued, the
hostmibd dpi2 sub-agent will reread this configuration file. The hostmibd dpi2 sub-agent must be under

118 AIX Version 7.1: Files Reference

System Resource Control (SRC) for the refresh command to force the reread. To accomplish the reread,
as root user, run:

refresh -s hostmibd

Keywords

The directives are specified in the form of <keyword>=<value>. The keyword is case-insensitive. The
value passed is also case-sensitive.

LogFilename
The name of the most recent log file. Less recent log files have the number 1 to (n - 1) appended to
their names. The larger the number, the less recent the file.

logFileSize
The Size of log files in K bytes. Maximum size of a log file. When the size of the most recent log file
reaches this value, it is renamed and a new log file is created.

numLogFiles
The number of log files desired. The maximum value for numLogFiles is 4. A new file is created when
the size of the log file is equal or more than the size specified by the keyword logFileSize. When the
number of log files reaches the numLogFiles the log files start rotating.

requestTimeout
The timeout in seconds that the snmpd agent will wait for a response from this sub-agent. The default
value is 60 seconds.

tracelevel
The tracing/debug level to do.

 0 = Least level
 8 = DPI level 1
 16 = DPI level 2
 32 = Internal level 1
 64 = Internal level 2
 128 = Internal level 3

Add the numbers for multiple trace levels.
updateInterval

The interval, in seconds, that the sub-agent will use to refresh its internal table. The default value is
30 seconds.

Example
logFileName=/usr/tmp/hostmibd.log
logFileSize=0
numLogFiles=0
requestTimeout=180
tracelevel=0
updateInterval=120

Files
Item Description

/etc/hostmibd.conf Defines the configuration parameters for hostmibd dpi2 sub-agent.

Related information
hostmibd command
snmpd command
refresh command

Files Reference 119

image.data File

Purpose
Contains information on the image installed during the Base Operating System installation process.

Description
The image.data file contains information describing the image installed during the BOS installation
process. This information includes the sizes, names, maps, and mount points of logical volumes and
file systems in the root volume group. The mkszfile command generates the image.data file. It is not
recommended that the user modify the file. Changing the value of one field without correctly modifying
any related fields can result in a failed installation and a corrupted backup image. The only exception
to this recommendation is the SHRINK field, which the user may modify to instruct the BOS installation
routines to create the file systems as specified in the image.data file or to create the file systems only as
large as is required to contain all the data in the file system.

The BOS installation process also takes input from the image.data file regarding defaults for the machine
being installed. Any default values in the image.data file will override values obtained when the BOS
installation queries the hardware topology and existing root volume group. The image.data file resides in
the / directory.

This file is part of System Backup and BOS Install Utilities.

The image.data file is arranged in stanza format. Each stanza contains one or more fields. These stanzas
include the following:

• image_data
• logical_volume_policy
• ils_data
• vg_data
• source_disk_data
• lv_data
• fs_data
• post_install_data
• post_restvg

image_data Stanza

Field Description

IMAGE_TYPE Identifies the format of the image. Examples include backup file
format (bff) and tar format.

DATE_TIME Contains the date and time that the image was taken.

UNAME_INFO Identifies the system and system level data associated with the
image.

PRODUCT_TAPE Specifies whether the image is a product image or a mksysb image.
The possible field values are yes or no.

USERVG_LIST Lists the user volume groups defined in the system.

OSLEVEL Identifies the version.release.maintenance.fix level of the system at
the time the image was taken

Note: The PRODUCT_TAPE and USERVG_LIST fields are only present for the ROOTVG volume group.

logical_volume_policy Stanza

120 AIX Version 7.1: Files Reference

Field Description

SHRINK Instructs BOS install routines to create the file systems as they are
specified in the image.data file or create the smallest file systems
required to contain all the data in the file system. The field value
specified can be yes (shrink file systems) or no (use image.data file
specifications).

EXACT_FIT The field value specified can be yes or no. If yes is specified, the
disk information listed in the source_disk_data stanza must match
the actual disks found on the target machine during installation.

ils_data Stanza

Field Description

LANG Sets the language used by the BOS Install program.

vg_data Stanza

Note:

1. The image.data file can contain only one vg_data stanza.

Field Description

VGNAME Specifies the volume group name.

PPSIZE Specifies the size of the physical partition for the volume group.

VARYON Activates the volume group and all associated logical volumes so
that the volume group is available for use. The field value can be yes
or no.

VG_SOURCE_DISK_LIST Lists the disks in the volume group.

QUORUM If set to 1, indicates the volume group is to be automatically varied
off after losing its quorum of physical volumes.

CONC_AUTO Indicates a volume group is to be varied on automatically in
concurrent mode.

BIGVG Indicates a volume group is to be created as a big vg format volume
group. This can accommodate up to 128 physical volumes and 512
logical volumes.

TFACTOR Indicates a change in the limit of the number of physical partitions
per physical volume.

ENH_CONC_CAPABLE Indicates a volume group is enhanced concurrent capable.

source_disk_data Stanza

Note: The image.data file contains one source_disk_data stanza for each disk in the root volume group.

Field Description

PVID Specifies the 16 digit physical volume identifier for the disk.

CONNECTION Specifies the combination of the parent and the connwhere
attribute associated with a disk. The format for this field is:
parent attribute//connwhere attribute.

LOCATION Specifies the locations of the disks in the root volume group.

SIZE_MB Specifies the size, in MB, of the disks in the root volume group.

HDISKNAME Specifies the names of the disks in the root volume group.

Files Reference 121

lv_data Stanza

Note: The image.data file contains one lv_data stanza for each logical volume created on the system.

Field Description

VOLUME_GROUP Specifies the logical volume group name. Volume group names must
be unique, system wide, and can range from 1 to 15 characters.

LV_SOURCE_DISK_LIST Lists the disks in the logical volume.

LV_IDENTIFIER Contains the identifier of the logical volume.

LOGICAL_VOLUME Contains the name of the logical volume.

PERMISSION Sets the access permissions. The field value can be read/write or
read only.

VG_STAT Indicates the state of the volume group. If the volume group is
activated with the varyonvg command, the value of the VG_STAT
field is either active/complete or active/partial. An active/
complete field value indicates that all physical volumes are active,
while an active/partial field value indicates that all physical
volumes are not active. If the volume group is not activated with the
varonvg command, the VG_STAT field value is inactive.

TYPE Describes the logical volume type.

MAX_LPS Sets the maximum number of logical partitions within the logical
volume.

COPIES Specifies the number of physical partitions created for each logical
partition during the allocation process.

LPS Specifies the number of logical partitions currently in the logical
volume.

STALE_PPs Specifies the number of physical partitions in the logical volume that
are not current.

INTER_POLICY Specifies the inter-physical allocation policy. The field value can be
minimum or maximum.

INTRA_POLICY Specifies the intra-physical allocation policy. The possible field
values are either middle, center, or edge.

MOUNT_POINT Specifies the file-system mount point for the logical volume, if
applicable.

MIRROR_WRITE_CONSISTENCY Specifies mirror-write consistency state. The field value can be off
or on.

LV_SEPARATE_PV Specifies a yes, no, or super field value for strict allocation. A yes
value for strict allocation states that no copies for a logical partition
are allocated on the same physical volume. A no value for strict
allocation (non-strict) states that at least one occurrence of two
physical partitions belong to the same logical partition. A super
value for strict allocation (super strictness) states that no partition
from one mirror copy may reside on the same disk as another mirror
copy.

LV_STATE Describes the state of the logical volume. An Opened/stale
value indicates the logical volume is open but contains physical
partitions that are not current. An Open/syncd value indicates the
logical volume is open and its physical partitions are current, or
synchronized. A Closed value indicates the logical volume has not
been opened.

122 AIX Version 7.1: Files Reference

Field Description

WRITE_VERIFY Specifies the field value of the write verify state as on or off.

PP_SIZE Provides the size physical partition.

SCHED_POLICY Specifies a sequential or parallel scheduling policy.

PP Specifies the number of physical partitions currently in the logical
volume.

BB_POLICY Specifies the bad block relocation policy.

RELOCATABLE Indicates whether the partitions can be relocated if a reorganization
of partition allocation takes place. The field value can be yes or no.

UPPER_BOUND Specifies the maximum number of physical volumes for allocation.

LABEL Specifies the label field for the logical volume.

MAPFILE Provides the full path name to a map file to be used in creating the
logical volume.

LV_MIN_LPS Specifies the minimum size of the logical volume to use when
shrinking the logical volume.

STRIPE_WIDTH Specifies the number of physical volumes being striped across.

STRIPE_SIZE Specifies the number of bytes per stripe. Stripe size multiplied by the
number of disks in the array equals the stripe size. The field value
must be a power of two, between 4KB and 128MB; for example, 4KB,
8KB, 16KB, 32KB, 64KB, 128KB, 256KB, 512KB, 1MB, 2MB, 4MB, 8MB,
16MB, 32MB, 64MB, or 128MB.

SERIALIZE_IO Turns on/off serialization of overlapping IOs. If serialization is turned
on, then overlapping IOs are not allowed on a block range and
only a single IO in a block range is proccessed at any one time.
Most applications (file systems and databases) do serialization, so
serialization should be turned off.

fs_data Stanza

Field Description

FS_NAME Specifies the mount point of the file system.

FS_SIZE Specifies the size, in 512-byte blocks, of the file system.

FS_MIN_SIZE Specifies the minimum size required to contain the files of the
file system. This size is used when the SHRINK field in the
logical_volume_policy stanza has a field value of yes.

FS_LV Provides the logical volume name. The name must contain the /dev/
prefix. An example of an appropriate name is /dev/hd4.

FS_FS Specifies the fragmentation size of the system. This value is
optional.

FS_NBPI Specifies the number of bytes per i-node. This value is optional.

FS_COMPRESS Designates whether the file system should be compressed or not.
The field value can be LZ, which compresses the file system, or the
no field value.

FS_BF Enables the file system for files greater than 2 GB. The possible
values are true or false.

Files Reference 123

Field Description

FS_AGSIZE Specifies the allocation group size. The possible values are 8, 16, 32,
or 64. The allocation group size is specified in units of megabytes.

FS_JFS2_BS Specifies the file system block size in bytes, 512, 1024, 2048, or
4096 bytes.

FS_JFS2_SPARSE Specifies when files are created with holes. The enhanced journaled
file system (JFS2) allocates disk blocks for those holes and fills the
holes with 0s.

FS_JFS2_INLINELOG Specifies that the journal log for the enhanced journaled file system
(JFS2) is within the file system.

FS_JFS2_SIZEINLINELOG Specifies the size, in megabytes, for the optional inline journal log.
The default is the size of the enhanced journaled file system (JFS2)
divided by 256.

FS_JFS2_EFS Specifies whether a file system must be created as an Encrypted File
System (EFS).

FS_JFS2_EAFORMAT Specifies whether a file system should be created with extended
attributes.

FS_JFS2_QUOTA Specifies whether file and block-usage statistics should be
maintained and whether limits should be enforced by the file
system.

FS_JFS2_DMAPI Specifies whether a file system is managed.

FS_JFS2_VIX Specifies whether a file system can allocate i-node smaller than the
default.

post_install_data Stanza

Field Description

BOSINST_FILE Provides the full path name of a file or command to execute after BOS
install completes.

post_restvg Stanza

Field Description

RESTVG_FILE Specifies the full path name of the file or command to execute after the
restvg process completes.

Note: The post_install_data stanza exists for the ROOTVG volume group and the post_restvg stanza is
present for other volume groups.

Related information
mkszfile command
mkfs command
mklv command
lslv command

/etc/security/.ids File

Purpose
Contains standard and administrative user IDs and group IDs.

124 AIX Version 7.1: Files Reference

Description
The /etc/security/.ids file keeps a count so that every UID (userid) and GID (groupid) has it's own
unique number. It is not recommended that you edit this file unless it is absolutely necessary.

Example
7 201 11 200

The first number in the example (7) will be the User ID of the next administrative user created on the
system. The second number (201) will be the User ID of the next regular user created on the system.
The third number (11) is the next administrative Group ID (GID) that will be used when an administrative
user is created on the system. The fourth number (200) is the next regular user GID used when a user is
created.

Location
Item Description

/etc/security/.ids Location of the .ids file.

Related information
mkusr command
mkgroup command

INed Files

Purpose
Contains programs and data used by the INed program.

Description
The /usr/lib/INed directory contains a number of files and subdirectories used internally by the INed
program. The /usr/lib/nls/msg/$LANG directory contains files of translatable text. This directory also
contains other files that are not used by INed.

In the following file names, $LANG is the value of the lib/Languageenvironment variable, which indicates
the national language currently being used.

Item Description

bin Directory containing programs called by the
editor to perform various functions. Do not run
these programs from the command line.

FATAL.LOG Log of error messages the editor records when it
encounters a system problem.

helpers Directory containing programs called by the
editor to help work on certain kinds of data. Files
ending in .x or named x use the helper named
x.help. Helpers typically supply the functions
listed on the INed local menus.

forms Directory containing forms used by the INed
program. Files ending in .x or named x use
the x.ofm form. The forms are binary files used
directly by the editor in generating displays for
structured files.

Files Reference 125

Item Description

/usr/lib/nls/msg/$LANG/keys.map File displayed when the Help command key (F1)
is pressed and the keymap option is selected.

termcap Directory containing the files used by the editor
to read input from the terminals and write output
to the terminals. The def.trm file is the readable
structured file, and the terms.bin file is the
compressed version.

/usr/lib/nls/msg/$LANG Directory containing help message files and other
files containing translated text used by the INed
editor. This directory also contains other files not
used by INed.

Files

Item Description

/usr/lib/INed directory Contains files and subdirectories used by the
INed program.

/usr/lib/nls/msg/$LANG directory Contains files of translatable text.

Related information
at command
format command
nl command
sort command

.info File

Purpose
Stores configuration information used by the Network Install Manager (NIM).

Description
The .info file contains a series of Korn shell variable assignments used by NIM. The .info file is created by
NIM for each client. During network boot, the rc.boot program uses several of these variables to control
processing.

If a client is initialized by NIM, the .info file is copied into that client's /etc directory as the /etc/niminfo
file. The nimclient command uses the /etc/niminfo file to communicate with the NIM master server.

Note: The following variable groups are based upon the function of the variables that they contain.
The .info file itself is not divided into categories.

Variables used directly by the rc.boot program

Variable Description

ROUTES Contains all the routing information the client needs in order to access any allocated
NIM resource. This information is presented as a series of space-separated stanzas,
each in the following format:

DestinationIPAddress:DestinationSubnet :GatewayIPAddress

126 AIX Version 7.1: Files Reference

Variable Description

SPOT Specifies the location of the shared product object tree (SPOT) to be used during the
boot process. This variable contains the host and pathname of the client's SPOT in the
following format:

HostName:SPOTDirectory

RC_CONFIG Specifies the file name of the rc.config script to use.

NIM_HOSTS Provides information used to construct an /etc/hosts file for the client. The value is
formatted as follows:

IPAddress:HostName IPAddress:HostName ...

Variables used by any rc.config script

Variable Description

ROOT Specifies the host and path name of the client's root directory in the following format:

HostName:RootDirectory

MOUNT
S

Contains a series of space-separated stanzas, each composed of a remote directory
specification and the point where it should be mounted. The stanzas are in the following
format:

HostName:RemoteDirectory:LocalDirectory

Variables used by the nim commands

Variable Description

NIM_NAME Designates the name of the client's NIM machines object.

NIM_CONFIGURATION Specifies the client's NIM configuration machine type.

NIM_MASTER Specifies the IP address of the NIM master server.

NIM_MASTER_PORT Specifies the port number to use for client communications.

NIM_REGISTRATION_PORT Specifies the port number to use for client registration.

NIM_MAX_RETRIES Specifies the maximum number of retries for communication
attempts with the nimesis daemon.

NIM_MAX_DELAY Sets the amount of time to wait between retries for communication
with the nimesis daemon.

Variables used by BOS Install

The following variables are used by NIM to control Base Operating System (BOS) installation operation:

Variable Description

NIM_BOSINST_DATA Specifies the RAM file system path name to the bosinst.data file to be used.
This variable has the following format:

Pathname

NIM_BOS_IMAGE Specifies the RAM file system path name to the BOS image.

NIM_CUSTOM Specifies the path name of the customization script to execute after BOS
installation.

Variables used by the rc.dd_boot Script

Files Reference 127

The rc.dd script uses the following variables to perform boot specific processing to create certain NIM
resources.

Variable Description

DTLS_PAGING_SIZE Contains the paging-space size that you specify. If you have not set the
paging space, the value is NULL and the rc.dd_boot script defaults to a
paging space twice that of the client's RAM space.

DTLS_LOCAL_FS Contains a list of acronyms specifying the filesystems to be created locally
on the client. The possible values are tmp and home.

Examples
The following is an example of a .info file:

#----------------Network Install
Manager---------
warning - this file contains NIM configuration information
and should only be updated by NIM
export NIM_NAME=dua
export NIM_CONFIGURATION=standalone
export NIM_MASTER_HOSTNAME=satu
export NIM_MASTER_PORT=1058
export NIM_REGISTRATION_PORT=1059
export RC_CONFIG=rc.bos_inst
export SPOT=tiga:/usr
export NIM_CUSTOM=/tmp/dua.script
export NIM_BOS_IMAGE=/SPOT
export NIM_BOS_FORMAT=master
export NIM_HOSTS=" 130.35.130.1:satu 130.35.130.3:tiga "
export MOUNTS=" tiga:/export/logs/dua:/var/adm/ras:dir
tiga:/export/nim/simages
:/SPOT/usr/sys/inst.images:dir
satu:/export/nim/scripts/dua.script:tmp/dua.script:file "

Related information
lsnim command
nim command
nimconfig command

inittab File

Purpose
Controls the initialization process.

Description
The /etc/inittab file supplies the script to the init command's role as a general process dispatcher.
The process that constitutes the majority of the init command's process dispatching activities is the /etc/
getty line process, which initiates individual terminal lines. Other processes typically dispatched by the
init command are daemons and the shell.

The /etc/inittab file is composed of entries that are position-dependent and have the following format:

Identifier:RunLevel:Action:Command

Note: The colon character (:) is used as a delimiter as well as a comment character. To comment out an
inittab entry, add : at the beginning of the entry. For example:

:Identifier:RunLevel:Action:Command

128 AIX Version 7.1: Files Reference

Each entry is delimited by a newline character. A backslash (\) preceding a newline character indicates the
continuation of an entry. There are no limits (other than maximum entry size) on the number of entries in
the /etc/inittab file. The maximum entry size is 1024 characters. The entry fields are:

Identifier
A string (one or more than one character) that uniquely identifies an object.

RunLevel
The run level in which this entry can be processed. Run levels effectively correspond to a configuration
of processes in the system. Each process started by the init command is assigned one or more run
levels in which it can exist. Run levels are represented by the numbers 0 through 9. For example, if
the system is in run level 1, only those entries with a 1 in the runlevel field are started. When you
request the init command to change run levels, all processes without an entry in the runlevel field
for the target run level receive a warning signal (SIGTERM). There is a 20-second grace period before
processes are forcibly terminated by the kill signal (SIGKILL). The runlevel field can define multiple
run levels for a process by selecting more than one run level in any combination from 0 through 9. If
no run level is specified, the process is assumed to be valid at all run levels.

There are three other values that appear in the runlevel field, even though they are not true run levels:
a, b, and c. Entries that have these characters in the runlevel field are processed only when the telinit
command requests them to be run (regardless of the current run level of the system). They differ
from run levels in that the init command can never enter run level a, b, or c. Also, a request for the
execution of any of these processes does not change the current run level. Furthermore, a process
started by an a, b, or c command is not killed when the init command changes levels. They are only
killed if their line in the /etc/inittab file is marked off in the action field, their line is deleted entirely
from /etc/inittab, or the init command goes into single-user mode.

Action
Tells the init command how to treat the process specified in the identifier field. The following actions
are recognized by the init command:
respawn

If the process does not exist, start the process. Do not wait for its termination (continue scanning
the /etc/inittab file). Restart the process when it dies. If the process exists, do nothing and
continue scanning the /etc/inittab file.

wait
When the init command enters the run level that matches the entry's run level, start the process
and wait for its termination. All subsequent reads of the /etc/inittab file while the init command
is in the same run level will cause the init command to ignore this entry.

once
When the init command enters a run level that matches the entry's run level, start the process,
and do not wait for its termination. When it dies, do not restart the process. When the system
enters a new run level, and the process is still running from a previous run level change, the
program will not be restarted. All subsequent reads of the /etc/inittab file while the init command
is in the same run level will cause the init command to ignore this entry.

boot
Process the entry only during system boot, which is when the init command reads the /etc/inittab
file during system startup. Start the process, do not wait for its termination, and when it dies, do
not restart the process. In order for the instruction to be meaningful, the run level should be the
default or it must match the init command's run level at boot time. This action is useful for an
initialization function following a hardware reboot of the system.

bootwait
Process the entry the first time that the init command goes from single-user to multi-user state
after the system is booted. Start the process, wait for its termination, and when it dies, do not
restart the process. If the initdefault is 2, run the process right after boot.

powerfail
Execute the process associated with this entry only when the init command receives a power fail
signal (SIGPWR).

Files Reference 129

powerwait
Execute the process associated with this entry only when the init command receives a power fail
signal (SIGPWR), and wait until it terminates before continuing to process the /etc/inittab file.

off
If the process associated with this entry is currently running, send the warning signal (SIGTERM),
and wait 20 seconds before terminating the process with the kill signal (SIGKILL). If the process
is not running, ignore this entry.

ondemand
Functionally identical to respawn, except this action applies to the a, b, or c values, not to run
levels.

initdefault
An entry with this action is only scanned when the init command is initially invoked. The init
command uses this entry, if it exists, to determine which run level to enter initially. It does this by
taking the highest run level specified in the runlevel field and using that as its initial state. If the
runlevel field is empty, this is interpreted as 0123456789; therefore, the init command enters run
level 9. Additionally, if the init command does not find an initdefault entry in the /etc/inittab file,
it requests an initial run level from the user at boot time.

sysinit
Entries of this type are executed before the init command tries to access the console before
login. It is expected that this entry will only be used to initialize devices on which the init
command might try to ask the run level question. These entries are executed and waited for
before continuing.

Command
A shell command to execute. The entire command field is prefixed with exec and passed to a forked
sh as sh -c exec command. Any legal sh syntax can appear in this field. Comments can be inserted
with the # comment syntax.

The getty command writes over the output of any commands that appear before it in the inittab
file. To record the output of these commands to the boot log, pipe their output to the alog -tboot
command.

The stdin, stdout and stdferr file descriptors may not be available while init is processing inittab
entries. Any entries writing to stdout or stderr may not work predictably unless they redirect their
output to a file or to /dev/console.

The following commands are the only supported method for modifying the records in the /etc/inittab file:

Comma
nd

Purpose

chitab Changes records in the /etc/inittab file.

lsitab Lists records in the /etc/inittab file.

mkitab Adds records to the /etc/inittab file.

rmitab Removes records from the /etc/inittab file.

Examples
1. To start the ident process at all run levels, enter:

ident:0123456789:Action:Command

2. To start the ident process only at run level 2, enter:

ident:2:Action:Command

3. To disable run levels 0, 3, 6-9 for the ident process, enter:

130 AIX Version 7.1: Files Reference

ident:1245:Action:Command

4. To start the rc command at run level 2 and send its output to the boot log, enter:

rc:2:wait:/etc/rc 2>&1 | alog -tboot >
/dev/console

Files

Item Description

/etc/inittab Specifies the path of the inittab file.

/usr/sbin/getty Indicates terminal lines.

Related information
chitab command
init command
lsitab command
rmitab command
Modifying the /etc/inittab file

isns_servers File

Purpose
Configures iSNS servers.

Description
The isns_servers file is used to configure iSNS servers. This file is used for the iSCSI target registration
with iSNS protocol while configuring an iSCSI target. You can use comments in the isns_servers file.
The comment character is "*", and must be the first character on the line. Blank lines are ignored.

The isns_servers file is a stanzas normalized file. Each stanza can be defined with the following two
attributes:

• ip_address defines the IP address of the server.
• port defines the server listening port.

The default stanza defines the default ip_address and port that are used if one field is omitted.

The registration_period stanza allows you to set the refresh period for the iSNS registration. The iSNS
server removes the registration after a period of time. A daemon has to refresh registrations before this
lifetime. The period field of registration_period defines the period of time that an iSNS daemon can use.
This setting is common for all iSNS servers that are defined in this file.

Files Reference 131

Examples
Example
configuration

Description

default:

ip_address: auto
port: 3205

registration_period:

period: 120

myserver:

ip_address:
172.16.128.4

isns_srv:

ip_address:
172.16.128.108
port: 3206

This configuration defines the following characteristics:

• A remote iSNS server (myserver) whose IP address is 172.16.128.4 and
listens on the default iSNS server port 3205.

• A remote iSNS server (isns_srv) whose IP address is 172.16.128.108 and
listens on port 3206.

• An iSNS daemon refreshes registrations with the iSNS server every 120
seconds.

default:

ip_address:
172.16.128.4
port: 3205

registration_period:

period: 900

myserver1:

myserver2:

port: 3206

isns_srv:

ip_address:
172.16.128.108

This configuration defines the following characteristics:

• Two remote iSNS servers (myserver1 and myserver2) that both have the
default IP address 172.16.128.4. myserver1 listens on the default iSNS
server port 3205. myserver2 listens on port 3206.

• A remote iSNS server (isns_srv) whose IP address is 172.16.128.108 and
listens on port 3205.

• An iSNS daemon refreshes registrations with the iSNS server every 900
seconds (or 15 minutes).

Attention: Do not rename the following fields: default, ip_address, port, registration_period and period.

Files
Item Description

/etc/tmiscsi/
isns_servers

Configures iSNS servers.

irs.conf File

Purpose
Specifies the ordering of certain name resolution services.

132 AIX Version 7.1: Files Reference

Description
The /etc/irs.conf file is used to control the order of mechanisms that the resolver libraries use in
searching for network-related data. The following subroutines resolve host names, networks, services,
protocols, and netgroups:

Network Data Subroutines

host names gethostbyname, gethostaddr, gethostent

networks getnetbyname, getnetbyaddr, getnetent

services getservbyname, getservbyaddr, getservent

protocols getprotobyname, getprotobyaddr, getprotoent

netgroups getnetgrent

Because these subroutines are commonly used in many TCP/IP applications, using the irs.conf file can
control the directions of the queries made by these applications as well.

By default, the subroutines use the lookup mechanisms to resolve host names in this order:

1. Domain Name Server (DNS)
2. Network Information Service (NIS), if active
3. local files

By default, the subroutines use the lookup mechanisms to resolve networks in this order:

1. DNS
2. NIS, if active
3. local files

By default, the subroutines use the lookup mechanisms to resolve other maps in this order:

1. NIS, if active
2. local files

You can override the default order by modifying the /etc/irs.conf configuration file and specifying the
desired ordering.

The settings in the /etc/netsvc.conf configuration file override the settings in the /etc/irs.conf file. The
NSORDER environment variable overrides the settings in the /etc/irs.conf and the /etc/netsvc.conf files.

To use DNS to obtain information concerning netgroups, protocols, and services, you must create and use
a Hesiod DNS Zone in the following format:

map mechanism [option]

The following values are available for the map parameter:

Value Description

services Lists the port numbers, transport protocols, and names of well-known services

protocols Retrieves official names and protocol numbers of protocol aliases

hosts Defines the mappings between host names and their IP addresses

networks Retrieves network names and addresses

netgroup Retrieves groups of hosts, networks, and users in this group

The following values are available for the mechanism parameter:

Files Reference 133

Value Description

local Examines local configuration files (/etc/hosts, /etc/protocols, /etc/services, /etc/netgroup,
and /etc/networks files)

dns Queries DNS; the /etc/resolv.conf file must be configured for this mechanism to work.

nis Queries NIS; the NIS client must be active on the system for this mechanism to work.

nis+ Queries NIS+; The NIS+ client must be active on the system for this mechanism to work.

ldap Queries the LDAP server; the resolv.ldap file must be configured for this mechanism to work.

Note: You can only assign the value hosts to the map parameter for ldap. Although still
supported, the use of the ldap mechanism is deprecated. Use of the nis_ldap mechanism is
recommended.

nis_ldap Queries the LDAP server configured in the ldap.cfg file. The LDAP client should be set up on
the system using mksecldap command, to use this mechanism. All map types are supported
by nis_ldap.

local4 Examines local configuration files for IPv4 addresses.

local6 Examines local configuration files for IPv6 addresses.

dns4 Queries DNS for A records (IPv4 addresses); the /etc/resolv.conf file must be configured for
this mechanism to work.

dns6 Queries DNS for AAAA records (IPv6 addresses); the /etc/resolv.conf file must be configured
for this mechanism to work.

nis4 Queries NIS for information about IPv4 addresses; the NIS client must be active on the
system to use this mechanism.

nis6 Queries NIS for information about IPv6 addresses; the NIS client must be active on the
system to use this mechanism.

ldap4 Queries the LDAP server for information about IPv4 addresses.

ldap6 Queries the LDAP server for information about IPv6 addresses.

The following values are available for the option parameter:

Value Description

continue If the information is not found in the specified mechanism, then instructs the resolver to
continue to the next line, which should list another mechanism for the same map

merge Merges all responses from multiple mechanism parameters into one response

Examples
1. To use only the local /etc/hosts file for host name resolution, enter:

hosts local

2. To use the LDAP server to resolve a host name that cannot be found in the the /etc/hosts file, enter:

hosts local continue
hosts ldap

3. To use only DNS to resolve host names and to use NIS to resolve protocols, enter:

hosts dns
protocols nis

134 AIX Version 7.1: Files Reference

4. To use only NIS to resolve host name addresses and netgroups and to use the local files to resolve
services and networks, enter:

hosts nis
services local
netgroup nis
networks local

5. To try to resolve host names from the local /etc/hosts file and, after not finding them, try to resolve
from DNS, then NIS, enter:

hosts local continue
hosts dns continue
hosts nis continue

6. To try to resolve host names from the local /etc/hosts file, merge any information found with any
DNS information found, and then merge this information to any NIS information found, enter:

hosts local merge
hosts dns merge
hosts nis

If the resolver finds no information, it returns none. If it finds information from more than one source,
it returns that information as a merged response from all of the available sources.

7. To examine the local /etc/services file for port numbers before querying NIS, enter:

services local continue
services nis

This entry in the /etc/irs.conf file could speed up the request; normally, querying NIS takes more
time than querying the local file. If the resolver does not find the information in the local file, it
searches NIS.

8. To query for IPv4 network addresses only from DNS and to query IPv6 host addresses only from the
local file, enter:

networks dns4
hosts local6

9. In this example, assume the following presuppositions:

• The /etc/hosts file contains the following information:

1.2.3.4 host4
1.2.3.5 host5
1.2.3.6 host6

• The information in DNS is the following:

1.2.3.2 host2
1.2.3.3 host3

• The information in NIS is the following:

1.2.3.1 host1

To instruct the gethostbyname subroutine to look for the host name first in the local configuration
files, then to continue to search in DNS if the host name is not found, and finally to continue searching
in NIS if the host name is not found, create the following entry in the /etc/irs.conf file:

hosts local continue
hosts dns continue
hosts nis

Files Reference 135

In this example, the gethostbyname subroutine cannot find the host name in the /etc/hosts file and
continues to search for the host name in DNS. After not finding it in DNS, it continues to search in NIS.
After finding the address in NIS, it returns 1.2.3.1.

10. In this example, assume the following presuppositions:

• The /etc/hosts file contains the following information:

1.1.1.1 hostname

• The information in DNS is the following:

1.1.1.2 hostname

To instruct the gethostbyname subroutine to merge all the answers from the specified mechanisms
into one reply, create the following entry in the /etc/irs.conf file:

hosts local merge
hosts dns

The gethostbyname subroutine returns 1.1.1.1 1.1.1.2.

Files

Item Description

/etc/hosts Contains the Internet Protocol (IP) name and addresses of hosts on the
local network

/etc/protocols Contains official names and protocol numbers of protocol aliases

/etc/services Contains lists of the port numbers, transport protocols, and names of well-
known services

/etc/netgroup Contains a list of groups of hosts, networks, and users in these groups

/etc/networks Contains a list of network names and addresses

/etc/resolv.conf Contains Domain Name Protocol (DOMAIN) name-server information for
local resolver subroutines

/etc/netsvc.conf Specifies the ordering of certain name resolution services

/etc/resolv.ldap Contains the IP address of the LDAP server

Related reference
hosts File Format for TCP/IP
netgroup File for NIS
netsvc.conf File
networks File Format for TCP/IP
protocols File Format for TCP/IP
resolv.conf File Format for TCP/IP
resolv.ldap File Format for TCP/IP
services File Format for TCP/IP
ldap.cfg File Format
Related information
mksecldap command
ypbind daemon
getnetbyaddr subroutine
getnetent subroutine
getservbyname subroutine

136 AIX Version 7.1: Files Reference

ispaths File

Purpose
Defines the location of all databases in a library.

Description
The ispaths file contains a block of information (a stanza) for each database in a library. A library consists
of up to 63 standalone or cross-linked databases. The ispaths file for the default database library resides
in the /usr/lpp/info/data directory. The ispaths files for other public libraries may reside in the /usr/lpp/
info/data/LibraryName directory, and contain a stanza of information for each database in the library.

Each stanza must have the following format:

Line Explanation of Content

id DatabaseNumber Represents the number of the database. This
number can be between 0 and 1462, with
a maximum of 1563 databases in a library.
(Database number 1563 is reserved for the
help database.)

Note: The order of databases in the ispaths
file must match the order of databases in the
dbnames file used during the build process.

primnav TRUE (Optional.) Indicates whether the database
contains any of the primary navigation
articles. The primnav line can be set to TRUE
for only one database in the library. Omit this
line unless its value is TRUE.

browseTRUE (Optional.) Indicates whether the entire
library is browse enabled with the browse
button displayed in the reading window. Omit
this line if its value is not TRUE.

glossary TRUE (Optional.) Indicates whether the database
contains glossary entries. The glossary line
can be set to TRUE for only one database in
the library. Omit this line unless its value is
TRUE.

name Database Specifies the name of the database.

title DatabaseTitle Specifies the title that is assigned to the
database. This title is displayed in the search
results window (the Match Lists window) and
the Database selection window helps users
narrow their searches.

key DatabasePath/DatabaseName.key Specifies the full path name of the
database .key file.

romDatabasePath /DatabaseName.rom Specifies the full path name of the
database .rom file.

The optional field browse can be specified in any of the stanzas, and its value will be applied to the entire
library. The browse field does not need to be specified in each stanza for each library that has browse
capability.

Files Reference 137

Examples
The following is an example of an ispaths file for a sample database.

The isprime file for this database specifies these primary navigation articles:

• Commands
• System Calls
• Subroutines
• Special Files
• File Formats
• List of Tasks
• List of Books
• Education

All the top-level lists reside in the navigation database.

###
info Navigation Database
###
id 0
primenav TRUE
browse TRUE
name nav
title Navigation
key /usr/lpp/info/%L/nav/nav.key
rom /usr/lpp/info/%L/nav/nav.rom

###
info System Calls Database
###
id 1
name calls
title System Calls
key /usr/lpp/info/%L/calls/calls.key
rom /usr/lpp/info/%L/calls/calls.rom

###
info Subroutines Database
###
id 2
name subs
title Subroutines
key /usr/lpp/info/%L/subs/subs.key
rom /usr/lpp/info/%L/subs/subs.rom

###
info Special Files Database
###
id 3
name file
title Special Files
key /usr/lpp/info/%L/file/file.key
rom /usr/lpp/info/%L/file/file.rom

###
info File Formats Database
###
id 4
name fls
title File Formats
key /usr/lpp/info/%L/fls/fls.key
rom /usr/lpp/info/%L/fls/fls.rom

###
info Commands Database
###
id 5
name cmds

138 AIX Version 7.1: Files Reference

title Commands
key /usr/lpp/info/%L/cmds/cmds.key
rom /usr/lpp/info/%L/cmds/cmds.rom

###
info Book Contents Database
###
id 6
name books
title Content Lists
key /usr/lpp/info/%L/books/books.key
rom /usr/lpp/info/%L/books/books.rom

###
info Education Database
###
id 7
name educ
title Education
key /usr/lpp/info/%L/educ/educ.key
rom /usr/lpp/info/%L/educ/educ.rom

Files

Item Description

/usr/lpp/info/data/ispaths Contains the ispaths file for the
operating system library.

/usr/lpp/info/data/LibraryName/ispaths Contains the ispaths file for the
LibraryName library.

/usr/lpp/info/data/LibraryName/isprime Contains the names and numbers
of button labels for the primary
navigation articles in LibraryName.

Related reference
isprime File

isprime File

Purpose
Specifies the labels for links to primary navigation articles.

Description
The isprime file specifies labels for buttons located at the bottom of a navigation window. These button
labels or menu options serve as links to the primary navigation articles. Labels for up to eight primary
navigation articles can be defined in the isprime file. The text string that serves as the label or options can
consist of any alphanumeric combination, including spaces.

The format for the isprime file is as follows:

1 TextForFirstLink
2 TextForSecondLink
3 TextForThirdLink
4 TextForFourthLink
5 TextForFifthLink
6 TextForSixthLink
7 TextForSeventhLink
8 TextForEighthLink

Files Reference 139

Examples
An isprime file for a sample database might look as follows:

1 Commands
2 System Calls
3 Subroutines
4 Special Files
5 File Formats
6 List of Tasks
7 List of Books
8 Education

Files

Item Description

/usr/lpp/info/data/LibraryName/isprime Contains labels for links to primary
navigation articles.

Related reference
ispaths File

.kshrc File

Purpose
Contains a shell script that customizes the Korn shell environment.

Description
The $HOME/.kshrc file is a shell script that customizes the Korn-shell environment. This .kshrc script
often contains a list of environment variables, command aliases, and function definitions that customize
the Korn-shell environment.

Each time you start a new instance of the Korn shell, the ksh command examines the value of the ENV
environment variable set in the $HOME/.profile file. If the ENV environment variable contains the
name of an existing, readable file, the ksh command runs this file as a script. By convention, this file is
named $HOME/.kshrc. You can use another name, but you must set the ENV environment variable to
point to it.

The $HOME/.kshrc file runs every time an interactive shell or a shell program is started. For all the
standard output (stdout), commands in the $HOME/.kshrc files must not assume a tty subsystem
environment that allows you to perform the following operation at a kernel level: process management,
line editing, and session management. Ensure that the shell is interactive before you write to the stdout.
Unexpected characters in the stdout can cause failure of programs that are called from the Korn-shell.

Examples
The following is a sample of a .kshrc script on one specific system. The contents of your .kshrc file can be
significantly different.

@(#).kshrc 1.0
Base Korn Shell environment
Approach:
shell initializations go in ~/.kshrc
user initializations go in ~/.profile
host / all_user initializations go in /etc/profile
hard / software initializations go in /etc/environment

DEBUG=y # uncomment to report
["$DEBUG"] && echo "Entering .kshrc"

set -o allexport

140 AIX Version 7.1: Files Reference

options for all shells --------------------------------
LIBPATH must be here because ksh is setuid, and LIBPATH is
cleared when setuid programs are started, due to security hole.

LIBPATH=.:/local/lib:/lib:/usr/lib

options for interactive shells follow-------------------------

TTY=$(tty|cut -f3-4 -d/)
HISTFILE=$HOME/.sh_hist$(echo ${TTY} | tr -d '/')
PWD=$(pwd)
PS1='
${LOGNAME}@${HOSTNAME} on ${TTY}
[${PWD}] '

aliases

["$DEBUG"] && echo "Setting aliases"
alias man="/afs/austin/local/bin/man -e less"
alias pg="pg -n -p':Page %d: '"
alias more="pg -n -p':Page %d: '"
alias cls="tput clear"
alias sane="stty sane"
alias rsz='eval $(resize)'

mail check

if [[$- = *i*]]; then
if [-s "$MAIL"] # This is at Shell startup. In
then echo "$MAILMSG" # normal operation, the Shell checks
fi # periodically.
fi

aixterm window title

if [[$- = *i*]]; then
[["$TERM" = "aixterm"]] && echo "\033]0;$USER@${HOSTNAME%t1}\007"
fi

functions

["$DEBUG"] && echo "Setting functions"

function pid { ps -e | grep $@ | cut -d" " -f1; }

function df {
 /bin/df $* | grep -v afs;
 echo "\nAFS:";
 /usr/afs/bin/fs listquota /afs;
}

function term {
 if [$# -eq 1]
 then
 echo $TERM
 TERM=$1
 export TERM
 fi
 echo $TERM
}

function back {
 cd $OLDPWD
 echo $CWD $OLDPWD
}

["$DEBUG"] && echo "Exiting .kshrc"

set +o allexport

Files

Item Description

/etc/environment Contains system-wide environment variable definitions.

/etc/profile Contains system-wide environment customization.

Files Reference 141

Item Description

$HOME/.kshrc Sets the user environment for each start of the Korn shell.

$HOME/.profile Contains user-specific logon initialization.

Related information
ksh command
Shells command
Files

lapi_subroutines Information

Purpose
Provides overview information about the subroutines that constitute the low-level application
programming interface (LAPI).

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int lapi_subroutines(parm1, parm2...)
type1 parm1;
type2 parm2;
⋮

FORTRAN Syntax

include 'lapif.h'

LAPI_SUBROUTINES(parm1, parm2..., ierror)
TYPE1 :: parm1;
TYPE2 :: parm2;
⋮
INTEGER ierror

Description
LAPI subroutines provide a wide variety of functions that can be used efficiently and flexibly to obtain
most behaviors required from any parallel programming API.

Programming with C++

LAPI subroutines provide extern "C" declarations for C++ programming.

Profiling

LAPI's profiling interface includes wrappers for each LAPI function, so you can collect data about each of
the LAPI calls. See the RSCT for AIX 5L: LAPI Programming Guide for more information.

Querying runtime values

You can find out the size (or size range) of certain parameters by calling the LAPI_Qenv subroutine with
the appropriate query type. For example, call LAPI_Qenv with the LOC_ADDRTBL_SZ query type to find
out the size of the address table used by the LAPI_Addr_set subroutine:

LAPI_Qenv(hndl, LOC_ADDRTBL_SZ, ret_val)

142 AIX Version 7.1: Files Reference

Now, if you want to register a function address using LAPI_Addr_set:

LAPI_Addr_set (hndl, addr, addr_hndl)

The value of index addr_hndl must be in the range:

1 <= addr_hndl < LOC_ADDRTBL_SZ

When used to show the size of a parameter, a comparison of values, or a range of values, valid values for
the query parameter of the LAPI_Qenv subroutine appear in SMALL, BOLD capital letters. For example:

NUM_TASKS

is a shorthand notation for:

LAPI_Qenv(hndl, NUM_TASKS, ret_val)

See LAPI_Qenv subroutine for a list of the query parameter's valid values.

Parameters
Parameter definitions are listed as follows:
INPUT
parm1

Describes parm1.
INPUT/OUTPUT

This section includes all LAPI counters.
parm2

Describes parm2.
OUTPUT

Function calls are nonblocking, so counter behavior is asynchronous with respect to the function call.
ierror

Specifies a FORTRAN return code. This is always the last parameter.

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.

Any other return values for the subroutine appear here.

For a complete list, see the RSCT for AIX 5L: LAPI Programming Guide.

For information about LAPI error messages, see RSCT: Messages.

Restrictions
Any specific restrictions for the subroutine appear here.

Also, see the RSCT for AIX 5L: LAPI Programming Guide for more information.

C Examples

Any C examples of the subroutine appear here.

Files Reference 143

FORTRAN Examples

Any FORTRAN examples of the subroutine appear here.

ldapid.ldif.template File

Purpose
Sets the base ID entry in LDAP for new accounts.

Description
The /etc/security/ldap/ldapid.ldif.template file can be used to update the base ID entries
of an LDAP server. With proper value settings to the attributes of the base ID entry, new LDAP accounts
created using the mkuser and mkgroup commands will have numeric ID values greater or equal to the
corresponding base value.

For example, if aixuserid value is set to 10000, new user accounts created in LDAP will have numeric ID
values greater than or equal to 10 000.

Because specifying IDs from the command line using the mkuser and mkgroup commands is not under
control of the base ID entry, an administrator can create accounts of any ID value by specifying the ID
from the command line.

The base ID entry contains the following four fields:

Item Description

aixadmingroupid Base ID for admin groups. The default value is 1.

aixadminuserid Base ID for admin users. The default value is 1.

aixgroupid Base ID for groups. The default value is 200.

aixuserid Base ID for users. The default value is 200.

These values can be changed by using the ldapadd command and ldapmodify command with
the /etc/security/ldap/ldapid.ldif.template file. The content of the file:

Example

dn: cn=aixbaseid,<ou=system,cn=aixdata>
objectClass: aixadmin
aixadmingroupid: 10000
aixadminuserid: 10000
aixgroupid: 10000
aixuserid: 10000

Location

Item Description

/etc/security/ldap/
ldapid.ldif.template

Contains the template base ID entry for LDAP
servers.

Related reference
login.cfg File
Related information
mkuser Command
mkgroup Command
Lightweight Directory Access Protocol

144 AIX Version 7.1: Files Reference

limits File

Purpose
Defines process resource limits for users.

Description
Note: Changing the limit does not affect those processes that were started by init. Alternatively, ulimits
are only used by those processes that go through the login processes.

The /etc/security/limits file defines process resource limits for users. This file is an ASCII file that
contains stanzas that specify the process resource limits for each user. These limits are set by individual
attributes within a stanza.

Each stanza is identified by a user name followed by a colon, and contains attributes in the
Attribute=Value form. Each attribute is ended by a new-line character, and each stanza is ended by an
additional new-line character. If you do not define an attribute for a user, the system applies default
values.

If the hard values are not explicitly defined in the /etc/security/limits file but the soft values are, the
system substitutes the following values for the hard limits:

Resource Hard Value

Core Size unlimited

CPU Time cpu

Data Size unlimited

File Size fsize

Memory Size unlimited

Stack Size 4194304

File Descriptors unlimited

Threads unlimited

Processes unlimited

Note: Use a value of -1 to set a resource to unlimited.

If the hard values are explicitly defined but the soft values are not, the system sets the soft values equal
to the hard values.

You can set the following limits on a user:

Limit Description

fsize Identifies the soft limit for the largest file a user's process can create or extend.

core Specifies the soft limit for the largest core file a user's process can create.

cpu Sets the soft limit for the largest amount of system unit time (in seconds) that a
user's process can use.

data Identifies the soft limit for the largest process data segment for a user's process.

stack Specifies the soft limit for the largest process stack segment for a user's process.

rss Sets the soft limit for the largest amount of physical memory a user's process can
allocate. This limit is not enforced by the system.

nofiles Sets the soft limit for the number of file descriptors a user process may have open
at one time.

Files Reference 145

Limit Description

threads Sets the soft limit for the number of threads per process.

nproc Sets the soft limit for the number of processes per user.

core_hard Specifies the largest core file a user's process can create.

cpu_hard Sets the largest amount of system unit time (in seconds) that a user's process can
use.

data_hard Identifies the largest process data segment for a user's process.

fsize_hard Identifies the largest file a user's process can create or extend.

rss_hard Sets the largest amount of physical memory a user's process can allocate. This
limit is not enforced by the system.

stack_hard Specifies the largest process stack segment for a user's process.

nofiles_hard Sets the hard limit for the number of file descriptors a user process may have open
at one time.

threads_hard Sets the hard limit for the number of threads per process.

nproc_hard Sets the hard limit for the number of processes per user.

Except for the cpu, nofiles, threads, and nproc attributes, each attribute must be a decimal integer string
that represents the number of 512-byte blocks allotted to a user. This decimal integer represents a 32-bit
value and can have a maximum value of 2147483647. The cpu and nofiles attributes represent the
maximum number of seconds of system time that a user's process can use, and the maximum number of
files a user's process can have open at one time. The threads attribute represents the maximum number
of threads each process can create. The nproc attribute represents the maximum number of processes
each user can create. For an example of a limits stanza, see the "Examples" section .

When you create a user with the mkuser command, the system adds a stanza for the user to the limits
file. Once the stanza exists, you can use the chuser command to change the user's limits. To display the
current limits for a user, use the lsuser command. To remove users and their stanzas, use the rmuser
command.

Note: Access to the user database files should be through the system commands and subroutines defined
for this purpose. Access through other commands or subroutines may not be supported in future releases.

Security
Access Control: This file should grant read (r) access to the root user and members of the security group,
and write (w) access only to the root user. Access for other users and groups depends upon the security
policy for the system.

Auditing Events:

Event Information

S_LIMITS_WRITE file name

Examples
A typical record looks like the following example for user dhs:

dhs:
 fsize = 8192
 core = 4096
 cpu = 3600
 data = 1272
 stack = 1024
 rss = 1024
 nofiles = 2000

146 AIX Version 7.1: Files Reference

 threads = -1
 nproc = -1

Files

Item Description

/etc/security/limits Specifies the path to the file.

/etc/group Contains the basic group attributes.

/etc/security/group Contains the extended attributes of groups.

/etc/passwd Contains the basic user attributes.

/etc/security/passwd Contains password information.

/etc/security/user Contains the extended attributes of users.

/etc/security/environ Contains the environment attributes of users.

/etc/security/audit/config Contains audit-system configuration information.

/usr/lib/security/mkuser.default Contains the default values for user accounts.

/etc/security/lastlog Contains last login information.

Related information
chuser command
lsuser command
enduserdb subroutine
getuserattr subroutine

local_domain File

Purpose
Contains the NFS local domain.

Description
The /etc/nfs/local_domain file contains the local NFS domain of the system. This local domain is
used to determine how to translate incoming and outgoing NFS requests. The NFS local domain must be
set before using NFS V4.

The NFS local domain may be set using the chnfsdom command.

The format of the /etc/nfs/local_domain is the domain name on the first line.

Files

Item Description

/etc/nfs/
local_domain

The local_doman file.

login.cfg File

Purpose
Contains configuration information for login and user authentication.

Files Reference 147

Description
The /etc/security/login.cfg file is an ASCII file that contains stanzas of configuration information for
login and user authentication. Each stanza has a name, followed by a colon (:), that defines its purpose.
Attributes are in the form Attribute=Value. Each attribute ends with a newline character, and each stanza
ends with an additional newline character. For an example of a stanza, see the "Examples" section.

There are two types of stanzas:

Stanzas Definition

port Defines the login characteristics of ports.

user configuration Defines programs that change user attributes.

Port Stanzas

Port stanzas define the login characteristics of ports and are named with the full path name of the port.
Each port should have its own separate stanza. Each stanza has the following attributes:

Attribute Definition

herald Defines the login message printed when the getty process opens the port. The
default herald is the login prompt. The value is a character string.

herald2 Defines the login message printed after a failed login attempt. The default herald
is the login prompt. The value is a character string.

logindelay Defines the delay factor (in seconds) between unsuccessful login attempts. The
value is a decimal integer string. The default value is 0, indicating no delay
between unsuccessful login attempts.

logindisable Defines the number of unsuccessful login attempts allowed before the port is
locked. The value is a decimal integer string. The default value is 0, indicating that
the port cannot lock as a result of unsuccessful login attempts.

logininterval Defines the time interval (in seconds) in which the specified unsuccessful login
attempts must occur before the port is locked. The value is a decimal integer
string. The default value is 0.

loginreenable Defines the time interval (in minutes) a port is unlocked after a system lock. The
value is a decimal integer string. The default value is 0, indicating that the port is
not automatically unlocked.

148 AIX Version 7.1: Files Reference

Attribute Definition

logintimes Specifies the times, days, or both, the user is allowed to access the system. The
value is a comma-separated list of entries of the following form:

[!]:time-time
 -or-
[!]day[-day][:time-time]
 -or-
[!]date[-date][:time-time]

The day variable must be one digit between 0 - 6 that represents one of the days
of the week. A 0 (zero) indicates Sunday and a 6 indicates Saturday.

The time variable is 24-hour military time (1700 is 5:00 p.m.). Leading zeroes
are required. For example, you must enter 0800, not 800. The time variable
must be four characters in length, and there must be a leading colon (:). An entry
consisting of only a time specification applies to every day. The start hour of a
time value must be less than the end hour.

The date variable is a four digit string in the form mmdd. mm represents the
calendar month, with 00 indicating January and 11 indicating December. dd
represents the day number. For example 0001 represents January 1. dd may be
00 to indicate the entire month, if the entry is not a range, or indicating the first
or last day of the month depending on whether it appears as part of the start or
end of a range. For example, 0000 indicates the entire month of January. 0500
indicates the entire month of June. 0311-0500 indicates April 11 through the
last day of June.

Entries in this list specify times that a user is allowed or denied access to the
system. Entries not preceded by an exclamation point (!) allow access and are
called ALLOW entries. Entries prefixed with an exclamation point (!) deny access
to the system and are called DENY entries. The ! operator applies to only one
entry, not the whole restriction list. It must appear at the beginning of an entry.

pwdprompt Defines the message that is displayed at a password prompt. The message value
is a character string. Format specifiers will not be interpreted. If the attribute is
undefined, a default prompt from the message catalog will be used.

sak_enabled Defines whether the secure attention key (SAK) is enabled for the port. The
SAK key is the Ctrl-X, Ctrl-R key sequence. Possible values for the sak_enabled
attribute are:
true

SAK processing is enabled, so the key sequence establishes a trusted path for
the port.

false
SAK processing is not enabled, so a trusted path cannot be established. This
is the default value.

The sak_enabled stanza can also be modified to close a potential exposure that
exists when tty login devices are writable by others; for example, when the tty
mode is 0622. If the sak_enabled stanza is set to True, the tty mode is set to
a more restrictive 0600 at login. If the sak_enabled stanza is set to False (or
absent), the tty mode is set to 0622.

Files Reference 149

Attribute Definition

synonym Defines other path names for the terminal. This attribute revokes access to the
port and is used only for trusted path processing. The path names should be
device special files with the same major and minor number and should not
include hard or symbolic links. The value is a list of comma-separated path
names.

Synonyms are not associative. For example, if you specify synonym=/dev/tty0
in the stanza for the /dev/console path name, then the /dev/tty0 path name
is a synonym for the /dev/console path name. However, the /dev/console
path name is not a synonym for the /dev/tty0 path name unless you specify
synonym=/dev/console in the stanza for the /dev/tty0 path name.

usernameecho Defines whether the user name is echoed on a port. Possible values for the
usernameecho attribute are:
true

User name echo is enabled. The user name will be displayed. This is the
default value.

false
User name echo is disabled. The user name will not be echoed at the login
prompt and will be masked out of related messages that contain the user
name.

minsl Defines the minimum sensitivity level (SL) assigned to this port.

Restriction: This attribute is valid only for Trusted AIX. For more information
about Trusted AIX, see Trusted AIX in Security.

The valid values are defined in the /etc/security/enc/LabelEncodings file for the
system. You must define the value in quotation marks (" ") if it has white spaces.
The minsl value is dominated by the maxsl value for the port.

To log in using this port, you must have an effective SL that dominates this value.

maxsl Defines the maximum sensitivity level assigned to this port.

Restriction: This attribute is valid only for Trusted AIX. For more information
about Trusted AIX, see Trusted AIX in Security.

The valid values are defined in the /etc/security/enc/LabelEncodings file. You
must define the value in quotation marks (" ") if it has white spaces. The maxsl
value dominates the minsl value for the port.

To log in using this port, you must have an effective SL that this value dominates.

tl Defines the integrity level that is assigned to this port.

Restriction: This attribute is valid only for Trusted AIX. For more information
about Trusted AIX, see Trusted AIX in Security.

The valid values are defined in the /etc/security/enc/LabelEncodings file. You
must define the value in quotation marks (" ") if it has white spaces.

If this value is NOTL, the user's integrity labels (TLs) are ignored; if this value is
not NOTL, the user's effective TL must be equal to this value.

User-Configuration Stanzas

User-configuration stanzas provide configuration information for programs that change user attributes.
There is one user-configuration stanza: usw.

Note: Password restrictions have no effect if you are on a network using Network Information Services
(NIS).

150 AIX Version 7.1: Files Reference

The usw stanza defines the configuration of miscellaneous facilities. The following attributes can be
included:

Attribute Definition

authcontroldomai
n

Specifies the domain that controls user authentication through the SYSTEM and
registry attributes. If the authcontroldomain attribute is set, the SYSTEM and
registry attributes of the users are queried from that domain. The SYSTEM
and registry attributes for the local users are always queried from local files
regardless of the authcontroldomain setting. The valid values are files or a
stanza name that is defined in the /etc/methods.cfg file. The default value is
files.

auth_type Defines the route through which all users will be authenticated (in supported
applications). The two values to which auth_type can be set are:
PAM_AUTH

Use PAM to authenticate users via the /etc/pam.conf file
STD_AUTH

Use an application's standard means of user authentication. This is the
default value.

dist_uniqid Defines the system configuration for resolving ID collision for creating/modifying
user/group accounts among registries. The valid values to which dist_uniqid
can be set are:
never

Do not check for ID collision against the nontarget registries. This is the
default setting.

always
Check for ID collision against all other registries. If a collision is detected
between the target registry and any other registry, account creation/
modification fails.

uniqbyname
Check for ID collision against all other registries. Collision between registries
is allowed only if the account to be created has the same name as the
existing account.

Note: ID collision detection in the target registry is always enforced regardless of
the dist_uniqid attribute.

efssharedkeys When this attribute is set to true, if any of the user shared keystore password is
changed, at least his own keys will be loaded at the time of login or using the
efskeymgr command. When this attribute set to false, no keys will be loaded, if
any of the user shared keystore password is changed. The valid values are true
or false. The default value is false.

logintimeout Defines the time (in seconds) the user is given to type the login name and the
password. The value is a decimal integer string. The default is a value of 60. The
login session will be timed out if there is no input for login name after the timer
has expired.

maxlogins Defines the maximum number of simultaneous logins to the system. The format
is a decimal integer string. The default value varies depending on the specific
machine license. A value of 0 indicates no limit on simultaneous login attempts.

Note: Login sessions include rlogins and telnets. These are counted against the
maximum allowable number of simultaneous logins by the maxlogins attribute.

maxroles Defines the maximum number of roles that each session allows. This attribute
is for use with Enhanced RBAC Mode only. The valid value is an integer value
between 1 and 8. The default value is 8.

Files Reference 151

Attribute Definition

mkhomeatlogin Specifies whether to create a home directory at login if the home directory does
not already exist. The value of this attribute is either true or false. The default
value is false.

shells Defines the valid shells on the system. This attribute is used by the chsh
command to determine which shells a user can select. The value is a list
of comma-separated full path names. The default is /usr/bin/sh, /usr/bin/
bsh, /usr/bin/csh, /usr/bin/ksh, or /usr/bin/tsh.

pwd_algorithm Defines the loadable password algorithm to use when you store user passwords.
A valid value for this attribute is a stanza name that is defined in the /etc/
security/pwdalg.cfg file. The default value is crypt, which is the legacy crypt()
algorithm.

unix_passwd_compa
t

Sets the return value of the passwdexpired() function. The valid values for the
unix_passwd_compat attribute follow:
true

When this attribute is set as true, the passwdexpired() function returns
a non zero value, which is compatible with other UNIX and AIX operating
systems, when the user password is set to * in the /etc/security/passwd
file.

false
When this attribute is set to false, the passwdexpired() function returns 0,
when the user password is set to * in the /etc/security/passwd file. This is
default value.

Security
Access Control

This command should grant read (r) and write (w) access to the root user and members of the security
group.

Auditing Events

Event Information

S_LOGIN_WRITE File name

Examples
A typical port stanza looks like the following:

/dev/tty0:
 sak_enabled = true
 herald = "login to tty0:"

On Trusted AIX systems, the port stanza looks like the following example:

default:
 logindisable = 3
 sak_enabled = false
 logintimes =
 logininterval = 0
 loginreenable = 0
 logindelay = 0
 minsl = IMPL_LO
 maxsl = “TS ALL”
 tl = TS

152 AIX Version 7.1: Files Reference

Files

Item Description

/etc/security/login.cfg Specifies the path to the file.

/etc/group Contains the basic attributes of groups.

/etc/security/group Contains the extended attributes of groups.

/etc/passwd Contains the basic attributes of users.

/etc/security/passwd Contains password information.

/etc/security/user Contains the extended attributes of users.

/etc/security/environ Contains the environment attributes of users.

/etc/security/limits Contains the process resource limits of users.

/etc/security/audit/config Contains audit system configuration information.

/etc/security/lastlog Contains last login information.

/etc/security/enc/LabelEncodings Contains label definitions for the Trusted AIX system.

/etc/security/pwdalg.cfg Contains configuration information for loadable password
algorithms.

Related reference
ldapid.ldif.template File
Related information
chfn command
login command
passwd command
su command
newpass subroutine

lpacl Information

Purpose
Provides general information about protecting the least-privilege (LP) commands resource class and
its resources using access controls that are provided by the resource monitoring and control (RMC)
subsystem.

Description
RMC controls access to all of its resources and resource classes through access control lists (ACLs),
using two different ACL implementations. The implementation that RMC uses depends on which class is
involved. The two major differences between the implementations are in: 1) the mechanisms with which
ACLs are viewed and modified and 2) whether ACLs are associated with individual resources.

RMC implements access controls for its resources and resource classes in the following ways:

1. Through ACLs that are defined by resource class stanzas in the ctrmc.acls file.

You can view and modify these ACLs by editing the ctrmc.acls file. Use a stanza to define an ACL
that applies to a class or to define an ACL that applies to all of the resources in a class.

RMC uses this method for all of its resources and resource classes, except for the IBM.LPCommands
resource class and its resources.

For more information about the ctrmc.acls file and the ACLs it defines, see the RSCT: Administration
Guide.

Files Reference 153

2. Through ACLs that are associated with resources and a resource class within the RMC subsystem.

You can view and modify these ACLs using LP commands. You can define an ACL that applies to a class
or an ACL that applies to an individual resource of a class.

RMC uses this method for the IBM.LPCommands resource class and its resources.

This file provides information about ACLs that are specific to the IBM.LPCommands resource class and
its resources.

The LP resource manager uses the IBM.LPCommands resource class to define LP resources. These
resources represent commands or scripts that require root authority to run, but typically the users who
need to run these commands do not have root authority. By using the LP resource manager commands,
users can run commands that require root authority. The LP resource manager commands are:
chlpcmd

Changes the read/write attribute values of an LP resource
lphistory

Lists or clears a certain number of LP commands that were previously issued during the current RMC
session

lslpcmd
Lists information about the LP resources on one or more nodes in a domain

mklpcmd
Defines a new LP resource to RMC and specifies user permissions

rmlpcmd
Removes one or more LP resources from the RMC subsystem

runlpcmd
Runs an LP resource

For descriptions of these commands, see RSCT for AIX 5L: Technical Reference. For information about how
to use these commands, see the RSCT: Administration Guide.

Because each LP resource can define a unique command, RMC implements ACLs for the
IBM.LPCommands class that allow access to be controlled at the individual resource level and at the
class level. RSCT provides a set of commands that you can use to list and modify the ACLs for the
IBM.LPCommands class and its resources. The LP ACL commands are:
chlpclacl

Changes the Class ACL
chlpracl

Changes the Resource ACL
chlpriacl

Changes the Resource Initial ACL
chlprsacl

Changes the Resource Shared ACL
lslpclacl

Lists the Class ACL
lslpracl

Lists the Resource ACL
lslpriacl

Lists the Resource Initial ACL
lslprsacl

Lists the Resource Shared ACL
mklpcmd

Defines a new LP resource to RMC and specifies user permissions
For descriptions of these commands, see RSCT for AIX 5L: Technical Reference. For information about how
to use these commands, see the RSCT: Administration Guide.

154 AIX Version 7.1: Files Reference

Basic ACL Structure

Typically, an ACL is composed of a list of ACL entries. Each ACL entry specifies an identity and a set of
permissions granted to that identity. The complete list of ACL entries determines how the ACL controls
access to the associated class or resource.

A resource-associated ACL can refer to another ACL instead of containing a list of ACL entries itself. When
a resource-associated ACL refers to another ACL, the set of ACL entries in the referenced ACL controls
access to the resource.

Types of ACLs

Four types of ACLs control access to the IBM.LPCommands class and its resources, as follows:
Class ACL

A Class ACL controls access to class operations on one node. You need to have been granted specific
permissions to perform class operations, such as listing class attributes, creating class resources, and
deleting class resources.

A Class ACL is composed of a list of ACL entries. The list of ACL entries controls access to class
operations on the node. If the list is empty, no identity is permitted to perform class operations on the
node.

When you try to perform a class operation on the IBM.LPCommands class on a node — creating a new
resource, for example — RMC checks the Class ACL on that node to verify that you have the required
permission to perform the operation. If you do not have the required permission, the operation is
rejected.

One Class ACL exists on each node for the IBM.LPCommands class. Each node's Class ACL controls
access to all IBM.LPCommands class operations on that node.

Resource ACL
A Resource ACL controls access to resource operations for one LP resource. You need to have been
granted specific permissions to perform resource operations, such as listing resource attributes,
modifying resource attributes, and running resource commands.

A Resource ACL can be composed of a list of ACL entries. In this case, the list of ACL entries controls
access to resource operations for that resource. If the list is empty, no identity is permitted to perform
resource operations for the resource.

A Resource ACL can refer to the Resource Shared ACL instead of containing a list of ACL entries itself.
In this case, the list of ACL entries in the Resource Shared ACL controls access to resource operations
for the resource. If the list is empty, no identity is permitted to perform resource operations for the
resource.

When you try to perform a resource operation on an LP resource — running an LP command, for
example — RMC first checks the Resource ACL for the selected resource to determine whether the
Resource ACL contains a list of ACL entries or whether it refers to the Resource Shared ACL. If the
Resource ACL has a list of ACL entries, RMC checks that list to verify that you have the required
permission to perform the operation. If you do not have the required permission, the operation is
rejected.

If the Resource ACL refers to the Resource Shared ACL, RMC checks the Resource Shared ACL to
verify that you have the required permission to perform the operation. If you do not have the required
permission, the operation is rejected.

One Resource ACL exists for each LP resource. When a Resource ACL refers to the Resource Shared
ACL, the Resource Shared ACL that is being referenced is the one on the same node as the resource.

Resource Initial ACL
A Resource Initial ACL defines the initial contents of a Resource ACL created on a node.

Because a Resource Initial ACL is used to initialize Resource ACLs, a Resource Initial ACL can contain
a list of ACL entries or a reference to the Resource Shared ACL.

Files Reference 155

When a new LP resource is created, its Resource ACL is initialized as specified by the Resource Initial
ACL on the node.

One Resource Initial ACL exists on each node for the IBM.LPCommands class.

Resource Shared ACL
A Resource Shared ACL can control access to resource operations for multiple resources on one node.

A Resource Shared ACL is composed of a list of ACL entries. The list of ACL entries controls access
to resource operations for all of the resources on the node that refer to the Resource Shared ACL. As
with the other ACL types, the list of ACL entries can be empty.

To use this ACL, place ACL entries in it as you would in a Resource ACL. Then, modify the Resource
ACLs on the same node to refer to the Resource Shared ACL. Using the Resource Shared ACL, you can
use one list of ACL entries to control access to multiple resources on the same node.

One Resource Shared ACL exists on each node for the IBM.LPCommands class.

ACL Entries

An RMC ACL for LP commands specifies a list of ACL entries. Each ACL entry defines a user identity and
that identity's user permissions. A user identity is an authenticated network identity. The user permissions
specify the access that a user has to the class or to the resources.

User Identities

In an RMC ACL entry, the user identity can be in one of the following three forms:

1. [host:]host_user_identifier

Specifies a host user identifier. The optional host: keyword specifies that the user identifier can be
matched against a network identifier that is provided by the host-based authentication (HBA) security
mechanism. If the host: keyword is omitted and the entry does not take one of the other forms
described, the entry is assumed to be a host user identifier. The host user identifier can be in one of
the following three forms:

a. user_name@host_identifier

Specifies a particular authenticated user. You can specify host_identifier in several different
formats. These formats, which are the same as when the host user identifier format is specified
as a host identifier alone, are described as follows.

b. host_identifier

Specifies any authenticated user on the host identified. The host identifier can be:

• a fully-qualified host name.
• a short host name.
• an IP address.
• the RSCT node ID. This is the 16-digit hexadecimal number, for example:
0xaf58d41372c47686.

• the keyword LOCALHOST. This keyword is a convenient shorthand notation for the RSCT node ID
of the node where the ACL exists. The LOCALHOST keyword is stored in the ACL.

• the keyword NODEID. This keyword is a convenient shorthand notation for the RSCT node ID of
the node where an ACL editing command is running. The NODEID keyword is not stored in the
ACL; the node ID that the keyword represents is actually stored in the ACL..

c. "*"

Specifies any authenticated user on any host. The asterisk (*) must be enclosed in double
quotation marks when it is specified as command input.

2. none:mapped_user_identifier

Specifies a mapped name, as defined in the ctsec_map.global file or the ctsec_map.local file.
For information about mapped user identifiers, see the RSCT: Administration Guide.

156 AIX Version 7.1: Files Reference

3. UNAUTHENT

Specifies any unauthenticated user.

Some typical forms of a user identity are:

user@full_host_name
user@short_host_name
user@ip_address
user@node_ID
user@LOCALHOST
full_host_name
short_host_name
IP_address
node_ID
LOCALHOST
*

When you are running LP commands, the host_identifier parameter is often expected to be the RSCT node
ID. You can use the NODEID keyword to represent the node ID of the node on which the command runs.
To determine the node ID otherwise, enter:

lsrsrc IBM.Host NodeIDs

To determine all of the node IDs in a management domain or a peer domain, enter:

lsrsrc -ta IBM.Host NodeIDs NodeNameList

The node ID is displayed in decimal format. Use the hexadecimal equivalent for the host_identifier,
preceded by 0x. If the nodes are in a peer domain, enter:

lsrpnode -i

The node ID is displayed in hexadecimal. To use this value in the commands, you need to precede this
value with 0x. If the CT_CONTACT environment variable is used to specify where the RMC session occurs,
the host_identifier is expected to be a fully-qualified host name, a short host name, or an IP address.

User Permissions

The user permissions are expressed as a string of one or more characters, each representing a particular
permission.

To compensate for the fine granularity of the permission set, RSCT provides two composite permissions.
The r permission consists of individual permissions that allow "read" types of operations. The w
permission consists of individual permissions that allow "write" types of operations. Most ACL entries
will probably use these convenient composite permissions.

The Permission Set

The next two sections show two different views of the defined permission set. The first section describes
the permission set using the composite permissions. The second section describes the permission set
using the individual permissions.

Using Composite Permissions

r
Read permission.

• To view the resource attribute values for an LP resource, you need this permission for the LP
resource.

• To view the IBM.LPCommands class attribute values, you need this permission for the
IBM.LPCommands class.

• You need this permission to list the LP ACLs.

Files Reference 157

Therefore, this permission is meaningful for any LP ACL. Read permission consists of the q, l, e, and v
permissions.

w
Write permission.

• To change the resource attribute values for an LP resource, you need this permission for the LP
resource.

• To change the class attribute values for the IBM.LPCommands class, you need this permission for
the IBM.LPCommands class.

• To create or delete LP resources, you need this permission for the IBM.LPCommands class.

Therefore, this permission is meaningful for any LP ACL. Write permission consists of the d, s, c, and o
permissions.

a
Administrator permission.

• To change the Resource ACL for an LP resource, you need this permission for the LP resource.
• To change the Class ACL, the Resource Initial ACL, or the Resource Shared ACL, you need this

permission for the IBM.LPCommands class.

Therefore, this permission is meaningful for any LP ACL.
x

Execute permission. To run an LP command that is defined in an LP resource, you need this
permission for the LP resource. Therefore, this permission is meaningful for the LP Resource ACL,
the Resource Initial ACL, and the Resource Shared ACL.

0
No permission. This permission denies you access to an LP resource or to the IBM.LPCommands
class. Therefore, this permission is meaningful for any LP ACL.

Using Individual Permissions

q
Query permission.

• To query the resource attribute values for an LP resource, you need this permission for the LP
resource.

• To query the class attribute values, you need this permission for the IBM.LPCommands class.
• You need this permission to list the LP ACLs.

Therefore, this permission is meaningful for any LP ACL.
l

Enumerate permission. To list the LP resources, you need this permission for the IBM.LPCommands
class. Therefore, this permission is meaningful for the Class ACL.

e
Event permission. To register, unregister, or query events, you need this permission for an LP resource
or for the IBM.LPCommands class. Therefore, this permission is meaningful for any LP ACL.

v
Validate permission. You need this permission to validate that an LP resource handle still exists.
Therefore, this permission is meaningful for the Resource ACL, the Resource Initial ACL, and the
Resource Shared ACL.

d
Define and undefine permission. To create or delete LP resources, you need this permission for the
IBM.LPCommands class. Therefore, this permission is meaningful for the Class ACL.

c
Refresh permission. To refresh the IBM.LPCommands class configuration, you need this permission
for the IBM.LPCommands class. Therefore, this permission is meaningful for the Class ACL.

158 AIX Version 7.1: Files Reference

s
Set permission.

• To set resource attribute values for an LP resource, you need this permission for the LP resource.
• To set class attribute values, you need this permission for the IBM.LPCommands class.

Therefore, this permission is meaningful for any LP ACL.
o

Online, offline, and reset permission. Because LP resources do not support the online, offline, and
reset operations, this permission has no meaning in LP ACLs.

a
Administrator permission.

• To change the Resource ACL for an LP resource, you need this permission for the LP resource.
• To change the Class ACL, the Resource Initial ACL, or the Resource Shared ACL, you need this

permission for the IBM.LPCommands class.

Therefore, this permission is meaningful for any LP ACL.
x

Execute permission. To run an LP command that is defined in an LP resource, you need this
permission for the LP resource. Therefore, this permission is meaningful for the LP Resource ACL,
the Resource Initial ACL, and the Resource Shared ACL.

0
No permission. This permission denies you access to an LP resource or to the IBM.LPCommands
class. Therefore, this permission is meaningful for any LP ACL.

Some permission characters have no meaning in certain types of ACLs. For example, the l permission has
no meaning in a Resource ACL. A permission character that has no meaning in a certain type of ACL can be
present in the ACL with no ill effect. For example, the l permission can be specified in an ACL entry of a
Resource ACL. The presence of meaningless permissions in ACL entries is inevitable when the composite
permissions are used.

In addition to the permissions that are granted explicitly by ACL entries, the root mapped identity always
has query and administrator permission for ACL operations. If an ACL is set so that all access is denied,
the root mapped identity can still be used to change the ACL, due to its implicit authority.

The system administrator needs to determine how ACLs should be defined for the IBM.LPCommands
class and its resources. This depends on which operations users are required to perform.

Security

• To use the LP commands that change the Class ACL, the Resource Initial ACL, and the Resource Shared
ACL, you must have query and administrator permission for the IBM.LPCommands class.

• To use the LP command that changes a Resource ACL for an LP resource, you must have query and
administrator permission for the LP resource.

• To use the LP commands that list the Class ACL, the Resource Initial ACL, and the Resource Shared ACL,
you must have query permission for the IBM.LPCommands class.

• To use the LP command that lists a Resource ACL for an LP resource, you must have query permission
for the LP resource.

The Security section of each LP command description indicates which permissions are required for the
command to run properly.

Examples

Some examples of how to modify the LP ACLs follow. In these examples, the commands are run on a
management server for a group of nodes in a management domain. The management server is named
ms_node and the managed nodes are called mc_node1, mc_node2, and so forth. In a management
domain, it is most likely that the LP resources will be defined on the management server and the
LP commands themselves will be targeted to the managed nodes. In these examples, the Resource

Files Reference 159

Shared ACL is not used because separate permissions are desired for the individual LP resources. These
examples assume that the LP resources have not yet been defined using the mklpcmd command.

1. You want to define the lpadmin ID to be the administrator for the LP commands. This ID will have the
authority to modify the LP ACLs. You also want to give this ID read and write permission to be able to
create, delete, and modify the LP resources. To set this up, use the root mapped identity to run these
commands on the management server:

chlpclacl lpadmin@LOCALHOST rwa
chlpriacl lpadmin@LOCALHOST rwa

These commands define the lpadmin ID on the management server as having administrator, read,
and write permission for the IBM.LPCommands class and for the Resource Initial ACL. The Resource
Initial ACL is used to initialize a Resource ACL when an LP resource is created. Therefore, when an LP
resource is created, the lpadmin ID will have administrator, read, and write permission to it.

2. The lpadmin ID can now create LP resources that define the LP commands that are needed. See the
mklpcmd command for a description on how to create the LP resources. Access to the LP resources
can be defined using the mklpcmd command or the chlpracl command. When the resource is
created, the Resource Initial ACL is copied to the Resource ACL. To modify the Resource ACL using the
chlpracl command so that joe will be able to use the runlpcmd command for the resource named
SysCmd1, the lpadmin ID runs this command on the management server:

chlpracl SysCmd1 joe@LOCALHOST x

This gives joe on the management server execute permission to the SysCmd1 resource so he can use
the runlpcmd command.

3. In this example, only the lpadmin ID has permission to create, delete, and modify LP resources. Use
the chlpclacl command to let other users create and delete LP resources. In this case, they need
to have write access to the class. To be able to list the resources in the IBM.LPCommands class, read
permission is required. Read permission on a Resource ACL allows a user to view that LP resource.
Write permission on a Resource ACL allows a user to modify that LP resource. To allow joe to view the
LP resource named SysCmd1, the lpadmin ID runs this command on the management server:

chlpracl SysCmd1 joe@LOCALHOST r

4. There are several nodes in a peer domain. There is an LP resource called SysCmdB1 on nodeB
for which joe needs execute permission. In addition, joe needs to have execute permission from
nodes nodeA, nodeB, and nodeD. If you run the chlpracl command on nodeB, you can use
joe@LOCALHOST for nodeB, but you need to determine the node IDs for nodeA and nodeD. To obtain
the node IDs, enter:

lsrpnode -i

The output will look like this:

Name OpState RSCTVersion NodeNum NodeID
nodeA Online 2.4.2.0 2 48ce221932ae0062
nodeB Online 2.4.2.0 1 7283cb8de374d123
nodeC Online 2.4.2.0 4 b3eda8374bc839de
nodeD Online 2.4.2.0 5 374bdcbe384ed38a
nodeE Online 2.4.2.0 2 ba74503cea374110
nodeF Online 2.4.2.0 1 4859dfbd44023e13
nodeG Online 2.4.2.0 4 68463748bcc7e773

Then, to give joe the permissions as stated above, run on nodeB:

chlpracl SysCmd1 -l joe@LOCALHOST joe@0x48ce221932ae0062 \
joe@0x374bdcbe384ed38a x

160 AIX Version 7.1: Files Reference

.maildelivery File for MH

Purpose
Specifies actions to be taken when mail is received.

Description
The $HOME/.maildelivery file contains a list of actions the slocal command performs on received mail.
The slocal command reads the $HOME/.maildelivery file and performs the specified actions when you
activate it.

Specify your own mail delivery instructions in the $HOME/.maildelivery file. Each line in the
$HOME/.maildelivery file describes an action and the conditions under which the action should be
performed. The following five parameters must be present in each line of the file. These parameters are
separated by either commas or space characters:

Blank lines in the .maildelivery file are ignored. A # (pound sign) in the first column indicates a
comment. The file is read from beginning to end, so several matches can be made with several actions.
The .maildelivery file should be owned by the user, and the owner can be the only one with write access.

If the $HOME/.maildelivery file cannot be found or does not deliver the message, the /etc/mh/
maildelivery file is used in the same manner. If the message has still not been delivered, it is put in
the user's mail drop. The default mail drop is the /usr/mail/$USER file.

The MH package contains four standard programs that can be run as receive-mail hooks: the rcvdist,
rcvpack, rcvstore, and rcvtty commands.

Parameters

Item Description

Field Specifies a header component to be searched for a pattern to match the Pattern
parameter. Specify one of the following values for the Field parameter:
Component

Specify the header component you want to be searched; for example, From or cc.
*

Matches everything.
addr

Searches whatever field was used to deliver the message to you.
default

Matches only if the message has not been delivered yet.
Source

Specifies the out-of-band sender information.

Pattern Specifies the character string to search for in the header component given by the
Field parameter. For example, if you specified From in the Field parameter, the Pattern
parameter might contain an address like sarah@mephisto.

The Pattern parameter is not case-sensitive. The character string matches any
combination of uppercase and lowercase characters. Specify a dummy pattern if you use
an * (asterisk) or specify default in the Field parameter.

Files Reference 161

Item Description

Action Specifies an action to take with the message if it contains the pattern specified in the
Pattern parameter. Specify the following values:
file or >

Appends the message to the file specified with the "String" parameter. If the message
can be written to the file, the action is considered successful. The Delivery-Date:
header component is added to the message to indicate when the message was
appended to the file.

pipe or |
Pipes the message as standard input to the command specified with the "String"
parameter. The shell interprets the string. If the exit status from the command is 0, the
action is considered successful. Prior to being given to the shell, the string is expanded
with the following built-in variables:
$(Address)

Address used to deliver the message.
$(Size)

Size of the message in bytes.
$(reply-to)

Either the Reply-To: or From: header component of the message.

When a process is started with the pipe mechanism, the environment of the process is
set as follows:

• User and group IDs are set to the recipient's IDs.
• Working directory is the recipient's directory.
• The value of the umask variable is 0077.
• Process has no /dev/tty special file.
• Standard input is set to the message.
• Standard output and diagnostic output are set to the /dev/NULL special file. All

other file descriptors are closed. The $USER, $HOME, and $SHELL environmental
variables are set appropriately; no other environment variables exist.

The formula for determining the amount of time the process is given to execute is:

bytes in message x 60 + 300 seconds.

After that time, the process is terminated.

If the exit status of the program is 0, it is assumed that the action succeeded.
Otherwise, the action is assumed unsuccessful.

qpipe or ^
Acts similarly to pipe, but executes the command directly after built-in variable
expansion without assistance from the shell. If the exit status from the command
is 0, the action is successful.

destroy
Destroys the message. This action always succeeds.

162 AIX Version 7.1: Files Reference

Item Description

Result Indicates how the action should be performed. You can specify one of the following values
for this parameter:
A

Performs the action. If the action succeeds, the message is considered delivered.
R

Performs the action. Even if the action succeeds, the message is not considered
delivered.

?
Performs the action only if the message has not been delivered. If the action succeeds,
the message is considered delivered.

"String" Specifies the file to which the message can be appended if you use the file value for the
Action parameter.

If you use the pipe or the qpipe value, the "String" parameter specifies the command to
execute.

If you use the destroy value as the Action parameter, the "String" parameter is not used,
but you must still include a dummy "String" parameter.

Note: To be notified that you have mail, you must specify the rcvtty command in the .maildelivery file.

Examples
1. To save a message in a particular file, enter:

From george file A george.mail

This example directs the slocal command to search the From header line in messages. When the
slocal command finds a message from george, it files the message in a file called george.mail.

2. To save a copy of a message in a file, enter:

addr manager > R proj_X/statlog

This example directs the slocal command to search the address fields in messages. When it finds
a message for the project manager, the slocal command files a copy of the message in a file called
proj_X/statlog. The original message is not considered delivered (the R value), so the message is
still treated as mail and you will be notified as usual.

3. To be notified that you have received mail, enter:

* - | R "/usr/lib/mh/rcvtty /home/sarah/allmail"

In this example, the /home/sarah/allmail file contains the line:

echo "You have mail\n"

The /home/sarah/allmail file must have execute permission. When you have mail, the words You
have mail are displayed on your console.

4. To forward a copy of a message, enter:

addr manager | A "/usr/lib/mh/rcvdist amy"

This example directs the slocal command to search the address fields in messages. When it finds
a message to the project manager, the slocal command sends a copy of the message to amy. The
original message is not affected. The action is always performed (the A value). The command that the
slocal command reads to distribute the copy to another user is the rcvdist command.

Files Reference 163

5. To save any undelivered messages, enter:

default - > ? mailbox

This example directs the slocal command to find all undelivered messages. The - (dash) is a
placeholder for the Pattern parameter. The > (greater than sign) instructs the slocal command to
file the messages it finds. The ? (question mark) instructs the slocal command to respond only to
undelivered messages. The name of the file to store undelivered messages is mailbox.

Files

Item Description

$HOME/.forward Searched by the sendmail command when mail is received, contains
either the path of a machine to which to forward mail or a line to start
the slocal command.

/usr/mail/$USER Provides the default mail drop.

/usr/lib/mh/slocal Contains the slocal command that reads the .maildelivery file.

/etc/mh/maildelivery Contains the mail delivery instructions that the slocal command
reads if none are specified in the $HOME/.maildelivery file.

$HOME/.maildelivery Specifies mail-related actions for the slocal command to perform.

Related reference
mtstailor File for MH
Related information
rcvdist command
sendmail command
slocal command

/usr/lib/security/methods.cfg File

Purpose
Contains the information for loadable authentication module configuration.

Description
The /usr/lib/security/methods.cfg file is an ASCII file that contains stanzas with loadable authentication
module information. Each stanza is identified by a module name followed by a colon (:) and contains
attributes in the form Attribute=Value. Each attribute ends with a new-line character and each stanza ends
with an additional new-line character.

The /usr/lib/security/methods.cfg file is a symbolic link to the /etc/methods.cfg file.

Note: If you are using Common Desktop Environment (CDE), you must restart the desktop login manager
(dtlogin) for any changes to take effect. Restarting dtlogin will prevent CDE login failure by using the
updated security mechanisms. Please read the /usr/dt/README file for more information.

Each stanza can have the following attributes:

Attribute Description

domain Specifies a free-format ASCII text string that is used by the loadable
authentication module to select a data repository. This attribute is optional.

164 AIX Version 7.1: Files Reference

Attribute Description

netgroup Indicates netgroup enablement for this module. The following behaviors will
be turned on:

1. Users defined in the /etc/security/user file as members of
the module's registry (for example, having registry=LDAP and
SYSTEM=LDAP) will not be able to authenticate as module users. These
users will now become nis_module users and will require native NIS
netgroup membership. To fully enable nis_module netgroup users,
corresponding entries in /etc/security/user must have registry
and SYSTEM value removed or set to compat.

2. The registry value of compat is now supported. However, only
nis_module users will show compat as their registry. Other users will
show their absolute registry value.

3. The meaning of registry=compat will be expanded to include modules
supporting netgroup. For example, if the LDAP module is netgroup
enabled, compat will include the following registries: files, NIS and LDAP.

options Specifies an ASCII text string containing optional values that are passed to the
loadable authentication module upon initialization. The supported values for
each module are described by the product documentation for that loadable
authentication module.

The options attribute takes the following pre-defined values:

auth=module
Specifies the module to be used to perform authentication functions for
the current loadable authentication module

authonly
Indicates that the loadable authentication module only performs
authentication operations. User and group information must be provided
by a different module, specified by the db= option. If not by a module,
then user and group information must be provided by the local files
database.

db=module
Specifies the module to be used for providing user and group information
for the current loadable authentication module

dbonly
Indicates that the loadable authentication module only provides user
and group information and does not perform authentication functions.
Authentication operations must be performed by a different load
module, specified by the auth= option. If the auth= option is not
specified, all authentication operations fail.

netgroup
Indicates netgroup enabling of this module. The following behaviors will
be turned on:

1. Users defined in /etc/security/user as members of the
module's registry (for example, having registry=LDAP and
SYSTEM=LDAP) will not be able to authenticate as module users.
These users will now become nis_module users and will require
native NIS netgroup membership. To fully enable nis_module
netgroup users, corresponding entries in /etc/security/user
must have registry and SYSTEM values removed or set to
compat.

2. The registry value of compat is now supported, however, only
nis_module users will show compat as their registry value. Other
users will show their absolute registry value.

3. The meaning of registry compat will be expanded to include
modules supporting netgroup. For example, if LDAP module is
netgroup-enabled, compat will include the following registries: files,
NIS and LDAP.

noprompt
The initial password prompt for authentication operations is suppressed.
The loadable authentication module would then control all password
prompting.

rootrequiresopw
Determines whether the root user is prompted for the old password
for this loadable authentication module when changing another user's
password. If you want to disable the prompt of the old password, set this
option to False. The default value is True.

Files Reference 165

Attribute Description

options (continued) The options attribute can also use the following predefined values for the
KRB5/KRB5A load modules:

allow_expired_pwd= [yes | true/no | false]
The possible values for the allow_expired_pwd option follow:

1. No or false

2. Yes or true

By default the allow_expired_pwd option is set to no or false. The
allow_expired_pwd option enables the AIX® operating system to get the
password expiration information by using the Kerberos authentication
interfaces. The actual status of the password expiration information is
obtained either during the login or by calling the authenticate subroutine
and the passwdexpired subroutine.

is_kadmind_compat=[yes | true/no | false]
This option is used to indicate which authentication service Kerberos
authenticates against. If it is set to yes or true, it authenticates by using
the Network Authentication Service (NAS). If it is set to no or false, the
environment is set to use the non-AIX services.

kadmind=[yes | true/no | false]
The possible values for the kadmind option follow:

1. No or false: Disables the kadmind lookups.

2. Yes or true: Enables the kadmind lookups.

The default value is yes. When this option is set to no, the kadmind
daemon is not contacted during authentication. Therefore, users can
log into the system regardless of the status of the kadmind daemon
provided that the user enters the correct password when the system
prompts for one. However, the AIX user administration commands, such
as mkuser, chuser, or rmuser, do not work to administrate Kerberos
integrated users if the daemon is not available (for example, either the
daemon is down or the machine is not accessible). The default value
for the kadmind parameter is yes. It means that kadmind lookups are
performed during authentication. In the default case, if the daemon is
not available, the authentication might take longer.

kadmind_timeout=[timeout_value]
The kadmind_timeout option is the amount of time in seconds between
kadmind connection attempts after an initial timeout. The valid values
are from 0 - 300.

keep_creds=[yes/no]
By default, the keep_creds option is set to no. If the keep_creds option
is set to yes, every new login generates a new PAG based credential
cache file.

sync_all=[yes | true/no | false]
This option is used to indicate where the processing of an ALL query
is performed, either by the load module or by the security library.
If the sync_all option is set to no or false, the load module leaves
the task of computing an ALL request to the security library routines.
If it is set to yes or true, the principal list is retrieved by the load
module. The authentication side of the load module might declare no
support for the ALL query. In such a case the security library is still
capable of computing an ALL list for the authentication side. It does
this by querying the authentication side for each user that it obtained
from the database side. The resulting ALL list only contains the users
and principals that exist on both sides. The advantage of this is if the
number of users are too many, the Kerberos client or server might fail to
complete this operation. However, querying one user at a time succeeds.
The disadvantage of querying one user at a time is performance. There is
a big performance degradation if the users are queried one user at a time
by the security library.

tgt_verify=[yes | true/no | false]
The possible values for the tgt_verify option follow:

1. No or false: Disables ticket-granting ticket (TGT) verification.

2. Yes or true: Enables TGT verification.

By default, the TGT verification is enabled. When the tgt_verify option
is set to no, TGT verification is not performed and there is no need to
transfer the keys of the host principal keys. This eliminates the need for
the keytab file for authentication purposes when the KRB5A module is
used. Other Kerberos-enabled applications might require the keytab file
for host and service principals.

166 AIX Version 7.1: Files Reference

Attribute Description

options (continued) You can only use the auth=module and db=module value strings for complex loadable authentication modules, which may require or
be used with another loadable authentication module to provide new functionality.

The authonly and dbonly values are invalid for complex modules.

You can use the noprompt value for any kind of module.

program Names the load module containing the executable code that implements the loadable authentication method.

program_64 Names the load module containing the executable code that implements the loadable authentication method for 64-bit processes.

Security
Access Control: This file should grant read (r) and write (w) access to the root user only and read (r)
access to the security group and all other users.

Examples
1. To indicate that the loadable authentication module is located in the file /usr/lib/security/DCE,

enter:

program = /usr/lib/security/DCE

2. To indicate that the loadable authentication module only should provide authentication functions,
enter:

options = authonly

3. The following example contains configuration information for the LDAP simple loadable authentication
module:

LDAP:
 program = /usr/lib/security/LDAP
 program_64 = /usr/lib/security/LDAP64

The "LDAP" stanza gives the name of the module, used by the SYSTEM and registry attributes for a
user. The name does not have to be the same as the file name given for the program attribute.

4. The following example contains configuration information for the KERBEROS complex loadable
authentication module:

KERBEROS:
 program = /usr/lib/security/KERBEROS
 program_64 = /usr/lib/security/KERBEROS64
 options = authonly,db=LDAP

The "KERBEROS" stanza gives the name of the module as used by the SYSTEM and registry attributes
for a user. This name does not have to be the same as the name of the file given for the program
attribute. The options attribute indicates that the user and group information functions are to be
performed by the module described by the "LDAP" stanza (in example 3).

Files
/usr/lib/security/methods.cfg

Specifies the path to the file.
/etc/passwd

Contains basic user attributes.
/etc/security/user

Contains the extended attributes of users.
/usr/dt/README

Contains dtlogin information.

Files Reference 167

Related information
chuser command
passwd command
su command
Loadable Authentication Module Programming Interface

mhl.format File

Purpose
Controls the output format of the mhl command.

Description
The /etc/mh/mhl.format file controls the output format of the mhl command when the mhl command
functions as the message listing program. The /etc/mh/mhl.format file is the default attributes file. The
mhl.digest, mhl.forward, and mhl.reply files must be specified before use.

Each line of the mhl.format file must have one of the following forms:

Form Definition

;Comment Contains the comments specified by the Comment field that
are ignored.

:ClearText Contains text for output (ClearText). A line that contains a :
(colon) only produces a blank output line.

Component:[Variable,...] Defines the format of the specified Component.

Variable[Variable,...] Applies the value specified by the Variable field only to the
preceding component if the value follows that component.
Lines having other formats define the global environment.

The entire mhl.format file is parsed before output processing
begins. Therefore, if the global setting of a variable is defined
in multiple places, the last global definition for that variable
describes the current global setting.

The following table lists the mhl.format file variables and parameters.

Table 2. File Variables for the mhl.format File

Parameter Variable Description

Width integer Sets the screen width or
component width.

Length integer Sets the screen length or
component length.

OffSet integer Indents the Component
parameter the specified number
of columns.

OverflowText string Outputs the String parameter at
the beginning of each overflow
line.

OverflowOffset integer Indents overflow lines the
specified number of columns.

168 AIX Version 7.1: Files Reference

Table 2. File Variables for the mhl.format File (continued)

Parameter Variable Description

CompWidth integer Indents component text the
specified number of columns
after the first line of output.

Uppercase flag Outputs text of the Component
parameter in all uppercase
characters.

NoUppercase flag Outputs text of the Component
parameter in the case entered.

ClearScreen flag/G Clears the screen before each
page.

NoClearScreen flag/G Does not clear the screen before
each page.

Bell flag/G Produces an audible indicator at
the end of each page.

NoBell flag/G Does not produce an audible
indicator at the end of each page.

Component string/L Uses the String parameter as
the name for the specified the
Component parameter instead of
the string Component.

NoComponent flag Does not output the string
Component for the specified
Component parameter.

Center flag Centers the Component
parameter on line. This variable
works for one-line components
only.

NoCenter flag Does not center the Component
parameter.

LeftAdjust flag Strips off the leading white space
characters from each line of text.

NoLeftAdjust flag Does not strip off the leading
white space characters from each
line of text.

Compress flag Changes new-line characters in
text to space characters.

NoCompress flag Does not change new-line
characters in text to space
characters.

FormatField string Uses String as the format string
for the specified component.

AddrField flag The specified Component
parameter contains addresses.

Files Reference 169

Table 2. File Variables for the mhl.format File (continued)

Parameter Variable Description

DateField flag The specified Component
parameter contains dates.

Ignore unquoted string Does not output component
specified by String.

Variables that have integer or string values as parameters must be followed by an = (equal sign) and
the integer or string value (for example, overflowoffset=5). String values must also be enclosed in
double quotation marks (for example, overflowtext="***"). A parameter specified with the /G suffix
has global scope. A parameter specified with the /L suffix has local scope.

Examples
The following is an example of a line that could be displayed in the mhl.format file:

width=80,length=40,clearscreen,overflowtext="***".,overflowoffset=5

This format line defines the screen size to be 80 columns by 40 rows, and specifies the screen should be
cleared before each page (clearscreen). The overflow text should be flagged with the *** string, and
the overflow indentation should be 5 columns.

Files

Item Description

/etc/mh/mhl.format Specifies the path of the mhl.format file.

Related information
ap command
dp command
mhl command
scan command

.mh_profile File

Purpose
Customizes the Message Handler (MH) package.

Description
Each user of the MH package is expected to have a $HOME/.mh_profile file in the home directory. This
file contains a set of user parameters used by some or all of the MH programs. Each line of the file has the
following format:

Profile-Entry: Value

Profile Entries
This table describes the profile entry options for the .mh_profile file. Only Path: is required. Each profile
entry is stored in either the .mh_profile file or the UserMHDirectory/context file.

170 AIX Version 7.1: Files Reference

Table 3. Profile Entry Options for the .mh_profile File

Profile Entry and Description Storage File Default Value

Path:
The path for theUserMHDirectory directory.
The usual location is $HOME/Mail.

mh_profile None

context:
The location of the MH context file.

mh_profile UserMHDirectory /
context

Current- Folder:
Tracks the current open folder.

context inbox

Previous- Sequence:
The Messages or Message sequences
parameter given to the program. For each
name given, the sequence is set to 0. Each
message is added to the sequence. If not
present or empty, no sequences are defined.

mh_profile None

Sequence- Negation:
The string negating a sequence when
prefixed to the name of that sequence. For
example, if set to not, not seen refers to
all the messages that are not a member of
the sequence seen.

mh_profile None

Unseen- Sequence:
The sequences defined as messages recently
incorporated by the inc command. For each
name given, the sequence is set to 0. If not
present, or empty, no sequences are defined.

Note: The show command removes
messages from this sequence after viewing.

mh_profile None

.mh_sequences:
The file, in each folder, defining public
sequences. To disable the use of public
sequences, leave the value of this entry
blank.

mh_profile .mh_sequences

atr- SequenceFolder:
Tracks the specified sequence in the
specified folder.

context None

Editor:
The editor to be used by the comp, dist,
forw, and repl commands.

mh_profile prompter

Msg-Protect:
Defines octal protection bits for message
files. The chmod command explains the
default values.

mh_profile 0644

Files Reference 171

Table 3. Profile Entry Options for the .mh_profile File (continued)

Profile Entry and Description Storage File Default Value

Folder- Protect:
Defines protection bits for folder directories.
The chmod command explains the default
values.

mh_profile 0711

Program:
Sets default flags to be used when the MH
program specified by the MH program field is
started. For example, override the Editor:
profile entry when replying to messages by
entering: repl: -editor /usr/bin/ed

mh_profile None

LastEditor-next:
The default editor after the editor specified
by the Editor: field has been used. This
takes effect at the What now? field of the
comp, dist, forw, and repl commands. If
you enter the editor command without a
parameter to the What now? field, the editor
specified by the LastEditor-next: field is
used.

mh_profile None

Folder-Stack:
The contents of the folder stack of the folder
command.

context None

Alternate- Mailboxes:
Indicates your address to the repl and scan
commands. The repl command is given
the addresses to include in the reply. The
scan command is informed the message
originated from you. Host names should be
the official host names for the mailboxes you
indicate. Local nicknames for hosts are not
replaced with their official site names. If a
host is not given for a particular address,
that address on any host is considered to be
your current address. Enter an * (asterisk) at
either end or both ends of the host mailbox
to indicate pattern matching.

Note: Addresses must be separated by a
comma.

mh_profile $LOGNAME

Draft-Folder:
Indicates a default draft folder for the comp,
dist, forw, and repl commands.

mh_profile None

digest- issue- List:
Indicates to the forw command the last
issue of the last volume sent for the digest
List.

context None

172 AIX Version 7.1: Files Reference

Table 3. Profile Entry Options for the .mh_profile File (continued)

Profile Entry and Description Storage File Default Value

digest- volume- List:
Indicates to the forw command the last
volume sent for the digest List.

context None

MailDrop:
Indicates to the inc command your mail
drop, if different from the default. This is
superseded by the $MAILDROP environment
variable.

mh_profile /usr/mail/$USER

Signature:
Indicates to the send command your
mail signature. This is superseded by the
$SIGNATURE environment variable.

mh_profile None

Profile Elements
The following profile elements are used whenever an MH program starts another program. You can use
the .mh_profile file to select alternate programs.

Profile Element Path

fileproc: /usr/bin/refile

incproc: /usr/bin/inc

installproc: /usr/lib/mh/install-mh

lproc: /usr/bin/more

mailproc: /usr/bin/mhmail

mhlproc: /usr/lib/mh/mhl

moreproc: /usr/bin/more

mshproc: /usr/bin/msh

packproc: /usr/bin/packf

postproc: /usr/lib/mh/spost

rmmproc: None

rmfproc: /usr/bin/rmf

sendproc: /usr/bin/send

showproc: /usr/bin/more

whatnowproc: /usr/bin/whatnow

whomproc: /usr/bin/whom

Files Reference 173

Environment Variables

Variable Description

$MH Specifies a profile for an MH program to read. When you start an MH program, it
reads the .mh_profile file by default. Use the $MH environment variable to specify a
different profile.

If the file of the $MH environment variable does not begin with a / (slash), it is
presumed to start in the current directory. The / indicates the file is absolute.

$MHCONTEXT Specifies a context file that is different from the normal context file specified in the
MH profile. If the value of the $MHCONTEXT environment variable is not absolute, it is
presumed to start from your MH directory.

$MAILDROP Indicates to the inc command the default mail drop. This supersedes the MailDrop:
profile entry.

$SIGNATURE Specifies your mail signature to the send and post commands. This supersedes the
Signature: profile entry.

$HOME Specifies your home directory to all MH programs.

$TERM Specifies your terminal type to the MH package. In particular, these environment
variables tell the scan and mhl commands how to clear your terminal, and give the
width and length of your terminal in columns and lines, respectively.

$editalt Specifies an alternate message. This is set by the dist and repl commands during
edit sessions so you can read the distributed message or the answered message. This
message is also available through a link called @ (at sign) in the current directory, if
your current directory and the message folder are on the same file system.

$mhdraft Specifies the path name of the working draft.

$mhfolder Specifies the folder containing the alternate message. This is set by the dist and repl
commands during edit sessions, so you can read other messages in the current folder
besides the one being distributed. The $mhfolder environment variable is also set by
the show, prev, and next commands for use by the mhl command.

Examples
The following example has the mandatory entry for the Path:field. The option -alias aliases is used
when both the send and ali commands are started. The aliases file resides in the mail directory. The
message protection is set to 600, which means that only the user has permission to read the message
files. The signature is set to Dan Carpenter, and the default editor is vi.

Path: Mail
send: -alias aliases
ali: -alias aliases
Msg-Protect: 600
Signature: Dan Carpenter
Editor: /usr/bin/vi

Files

Item Description

$HOME/.mh_profile Contains the user profile.

UserMHDirectory/context Contains the user context file.

Folder/.mh_sequences Contains the public sequences for the folder specified by the
Folder variable.

174 AIX Version 7.1: Files Reference

Related reference
.mh_alias File Format
Related information
chmod command
inc command
post command
scan command
whatnow command

mibII.my File

Purpose
Provides sample input to the mosy command.

Description
The /usr/samples/snmpd/mibII.my file is a sample input file to the mosy command, which creates an
objects definition file for use by the snmpinfo command. This file is part of Simple Network Management
Protocol Agent Applications in Network Support Facilities. The mosy compiler requires its input file to
contain the ASN.1 definitions as described in the Structure and Identification of Management Information
(SMI) RFC 1155 and the Management Information Base (MIB) RFC 1213. The mibII.my file contains the
ASN.1 definitions from the MIB RFC 1213 (MIB II). RFC is the abbreviation for Request for Comments.

Comments are specified by - - (two dashes). A comment can begin at any location after the comment sign
and extend to the end of the line.

The mibII.my file begins with a definition of the SNMP subtree of the MIB, as assigned by the Internet
Activities Board (IAB). This definition contains the name of the RFCs from which the ASN.1 definitions are
obtained.

 RFC1213-MIB {iso org(3) dod(6) internet(1) mgmt(2) 1 }

 DEFINITIONS ::= BEGIN

 IMPORTS
 mgmt, NetworkAddress, IpAddress,
 Counter, Gauge, TimeTicks
 FROM RFC1155-SMI
 OBJECT-TYPE
 from RFC-1213;

 mib-2 OBJECT IDENTIFIER ::= { mgmt 1 }-- MIB-II

 system OBJECT IDENTIFIER ::= { mib-2 1 }
 interfaces OBJECT IDENTIFIER ::= { mib-2 2 }
 at OBJECT IDENTIFIER ::= { mib-2 3 }
 ip OBJECT IDENTIFIER ::= { mib-2 4 }
 icmp OBJECT IDENTIFIER ::= { mib-2 5 }
 tcp OBJECT IDENTIFIER ::= { mib-2 6 }
 udp OBJECT IDENTIFIER ::= { mib-2 7 }
 egp OBJECT IDENTIFIER ::= { mib-2 8 }
 -- cmot OBJECT IDENTIFIER ::= { mib-2 9 }
 transmission OBJECT IDENTIFIER ::= { mib-2 10}
 snmp OBJECT IDENTIFIER ::= { mib-2 11}

The file must contain the ASN.1 definition for each MIB variable. The ASN.1 definition is presented in an
OBJECT-TYPE macro.

Following is the format of an OBJECT-TYPE macro:

 ObjectDescriptor OBJECT-TYPE
 SYNTAX ObjectSyntax
 ACCESS AccessMode
 STATUS StatusType

Files Reference 175

 DESCRIPTION Description
 ::= {ObjectGroup Entry}

The following definitions describe the pieces of the macro:

Macro Description

ObjectDescriptor Indicates the textual name assigned to the MIB variable being defined. See
RFC 1155 for the definition of the ObjectDescriptor variable.

ObjectSyntax Indicates the abstract syntax for the object type. It must be one of:

• INTEGER
• OCTET STRING or DisplayString
• OBJECT IDENTIFIER
• NULL
• Network Address
• Counter
• Gauge
• TimeTicks
• Opaque

See RFC 1155 for definitions of each ObjectSyntax variable.

AccessMode Specifies the permissions of the object, which can be either:

• read-only
• read-write
• write-only
• not-accessible

See RFC 1155 for definitions of each AccessMode variable.

StatusType Specifies the status of the object, which can be either:

• mandatory
• optional
• deprecated
• obsolete

See RFC 1155 for definitions of each StatusType variable.

Description Specifies a textual description of the purpose of the MIB variable being
defined.

ObjectGroup Defines the object group for this MIB variable. The ObjectGroup variable
identifies the subtree for the MIB variable. See RFC 1213 for information on
object groups.

Entry Defines the unique location of the MIB variable in the ObjectGroup variable.

The ObjectGroup and Entry variables are used to specify the unique numerical object identifier for each
MIB variable. See RFC 1155 for an explanation of the object identifier.

See RFC 1155 for further information on the OBJECT-TYPE macro.

This sample mibII.my file was created by extracting the definitions from Chapter 6, "Definitions," of RFC
1213. This file is shipped as /usr/samples/snmpd/mibII.my.

176 AIX Version 7.1: Files Reference

Examples
The following example of an OBJECT-TYPE macro describes the sysDescr managed object:

 sysDescr OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION A textual description of the entity.
 This value should include the full name and
 version identification of system's hardware
 type,software operating-system, and networking
 software. It is mandatory that this only
 contain printable ASCII characters.
 ::= { system 1 }

Files

Item Description

/usr/samples/snmpd/mibII.my Specifies the path of the mibII.my file.

/usr/samples/snmpd/smi.my Defines the ASN.1 definitions by which the SMI is
defined in RFC 1155.

/etc/mib.defs Defines the Management Information Base (MIB)
variables the snmpd agent should recognize and handle.
This file is in the format which the snmpinfo command
requires.

Related reference
smi.my File
Related information
mosy command
snmpinfo command
Management Information Base (MIB)
Terminology Related to Management Information Base (MIB) Variables

mkuser.default File

Purpose
Contains the default attributes for new users.

Description
The /usr/lib/security/mkuser.default file contains the default attributes for new users. This file is an
ASCII file that contains user stanzas. These stanzas have attribute default values for users created by the
mkuser command. Each attribute has the Attribute=Value form. If an attribute has a value of $USER, the
mkuser command substitutes the name of the user. The end of each attribute pair and stanza is marked
by a new-line character.

There are two stanzas, user and admin, that can contain all defined attributes except the id and admin
attributes. The mkuser command generates a unique id attribute. The admin attribute depends on
whether the -a flag is used with the mkuser command.

For a list of the possible user attributes, see the chuser command.

Files Reference 177

Security
Access Control: If read (r) access is not granted to all users, members of the security group should be
given read (r) access. This command should grant write (w) access only to the root user.

Examples
A typical user stanza looks like the following:

user:
 pgroup = staff
 groups = staff
 shell = /usr/bin/ksh
 home = /home/$USER
 auth1 = SYSTEM

Files

Item Description

/usr/lib/security/mkuser.default Specifies the path to the file.

Related information
chuser command
mkuser command
User Accounts

mtstailor File for MH

Purpose
Tailors the Message Handler (MH) environment to the local environment.

Description
The entries located in the /etc/mh/mtstailor file specify how MH commands work. The following list
describes the file entries and their default values. All of the file entries are optional.

Entry Description

localname: Specifies the host name of the local system. If this entry is not defined, MH
queries the system for the default value.

systemname: Specifies the host name of the local system in the UUCP domain. If this entry is
not defined, MH queries the system for the default value.

mmdfldir: Specifies the location of mail drops. If this entry is present and empty, mail drops
are located in the user's $HOME directory. If this entry does not exist, mail drops
are located in the /usr/mail directory.

mmdflfil: Specifies the name of the file used as the mail drop. If this entry is not defined,
the default file name is the same as the user name.

mmdelim1: Specifies the beginning-of-message delimiter for mail drops. The default value is
four Ctrl + A key sequences followed by a new-line character (. 001. 001. 001.
001. 012). A Ctrl + A key sequence is a nonprintable character not displayed on
the screen.

mmdelim2: Specifies the end-of-message delimiter for mail drops. The default value is four
Ctrl + A key sequences followed by a new-line character (. 001. 001. 001. 001.
012). A Ctrl + A key sequence is a nonprintable character not displayed on the
screen.

178 AIX Version 7.1: Files Reference

Entry Description

mmailid: Specifies whether support for the MMailID variable in the /etc/passwd file is
enabled. If the mmailid: entry is set to a nonzero value, support is enabled. The
pw_gecos: field in the /etc/passwd file has the following form:

My Full Name MailID

When support for the MMailID variable is enabled, the internal MH routines that
deal with user and full names return the MailID variable and the My Full Name,
respectively. The default value is 0.

lockstyle: Specifies the locking discipline. A value of 0 (zero) uses the lockf system call to
perform locks. A value of 1 creates lock names by appending .lock to the name
of the file being locked. The default is 0 (zero).

lockldir: Specifies the directory for locked files. The default value is the /etc/locks file.

sendmail: Specifies the path name of the sendmail command. The default value is
the /usr/lib/sendmail file.

maildelivery: Specifies the path name of the file containing the system default mail delivery
instructions. The default value is the /etc/mh/maildelivery file.

everyone: Specifies the users to receive messages addressed to everyone. All users
having UIDs greater than the specified number (not inclusive) receive messages
addressed to everyone. The default value is 200.

Files

Item Description

/etc/mh/mtstailor Contains MH command definitions.

Related reference
.maildelivery File for MH
/etc/passwd File
Related information
sendmail command

mrouted.conf File

Purpose
Default configuration information for the multicast routing daemon mrouted.

Description
The /etc/mrouted.conf configuration file contains entries that provide configuration information used by
mrouted. You can specify any combination of these entries in this file.

The file format is free-form; white space and newline characters are not significant. The phyint, tunnel,
and name entries can be specified more than once. The boundary and altnet values can be specified as
many times as necessary.

The following entries and their options can be used in the mrouted.conf file:

phyint local_addr [disable] [metric m] [threshold t] [rate_limit b] [boundary

Files Reference 179

(boundary_name | scoped_addr/mask_len)] [altnet network/mask_len]
The phyint entry can be used to disable multicast routing on the physical interface identified by
the local IP address local_addr, or to associate a non-default metric or threshold with the specified
physical interface. The local IP address can be replaced by the interface name (for example, le0). If a
physical interface is attached to multiple IP subnets, describe each additional subnet with the altnet
option. Phyint entries must precede tunnel entries.

The options for the phyint entry and the actions they generate are as follows:

local_addr
Specifies the local address, using either an IP address or an interface name, such as en0.

disable
Disables multicast routing on the physical interface identified by local_addr.

metric m
Specifies the "cost" associated with sending a datagram on the given interface or tunnel. This
option can be used to influence the choice of routes. The default value of m is 1. Metrics should
be kept as small as possible, because mrouted cannot route along paths with a sum of metrics
greater than 31.

threshold t
Specifies the minimum IP time-to-live (TTL) required for a multicast datagram to be forwarded to
the given interface or tunnel. This option controls the scope of multicast datagrams. (The TTL of
forwarded packets is compared only to the threshold, it is not decremented by the threshold.) The
default value of t is 1. In general, all mrouted daemons connected to a particular subnet or tunnel
should use the same metric and threshold for that subnet or tunnel.

rate_limit b
Specifies a bandwidth in Kilobits/second, which is allocated to multicast traffic. The default value
of b is 500 Kbps on tunnels, and 0 (unlimited) on physical interfaces.

boundary boundary_name|scoped_addr/mask_len
Configures an interface as an administrative boundary for the specified scoped address. Packets
belonging to this address are not forwarded on a scoped interface. The boundary option accepts
either a boundary name or a scoped address and mask length. The boundary_name is the name
assigned to a boundary with the name entry. The scoped_addr value is a multicast address. The
mask_len value is the length of the network mask.

altnet network/mask_len
Specifies an additional subnet (network) attached to the physical interface described in the phyint
entry. mask_len is the length of the network mask.

tunnel local_addr remote_addr [metric m] [threshold t] [rate_limit b] [boundary {boundary_name |
scoped_addr/mask_len}] [altnet network/mask_len]

The tunnel entry can be used to establish a tunnel link between the local IP address (local_addr) and
the remote IP address (remote_addr), and to associate a non-default metric or threshold with that
tunnel. The local IP address can be replaced by the interface name (for example, le0). The remote
IP address can be replaced by a host name, if and only if the host name has a single IP address
associated with it. The tunnel must be set up in the mrouted.conf files of both routers before it can
be used. The phyint entry can be used to disable multicast routing on the physical address interface
identified by the local IP address local_addr , or to associate a non-default metric or threshold with
the specified physical interface. The local IP address can be replaced by the interface name (for
example, le0). If a physical interface is attached to multiple IP subnets, describe each additional
subnet with the altnet option. Phyint entries must precede tunnel entries.

For a description of the options used with the tunnel entry, see the preceding option descriptions in
the phyint entry.

cache_lifetime ct
The cache_lifetime entry determines the amount of time that a cached multicast route stays in the
kernel before timing out. The value of ct is in seconds, and should lie between 300 (five minutes) and
86400 (one day). The default value is 300 seconds .

180 AIX Version 7.1: Files Reference

pruning state
The pruning entry enables mrouted to act as a non-pruning router. The value of state can be either on
or off . You should configure your router as a non-pruning router for test purposes only. The default
mode is on , which enables pruning.

name boundary_name scoped_addr/mask-len
The name entry lets you assign names to boundaries to make it easier to configure. The boundary
option on the phyint and tunnel entries accepts either a boundary name or a scoped address. The
boundary_name is the name you want to give to the boundary. The scoped_addr value is a multicast
address. The mask_len value is the length of the network mask.

Example
This example shows a configuration for a multicast router at a large school.

#
mrouted.conf
#
Name our boundaries to make it easier
name LOCAL 239.255.0.0/16 name EE 239.254.0.0/16
#
le1 is our gateway to compsci, don't forward our
local groups to them
phyint le1 boundary LOCAL
#
le2 is our interface on the classroom network,
it has four different length subnets on it.
Note that you can use either an IP address or an
interface name
phyint 172.16.12.38 boundary EE altnet 172.16.15.0/26
 altnet 172.16.15.128/26 altnet 172.16.48.0/24
#
atm0 is our ATM interface, which doesn't properly
support multicasting
phyint atm0 disable
 #
This is an internal tunnel to another EE subnet.
Remove the default tunnel rate limit, since this tunnel
is over ethernets
tunnel 192.168.5.4 192.168.55.101 metric 1 threshold 1
 rate_limit 0
This is our tunnel to the outside world.
tunnel 192.168.5.4 10.11.12.13 metric 1 threshold 32
 boundary LOCAL boundary EE

netgroup File for NIS

Purpose
Lists the groups of users on the network.

Description
The /etc/netgroup file defines network-wide groups. This file is used for checking permissions when
doing remote mounts, remote logins, and remote shells. For remote mounts, the information in the
netgroup file is used to classify machines. For remote logins and remote shells, the file is used to classify
users. Each line of the netgroup file defines a group and is formatted as follows:

Groupname Member1 Member2 ...

where Member is either another group name or consists of three entries as follows:

hostname, username, domainname

Any of these three fields can be empty, in which case it signifies a wild card. The universal (, ,) field
defines a group to which everyone belongs.

Files Reference 181

Field names that begin with something other than a letter, digit or underscore (such as -) work in precisely
the opposite fashion. For example, consider the following entries:

justmachines (analytica,-,ibm)

justpeople (-,babbage,ibm)

The machine analytica belongs to the group justmachines in the domain ibm, but no users belong
to it. Similarly, the user babbage belongs to the group justpeople in the domain ibm, but no machines
belong to it.

A gateway machine should be listed under all possible host names by which it may be recognized:

wan (gateway , ,) (gateway-ebb , ,)

The domainname field refers to the domain n in which the triple is valid, not the name containing the
trusted host.

Examples
The following is an excerpt from a netgroup file:

machines (venus, -, star)
people (-, bob, star)

In this example, the machine named venus belongs to the group machines in the star domain.
Similarly, the user bob belongs to the group people in the star domain.

Files

Item Description

/etc/netgroup Specifies the path of the file.

Related information
makedbm command
ypserv command
Network File System Overview

netmasks File for NIS

Purpose
Contains network masks used to implement Internet Protocol (IP) standard subnetting.

Description
The /etc/netmasks file contains network masks used to implement IP standard subnetting. This file
contains a line for each network that is subnetted. Each line consists of the network number, any number
of spaces or tabs, and the network mask to use on that network. Network numbers and masks may be
specified in the conventional IP . (dot) notation (similar to IP host addresses, but with zeroes for the host
part). The following number is a line from a netmask file:

128.32.0.0 255.255.255.0

This number specifies that the Class B network 128.32.0.0 has 8 bits of subnet field and 8 bits of host
field, in addition to the standard 16 bits in the network field. When running network information service,
this file on the master is used for the netmasks.byaddr map.

182 AIX Version 7.1: Files Reference

Files

Item Description

/etc/netmasks Specifies the path of the file.

Related information
Network File System Overview

netmon.cf File

Purpose
Provides network monitoring functions.

Description
The netmon.cf file is an optional configuration file that customers can put in place to augment the
normally available ping targets with any hosts on the network that are not defined to be part of the
cluster itself, and thus would not be picked up automatically, but are reachable from the cluster nodes,
specifically from the IP addresses being monitored by topology services.

If the file exists in one of these paths on a node, every NIM on that node reads it when topology services
are started and try to use its contents when exercising the network monitor library functions.

This file is not controlled by any cluster subsystems; it is not distributed to any other nodes in the cluster
because it is added to one of them. It must be put on each node that needs it manually.

Files
/opt/rsct/samples/hats/netmon.cf

Sample version of the netmon.cf file

Implementation specifics
This file is part of the Reliable Scalable Cluster Technology (RSCT) fileset for AIX.

Location
/usr/es/sbin/cluster/netmon.cf

Location of the netmon.cf file in a PowerHA® environment
/var/ct/cfg/netmon.cf

Location of the netmon.cf file in an RSCT peer domain
Related information
lssrc Command

netsvc.conf File

Purpose
Specifies the ordering of certain name resolution services.

Description
The /etc/netsvc.conf file is used to specify the ordering of name resolution for the sendmail command,
gethostbyname subroutine, gethostaddr subroutine, and gethostent subroutine and alias resolution for
the sendmail command.

Files Reference 183

Several mechanisms for resolving host names and aliases are available. The gethostbyname,
gethostbyaddr, and gethostent subroutines use these mechanisms for resolving names. A default order
exists in which the resolver subroutines try the mechanisms for resolving host names and Internet
Protocol (IP) addresses.

Resolving Host Names

You can override the default order and the order given in the /etc/irs.conf file by creating the /etc/
netsvc.conf configuration file and specifying the desired ordering. To specify this host ordering, create an
entry in the following format:

hosts = value [, value]

Use one or more of the following values for the hosts keyword:

Value Description

auth Designates the specified server as authoritative. A resolver does not continue searching for
host names further than an authoritative server. For example, when two services are given
as values for the host keyword and the first service is made authoritative, and if the resolver
cannot find the host name in the authoritative service, then the resolver terminates its search.
However, the auth option has no effect if the resolver is unable to contact the authoritative
server; in this case, the resolver continues to search the next service given in the same entry.

Indicate that the specified service is authoritative by following it by an = and then auth.

Note: The auth option is only valid when used in conjunction with a service value for the host
keyword.

bind Uses BIND/DNS services for resolving names

local Searches the local /etc/hosts file for resolving names

nis Uses NIS services for resolving names. NIS must be running if you specify this option

nis+ Uses NIS+ services for resolving names. NIS+ must be running if you specify this option

nis_ldap Uses LDAP services for resolving names. This option works if LDAP server schema is RFC
2307 compliant.

bind4 Uses BIND/DNS services for resolving only IPv4 addresses

bind6 Uses BIND/DNS services for resolving only IPv6 addresses

local4 Searches the local /etc/hosts file for resolving only IPv4 addresses

local6 Searches the local /etc/hosts file for resolving only IPv6 addresses

nis4 Uses NIS services for resolving only IPv4 addresses

nis6 Uses NIS services for resolving only IPv6 addresses

nis_ldap
4

Uses NIS LDAP services for resolving names for IPv4 addresses

nis_ldap
6

Uses NIS LDAP services for resolving names for IPv6 addresses

The environment variable NSORDER overrides the host settings in the /etc/netsvc.conf file, which in turn
overrides the host settings in the /etc/irs.conf file.

Resolving Aliases

The sendmail command searches the local /etc/aliases file, or uses NIS if specified for resolving aliases.
You can override the default by specifying how to resolve aliases in the /etc/netsvc.conf file. To specify
alias ordering to the sendmail command, enter the following:

alias = value [, value]

184 AIX Version 7.1: Files Reference

Use one or more of the following values for the alias keyword:

Value Description

files Searches the local /etc/aliases file for the alias

nis Uses NIS services for resolving alias

nis+ Uses NIS+ services for resolving alias

The order is specified on one line with values separated by commas. White spaces are permitted around
the commas and the equal sign. The values specified and their ordering are dependent on the network
configuration.

Examples
1. To use only the /etc/hosts file for resolving names, enter:

hosts = local

2. If the resolver cannot find the name in the /etc/hosts file and you want to the resolver to use NIS,
enter:

hosts = local , nis

3. To use an LDAP server for resolving names, to indicate that it is authoritative, and to also use the BIND
service, enter: z`

host = nis_ldap = auth , bind

In this example, if the resolver cannot contact the LDAP server, it searches the BIND service.
4. To override the default order and use only NIS for resolving aliases by the sendmail command, enter:

aliases = nis

Files

Item Description

/etc/netsvc.conf Specifies the path to the file.

Related reference
irs.conf File
aliases File for Mail
hosts File Format for TCP/IP
resolv.ldap File Format for TCP/IP
Related information
sendmail command
gethostbyname subroutine
gethostbyaddr subroutine
gethostent subroutine
TCP/IP name resolution

networks File for NFS

Purpose
Contains information about networks on the NFS Internet network.

Files Reference 185

Description
The /etc/networks file contains information regarding the known networks that make up the Internet
network. The file has an entry for each network. Each entry consists of a single line with the following
information:

• Official network name
• Network number
• Aliases

Items are separated by any number of blanks or tab characters. A # (pound sign) indicates the beginning
of a comment; characters up to the end of the line are not interpreted by routines that search the file.

Note: This file is not supported by the operating system. However, if this file resides on your system,
Network Information Services (NIS) software will create a map for it.

Files

Item Description

/etc/networks Specifies the path of the file.

Related information
NFS Services
List of NFS files

NLSvec File

Purpose
Encodes PostScript fonts for the ISO8859-1 codeset characters that have code points of more than 127
decimal.

Description
The /usr/lib/ps/NLSvec file can contain optional comments, optional code sets, and optional character
encodings.

If a line begins with an * (asterisk), it is treated as a comment.

If a specified codeset is used, it must precede all character encodings. If a code set is not specified, the
default is ISO8859-1. A specified code set uses the following syntax:

x codeset CodeSetName

x
Use a lowercase letter.

codeset
Use all lowercase letters.

CodeSetName
Use any valid code set name available for use with the iconv command.

A character encoding uses the following syntax:

CodePoint PostscriptFontPosition PostscriptCharacterName

CodePoint
Displays the decimal code point for the character.

PostScriptFontPosition
Displays the new encoding for that character within the PostScript fonts. The encoding can be octal or
decimal.

186 AIX Version 7.1: Files Reference

PostScriptCharacterName
Displays the PostScript character name.

The PostScript assigned character encodings as well as the character names can be found in the following
book:

Adobe Systems Incorporated. PostScript Language Reference Manual, Second Edition. Reading, MA:
Addison-Wesley.

Examples
Note:

1. Following is an example of a specified codeset:

x codeset ISO8859-1

2. Following is an example of a character encoding:

161 0241 exclamdown

International Character Support
By default, the output code set for the TranScript commands is ISO8859-1. The output code set can
be specified with the NLSvec file. For the enscript, ps4014, ps630, and psplot TranScript commands,
the input codeset is determined from the current locale. The mapping of characters outside the ASCII
range is determined through the iconv subroutine using the input and output code sets. If there is no
corresponding iconv converter, the commands treat the input data as if it were produced in ISO8859-1.
This means that ASCII data is output correctly for all locales and codesets. For multibyte locales with no
iconv converters to ISO8859-1 each byte of a multibyte character is treated as individual characters of
the ISO8859-1 form. The only exception to this is the enscript command, which translates characters
rather then bytes in the current locale through the mapping in the NLSvec file.

The following table lists the characters from the IBM-850 code set, which does not map directly to the
ISO8859-1 code set through the iconv subroutine. The following characters would be mapped to 26
(0x1A) by the iconv subroutine and thus be discarded on output. It is possible to define an alternative
NLSvec file for the IBM-850 code set so that more of the characters can be output on a PostScript
device. The characters marked with an * (asterisk) before the character name are normally available in a
PostScript font.

Code Point Character Name

159 (0x9F) * Florin sign, PostScript name: florin

176 (0xB0) Quarter hashed

177 (0xB1) Half hashed

178 (0xB2) Full hashed

179 (0xB3) Vertical bar

180 (0xB4) Right-side middle

185 (0xB9) Double right-side middle

186 (0xBA) Double vertical bar

187 (0xBB) Double upper-right corner bar

188 (0xBC) Double lower-right corner bar

191 (0xBF) Upper-right corner box

192 (0xC0) Lower-left corner box

193 (0xC1) Bottom-side middle

Files Reference 187

Code Point Character Name

194 (0xC2) Top-side middle

195 (0xC3) Left-side middle

196 (0xC4) Center box bar

197 (0xC5) Intersection

200 (0xC8) Double lower-left corner bar

201 (0xC9) Double upper-left corner bar

202 (0xCA) Double bottom-side middle

203 (0xCB) Double top-side middle

204 (0xCC) Double left-side middle

205 (0xCD) Double center box bar

206 (0xCE) Double intersection

213 (0xD5) * Small dotless i, PostScript name: dotless i

217 (0xD9) Lower-right corner box

218 (0xDA) Upper-left corner box

219 (0xDB) Bright character cell

220 (0xDC) Bright character cell lower half

223 (0xDF) Bright character cell upper half

242 (0xF2) Double underscore

254 (0xFE) Vertical solid rectangle

Files

Item Description

XPSLIBDIRX Specifies the /usr/lib/ps directory.

/usr/lib/ps/NLSvec Contains Adobe TranScript character encodings for the ISO8859-1 code
set. This file is the default.

PSVECFILE Used as an environment variable to define an NLSvec file other than the
default file.

Related information
enscript command
iconv command
psplot command

/etc/nscontrol.conf File

Purpose
Contains configuration information of some name services.

188 AIX Version 7.1: Files Reference

Description
The /etc/nscontrol.conf file is a stanza file, with each stanza name representing a database name. You
can use the lssec command and the chsec commands to manage the /etc/nscontrol.conf file. The stanza
controls the following stanza names and library subroutines:

Stanza Name RBAC and Domain RBAC library subroutines

authorizations getauthattr, getauthattrs, putauthattr, putauthattrs

roles getroleattr, getroleattrs, putroleattr, putroleattrs

privcmds getcmdattr, getcmdattrs, putcmdattr, putcmdattrs

privdevs getdevattr, getdevattrs, putdevattr, putdevattrs

privfiles getpfileattr, getpfileattrs, putpfileattr, putpfileattrs

The below stanzas are for EFS Library subroutines and for Remote EFS Keystore support:

• efsusrkeystore
• efsgrpkeystore
• efsadmkeystore

The below stanzas are for Trusted Execution Library subroutines and for Trusted Execution Remote
Signature and Policy database support:

1. tsddat
2. tepolicies

The following stanza supports the audit configuration file:

• auditconfig

You can specify the following attributes:

Item Description

secorder A comma-separated list of module names that library subroutines use in
searching and updating a database. The following module names are valid:
files

Specifies the local module, namely the database files from the /etc/
security directory. This is the default value. For EFS Keystore /var/efs/
<users/groups>/<username/groupname>/keystore directory.

LDAP
Specifies the LDAP module. You must configure the system as an LDAP
client.

A search operation is performed on each module in the order that is specified
until a matching entry is found. A failure is returned if no match is found from all
of the modules. A modification operation is performed on the first entry match.
A creation operation is performed on the first module in the list only.

You can override the value of the secorder attribute by calling the setsecorder
subroutine in an application program, or by using the -R module option on
commands that support the option.

databasename Specifies the database names to consider with database operations. The
databasename attribute is used for Trusted Execution Databases, such as the
Trusted Signature Database and the TE policy Database. While the LDAP search
operation is performed these names are used as a part of Distinguished Names
(DN).

Files Reference 189

You can specify the following attribute for EFS stanzas:

Item Description

Searchorder A comma-separated list of module names that library subroutines use in
searching and updating a database. The following module names are valid:
files

Specifies the local module, namely the database files from the /var/efs/
<users/groups>/<username/groupname>/keystore directory.

LDAP
Specifies the LDAP module. You must configure the system as an LDAP
client.

A search operation is performed on each module in the order that is specified
until a matching entry is found. A failure is returned if no match is found from all
of the modules. A modification operation is performed on the first entry match.
A creation operation is performed on the first module in the list only.

You can override the value of the searchorder attribute by using the -R module
option on commands that support the option.

Files
Item Description

/etc/security/domains Contains domain definitions.

/etc/security/domobjs Contains domain objects and their associated security settings.

/etc/security/authorizations Contains the user-defined authorizations.

/etc/security/roles Contains role definitions.

/etc/security/privcmds Contains privileged command names and their associated security
settings.

/etc/security/privdevs Contains privileged device names and their associated security
settings.

/etc/security/privfiles Contains authorization lists for privileged configuration files that the
trvi editor can access.

/etc/security/tsd/tsd.dat Contains trusted signature database.

/etc/security/tsd/tepolicies.dat Contains trusted execution policies for the system.

/var/efs Contains all the EFS Keystores.

Security
This files grants read and write access to the root user. Access for other users and groups depends on the
security policy for the system.

Examples
1. An example of the authorizations stanza follows:

authorizations:
 secorder = files,LDAP

This entry states that the search for an authorization is done in the local /etc/security/authorizations
database first. If no matching entry is found, further search is done in the LDAP database.

2. An example of the TE Signature Database stanza follows:

190 AIX Version 7.1: Files Reference

tsddat:
 secorder = LDAP,files
 databasename = TSD_v1

Note: In case of tsddat stanza and tepolicies stanza the secorder files, LDAP is not a valid use case.
3. An example of the efsusrkeystore stanza follows:

efsusrkeystore:
 secorder = LDAP,files

Related reference
/etc/security/authorizations File
roles File
/etc/security/privdevs File
tepolicies.dat File Format
Related information
mkauth command

ntp.conf File

Purpose
Controls how the Network Time Protocol (NTP) daemon xntpd operates and behaves.

Description
The ntp.conf file is a basic configuration file controlling the xntpd daemon.

The following options are discussed in this article:

• Configuration Options
• Configuration Authentication Options
• Configuration Access Control Options
• Configuration Monitoring Options
• Miscellaneous Configuration Options

Configuration Options
In the ntp.conf file, comments begin with a # character and extend to the end of the line. Blank lines
are ignored. Options consist of an initial keyword followed by a list of arguments, which may be optional,
separated by whitespace. These options may not be continued over multiple lines. Arguments may be
host names, host addresses written in numeric (dotted decimal) form, integers, floating point numbers
(when specifying times in seconds) and text strings.

Files Reference 191

Option Description

peer [HostAddress] [key
Number] [version
Number] [prefer]
[minpoll Number]
[maxpoll Number]

Specifies that the local server operate in symmetric active mode with the
remote server specified by HostAddress. In this mode, the local server
can be synchronized to the remote server, or the remote server can be
synchronized to the local server. Use this method in a network of servers
where, depending on various failure scenarios, either the local or remote
server host may be the better source of time.

The key Number specifies that all packets sent to HostAddress include
authentication fields encrypted using the specified key number. The value
of KeyNumber is the range of an unsigned 32 bit integer.

The version Number specifies the version number to use for outgoing NTP
packets. The values for Version can be 1 or 2. The default is NTP version 3
implementation.

The prefer option marks the host as a preferred host. This host is not
subject to preliminary filtering.

The minpoll number specifies the minimum poll interval allowed by any
peer of the Internet system. The minimum poll interval is calculated, in
seconds, as 2 to the power of minpoll value. The default value of minpoll is
6, i.e. the corresponding poll interval is 64 seconds.

The maxpoll number specifies the maximum poll interval allowed by any
peer of the Internet system. The maximum poll interval is calculated, in
seconds, as 2 to the power of maxpoll value. The default value of maxpoll
is 10, therefore the corresponding poll interval is ~17 minutes.

The allowable range for minpoll and maxpoll is 4 (16 seconds) to 14
(~4.5 hours) inclusive.

192 AIX Version 7.1: Files Reference

Option Description

server [HostAddress]
[key Number] [version
Number] [prefer] [mode
Number] [minpoll
Number] [maxpoll
Number] [iburst]

Specifies that the local server operate in client mode with the remote server
specified by HostAddress. In this mode, the local server can be synchronized
to the remote server, but the remote server can never be synchronized to the
local server.

The key Number specifies that all packets sent to HostAddress include
authentication fields encrypted using the specified key number. The value
of KeyNumber is the range of an unsigned 32 bit integer.

The version Number specifies the version number to use for outgoing NTP
packets. The values for Version can be 1 or 2. The default is NTP version 3
implementation.

The prefer argument marks the host as a preferred host. This host is not
subject to preliminary filtering.

The minpoll number specifies the minimum poll interval allowed by any
peer of the Internet system. The minimum poll interval is calculated, in
seconds, as 2 to the power of minpoll value. The default value of minpoll is
6, i.e. the corresponding poll interval is 64 seconds.

The maxpoll number specifies the maximum poll interval allowed by any
peer of the Internet system. The maximum poll interval is calculated, in
seconds, as 2 to the power of maxpoll value. The default value of maxpoll
is 10, therefore the corresponding poll interval is ~17 minutes.

The allowable range for minpoll and maxpoll is 4 (16 seconds) to 14
(~4.5 hours) inclusive.

The iburst option causes xntpd to send a burst of eight packets during initial
synchronization acquisition instead of the single packet that is normally
sent. The packet spacing is two seconds.

broadcast [HostAddress]
[key Number] [version
Number] [ttl Number]

Specifies that the local server operate in broadcast mode where the
local server sends periodic broadcast messages to a client population at
the broadcast/multicast address specified by HostAddress. Ordinarily, this
specification applies only to the local server operating as a transmitter. In
this mode, HostAddress is usually the broadcast address on [one of] the
local network[s] or a multicast address. The address assigned to NTP is
224.0.1.1; presently, this is the only number that should be used.

The key Number specifies that all packets sent to HostAddress include
authentication fields encrypted using the specified key number. The value
of Number is the range of an unsigned 32 bit integer.

The version Number specifies the version number to use for outgoing NTP
packets. The values for Version can be 1 or 2. The default is NTP version 3
implementation.

The ttl Number is used only with the broadcast mode. It specifies the time-
to-live (TTL) to use on multicast packets. This value defaults to 127.

broadcastclient Specifies that the local server listen for broadcast messages on the local
network in order to discover other servers on the same subnet. When
the local server hears a broadcast message for the first time, it measures
the nominal network delay using a brief client/server exchange with the
remote server, then enters the broadcastclient mode, where it listens for
and synchronizes to succeeding broadcast messages.

Files Reference 193

Option Description

multicastclient
[IPAddress ...]

Works like broadcastclient configuration option, but operates using IP
multicasting. If you give one or more IP addresses, the server joins the
respective multicast group(s). If you do not give an IP address, the IP
address assumed is the one assigned to NTP (224.0.1.1).

driftfile Filename Specifies the name of the file used to record the frequency offset of the local
clock oscillator. The xntpd daemon reads this file at startup, if it exists, in
order to set the initial frequency offset and then updates it once per hour
with the current offset computed by the daemon. If the file does not exist
or you do not give this option, the initial frequency offset assumed is zero.
In this case, it may take some hours for the frequency to stabilize and the
residual timing errors to subside. The file contains a single floating point
value equal to the offset in parts-per-million (ppm).

Note: The update of the file occurs by first writing the current drift value into
a temporary file and then using rename??? to replace the old version. The
xntpd daemon must have write permission in the directory of the drift file,
and you should avoid file system links, symbolic or otherwise.

enable auth | bclient | pll
| monitor | stats [...]

Enables various server options. Does not affect arguments not mentioned.

The auth option causes the server to synchronize with unconfigured peers
only if the peer has been correctly authenticated using a trusted key and key
identifier. The default for this argument is disable (off).

The bclient option causes the server to listen for a message from
a broadcast or multicast server, following which an association is
automatically instantiated for that server. The default for this argument is
disable (off).

The pll option enables the server to adjust its local clock, with default
enable (on). If not set, the local clock free-runs at its intrinsic time and
frequency offset. This option is useful when the local clock is controlled
by some other device or protocol and NTP is used only to provide
synchronization to other clients.

The monitor option enables the monitoring facility, with default enable (on).

The stats option enables statistics facility filegen, with default enable (on).

disable auth | bclient | pll
| monitor | stats [...]

Disables various server options. Does not affect arguments not mentioned.
The options are described under the enable subcommand.

slewalways yes|no Specifies that xntpd always slews the time. The default value is no.

ignore_bigtimestep yes |
no

Specifies that xntpd does not exit if no configured servers are within
1000 seconds of local system time. The default value is no. If you
set the ignore_bigtimestep option to yes, this takes effect only for the
first instance after reading the configuration file. For later instances of
encountering time shift more than 1000 seconds, the system behaves as
if the ignore_bigtimestep option is set to no.

slewthreshold Seconds Specifies the maximum clock offset (in seconds) used for slewing. The
default is 0.128 seconds.

tracefile TraceFile Specifies the name of the file for debugging. (see the -o option to xntpd)

tracelevel Number Specifies the debugging level. (see the -D option to xntpd)

194 AIX Version 7.1: Files Reference

Configuration Authentication Options

Option Description

keys Filename Specifies the name of a file which contains the encryption keys
and key identifiers used by the xntpd daemon when operating in
authenticated mode.

trustedkey Number [Number ...] Specifies the encryption key identifiers which are trusted for the
purposes of authenticating peers suitable for synchronization. The
authentication procedures require that both the local and remote
servers share the same key and key identifier for this purpose,
although you can use different keys with different servers. Each
Number is a 32 bit unsigned integer.

Note: The NTP key 0 is fixed and globally known. To perform
meaningful authentication, the 0 key should not be trusted.

requestkey Number Specifies the key identifier to use with the xntpdc query/control
program that diagnoses and repairs problems that affect the
operation of the xntpd daemon. The operation of the xntpdc query/
control program is specific to this particular implementation of
the xntpd daemon and can be expected to work only with this
and previous versions of the daemon. Requests from a remote
xntpdc program which affect the state of the local server must be
authenticated, which requires both the remote program and local
server share a common key and key identifier. The value of Number
is a 32 bit unsigned integer. If you do not include requestkey in
the configuration file, or if the keys do not match, such requests are
ignored.

controlkey Number Specifies the key identifier to use with the ntpq query program, that
diagnoses problems that affect the operation of the xntpd daemon.
The operation of the ntpq query program and the xntpd daemon
conform to those specified in RFC 1305. Requests from a remote
ntpq program which affect the state of the local server must be
authenticated, which requires both the remote program and local
server share a common key and key identifier. The value of Number
is a 32 bit unsigned integer. If you do not include controlkey in the
configuration file, or if the keys do not match, such requests are
ignored.

authdelay Seconds Specifies the amount of time it takes to encrypt an NTP
authentication field on the local computer. This value corrects
transmit timestamps when using authentication on outgoing packets.
The value usually lies somewhere in the range 0.0001 seconds to
0.003 seconds, though it is very dependent on the CPU speed of the
host computer.

Configuration Access Control Options
The xntpd daemon inserts default restriction list entries, with the parameters ignore and ntpport,
for each of the local host's interface addresses into the table at startup to prevent the server from
attempting to synchronize to its own time. A default entry is also always present, though if it is otherwise
unconfigured it does not associate parameters with the default entry (everything besides your own NTP
server is unrestricted).

While this facility may be useful for keeping unwanted or broken remote time servers from affecting your
own, do not consider it an alternative to the standard NTP authentication facility.

Files Reference 195

restrict Address [mask Number | default] [Parameter ...]
Specifies the restrictions to use on the given address. The xntpd daemon implements a general
purpose address-and-mask based restriction list. The xntpd daemon sorts this list by address and by
mask, and searches the list in this order for matches, with the last match found defining the restriction
flags associated with the incoming packets. The xntpd daemon uses the source address of incoming
packets for the match, doing a logical and operation with the 32 bit address and the mask associated
with the restriction entry. It then compares it with the entry's address (which has also been and'ed
with the mask) to look for a match. The mask option defaults to 255.255.255.255, meaning that
Address is treated as the address of an individual host. A default entry (address 0.0.0.0, mask 0.0.0.0)
is always included and is always the first entry in the list. The text string default, with no mask option,
may be used to indicate the default entry.

In the current implementation, Parameter always restricts access. An entry with no Parameter gives
free access to the server. More restrictive Parameters will often make less restrictive ones redundant.
The Parameters generally restrict time service or restrict informational queries and attempts to do run
time reconfiguration of the server. You can specify one or more of the following value for Parameter:

ignore
Specifies to ignore all packets from hosts which match this entry. Does not respond to queries nor
time server polls.

limited
Specifies that these hosts are subject to limitation of number of clients from the same net. Net
in this context refers to the IP notion of net (class A, class B, class C, and so on). Only accepts
the first client_limit hosts that have shown up at the server and that have been active during
the last client_limit_period seconds. Rejects requests from other clients from the same net. Only
takes into account time request packets. Private, control, and broadcast packets are not subject
to client limitation and therefore do not contribute to client count. The monitoring capability of the
xntpd daemon keeps a history of clients. When you use this option, monitoring remains active.
The default value for client_limit is 3. The default value for client_limit_period is 3600 seconds.

lowpriotrap
Specifies to declare traps set by matching hosts to low-priority status. The server can maintain
a limited number of traps (the current limit is 3), assigned on a first come, first served basis,
and denies service to later trap requestors. This parameter modifies the assignment algorithm by
allowing later requests for normal priority traps to override low-priority traps.

nomodify
Specifies to ignore all NTP mode 6 and 7 packets which attempt to modify the state of the server
(run time reconfiguration). Permits queries which return information.

nopeer
Specifies to provide stateless time service to polling hosts, but not to allocate peer memory
resources to these hosts.

noquery
Specifies to ignore all NTP mode 6 and 7 packets (information queries and configuration requests)
from the source. Does not affect time service.

noserve
Specifies to ignore NTP packets whose mode is not 6 or 7. This denies time service, but permits
queries.

notrap
Specifies to decline to provide mode 6 control message trap service to matching hosts. The
trap service is a subsystem of the mode 6 control message protocol intended for use by remote
event-logging programs.

notrust
Specifies to treat these hosts normally in other respects, but never use them as synchronization
sources.

ntpport
Specifies to match the restriction entry only if the source port in the packet is the standard NTP
UDP port (123).

196 AIX Version 7.1: Files Reference

clientlimit Number
Sets client_limit. Specifies the number of clients from the same network allowed to use the server.
Allows the configuration of client limitation policy.

clientperiod Seconds
Sets client_limit_period. Specifies the number of seconds to before considering if a client is inactive
and no longer counted for client limit restriction. Allows the configuration of client limitation policy.

Configuration Monitoring Options
File generation sets manage statistical files. The information obtained by enabling statistical recording
allows analysis of temporal properties of a server running the xntpd daemon. It is usually only useful to
primary servers.

statsdir DirectoryPath
Specifies the full path of the directory in which to create statistical files. Allows modification of the
otherwise constant filegen filename prefix for file generation sets used for handling statistical logs.

statistics Type...
Enables writing of statistical records. The following are the types of statistics supported:
loopstats

Enables recording of loop filter statistical information. Each update of the local clock outputs a line
of the following format to the file generation set named loopstats:

48773 10847.650 0.0001307 17.3478 2

The first two fields show the date (Modified Julian Day) and time (seconds and fraction past UTC
midnight). The next three fields show time offset in seconds, frequency offset in parts-per-million
and time constant of the clock-discipline algorithm at each update of the clock.

peerstats
Enables recording of peer statistical information. This includes statistical records of all peers of an
NTP server and of the 1-pps signal, where present and configured. Each valid update appends a
line of the following format to the current element of a file generation set named peerstats:

48773 10847.650 127.127.4.1 9714 -0.001605
0.00000 0.00142

The first two fields show the date (Modified Julian Day) and time (seconds and fraction past
UTC midnight). The next two fields show the peer address in dotted-quad notation and status,
respectively. The status field is encoded in hex in the format described in Appendix A of the NTP
specification RFC 1305. The final three fields show the offset, delay and dispersion, all in seconds.

clockstats
Enables recording of clock driver statistical information. Each update received from a clock driver
outputs a line of the following form to the file generation set named clockstats:

49213 525.624 127.127.4.1 93 226
00:08:29.606 D

The first two fields show the date (Modified Julian Day) and time (seconds and fraction past UTC
midnight). The next field shows the clock address in dotted-quad notation, The final field shows
the last timecode received from the clock in decoded ASCII format, where meaningful. You can
gather and display a good deal of additional information in some clock drivers.

filegen Name [file FileName] [type TypeName] [flag flagval] [link] [nolink] [enable] [disabled]
Configures setting of generation fileset name. Generation filesets provide a means for handling files
that are continuously growing during the lifetime of a server. Server statistics are a typical example
for such files. Generation filesets provide access to a set of files used to store the actual data. A file
generation set is characterized by its type. At any time, at most one element of the set is being written
to. Filenames of set members are built from three elements:

Files Reference 197

Prefix
This is a constant filename path. It is not subject to modifications with the filegen option. It is
defined by the server, usually specified as a compile time constant. You can, however, configure it
for individual file generation sets with other commands. For example, you can configure the prefix
used with loopstats and peerstats filegens using the statsdir option.

file FileName
The string FileName is directly concatenated to the prefix with no intervening slash (/). You can
modify this by using the file argument to the filegen option. To prevent filenames referring to
parts outside the filesystem hierarchy denoted by prefix, ".." elements are not allowed in this
component

Suffix
This part reflects individual elements of a fileset. It is generated according to the type of a fileset.

type TypeName
Specifies when and how to direct data to a new element of the set. This way, information stored
in elements of a fileset that are currently unused are available for administrational operations
without the risk of disturbing the operation of the xntpd daemon. Most important, you can remove
them to free space for new data produced. The following types are supported:
none

Specifies that the fileset is actually a single plain file.
pid

Specifies the use of one element of fileset per server running the xntpd daemon. This type
does not perform any changes to fileset members during runtime; however, it provides an
easy way of separating files belonging to different servers running the xntpd daemon. The set
member filename is built by appending a dot (.) to concatenated prefix and strings denoted
in file Name, and appending the decimal representation of the process id of the xntpd server
process.

day
Specifies the creation of one file generation set element per day. The term day is based
on UTC. A day is the period between 00:00 and 24:00 UTC. The fileset member suffix
consists of a dot (.) and a day specification in the form YYYYMMDD. where YYYY is a 4
digit year number, MM is a two digit month number, and, DD is a two digit day number.
For example, all information written at January 10th, 1992 would end up in a file named
PrefixFileName.19920110.

week
Specifies the creation of one file generation set element per week. A week is computed as
day-of-year modulo 7. The fileset member suffix consists of a dot (.), a four digit year number,
the letter W, and a two digit week number. For example, all information written at January,
10th 1992 would end up in a file named PrefixFileName.1992W1.

month
Specifies the creation of one file generation set element per month. The fileset member
suffix consists of a dot (.), a four digit year number, and a two digit month number.
For example, all information written at January, 1992 would end up in a file named
PrefixFileName.199201.

year
Specifies the creation of one file generation set element per year. The fileset member suffix
consists of a dot (.) and a four digit year number. For example, all information written at
January, 1992 would end up in a file named PrefixFileName.1992.

age
Specifies the creation of one file generation set element every 24 hours of server operation.
The fileset member suffix consists of a dot (.), the letter a, and an eight digit number. This
number is the number of seconds of run-time of the server since the start of the corresponding
24 hour period.

enable
Enables the writing of information to a file generation set.

198 AIX Version 7.1: Files Reference

disabled
Disables the writing of information to a file generation set.

link
Enables the access of the current element of a file generation set by a fixed name by creating a hard
link from the current fileset element to a file without Suffix. If a file with this name already exists and
the number of links of this file is one, it is renamed by appending a dot (.), the letter C, and the pid of
the xntpd server process. If the number of links is greater than one, the file is unlinked. This allows
access of the current file by a constant name.

nolink
Disables access the current element of a file generation set by a fixed name.

Miscellaneous Configuration Options

Option Description

precision Number Specifies the nominal precision of the local clock. The Number
is an integer approximately equal to the base 2 logarithm of
the local timekeeping precision in seconds. Normally, the xntpd
daemon determines the precision automatically at startup, so use
this option when the xntpd daemon cannot determine the precision
automatically.

broadcastdelay Seconds Specifies the default delay to use when in broadcast or multicast
modes. These modes require a special calibration to determine the
network delay between the local and remote servers. Normally, this
is done automatically by the initial protocol exchanges between the
local and remote servers. In some cases, the calibration procedure
may fail due to network or server access controls, for example.

Typically for Ethernet, a number between 0.003 and 0.007 seconds
is appropriate. The default is 0.004 seconds.

trap HostAddress [port Number]
[interface Addess]

Configures a trap receiver at the given host address and port number
for sending messages with the specified local interface address. If
you do not specify the port number, the value defaults to 18447. If
you do not specify the interface address, the value defaults to the
source address of the local interface.

Note: On a multihomed host, the interface used may vary from time
to time with routing changes.

Normally, the trap receiver logs event messages and other
information from the server in a log file. While such monitor
programs may also request their own trap dynamically, configuring
a trap receiver ensures that when the server starts, no messages are
lost.

Files Reference 199

Option Description

setvar Variable [default] Specifies to add an additional system variable. You can use these
variables to distribute additional information such as the access
policy. If default follows a variable of the from Name=Value ,
then the variable becomes part of the default system variables,
as if you used the ntpq rv command. These additional variables
serve informational purposes only; they are not related to the
protocol variables. The known protocol variables always override any
variables defined with setvar.

There are three special variables that contain the names of all
variables of the same group. The sys_var_list holds the names of
all system variables, the peer_var_list holds the names of all peer
variables, and the clock_var_list holds the names of the reference
clock variables.

logconfig Key Controls the amount of output written to syslog or the logfile. By
default all output is turned on. You can prefix all KeyWords with
= (equal), + (plus) and - (dash). You can control four classes of
messages: sys, peer, clock, and sync. Within these classes, you can
control four types of messages:
info

Outputs informational messages that control configuration
information.

events
Outputs event messages that control logging of events
(reachability, synchronization, alarm conditions).

status
Outputs statistical messages that describe mainly the
synchronization status.

all
Outputs all messages having to do with the specified class and
suppresses all other events and messages of the classes not
specified.

You form the KeyWord by concatenating the message class with the
event class. To just list the synchronization state of xntp and the
major system events, enter:

logconfig =syncstatus +sysevents

To list all clock information and synchronization information and have
all other events and messages about peers, system events and so on
suppressed, enter:

logconfig =syncall +clockall

Files

Item Description

/etc/ntp.conf Specifies the path to the file.

Related reference
ntp.keys File

200 AIX Version 7.1: Files Reference

Related information
xntpdc command
xntpd command

ntp.conf4 File

Purpose
Controls the operation and behaviour of the Network Time Protocol (NTP) ntpd daemon.

Description
The ntp.conf file is a basic configuration file controlling the ntpd daemon.

Configuration Options
There are two classes of commands, configuration commands that configure an association with a remote
server, peer or reference clock, and auxiliary commands that specify environmental variables that control
various related operations:

Configuration Commands
There are two classes of commands, configuration commands that configure an association with a remote
server, peer or reference clock, and auxiliary commands that specify environmental variables that control
various related operations:

server address [options ...]
peer address [options ...]
broadcast address [options ...]
manycastclient address [options ...]

These four commands specify the time server name or address to be used and the mode in which to
operate. The address can be either a DNS name or an IP address in dotted-quad notation. Additional
information on association behavior can be found in the Association Management page.

Command Description

server For type s and r addresses (only), this command normally mobilizes a persistent
client mode association with the specified remote server or local reference
clock. If the preempt flag is specified, a peerutable association is mobilized
instead. In client mode the client clock can synchronize to the remote server or
local reference clock, but the remote server can never be synchronized to the
client clock. This command should NOT be used for type b or m addresses.

peer For type s addresses (only), this command mobilizes a persistent symmetric-
active mode association with the specified remote peer. In this mode the local
clock can be synchronized to the remote peer or the remote peer can be
synchronized to the local clock. This is useful in a network of servers where,
depending on various failure scenarios, either the local or remote peer may be
the better source of time. This command should NOT be used for type b, m or r
addresses.

Files Reference 201

Command Description

broadcast For type b and m addresses (only), this command mobilizes a persistent
broadcast mode association. Multiple commands can be used to specify
multiple local broadcast interfaces (subnets) and/or multiple multicast groups.
Note that local broadcast messages go only to the interface associated with
the subnet specified, but multicast messages go to all interfaces. In broadcast
mode the local server sends periodic broadcast messages to a client population
at the address specified, which is usually the broadcast address on (one of) the
local network(s) or a multicast address assigned to NTP. The IANA has assigned
the multicast group address IPv4 224.0.1.1 and IPv6 ff05::101 (site local)
exclusively to NTP, but other nonconflicting addresses can be used to contain
the messages within administrative boundaries. Ordinarily, this specification
applies only to the local server operating as a sender; for operation as a
broadcast client, see the broadcastclient or multicastclient commands below.

manycastclient For type m addresses (only), this command mobilizes a preemptable manycast
client mode association for the multicast group address specified. In this
mode a specific address must be supplied which matches the address used
on the manycastserver command for the designated manycast servers. The
NTP multicast address 224.0.1.1 assigned by the IANA should NOT be used,
unless specific means are taken to avoid spraying large areas of the Internet
with these messages and causing a possibly massive implosion of replies at
the sender. The manycastclient command specifies that the host is to operate
in client mode with the remote servers that are discovered as the result of
broadcast/multicast messages. The client broadcasts a request message to the
group address associated with the specified address and specifically enabled
servers respond to these messages. The client selects the servers providing the
best time and continues as with the server command. The remaining servers
are discarded.

Command options
Command Options

autokey All packets sent to and received from the server or peer are to include
authentication fields encrypted using the autokey scheme described in the
Authentication Options page. This option is valid with all commands.

burst When the server is reachable, send a burst of eight packets instead of the usual
one. The packet spacing is normally 2 s; however, the spacing between the
first and second packets can be changed with the calldelay command to allow
additional time for a modem or ISDN call to complete. This option is valid with
only the server command and is a recommended option with this command
when the maxpoll option is 11 or greater.

iburst When the server is unreachable, send a burst of eight packets instead of the
usual one. The packet spacing is normally 2 s; however, the spacing between
the first and second packets can be changed with the calldelay command to
allow additional time for a modem or ISDN call to complete. This option is
valid with only the server command and is a recommended option with this
command.

key key All packets sent to and received from the server or peer are to include
authentication fields encrypted using the specified key identifier with values
from 1 to 65534, inclusive. The default is to include no encryption field. This
option is valid with all commands.

202 AIX Version 7.1: Files Reference

Command Options

minpoll
minpollmaxpoll
maxpoll

These options specify the minimum and maximum poll intervals for NTP
messages, in seconds as a power of two. The maximum poll interval defaults to
10 (1,024 s), but can be increased by the maxpoll option to an upper limit of 17
(36.4 h). The minimum poll interval defaults to 6 (64 s), but can be decreased
by the minpoll option to a lower limit of 4 (16s). These option are valid only with
the server and peer commands.

noselect Marks the server as unused, except for display purposes. The server is
discarded by the selection algorithm. This option is valid only with the server
and peer commands.

preempt Specifies the association as preemptable rather than the default persistent.
This option is valid only with the server command.

prefer Marks the server as preferred. All other things being equal, this host will be
chosen for synchronization among a set of correctly operating hosts. See the
Mitigation Rules and the prefer Keyword page for further information. This
option is valid only with the server and peer commands.

true Force the association to assume truechimer status; that is, always survive
the selection and clustering algorithms. This option can be used with any
association, but is most useful for reference clocks with large jitter on the serial
port and precision pulse-per-second (PPS) signals.

Note: This option defeats the algorithms designed to cast out falsetickers and
can allow these sources to set the system clock. This option is valid only with
the server and peer commands.

ttl ttl This option is used only with broadcast server and manycast client modes. It
specifies the time-to-live ttl to use on broadcast server and multicast server
and the maximum ttl for the expanding ring search with manycast client
packets. Selection of the proper value, which defaults to 127, is something
of a black art and should be coordinated with the network administrator.

version version Specifies the version number to be used for outgoing NTP packets. Versions 1-4
are the choices, with version 4 the default. This option is valid only with the
server, peer and broadcast commands.

Auxiliary Commands
Command Decription

broadcastclient
[novolley]

This command enables reception of broadcast server messages to any local
interface (type b) address. Ordinarily, upon receiving a message for the first
time, the broadcast client measures the nominal server propagation delay
using a brief client/server exchange with the server, after which it continues
in listen-only mode. If the novolley keyword is present, the exchange is not
used and the value specified in the broadcastdelay command is used or, if the
broadcastdelay command is not used, the default 4.0 ms.

Note: In order to avoid accidental or malicious disruption in this mode,
both the server and client should operate using symmetric key or public key
authentication as described in the Authentication Options page. Note that the
novolley keyword is incompatible with public key authentication.

Files Reference 203

Command Decription

manycastserver
address [...]

This command enables reception of manycast client messages to the multicast
group address(es) (type m) specified. At least one address is required. The NTP
multicast address 224.0.1.1 assigned by the IANA should NOT be used, unless
specific means are taken to limit the span of the reply and avoid a possibly
massive implosion at the original sender.

Note: In order to avoid accidental or malicious disruption in this mode,
both the server and client should operate using symmetric key or public key
authentication as described in the Authentication Options page.

multicastclient
address [...]

This command enables reception of multicast server messages to the multicast
group address(es) (type m) specified. Upon receiving a message for the first
time, the multicast client measures the nominal server propagation delay using
a brief client/server exchange with the server, then enters the broadcast client
mode, in which it synchronizes to succeeding multicast messages.

Note: In order to avoid accidental or malicious disruption in this mode,
both the server and client should operate using symmetric key or public key
authentication.

Note that,

Configuration access control options
The ntpd daemon implements a general purpose address/mask based restriction list. The list contains
address/match entries sorted first by increasing address values and then by increasing mask values. A
match occurs when the bitwise AND of the mask and the packet source address is equal to the bitwise
AND of the mask and address in the list. The list is searched in order with the last match found defining
the restriction flags associated with the entry.

While this facility may be useful for keeping unwanted or broken or malicious clients from congesting
innocent servers, it should not be considered an alternative to the NTP authentication facilities. Source
address based restrictions are easily circumvented by a determined cracker.

Clients can be denied service because they are explicitly included in the restrict list created by the restrict
command or implicitly as the result of cryptographic or rate limit violations. Cryptographic violations
include certificate or identity verification failure; rate limit violations generally result from defective NTP
implementations that send packets at abusive rates. Some violations cause denied service only for the
offending packet, others cause denied service for a timed period and others cause the denied service for
an indefinite period. When a client or network is denied access for an indefinite period, the only way at
present to remove the restrictions is by restarting the server.

Command Description

discard [average
avg][minimum min]
[monitor prob]

Set the parameters of the limited facility which protects the server from
client abuse. The average subcommand specifies the minimum average packet
spacing, while the minimum subcommand specifies the minimum packet
spacing. Packets that violate these minima are discarded and a kiss-o'-death
packet returned if enabled. The default minimum average and minimum are
5 and 2, respectively. The monitor subcommand specifies the probability of
discard for packets that overflow the rate-control window.

restrict address
[mask mask] [flag][...]

The address argument expressed in dotted-quad form is the address of a
host or network. Alternatively, the address argument can be a valid host
DNS name. The mask argument expressed in dotted-quad form defaults to
255.255.255.255, meaning that the address is treated as the address of
an individual host. A default entry (address 0.0.0.0, mask 0.0.0.0) is always
included and is always the first entry in the list. Note that text string default,
with no mask option, may be used to indicate the default entry.

204 AIX Version 7.1: Files Reference

In the current implementation, flag always restricts access, therefore, an entry with no flags indicates that
free access to the server is to be given. The flags are not orthogonal, in that more restrictive flags will
often make less restrictive ones redundant. The flags can generally be classed into two categories, those
which restrict time service and those which restrict informational queries and attempts to do run-time
reconfiguration of the server. One or more of the following flags may be specified:

Flags Description

ignore Deny packets of all kinds, including ntpq and ntpdc queries.

kod If this flag is set when an access violation occurs, a kiss-o'-death (KoD) packet
is sent. KoD packets are rate limited to no more than one per second. If another
KoD packet occurs within one second after the last one, the packet is dropped.

limited Deny service if the packet spacing violates the lower limits specified in the
discard command. A history of clients is kept using the monitoring capability of
the ntpd command. Monitoring is always active as long as there is a restriction
entry with the limited flag.

lowpriotrap Declare traps set by matching hosts to be low priority. The number of traps a
server can maintain is limited (the current limit is 3). Traps are usually assigned
on a first come, first served basis, with later trap requestors being denied
service. This flag modifies the assignment algorithm by allowing low priority
traps to be overridden by later requests for normal priority traps.

nomodify Deny ntpq and ntpdc queries which attempt to modify the state of the server
(i.e., run time reconfiguration). Queries which return information are permitted.

noquery Deny ntpq and ntpdc queries. Time service is not affected.

nopeer Deny packets which would result in mobilizing a new association. This includes
broadcast, symmetric-active and manycast client packets when a configured
association does not exist.

noserve Deny all packets except ntpq and ntpdc queries.

notrap Decline to provide mode 6 control message trap service to matching hosts. The
trap service is a subsystem of the ntpdq control message protocol which is
intended for use by remote event logging programs.

notrust Deny packets unless the packet is cryptographically authenticated.

ntpport This is actually a match algorithm modifier, rather than a restriction flag. Its
presence causes the restriction entry to be matched only if the source port in
the packet is the standard NTP UDP port (123). Both ntpport and non-ntpport
may be specified. The ntpport is considered more specific and is sorted later in
the list.

version Deny packets that do not match the current NTP version.

Default restriction list entries with the flags ignore, interface, ntpport, for each of the local host's interface
addresses are inserted into the table at startup to prevent the server from attempting to synchronize to
its own time. A default entry is also always present, though if it is otherwise unconfigured; no flags are
associated with the default entry (i.e., everything besides your own NTP server is unrestricted).

Configuration authentication options
Authentication support allows the NTP client to verify that the server is in fact known and trusted
and not an intruder intending accidentally or on purpose to masquerade as that server. The NTPv3
specification RFC-1305 defines a scheme which provides cryptographic authentication of received NTP
packets. Originally, this was done using the Data Encryption Standard (DES) algorithm operating in Cipher
Block Chaining (CBC) mode, commonly called DES-CBC. Subsequently, this was replaced by the RSA
Message Digest 5 (MD5) algorithm using a private key, commonly called keyed-MD5. Either algorithm

Files Reference 205

computes a message digest, or one-way hash, which can be used to verify the server has the correct
private key and key identifier.

NTPv4 retains the NTPv3 scheme, properly described as symmetric key cryptography, and, in addition,
provides a new Autokey scheme based on public key cryptography. Public key cryptography is generally
considered more secure than symmetric key cryptography, since the security is based on a private value
which is generated by each host and never revealed. With the exception of the group key described
later, all key distribution and management functions involve only public values, which considerably
simplifies key distribution and storage. Public key management is based on X.509 certificates, which
can be provided by commercial services or produced by utility programs in the OpenSSL software library
or the NTPv4 distribution.

Commands Description

autokey [logsec] Specifies the interval between regenerations of the session key list used with
the Autokey protocol. Note that the size of the key list for each association
depends on this interval and the current poll interval. The default value is 12
(4096 s or about 1.1 hours). For poll intervals above the specified interval, a
session key list with a single entry will be regenerated for every message sent.

controlkey key Specifies the key identifier to use with the ntpq utility, which uses the standard
protocol defined in RFC-1305. The key argument is the key identifier for a
trusted key, where the value can be in the range 1 to 65,534, inclusive.

crypto [cert file]
[leap file] [randfile
file] [host file] [sign
file] [ident scheme]
[iffpar file] [gqpar
file] [mvpar file] [pw
password]

This command requires the OpenSSL library. It activates public key
cryptography, selects the message digest and signature encryption scheme
and loads the required private and public values described above. If one or
more files are left unspecified, the default names are used as described above.
Unless the complete path and name of the file are specified, the location of
a file is relative to the keys directory specified in the keysdir command or
default /usr/local/ etc.

Following are the sub commands.

Subcommands Description

cert file Specifies the location of the required host public certificate file. This overrides
the link ntpkey_cert_hostname in the keys directory.

gqpar file Specifies the location of the client GQ parameters file. This overrides the link
ntpkey_gq_hostname in the keys directory.

host file Specifies the location of the required host key file. This overrides the link
ntpkey_key_hostname in the keys directory.

ident scheme Requests the server identity scheme, which can be IFF, GQ or MV. This is used
when the host will not be a server for a dependent client.

iffpar file Specifies the location of the optional IFF parameters file. This overrides the link
ntpkey_iff_hostname in the keys directory.

leap file Specifies the location of the client leapsecond file. This overrides the link
ntpkey_leap in the keys directory.

mv Requests the MV server identity scheme.

mvpar file Specifies the location of the client MV parameters file. This overrides the link
ntpkey_mv_hostname in the keys directory.

pw password Specifies the password to decrypt files containing private keys and identity
parameters. This is required only if these files have been encrypted.

randfile file Specifies the location of the random seed file used by the OpenSSL library. The
defaults are described in the main text above.

206 AIX Version 7.1: Files Reference

Subcommands Description

sign file Specifies the location of the optional sign key file. This overrides the link
ntpkey_sign_hostname in the keys directory. If this file is not found, the host
key is also the sign key.

keys keyfile Specifies the complete path and location of the MD5 key file containing the keys
and key identifiers used by ntpd, ntpq and ntpdc when operating with symmetric
key cryptography. This is the same operation as the -k command line option.

keysdir path This command specifies the default directory path for cryptographic keys,
parameters and certificates. The default is /usr/local/etc/.

requestkey key Specifies the key identifier to use with the ntpdc utility program, which uses a
proprietary protocol specific to this implementation of ntpd. The key argument
is a key identifier for the trusted key, where the value can be in the range 1 to
65,534, inclusive.

revoke [logsec] Specifies the interval between re-randomization of certain cryptographic values
used by the Autokey scheme, as a power of 2 in seconds. These values need to
be updated frequently in order to deflect brute-force attacks on the algorithms of
the scheme; however, updating some values is a relatively expensive operation.
The default interval is 16 (65,536 s or about 18 hours). For poll intervals above
the specified interval, the values will be updated for every message sent

trustedkey key [...] Specifies the key identifiers which are trusted for the purposes of authenticating
peers with symmetric key cryptography, as well as keys used by the ntpqand
ntpdc programs. The authentication procedures require that both the local and
remote servers share the same key and key identifier for this purpose, although
different keys can be used with different servers. The key arguments are 32-bit
unsigned integers with values from 1 to 65,534.

Configuration monitoring options
ntpd includes a comprehensive monitoring facility suitable for continuous, long term recording of server
and client timekeeping performance. See the statistics command below for a listing and example of each
type of statistics currently supported. Statistic files are managed using file generation sets and scripts
in the ./scripts directory of this distribution. Using these facilities and UNIX cron jobs, the data can be
automatically summarized and archived for retrospective analysis.

Commands Description

statistics name [...] Enables writing of statistics records. Currently, six kinds of namestatistics are supported.

clockstats Enables recording of clock driver statistics information. Each update received from a clock driver appends a line of the
following form to the file generation set named clockstats:

49213 525.624 127.127.4.1 93 226 00:08:29.606 D

The first two fields show the date (Modified Julian Day) and time (seconds and fraction past UTC midnight). The next
field shows the clock address in dotted- quad notation, The final field shows the last timecode received from the
clock in decoded ASCII format, where meaningful. In some clock drivers a good deal of additional information can be
gathered and displayed as well. See information specific to each clock for further details.

cryptostats This option requires the OpenSSL cryptographic software library. It enables recording of cryptographic public key
protocol information. Each message received by the protocol module appends a line of the following form to the file
generation set named cryptostats:

49213 525.624 127.127.4.1 message

The first two fields show the date (Modified Julian Day) and time (seconds and fraction past UTC midnight). The next
field shows the peer address in dotted-quad notation, The final message field includes the message type and certain
ancillary information. See the Authentication Options page for further information.

Files Reference 207

Commands Description

loopstats Enables recording of loop filter statistics information. Each update of the local clock outputs a line of the following form
to the file generation set named loopstats:

50935 75440.031 0.000006019 13.778190 0.000351733 0.0133806 6

The first two fields show the date (Modified Julian Day) and time (seconds and fraction past UTC midnight). The next
five fields show time offset (seconds), frequency offset (parts per million - PPM), RMS jitter (seconds), Allan deviation
(PPM) and clock discipline time constant.

peerstats Enables recording of peer statistics information. This includes statistics records of all peers of a NTP server and of
special signals, where present and configured. Each valid update appends a line of the following form to the current
element of a file generation set named peerstats:

48773 10847.650 127.127.4.1 9714 -0.001605376 0.000000000 0.001424877 0.000958674

The first two fields show the date (Modified Julian Day) and time (seconds and fraction past UTC midnight). The next
two fields show the peer address in dotted- quad notation and status, respectively. The status field is encoded in hex
in the format described in Appendix B of the NTP specification RFC 1305. The final four fields show the offset, delay,
dispersion and RMS jitter, all in seconds.

rawstats Enables recording of raw-timestamp statistics information. This includes statistics records of all peers of a NTP server
and of special signals, where present and configured. Each NTP message received from a peer or clock driver appends
a line of the following form to the file generation set named rawstats:

50928 2132.543 128.4.1.1 128.4.1.20 3102453281.584327000
 3102453281.58622800031 02453332.540806000 3102453332.541458000

The first two fields show the date (Modified Julian Day) and time (seconds and fraction past UTC midnight). The next
two fields show the remote peer or clock address followed by the local address in dotted-quad notation, The final four
fields show the originate, receive, transmit and final NTP timestamps in order. The timestamp values are as received
and before processing by the various data smoothing and mitigation algorithms.

sysstats Enables recording of ntpd statistics counters on a periodic basis. Each hour a line of the following form is appended to
the file generation set named sysstats:

50928 2132.543 36000 81965 0 9546 56 71793 512 540 10 147

The first two fields show the date (Modified Julian Day) and time (seconds and fraction past UTC midnight). The
remaining ten fields show the statistics counter values accumulated since the last generated line.

 Time since restart 36000
 Time in hours since the system was last rebooted.
 Packets received 81965
 Total number of packets received.
 Packets processed 0
 Number of packets received in response to previous packets
sent
 Current version 9546
 Number of packets matching the current NTP version.
 Previous version 56
 Number of packets matching the previous NTP version.
 Bad version 71793
 Number of packets matching neither NTP version.
 Access denied 512
 Number of packets denied access for any reason.
 Bad length or format 540
 Number of packets with invalid length, format or port number.
 Bad authentication 10
 Number of packets not verified as authentic.
 Rate exceeded 147
 Number of packets discarded due to rate limitation.

timingstats ONLY available when the deamon is compiled with process time debugging support (--enable-debug-timing - costs
performance). Enables recording of ntpd processing time information for various selected code paths:

53876 36.920 10.0.3.5 1 0.000014592 input processing delay

The first two fields show the date (Modified Julian Day) and time (seconds and fraction past UTC midnight). The next
field is a potential peer address, - or - REFCLOCK- depending on the associated io source. Then an event count for the
number of processed events in the code path follows. The fifth field is the total time spend for the events. The rest of
the line denotes the code path description statsdir directory_path .

statsdir directory_path Indicates the full path of a directory where statistics files should be created (see below). This keyword allows the
(otherwise constant) filegen filename prefix to be modified for file generation sets, which is useful for handling
statistics logs.

208 AIX Version 7.1: Files Reference

Commands Description

filegen name [file
filename] [type typename]
[link | nolink] [enable |
disable]

Configures setting of generation file set name. Generation file sets provide a means for handling files that are
continuously growing during the lifetime of a server. Server statistics are a typical example for such files. Generation
file sets provide access to a set of files used to store the actual data. At any time at most one element of the set
is being written to. The type given specifies when and how data will be directed to a new element of the set. This
way, information stored in elements of a file set that are currently unused are available for administrative operations
without the risk of disturbing the operation of ntpd. (Most important: they can be removed to free space for new data
produced.)

Note: Note that this command can be sent from the ntpdc program running at a remote location.

name
This is the type of the statistics records, as shown in the statistics command.

file filename
This is the file name for the statistics records. Filenames of set members are built from three concatenated
elements prefix, filename and suffix:

prefix
This is a constant filename path. It is not subject to modifications via the filegen option. It is defined by the server,
usually specified as a compile-time constant. It may, however, be configurable for individual file generation sets
via other commands. For example, the prefix used with loopstats and peerstats generation can be configured
using the statsdir option explained above.

filename
This string is directly concatenated to the prefix mentioned above (no intervening / (slash)). This can be modified
using the file argument to the filegen statement. No elements are allowed in this component to prevent file names
referring to parts outside the file system hierarchy denoted by prefix.

suffix
This part reflects individual elements of a file set. It is generated according to the type of a file set.

type typename
A file generation set is characterized by its type. The following types are supported:

none
The file set is actually a single plain file.

pid
One element of file set is used per incarnation of a ntpd server. This type does not perform any changes to file
set members during runtime, however it provides an easy way of separating files belonging to different ntpd
server incarnations. The set member file name is built by appending a . (dot) to concatenated prefix and filename
strings, and appending the decimal representation of the process ID of the ntpd server process

day
One file generation set element is created per day. A day is defined as the period between 00:00 and 24:00 UTC.
The file set member suffix consists of a . (dot) and a day specification in the form YYYYMMdd. YYYY is a 4-digit
year number (e.g., 1992). MM is a two-digit month number. dd is a two-digit day number. Thus, all information
written at 10 December 1992 would end up in a file named prefix filename.19921210

Files Reference 209

Commands Description

filegen name [file
filename] [type
typename] [link |
nolink] [enable |
disable]

week
Any file set member contains data related to a certain week of a year. The
term week is defined by computing day-of-year modulo 7. Elements of such
a file generation set are distinguished by appending the following suffix to
the file set file name base: A dot, a 4-digit year number, the letter W, and
a 2-digit week number. For example, information from January, 10th 1992
would end up in a file with suffix 1992W1.

month
One generation file set element is generated per month. The file name suffix
consists of a dot, a 4-digit year number, and a 2-digit month.

year
One generation file element is generated per year. The filename suffix
consists of a dot and a 4 digit year number.

age
This type of file generation sets changes to a new element of the file set
every 24 hours of server operation. The filename suffix consists of a dot,
the letter a, and an 8-digit number. This number is taken to be the number
of seconds the server is running at the start of the corresponding 24-hour
period. Information is only written to a file generation by specifying enable;
output is prevented by specifying disable.

link | nolink
It is convenient to be able to access the current element of a file generation
set by a fixed name. This feature is enabled by specifying link and disabled
using nolink. If link is specified, a hard link from the current file set element
to a file without suffix is created. When there is already a file with this name
and the number of links of this file is one, it is renamed appending a dot,
the letter C, and the pid of the ntpd server process. When the number of
links is greater than one, the file is unlinked. This allows the current file to be
accessed by a constant name.

enable | disable
Enables or disables the recording function.

Miscellaneous configuration options
Commands Options

broadcastdelay seconds The broadcast and multicast modes require a special calibration to determine the network delay
between the local and remote servers. Ordinarily, this is done automatically by the initial protocol
exchanges between the client and server. In some cases, the calibration procedure may fail due to
network or server access controls, for example. This command specifies the default delay to be used
under these circumstances. Typically (for Ethernet), a number between 0.003 and 0.007 seconds is
appropriate. The default when this command is not used is 0.004 seconds.

calldelay delay This option controls the delay in seconds between the first and second packets sent in burst or
iburst mode to allow additional time for a modem or ISDN call to complete.

210 AIX Version 7.1: Files Reference

Commands Options

driftfile driftfile [minutes
[tolerance]]

This command specifies the complete path and name of the file used to record the frequency of the
local clock oscillator. This is the same operation as the -f command link e option. If the file exists,
it is read at startup in order to set the initial frequency and then updated once per hour with the
current frequency computed by the daemon. If the file name is specified, but the file itself does not
exist, the starts with an initial frequency of zero and creates the file when writing it for the first time.
If this command is not given, the daemon will always start with an initial frequency of zero.

The file format consists of a single line containing a single floating point number, which records the
frequency offset measured in parts-per-million (PPM). The file is updated by first writing the current
drift value into a temporary file and then renaming this file to replace the old version. This implies
that ntpd must have write permission for the directory the drift file is located in, and that file system
links, symbolic or otherwise, should be avoided.

The two optional values determine how often the file is written, and are particuarly useful when is
it desirable to avoid spinning up the disk unnecessarily. The parameter minutes is how often the file
will be written. If omitted or less than 1, the interval will be 60 minutes (one hour). The parameter
tolerance is the threshold to skip writing the new value. If the new value is within tolerance percent
of the last value written (compared out to 3 decimal places), the write will be skipped. The default
is 0.0, which means that the write will occur unless the current and previous values are the same. A
tolerance of .1 equates roughly to a difference in the 2nd decimal place.

enable [auth | bclient |
calibrate | kernel | monitor
| ntp | pps | stats disable
[auth | bclient | calibrate |
kernel | monitor | ntp | pps
| stats]

Provides a way to enable or disable various system options. Flags not mentioned are unaffected.
Note that all of these flags can be controlled remotely using the ntpdc utility program.

auth
Enables the server to synchronize with unconfigured peers only if the peer has been correctly
authenticated using either public key or private key cryptography. The default for this flag is
enable

bclient
Enables the server to listen for a message from a broadcast or multicast server, as in the
multicastclient command with default address. The default for this flag is disable.

calibrate
Enables the calibrate feature for reference clocks. The default for this flag is disable.

kernel
Enables the kernel time discipline, if available. The default for this flag is enable if support is
available, otherwise disable.

monitor
Enables the monitoring facility. See the ntpdc program and the monlist command or further
information. The default for this flag is enable

ntp
Enables time and frequency discipline. In effect, this switch opens and closes the feedback
loop, which is useful for testing. The default for this flag is enable.

pps
Enables the pulse-per-second (PPS) signal when frequency and time is disciplined by the
precision time kernel modifications. The default for this flag is disable.

stats
Enables the statistics facility. The default for this flag is disable

includefile includefile This command allows additional configuration commands to be included from a separate file.
Include files may be nested to a depth of five; upon reaching the end of any include file, command
processing resumes in the previous configuration file. This option is useful for sites that run ntpd on
multiple hosts, with (mostly) common options (e.g., a restriction list).

Files Reference 211

Commands Options

logconfig configkeyword This command controls the amount and type of output written to the system syslog facility or
the alternate logfile log file. All configkeyword keywords can be prefixed with =, + and -, where =
sets the syslogmask, + adds and - removes messages. syslog messages can be controlled in four
classes (clock, peer, sys and sync). Within these classes four types of messages can be controlled:
informational messages (info), event messages (events), statistics messages (statistics) and status
messages (status). Configuration keywords are formed by concatenating the message class with
the event class. The all prefix can be used instead of a message class. A message class may also
be followed by the all keyword to enable/disable all messages of the respective message class. By
default, logconfig output is set to allsync.Thus, a minimal log configuration could look like this:

 logconfig=syncstatus +sysevents

This would just list the synchronizations state of ntpd and the major system events. For a simple
reference server, the following minimum message configuration could be useful:

 logconfig=allsync +allclock

This configuration will list all clock information and synchronization information. All other events and
messages about peers, system events and so on is suppressed.

logfile logfile This command specifies the location of an alternate log file to be used instead of the default system
syslog facility. This is the same operation as the -l command line option.

phone dial1 dial2 ... This command is used in conjunction with the ACTS modem driver (type 18). The arguments consist
of a maximum of 10 telephone numbers used to dial USNO, NIST or European time services. The
Hayes command ATDT is normally prepended to the number, which can contain other modem
control codes as well.

setvar variable [default] This command adds an additional system variable. These variables can be used to distribute
additional information such as the access policy. If the variable of the form name = value is followed
by the default keyword, the variable will be listed as part of the default system variables (ntpq
rv command). These additional variables serve informational purposes only. They are not related
to the protocol other that they can be listed. The known protocol variables will always override
any variables defined via the setvar mechanism. There are three special variables that contain the
names of all variable of the same group. The sys_var_list holds the names of all system variables.
The peer_var_list holds the names of all peer variables and the clock_var_list holds the names of the
reference clock variables.

212 AIX Version 7.1: Files Reference

Commands Options

tinker [allan allan |
dispersion dispersion |
freq freq | huffpuff
huffpuff | panic panic
| step step | stepout
stepout]

This command can be used to alter several system variables in very exceptional circumstances.
It should occur in the configuration file before any other configuration options. The default
values of these variables have been carefully optimized for a wide range of network speeds and
reliability expectations. In general, they interact in intricate ways that are hard to predict and some
combinations can result in some very nasty behavior. Very rarely is it necessary to change the
default values; but, some folks can't resist twisting the knobs anyway and this command is for them.
Emphasis added: twisters are on their own and can expect no help from the support group. The
variables operate as follows:

allan allan
The argument becomes the new value for the Allan intercept, which is a parameter of the
PLL/FLL clock discipline algorithm. The value is in seconds with default 1500 s, which is
appropriate for most computer clocks.

dispersion dispersion
The argument becomes the new value for the Allan intercept, which is a parameter of the
PLL/FLL clock discipline algorithm. The value is in seconds with default 1500 s, which is
appropriate for most computer clocks.

freq freq
The argument becomes the initial value of the frequency offset in parts-per- million. This
overrides the value in the frequency file, if present, and avoids the initial training state if it is
not.

huffpuff huffpuff
The argument becomes the new value for the experimental huff-n'-puff filter span, which
determines the most recent interval the algorithm will search for a minimum delay. The lower
limit is 900 s (15 m), but a more reasonable value is 7200 (2 hours). There is no default, since
the filter is not enabled unless this command is given.

panic panic
The argument is the panic threshold, by default 1000 s. If set to zero, the panic sanity check is
disabled and a clock offset of any value will be accepted

step step
The argument is the step threshold, by default 0.128 s. It can be set to any positive number in
seconds. If set to zero, step adjustments will never occur.

Note: The kernel time discipline is disabled if the step threshold is set to zero or greater than
the default.

stepout stepout
The argument is the stepout timeout, by default 900 s. It can be set to any positive number in
seconds. If set to zero, the stepout pulses will not be suppressed.

trap host_address [port port_number] [interface interface_address]
This command configures a trap receiver at the given host address and port number for sending
messages with the specified local interface address. If the port number is unspecified, a value
of 18447 is used. If the interface address is not specified, the message is sent with a source
address of the local interface the message is sent through. Note that on a multihomed host the
interface used may vary from time to time with routing changes. The trap receiver will generally
log event messages and other information from the server in a log file. While such monitor
programs may also request their own trap dynamically, configuring a trap receiver will ensure
that no messages are lost when the server is started.

ttl hop ...
This command specifies a list of TTL values in increasing order. up to 8 values can be specified.
In manycast mode these values are used in turn in an expanding-ring search. The default is
eight multiples of 32 starting at 31.

Files
/etc/ntp.conf

Specifies the path to the file.

Related information
ntpdc4 command
ntpd4 command

Files Reference 213

Network Time Protocol (NTP)

Description
NTP version 4 is compliant to RFC 2030 (Simple Network Time Protocol). It is available from AIX 6.1.

The Network Time Protocol (NTP) is widely used to synchronize a computer to Internet time servers
or other sources, such as a radio or satellite receiver or telephone modem service. It provides
accuracies typically less than a millisecond on LANs and up to a few milliseconds on WANs. Typical
NTP configurations utilize multiple redundant servers and diverse network paths in order to achieve high
accuracy and reliability.

NTP time synchronization services are widely available in the public Internet. The public NTP subnet
in early 2008 includes several thousand servers in most countries and on every continent of the globe,
including Antarctica. These servers support a total population estimated at over 25 million computers in
the global Internet.

The NTP subnet operates with a hierarchy of levels, where each level is assigned a number called
the stratum. Stratum 1 (primary) servers at the lowest level are directly synchronized to national time
services. Stratum 2 (secondary) servers at the next higher level are synchronize to stratum 1 servers, and
so on. Normally, NTP clients and servers with a relatively small number of clients do not synchronize to
public primary servers. There are several hundred public secondary servers operating at higher strata and
are the preferred choice.

NTPv3 and NTPv4 binaries coexist on AIX.

Important: By default, AIX points to NTP version 3 binaries.

NTP binaries directory mapping on AIX:

NTPv4
Binaries /usr/
sbin/ntp4

NTPv3 Bianries /usr/
sbin/ntp3

Default Symbolic link to NTP version 3 binaries from /usr/
sbin directory

ntpd4 xntpd /usr/sbin/xntpd-->/usr/sbin/ntp3/xntpd

ntpdate4 ntpdate /usr/sbin/ntpdate-->/usr/sbin/ntp3/ntpdate

ntpdc4 xntpdc /usr/sbin/ntpdc-->/usr/sbin/ntp3/xntpdc

ntpq4 ntpq /usr/sbin/ntpq-->/usr/sbin/ntp3/ntpq

ntp-keygen4 Not Available /usr/sbin/ntp-keygen-->/usr/sbin/ntp4/ntp-keygen4

ntptrace4 ntptrace /usr/sbin/ntptrace-->/usr/sbin/ntp3/ntptrace

sntp4 sntp /usr/sbin/sntp-->/usr/sbin/ntp3/sntp

Note: 1 ntp-keygen is a new binary file in NTP version 4, it is not present in NTP version 3. So, the
symbolic link needs to be created under /usr/sbin d directory, pointing to ntp4 binary (/usr/sbin/ntp4/
ntp-keygen4). ntptrace file is a binary file in NTP version 3, but it is a perl script in NTP version 4.

Related information
ntpq4 command
sntp4 command
ntptrace command
xntpd command
ntpd4 command

214 AIX Version 7.1: Files Reference

ntp.keys File

Purpose
Contains key identifiers and keys controlling authentication of Network Time Protocol (NTP) transactions.

Description
The ntp.keys file contains key identifiers and keys for encryption and decryption of authentication of NTP
transactions.

Authentication Key File Format
The NTP standard specifies an extension allowing verification of the authenticity of received NTP packets,
and to provide an indication of authenticity in outgoing packets. The xntpd daemon implements this by
using the MD5 algorithm to compute a message-digest. The specification allows any one of possibly 4
billion keys, numbered with 32 bit key identifiers, to be used to authenticate an association. The servers
involved in an association must agree on the key and key identifier used to authenticate their data,
although they must each learn the key and key identifier independently.

The xntpd daemon reads its keys from a file specified with the -k flag or the keys statement in the
configuration file. You cannot change key number 0 because the NTP standard fixes it as 64 zero bits.

The ntp.keys file uses the same comment conventions as the configuration file, ntp.conf. Key entries use
the following format:

KeyNumber M Key

where,

Entry Description

KeyNumber A positive integer

M Specifies that Key is a 1-to-8 character ASCII string, using the MD5 authentication
scheme.

Key The key itself.

One of the keys may be chosen, by way of the ntp.conf configuration file requestkey statement, to
authenticate run-time configuration requests made using the xntpdc command. The xntpdc command
obtains the key from the terminal as a password, so it is generally appropriate to specify the key in ASCII
format.

Files

Item Description

/etc/ntp.keys Specifies the path to the file.

Related reference
ntp.conf File
Related information
xntpdc command
xntpd command

Files Reference 215

objects File

Purpose
Contains the audit events for audited objects (files).

Description
The /etc/security/audit/objects file is an ASCII stanza file that contains information about audited
objects (files). This file contains one stanza for each audited file. The stanza has a name equal to the path
name of the file.

Each file attribute has the following format:

access_mode = "audit_event "

An audit-event name can be up to 15 bytes long; longer names are rejected. Valid access modes are read
(r), write (w), and execute (x) modes. For directories, search mode is substituted for execute mode.

The objects (files) in the /etc/security/audit/objects file cannot be symbolic links.

If you are using bin mode auditing, the objects designated as bin1 and bin2 in the /etc/security/audit/
config file cannot be listed in the /etc/security/audit/objects file.

Note: The audited object files do not need to exist once the auditing starts. However, to successfully start
auditing, ensure that the parent directories of the object files exist. The audit start command does not fail
when the parent directory does not exist, but the affected files are not audited even if they are created
later.

Security
Access Control: This file should grant read (r) access to the root user and members of the audit group and
grant write (w) access only to the root user.

Examples
1. To define the audit events for the /etc/security/passwd file, add a stanza to the /etc/security/audit/

objects file. For example:

/etc/security/passwd:
 r = "S_PASSWD_READ"
 w = "S_PASSWD_WRITE"

These attributes generate a S_PASSWD_READ audit event each time the passwd file is read, and a
S_PASSWD_WRITE audit event each time the file is opened for writing.

2. To define the audit events for the /wpars/wpar1/etc/security/passwd file, add a stanza to the /etc/
security/audit/objects file in the AIX system that is hosting the WPAR. For example:

/wpars/wpar1/etc/security/passwd:
 r = "WPAR1_PASSWD_RD"
 w = "WPAR1_PASSWD_WR"

This stanza is parsed at audit start -@ <wpar1> time to enable object auditing for the /etc/
security/passwd object of wpar1. These attributes generate a WPAR1_PASSWD_RD audit event each
time the /wpars/wpar1/etc/security/passwd file is read, and generate a WPAR1_PASSWD_WR audit
event each time the file is opened for writing.

Files

Item Description

/etc/security/audit/objects Specifies the path to the file.

216 AIX Version 7.1: Files Reference

Item Description

/etc/security/audit/config Contains audit system configuration information.

/etc/security/audit/events Contains the audit events of the system.

/etc/security/audit/bincmds Contains auditbin backend commands.

/etc/security/audit/streamcmds Contains auditstream commands.

Related information
audit command
auditobj command
Setting Up Auditing

pam_aix Module

Purpose
Provides AIX style authentication, account management, password management, and session
management for PAM.

Description
The pam_aix module provides AIX style authentication behaviors to PAM. The module has support
for each of the PAM module types - authentication, account management, password management and
session management. Each of these types provides full AIX support for users defined in local or remote
registries.

Communication from the pam_aix module to the user is handled through the PAM_CONV item, which
is set by pam_start or pam_set_item. All messages displayed by pam_aix are AIX messages and are
internationalized.

Typical usage for the pam_aix module is to be used as a backup, or "other" service. This way if a specific
authentication stack is not defined for a service, local AIX authentication is used. pam_aix should usually
be a "required" or "requisite" module. If used for password authentication, pam_aix should be marked as
being "required" or "requisite".

Use AIX system authentication

OTHER auth required pam_aix
OTHER account required pam_aix
OTHER session required pam_aix
OTHER password required pam_aix

Attention:

• The pam_aix module cannot be used with users who have their SYSTEM or registry user
attributes set to use the /usr/lib/security/PAM module. In such case, an authentication loop
is created, and the operation fails.

• The authentication fails if the pam_aix module is called from a nonroot user, and the program
does not have the setuid bit set.

Supported PAM module types

Authentication
Authenticates a user through their AIX password.

Account Management
Verifies that an authenticated user is permitted onto the system and checks for expired passwords.
Checks are performed through use of the passwdexpired() and loginrestrictions() subroutines.

Files Reference 217

Session Management
Opens a new session and logs the session information.

Password Management
Allows a user to set or modify their AIX password if it is possible. pam_aix will then update the user's
password entry in the appropriate password table. When pam_aix is used for password management,
it should be used as "required" or "requisite".

Options

The pam_aix module accepts the following parameters specified as options in the PAM configuration file:

Item Description

debug Log debugging information to syslog.

mode Specifying the mode option for a service allows the login restrictions checks to be
customized as needed for a PAM service. The value specified for mode can be one
of the following strings:

• S_DAEMON
• S_LOGIN
• S_RLOGIN
• S_SU
• S_DIST_CLNT
• S_DIST_SERV

The checks performed by each mode are defined in the loginrestrictions
subroutine man page. If the option is not specified, then a mode of 0 is passed
into the subsequent loginrestrictions invocation. This option is only valid for the
Authentication and Account Management module types.

nowarn Do not display warning messages.

no_pwd_ck Do not check for password expiration.

use_first_pass Use a previously entered password, do not prompt for a new one.

try_first_pass Try a previously entered password. If it fails, prompt for a new one.

use_new_state AIX builds and maintains state information when authenticating a user. By default,
the pam_aix module will use the same state information throughout a PAM
session. This can produce results that are correct in terms of AIX authentication
but are unexpected within the PAM framework. For example, pam_authenticate
requests may fail due to access restrictions. If this behavior is not desired for a
given module type, specify the use_new_state option to use new state information
for each invocation.

Return Values

Upon successful completion the pam_aix module returns PAM_SUCCESS. If a failure occurs a PAM error
code will be returned, depending on the actual error.

Location
/usr/lib/security/pam_aix

/usr/lib/security/64

Related reference
pam.conf File
pam_mkuserhome Module

218 AIX Version 7.1: Files Reference

Related information
loginrestrictions subroutine
pam_open_session subroutine
Pluggable Authentication Modules

pam_allow Module

Purpose
Returns PAM_SUCCESS for all PAM module types.

Description
The pam_allow module returns PAM_SUCCESS to all calling applications unless an invalid PAM handle is
specified. Support for all four module types is provided.

Attention: This module should be used with caution and should often only be used for PAM
debugging purposes. Placing this module in the PAM stack for a service could potentially grant
access to all users.

Functionality opposite to that provided by pam_allow can be obtained through use of the
pam_prohibit module.

Supported PAM module types

Authentication
Returns PAM_SUCCESS if valid PAM handle.

Account Management
Returns PAM_SUCCESS if valid PAM handle.

Session Management
Returns PAM_SUCCESS if valid PAM handle.

Password Management
Returns PAM_SUCCESS if valid PAM handle.

Options

The pam_allow module accepts the following parameters specified as options in the PAM configuration
file:

Item Description

debug Log debugging information to syslog.

nowarn Do not display warning messages.

Return Values

Upon successful completion the pam_allow module returns PAM_SUCCESS. If an invalid PAM handle
was specified, PAM_SYSTEM_ERR is returned.

Location
/usr/lib/security/pam_allow

Related information
pam_authenticate subroutine
pam_close_session subroutine
pam_acct_mgmt subroutine

Files Reference 219

pam_allowroot Module

Purpose
Returns PAM_SUCCESS if the authenticating user has a real user ID (UID) of 0.

Description
The pam_allowroot module checks the real user ID (UID) under which the PAM application was run. If
the UID of the authenticating user is 0 (zero), then it is the root user and PAM_SUCCESS is returned.

The pam_allowroot module only checks the real user ID. Many applications that require root access will
set the effective user ID to 0. For this reason, the effective ID is not used in determining whether or not
the user executing the authenticating application is a root user.

It is recommended that pam_allowroot be used as sufficient in conjunction with other modules. This
allows the root user to bypass the rest of the modules in the stack and for a failure not to impact the
result of other authenticating users. An example authentication stack configuration is shown below which
mimics the historic behavior of the su command.

#
The PAM configuration for standard su behavior.
#
su auth sufficient /usr/lib/security/pam_allowroot
su auth required /usr/lib/security/pam_aix

Supported PAM module types

Authentication
Returns PAM_SUCCESS if UID of authenticating user is 0.

Account Management
Returns PAM_SUCCESS if UID of authenticating user is 0.

Options

The pam_allowroot module accepts the following parameters specified as options in the PAM
configuration file:

Item Description

debug Log debugging information to syslog.

nowarn Do not display warning messages.

Return Values

Upon successful completion, PAM_SUCCESS is returned. If a failure occurs, a PAM error code will be
returned, depending on the actual error.

Location
/usr/lib/security/pam_allowroot

Related reference
pam.conf File
Related information
pam_authenticate subroutine
pam_setcred subroutine
Pluggable Authentication Modules

220 AIX Version 7.1: Files Reference

pam_ckfile Module

Purpose
Denies all non-root user logins if /etc/nologin or an optionally specified file is present.

Description
The pam_ckfile module allows or denies authentication, based on the existence of a file. The file
checked for existence can be set with the file=<filename> module option. If not specified the file defaults
to /etc/nologin.

If the specified file exists, only root users (those with a user ID of 0) may authenticate. All other users are
denied access for the service, and pam_ckfile will echo the contents (if any) of that file. If the specified
file does not exist, the module returns PAM_IGNORE. System administrators should ensure that success
or failure of the module stack for a service does not depend solely on the result of this module.

It is recommended that pam_ckfile is used as "required" or "requisite" in conjunction with other
modules. An example authentication stack is provided below to demonstrate how /etc/nologin behavior
with the login service can be implemented.

#
Provide the standard /etc/nologin behavior for login.
#
login auth required /usr/lib/security/pam_ckfile file=/etc/nologin
login auth required /usr/lib/security/pam_aix

Supported PAM module types

Authentication
Denies non-root user authentication if the specified file is present.

Account Management
Denies account access for non-root users if the specified file is present.

Options

The pam_allowroot module accepts the following parameters specified as options in the PAM
configuration file:

Item Description

debug Log debugging information to syslog.

nowarn Do not display warning messages.

file=<filename> Use <filename> instead of /etc/nologin.

Note: <filename> must be the full path to the file.

Return Values

Upon successful completion PAM_SUCCESS is returned. If the specified file does not exist the module
returns PAM_IGNORE. If another failure occurs, a PAM error code will be returned, depending on the
actual error.

Location
/usr/lib/security/pam_ckfile

Related reference
pam.conf File
Related information
pam_acct_mgmt subroutine

Files Reference 221

pam_authenticate subroutine
Pluggable Authentication Modules

pam_mkuserhome Module

Purpose
Creates a home directory automatically at user login.

Location
/usr/lib/security

/usr/lib/security/64

Description
The pam_mkuserhome module creates a home directory automatically at user login. This is an optional
session module to be used with other PAM session modules, such as the pam_aix module.

The pam_mkuserhome module is installed in the /usr/lib/security directory. To use the
pam_mkuserhome module, the /etc/pam.conf file must be configured. Stacking is still available but
is not shown in the following example of the /etc/pam.conf file:

#
Session management
#
telnet auth optional pam_mkuserhome

Return Value
Item Description

PAM_SUCCESS The home directory already exists or the home directory is
successfully created.

PAM_USER_UNKNOWN The user does not exist.

PAM_SYSTEM_ERR An error occurs.

Related reference
pam_aix Module
Related information
pam_aix module
Automatic home directory creation at login
Pluggable Authentication Modules

pam_permission Module

Purpose
Allows or prohibits authentication through a configurable file containing a list of users and/or groups.

Description
The pam_permission module is an authentication and account-service PAM module that uses an
access-control list to determine whether or not to permit or deny authentication requests. The file to
use for the control list is configured via a module option and defaults to /etc/ftpusers if not specified.

222 AIX Version 7.1: Files Reference

If the access-control file exists, the pam_permission module will scan the file using the authenticating
user name and group(s). The first match will then be used to determine the result. The general syntax for
an entry in the access-control file is as follows:

[+|-][@]<name>

The optional first character controls whether to allow(+) or deny(-) the request for the user or group
specified by <name>. If a '+' or '-' is not the first character in an entry, then the value of the
found=<action> module option determines the behavior.

Preceding a name by the '@' symbol designates the entry as a group. Otherwise the entry is used as a user
name. The first match found to a user name or group entry is used to determine access.

All spaces in an entry are ignored. Comments may be added to the file using the '#' character as the first
character in the line. Only one entry or comment is allowed per line and the entries are processed one at a
time, sequentially, starting at the top of the file.

Using the keyword "ALL" for <name> will match all users. Since the file is parsed sequentially, use of the
"ALL" keyword should be reserved for the end of the file as any entries after it are ignored.

Upon reaching the end of the access-control file, if a match to a user name or group has not been
made, the result will be the opposite value of the found=<action> module option. For example, if
found=prohibit is set and the user is not found within the file, then the result for that user would
be allow.

If the specified access control file does not exist, the module will return PAM_IGNORE and have no affect
on the module stack. It is not recommended that the overall success or failure of the module stack
depend solely on pam_permission.

It is recommended that pam_permission is used as "required" or "requisite" in conjunction with other
modules. An example authentication stack is provided below to demonstrate how /etc/ftpusers
behavior with the ftp service can be implemented.

#
Provide /etc/ftpusers access-control
to PAM-enabled ftp.
#
ftp auth requisite /usr/lib/security/pam_permission
 file=/etc/ftpusers found=prohibit
ftp auth required /usr/lib/security/pam_aix

Supported PAM module types

Authentication
Provides user authentication based on the contents of the access-control file.

Account Management
Provides account access and denial based upon the rules in the access-control file.

Options

The pam_permission module accepts the following parameters specified as options in the PAM
configuration file:

Item Description

debug Log debugging information to syslog.

nowarn Do not display warning messages.

file=<filename> Use <filename> as access control file. Defaults to /etc/ftpusers.

found={allow |
prohibit}

Action if an entry match was found but is not preceded by a '+' or '-'. Default is
prohibit.

Return Values

Files Reference 223

Upon successful completion PAM_SUCCESS is returned. If a failure occurs, a PAM error code will be
returned, depending on the actual error.

Location
/usr/lib/security/pam_permission

Related reference
pam.conf File
Related information
pam_authenticate subroutine
pam_acct_mgmt subroutine
Pluggable Authentication Modules

pam_prohibit Module

Purpose
Returns a value denoting a failure for each PAM module type.

Description
The pam_prohibit module returns a failure for all PAM module types. If used as a required or requisite
module for a service, the stack that this module is incorporated into will always fail. It is recommended
that individual services be explicitely configured in /etc/pam.conf and then the pam_prohibit module
used for the OTHER service entries. Configuring the system in this way ensures that only known PAM
enabled applications are capable of successfully authenticating users. Listed below is an example of how
to configure the OTHER service keyword in /etc/pam.conf to use the pam_prohibit module:

#
Fail for all PAM services not explicitely configured
#
OTHER auth required /usr/lib/security/pam_prohibit
OTHER account required /usr/lib/security/pam_prohibit
OTHER password required /usr/lib/security/pam_prohibit
OTHER session required /usr/lib/security/pam_prohibit

Functionality opposite to that provided by pam_prohibit can be obtained by using the pam_allow
module.

Supported PAM module types

Authentication
pam_sm_authenticate returns PAM_AUTH_ERR pam_sm_setcred returns PAM_CRED_ERR

Account Management
pam_sm_acct_mgmt returns PAM_ACCT_EXPIRED

Session Management
pam_sm_open_session returns PAM_SESSION_ERR

Password Management
pam_sm_chauthtok returns PAM_AUTHTOK_ERR

Options

The pam_prohibit module accepts the following parameters specified as options in the PAM
configuration file:

Item Description

debug Log debugging information to syslog.

224 AIX Version 7.1: Files Reference

Item Description

nowarn Do not display warning messages.

Return Values

The pam_prohibit module will never return PAM_SUCCESS. If an invalid PAM handle is found then
PAM_SYSTEM_ERR is returned, otherwise the error code returned is PAM module type specific.

Location
/usr/lib/security/pam_prohibit

Related reference
pam.conf File
Related information
pam_acct_mgmt subroutine
pam_authenticate subroutine
Pluggable Authentication Modules

pam_rhosts_auth Module

Purpose
Provides rhosts-based authentication for PAM.

Description
The pam_rhosts_auth module provides rhost authentication services similar to the rlogin, rsh,
and rcp commands. The module queries the PAM handle for the remote user name, remote host,
and the local user name. This information is then compared to the rules in /etc/hosts.equiv and
$HOME/.rhosts.

For a typical user, the module first checks /etc/hosts.equiv. If a match is not found for the username
and hostname, the module will continue on to check the $HOME/.rhosts file. If a username and
hostname match is still not found, the module returns the PAM_AUTH_ERR failure code. Otherwise, the
result depends on the first rule found matching the specified username and hostname.

When authenticating to the root user (user with the UID of 0), the first check of the /etc/hosts.equiv
file is skipped. Success of the rhosts authentication is based solely on the contents of the root user's
$HOME/.rhosts file.

This module requires that a PAM application, before making the call to pam_authenticate, call
pam_set_item and at least set the values of PAM_RHOST and PAM_RUSER. If the PAM_USER item
is not set, the module will prompt for the user name through the conversation function provided in the
PAM handle.

Further description on how rhosts authentication works can be found in the documentation for the
ruserok() subroutine. Information regarding the syntax of rhost configuration files can be found in the
$HOME/.rhosts or /etc/hosts.equiv files description.

For expected behavior, pam_rhosts_auth should be used as one of the first authentication modules in
the stack and designated as sufficient.

#
PAM authentication stack for typical rlogin behavior.
#
rlogin auth sufficient /usr/lib/security/pam_rhosts_auth
rlogin auth required /usr/lib/security/pam_aix

Supported PAM module types

Files Reference 225

Authentication
Authenticates a user through rhost-based authentication.

Options

The pam_rhosts_auth module accepts the following parameters specified as options in the PAM
configuration file:

Item Description

debug Log debugging information to syslog.

nowarn Do not display warning messages.

Return Values

Upon successful completion PAM_SUCCESS is returned. If a failure occurs, a PAM error code will be
returned, depending on the actual error.

Location
/usr/lib/security/pam_rhosts_auth

Related reference
pam.conf File
hosts.equiv File Format for TCP/IP
Related information
pam_authenticate subroutine
ruserok command
Pluggable Authentication Modules

pam.conf File

Purpose
Contains service entries for each PAM (Pluggable Authentication Modules) module type.

Description
The /etc/pam.conf configuration file consists of service entries for each PAM module type and
serves to route services through a defined module path. Entries in the file are composed of the
following whitespace-delimited fields: service_name module_type control_flag module_path
module_options

Item Description

service_name Specifies the name of the PAM enabled service. The keyword OTHER is used to
define the default module to use for applications not specified in an entry.

module_type Specifies the module type for the service. Valid module types are auth, account,
session, or password. A given module will provide support for one or more
module types.

226 AIX Version 7.1: Files Reference

Item Description

control_flag Specifies the stacking behavior for the module. Supported control flags are
required, requisite, sufficient, or optional.
required

All required modules in a stack must pass for a successful result. If one or
more of the required modules fail, all of the required modules in the stack will
be attempted, but the error from the first failed required module is returned.

requisite
Similar to required except that if a requisite module fails, no further modules in
the stack are processed and it immediately returns the first failure code from a
required or requisite module.

sufficient
If a module flagged as sufficient succeeds and no previous required modules
have failed, all remaining modules in the stack are ignored and success is
returned.

optional
If none of the modules in the stack are required and no sufficient modules have
succeeded, then at least one optional module for the service must succeed. If
another module in the stack is successful, a failure in an optional module is
ignored.

module_path Specifies the module to load for the service. Valid values for module_path may be
specified as either the full path to the module or just the module name. If the full
path to the module is not specified, the PAM library prepends /usr/lib/security
(for 32-bit services) or /usr/lib/security/64 (for 64-bit services) to the module
name.

If the module path is specified as full path, then it directly uses for 32-bit services,
for 64-bit services module path derived as module_path/64/module_name.

module_options Specifies a space delimited list of module specific options. Values for this field are
dependent on the options supported by the module defined in the module_path
field. This field is optional.

Malformed entries, or entries with invalid values for the module_type or control_flag fields are
ignored by the PAM library. Entries beginning with a number sign (#) character at the beginning of the line
are also ignored as this denotes a comment.

PAM supports a concept typically referred to as stacking, which allows multiple mechanisms to be used
for each service. Stacking is implemented in the configuration file by creating multiple entries for a service
with the same module_type field. The modules are invoked in the order in which they are listed in the
file for a given service name, with the final result determined by the control_flag field specified for
each entry.

The following /etc/pam.conf subset is an example of stacking in the auth module type for the login
service.

#
PAM configuration file /etc/pam.conf
#

Authentication Management
login auth required /usr/lib/security/pam_ckfile file=/etc/nologin
login auth required /usr/lib/security/pam_aix
login auth optional /usr/lib/security/pam_test use_first_pass
OTHER auth required /usr/lib/security/pam_prohibit

The example configuration file contains three entries for the login service. Having specified both
pam_ckfile and pam_aix as required, both modules will be executed and both must be successful

Files Reference 227

for the overall result to be success. The third entry for the fictitious pam_test module is optional and its
success or failure will not affect whether the user is able to login. The option use_first_pass to the
pam_test module requires that a previously entered password be used instead of prompting for a new
one.

Use of the OTHER keyword as a service name enables a default to be set for any other services that are
not explicitly declared in the configuration file. Setting up a default ensures that all cases for a given
module type will be covered by at least one module. In the case of this example, all services other than
login will always fail since the pam_prohibit module returns a PAM failure for all invocations.

Changing the /etc/pam.conf File
When changing the /etc/pam.conf configuration file, consider the following:

• The file should always be owned by the root user and group security. Permission on the file should be
set to 644 to allow everyone read access, but only allow root to modify it.

• For greater security, consider explicitly configuring each PAM enabled service and then using the
pam_prohibit module for the OTHER service keyword.

• Read any documentation supplied for a chosen module and service, and determine which control flags,
options and module types are supported and what their impact will be.

• Select the ordering of modules and control flags carefully, keeping in mind the behavior of required,
requisite, sufficient, and optional control flags in stacked modules.

Note: Incorrect configuration of the PAM configuration file can result in a system that cannot be logged in
to since the configuration applies to all users, including root. After making changes to the file, always test
the affected applications before logging out of the system. A system that cannot be logged in to can be
recovered by booting the system in maintenance mode and correcting the /etc/pam.conf configuration
file.

Files
Item Description

/etc/pam.conf Location of the pam.conf configuration file.

Related reference
pam_aix Module
pam_allowroot Module
pam_ckfile Module
pam_permission Module
pam_prohibit Module
pam_rhosts_auth Module

/etc/passwd File

Purpose
Contains basic user attributes.

Description
The /etc/passwd file contains basic user attributes. This is an ASCII file that contains an entry for each
user. Each entry defines the basic attributes applied to a user. When you use the mkuser command to add
a user to your system, the command updates the /etc/passwd file.

228 AIX Version 7.1: Files Reference

Note: Certain system-defined group and user names are required for proper installation and update of the
system software. Use care before replacing this file to ensure that no system-supplied groups or users are
removed.

An entry in the /etc/passwd file has the following form:

Name:Password: UserID:PrincipleGroup:Gecos: HomeDirectory:Shell

Attributes in an entry are separated by a : (colon). For this reason, you should not use a : (colon) in any
attribute. The attributes are defined as follows:

Attribute Definition

Name Specifies the user's login name. There are a number of restrictions on naming
users. See the mkuser command for more information.

Password Contains an * (asterisk) indicating an invalid password or an ! (exclamation
point) indicating that the password is in the /etc/security/passwd file. Under
normal conditions, the field contains an !. If the field has an * and a password is
required for user authentication, the user cannot log in.

UserID Specifies the user's unique numeric ID. This ID is used for discretionary access
control. The value is a unique decimal integer.

PrincipleGroup Specifies the user's principal group ID. This must be the numeric ID of a group
in the user database or a group defined by a network information service. The
value is a unique decimal integer.

Gecos Specifies general information about the user that is not needed by the system,
such as an office or phone number. The value is a character string. The Gecos
field cannot contain a colon.

HomeDirectory Specifies the full path name of the user's home directory. If the user does not
have a defined home directory, the home directory of the guest user is used.
The value is a character string.

Shell Specifies the initial program or shell that is executed after a user invokes
the login command or su command. If a user does not have a defined
shell, /usr/bin/sh, the system shell, is used. The value is a character string
that may contain arguments to pass to the initial program.

Users can have additional attributes in other system files. See the "Files" section for additional
information.

Changing the User File
You should access the user database files through the system commands and subroutines defined for this
purpose. Access through other commands or subroutines may not be supported in future releases. Use
the following commands to access user database files:

• chfn
• chsh
• chuser
• lsuser
• mkuser
• rmuser

The mkuser command adds new entries to the /etc/passwd file and fills in the attribute values as defined
in the /usr/lib/security/mkuser.default file.

The Password attribute is always initialized to an * (asterisk), an invalid password. You can set the
password with the passwd or pwdadm command. When the password is changed, an ! (exclamation

Files Reference 229

point) is added to the /etc/passwd file, indicating that the encrypted password is in the /etc/security/
passwd file.

Use the chuser command to change all user attributes except Password. The chfn command and the chsh
command change the Gecos attribute and Shell attribute, respectively. To display all the attributes in this
file, use the lsuser command. To remove a user and all the user's attributes, use the rmuser command.

To write programs that affect attributes in the /etc/passwd file, use the subroutines listed in the related
information section.

Security
Access Control: This file should grant read (r) access to all users and write (w) access only to the root user
and members of the security group.

Examples
1. Typical records that show an invalid password for smith and guest follow:

smith:*:100:100:8A-74(office):/home/smith:/usr/bin/sh
guest:*:200:0::/home/guest:/usr/bin/sh

The fields are in the following order: user name, password, user ID, primary group, general (gecos)
information, home directory, and initial program (login shell). The * (asterisk) in the password field
indicates that the password is invalid. Each attribute is separated by a : (colon).

2. If the password for smith in the previous example is changed to a valid password, the record will
change to the following:

smith:!:100:100:8A-74(office):/home/smith:/usr/bin/sh

The ! (exclamation point) indicates that an encrypted password is stored in the /etc/security/passwd
file.

Files

Item Description

/etc/passwd Contains basic user attributes.

/usr/lib/security/
mkuser.default

Contains default attributes for new users.

/etc/group Contains the basic attributes of groups.

/etc/security/group Contains the extended attributes of groups.

/etc/security/passwd Contains password information.

/etc/security/user Contains the extended attributes of users.

/etc/security/environ Contains the environment attributes of users.

/etc/security/limits Contains the process resource limits of users.

Related information
chfn command
mkuser command
passwd command
getuserattr subroutine

230 AIX Version 7.1: Files Reference

passwd_policy File

Purpose
Defines the types and manifest constants required to support the passwdpolicy() function.

Description
The passwdpolicy() interface uses named policies to determine the strength of a new password. This
interface is intended for applications which maintain policy information in either the per-user attribute
databases (for example /etc/security/user) or which use the new policy files (/etc/security/
passwd_policy and /usr/lib/security/passwd_policy) to create password policies which are
not associated with a specific user.

System security applications may name policies which are then enforced using the named rules
in /etc/security/passwd_policy. Because this file resides in the /etc/security directory, it is
only accessible by applications run by root or a member of group security. The /usr/lib/security/
passwd_policy file is intended for applications which wish to use these new APIs to enforce their own
password strength rules. There is no support for a default stanza, rather each application must name a
stanza it wishes to use as the default and then explicitly check against that stanza. In addition to the
basic construction rules which are supported by passwdstrength(), this interface supports dictionary
checking, per-user password histories, and administrator-defined load module extensions.

The format of the passwd_policy file is similar to the password construction rule attributes as stored
in the /etc/security/user file, with the exception that named policies do not include the histsize and
histexpire attributes. Each file is a sequence of zero or more stanzas with the named policy being the
stanza name. Each stanza contains one or more attributes describing the password rules which must be
satisfied for a password to be accepted.

Example
ibm_corp_policy:
 dictionlist = /usr/share/dict/words,/usr/local/lib/local_words
 maxage = 26
 minage = 2
 maxexpired = 2
 maxrepeats = 2
 mindiff = 6
 minalpha = 4
 minother = 2
 minlen = 7
 pwdchecks = /usr/lib/security/more_checks.so

The maxage, minage, maxexpired, maxrepeats, mindiff, minalpha, minother, and minlen attributes are
integers. The dictionlist and pwdchecks attributes are comma-separated lists of filenames. For more
information on valid values for attributes, please see /etc/security/user.

Permissions
The permissions on /etc/security/passwd_policy shall be 660, owner root, group security.
This restricts access to processes with the privileges needed to perform other security administrative
tasks. The permissions on /usr/lib/security/passwd_policy shall be 664, owner root , group
security. This allows all processes to read the file, while restricting administrative access to processes
with the privileges needed to perform other security administrative tasks. Applications select between
policy files using the type parameter to the passwdpolicy() function.

Files Reference 231

Location
Item Description

/usr/lib/security/
passwd_policy

Location of policy values for PWP_LOCALPOLICY.

/etc/security/
passwd_policy

Location of policy values for PWP_SYSTEMPOLICY.

Related reference
user File
pwdpolicy.h File

/etc/security/passwd File

Purpose
Contains password information.

Description
The /etc/security/passwd file is an ASCII file that contains stanzas with password information. Each
stanza is identified by a user name followed by a : (colon) and contains attributes in the form
Attribute=Value. Each attribute is ended with a new line character, and each stanza is ended with an
additional new line character.

Each stanza can have the following attributes:

Attribute Definition

password Specifies the encrypted password. The system encrypts the password created with the
passwd command or the pwdadm command. If the password is empty, the user does
not have a password. If the password is an * (asterisk), the user cannot log in. The
value is a character string. The default value is *.

lastupdate Specifies the time (in seconds) since the epoch (00:00:00 GMT, January 1, 1970)
when the password was last changed. If password aging (the minage attribute or the
maxage attribute) is in effect, the lastupdate attribute forces a password change
when the time limit expires. (See the /etc/security/user file for information on
password aging.) The passwd and pwdadm commands normally set this attribute
when a password is changed. The value is a decimal integer that can be converted to a
text string using the ctime subroutine.

flags Specifies the restrictions applied by the login, passwd, and su commands. The value
is a list of comma-separated attributes. The flags attribute can be left blank or can be
one or more of the following values:
ADMIN

Defines the administrative status of the password information. If the ADMIN
attribute is set, only the root user can change this password information.

ADMCHG
Indicates that the password was last changed by a member of the security group
or the root user. Normally this flag is set implicitly when the pwdadm command
changes another user's password. When this flag is set explicitly, it forces the
password to be updated the next time a user gives the login command or the su
command.

NOCHECK
None of the system password restrictions defined in the /etc/security/user file are
enforced for this password.

232 AIX Version 7.1: Files Reference

When the passwd or pwdadm command updates a password, the command adds values for the
password and lastupdate attributes and, if used to change another user's password, for the flags
ADMCHG attribute.

Access to this file should be through the system commands and subroutines defined for this purpose.
Other accesses may not be supported in future releases. Users can update their own passwords with the
passwd command, administrators can set passwords and password flags with the pwdadm command,
and the root user is able to use the passwd command to set the passwords of other users.

Refer to the "Files" section for information on where attributes and other information on users and groups
are stored.

Although each user name must be in the /etc/passwd file, it is not necessary to have each user name
listed in the /etc/security/passwd file. If the authentication attributes auth1 and auth2 are so defined
in the /etc/security/user file, a user may use the authentication name of another user. For example, the
authentication attributes for user tom can allow that user to use the entry in the /etc/security/passwd
file for user carol for authentication.

Security
Access Control: This file should grant read (r) and write (w) access only to the root user.

Auditing Events:

Event Information

S_PASSWD_READ file name

S_PASSWD_WRITE file name

Examples
The following line indicates that the password information in the /etc/security/passwd file is available
only to the root user, who has no restrictions on updating a password for the specified user:

flags = ADMIN,NOCHECK

An example of this line in a typical stanza for user smith follows:

smith:
 password = MGURSj.F056Dj
 lastupdate = 623078865
 flags = ADMIN,NOCHECK

The password line shows an encrypted password. The lastupdate line shows the number of seconds
since the epoch that the password was last changed. The flags line shows two flags: the ADMIN flag
indicates that the information is available only to the root user, and the NOCHECK flag indicates that the
root user has no restrictions on updating a password for the specified user.

Files

Item Description

/etc/security/passwd Specifies the path to the file.

/etc/passwd Contains basic user attributes.

/etc/security/user Contains the extended attributes of users.

/etc/security/login.cfg Contains configuration information for login and user
authentication.

Related reference
pwdhist File

Files Reference 233

Related information
login command
passwd command
su command
ftpd command
rlogind command
ctime subroutine
User Accounts

pcnfsd.conf Configuration File

Purpose
Provides configuration options for the rpc.pcnfsd daemon.

Description
The /etc/pcnfsd.conf file is an ASCII file written by users to add options to the operation of the
rpc.pcnfsd daemon, which takes no command-line flags. This file is part of Network Support Facilities.

When started, the rpc.pcnfsd daemon checks for the presence of the pcnfsd.conf configuration file
and conforms its performance to the specified arguments. The following options can be entered in the
pcnfsd.conf file:

234 AIX Version 7.1: Files Reference

Option Description

aixargs -BCharacterPair Controls the printing of burst pages according to the
value of the CharacterPair variable, as listed below.
The first character applies to the header and the
second character to the trailer. Possible values are
n (never), a (always), and g (group).
HT

Description
nn

No headers, no trailers
na

No headers, trailer on every file
ng

No header, trailer at the end of the job
an

Header on every file, no trailers
aa

Headers and trailers on every file in the job
ag

Header on every file, trailer after job
gn

Header at beginning of job, no trailer
ga

Header at beginning of job, trailer after every file
gg

Header at beginning of job, trailer at end of job

The header and trailer stanzas in the /etc/qconfig
file define the default treatment of burst pages.

Note: The -B flag works exactly like the -B flag
in the enq command. Unlike the enq command,
however, the rpc.pcnfsd daemon does not allow
spaces between the -B flag and the CharacterPair
variable.

getjobnum off Disables the rpc.pcnfsd daemon feature that returns
job numbers when print jobs are submitted.

Files Reference 235

Option Description

printer Name AliasFor Command Defines a PC-NFS virtual printer, recognized only by
rpc.pcnfsd daemon clients. Each virtual printer is
defined on a separate line in the pcnfsd.conf file.
The following variables are specified with this option.
Name

Specifies the name of the PC-NFS virtual printer
to be defined.

AliasFor
Specifies the name of an existing printer that
performs the print job.

Note: To define a PC-NFS virtual printer
associated with no existing printer, use a single
- (minus sign) instead of the AliasFor variable.

Command
Specifies the command that is run when a file
is printed on the Name printer. This command is
executed by the Bourne shell, using the -c option.
For complex operations, replace the Command
variable with an executable shell script.

The following list of tokens and substitution
values can be used in the Command variable:

Token
Substitution Value

$FILE
The full path name of the print data file. After
the command has executed, the file will be
unlinked.

$USER
The user name of the user logged in to the
client.

$HOST
The host name of the client system.

spooldir PathName Designates a new parent directory, PathName, where
the rpc.pcnfsd daemon stores the subdirectories it
creates for each of its clients. The default parent
directory is /var/spool/pcnfs.

uidrange Specifies the valid UID (user number) range that the
rpc.pcnfsd daemon accepts. The default UID range
is 101-4294967295.

wtmp off Disables the login record-keeping feature of the
rpc.pcnfsd daemon. By default, the daemon
appends to the /var/adm/wtmp file a record of user
logins.

Examples
1. The following sample pcnfsd.conf configuration file demonstrates the effects some options have on

the operation of the rpc.pcnfsd daemon:

printer test - /usr/bin/cp $FILE
 /usr/tmp/$HOST-$USER

236 AIX Version 7.1: Files Reference

printer sandman san ls -l $FILE
wtmp off

The first line establishes a printer test. Files sent to the test printer will be copied into the /usr/tmp
directory. Requests to the test PC-NFS virtual printer to list the queue, check the status, or do
similar printer operations, will be rejected because a - (minus sign) has been given for the Alias-For
parameter.

The second line establishes a PC-NFS virtual printer called sandman that lists, in long form, the file
specifications for the print data file.

The third line turns off the rpc.pcnfsd daemon feature that records user logins.
2. To set a UID range enter:

uidrange 1-100,200-50000

This entry means that only numbers from 101-199 and over 50000 are invalid UID numbers.

Files

Item Description

/etc/pcnfsd.conf Specifies the path of the configuration file.

/var/spool/pcnfs directory Contains subdirectories for clients of the pcnfsd daemon.

/etc/qconfig Configures a printer queuing system.

/var/adm/wtmp Describes formats for user and accounting information.

Related information
enq command
rpc.pcnfsd command
Bourne shell
Network File System Overview
List of NFS files

pkginfo File

Purpose
Describes the format of a package characteristics file.

Description
The pkginfo file is an ASCII file that describes the characteristics of the package along with information
that helps control the flow of installation. It is created by the software package developer.

Each entry in the pkginfo file is a line that establishes the value of a parameter in the following form:

 PARAM="value"

There is no required order in which the parameters must be specified within the file. Each parameter is
described below. Only fields marked with an asterisk are mandatory.

Files Reference 237

Parameter Description

PKG* PKG is the parameter to which you assign an abbreviation for the name of the
package being installed. The abbreviation must be a short string (no more than
nine characters long) and it must conform to file naming rules. All characters in the
abbreviation must be alphanumeric and the first cannot be numeric. install, new,
and all are reserved abbreviations.

NAME* Text that specifies the package name (maximum length of 256 ASCII characters).

ARCH* A comma-separated list of alphanumeric tokens that indicate the architecture (for
example, ARCH=m68k,i386) associated with the package. The pkgmk(1M) tool can
be used to create or modify this value when actually building the package. The
maximum length of a token is 16 characters and it cannot include a comma.

VERSION* Text that specifies the current version associated with the software package. The
maximum length is 256 ASCII characters and the first character cannot be a left
parenthesis. The pkgmk tool can be used to create or modify this value when
actually building the package.

CATEGORY* A comma-separated list of categories under which a package can be displayed.
There are six categories: "application," "graphics," "system," "utilities," "set," and
"patch." If you choose, you can also assign a package to one or more categories
that you define. Categories are case-insensitive and can contain only alphanumerics.
Each category is limited in length to 16 characters.

For a Set Installation Package (SIP), this field must have the value "set." A SIP is a
special purpose package that controls the installation of a set of packages.

DESC Text that describes the package (maximum length of 256 ASCII characters).

VENDOR Used to identify the vendor that holds the software copyright (maximum length of
256 ASCII characters).

HOTLINE Phone number and/or mailing address where further information can be received or
bugs can be reported (maximum length of 256 ASCII characters).

EMAIL An electronic address where further information is available or bugs can be reported
(maximum length of 256 ASCII characters).

VSTOCK The vendor stock number, if any, that identifies this product (maximum length of 256
ASCII characters).

CLASSES A space-separated list of classes defined for a package. The order of the list
determines the order in which the classes are installed. Classes listed first are
installed first (on a medium-by-medium basis). This parameter can be modified by
the request script. In this way, the request script can be used to select which classes
in the package get installed on the system.

ISTATES A list of allowable run states for package installation (for example, ""S s 1"").

RSTATES A list of allowable run states for package removal (for example, ""S s 1"").

BASEDIR The pathname to a default directory where "relocatable" files can be installed. If
BASEDIR is not specified and basedir in the admin file (/var/sadm/install/admin/
default) is set to default, then BASEDIR is set to / by default. An administrator can
override the value of BASEDIR by setting basedir in the admin file.

ULIMIT If set, this parameter is passed as an argument to the ulimit command, which
establishes the maximum size of a file during installation.

ORDER A list of classes defining the order in which they should be put on the medium. Used
by pkgmk(1) in creating the package. Classes not defined in this field are placed on
the medium using the standard ordering procedures.

238 AIX Version 7.1: Files Reference

Parameter Description

PSTAMP Production stamp used to mark the pkgmap(4) file on the output volumes. Provides a
means for distinguishing between production copies of a version if more than one is
in use at a time. If PSTAMP is not defined, the default is used. The default consists of
the UNIX system machine name followed by the string """YYMMDDHHmm""" (year,
month, date, hour, minutes).

INTONLY Indicates that the package should be installed interactively only when set to any
non-NULL value.

PREDEPEND Used to maintain compatibility with dependency checking on packages delivered
earlier than System V Release 4. Pre-Release 4 dependency checks were based on
whether or not the name file for the required package existed in the /usr/options
directory. This directory is not maintained for Release 4 and later packages because
the depend file is used for checking dependencies. However, entries can be created
in this directory to maintain compatibility. This is done automatically by pkgmk. This
field is to be assigned the package instance name of the package.

SERIALNUM A serial number, if any, that uniquely identifies this copy of the package (maximum
length of 256 ASCII characters).

ACTKEY Activation key indicator. Set to YES indicates that an activation key is required to
install the package.

PRODUCTNAME A list of the products to which each package belongs. The format of this variable is:

 PRODUCTNAME="<product>[|<product>| . . .]"

Developers can define their own installation parameters by adding a definition to this file. A developer-
defined parameter should begin with a capital letter.

Restrictions placed on a package installation by certain variables in the pkginfo file can be overridden
by instructions in the admin file. For example, the restriction of allowable run states set by the ISTATES
variable can be overridden by having

 runlevel=nocheck

in the admin file being used for installation. (Default is "default".) See the admin file for further
information.

Examples
Here is a sample pkginfo file:

 PKG="oam"
 NAME="OAM Installation Utilities"
 VERSION="3"
 VENDOR="AT&T"
 HOTLINE="1-800-ATT-BUGS"
 EMAIL="attunix!olsen"
 VSTOCK="0122c3f5566"
 CATEGORY="system.essential"
 ISTATES="S 2"
 RSTATES="S 2"

Related reference
admin File
setinfo File

Files Reference 239

pkgmap File

Purpose
Describes the format of a package contents description file.

Description
The pkgmap file is an ASCII file that provides a complete listing of the package contents. Each entry
in pkgmap describes a single "deliverable object file." A deliverable object file includes shell scripts,
executable objects, data files, and directories. The entry consists of several fields of information, each
field separated by a space. The fields are described below and must appear in the order shown.

Field Description

part A field designating the part number in which the object resides. A part is a collection of
files, and is the atomic unit by which a package is processed. A developer can choose the
criteria for grouping files into a part (for example, based on class). If no value is defined in
this field, part 1 is assumed.

ftype A one-character field that indicates the file type. Valid values are:
f

a standard executable or data file
e

a file to be edited upon installation or removal
v

volatile file (one whose contents are expected to change)
d

directory
x

an exclusive directory
l

linked file
p

named pipe
c

character special device
b

block special device
i

installation script or information file
s

symbolic link

Once a file has the file type attribute v, it will always be volatile. For example, if a file being
installed already exists and has the file type attribute v, then even if the version of the file
being installed is not specified as volatile, the file type attribute remains volatile.

class The installation class to which the file belongs. This name must contain only alphanumeric
characters and be no longer than 12 characters. It is not specified if the ftype is i
(information file).

240 AIX Version 7.1: Files Reference

Field Description

pathname The pathname where the object resides on the target machine, such as /usr/bin/mail.
Relative pathnames (those that do not begin with a slash) indicate that the file is
relocatable.

For linked files (ftype is either l or s), pathname must be in the form of path1=path2, with
path1 specifying the destination of the link and path2 specifying the source of the link.

For symbolically linked files, when path2 is a relative pathname starting with ./ or ../,
path2 is not considered relocatable. For example, if you enter a line such as

 s /foo/bar/etc/mount=../usr/sbin/mount

path1 (/foo/bar/etc/mount) is a symbolic link to ../usr/sbin/mount.

pathname can contain variables which support relocation of the file. A "$"parameter can
be embedded in the pathname structure. $BASEDIR can be used to identify the parent
directories of the path hierarchy, making the entire package easily relocatable. Default
values for parameter and BASEDIR must be supplied in the pkginfo file and can be
overridden at installation.

Special characters, such as an equal sign ("="), are included in pathnames by surrounding
the entire pathname in single quotes (as in, for example, '/usr/lib/~=').

major The major device number. The field is only specified for block or character special devices.

minor The minor device number. The field is only specified for block or character special devices.

mode The octal mode of the file (for example, 0664). A question mark ("?") indicates that the
mode is left unchanged, implying that the file already exists on the target machine. This
field is not used for linked files, packaging information files or non-installable files.

owner The owner of the file (for example, bin or root). The field is limited to 14 characters in
length. A question mark ("?") indicates that the owner is left unchanged, implying that
the file already exists on the target machine. This field is not used for linked files or non-
installable files. It is used optionally with a package information file. If used, it indicates
with what owner an installation script is executed.

The owner can be a variable specification in the form of $[A-Z] and is resolved at
installation time.

group The group to which the file belongs (for example, bin or sys). The field is limited to 14
characters in length. A question mark ("?") indicates that the group is left unchanged,
implying that the file already exists on the target machine. This field is not used for linked
files or non-installable files. It is used optionally with a package information file. If used, it
indicates with what group an installation script is executed.

Can be a variable assignment in the form of $[A-Z] and is resolved at installation time.

size The actual size of the file in bytes. This field is not specified for named pipes, special
devices, directories, or linked files.

cksum The checksum of the file contents. This field is not specified for named pipes, special
devices, directories, or linked files.

modtime The time of last modification. This field is not specified for named pipes, special devices,
directories, or linked files.

The following three optional fields must be used as a group. That is, all three must be specified if any is
specified.

Files Reference 241

Field Description

mac The Mandatory Access Control (MAC) Level Identifier (LID), an integer value that
specifies a combination of a hierarchical classification and zero or more non-hierarchical
categories. A question mark ("?") indicates that the mac field is to be left unchanged,
implying that the file already exists on the target machine. This field can only be applied
to a file on a sfs filesystem and is not used for linked files or packaging information files.

Note: Mandatory Access Control is not supported in this release; this field is present for
compatibility with earlier release only. A value of 0 should be used if you must specify
this field.

fixed A comma-separated list of valid mnemonic fixed privilege names as defined for the
fileprivcommand. The string NULL is used in place of the comma-separated list when
fixed privileges are not to be specified. A question mark ("?") indicates that the fixed field
is to be left unchanged, implying that the file already exists on the target machine. If the
fixed attribute is not supplied, then files are installed with no fixed privileges. This field is
not used for linked files or packaging information files.

Note: Fixed privileges have no effect in the current release. This capability is maintained
solely for compatibility with earlier releases.

inherited A comma-separated list of valid mnemonic inherited privilege names as defined for the
filepriv command. The string NULL is used in place of the comma separated list when
privilege is not to be specified. A question mark ("?") indicates that the inherited field is
to be left unchanged, implying that the file already exists on the target machine. If the
inherited attribute is not supplied, then files are installed with no inheritable privileges.
This field is not used for linked files or packaging information files.

Note: Inheritable privileges have no effect in the current release. This capability is
maintained solely for compatibility with earlier releases.

Each pkgmap must have one line that provides information about the number and maximum size (in
512-byte blocks) of parts that make up the package. This line is in the following format:

 :number_of_parts maximum_part_size

Lines that begin with ""#"" are comment lines and are ignored.

When files are saved during installation before they are overwritten, they are normally just copied to a
temporary pathname. However, for files whose mode includes execute permission (but which are not
editable), the existing version is linked to a temporary pathname and the original file is removed. This
allows processes which are executing during installation to be overwritten.

The pkgmap file can contain only one entry per unique pathname.

An exclusive directory type (file) type x specifies directories that are constrained to contain only files that
appear in the installation software database (/var/sadm/install/contents). If there are other files in the
directory, they are removed by pkgchk -fx as described on the manual page for the pkgchk command.

Variable specifications for the owner and group fields are defined in the pkginfo file. For example, owner
could be $OWNER in the pkgmap file; if OWNER is defined as root in the pkginfo file, $OWNER gets the
value root when the file is installed.

Examples
The following is an example pkgmap file.

 :2 500
 1 i pkginfo 237 1179 541296672
 1 b class1 /dev/diskette 17 134 0644 root other
 1 c class1 /dev/rdiskette 17 134 0644 root other
 1 d none bin 0755 root bin
 1 f none bin/INSTALL 0755 root bin 11103 17954 541295535

242 AIX Version 7.1: Files Reference

 1 f none bin/REMOVE 0755 root bin 3214 50237 541295541
 1 l none bin/UNINSTALL=bin/REMOVE
 1 f none bin/cmda 0755 root bin 3580 60325 541295567 0 NULL
 macread,macwrite
 1 f none bin/cmdb 0755 root bin 49107 51255 541438368
 1 f class1 bin/cmdc 0755 root bin 45599 26048 541295599
 1 f class1 bin/cmdd 0755 root bin 4648 8473 541461238
 1 f none bin/cmde 0755 root bin 40501 1264 541295622
 1 f class2 bin/cmdf 0755 root bin 2345 35889 541295574
 1 f none bin/cmdg 0755 root bin 41185 47653 541461242
 2 d class2 data 0755 root bin
 2 p class1 data/apipe 0755 root other
 2 d none log 0755 root bin 0 NULL NULL
 2 v none log/logfile 0755 root bin 41815 47563 541461333
 2 d none save 0755 root bin
 2 d none spool 0755 root bin
 2 d none tmp 0755 root bin

Related information
pkgchk command

policy.cfg File

Purpose
The policy.cfg file contains attributes that are used while creating certificates when creating users or
adding certificates to the local LDAP repository.

Description
The policy.cfg file consists of four stanzas: newuser, storage, crl and comm. These stanzas modify the
behavior of some system administration commands. The mkuser command uses the newuser stanza.
The certlink command uses the storage stanza. The certadd and certlink command use the comm and
crl stanzas.

Examples

* Example policy.cfg file

* newuser Stanza:
*
* cert Specifies whether the mkuser command generates a certificate (new) or
* not (get) by default.
* ca Specifies the CA used by the mkuser command when generating
* a certificate.
* version Specifies the version number of the certificate to be created.
* The value 3 is the only supported value.
* tag Specifies the auth_cert tag value used by the mkuser command when
* creating a user when cert = new.
* label Specifies the private key label used by the mkuser command when
* generating a certificate.
* keystore Specifies the keystore URI used by the mkuser command when generating
* a certificate.
* passwd Specifies the keystore's password used by the mkuser command when
* generating a certificate.
* domain Specifies the domain part of the certificate's subject alternate name
* email value used by the mkuser command when generating a
* certificate.
* validity Specifies the certificate's validity period value used by the mkuser
* command when generating a certificate.
* algorithm Specifies the public key algorithm used by the mkuser command when
* generating a certificate.
* keysize Specifies the minimum encryption key size in bits used by the mkuser
* command when generating a certificate.
* keyusage Specifies the certificate's key usage value used by the mkuser
*
* subalturi Specifies the certificate's subject alternate name URI value
* used by the mkuser command when generating a certificate.
*
* storage Stanza:
*

Files Reference 243

* command when generating a certificate.
* replicate Specifies whether the certlink command saves a copy of the certificate
* (yes) or just the link (no).
*
* crl Stanza
*
* check Specifies whether the certadd and certlink commands should check the
* CRL (yes) or not (no).
*
* comm Stanza
*
* timeout Specifies the timeout period in seconds when requesting certificate
* information using HTTP (e.g., retrieving CRLs).

newuser:
 cert = new
 ca = local
 passwd = pki
 version = "3"
 keysize = 1024
 keystore = test
 validity = 60

storage:
 replicate = no

crl:
 check = yes

comm:
 timeout = 10
* end of policy.cfg

File
/usr/lib/security/pki/policy.cfg

Related reference
acct.cfg File
ca.cfg File
Related information
mkuser command
certcreate command
certrevoke command
certadd command
certlink command

portlog File

Purpose
Contains per-port unsuccessful login attempt information and port locks.

Description
The /etc/security/portlog file is an ASCII file that contains stanzas of per port unsuccessful login attempt
information and port locks. Each stanza has a name followed by a : (colon) that defines the port name.
Attributes are in the form Attribute=Value. Each attribute ends with a new line character and each stanza
ends with an additional new line character.

The attributes in the stanzas are as follows:

244 AIX Version 7.1: Files Reference

Attribute Definition

locktime Defines the time the port was locked in seconds since the
epoch (zero time, January 1, 1970). This value is a decimal
integer string.

unsuccessful_login_times Lists the times of unsuccessful login attempts in seconds
since the epoch. The list contains decimal integer strings
separated by commas.

These attributes do not have default values. If a value is not specified, the attribute is ignored.

Security
Access Control: This file grants read access to the root user and members of the security group, and write
access only to the root user. Access for other users and groups depends upon the security policy of the
operating system.

Examples
A typical record looks like the following example for the /dev/tty0 port:

/dev/tty0:
 locktime = 723848478
 unsuccessful_login_times =
723848430,723848450,723848478

Files

Item Description

/etc/security/portlog Specifies the path to the file.

/etc/security/login.cfg Contains configuration information for login and user
authentication.

Related information
chsec command
login command
su command
loginfailed subroutine
loginrestrictions subroutine
Security Administration

/etc/security/privcmds File

Purpose
Contains security attributes for privileged commands.

Description
The /etc/security/privcmds file is an ASCII stanza file that contains privileged commands and their
security attributes. Each stanza in the /etc/security/privcmds file is identified by the full path name to
the command, followed by a colon (:). Each stanza contains attributes in the Attribute=Value form. The
path name must be the absolute path to the command and cannot contain symbolic link directories or
be a symbolic link to the command. Each Attribute=Value pair is ended by a newline character, and each

Files Reference 245

stanza is ended by an additional newline character. For an example of a stanza, see “Examples” on page
248.

Changes made to the privcmds file do not impact security considerations until the entire privileged
command database is sent to the Kernel Security Tables through the setkst command or until the system
is rebooted.

Modifying and Listing Entries in the privcmds File

Do not directly edit the /etc/security/privcmds file. Use the following commands and subroutines to
manipulate the privileged commands database:
setsecattr

Adds a command entry to, or changes a command entry in, the /etc/security/privcmds file.
lssecattr

Displays attributes and their values.
rmsecattr

Removes a command from the privcmds file.

To write programs that affect entries in the /etc/security/privcmds file, use one or more of the following
subroutines:

• getcmdattr
• getcmdattrs
• putcmdattr
• putcmdattrs

Attributes
A stanza in this file contains one or more of the following security attributes:

246 AIX Version 7.1: Files Reference

Item Description

accessauths Specifies the access authorizations as a comma-separated list of authorization
names. A user whose current session has one of the authorizations in the list is
allowed to run the command. You can specify a maximum of 16 authorizations.

This attribute also allows three special values:
ALLOW_OWNER

Allows the Role Based Access Control (RBAC) framework to be used for
the command owner. If the accessauths attribute is specified, when the
command owner runs the command, the RBAC framework governs the
privileges assigned to the process. If the accessauths attribute is not
specified or the user running the command does not have an authorization
in the accessauths attribute, DAC controls the execution and the RBAC
framework grants no additional privileges.

ALLOW_GROUP
Allows the RBAC framework to be used for the group. If the accessauths
attribute is specified, when the group runs the command, the RBAC
framework governs the privileges assigned to the process. If the
accessauths attribute is not specified or the user running the command
does not have an authorization in the accessauths attribute, DAC controls
the execution and the RBAC framework grants no additional privileges.

ALLOW_ALL
Allows the RBAC framework to be used for everyone. If the accessauths
attribute is specified, when anyone runs the command, the RBAC framework
governs the privileges assigned to the process. If the accessauths attribute
is not specified or the user running the command does not have an
authorization in the accessauths attribute, DAC controls the execution and
the RBAC framework grants no additional privileges.

authprivs Specifies the authorized privileges that are assigned to the process on a specific
authorization basis. The user running the command must gain access to the
command through the accessauths attribute to enable the authprivs attribute.
For each authorization in the list that is processed, the associated set of
privileges is granted. The maximum number of authorization and privileges
pairs is 16. The authorization and its corresponding privileges are separated by
an equal sign (=), individual privileges are separated by a plus sign (+), and the
authorization and privileges pairs are separated by a comma, as shown in the
following line:

auth=priv+priv...,auth=priv+priv...,...

This attribute also supports three special authorization values:
ALLOW_OWNER, ALLOW_GROUP, and ALLOW_ALL, to specify the additional
privileges granted to the command owner, group or everyone, respectively.

authroles The role or list of roles. Users having these have to be authenticated to allow
execution of the command. A maximum of sixteen roles can be specified.

msgset Specifies the file name of the message catalog that contains the one-line
description of the authorization. The value is a character string.

innateprivs Specifies a comma-separated list of privileges assigned to the process during
the running of the command. The specified privileges are assigned to the
process only if the command invocation is authorized through the access
authorizations.

inheritprivs Specifies a comma-separated list of privileges that is passed to child processes.

euid Specifies the effective user ID to assume during the running of the command.

Files Reference 247

Item Description

egid Specifies the effective group ID to assume during the running of the command.

ruid Specifies the real user ID to assume during the running of the command.

secflags Specifies a comma-separated list of file security flags. The following value is
valid:
FSF_EPS

Loads the process maximum privilege set into the effective privilege set
upon execution.

Security
The root user and the security group own this file. Read and write access is granted to the root user.
Access for other users and groups depends on the security policy for the system.

Examples
The following example for a Command displays a typical stanza in the file:

/usr/bin/myprog:
 accessauths = aix.security.user.create,aix.security.user.change
 authprivs = aix.ras.audit=PV_AU_ADMIN
 innateprivs = PV_DAC_R,PV_DAC_W
 secflags = FSF_EPS

This entry indicates that the user running this command must be in a role session that has one of the
authorizations listed in the accessauths attribute to run the command. If this condition is true, the
privileges listed in the innateprivs attribute are granted to the resulting process. Also, if the user running
this command has one of the privileged authorizations listed in the authprivs attribute, the process is
granted the additional associated privileges.

Related information
getcmdattr subroutine
getcmdattrs subroutine
putcmdattr subroutine
putcmdattrs subroutine
setsecattr command
lssecattr command
rmsecattr command
swrole command
setkst command
lspriv command
Role Based Access Control (RBAC)

/etc/security/privdevs File

Purpose
Contains security attributes for privileged devices.

Description
The /etc/security/privdevs file is an ASCII stanza file that contains privileged devices and their security
attributes. Each stanza in the /etc/security/privdevs file is identified by the full path name to the device,
followed by a colon (:). Each stanza contains attributes in the Attribute=Value form. The path name must
be the absolute path to the device and cannot contain symbolic link directories or be a symbolic link to

248 AIX Version 7.1: Files Reference

the device. Each Attribute=Value pair is ended by a newline character, and each stanza is ended by an
additional newline character. For an example of a stanza, see “Examples” on page 249.

Changes made to the privdevs file do not impact security considerations until the entire privileged
device database is sent to the Kernel Security Tables through the setkst command or until the system is
rebooted.

Modifying and Listing Entries in the devices File

Do not directly edit the /etc/security/privdevs file. Use the following commands and subroutines to
manipulate the privileged devices database:
setsecattr

Adds a device entry to, or changes a device entry in, the /etc/security/privdevs file.
lssecattr

Displays attributes and their values.
rmsecattr

Removes a command from the devices file.

To write programs that affect entries in the /etc/security/privdevs file, use one or more of the following
subroutines:

• getdevattr
• getdevattrs
• putdevattr
• putdevattrs

Attributes
A stanza in this file contains one or more of the following security attributes:

Attribute Description

readprivs Specifies the privileges required to read from the device as a comma-separated
list of privilege names. You can define a maximum of eight privileges. A process
with any of the specified read privileges can read from the device.

writeprivs Specifies the privileges required to write to the device as a comma-separated
list of privilege names. You can define a maximum of eight privileges. A process
with any of the specified write privileges can write to the device.

Security
The root user and the security group own this file. Read and write access is granted to the root user.
Access for other users and groups depends on the security policy for the system.

Examples
The following example for a Device displays a typical stanza in the file:

/dev/mydev:
 readprivs = PV_DAC_R,PV_AU_READ
 writeprivs = PV_DAC_W,PV_AU_WRITE

This entry indicates that the process must have either the PV_DAC_R privilege or the PV_AU_READ
privilege to read from the device. The process also must have either the PV_DAC_W privilege or the
PV_AU_WRITE privilege to write to the device.

Related reference
/etc/nscontrol.conf File

Files Reference 249

Related information
getdevattr subroutine
getdevattrs subroutine
putdevattr subroutine
putdevattrs subroutine
setsecattr command
lssecattr command
rmsecattr command
swrole command
setkst command
lspriv command
Role Based Access Control (RBAC)

/etc/security/privfiles File

Purpose
Contains the security attributes for privileged files.

Description
The /etc/security/privfiles file is an ASCII stanza file that contains privileged files and their security
attributes. Each stanza in the /etc/security/privfiles file is identified by the full path name to the file,
followed by a colon (:). Each stanza contains attributes in the Attribute=Value form. The path name must
be the absolute path to the file and cannot contain symbolic link directories or be a symbolic link to the
file. Each Attribute=Value pair is ended by a newline character, and each stanza is ended by an additional
newline character. For an example of a stanza, see “Examples” on page 251.

Modifying and Listing Entries in the privfiles File

Do not edit the /etc/security/privfiles file directly. Instead, use commands and subroutines that are
defined for managing privileged file databases. You can use the following commands to modify and list
entries in the privfiles file:
setsecattr

Adds or changes a file entry in the /etc/security/privfiles file.
lssecattr

Display the attributes and their values.
rmsecattr

Remove a file from the privfiles file.

To write programs that affect entries in the /etc/security/privfiles file, use one or more of the following
subroutines:

• getpfileattr
• getpfileattrs
• putpfileattr
• putpfileattrs

Attributes
A stanza in this file can contain one or more of the following security attributes:

250 AIX Version 7.1: Files Reference

Attribute Description

readauths Specifies the authorizations required to read from the file as a comma-separated
list of authorization names. A user with any of the authorizations can use
the /usr/bin/pvi command to read from the privileged file.

writeauths Specifies the authorizations required to write to the file as a comma-separated
list of authorization names. A user with any of the authorizations can use
the /usr/bin/pvi command to write to the privileged file.

Security
Read and write access is granted to the root user, and read access is granted to members of the security
group. Access for other users and groups depends on the security policy for the system.

Examples
The following example for a File displays a typical stanza in the file:

/etc/myconf:
 readauths = aix.security.role.list
 writeauths = aix.security.role.change

This entry indicates that users with the aix.security.role.list authorization can use the pvi
command to read the /etc/myconf file. Users with the aix.security.role.change authorization can
use the pvi command to write to the /etc/myconf file.

Related information
pvi command
setsecattr command
rmsecattr command
lssecattr command
getpfileattr subroutine
putpfileattr subroutine
getpfileattrs subroutine
putpfileattrs subroutine
Role Based Access Control (RBAC)

/proc File

Purpose
Contains state information about processes and threads in the system.

Syntax
 #include <sys/procfs.h>

Description
The /proc file system provides access to the state of each active process and thread in the system. The
name of each entry in the /proc file system is a decimal number corresponding to the process ID. These
entries are subdirectories and the owner of each is determined by the user ID of the process. Access
to the process state is provided by additional files contained within each subdirectory. Except where
otherwise specified, the term /proc file is meant to refer to a non-directory file within the hierarchy rooted
at /proc. The owner of each file is determined by the user ID of the process.

Files Reference 251

The various /proc directory, file, and field names contain the term lwp (light weight process). This term
refers to a kernel thread. The /proc files do not refer to user space pthreads. While the operating system
does not use the term lwp to describe its threads, it is used in the /proc file system for compatibility with
other UNIX operating systems.

The following standard subroutine interfaces are used to access the /proc files:

• open subroutine
• close subroutine
• read subroutine
• write subroutine

Most files describe process state and are intended to be read-only. The ctl (control) and lwpctl (thread
control) files permit manipulation of process state and can only be opened for writing. The as (address
space) file contains the image of the running process and can be opened for both reading and writing.
A write open allows process control while a read-only open allows inspection but not process control.
Thus, a process is described as open for reading or writing if any of its associated /proc files is opened for
reading or writing, respectively.

In general, more than one process can open the same /proc file at the same time. Exclusive open is
intended to allow process control without another process attempting to open the file at the same time. A
process can obtain exclusive control of a target process if it successfully opens any /proc file in the target
process for writing (the as or ctl files, or the lwpctl file of any kernel thread) while specifying the O_EXCL
flag in the open subroutine. Such a call of the open subroutine fails if the target process is already open
for writing (that is, if a ctl, as, or lwpctl file is open for writing). Multiple concurrent read-only instances
of the open subroutine can exist; the O_EXCL flag is ignored on the open subroutine for reading. The first
open for writing by a controlling process should use the O_EXCL flag. Multiple processes trying to control
the same target process usually results in errors.

Data may be transferred from or to any locations in the address space of the traced process by calling the
lseek subroutine to position the as file at the virtual address of interest, followed by a call to the read or
write subroutine. An I/O request extending into an unmapped area is truncated at the boundary. A read
or write request beginning at an unmapped virtual address fails with errno set to EFAULT.

Information and control operations are provided through additional files. The <sys/procfs.h> file contains
definitions of data structures and message formats used with these files. Some of these definitions use
sets of flags. The set types pr_sigset_t, fltset_t, and sysset_t correspond to signal, fault, and system call
enumerations, respectively. These enumerations are defined in the <sys/procfs.h> files. The pr_sigset_t
and fltset_t types are large enough to hold flags for its own enumeration. Although they are of different
sizes, they have a common structure and can be manipulated by the following macros:

 prfillset(&set); /* turn on all flags in set */
 premptyset(&set); /* turn off all flags in set */
 praddset(&set, flag); /* turn on the specified flag */
 prdelset(&set, flag); /* turn off the specified flag */
 r = prismember(&set, flag); /* != 0 if flag is turned on */

Either the prfillset or premptyset macro must be used to initialize the pr_sigset_t or fltset_t type
before it is used in any other operation. The flag parameter must be a member of the enumeration that
corresponds to the appropriate set.

The sysset_t set type has a different format, set of macros, and a variable length structure to
accommodate the varying number of available system calls. You can determine the total number of
system calls, their names, and number of each individual call by reading the sysent file. You can then
allocate memory for the appropriately sized sysset_t structure, by ensuring that the pr_sysset array
needs an element for every 64 system call numbers, initialize its pr_size field, and then use the following
macros to manipulate the system call set:

int num; /* Specifies the systemcall's number from sysent */
uint64_t sysnum; /* Specifies the number of elements in pr_set array */
uint64_t syssize; /* Allocates the size */
sysset_t *set; /* Specifies the pointer to sysset_t */
sysnum = (num - 1)/64 + 1;

252 AIX Version 7.1: Files Reference

syssize = (sysnum + 1) * sizeof(uint64_t);
set = (sysset_t *)malloc(syssize);
set->pr_size = sysnum;
prfillsysset(set) /* set all syscalls in the sysset */
premptysysset(set) /* clear all syscalls in the sysset */
praddsysset(set, num) /* set specified syscall in the sysset */
prdelsysset(set, num) /* clear specified syscall in the sysset */
prissyssetmember(set, num) /* !=0 if specified syscall is set */

See the description of the sysent file for more information about system calls.

Every active process contains at least one kernel thread. Every kernel thread represents a flow of
execution that is independently scheduled by the operating system. All kernel threads in a process
share address space as well as many other attributes. Using the ctl and lwpctl files, you can manipulate
individual kernel threads in a process or manipulate all of them at once, depending on the operation.

When a process has more than one kernel thread, a representative thread is chosen by the system for
certain process status file and control operations. The representative thread is stopped only if all the
process's threads are stopped. The representative thread may be stopped on an event of interest only if all
threads are stopped, or it may be stopped by a PR_REQUESTED stop only if no other events of interest
exist.

The representative thread remains fixed as long as all the threads are stopped on events of interest or are
in PR_SUSPENDED stop and the PCRUN operand is not applied to any of them.

When applied to the process control file (ctl), every /proc control operation that affects a kernel thread
uses the same algorithm to choose which kernel thread to act on. With synchronous stopping (see
PCSET), this behavior enables an application to control a multiple thread process using only the process
level status and control files. For more control, use the thread-specific lwpctl files.

The /proc file system can be used by both 32-bit and 64-bit control processes to get information about
both 32-bit and 64-bit target processes. The /proc files provide 64-bit enabled mode invariant files to
all observers. The mode of the controlling process does not affect the format of the /proc data. Data is
returned in the same format to both 32-bit and 64-bit control processes. Addresses and applicable length
and offset fields in the /proc files are 8 bytes long.

Directory Structure

At the top level, the /proc directory contains entries, each of which names an existing process in the
system. The names of entries in this directory are process ID (pid) numbers. These entries are directories.
Except where otherwise noted, the files described below are read-only. In addition, if a process becomes
a zombie (one that has been terminated by its parent with an exit call but has not been suspended by
a wait call), most of its associated /proc files disappear from the directory structure. Normally, later
attempts to open or to read or write to files that are opened before the process is terminated elicit the
ENOENT message. Exceptions are noted.

The /proc files contain data that presents the state of processes and threads in the system. This state
is constantly changing while the system is operating. To lessen the load on system performance caused
by reading /proc files, the /proc file system does not stop system activity while gathering the data for
those files. A single read of a /proc file generally returns a coherent and fairly accurate representation
of process or thread state. However, because the state changes as the process or thread runs, multiple
reads of /proc files may return representations that show different data and therefore appear to be
inconsistent with each other.

An atomic representation is a representation of the process or thread at a single and discrete point in
time. If you want an atomic snapshot of process or thread state, stop the process and thread before
reading the state. There is no guarantee that the data is an atomic snapshot for successive reads of /proc
files for a running process. In addition, a representation is not guaranteed to be atomic for any I/O applied
to the as (address space) file. The contents of any process address space might be simultaneously
modified by a thread of that process or any other process in the system.

Note: Multiple structure definitions are used to describe the /proc files. A /proc file may contain
additional information other than the definitions presented here. In future releases of the operating
system, these structures may grow by the addition of fields at the end of the structures.

Files Reference 253

The /proc/pid File Structure

The /proc/pid directory contains (but is not limited to) the following entries:

as
Contains the address space image of the process. The as file can be opened for both reading and
writing. The lseek subroutine is used to position the file at the virtual address of interest. Afterwards,
you can view and modify the address space with the read and write subroutines, respectively.

ctl
A write-only file to which structured messages are written directing the system to change some
aspect of the process's state or control its behavior in some way. The seek offset is not relevant when
writing to this file, see types of control messages for more information. Individual threads also have
associated lwpctl files. A control message may be written either to the ctl file of the process or to
a specific lwpctl file with operation-specific effects as described. The effect of a control message is
immediately reflected in the state of the process visible through appropriate status and information
files.

status
Contains state information about the process and one of its representative thread. The file is
formatted as a struct pstatus type containing the following members:

uint32_t pr_flag; /* process flags from proc struct p_flag */
uint32_t pr_flag2; /* process flags from proc struct p_flag2 */
uint32_t pr_flags; /* /proc flags */
uint32_t pr_nlwp; /* number of threads in the process */
char pr_stat; /* process state from proc p_stat */
char pr_dmodel; /* data model for the process */
char pr__pad1[6]; /* reserved for future use */
pr_sigset_t pr_sigpend; /* set of process pending signals */
prptr64_t pr_brkbase; /* address of the process heap */
uint64_t pr_brksize; /* size of the process heap, in bytes */
prptr64_t pr_stkbase; /* address of the process stack */
uint64_t pr_stksize; /* size of the process stack, in bytes */
pid64_t pr_pid; /* process id */
pid64_t pr_ppid; /* parent process id */
pid64_t pr_pgid; /* process group id */
pid64_t pr_sid; /* session id */
struct pr_timestruc64_t pr_utime; /* process user cpu time */
struct pr_timestruc64_t pr_stime; /* process system cpu time */
struct pr_timestruc64_t pr_cutime; /* sum of children's user times */
struct pr_timestruc64_t pr_cstime; /* sum of children's system times */
pr_sigset_t pr_sigtrace; /* mask of traced signals */
fltset_t pr_flttrace; /* mask of traced hardware faults */
uint32_t pr_sysentry_offset; /* offset into pstatus file of sysset_t
 * identifying system calls traced on
 * entry. If 0, then no entry syscalls
 * are being traced. */
uint32_t pr_sysexit_offset; /* offset into pstatus file of sysset_t
 * identifying system calls traced on
 * exit. If 0, then no exit syscalls
 * are being traced. */
uint64_t pr__pad[8]; /* reserved for future use */
lwpstatus_t pr_lwp; /* "representative" thread status */

The members of the status file are described below:

pr_flags
Specifies a bit-mask holding these flags:
PR_ISSYS

Process is a kernel process (see PCSTOP)
PR_FORK

Process has its inherit-on-fork flag set (see PCSET)
PR_RLC

Process has its run-on-last-close flag set (see PCSET)
PR_KLC

Process has its kill-on-last-close flag set (see PCSET)

254 AIX Version 7.1: Files Reference

PR_ASYNC
Process has its asynchronous-stop flag set (see PCSET)

PR_PTRACE
Process is controlled by the ptrace subroutine

pr_nlwp
Specifies the total number of threads in the process

pr_brkbase
Specifies the virtual address of the process heap

pr_brksize
Specifies the size, in bytes, of the process heap

Note: The address formed by the sum of the pr_brkbase and pr_brksize is the process break (see
the brk subroutine).

pr_stkbase
Specifies the virtual address of the process stack

pr_stksize
Specifies the size, in bytes, of the process stack

Note: Each thread runs on a separate stack. The operating system grows the process stack as
necessary.

pr_pid
Specifies the process ID

pr_ppid
Specifies the parent process ID

pr_pgid
Specifies the process group ID

pr_sid
Specifies the session ID of the process

pr_utime
Specifies the user CPU time consumed by the process

pr_stime
Specifies the system CPU process time consumed by the process

pr_cutime
Specifies the cumulative user CPU time consumed by the children of the process, expressed in
seconds and nanoseconds

pr_cstime
Specifies the cumulative system CPU time, in seconds and nanoseconds, consumed by the
process's children

pr_sigtrace
Specifies the set of signals that are being traced (see the PCSTRACE signal)

pr_flttrace
Specifies the set of hardware faults that are being traced (see the PCSFAULT signal)

pr_sysentry_offset
If non-zero, contains offsets into the status file to the sysset_t sets of system calls being traced on
system call entry (see the PCSENTRY signal). This flag is zero if system call tracing is not active for
the process.

pr_sysexit_offset
If non-zero, contains offsets into the status file to the sysset_t sets of system calls being traced on
system call exit (see the PCSEXIT signal). This field is zero if system call tracing is not active for
the process.

Files Reference 255

pr_lwp
If the process is not a zombie, contains an lwpstatus_t structure describing a representative
thread. The contents of this structure have the same meaning as if it was read from a lwpstatus
file.

psinfo
Contains information about the process needed by the ps command. If the process contains more
than one thread, a representative thread is used to derive the lwpsinfo information. The file is
formatted as a struct psinfo type and contains the following members:

uint32_t pr_flag; /* process flags from proc struct p_flag */
uint32_t pr_flag2; /* process flags from proc struct p_flag2 */
uint32_t pr_nlwp; /* number of threads in process */
uid_t pr_uid; /* real user id */
uid_t pr_euid; /* effective user id */
gid_t pr_gid; /* real group id */
gid_t pr_egid; /* effective group id */
uint32_t pr_argc; /* initial argument count */
pid64_t pr_pid; /* unique process id */
pid64_t pr_ppid; /* process id of parent */
pid64_t pr_pgid; /* pid of process group leader */
pid64_t pr_sid; /* session id */
dev64_t pr_ttydev; /* controlling tty device */
prptr64_t pr_addr; /* internal address of proc struct */
uint64_t pr_size; /* size of process image in KB (1024) units */
uint64_t pr_rssize; /* resident set size in KB (1024) units */
struct pr_timestruc64_t pr_start; /* process start time, time since epoch */
struct pr_timestruc64_t pr_time; /* usr+sys cpu time for this process */
prptr64_t pr_argv; /* address of initial argument vector in
 user process */
prptr64_t pr_envp; /* address of initial environment vector
 in user process */
char pr_fname[PRFNSZ]; /* last component of exec()ed pathname*/
char pr_psargs[PRARGSZ]; /* initial characters of arg list */
uint64_t pr__pad[8]; /* reserved for future use */
struct lwpsinfo pr_lwp; /* "representative" thread info */

Note: Some of the entries in the psinfo file, such as pr_flag, pr_flag2, and pr_addr, refer to internal
kernel data structures and might not retain their meanings across different versions of the operating
system. They mean nothing to a program and are only useful for manual interpretation by a user
aware of the implementation details.

The psinfo file is accessible after a process becomes a zombie.

The pr_lwp flag describes the representative thread chosen. If the process is a zombie, the pr_nlwp
and pr_lwp.pr_lwpid flags are zero and the other fields of pr_lwp are undefined.

map
Contains information about the virtual address map of the process. The file contains an array of
prmap structures, each of which describes a contiguous virtual address region in the address space of
the traced process.

Note: The map file might contain entries only for the virtual address regions of the process that
contain the objects that are loaded into the process.

The prmap structure contains the following members:

uint64_t pr_size; /* size of mapping in bytes */
prptr64_t pr_vaddr; /* virtual address base */
char pr_mapname[PRMAPSZ]; /* name in the /proc/pid/object object */
uint64_t pr_off; /* offset to the mapped object, if any */
uint32_t pr_mflags; /* protection and attribute flags */
uint32_t pr_pathoff; /* if map indicates the entry for a loaded object,
 * offset points to a null-terminated path name followed
 * by a null-terminated member name.
 * If the offset is mapped to a file and it is not an
 * archive file, the member name is null.
 * The offset is 0 if map entry is
 * not applicable for a loaded object. */
int32_t pr_shmid; /* shared memory ID for the MA_SHM or
 * MA_RTSHM region.
 * <0 indicates that teh shared memory ID is not
 * available. */

256 AIX Version 7.1: Files Reference

dev64_t pr_dev; /* the dev_t data structure for the MA_FILEMAP file.
 * -1 indicates that the dev_t is not available
 * -2 indicates that the file is on remote filesystem,
 * -3 indicates that the file is in a WPAR.
*/
ino64_t pr_ino; /* The inode datastructure for the MA_FILEMAP file.
 * -1 indicates that the ino_t data structure is not
 * available */
vmid64_t pr_vsid; /* virtual segment ID for the first segment
 * in the region. */

The members are described below:

pr_vaddr
Specifies the virtual address of the mapping within the traced process

pr_size
Specifies the size of the mapping within the traced process

pr_mapname
If not an empty string, contains the name of a file that resides in the object directory and contains
a file descriptor for the object to which the virtual address is mapped. The file is opened with the
open subroutine.

pr_off
Contains the offset within the mapped object (if any) to which the virtual address is mapped

pr_pathoff
If non-zero, contains an offset into the map file to the path name and archive member name of a
loaded object

pr_mflags
Specifies a bit-mask of protection and the following attribute flags:
MA_MAINEXEC

Indicates that mapping applies to the main executable in the process.
MA_BREAK

Indicates that mapping applies to the program data and heap ranges in the process.
MA_STACK

Indicates that the mapping applies to stack range in the process.
MA_MMAP

Indicates that mapping applies to an object that is mapped to the process by using the mmap
subroutine.

MA_RTSHM

• Indicates that mapping applies to POSIX real-time objects that are created by the shm_open
subroutine.

• These objects are mapped to the process by using the mmap subroutine.

MA_SHM
Indicates that mapping applies to an object that is mapped to the process by using the shmat
subroutine.

MA_FILEMAP
Indicates that mapping applies to a file object that is mapped to the process by using the mmap
subroutine or the shmat subroutine.

MA_WORK
Indicates that mapping applies to memory that is mapped to the process by the loader or by
other kernel subsystem.

MA_RMMAP
Indicates that mapping applies to a memory or I/O region that is mapped into the process by
using the rmmap_create subroutine.

MA_KERNTEXT
Indicates that mapping applies to kernel memory that is mapped to the process.

Files Reference 257

MA_PS4K
Indicates that mapping is supported by 4 KB blocks of physical memory.

MA_PS64K
Indicates that mapping is supported by 64 KB blocks of physical memory.

MA_PS16M
Indicates that mapping is supported by 16 MB blocks of physical memory.

MA_PS16G
Indicates that mapping is supported by 16 GB blocks of physical memory.

MA_READ
Indicates that mapping is readable by the traced process.

MA_WRITE
Indicates that mapping is writable by the traced process.

MA_EXEC
Indicates that mapping is executable by the traced process.

MA_SHARED
Indicates that mapping changes are shared by the mapped object.

pr_shmid
For the MA_SHM mapping, contains the System V shared memory ID of the mapping. Use the
ipcs -m command to display the shared memory IDs.

pr_dev
For the MA_FILEMAP mapping, contains the device ID number of the mapped file.

pr_ino
For MA_FILEMAP mapping, contains the inode number of the mapped file relative to the
device ID in the pr_dev field.

pr_vsid
Contains the first Virtual Memory Manager segment ID in the mapping.

A contiguous area of the address space having the same underlying mapped object may appear as
multiple mappings because of varying read, write, execute, and shared attributes. The underlying
mapped object does not change over the range of a single mapping. An I/O operation to a mapping
marked MA_SHARED fails if applied at a virtual address not corresponding to a valid page in the
underlying mapped object. Read and write operations to private mappings always succeed. Read and
write operations to unmapped addresses always fail.

cred
Contains a description of the credentials associated with the process. The file is formatted as a struct
prcred type and contains the following members:

uid_t pr_euid; /* effective user id */
uid_t pr_ruid; /* real user id */
uid_t pr_suid; /* saved user id (from exec) */
gid_t pr_egid; /* effective group id */
gid_t pr_rgid; /* real group id */
gid_t pr_sgid; /* saved group id (from exec) */
uint32_t pr_ngroups; /* number of supplementary groups */
gid_t pr_groups[1]; /* array of supplementary groups */

sysent
Contains information about the system calls available to the process. The file can be used to find the
number of a specific system call to trace. It can be used to find the name of a system call associated
with a system call number returned in a lwpstatus file.

The file consists of a header section followed by an array of entries, each of which corresponds to a
system call provided to the process. Each array entry contains the system call number and an offset
into the sysent file to that system call's null-terminated name.

The sysent file is characterized by the following attributes:

• The system call names are the actual kernel name of the exported system call.

258 AIX Version 7.1: Files Reference

• The entries in the array do not have any specific ordering.
• There may be gaps in the system call numbers.
• Different processes may have different system call names and numbers, especially between a 32-

bit process and a 64-bit process. Do not assume that the same names or numbers cross different
processes.

• The set of system calls may change during while the operating system is running. You can add
system calls while the operating system is running.

• The names and numbers of the system calls may change within different releases or when service is
applied to the system.

cwd
A link that provides access to the current working directory of the process. Any process can access the
current working directory of the process through this link, provided it has the necessary permissions.

fd
Contains files for all open file descriptors of the process. Each entry is a decimal number
corresponding to an open file descriptor in the process. If an enty refers to a regular file, it can be
opened with normal file semantics. To ensure that the contolling process cannot gain greater access,
there are no file access modes other than its own read/write open modes in the controlled process.
Directories will be displayed as links. An attempt to open any other type of entry will fail (hence it will
display 0 permission when listed).

object
A directory containing read-only files with names as they appear in the entries of the map file,
corresponding to objects mapped into the address space of the target process. Opening such a file
yields a descriptor for the mapped file associated with a particular address-space region. The name
a.out also appears in the directory as a synonym for the executable file associated with the text of the
running process.

The object directory makes it possible for a controlling process to get access to the object file and any
shared libraries (and consequently the symbol tables), without the process first obtaining the specific
path names of those files.

root
A link that provides access to the current root directory of the process. Any process can access the
current root directory of the process through this link, provided that the process (that is attempting to
access the root directory) has the necessary permissions.

mmap
A file that contains an array of stat64x structures. Each structure describes information about a file
that is associated with a memory-mapped area that is owned by the process.

lwp
A directory containing entries each of which names a kernel thread within the containing process. The
names of entries in this directory are thread ID (tid) numbers. These entries are directories containing
additional files described below.

The /proc/pid/lwp/tid Structure

The directory /proc/pid/lwp/tid contains the following entries:

lwpctl
This is a write-only control file. The messages written to this file affect only the associated thread
rather than the process as a whole (where appropriate).

lwpstatus
Contains thread-specific state information. This information is also present in the status file of the
process for its representative thread. The file is formatted as a struct lwpstatus and contains the
following members:

uint64_t pr_lwpid; /* specific thread id */
uint32_t pr_flags; /* thread status flags */
char pr_state; /* thread state - from thread.h t_state */
uint16_t pr_cursig; /* current signal */

Files Reference 259

uint16_t pr_why; /* reason for stop (if stopped) */
uint16_t pr_what; /* more detailed reason */
uint32_t pr_policy; /* scheduling policy */
char pr_clname[PRCLSZ]; /* printable character representing pr_policy */
pr_sigset_t pr_lwppend; /* set of signals pending to the thread */
pr_sigset_t pr_lwphold; /* set of signals blocked by the thread */
pr_siginfo64_t pr_info; /* info associated with signal or fault */
pr_stack64_t pr_altstack; /* alternate signal stack info */
struct pr_sigaction64 pr_action; /* signal action for current signal */
uint16_t pr_syscall; /* system call number (if in syscall) */
uint16_t pr_nsysarg; /* number of arguments to this syscall */
uint64_t pr_sysarg[PRSYSARGS]; /* arguments to this syscall */
prgregset_t pr_reg; /* general and special registers */
prfpregset_t pr_fpreg; /* floating point registers */
pfamily_t pr_family; /* hardware platform specific information */

The members of the lwpstatus file are described below:

pr_flags
Specifies a bit-mask holding these flags:
PR_STOPPED

Indicates that the thread is stopped
PR_ISTOP

Indicates that the thread is stopped on an event of interest (see the PCSTOP signal)
PR_DSTOP

Indicates that the thread has a stop directive in effect (see the PCSTOP signal)
PR_ASLEEP

Thread is in an interruptible sleep within a system call
PR_NOREGS

No register state was provided for the thread
pr_why and pr_what

Provides the reason for why a thread was stopped. The following are possible values of the
pr_why member:
PR_REQUESTED

Shows that the thread was stopped in response to a stop directive, normally because the
PCSTOP signal was applied or because another thread stopped on an event of interest and
the asynchronous-stop flag (see the PCSET signal) was not set for the process. The pr_what
member is unused in this case.

PR_SIGNALLED
Shows that the thread stopped on receipt of a signal (see the PCSTRACE signal). The pr_what
signal holds the signal number that caused the stop (for a newly-stopped thread, the same
value is given with the pr_cursig member).

PR_FAULTED
Shows that the thread stopped upon incurring a hardware fault (see the PCSFAULT signal). The
pr_what member contains the fault number that caused the stop.

PR_SYSENTRY
Shows a stop on entry to a system call (see the PCSENTRY signal). The pr_what member
contains the system call number.

PR_SYSEXIT
Shows a stop on exit from a system call (see the PCSEXIT signal). The pr_what contains the
system call number.

PR_JOBCONTROL
Shows that the thread stopped because of the default action of a job control stop signal (see
the sigaction subroutine). The pr_what member contains the stopping signal number.

pr_lwpid
Names the specific thread I/O

260 AIX Version 7.1: Files Reference

pr_cursig
Names the current signal, which is the next signal to be delivered to the thread. When the thread
is stopped by the PR_SIGNALLED or PR_FAULTED signal, the pr_info member contains additional
information pertinent to the particular signal or fault. The amount of data contained in the pr_info
member depends on the stop type and whether on not the application specified the SA_SIGINFO
flag when the signal handler was established. For PR_FAULTED stops and PR_SIGNALLED stops
when the SA_SIGINFO flag was not specified, only the si_signo, si_code, and si_addr pr_info
fields contain data. For PR_SIGNALLED stops when the SA_SIGINFO flag is specified, the other
pr_info fields contain data as well.

pr_action
Contains the signal action information about the current signal. This member is undefined if the
pr_cursig member is zero. See the sigaction subroutine.

pr_lwppend
Identifies any synchronously generated or thread-directed signals pending for the thread. It does
not include signals pending at the process level.

pr_altstack
Contains the alternate signal stack information for the thread. See the sigaltstack subroutine.

pr_syscall
Specifies the number of the system call, if any, that is being executed by the thread. It is non-zero
if and only if the thread is stopped on PR_SYSENTRY or PR_SYSEXIT.

If the pr_syscall member is non-zero, the pr_nsysarg member is the number of arguments to the
system call and the pr_sysarg array contains the arguments. The pr_nsysarg member is always
set to 8, the maximum number of system call parameters. The pr_sysarg member always contain
eight arguments.

pr_clname
Contains the name of the scheduling class of the thread

pr_reg
Structure containing the threads general and special registers. The size and field names of this
structure are machine dependent. See the <sys/m_procfs.h> header file for description of this
structure for your particular machine. The contents of this structure are undefined if the thread is
not stopped.

pr_fpreg
Structure containing the threads floating point registers. The size and field names of this structure
are machine dependent. The contents of this structure are undefined if the thread is not stopped.

pr_family
Contains the machine-specific information about the thread. Use of this field is not portable
across different architectures. The pr_family structure contains extended context offset and size
fields, which, if non-zero, indicate the availability of extended machine context information for
the thread. A subsequent read of the status or lwpstatus file at the specified offset and size will
retrieve the extended context information corresponding to a prextset structure. Alternatively,
the entire lwpstatus file can be read and formatted as a struct lwpstatusx, which includes
the prextset extension. The pr_family extended context offset and size members, if non-zero,
indicate if the prextset member of the lwpstatusx structure is valid.

lwpsinfo
Contains information about the thread needed by the ps command. This information is also present in
the psinfo file of the process for its representative thread if it has one. The file is formatted as a struct
lwpsinfo type containing the following members:

uint64_t pr_lwpid; /* thread id */
prptr64_t pr_addr; /* internal address of thread */
prptr64_t pr_wchan; /* wait addr for sleeping thread */
uint32_t pr_flag; /* thread flags */
uchar_t pr_wtype; /* type of thread wait */
uchar_t pr_state; /* numeric scheduling state */
char pr_sname; /* printable character representing pr_state */
uchar_t pr_nice; /* nice for cpu usage */

Files Reference 261

int pr_pri; /* priority, high value = high priority*/
uint32_t pr_policy; /* scheduling policy */
char pr_clname[PRCLSZ]; /* printable character representing pr_policy */
cpu_t pr_onpro; /* processor on which thread last ran */
cpu_t pr_bindpro; /* processor to which thread is bound */

Some of the entries in the lwpsinfo file, such as pr_flag, pr_addr, pr_state, pr_wtype, and pr_wchan,
refer to internal kernel data structures and should not be expected to retain their meanings across
different versions of the operating system. They have no meaning to a program and are only useful for
manual interpretation by a user aware of the implementation details.

Control Messages

Process state changes are effected through messages written to the ctl file of the process or to the lwpctl
file of an individual thread. All control messages consist of an int operation code identifying the specific
operation followed by additional data containing operands (if any). Multiple control messages can be
combined in a single write subroutine to a control file, but no partial writes are permitted. Each control
message (operation code plus operands) must be presented in its entirety to the write subroutine, not in
pieces through several system calls.

The following are allowed control messages:

Note: Writing a message to a control file for a process or thread that has already exited elicits the error
ENOENT.

PCSTOP, PCDSTOP, PCWSTOP
When applied to the process control file,

• PCSTOP directs all threads to stop and waits for them to stop;
• PCDSTOP directs all threads to stop without waiting for them to stop;
• PCWSTOP simply waits for all threads to stop.

When applied to a thread control file,

• PCSTOP directs the specific thread to stop and waits until it has stopped;
• PCDSTOP directs the specific thread to stop without waiting for it to stop;
• PCWSTOP simply waits for the thread to stop.

When applied to a thread control file, PCSTOP and PCWSTOP complete when the thread stops on an
event of interest and immediately if the thread is already stopped.

When applied to the process control file, PCSTOP and PCWSTOP complete when every thread has
stopped on an event of interest.

An event of interest is either a PR_REQUESTED stop or a stop that has been specified in the process's
tracing flags (set by PCSTRACE, PCSFAULT, PCSENTRY, and PCSEXIT). PR_JOBCONTROL and
PR_SUSPENDED stops are not events of interest. (A thread may stop twice because of a stop signal;
first showing PR_SIGNALLED if the signal is traced and again showing PR_JOBCONTROL if the thread
is set running without clearing the signal.) If PCSTOP or PCDSTOP is applied to a thread that is
stopped, but not because of an event of interest, the stop directive takes effect when the thread is
restarted by the competing mechanism; at that time the thread enters a PR_REQUESTED stop before
executing any user-level code.

A write operation of a control message that blocks is interruptible by a signal so that, for example, an
alarm subroutine can be set to avoid waiting for a process or thread that may never stop on an event
of interest. If PCSTOP is interrupted, the thread stop directives remain in effect even though the write
subroutine returns an error.

A kernel process (indicated by the PR_ISSYS flag) is never executed at user level and cannot be
stopped. It has no user-level address space visible through the /proc file system. Applying PCSTOP,
PCDSTOP, or PCWSTOP to a system process or any of its threads elicits the error EBUSY.

PCRUN
Executes a thread again after it was stopped. The operand is a set of flags, contained in an int
operand, describing optional additional actions.

262 AIX Version 7.1: Files Reference

The allowed flags for PCRUN are described below:

PRCSIG
Clears the current signal, if any. See PCSSIG.

PRCFAULT
Clears the current fault, if any. See PCCFAULT.

PRSTEP
Directs the thread to execute a single machine instruction. On completion of the instruction, a
trace trap occurs. If FLTTRACE is being traced, the thread stops, otherwise it is sent SIGTRAP.
If SIGTRAP is being traced and not held, the thread stops. When the thread stops on an event
of interest the single-step directive is cancelled, even if the stop occurs before the instruction is
executed.

PRSABORT
Instructs the thread to abort execution of the system call. See PCSENTRY, and PCSEXIT. It is
significant only if the thread is in a PR_SYSENTRY stop or is marked PR_ASLEEP.

PRSTOP
Directs the thread to stop again as soon as possible after resuming execution. See PCSTOP.
In particular, if the thread is stopped on PR_SIGNALLED or PR_FAULTED, the next stop shows
PR_REQUESTED, no other stop intervenes, and the thread does not execute any user-level code.

When applied to a thread control file, PCRUN makes the specific thread runnable. The operation fails
and returns the error EBUSY if the specific thread is not stopped on an event of interest.

When applied to the process control file, a representative thread is chosen for the operation
as described for the /proc/pid/status file. The operation fails and returns the error EBUSY if
the representative thread is not stopped on an event of interest. If PRSTEP or PRSTOP were
requested, PCRUN makes the representative thread runnable. Otherwise, the chosen thread is
marked PR_REQUESTED. If as a result all threads are in the PR_REQUESTED stop state, they all
become runnable.

Once PCRUN makes a thread runnable, it is no longer stopped on an event of interest, even if it
remains stopped because of a competing mechanism.

PCSTRACE
Defines a set of signals to be traced in the process. Upon receipt of one of these signals, the thread
stops. The set of signals is defined using an operand pr_sigset_t contained in the control message.
Receipt of SIGKILL cannot be traced. If you specify SIGKILL, the thread ignores it.

If a signal that is included in a thread's held signal set is sent to that thread, the signal is not received
and does not cause a stop until it is removed from the held signal set. Either the thread itself removes
it or you remove it by setting the held signal set with PCSHOLD or the PRSHOLD option of PCRUN.

PCSSIG
Specifies the current signal and its associated signal information for the specific thread or
representative thread. This information is set according with the operand pr_siginfo64 structure. If
the specified signal number is zero, the current signal is cleared. The error EBUSY is returned if the
thread is not stopped on an event of interest.

The syntax of this operation are different from those of the kill subroutine, pthread__kill subroutine,
or PCKILL. With PCSSIG, the signal is delivered to the thread immediately after execution is resumed
(even if the signal is being held) and an additional PR_SIGNALLED stop does not intervene even if the
signal is being traced. Setting the current signal to SIGKILL ends the process immediately.

PCKILL
If applied to the process control file, a signal is sent to the process with syntax identical to those
of the kill subroutine. If applied to a thread control file, a signal is sent to the thread with syntax
identical to those of the pthread__kill subroutine. The signal is named in an operand int contained in
the message. Sending SIGKILL ends the process or thread immediately.

Files Reference 263

PCUNKILL
Specifies a signal to be removed from the set of pending signals. If applied to the process control file,
the signal is deleted from the process's pending signals. If applied to a thread control file, the signal
is deleted from the thread's pending signals. The current signal (if any) is unaffected. The signal is
named in an operand int in the control message. An attempt to delete SIGKILL results in the error
EINVAL.

PCSHOLD
Sets the set of held signals for the specific or representative thread according to the operand sigset_t
structure. Held signals are those whose delivery is delayed if sent to the thread. SIGKILL or SIGSTOP
cannot be held. If specified, they are silently ignored.

PCSFAULT
Defines a set of hardware faults to be traced in the process. When incurring one of these faults, a
thread stops. The set is defined via the operand fltset_t structure. Fault names are defined in the
<sys/procfs.h> file and include the following:

Note: Some of these may not occur on all processors; other processor-specific faults may exist in
addition to those described here.

FLTILL
Illegal instruction

FLTPRIV
Privileged instruction

FLTBPT
Breakpoint trap

FLTTRACE
Trace trap

FLTACCESS
Memory access fault (bus error)

FLTBOUNDS
Memory bounds violation

FLTIOVF
Integer overflow

FLTIZDIV
Integer zero divide

FLTFPE
Floating-point exception

FLTSTACK
Unrecoverable stack fault

When not traced, a fault normally results in the posting of a signal to the thread that incurred the
fault. If a thread stops on a fault, the signal is posted to the thread when execution is resumed
unless the fault is cleared by PCCFAULT or by the PRCFAULT option of PCRUN. The pr_info field
in /proc/pid/status or in /proc/pid/lwp/tid/lwpstatus identifies the signal to be sent and contains
machine-specific information about the fault.

PCCFAULT
Specifies the current fault, if any, to be cleared. The associated signal is not sent to the specified
thread or representative thread.

PCSENTRY
Instructs the process's threads to stop on entry to specified system calls. The set of system calls to
be traced is defined via an operand sysset_t structure. When entry to a system call is being traced,
a thread stops after having begun the call to the system but before the system call arguments have
been fetched from the thread.

If a thread is stopped on entry to a system call (PR_SYSENTRY) or when sleeping in an interruptible
system call (PR_ASLEEP is set), it may be instructed to go directly to system call exit by specifying

264 AIX Version 7.1: Files Reference

the PRSABORT flag in a PCRUN control message. Unless exit from the system call is being traced, the
thread returns to user level showing error EINTR.

PCSEXIT
Instructs the process's threads to stop on exit from specified system calls. The set of system calls to
be traced is defined via an operand sysset_t structure. When exit from a system call is being traced,
a thread stops on completion of the system call just before checking for signals and returning to user
level. At this point, all return values have been stored into the threads's registers.

PCSET, PCRESET, PCUNSET
PCSET sets one or more modes of operation for the traced process. PCRESET or PCUNSET resets
these modes. The modes to be set or reset are specified by flags in an operand int in the control
message:
PR_FORK (inherit-on-fork)

When set, the tracing flags of the process are inherited by the child of a fork or vfork subroutine.
When reset, child processes start with all tracing flags cleared.

PR_RLC (run-on-last-close)
When set and the last writable /proc file descriptor referring to the traced process or any of its
thread is closed, all the tracing flags of the process are cleared, any outstanding stop directives
are cancelled, and if any threads are stopped on events of interest, they are set running as
though PCRUN had been applied to them. When reset, the process's tracing flags are retained and
threads are not set running on last close.

PR_KLC (kill-on-last-close)
When set and the last writable /proc file descriptor referring to the traced process or any of its
threads is closed, the process is exited with SIGKILL.

PR_ASYNC (asynchronous-stop)
When set, a stop on an event of interest by one thread does not directly affect other threads in the
process. When reset and a thread stops on an event of interest other than PR_REQUESTED, all
other threads in the process are directed to stop.

The error EINVAL is returned if you specify flags other than those described above or to apply these
operations to a system process. The current modes are reported in the pr_flags field of the /proc/pid/
status file.

PCSREG
Sets the general and special registers for the specific or representative thread according to the
operand prgregset_t structure. There may be machine-specific restrictions on the allowable set of
changes. PCSREG fails and returns the error EBUSY if the thread is not stopped on an event of
interest or is stopped in the kernel.

PCSFPREG
Sets the floating point registers for the specific or representative thread according to the operand
fpregset_t structure. The error EINVAL is returned if the system does not support floating-point
operations (no floating-point hardware and the system does not emulate floating-point machine
instructions). PCSFPREG fails and returns the error EBUSY if the thread is not stopped on an event of
interest or is stopped in the kernel.

PCSVREG
Sets the vector registers for the specific or representative thread according to the operand
prvregset_t structure. The error EINVAL is returned if the system does not support vector operations
(no vector hardware and the system does not emulate vector machine instructions), or if the
representative thread has not referenced the vector unit. PCSVREG fails and returns the error EBUSY
if the thread is not stopped on an event of interest or is stopped in the kernel.

PCNICE
The traced process's nice priority is incremented by the amount contained in the operand int. Only the
superuser may better a process's priority in this way, but any user may make the priority worse. This
operation is significant only when applied to a process in the time-sharing scheduling class.

Files Reference 265

Files

Item Description

/proc Directory (list of processes)

/proc/pid Directory for the process pid

/proc/pid/status Status of process pid

/proc/pid/ctl Control file for process pid

/proc/pid/psinfo ps info for process pid

/proc/pid/as Address space of process pid

/proc/pid/map as map info for process pid

/proc/pid/cred Credentials information for process pid

/proc/pid/object Directory for objects for process pid

/proc/pid/root Link to the current root directory for process pid

/proc/pid/mmap Memory-mapped files information for process pid

/proc/pid/sigact Signal actions for process pid

/proc/pid/sysent System call information for process pid

/proc/pid/cwd Link to the current working directory for process pid

/proc/pid/fd Directory for open file descriptors for process pid

/proc/pid/lwp/tid Directory for thread tid

proc/pid/lwp/tid/lwpstatus Status of thread tid

/proc/pid/lwp/tid/lwpctl Control file for thread tid

/proc/pid/lwp/tid/lwpsinfo ps info for thread tid

Error Codes
Other errors can occur in addition to the errors normally associated with file system access:

Error Code Description

ENOENT The traced process or thread has exited after being
opened.

EFAULT A read or write request was begun at an invalid
virtual address.

EIO A write subroutine was attempted at an illegal
address in the traced process.

266 AIX Version 7.1: Files Reference

Error Code Description

EBUSY This error is returned because of one of the
following reasons:

• PCSTOP, PCDSTOP or PCWSTOP was applied to
a system process.

• An exclusive open subroutine was attempted on
a process file already open for writing.

• PCRUN, PCSSIG, PCSREG or PCSFPREG was
applied to a process or thread that was not
stopped on an event of interest.

• An attempt was made to mount the /proc file
system when it is already mounted.

EPERM Someone other than the privileged user attempted
to better a process's priority by issuing PCNICE.

ENOSYS An attempt was made to do an unsupported
operation (such as create, remove, link, or unlink)
on an entry in the /proc file system.

EINVAL An invalid argument was supplied to a system
call. The following are some—but not all—possible
conditions that can elicit this error:

• A control message operation code is undefined.
• A control message is ill-formed.
• The PRSTEP option of the PCRUN operation was

used on an implementation that does not support
single-stepping.

• An out of range signal number was specified with
PCSSIG, PCKILL, or PCUNKILL.

• SIGKILL was specified with PCUNKILL.
• PCSFPREG was applied on a machine without

floating-point support.
• PCSVREG was applied on a machine without

vector support or was applied to a thread that
has not referenced the vector unit.

EINTR A signal was received by the controlling process
while waiting for the traced process or thread to
stop via PCSTOP or PCWSTOP.

EBADF The traced process performed an exec subroutine
on a setuid/setgid object file or on an object file
that is not readable for the process. All further
operations on the process or thread file descriptor
(except the close subroutine) elicit this error.

Security
The effect of a control message is guaranteed to be atomic with respect to the traced process.

For security reasons, except for the privileged user, an open subroutine of a /proc file fails unless both the
effective user ID and effective group ID of the caller match those of the traced process and the process's
object file is readable by the caller. Files corresponding to setuid and setgid processes can be opened
only by the privileged user. Even if held by the privileged user, an open process or thread file descriptor

Files Reference 267

becomes invalid if the traced process performs an exec subroutine on a setuid/setgid object file or on an
object file that it cannot read. Any operation performed on an invalid file descriptor, except for the close
subroutine, fails with EBADF. In this case, if any tracing flags are set and the process or any thread file is
open for writing, the process is directed to stop and its run-on-last-close flag is set (see PCSET).

This feature enables a controlling process (that has the necessary permission) to reopen the process file
to obtain new valid file descriptors, close the invalid file descriptors, and proceed. Just closing the invalid
file descriptors causes the traced process to resume execution with no tracing flags set. Any process that
is not currently open for writing with tracing flags left over from a previous open subroutine and that
performs an exec subroutine on a setuid/setgid or unreadable object file is not stopped. However, that
process does not have all its tracing flags cleared.

proxy.ldif.template File

Purpose
Defines the ACL that will be set for the proxy identity when the mksecldap command is invoked with the
-x and -X command options.

Description
The proxy.ldif.template file contains LDAP data interchange formatted (LDIF) entries used by
mksecldap when creating a proxy identity during server setup. By default, the file contains entries to
create the proxy identity and password and set the default ACL to propagate down from the base DN
(distinguished name).

Entries in the file may be modified or added by the system administrator to customize the LDAP server
setup performed by the mksecldap command. Several case sensitive key words exist in the file that are
dynamically replaced with the values that mksecldap is invoked with as described in the following table.

Keyword Substitution

{baseDN} Replaced with base distinguished name specified by the -d option of the
mksecldap command.

{proxyDN} Replaced with proxy user distinguished name specified by the -x option of
mksecldap.

{proxyUser} Replaced with proxy user name (proxyDN stripped of suffix and prefix).

{proxyPWD} Replaced with proxy user password specified by the -X option of mksecldap.

Related information
mksecldap command
Lightweight Directory Access Protocol

prtglobalconfig File

Purpose
Configures global configurations for AIX printing subsystem.

Description
The /etc/prtglobalconfig file describes the global printing configurations available for use which a root
user or a user with proper privileges can set.

This file stores the configuration which affects the AIX printing sybsystem. Any authorized user can
configure the settings pertaining to printing subsystem. Currently only one property of the printing
subsystem can be set using this command. This file consists of <name>=<value> pair. The name is

268 AIX Version 7.1: Files Reference

the setting and the value is the corresponding value for the setting. The following list shows the setting
which can be set using this file.

1. ERRMSGCONTROL

This setting affects the global printer message. This setting can be used to select one of the following.

1. ALLON (All messages turned on).
2. LOGALL (All messages turned on, but logged to a log file). Currently not supported.
3. CRITON (Only the most critical error messages turned on). Currently this is the same as option 1.
4. ALLOFF (All messages turned off).

Examples
1. The file might contain the following to suppress all printer error messages:

ERRMSGCONTROL=ALLOFF

Note: Some messages generated by the printing subsystem cannot be ignored and are logged in the
console log file.

Files

Item Description

/etc/prtglobalconfig Contains the global configuration file.

/etc/prtglbconfig Contains the program which can be used to configure the
global printer configuration.

/dev/null Provides access to the null device.

/etc/qconfig Contains the configuration file.

/etc/qconfig.bin Contains the digested, binary version of the /etc/qconfig file.

Related reference
prtglobalconfig File
Related information
qdaemon command
Printing administration
Print spooler
Printers and printing

pwdhist File

Purpose
Contains password history information.

Description
The /etc/security/pwdhist.dir and /etc/security/pwdhist.pag files are database files created and
maintained by Database Manager (DBM) subroutines. The files maintain a list of previous user passwords.

The pwdhist files store information by user name. User names are the keys of the DBM subroutines. The
password list contains multiple pairs of a lastupdate value and an encrypted, null-terminated password.
This password list is a key's associated content and the lastupdate value is a 4-byte, unsigned long. The
encrypted password is the size of the PW_CRYPTLEN value. Thus, an entry in the database file is of the
following format:

Files Reference 269

lastupdatepasswordlastupdatepasswordlastupdatepasswor
d...

The password list is in descending chronological order, with the most recent password appearing first in
the list.

To retrieve a user's password history, use the dbm_fetch subroutine. To delete a user's password history,
use the dbm_delete subroutine.

Security
Access Control: The files grant read and write access only to the root user.

Examples
If user sally has the following previous passwords:

password = 6PugcayXL.1Rw ;
lastupdate = 737161212

password = r5MZvr69mGeLE ;
lastupdate = 746458629

the dbm_fetch subroutine returns the following entry for the key sally:

XXXXr5MZvr69mGeLEXXXX6PugcayXL.1Rw

where XXXX would be four bytes that can be copied into an unsigned long to get the last update time.

Related reference
/etc/security/passwd File
user File
Related information
passwd command
List of NDBM and DBM Programming References

publickey File for NIS

Purpose
Contains public or secret keys for maps.

Description
The /etc/publickey file is the public key file used for secure networking. Each entry in the file consists of
a network user name (which may refer to either a user or a host name), followed by the user's public key
(in hex notation), a colon, and then the user's secret key encrypted with its login password (also in hex
notation). This file is part of the Network Support Facilities.

This file is altered either by the user through the chkey command or by the person who administers the
system through the newkey command. The publickey file should only contain data on the master server,
where it is converted into the publickey.byname NIS map.

Related reference
updaters File for NIS
Related information
chkey command
keylogin command
newkey command

270 AIX Version 7.1: Files Reference

keyserv command
ypupdated command
Exporting a File System Using Secure NFS
Network File System Overview

/etc/security/pwdalg.cfg File

Purpose
Contains configuration information for loadable password algorithms (LPA).

Description
The /etc/security/pwdalg.cfg file is an ASCII file that contains stanzas of configuration information for
loadable password algorithms (LPA). Each stanza has a name, followed by a colon (:), which defines an
LPA. An LPA name is used in the /etc/security/login.cfg file to specify the default system-wide password
algorithm. Attributes are in the form Attribute=Value. Each attribute ends with a newline character, and
each stanza ends with an additional newline character. For an example of a stanza, see “Examples” on
page 271.

Attribute Definition

lpa_module Defines the path of the LPA to load. If you do not specify a full path,
the /usr/lib/security directory is prefixed for 32-bit. The full path of
the 64-bit load module is the full path of the 32-bit module suffixed
with _64.

lpa_options Specifies an optional attribute that provides a means to
communicate run-time configuration options to the load module. The
value is a comma-separated list of items. Options that can be used
are specific to the LPA that you specify in the lpa_module attribute.
The optional flags for each LPA module are described in the product
documentation for that LPA.

Security
Read and write access is granted to the root user and members of the security group.

Examples
The following example is a typical stanza:

*
* /usr/lib/security/smd5 is a password hashing load module using
* the MD5 algorithm.
*
* It supports password length up to 255 characters.
*
* To generate smd5 password hash compatible to standard salted MD5,
* add the following option line for smd5 stanza.
* lpa_options = std_hash=true
*
* Note: password hash generated with this option won't be compatible with
* hash generated without this option.
*

smd5:
 lpa_module = /usr/lib/security/smd5

ssha256:
 lpa_module = /usr/lib/security/ssha
 lpa_options = algorithm=sha256,cost_num=9,salt_len=24

Files Reference 271

Files
Item Description

/etc/security/pwdalg.cfg Specifies the path to the file.

/etc/security/login.cfg Contains configuration information for login and user authentication.

/etc/passwd Contains the basic attributes of users.

/etc/security/passwd Contains password information.

Related information
chsec command
passwd command
pwdadm command
newpass subroutine
chpassx subroutine
crypt subroutine
Security

qconfig File

Purpose
Configures a printer queuing system.

Description
The /etc/qconfig file describes the queues and devices available for use by both the enq command,
which places requests on a queue, and the qdaemon command, which removes requests from the queue
and processes them. The qconfig file is an attribute file.

Some stanzas in this file describe queues, and other stanzas describe devices. Every queue stanza
requires that one or more device stanzas immediately follow it in the file. The first queue stanza describes
the default queue. Unless the LPDEST or PRINTER environment variable is set, the enq command
uses this queue when it receives no queue parameter. If LPDEST contains a value, that value takes
precedence over the PRINTER environment variable. Destination command-line options always override
both variables.

The name of a queue stanza can be from 1 to 20 characters long. Some of the fields and their possible
values that can appear in this file are:

Field Definition

acctfile Identifies the file used to save print accounting information. FALSE, the default value,
indicates suppress accounting. If the named file does not exist, no accounting is done.

device Identifies the symbolic name that refers to the device stanza.

discipline Defines the queue serving algorithm. The default value, fcfs, means first-come-first-
served. sjn means shortest job next.

up Defines the state of the queue. TRUE, the default value, indicates that the queue is
running. FALSE indicates that it is not running.

272 AIX Version 7.1: Files Reference

Field Definition

recovery_typ
e

Enables users to specify a recovery option when a print queue goes down. By default,
the queue remains in the down state pending user intervention.

Other options can be specified using the following values:
runscript <PathName>

A user-defined script is run when the queue goes down. The actions taken by the
script are left to the discretion of the system administrator.

retry -T <delay> -R <retries>
The queue will stay down for the period of time specified in delay (expressed in
minutes). Subsequently, it will be taken back up and the job will be retried. This is
repeated up to the number of retries specified in retries. This is particularly useful
in cases where job failures are due to temporary conditions likely to be resolved
within the lapse of a certain time period (for example, a paper out condition or a
temporary network glitch or slowdown).

sendmail <username>
The specified user will receive mail when the queue goes down notifying him or her
that the specific printer is down.

Note: lp is a BSD standard reserved queue name and should not be used as a queue name in the qconfig
file.

The following list shows some of the fields and their possible values that appear in the qconfig file for
remote queues:

Item Description

host Indicates the remote host where the remote queue is found.

s_statfilter Specifies the short version filter used to translate remote queue status format. The
following are possible values:
/usr/lib/lpd/bsdshort

BSD remote system
/usr/lib/lpd/aixv2short

RT remote system
/usr/lib/lpd/attshort

AT&T remote system

l_statfilter Specifies the long version filter used to translate remote queue status format. The
following are possible values:
/usr/lib/lpd/bsdlong

BSD remote system
/usr/lib/lpd/aixv2long

RT remote system
/usr/lib/lpd/attlong

AT&T remote system

rq Specifies the remote queue name. In a remote print environment, the client
configuration should specify the remote queue name or the server. Using the
default remote queue name may cause unpredictable results.

If a field is omitted, its default value is assumed. The default values for a queue stanza are:

discipline = fcfs
up = TRUE
acctfile = FALSE
recovery_type = queuedown

Files Reference 273

The device field cannot be omitted.

The name of a device stanza is arbitrary and can be from 1 to 20 characters long. The fields that can
appear in the stanza are:

Field Definition

access Specifies the type of access the backend has to the file specified by the file field. The value
of access is write if the backend has write access to the file or both if it has both read and
write access. This field is ignored if the file field has the value FALSE.

align Specifies whether the backend sends a form-feed control before starting the job if the
printer was idle. The default value is TRUE.

backend Specifies the full path name of the backend, optionally followed by the flags and parameters
to be passed to it. The path names most commonly used are /usr/lib/lpd/piobe for local
print and /usr/lib/lpd/rembak for remote print.

feed Specifies either the number of separator pages to print when the device becomes idle or the
value never, the default, which indicates that the backend is not to print separator pages.

file Identifies the special file where the output of backend is to be redirected. FALSE, the
default value, indicates no redirection and that the file name is /dev/null. In this case, the
backend opens the output file.

header Specifies whether a header page prints before each job or group of jobs. A value of never,
the default value, indicates no header page at all. always means a header page before each
job. group means a header before each group of jobs for the same user. In a remote print
environment, the default action is to print a header page and not to print a trailer page.

trailer Specifies whether a trailer page prints after each job or group of jobs. A value of never,
the default, means no trailer page at all. always means a trailer page after each job.
group means a trailer page after each group of jobs for the same user. In a remote print
environment, the default action is to print a header page and not to print a trailer page.

The qdaemon process places the information contained in the feed, header, trailer, and align fields
into a status file that is sent to the backend. Backends that do not update the status file do not use the
information it contains.

If a field is omitted, its default value is assumed. The backend field cannot be omitted. The default values
in a device stanza are:

file = FALSE
access = write
feed = never
header = never
trailer = never
align = TRUE

The enq command automatically converts the ASCII qconfig file to binary format when the binary version
is missing or older than the ASCII version. The binary version is found in the /etc/qconfig.bin file.

Note: The qconfig file should not be edited while there are active jobs in any queue. Any time the qconfig
file is changed, jobs submitted prior to the change will be processed before jobs submitted after the
change.

Editing includes both manual editing and use of the mkque, rmque, chque, mkquedev, rmquedev,
or chquedev command. It is recommended that all changes to the qconfig file be made using these
commands. However, if manual editing is desired, first issue the enq -G command to bring the queuing
system and the qdaemon to a halt after all jobs are processed. Then edit the qconfig file and restart the
qdaemon with the new configuration.

Examples
1. The batch queue supplied with the system might contain these stanzas:

274 AIX Version 7.1: Files Reference

bsh:
 discipline = fcfs
 device = bshdev
bshdev:
 backend = /usr/bin/ksh

To run a shell procedure called myproc using this batch queue, enter:

qprt -Pbsh myproc

The queuing system runs the files one at a time, in the order submitted. The qdaemon process
redirects standard input, standard output, and standard error to the /dev/null file.

2. To allow two batch jobs to run at once, enter:

bsh:
 discipline = fcfs
 device = bsh1,bsh2
bsh1:
 backend = /usr/bin/ksh
bsh2:
 backend = /usr/bin/ksh

3. To set up a remote queue, bsh, enter:

remh:
 device = rd0
 host = pluto
 rq = bsh
rd0:
 backend = /usr/lib/lpd/rembak

4. 4. To set a local queue such that mail is sent to user1@xyz.com when it goes down, enter:

ps:
 recovery_type = sendmail user1@xyz.com
 device = lp0
lp0:
 file = /dev/lp0
 header = never
 trailer = never
 access = both
 backend = /usr/lib/lpd/piobe

Files

Item Description

/etc/qconfig Contains the configuration file.

/etc/qconfig.bin Contains the digested, binary version of the /etc/qconfig file.

/dev/null Provides access to the null device.

/usr/lib/lpd/piobe Specifies the path of the local printer backend.

/usr/lib/lpd/rembak Specifies the path of the remote printer backend.

/usr/lib/lpd/digest Contains the program that converts the /etc/qconfig file to binary
format.

Related information
enq command
lp command
qdaemon command
Backend and qdaemon interaction
Printing administration

Files Reference 275

Print spooler

raspertune File

Purpose
Contains persistent RAS customization.

Description
You can use the /var/adm/ras/raspertune file to specify persistent RAS attribute values, which are used
when the system is rebooted, if the bosboot command is run after the file is modified.

This file consists of a series of control commands: the ctctrl command, the dumpctrl command, and
the errctrl command. Other commands are not allowed. You must use the -p flag in each command.
Otherwise, the bosboot command ignores the control command. You can continue lines by ending them
with a backslash (\) character. Use rules for the /bin/sh file to quote command line arguments.

The file is automatically modified when you use a control command with the -P flag. You can also modify
the file manually, but only when IBM Service personnel requests it.

Files
Item Description

/var/adm/ras/raspertune Specifies the path to the file.

Related information
ctctrl command
dumpctrl command
errctrl command

rc.boot File

Purpose
Controls the machine boot process.

Description
Attention: Executing the rc.boot script on a system that is already running may cause
unpredictable results.

The /sbin/rc.boot file is a shell script that is called by the simple shell init and the standard init
command to bring up a system. Depending upon the type of boot device, the rc.boot file configures
devices and also calls the appropriate applications. Appropriate applications include:

• Booting from disk
• Varying on a root volume group
• Enabling file systems
• Calling the BOS installation programs or diagnostics

The rc.boot program is only called by an init process.

276 AIX Version 7.1: Files Reference

Files

Item Description

/etc/inittab Controls the initialization process.

/usr/lib/boot/ssh Calls the rc.boot file.

Related information
Systems that will not boot
Logical volume storage

rc.tcpip File for TCP/IP

Purpose
Initializes daemons at each system restart.

Description
The /etc/rc.tcpip file is a shell script that, when executed, uses SRC commands to initialize selected
daemons. The rc.tcpip shell script is automatically executed with each system restart. It can also be
executed at any time from the command line.

Most of the daemons that can be initialized by the rc.tcpip file are specific to TCP/IP. These daemons are:

• inetd (started by default)
• gated
• routed
• named
• timed
• rwhod

Note: Running the gated and routed daemons at the same time on a host may cause unpredictable
results.

There are also daemons specific to the base operating system or to other applications that can be started
through the rc.tcpip file. These daemons are:

• lpd
• portmap
• sendmail
• syslogd

The syslogd daemon is started by default.

Examples
1. The following stanza starts the syslogd daemon:

#Start up syslog daemon (for err
or and event logging)
start /usr/sbin/syslogd "$src_running"

2. The following stanza starts the lpd daemon:

#Start up print daemon
start /usr/sbin/lpd "$src_running"

3. The following stanza starts the routed daemon, but not the gated daemon:

Files Reference 277

#Start up routing daemon (only s
tart ONE)
start /usr/sbin/routed "$src_running" -g
#start /usr/sbin/gated "$src_running"

Related information
startsrc command
stopsrc command
TCP/IP name resolution
Installation of TCP/IP

realm.map File

Purpose
Contains the NFS local realm-to-domain maps.

Description
The /etc/nfs/realm.map file contains the local NFS realm-to-domain mappings. These mappings are
used by NFS V4 to convert Kerberos principals to UNIX credentials. The /etc/nfs/realm.map file
may be modified using the chnfsrtd command. The format of the /etc/nfs/realm.map file has one
Kerberos realm and its corresponding NFS domain per line. A Kerberos realm should only be specified
once in the file.

Files
Item Description

/etc/nfs/realm.map The realm.map file.

remote.unknown File for BNU

Purpose
Logs access attempts by unknown remote systems.

Description
The /usr/sbin/uucp/remote.unknown file is a shell script. It is executed by the Basic Networking
Utilities (BNU) program when a remote computer that is not listed in the local /etc/uucp/Permissions file
attempts to communicate with that local system. The BNU program does not permit the unknown remote
system to connect with the local system. Instead, the remote.unknown shell procedure appends an entry
to the /var/spool/uucp/.Admin/Foreign file.

Modify the remote.unknown file to fit the needs of your site. For example, to allow unknown systems to
contact your system, remove the execute permissions for the remote.unknown file. You can also modify
the shell script to send mail to the BNU administrator or to recognize certain systems and reject others.

Note: Only someone with root user authority can edit the remote.unknown file, which is owned by the
uucp program login ID.

Files

Item Description

/usr/sbin/uucp/remote.unknown Contains the remote.unknown shell script.

278 AIX Version 7.1: Files Reference

Item Description

/etc/sbin/Permissions Describes access permissions for remote systems.

/var/spool/uucp/.Admin/Foreign Lists access attempts by unknown systems.

Related information
Basic Networking Utilities

resource_data_input Information

Purpose
Provides information about using an input file for passing resource class and resource attribute names
and values to the resource monitoring and control (RMC) command-line interface (CLI).

Description
You can specify the name of a resource data input file with the -f command-line flag to pass
resource persistent attribute values to the RMC CLI when using the command line directly would be
too cumbersome or too prone to typographical errors. The data in this file is used for defining resources or
for changing the persistent attribute values of a resource or resource class. This file has no set location. It
can be a temporary file or a permanent file, depending on requirements.

The mkrsrc and chrsrc commands read this file when they are issued with the -f flag. The lsrsrcdef
and lsactdef commands generate a file with this format when issued with the -i flag.

PersistentResourceAttributes
Persistent attribute names and values for one or more resources for a specific resource class used
to define a new resource or change attribute values for an existing resource. The persistent resource
attributes are read in by the commands mkrsrc and chrsrc. These attributes are ignored if the input
file is read by the chrsrc command that has been specified with the -c flag.

PersistentResourceClassAttributes
Persistent attribute names and values for a resource class used to change the attribute values of an
existing resource class. The persistent resource class attributes are read in by the command chrsrc
only when the -c flag is specified.

In general, a resource_data_input file is a flat text file with the following format. Bold words are literal.
Text that precedes a single colon (:) is an arbitrary label and can be any alphanumeric text.

PersistentResourceAttributes::
This is a comment
 label:
 AttrName1 = value
 AttrName2 = value
 AttrName3 = value
 another label:
 Name = name
 NodeNumber = 1
 ::
PersistentResourceClassAttributes::
 label:
 SomeSettableAttrName = value
 SomeOtherSettableAttrName = value
 ::

See the Examples section for more details.

Some notes about formatting follow:

• The keywords PersistentResourceAttributes and PersistentResourceClassAttributes
are followed by a double colon (::).

Files Reference 279

• The order of the keyword stanzas is not significant in the file. For example,
PersistentResourceClassAttributes could precede PersistentResourceClass. It does not
affect the portion of the data that is read in by the calling CLI.

• Individual stanza headings (beneath the keywords) are followed by a single colon (:), for example:
c175n05 resource info:

• White space at the beginning of lines is not significant. Tabs or spaces are suggested for readability.
• Any line with a pound sign (#) as the first printable character is is a comment.
• Each entry on an individual line is separated by white space (spaces or tabs).
• Blank lines in the file are not significant and are suggested for readability.
• There is no limit to the number of resource attribute stanzas included in a particular
PersistentResourceAttributes section.

• There is no limit to the number of resource class attribute stanzas included in a particular
PersistentResourceClassAttributes section. Typically, there is only one instance of a resource
class. In this case, only one stanza is expected.

• If only one resource attribute stanza is included in a particular PersistentResourceAttributes
section, the label: line can be omitted.

• If only one resource class attribute stanza is included in a particular
PersistentResourceClassAttributes section, the label: line can be omitted.

• Values that contain spaces must be enclosed in quotation marks.
• A double colon (::) indicates the end of a section. If a terminating double colon is not found, the next
Reserved Keyword or end of file signals the end of a section.

• Double quotation marks included within a string that is surrounded by double quotation marks must be
escaped. (\").

Note: Double quotation marks can be nested within single quotation marks.

These are examples:

– "Name == \"testing\""
– 'Name == "testing"'

This syntax is preferred if your string is a selection string and you are going to cut and paste to the
command line.

• Single quotation marks included within a string that is surrounded by single quotation marks must be
escaped. (\').

Note: Single quotation marks can be nested within double quotation marks.

These are examples:

– 'Isn\'t that true'
– "Isn't that true"

This syntax is preferred if you are going to cut and paste to the command line.
• The format you use to enter data in a resource_data_input file may not be the same format used on the

command line. The shell you choose to run the commands in has its own rules with regard to quotation
marks. Refer to the documentation for your shell for these rules, which determine how to enter data on
the command line.

Examples
1. This sample mkrsrc command:

mkrsrc -f /tmp/my_resource_data_input_file IBM.Example

280 AIX Version 7.1: Files Reference

uses the sample input file /tmp/my_resource_data_input_file for the IBM.Example resource
class. The contents of the input file look like this:

PersistentResourceAttributes::
Resource 1 - only set required attributes
resource 1:
 Name="c175n04"
 NodeList = {1}
Resource 2 - setting both required and optional attributes
mkrsrc -e2 IBM.Example displays required and optional
persistent attributes
resource 2:
 Name="c175n05"
 NodeList = {1}
 Int32 = -99
 Uint32 = 99
 Int64 = -123456789123456789
 Uint64 = 123456789123456789
 Float32 = -9.89
 Float64 = 123456789.123456789
 String = "testing 123"
 Binary = 0xaabbccddeeff
 RH = "0x0000 0x0000 0x00000000 0x00000000 0x00000000 0x00000000"
 SD = [hello,1,{2,4,6,8}]
 Int32Array = {-4, -3, -2, -1, 0, 1, 2, 3, 4}
 Int64Array = {-4,-3,-2,-1,0,1,2,3,4}
 Uint32Array = {0,1,2,3,4,5,6}
 Uint64Array = {0,1,2,3,4,5,6}
 Float32Array = {-3.3, -2.2, -1.2, 0, 1, 2.2, 3.3}
 Float64Array = {-3.3, -2.2, -1.2, 0, 1, 2.2, 3.3}
 StringArray = {abc,"do re mi", 123}
 BinaryArray = {"0x01", "0x02", "0x0304"}
 RHArray = {"0x0000 0x0000 0x00000000 0x00000000 0x00000000 0x00000000",
 "0xaaaa 0xaaaa 0xbbbbbbbb 0xcccccccc 0xdddddddd 0xeeeeeeee"}
 SDArray = {[hello,1,{0,1,2,3}],[hello2,2,{2,4,6,8}]}

2. This sample chrsrc command:

chrsrc -f /tmp/Example/ch_resources -s 'Name == "c175n05"' IBM.Example

uses the sample input file /tmp/Example/ch_resources to change the attribute values of existing
IBM.Example resources. The contents of the input file look like this:

PersistentResourceAttributes::
Changing resources that match the selection string entered
when running chrsrc command.
 resource 1:
 String = "this is a string test"
 Int32Array = {10,-20,30,-40,50,-60}

rmccli Information

Purpose
Provides general information about resource monitoring and control (RMC) and related commands.

Description
Provides general information about RMC and related commands, including datatypes, terminology, and
references to related information.

Command structure and use
The RMC commands may be grouped into categories representing the different operations that can be
performed on resource classes and resources:

• Creating and removing resources: mkrsrc, rmrsrc
• Modifying resources: chrsrc, refrsrc
• Viewing definitions and data: lsrsrc, lsrsrcdef

Files Reference 281

• Viewing actions: lsactdef
• Running actions: runact

The RMC commands can be run directly from the command line or called by user-written scripts. In
addition, the RMC commands are used as the basis for higher-level commands, such as the event
response resource manager (ERRM) commands.

Data display information
The flags that control the display function for the RMC CLI routines, in order of precedence, are:

1. –l for long display. This is the default display format.

For example, the command:

lsrsrc -s 'Name == "c175n05"' IBM.Foo Name NodeList SD Binary RH Int32Array

produces output that looks like this:

Persistent Attributes for Resource: IBM.Foo
resource 1:
 Name = "c175n05"
 NodeList = {1}
 SD = ["testing 1 2 3",1,{0,1,2}]
 Binary = "0xaabbcc00 0xeeff"
 RH = "0x0000 0x0000 0x00000000 0x00000000 0x00000000 0x00000000"
 Int32Array = {1,5,-10,1000000}

2. –t for tabular display.

For example, the command:

lsrsrc -s 'Name ?= "Page"' -t IBM.Condition Name EventExpression

produces output that looks like this:

Persistent Attributes for Resource: IBM.Condition

Name EventExpression
"Page space out rate" "VMPgSpOutRate > 500"
"Page fault rate" "VMPgFaultRate > 500"
"Page out rate" "VMPgOutRate > 500"
"Page in rate" "VMPgInRate > 500"
"Page space in rate" "VMPgSpInRate > 500"

3. –x for suppressing headers when printing.
4. –d for colon (:) delimited display.

For example, the command:

lsrsrc -xd -s 'Name == "c175n05"' IBM.Foo Name Int32 Uint32Array SD Binary

produces output that looks like this:

c175n05:-100:{}:["hel lo1",1,{0,1,2}]:"0xaabbcc00 0xeeff":

Note the use of the –x flag along with the –d flag.
5. –D delimiter for string-delimited display.

For example, the command:

lsrsrc -xD:: -s 'Name == "c175n05"' IBM.Foo Name Int32 Uint32Array SD Binary

produces output that looks like this:

c175n05::-100::{}::["hel lo1",1,{0,1,2}]::"0xaabbcc00 0xeeff"::

Note the use of the –x flag along with the –D Delimiter flag.

282 AIX Version 7.1: Files Reference

When output of any list command (lsrsrc, lsrsrcdef) is displayed in the tabular output format,
the printing column width may be truncated. If more characters need to be displayed (as in the case
of strings) use the –l flag to display the entire field.

Data input formatting
Binary data can be entered in the following formats:

• "0x######## 0x######## 0x####..."
• "0x###################..."
• 0x################...

Be careful when you specify strings as input data:

• Strings that contain no white space or non-alphanumeric characters can be entered as input without
enclosing quotation marks

• Strings that contain white space or other alphanumeric characters must be enclosed in quotation
marks

• Strings that contain single quotation marks (') must be enclosed by double quotation marks ("), as
shown in this example: "this is a string with 'single quotations marks'"

Selection strings must be enclosed in double quotation marks, unless the selection string itself
contains double quotation marks, in which case the selection string must be enclosed in single
quotation marks. For information on how to specify selection strings, see the RSCT: Administration
Guide.

• Sample selection string input: "NodeNumber == 1"
• Selection string input where double quotation marks are part of the selection string: 'Name ==
"c175n05"'

Structured data (SD) types must be enclosed in square brackets: [hello,1,{2,4,6,8}]

When supplying structured data (SD) as command-line input to the RMC commands, enclose the SD in
single quotation marks: SD='[hello,1,{2,4,6,8}]'

Arrays of any type must be enclosed in braces {}:

• Array of integers: {-4, -3, -2, -1, 0, 1, 2, 3, 4}
• Array of strings: {abc, "do re mi", 123}
• Array of structured data: {[hello,1,{0,1,2,3}],[hello2,2,{2,4,6,8}]}

Arrays of any type with more than one element must be enclosed in quotation marks. For example:

• mkrsrc IBM Foo Name=testing NodeList={1} Uint32Array='{1,2,3}'
• mkrsrc IBM Foo Name=testing NodeList='{1}' Uint32_array='{1,2,3}'

Arrays of strings and arrays of structured data must always be enclosed in quotation marks.

When supplying arrays of structured data or arrays containing strings enclosed in quotation marks as
command-line input to the RMC commands, enclose the entire array in single quotation marks:

• Array of strings: mkrsrc IBM.Foo Name="c175n05" NodeList={1} StringArray='{"a
string","a different string"}'

• Array of structured data: mkrsrc IBM.Foo Name="c175n05" NodeList={1}
SDArray='{["string 1",1,{1,1}],["string 2",2,{1,2,3}]}'

For more examples, see the resource_data_input information file.

Data output formatting
String data is always displayed in either double or single quotation marks, as shown below:

• A description attribute that equals the string "This is a string that contains white space" is displayed
using long format as:

Description = "This is a string that contains white space"

Files Reference 283

• A description attribute value that equals an empty string "" is displayed in long format as:

Description = ""

• A description attribute value that equals a string that contains a new-line character at the end of the
string is displayed in long format as:

Description = "This string ends with a new-line character..."

• A selection string containing double quotation marks is displayed in long format as:

SelectionString = 'Name == "c175n05"'

• A name attribute value that equals the string "c175n05" is displayed in long format as:

Name = "c175n05"

Binary data is displayed as follows:

"0x######## 0x######## 0x######## 0x###..."

Naming conventions
The following variable names are used throughout the RMC command informations:
Variable

Description
attr

The name of a resource class or a resource attribute
resource_class

The name of a resource class
Terminology

attribute
Attributes are either persistent or dynamic. A resource class is defined by a set of persistent and
dynamic attributes. A resource is also defined by a set of persistent and dynamic attributes.
Persistent attributes define the configuration of the resource class and resource. Dynamic
attributes define a state or a performance-related aspect of the resource class and resource. In
the same resource class or resource, a given attribute name can be specified as either persistent
or dynamic, but not both.

resource
An entity in the system that provides a set of services. Examples of hardware entities are
processors, disk drives, memory, and adapters. Examples of software entities are database
applications, processes, and file systems. Each resource in the system has one or more attributes
that define the state of the resource.

resource class
A broad category of system resource, for example: node, file system, adapter. Each resource class
has a container that holds the functions, information, dynamic attributes, and conditions that
apply to that resource class. For example, the "/tmp space used" condition applies to a file system
resource class.

resource manager
A process that maps resource and resource-class abstractions into calls and commands for one or
more specific types of resources. A resource manager can be a standalone daemon, or it can be
integrated into an application or a subsystem directly.

To see all of the resource classes defined in the system, run the lsrsrc command without any
flags or parameters. To see all of the resources defined in the system for the IBM®.FileSystem
resource class, enter:

lsrsrc IBM.FileSystem

284 AIX Version 7.1: Files Reference

selection string
Must be enclosed within either double or single quotation marks. If the selection string contains
double quotation marks, enclose the entire selection string in single quotation marks, for example:

-s 'Name == "testing"'

-s 'Name ?= "test"'

Only persistent attributes can be listed in a selection string. For information on how to specify
selection strings, see the RSCT: Administration Guide.

Flags
-h

Writes the command's usage statement to standard output.
-T

Writes the command's trace messages to standard error. For your software service organization's use
only.

-V
Writes the command's verbose messages to standard output.

All RMC commands include a -T flag and a -V flag. Use the -T flag only when your software service
organization instructs you to turn tracing on. Trace messages are not translated. Use the -V flag, which
indicates "verbose" mode, to see more information about the command. Verbose messages are contained
in message catalogs and are translated based on the locale in which you are running and other criteria.

Environment Variables
CT_CONTACT

When the CT_CONTACT environment variable is set to a host name or IP address, the command
contacts the resource monitoring and control (RMC) daemon on the specified host. If the environment
variable is not set, the command contacts the RMC daemon on the local system where the command
is being run. The resource class or resources that are displayed or modified by the command are
located on the system to which the connection is established.

CT_MANAGEMENT_SCOPE
Determines the management scope that is used for the session with the RMC daemon to monitor and
control the resources and resource classes. The management scope determines the set of possible
target nodes where the resources and resource classes can be monitored and controlled. The valid
values are:
0

Specifies local scope.
1

Specifies local scope.
2

Specifies peer domain scope.
3

Specifies management domain scope.

If this environment variable is not set, local scope is used.

rndc.conf File

Purpose
Defines the name server, algorithm, and key for the rndc command to use.

Files Reference 285

Syntax
options { server ;
key ;
port ;
address ;
address-ipv6; };

server { key ;
port ;
host | address ; };

key { algorithm ;
secret " strings "; };

Description
The rndc.conf file is the configuration file for the rndc command, which is also the BIND 9 name server
control utility. The rndc.conf file has similar structure and syntax to that of the named.conf file. It
supports comment styles, such as the C style, the C++ style, and the UNIX style.

The rndc.conf file contains three statements: the options statement, the server statement, and the key
statement.

options Statement

The options statement contains the following attributes:

Attributes Definition

server Defines the default name server to be used when the rndc command does
not specify a name server. The name or address of a name server can be
used in this attribute.

key Defines the default key to authenticate the commands and responses from
a server. The key is defined in a key statement. If the rndc command does
not specify a key ID, or no key attribute is defined in a matching server
statement, the value in this key attribute is used.

port Defines the default port for connection to the remote name server. If the
rndc command does not specify a port, or no port attribute is defined in a
matching server statement, the value in the port attribute is used.

address Defines the IPv4 source address to be used by default.

address-ipv6 Defines the IPv6 source address to be used by default.

server Statement

Attributes Definition

key Defines the key for the server. The key name must match the name of a key
statement in the file.

port Specifies the port to connect to.

host | address Specifies the server name or the address of the server. If the address is
specified, it is used instead of the server name. Each address can use an
optional port. A source address is used to specify IPv4 source address, and
a source address of IPv6 is used to specify IPv6 source address.

key Statement

The key statement begins with the name of the key, which is an identifying string.

286 AIX Version 7.1: Files Reference

Attributes Definition

algorithm Identifies the encryption algorithm for the rndc command to use. Only the
HMAC-MD5 algorithm is supported currently.

secret " strings " Contains the base-64 encoding of the algorithm encryption key. The
base-64 string is enclosed in quotation marks (" "). To generate the
base-64 string for the secret attribute, you can run the rndc-confgen
command. The rndc-confgen command generates a random key for the
rndc command.

Example
In the following example, the rndc command uses the server at local host (127.0.0.1) by default, and the
key is samplekey.

options {
default-server localhost;
default-key samplekey;
};
server localhost {
key samplekey;
};
server testserver {
key testkey;
addresses { localhost port 5353; };
};
key samplekey {
algorithm hmac-md5;
secret "6FMfj43Osz4lyb24OIe2iGEz9lf1llJO+lz";
};
key testkey {
algorithm hmac-md5;
secret "R3HI8P6BKw9ZwXwN3VZKuQ==";
};

In the preceding example, the commands to the local host server use the samplekey key, which must
also be defined in the configuration file of the server with the same name and secret. The key statement
indicates that samplekey uses the HMAC-MD5 algorithm, and its secret attribute contains the base-64
encoding of the HMAC-MD5 secret. If the rndc -s testserver command string is used, the rndc command
will connect to server on local host port 5353 using the key testkey.

Configuration
To accept rndc connections and recognize the key specified in the rndc.conf file, the name server must be
configured with the control statement in the named.conf file.

roles File

Purpose
Contains the list of valid roles.

Description
The /etc/security/roles file contains the list of valid roles. This is an ASCII file that contains a stanza for
each system role. Each stanza is identified by a role name followed by a : (colon) and contains attributes in
the form Attribute=Value. Each attribute pair ends with a newline character as does each stanza.

The file supports a default stanza. If an attribute is not defined, the default value for the attribute is used,
except in the case of the id attribute. The id attribute must be specified and unique for each role in the
file.

A stanza contains the following attributes:

Files Reference 287

Attribute Description

rolelist Contains a list of roles implied by this role and
allows a role to function as a super-role. If the
rolelist attribute contains the value of "role1,role2",
assigning the role to a user also assigns the roles
of role1 and role2 to that user.

authorizations Contains the list of additional authorizations
acquired by the user for this specific role.

groups Contains the list of groups that a user should
belong to in order to effectively use this role. The
user must be added to each group in this list for
this role to be effective.

screens Contains a list of SMIT screen identifiers that allow
a role to be mapped to various SMIT screens. The
default value for this attribute is * (all screens).

msgcat Contains the file name of the message catalog that
contains the one-line descriptions of system roles.

msgnum Contains the message ID that retrieves this role
description from the message catalog.

id Specifies the unique numeric ID for the role. This
is a required attribute when the system is in
enhanced RBAC mode. This is used internally for
security decisions. Do not modify the role ID after
creating the role.

dfltmsg Contains the default role-description text if
message catalogs are not in use.

msgset Contains the message set that contains the role
description in the message catalog.

auth_mode Specifies the authentication mode when you
assume the role using the swrole command when
the system is in the enhanced role-based access
control (RBAC) mode. The following values are
valid:

• NONE - No authentication is necessary.
• INVOKER - You must enter your own password

while calling the swrole command. This is the
default value.

hostsenabledrole Specifies the hosts that can download the role
definition from the Kernel Role table by using the
setkst command. This attribute is intended to be
used in a networked environment where the role
attributes are shared by multiple hosts.

hostsdisabledrole Specifies the hosts cannot download the role
definition from the Kernel Role table by using the
setkst command. This attribute is intended to be
used in a networked environment where the role
attributes are shared by multiple hosts.

For a typical stanza, see the "Examples" stanza.

288 AIX Version 7.1: Files Reference

Changing the roles File
Do not directly edit the /etc/security/roles file. Use the following commands to manipulate the role
database:

• chrole
• lsrole
• mkrole
• rmrole

The mkrole command creates an entry for each new role in the /etc/security/roles file. To change the
attribute values, use the chrole command. To display the attributes and their values, use the lsrole
command. To remove a role, use the rmrole command.

When the system is operating in enhanced RBAC Mode, changes made to the roles file do not impact
security considerations until the entire roles database is sent to the Kernel Security Tables through the
setkst command or until the system is rebooted.

To write programs that affect attributes in the /etc/security/roles file, use the subroutines listed in
Related Information.

Security
The root user and the security group own this file. Read and write access is granted to the root user, and
read access to members of the security group. Access for other users and groups depends on the security
policy for the system.

Examples
A typical stanza looks like the following example for the ManageAllUsers role:

ManageAllUsers:

 id = 110
 dfltmsg = "Manage all users"
 rolelist = ManageBasicUsers
 authorizations = UserAdmin,RoleAdmin,PasswdAdmin,GroupAdmin
 groups = security
 screens = mkuser,rmuser,!tcpip

Files

Item Description

/etc/security/roles Contains the list of valid roles.

/etc/security/user.roles Contains the list of roles for each user.

/etc/security/smitacl.group Contains the group ACL definitions.

/etc/security/smitacl.user Contains the user ACL definitions.

Related reference
/etc/nscontrol.conf File
Related information
chrole command
lsrole command
mkrole command
rmrole command
swrole command

Files Reference 289

getroleattr subroutine
setroledb subroutine
Role Based Access Control (RBAC)

rpc File for NFS

Purpose
Contains the database for Remote Procedure Calls (RPC) program numbers using NFS.

Description
The /etc/rpc file, part the Network Support Facilities, contains names that are used in place of RPC
program numbers. These names can be read by users. Each line of the file contains the following entries:

Entry Description

Name of Server for the RPC Program Specifies the name of the server daemon
that provides the RPC program.

RPC Program Number Specifies the number assigned to the
program by the RPC protocol.

Aliases Specifies alternate names by which the
service can be requested.

The three entries for each line are entered in the order listed here. Entries can be separated by any
number of blanks or tab characters, provided the line does not wrap. Commented lines in the file must
begin with a # (pound sign). Characters in a commented line are not interpreted by routines that search
the file.

Examples
A sample /etc/rpc file follows:

portmapper 100000 portmap sunrpc
rstatd 100001 rstat rup perfmeter
rusersd 100002 rusers
nfs 100003 nfsprog
ypserv 100004 ypprog
mountd 100005 mount showmount

Related information
File systems

sectoldif.cfg Configuration File

Purpose
Defines the names to use for defined data types when generating directory information tree (DIT) data for
LDAP.

Description
The sectoldif.cfg configuration file is used by the mksecldap, sectoldif, nistoldif, and
rbactoldif commands when generating output to export to LDAP. This file allows a system
administrator to customize the naming used for various data branches that will be created in LDAP.

290 AIX Version 7.1: Files Reference

Default names are provided and may be used unless customization is desired. Each entry in the file
consist of the following fields:

Data_Type LDAP_Attribute_Name LDAP_Object_Class LDAP_Value

Item Description

Data_Type Specifies the data type. Values are USER, GROUP, ID, HOST, SERVICE,
PROTOCOL, NETWORK, NETGROUP, RPC, AUTHORIZATION, ROLE, PRIVCMD,
PRIVDEV and PRIVFILE.

LDAP_Attribute_Na
me

Specifies the LDAP attribute name.

LDAP_Object_Class Specifies the LDAP object class associated with LDAP_Attribute_Name.

LDAP_Value Specifies the LDAP attribute value.

The Data_Type field must be one of the recognized types. The remaining fields in an
entry are configurable by the system administrator. System administrator must ensure that the
LDAP_Object_Class field is appropriate for the supplied LDAP_Attribute_Name as the commands
do not verify the combination.

Examples
1. The following modifications to sectoldif.cfg will cause users to be exported to

ou=Employees,o=ibm and groups to ou=Departments,o=ibm when -d o=ibm is specified for the
sectoldif command:

USER ou organizationalUnit Employees
GROUP ou organizationalUnit Departments

2. The following modifications to sectoldif.cfg will cause an AIX compliant DIT and data to be
created when sectoldif -d cn=aixsecdb,cn=aixdata -S aix is invoked:

USER ou organizationalUnit aixuser
GROUP ou organizationalUnit aixgroup
ID ou organizationalUnit system

Related information
mksecldap command
sectoldif command
nistoldif command
rbactoldif command
Lightweight Directory Access Protocol

security_default File

Purpose
Contains the NFS security defaults.

Description
The /etc/nfs/security_default file contains the list of security flavors that may be used by the NFS
client, in the order in which they should be used. The list of valid security flavors are:

 sys UNIX style (uids, gids)
 dh DES style (encrypted timestamps)
 krb5 Kerberos 5, no integrity or privacy

Files Reference 291

 krb5i Kerberos 5, with integrity
 krb5p Kerberos 5, with privacy

This file may be modified using the chnfssec command.

The format of the /etc/nfs/security_default file is one security flavor (sys, krb5, etc.) per line.

Files
Item Description

/etc/nfs/
security_default

The security_default file.

sendmail.cf File

Purpose
Contains the configuration information for the sendmail command.

Description
The /etc/mail/sendmail.cf configuration file contains the configuration information for the sendmail
command. Information contained in this file includes such items as the host name and domain, and the
sendmail rule sets.

The /etc/mail/sendmail.cf file:

• Stores information about the type of mailer programs running.
• Defines how the sendmail command rewrites addresses in messages.
• Defines how the sendmail command operates in the following environments:

– Local mail delivery
– Local area network delivery using TCP/IP
– Remote delivery using Basic Utilities Network (BNU).

If your environment includes only these types of mail delivery, you can use the supplied /etc/mail/
sendmail.cf file with few, if any, changes.

Control Lines

The /etc/mail/sendmail.cf file consists of a series of control lines, each of which begins with a single
character defining how the rest of the line is used. Lines beginning with a space or a tab are continuation
lines. Blank lines and lines beginning with a # (pound sign) are comments. Control lines are used for
defining:

• Macros and classes for use within the configuration file
• Message headings
• Mailers
• Options for the sendmail command

Each of these control line types are discussed in detail below.

Rewrite Rules

The sendmail command receives addresses in a number of different formats because different mailers
use different formats to deliver mail messages. The sendmail command changes the addresses to the
format needed to route the message for the mailer program being used. To perform this translation, the
sendmail command uses a set of rewrite rules, or rule sets, that are defined in the /etc/mail/sendmail.cf
configuration file. Rewrite rules have the following format:

292 AIX Version 7.1: Files Reference

Snumber
Rbefore after

where number is a integer greater than or equal to zero indicating which rule set this is, and before and
after are symbolic expressions representing a particular pattern of characters. The line beginning with R
means rewrite the expression before so that it has the same format as the expression after. Sendmail
scans through the set of rewrite rules looking for a match on the left-hand side (LHS) of the rule. When a
rule matches, the address is replaced by the right-hand side (RHS) of the rule.

Note: There must be at least one TAB character (ASCII code 0x09) between the before and after
sections of the /etc/mail/sendmail.cf file. For this reason, any editor that translates TAB characters
into a series of spaces (ASCII code 0x20) may not be used to edit the /etc/mail/sendmail.cf file. For
example, the GNU eMacs editor can corrupt the sendmail.cf file, but the vi editor does not.

The /etc/mail/sendmail.cf file installed with the sendmail command contains enough rules to perform
the translation for BNU and TCP/IP networks using a domain address structure. You should not have to
change these rules unless connecting to a system that uses a different addressing scheme.

Macro expansions of the form $x are performed when the configuration file is read. Expansions of the
form $&x are performed at run time, using a somewhat less general algorithm. This form is intended only
for referencing internally defined macros such as $h that are changed at runtime.

Left-Hand Side (LHS) of Rewrite Rules

The left-hand side of rewrite rules contains a pattern. Normal words are simply matched directly.
Metasyntax is introduced using a dollar sign. The metasymbols are:

Metasymbol Meaning

$* Match zero or more tokens

$+ Match one or more tokens

$- Match exactly one token

$=x Match any phrase in class x

$~x Match any word not in class x

If any of these match, they are assigned to the symbol $n for replacement on the right-hand side, where n
is the index in the LHS. For example, if the LHS:

$-:$+

is applied to the input:

UCBARPA:linda

the rule will match, and the values passed to the RHS will be:

$1 UCBARPA
$2 linda

Right-Hand Side (RHS) of Rewrite Rules

When the left-hand side of a rewrite rule matches, the input is deleted and replaced by the right-hand
side. Tokens are copied directly from the RHS unless they begin with a dollar sign. Metasymbols are:

Metasymbol Meaning

$n Substitute indefinite token n from LHS

$[name$] Canonicalize name

$(map key$@arguments
$:default $)

Generalized keyed mapping function

Files Reference 293

Metasymbol Meaning

$>n "Call" ruleset n

$#mailer Resolve to mailer

$@host Specify host

$:user Specify user

The $n syntax substitutes the corresponding value from a $+, $-, $*, $=, or $~ match on the LHS. It may
be used anywhere.

A host name enclosed between $[and $] is looked up in the host database(s) and replaced
by the canonical name. For example, $[merlin] might become merlin.magician and
$[[128.32.130.2]$] would become king.arthur.

The $(... $) syntax is a more general form of lookup; it uses a named map instead of an implicit map.
If no lookup is found, the indicated default is inserted; if no default is specified and no lookup matches,
the value is left unchanged. The arguments are passed to the map for possible use.

The $>n syntax causes the remainder of the line to be substituted as usual and then passed as the
argument to ruleset n. The final value of ruleset n then becomes the substitution for this rule. The $>
syntax can only be used at the beginning of the right hand side; it can be only be preceded by $@ or $:.

The $# syntax should only be used in ruleset zero or a subroutine of ruleset zero. It causes evaluation of
the ruleset to terminate immediately, and signals to sendmail that the address has completely resolved.
The complete syntax is:

$#mailer $@host $:user

This specifies the {mailer, host, user} 3-tuple necessary to direct the mailer. If the mailer is local, the host
part may be omitted. The mailer must be a single word, but the host and user may be multi-part. If the
mailer is the built-in IPC mailer, the host may be a colon-separated list of hosts that are searched in order
for the first working address, exactly like MX (machine exchange) records. The user is later rewritten by
the mailer-specific envelope rewrite set and assigned to the $u macro. As a special case, if the value to
$# is "local" and the first character of the $: value is "@", the "@" is stripped off, and a flag is set in the
address descriptor that causes sendmail to not do ruleset 5 processing.

Normally, a rule that matches is retried, that is, the rule loops until it fails. An RHS may also be preceded
by a $@ or a $: to change this behavior. A $@ prefix causes the ruleset to return with the remainder of the
RHS as the value. A $: prefix causes the rule to terminate immediately, but the ruleset to continue; this
can be used to avoid continued application of a rule. The prefix is stripped before continuing.

The $@ and $: prefixes may precede a $> spec. For example:

R$+ $: $>7 $1

matches anything, passes that to ruleset seven, and continues; the $: is necessary to avoid an infinite
loop.

Substitution occurs in the order described; that is, parameters from the LHS are substituted, host names
are canonicalized, "subroutines" are called, and finally $#, $@, and $: are processed.

Semantics of Rewrite Rule Sets

There are five rewrite sets that have specific semantics.

Ruleset three should turn the address into "canonical form." This form should have the basic syntax:

local-part@host-domain-spec

Ruleset three is applied by sendmail before doing anything with any address.

294 AIX Version 7.1: Files Reference

If no "@" sign is specified, then the host-domain-spec may be appended (box "D" in "Rewrite Set
Semantics") from the sender address (if the C flag is set in the mailer definition corresponding to the
sending mailer).

Ruleset zero is applied after ruleset three to addresses that are going to actually specify recipients. It
must resolve to a {mailer, host, user} triple. The mailer must be defined in the mailer definitions from the
configuration file. The host is defined into the $h macro for use in the argv expansion of the specified
mailer.

IPC Mailers

Some special processing occurs if the ruleset zero resolves to an IPC mailer (that is, a mailer that has
"[IPC]" listed as the Path in the M configuration line. The host name passed after "$@" has MX expansion
performed; this looks the name up in DNS to find alternate delivery sites.

The host name can also be provided as a dotted quad in square brackets; for example:

[128.32.149.78]

This causes direct conversion of the numeric value to a TCP/IP host address.

The host name passed in after the "$@" may also be a colon-separated list of hosts. Each is separately
MX expanded and the results are concatenated to make (essentially) one long MX list. The intent here is to
create "fake" MX records that are not published in DNS for private internal networks.

As a final special case, the host name can be passed in as a text string in square brackets:

[any.internet.addr]

This form avoids the MX mapping if the F=0 flag is set for the selected delivery agent.

Note: This is intended only for situations where you have a network firewall (a system or machine that
controls the access between outside networks and private networks) or other host that will do special
processing for all your mail, so that your MX record points to a gateway machine. This machine could then
do direct delivery to machines within your local domain. Use of this feature directly violates RFC 1123
section 5.3.5: it should not be used lightly.

Macros in the sendmail.cf File

Macros in the /etc/mail/sendmail.cf file are interpreted by the sendmail command. A macro is a symbol
that represents a value or string. A macro is defined by a D command in the /etc/mail/sendmail.cf file.

D — Define Macro

Macros are named with a single character or with a word in {braces}. Single-character names may be
selected from the entire ASCII set, but user-defined macros should be selected from the set of uppercase
letters only. Lowercase letters and special symbols are used internally. Long names beginning with a
lowercase letter or a punctuation character are reserved for use by sendmail, so user-defined long macro
names should begin with an uppercase letter.

The syntax for macro definitions is:

Dxval

where x is the name of the macro (which may be a single character or a word in braces) and val is the
value it should have. There should be no spaces given that do not actually belong in the macro value.

Macros are interpolated using the construct $x, where x is the name of the macro to be interpolated. This
interpolation is done when the configuration file is read, except in M lines. The special construct $&x can
be used in R lines to get deferred interpolation.

Conditionals can be specified using the syntax:

$?x text1 $| text2 $.

This interpolates text1 if the macro $x is set, and text2 otherwise. The "else" ($|) clause may be omitted.

Files Reference 295

Lowercase macro names are reserved to have special semantics, used to pass information in or out of
sendmail, and special characters are reserved to provide conditionals, and so on. Uppercase names (that
is, $A through $Z) are specifically reserved for configuration file authors.

The following macros are defined and/or used internally by sendmail for interpolation into argv's for
mailers or for other contexts. The ones marked - are information passed into sendmail, the ones marked
= are information passed both in and out of sendmail, and the unmarked macros are passed out of
sendmail but are not otherwise used internally:

Macro Definition

$_ RFC1413-validation & IP source route (V8.1 and above).

$a The origin date in RFC822 format.

${auth_authen} The client’s authentication credentials as determined by authentication (only
set if successful). The format depends on the mechanism used, it might be just
user, or user@realm, or something similar (SMTP AUTH only).

${auth_author} The authorization identity, that is the AUTH=parameter of the SMTP MAIL
command if supplied.

${alg_bits} The maximum key length (in bits) of the symmetric encryption algorithm used
for a TLS connection. This may be less than the effective key length, which is
stored in ${cipher_bits}, for export controlled algorithms.

${addr_type} The type of the address which is currently being rewritten. This macro contains
up to three characters, the first is either e or h for envelope/header address, the
second is a space, and the third is either s or r for sender/recipient address.

${auth_type} The mechanism used for SMTP authentication (only set if successful).

$b The current date in RFC822 format.

$(bodytype) The ESMTP BODY parameter.

$B The BITNET relay.

$c The hop count.

$(client_addr) The connecting host's IP address.

${cert_issuer} The DN (distinguished name) of the CA (certificate authority) that signed the
presented certificate (the cert issuer) (STARTTLS only).

${cert_md5} The MD5 hash of the presented certificate (STARTTLS only).

$(client_name) The connecting host's canonical name.

$(client_port) The connecting host's port name.

$(client_resolve) Holds the result of the resolve call for $(client_name).

${cert_subject} The DN of the presented certificate (called the cert subject) (STARTTLS only).

$(currHeader) Header value as quoted string.

${cipher} The cipher suite used for the connection, for example, EDH-DSS-DES-CBC3-
SHA, EDH-RSA-DESCBC-SHA, DES-CBC-MD5, and DES-CBC3-SHA (STARTTLS
only).

${cipher_bits} The effective key length (in bits) of the symmetric encryption algorithm used for
a TLS connection.

${client_connections} The number of open connections in the SMTP server for the client IP address.

${client_flags} The flags specified by the Modifier= part of ClientPortOptions where flags are
separated from each other by spaces and upper case flags are doubled. That
is, Modifier=hA is represented as h AAin ${client_flags}, which is required for
testing the flags in rulesets.

296 AIX Version 7.1: Files Reference

Macro Definition

${client_ptr} The result of the PTR lookup for the client IP address.

Note: This is the same as ${client_name} if and only if ${client_resolve} is OK.
This is defined in the SMTP server only.

${client_rate} The number of incoming connections for the client IP address over the time
interval specified by ConnectionRateWindowSize.

${client_resolve} Holds the result of the resolve call for ${client_name}. The possible values are:

• OK: Resolved successfully
• FAIL: Permanent lookup failure
• FORGED: Forward lookup does not match reverse lookup
• TEMP: Temporary lookup failure

This is defined in the SMTP server only. The sendmail command performs
a hostname lookup on the IP address of the connecting client. Next the IP
addresses of that hostname are looked up. If the client IP address does not
appear in that list, then the hostname is forged. This is reflected as the value
FORGED for ${client_resolve}, and it also shows up in $_ as (may be forged).

${cn_issuer} The CN (common name) of the CA that signed the presented certificate
(STARTTLS only).

Note: If the CN can not be extracted properly it is replaced by one of these
strings based on the encountered error:

BadCertificateContainsNUL. The CN contains a NULL character
BadCertificateTooLong CN is too long
BadCertificateUnknown CNcould not be extracted

In the last case, some other (unspecific) error occurred.

${cn_subject} The CN (common name) of the presented certificate (STARTTLS only). See $
{cn_issuer} for possible replacements.

${currHeader} Header value as quoted string (possibly truncated to MAXNAME). This macro is
only available in header check rulesets.

$C The hostname of the DECnet relay (m4 technique).

$d enrealThe current date in UNIX (ctime)(3) format.

$(daemon_addr) The IP address on which the daemon is listening for connections. Unless
DaemonPortOptions is set, this will be 0.0.0.0.

$(daemon_family) If the daemon is accepting network connections, this is the network family.

$(daemon_flags) The flags for the daemon as specified by the Modifiers= part of
DaemonPortOptions where the flags are separated from each other by spaces
and upper case flags are doubled.

$(daemon_info) Information about a daemon as a text string. For example,
SMTP+queueing@00.

$(daemon_name) The name of the daemon from DaemonPortOptions Name= suboption. If this
suboption is not used, the default will be set to Daemon#, where # is the
daemon number.

$(daemon_port) The port on which the daemon is accepting connections. Unless
DaemonPortOptions is set, this will most likely be set to the default of 25.

$(deliveryMode) The current delivery mode used by sendmail.

$e Obsolete. Used SmtpGreetingMessage option instead.

Files Reference 297

Macro Definition

$(envid) The original DSN envelope ID.

$E X400 relay (unused) (m4 technique).

$f The sender's address.

$F FAX relay (m4 technique).

$g The sender's address relative to the recipient.

$h Host part of the recipient address.

${hdrlen} The length of the header value which is stored in ${currHeader} (before
possible truncation). If this value is greater than or equal to MAXNAME the
header has been truncated.

${hdr_name} The name of the header field for which the current header check ruleset has
been called. This is useful for a default header check ruleset to get the name of
the header; the macro is only available in header check rulesets.

$H The mail hub (m4 technique).

$(hdrlen) The length of the header value, which is stored in $(currHeader).

$(hdr_name) The name of the header field for which the current header check ruleset has
been called.

$i The queue identifier.

$(if_addr) The IP address of an incoming connection interface unless it is in the loopback
net.

${if_addr_out} The IP address of the interface of an outgoing connection unless it is in the
loopback net. The IPv6 addresses are tagged with IPv6: before the address.

${if_family} The IP family of the interface of an incoming connection unless it is in the
loopback net.

${if_family_out} The IP family of the interface of an outgoing connection unless it is in the
loopback net.

$(if_name) The name of an incoming connection interface.

${if_name_out} The name of the interface of an outgoing connection.

$j= The official canonical name.

$k The UUCP node name (V8.1 and above).

${load_avg} The current load average.

${msg_id} The value of the Message-Id: header.

${msg_size} The value of the SIZE= parameter, that is, usually the size of the message (in
an ESMTP dialogue), before the message has been collected, thereafter the
message size as computed by the sendmail command.

${nbadrcpts} The number of bad recipients for a single message.

${nrcpts} The number of validated recipients for a single message.

Note: Since recipient validation happens after check_rcpt has been called, the
value in this ruleset is one less than what might be expected.

${time} The output of the time(3) function, that is, the number of seconds since 0 hours,
0 minutes, 0 seconds, January 1, 1970, Coordinated Universal Time (UTC).

${tls_version} The TLS/SSL version used for the connection, for example, TLSv1, SSLv3, and
SSLv2; defined after STARTTLS has been used.

298 AIX Version 7.1: Files Reference

Macro Definition

${total_rate} The total number of incoming connections over the time interval specified by
Connection-RateWindowSize.

${verify} The result of the verification of the presented cert, only defined after STARTTLS
has been used (or attempted). The possible values are:

• OK: Verification succeeded.
• NO: Nocert presented.
• NOT: No cert requested.
• FAIL: cert presented but could not be verified, for example, the signing CA is

missing.
• NONE: STARTTLS has not been performed.
• TEMP: Temporary error occurred.
• PROTOCOL: Some protocol error occurred.
• SOFTWARE STARTTLS: The handshake failed, which is a fatal error for this

session, the e-mail is queued.

Item Description

$l Obsolete. Use UnixFromLine option instead.

$L Local user relay (m4 technique).

$m The DNS domain name (V8.1 and above).

$M Who we are masquerading as (m4 technique).

$(mail_addr) The address part of the resolved triple of the address given for the SMTP MAIL
command.

$(mail_host) The host from the resolved triple of the address given for the SMTP MAIL
command.

$(mail_mailer) The mailer from the resolved triple of the address given for the SMTP MAIL
command.

$n The error messages sender.

$(ntries) The number of delivery attempts.

$o Obsolete. Use OperatorChars option instead.

$opMode The startup operating mode (V8.7 and above).

$p The sendmail process ID.

$q- Default form of the sender address.

$(queue_interval) The queue run interval as defined in the -q flag.

$r The protocol used.

$R The relay for unqualified names (m4 technique).

$(rcpt_addr) The address part of the resolved triple of the address given for the SMTP RCPT
command.

$(rcpt_host) The host from the resolved triple of the address given for the SMTP RCPT
command.

$(rcpt_mailer) The mailer from the resolved triple of the address given for the SMTP RCPT
command.

$s The sender's host name.

Files Reference 299

Item Description

$S The Smart host (m4 technique).

$(server_addr) The address of the server of the current outgoing SMTP connection.

$(server_name) The name of the server of the current outgoing SMTP connection.

$t Current time in seconds.

$u The recipient's user name.

$U The UUCP name to override $k.

$v The sendmail program's version.

$V The UUCP relay (for class $=V) (m4 technique).

$w The short name of this host.

$W The UUCP relay (for class $=W) (m4 technique).

$x The full name of the sender.

$X The UUCP relay (for class $=X) (m4 technique).

$y The home directory of the recipient.

$z The name of the controlling TTY.

$Y The UUCP relay for unclassified hosts.

$z The recipient's home directory.

$Z The version of this m4 configuration (m4 technique).

There are three types of dates that can be used. The $a and $b macros are in RFC 822 format; $a is the
time as extracted from the "Date:" line of the message (if there was one), and $b is the current date and
time (used for postmarks). If no "Date:" line is found in the incoming message, $a is set to the current
time also. The $d macro is equivalent to the $b macro in UNIX (ctime) format. The $t macro is the current
time in seconds.

The macros $w, $j, and $m are set to the identity of this host. Sendmail tries to find the fully qualified
name of the host if at all possible; it does this by calling gethostname(2) to get the current hostname
and then passing that to gethostbyname(3) which is supposed to return the canonical version of that host
name. Assuming this is successful, $j is set to the fully qualified name, and $m is set to the domain part
of the name (everything after the first dot). The $w macro is set to the first word (everything before the
first dot) if you have a level 5 or higher configuration file; otherwise, it is set to the same value as $j. If the
canonicalization is not successful, it is imperative that the config file set $j to the fully qualified domain
name.

The $f macro is the ID of the sender as originally determined; when mailing to a specific host, the
$g macro is set to the address of the sender relative to the recipient. For example, if a user sends to
king@castle.com from the machine vangogh.painter.com, the $f macro will be vincent and the
$g macro will be vincent@vangogh.painter.com.

The $x macro is set to the full name of the sender. This can be determined in several ways. It can be
passed as flag to sendmail. It can be defined in the NAME environment variable. The third choice is the
value of the "Full-Name:" line in the header if it exists, and the fourth choice is the comment field of a
"From:" line. If all of these fail, and if the message is being originated locally, the full name is looked up in
the /etc/passwd file.

When sending, the $h, $u, and $z macros get set to the host, user, and home directory (if local) of the
recipient. The first two are set from the $@ and $: part of the rewrite rules, respectively.

The $p and $t macros are used to create unique strings (for example, for the "Message-Id:" field). The
$i macro is set to the queue ID on this host; if put into the timestamp line, it can be useful for tracking

300 AIX Version 7.1: Files Reference

messages. The $v macro is set to be the version number of sendmail; this is normally put in timestamps
and has been proven useful for debugging.

The $c field is set to the "hop count," that is, the number of times this message has been processed. This
can be determined by the -h flag on the command line or by counting the timestamps in the message.

The $r and $s fields are set to the protocol used to communicate with sendmail and the sending
hostname. They can be set together using the -p command line flag or separately using the -M or -oM
flags.

The $_ is set to a validated sender host name. If the sender is running an RFC 1413 compliant IDENT
server and the receiver has the IDENT protocol turned on, it will include the user name on that host.

The $(client_name), $(client_addr), and $(client_port) macros are set to the name, address, and port
number of the connecting host who is invoking sendmail as a server. These can be used in the check_*
rulesets (using the $& deferred evaluation form).

Changing the Domain Name Macro

The domain name macro, DD, specifies the full domain name of your local group of hosts. The format of
the domain name macro is DD followed by, at most, four period-separated names, for example:

DDname1.name2.name3.name4

This macro can be set automatically through the hostname command. The sendmail command reads
what has been set with the hostname command and uses it to initialize the host and domain macros and
classes. The configuration file macros only need to be changed if you want the sendmail host and domain
names to be different from those set by the hostname command.

To change the domain name macro:

1. Enter the command:

vi /etc/mail/sendmail.cf

2. Find the line beginning with DD.
3. Replace what follows DD with your domain name. For example, if your domain name is
newyork.abc.com, enter:

DDnewyork.abc.com

4. Save the file and exit the editor.

Changing the Host Name Macro

The host name macro, Dw, specifies the name of your host system used in the return address of all
messages you generate. The format of the host name macro is Dw followed by the hostname of this
machine, for example:

Dwhostname

By default, the sendmail command reads what has been set with the hostname command and uses it
to initialize the host and domain name macros and classes. Change the configuration file macros only if
you want the sendmail command host and domain names to be different from those set by the hostname
command.

To change the host name macro:

1. Enter the command:

vi /etc/mail/sendmail.cf

2. Find the line beginning with Dw.

Files Reference 301

3. Replace what follows Dw with your hostname. For example, if your hostname is brown, enter:

Dwbrown

4. Save the file and exit the editor.

Note: If the Dw macro is defined, you must also define the CW (hostname) class.

Modifying the sendmail.cf File

Before you modify the /etc/mail/sendmail.cf file, make a backup copy. Do this by executing the following
command:

cp /etc/mail/sendmail.cf /etc/mail/sendmail.cf.working

If the changes you make cause the mail system not to work properly, you can return to using a copy of
the /etc/mail/sendmail.cf file that you know works.

You can modify the /etc/mail/sendmail.cf file by using your favorite text editor. However, some editors
store tabs as the number of spaces they represent, not the tab character itself. This can cause
unexpected results if the tab character is defined as the field-separator character in rule sets. Use the
vi editor to avoid this problem, or change the field-separator character with the J option. (For ease of
reference, this discussion assumes you use the vi editor to modify the /etc/mail/sendmail.cf file.)

After changing any information in the /etc/mail/sendmail.cf file, you must instruct the daemon to reread
the file. See section, “Making the sendmail Daemon Reread the Configuration Information” on page 302
for those instructions.

Making the sendmail Daemon Reread the Configuration Information
After you have made changes to the sendmail.cf file, instruct the daemon to reread the file. If you started
the sendmail command using the startsrc command, enter the command:

refresh -s sendmail

Or, if you started the sendmail daemon using the /usr/sbin/sendmail command, enter the command:

kill -1 `cat /etc/mail/sendmail.pid`

Both of these commands cause the daemon to reread the /etc/mail/sendmail.cf file, the /etc/mail/
aliases file, and the /etc/sendmail.nl file.

Alias Database

The alias database exists in two forms. One is a text form, maintained in the file /etc/mail/aliases. The
aliases are of the form:

name: name1, name2, ...

Only local names may be aliased. For example:

linda@cloud.ai.acme.org: linda@CS.

has the desired effect. Aliases may be continued by starting any continuation lines with a space or a tab.
Blank lines and lines beginning with a pound sign (#) are comments.

The second form is processed by the new database manager (NDBM) or Berkeley DB library. This form is
in the file /etc/mail/aliases.db (if using NEWDB) or /etc/mail/aliases.dir and /etc/mail/aliases.pag (if
using NDBM). This is the form that sendmail actually uses to resolve aliases. This technique is used to
improve performance.

The service switch sets the control of search order. The following entry

AliasFile=switch:aliases

302 AIX Version 7.1: Files Reference

is always added as the first alias entry. The first alias file name without a class (for example, without nis
on the front) will be used as the name of the file for a "files" entry in the aliases switch. For example, if the
configuration file contains

AliasFile=/etc/mail/aliases

and the service switch contains

aliases nis files nisplus

then aliases will first be searched in the NIS database, then in /etc/mail/aliases, and finally in the NIS+
database.

Rebuilding the Alias Database

The DB or DBM version of the database may be rebuilt explicitly by executing the command:

newaliases

This is equivalent to giving sendmail the -bi flag:

/usr/sbin/sendmail -bi

If the RebuildAliases option is specified in the configuration, sendmail will rebuild the alias database
automatically if possible when it is out of date. Auto-rebuild can be dangerous on heavily loaded
machines with large alias files. If it might take more than the rebuild time-out (option AliasWait, which
is normally five minutes) to rebuild the database, there is a chance that several processes will start the
rebuild process simultaneously.

If you have multiple aliases databases specified, the -bi flag rebuilds all the database types. II
understands, for example, it can rebuild NDBM databases, but not NIS databases.

Potential Problems with the Alias Database

There are a number of problems that can occur with the alias database. They all result from a
sendmail process accessing the DBM version while it is only partially built. This can happen under two
circumstances: One process accesses the database while another process is rebuilding it, or the process
rebuilding the database dies (due to being killed or a system crash) before completing the rebuild.

Sendmail has three techniques to try to relieve these problems. First, it ignores interrupts while
rebuilding the database; this avoids the problem of someone aborting the process leaving a partially
rebuilt database. Second, it locks the database source file during the rebuild, but that may not work over
NFS or if the file is not writable. Third, at the end of the rebuild, it adds an alias of the form:

@: @

(which is not normally legal). Before sendmail will access the database, it checks to ensure that this entry
exists.

List Owners

If an error occurs on sending to a certain address, x, sendmail will look for an alias of the form owner-x to
receive the errors. This is typically useful for a mailing list where the submitter of the list has no control
over the maintenance of the list itself. In this case, the list maintainer would be the owner of the list. For
example:

unix-wizards: linda@paintbox, wnj@monet, nosuchuser,
 sam@matisse
owner-unix-wizards: unix-wizards-request
unix-wizards-request: linda@paintbox

would cause linda@paintbox to get the error that will occur when someone sends to unix-wizards due
to the inclusion of nosuchuser on the list.

Files Reference 303

List owners also cause the envelope sender address to be modified. The contents of the owner alias
are used if they point to a single user. Otherwise, the name of the alias itself is used. For this reason,
and to conform to Internet conventions, the "owner-" address normally points at the "-request" address;
this causes messages to go out with the typical Internet convention of using "list-request" as the return
address.

Per-User Forwarding (.forward Files)

As an alternative to the alias database, users may put a file with the name ".forward" in their home
directory. If this file exists, sendmail redirects mail for that user to the list of addresses listed in
the .forward file. For example, if the home directory for user "kenly" has a .forward file with contents:

kenly@ernie
joel@renoir

then any mail arriving for "kenly" will be redirected to the specified accounts.

The configuration file defines a sequence of file names to check. By default, this is the user's .forward file,
but can be defined to be more general using the ForwardPath (J) option. If you change this option, you
must inform your user base of the change.

IDENT Protocol Support

UCB sendmail supports the IDENT protocol as defined in RFC 1413. Although this enhances identification
of the author of an e-mail message by doing a "callback" to the originating system to include the owner
of a particular TCP connection in the audit trail, it is in no sense perfect; a determined forger can easily
violate the security of the IDENT protocol.

Note: The operating system does not support the IDENT protocol. The IDENT timeout is set to zero (0) in
the /etc/mail/sendmail.cf file to disable IDENT. Modify your sendmail.cf file and set IDENT time-out if
you wish to enable IDENT.

The following description is excerpted from RFC 1413:

6. Security Considerations

The information returned by this protocol is at most as trustworthy as the host providing it OR the
organization operating the host. For example, a PC in an open lab has few if any controls on it to prevent
a user from having this protocol return any identifier the user wants. Likewise, if the host has been
compromised the information returned may be completely erroneous and misleading.

The Identification Protocol is not intended as an authorization or access control protocol. At best, it
provides some additional auditing information with respect to TCP connections. At worst, it can provide
misleading, incorrect, or maliciously incorrect information.

The use of the information returned by this protocol for other than auditing is strongly discouraged.
Specifically, using Identification Protocol information to make access control decisions, either as the
primary method (that is, no other checks) or as an adjunct to other methods may result in a weakening of
normal host security.

An Identification server may reveal information about users, entities, objects or processes which might
normally be considered private. An Identification server provides service which is a rough analog of the
CallerID services provided by some phone companies and many of the same privacy considerations and
arguments that apply to the CallerID service apply to Identification. If you would not run a "finger" server
due to privacy considerations you may not want to run this protocol.

Tuning

There are a number of configuration parameters you may want to change, depending on the requirements
of your site. Most of these are set using an option in sendmail.cf. For example, the line "O Time-
out.queuereturn=5d" sets option "Timeout.queuereturn" to the value "5d" (five days).

Most of these options have appropriate defaults for most sites. However, sites having very high mail loads
may find they need to tune them as appropriate for their mail load. In particular, sites experiencing a large
number of small messages, many of which are delivered to many recipients, may find that they need to
adjust the parameters dealing with queue priorities.

304 AIX Version 7.1: Files Reference

All prior versions of sendmail had single-character option names. Although old short names are still
accepted, most new options do not have short equivalents.

Timeouts

All time intervals are set using a scaled syntax. For example, "10m" represents ten minutes, whereas
"2h30m" represents two and a half hours. The full set of scales is:

s
seconds

m
minutes

h
hours

d
days

w
weeks

Read Timeouts
Timeouts all have option names "Time-out.suboption". The recognized suboptions, their default values,
and the minimum values allowed by RFC 1123 section 5.3.2 are:

Suboption Description

aconnect The overall timeout waiting for all connection for a single delivery attempt
to succeed [0, unspecified] . If 0, no overall limit is applied. This can
be used to restrict the total amount of time trying to connect to a long
list of host that could accept an e-mail for the recipient. This timeout
does not apply to FallbackMXhost, that is, if the time is exhausted, the
FallbackMXhost is tried next.

auth The timeout for a reply in an SMTP AUTH dialogue [10m, unspecified].

command- In server SMTP, the time to wait for another command. [1h, 5m].

connect The time to wait for an SMTP connection to open (the connect(2) system
call) [0, unspecified]. If zero, uses the kernel default. In no case can this
option extend the time-out longer than the kernel provides, but it can
shorten it. This is to get around kernels that provide an extremely long
connection time-out (90 minutes in one case).

control The time-out for a complete control socket transaction to complete [2m,
none].

datablock- The wait for reading a data block (that is, the body of the message). [1h,
3m]. This should be long because it also applies to programs piping input to
sendmail which have no guarantee of promptness.

datafinal- The wait for a reply from the dot terminating a message. [1h,10m]. If this
is shorter than the time actually needed for the receiver to deliver the
message, duplicates will be generated. This is discussed in RFC1047.

datainit- The wait for a reply from a DATA command [5m, 2m].

fileopen The time-out for opening .forward and :include:files [60s, none].

iconnect The same as connect, except it applies only to the initial attempt to connect
to a host for a given message [0, unspecified]. This period should be
very short (a few seconds). Hosts that are well-connected and responsive
will be serviced immediately. Hosts that are slow do not detain other
deliveries in the initial delivery attempt.

Files Reference 305

Suboption Description

ident- The time-out waiting for a reply to an IDENT query [30s11, unspecified].

initial The wait for the initial 220 greeting message [5m, 5m].

helo The wait for a reply from a HELO or EHLO command [5m, unspecified]. This
may require a host name lookup, so five minutes is probably a reasonable
minimum.

hoststatus The time that long status information about a host (for example, host down)
will be cached before it is considered stale [30m, unspecified].

mail- The wait for a reply from a MAIL command [10m, 5m].

misc The wait for a reply from miscellaneous (but short) commands such as
NOOP (no-operation) and VERB (go into verbose mode). [2m, unspecified].

quit The wait for a reply from a QUIT command [2m, unspecified].

rcpt- The wait for a reply from a RCPT command [1h, 5m]. This should be long
because it could be pointing at a list that takes a long time to expand (see
below).

rset The wait for a reply from a RSET command [5m, unspecified].

resolver.retrans Sets resolver retransmission time interval in seconds. Sets both the
Timeout.resolver.retrans.first and Timeout.resolver.retrans.normal.

resolver.retrans.first Sets resolver retransmission time interval in seconds for the first attempt to
deliver a message.

resolver.retrans.normal Sets the retransmission time interval in seconds for all resolver lookups
except for the first delivery attempt.

resolver.retry Sets the number of attempts to retransmit a resolver query. Sets both
Timeout.resolver.retry.first and Timeout.resolver.retry.normal.

resolver.retry.first Sets the number of attempts to retransmit a resolver query for the first
delivery attempt.

resolver.retry.normal Sets the number of attempts to retransmit a resolver query for all resolver
lookups except the first delivery attempt.

starttls The timeout for a reply to an SMTP STARTTLS command, and the TLS
handshake [1h, unspecified].

For compatibility with old configuration files, if no suboption is specified, all the timeouts marked with -
are set to the indicated value.

Message Timeouts

After sitting in the queue for a few days, a message will time out. This is to ensure that at least the sender
is aware of the inability to send a message. The time-out is typically set to five days. It is sometimes
considered convenient to also send a warning message if the message is in the queue longer than a few
hours (assuming you normally have good connectivity; if your messages normally took several hours to
send, you would not want to do this because it would not be an unusual event). These timeouts are set
using the Timeout.queuereturn and Timeout.queuewarn options in the configuration file (previously both
were set using the T option).

Because these options are global and you cannot know how long another host outside your domain will be
down, a five-day time-out is recommended. This allows a recipient to fix the problem even if it occurs at
the beginning of a long weekend. RFC 1123 section 5.3.1.1 says that this parameter should be "at least
4-5 days".

The Timeout.queuewarn value can be piggybacked on the T option by indicating a time after which a
warning message should be sent; the two timeouts are separated by a slash. For example, the line:

306 AIX Version 7.1: Files Reference

OT5d/4h

causes e-mail to fail after five days, but a warning message will be sent after four hours. This should be
large enough that the message will have been tried several times.

Queue interval

The argument to the -q flag specifies how often a subdaemon will run the queue. This is typically set
to between fifteen minutes and one hour. RFC 1123, section 5.3.1.1 recommends this be at least 30
minutes.

Forking During Queue Runs

By setting the ForkEachJob (Y) option, sendmail will fork before each individual message while running
the queue. This will prevent sendmail from consuming large amounts of memory, so it may be useful in
memory-poor environments. However, if the ForkEachJob option is not set, sendmail will keep track of
hosts that are down during a queue run, which can improve performance dramatically.

If the ForkEachJob option is set, sendmail cannot use connection caching.

Queue Priorities

Every message is assigned a priority when it is first instantiated, consisting of the message size (in bytes)
offset by the message class (which is determined from the Precedence: header) times the "work class
factor" and the number of recipients times the "work recipient factor." The priority is used to order the
queue. Higher numbers for the priority mean that the message will be processed later when running the
queue.

The message size is included so that large messages are penalized relative to small messages. The
message class allows users to send "high priority" messages by including a "Precedence:" field in their
message; the value of this field is looked up in the P lines of the configuration file. Because the number
of recipients affects the amount of load a message presents to the system, this is also included into the
priority.

The recipient and class factors can be set in the configuration file using the RecipientFactor (y) and
ClassFactor (z) options respectively. They default to 30000 (for the recipient factor) and 1800 (for the
class factor). The initial priority is:

pri = msgsize - (class times bold ClassFactor) + (nrcpt times bold
RecipientFactor)

(Remember that higher values for this parameter actually mean that the job will be treated with lower
priority.)

The priority of a job can also be adjusted each time it is processed (that is, each time an attempt is made
to deliver it) using the "work time factor," set by the RetryFactor(Z) option. This is added to the priority, so
it normally decreases the precedence of the job, on the grounds that jobs that have failed many times will
tend to fail again in the future. The RetryFactor option defaults to 90000.

Load Limiting

Sendmail can be asked to queue (but not deliver) mail if the system load average gets too high using the
QueueLA (x) option. When the load average exceeds the value of the QueueLA option, the delivery mode
is set to q (queue only) if the QueueFactor (q) option divided by the difference in the current load average
and the QueueLA option plus one exceeds the priority of the message; that is, the message is queued if:

pri > { bold QueueFactor } over { LA - { bold QueueLA } + 1 }

The QueueFactor option defaults to 600000, so each point of load average is worth 600000 priority points
(as described above).

For drastic cases, the RefuseLA (X) option defines a load average at which sendmail will refuse to accept
network connections. Locally generated mail (including incoming UUCP mail) is still accepted.

Delivery Mode

Files Reference 307

There are a number of delivery modes that sendmail can operate in, set by the DeliveryMode (d)
configuration option. These modes specify how quickly mail will be delivered. Legal modes are:

Delivery Mode Definition

i Deliver interactively (synchronously)

b Deliver in background (asynchronously)

q Queue only (do not deliver)

d Defer delivery attempts (do not deliver).

There are trade-offs. Mode i gives the sender the quickest feedback, but may slow down some mailers
and is hardly ever necessary. Mode b delivers promptly, but can cause large numbers of processes if you
have a mailer that takes a long time to deliver a message. Mode q minimizes the load on your machine,
but means that delivery may be delayed for up to the queue interval. Mode d is identical to mode q except
that it also prevents all the early map lookups from working; it is intended for "dial on demand" sites
where DNS lookups might be very expensive. Some simple error messages (for example, host unknown
during the SMTP protocol) will be delayed using this mode. Mode b is the default.

If you run in mode q (queue only), d (defer), or b (deliver in background), sendmail will not expand aliases
and follow .forward files upon initial receipt of the mail. This speeds up the response to RCPT commands.
Mode i cannot be used by the SMTP server.

Log Level

The level of logging can be set for sendmail. The default using a standard configuration table is level 9.
The levels are as follows:

Log Level Definition

0 Minimum logging.

1 Serious system failures and potential security problems.

2 Lost communications (network problems) and protocol failures.

3 Other serious failures.

4 Minor failures.

5 Message collection statistics.

6 Creation of error messages, VRFY and EXPN commands.

7 Delivery failures (for example, host or user unknown).

8 Successful deliveries and alias database rebuilds.

9 Messages being deferred (for example, due to a host being down).

10 Database expansion (alias, forward, and userdb lookups).

11 NIS errors and end-of-job processing.

12 Logs all SMTP connections.

13 Logs bad user shells, files with improper permissions, and other questionable
situations.

14 Logs refused connections.

15 Log all incoming and outgoing SMTP commands.

20 Logs attempts to run locked queue files. These are not errors, but can be useful to note
if your queue appears to be clogged.

30 Lost locks (only if using lockf instead of flock).

308 AIX Version 7.1: Files Reference

File Modes

The modes used for files depend on what functionality you want and the level of security you require.

The database that sendmail actually uses is represented by the following file:

/etc/mail/aliases.db
Berkeley DB database

The mode on these files should match the mode of /etc/mail/aliases. If aliases is writable and the files
are not, users will be unable to reflect their desired changes through to the actual database. However,
if aliases is read-only and DBM files are writable, a slightly sophisticated user can arrange to steal mail
anyway.

If your DBM files are not writable, or you do not have auto-rebuild enabled (with the AutoRebuildAliases
option), then you must be careful to reconstruct the alias database each time you change the text version:

newaliases

If this step is ignored or forgotten, any intended changes will be lost.

Connection Caching

When processing the queue, sendmail will try to keep the last few open connections open to avoid
startup and shutdown costs. This only applies to IPC connections.

When trying to open a connection, the cache is first searched. If an open connection is found, it is probed
to see if it is still active by sending a RSET command. It is not an error if this fails; instead, the connection
is closed and reopened.

Two parameters control the connection cache. The ConnectionCacheSize (k) option defines the number
of simultaneous open connections that will be permitted. If it is set to zero, connections will be closed as
quickly as possible. The default is one. This should be set as appropriate for your system size; it will limit
the amount of system resources that sendmail will use during queue runs. Never set this higher than 4.

The ConnectionCacheTimeout (K) option specifies the maximum time that any cached connection will be
permitted to idle. When the idle time exceeds this value, the connection is closed. This number should be
small (under ten minutes) to prevent you from grabbing too many resources from other hosts. The default
is five minutes.

Name Server Access

If you want machine exchange (MX) support, you must be using Domain Name Services (DNS).

The ResolverOptions(I) option allows you to tweak name server options. The command line takes a series
of flags as documented inresolver(3) (with the leading "RES_" deleted). Each can be preceded by an
optional `+' or `-'. For example, the line:

O ResolverOptions=+AAONLY -DNSRCH

turns on the AAONLY (Accept Authoritative Answers only) and turns off the DNSRCH (search the domain
path) options. Most resolver libraries default DNSRCH, DEFNAMES, and RECURSE flags on and all others
off. You can also include "HasWildcardMX" to specify that there is a wildcard MX record matching
your domain; this turns off MX matching when canonicalizing names, which can lead to inappropriate
canonicalizations.

Moving the Per-User Forward Files

Some sites mount each user's home directory from a local disk on their workstation, so that local access
is fast. However, the result is that .forward file lookups are slow. In some cases, mail can even be
delivered on machines inappropriately because of a file server being down. The performance can be
especially bad if you run the automounter.

The ForwardPath (J) option allows you to set a path of forward files. For example, the config file line:

O ForwardPath=/var/forward/$u:$z/.forward.$w

Files Reference 309

would first look for a file with the same name as the user's login in /var/forward. If that is not found (or is
inaccessible), the file ".forward.machinename" in the user's home directory is searched.

If you create a directory such as /var/forward, it should be mode 1777 (that is, the sticky bit should be
set). Users should create the files mode 644.

Free Space

On systems that have one of the system calls in the statfs(2) family (including statvfs and ustat), you can
specify a minimum number of free blocks on the queue file system using the MinFreeBlocks (b) option.
If there are fewer than the indicated number of blocks free on the filesystem on which the queue is
mounted, the SMTP server will reject mail with the 452 error code. This invites the SMTP client to try
again later.

Attention: Be careful not to set this option too high; it can cause rejection of e-mail when that mail
would be processed without difficulty.

Maximum Message Size

To avoid overflowing your system with a large message, the MaxMessageSize option can set an absolute
limit on the size of any one message. This will be advertised in the ESMTP dialogue and checked during
message collection.

Privacy Flags

The PrivacyOptions (p) option allows you to set certain "privacy" flags. Actually, many of them do not give
you any extra privacy, rather just insisting that client SMTP servers use the HELO command before using
certain commands or adding extra headers to indicate possible security violations.

The option takes a series of flag names; the final privacy is the inclusive or of those flags. For example:

O PrivacyOptions=needmailhelo, noexpn

insists that the HELO or EHLO command be used before a MAIL command is accepted and disables the
EXPN command.

The flags are detailed in RFC 1123 S 5.1.6.

Send to Me Too

Normally, sendmail deletes the (envelope) sender from any list expansions. For example, if "linda" sends
to a list that contains "linda" as one of the members, she will not get a copy of the message. If the -m
(me too) command line flag, or if the MeToo (m) option is set in the configuration file, this behavior is
suppressed.

C and F — Define Classes

Classes of phrases may be defined to match on the left hand side of rewrite rules, where a "phrase" is
a sequence of characters that do not contain space characters. For example, a class of all local names
for this site might be created so that attempts to send to oneself can be eliminated. These can either be
defined directly in the configuration file or read in from another file. Classes are named as a single letter or
a word in {braces}. Class names beginning with lowercase letters and special characters are reserved for
system use. Classes defined in config files may be given names from the set of uppercase letters for short
names or beginning with an uppercase letter for long names.

Ccphrase1 phrase2...
Fcfile

The first form defines the class c to match any of the named words. It is permissible to split them among
multiple lines; for example, the two forms:

CHmonet ucbmonet

and

310 AIX Version 7.1: Files Reference

CHmonet
CHucbmonet

are equivalent. The "F" form reads the elements of the class c from the named file.

Elements of classes can be accessed in rules using $= or $~. The $~ (match entries not in class) only
matches a single word; multi-word entries in the class are ignored in this context.

The class $=w is set to be the set of all names this host is known by. This can be used to match local host
names.

The class $=k is set to be the same as $k, that is, the UUCP node name.

The class $=m is set to the set of domains by which this host is known, initially just $m.

The class $=t is set to the set of trusted users by the T configuration line. If you want to read trusted users
from a file, use Ft/file/name.

The class $=n can be set to the set of MIME body types that can never be eight to seven bit encoded. It
defaults to "multipart/signed". Message types "message/*" and "multipart/*" are never encoded directly.
Multipart messages are always handled recursively. The handling of message/* messages are controlled
by class $=s. The class $=e contains the Content-Transfer-Encodings that can be 8->7 bit encoded. It is
predefined to contain "7bit", "8bit", and "binary". The class $=s contains the set of subtypes of message
that can be treated recursively. By default it contains only "rfc822". Other "message/*" types cannot be
8->7 bit encoded. If a message containing eight-bit data is sent to a seven-bit host, and that message
cannot be encoded into seven bits, it will be stripped to 7 bits.

The three classes $=U, $=Y, and $=Z are defined to describe the hosts requiring the use of a uucp mailer.
Specifically, $=U should contain all hosts requiring the uucp-old mailer. $=Y should contain all hosts
requiring the uucp-new mailer. Finally, $=Z should contain all hosts requiring the uucp-uudom mailer.
Each uucp host should belong to one of these classes.

Sendmail can be compiled to allow a scanf(3) string on the F line. This lets you do simplistic parsing of
text files. For example, to read all the user names in your system /etc/passwd file into a class, use:

FL/etc/passwd %[^:]

which reads every line up to the first colon.

Changing the Host Name

Cw contains all the possible names for the local host. It defines aliases. Cw specifies the name and all
aliases for your host system. If your system uses different names for two different network connections,
enter both names as part of the host name class. If you do not define both names, mail sent to the
undefined name is returned to the sender.

CwCw alias aliasn...

By default, the sendmail command reads what has been set with the hostname command and uses it to
initialize the host and domain name macros and classes. Change the configuration file macros only if you
want the sendmail host and domain names to be different from those set by the hostname command.

To change the host name:

1. Enter the command:

vi /etc/mail/sendmail.cf
2. Find the lines beginning with Dj and Dw. Dj and Dw override the host and domain names set with

"hostname".
3. Replace Dj and Dw with the new hostname information. For example, if your hostname is
brown.newyork.abc.com, and you have one alias, brown2, enter:

4. Save the file and exit the editor.

Creating a Class Using a File

Files Reference 311

To define a class whose members are listed in an external file (one member per line), use a control line
that begins with the letter F. The syntax for the F class definition is:

FClass FileName [Format]

Class is the name of the class that matches any of the words listed in FileName. Filename is the full
path name of file (for convenience, you may wish to put the file in the /etc/mail directory). Format is
an optional scanf subroutine format specifier that indicates the format of the elements of the class in
FileName. The Format specifier can contain only one conversion specification.

M — Define Mailer

Programs and interfaces to mailers are defined in this line. The format is:

Mname, {field=value}*

where name is the name of the mailer (used internally only) and the "field=name" pairs define attributes
of the mailer. Fields are:

Field Description

Path The path name of the mailer

Flags Special flags for this mailer

Sender Rewrite set(s) for sender addresses

Recipient Rewrite set(s) for recipient addresses

Argv An argument vector to pass to this mailer

Eol The end-of-line string for this mail

Maxsize The maximum message length to this mailer

maxmessages The maximum message delivers per connection

Linelimit The maximum line length in the message body

Directory The working directory for the mailer

Userid The default user and group ID to run

Nice The nice(2) increment for the mailer

Charset The default character set for 8-bit characters

Type The MTS type information (used for error messages)

Wait The maximum time to wait for the mailer

/ The root directory for the mailer

Queuegroup The default queue group for the mailer.

Only the first character of the field name is checked.

The flags in the following list may be set in the mailer description. Any other flags may be used freely
to conditionally assign headers to messages destined for particular mailers. Flags marked with - are not
interpreted by the sendmail binary; these are conventionally used to correlate to the flags portion of the
H line. Flags marked with = apply to the mailers for the sender address rather than the usual recipient
mailers.

Flag Description

a Run Extended SMTP (ESMTP) protocol (defined in RFCs 1651, 1652, and 1653). This flag
defaults on if the SMTP greeting message includes the word "ESMTP".

312 AIX Version 7.1: Files Reference

Flag Description

A Look up the user part of the address in the alias database. Normally this is only set for local
mailers.

b Force a blank line on the end of a message. This is intended to work around some versions
of /bin/mail that require a blank line, but do not provide it themselves. It would not normally
be used on network mail.

c Do not include comments in addresses. This should only be used if you have to work around
a remote mailer that gets confused by comments. This strips addresses of the form "Phrase
<address>" or "address (Comment)" down to just "address".

C= If mail is received from a mailer with this flag set, any addresses in the header that do not
have an at sign ("@") after being rewritten by ruleset three will have the "@domain" clause
from the sender envelope address tacked on. This allows mail with headers of the form:

From: usera@hosta
To: userb@hostb, userc

to be rewritten automatically (although not reliably) as:

From: usera@hosta
To: userb@hostb, userc@hosta

d Do not include angle brackets around route-address syntax addresses. This is useful on
mailers that are going to pass addresses to a shell that might interpret angle brackets as I/O
redirection.

D- This mailer wants a "Date:" header line.

e This mailer is expensive to connect to, so try to avoid connecting normally. Any necessary
connection will occur during a queue run.

E Escape lines beginning with "From" in the message with a `>' sign.

f The mailer wants a -f from flag, but only if this is a network forward operation (that is, the
mailer will give an error if the executing user does not have special permissions).

F- This mailer wants a "From:" header line.

g Normally, sendmail sends internally generated error messages using the null return address
as required by RFC 1123. However, some mailers do not accept a null return address. If
necessary, you can set the g flag to prevent sendmail from obeying the standards; error
messages will be sent as from the MAILER-DAEMON (actually, the value of the $n macro).

h Uppercase should be preserved in host names for this mailer.

i Do User Database rewriting on envelope sender address.

I This mailer will be speaking SMTP to another sendmail, as such it can use special protocol
features. This option is not required (that is, if this option is omitted the transmission will still
operate successfully, although perhaps not as efficiently as possible).

j Do User Database rewriting on recipients as well as senders.

k Normally when sendmail connects to a host via SMTP, it checks to make sure that this is
not accidentally the same host name as might happen if sendmail is misconfigured or if a
long-haul network interface is set in loopback mode. This flag disables the loopback check.
It should only be used under very unusual circumstances.

K Currently unimplemented. Reserved for chunking.

l This mailer is local (that is, final delivery will be performed).

L Limit the line lengths as specified in RFC821. This deprecated option should be replaced by
the L= mail declaration. For historic reasons, the L flag also sets the 7 flag.

Files Reference 313

Flag Description

m This mailer can send to multiple users on the same host in one transaction. When a $u macro
occurs in the argv part of the mailer definition, that field will be repeated as necessary for all
qualifying users.

M- This mailer wants a "Message-Id:" header line.

n Do not insert a UNIX-style "From" line on the front of the message.

o Always run as the owner of the recipient mailbox. Normally sendmail runs as the sender
for locally generated mail or as "daemon" (actually, the user specified in the u option) when
delivering network mail. The normal behavior is required by most local mailers, which will
not allow the envelope sender address to be set unless the mailer is running as daemon. This
flag is ignored if the S flag is set.

p Use the route-addr style reverse-path in the SMTP "MAIL FROM:" command rather than
just the return address; although this is required in RFC821 section 3.1, many hosts do not
process reverse-paths properly. Reverse-paths are officially discouraged by RFC 1123.

P- This mailer wants a "Return-Path:" line.

q When an address that resolves to this mailer is verified (SMTP VRFY command), generate
250 responses instead of 252 responses. This will imply that the address is local.

Item Description

r Same as f, but sends an -r flag.

R Open SMTP connections from a "secure" port. Secure ports are not secure except on UNIX
machines, so it is unclear that this adds anything.

s Strip quote characters (" and \) off the address before calling the mailer.

S Do not reset the userid before calling the mailer. This would be used in a secure environment
where sendmail ran as root. This could be used to avoid forged addresses. If the U= field is
also specified, this flag causes the userid to always be set to that user and group (instead of
leaving it as root).

u Uppercase should be preserved in user names for this mailer.

U This mailer wants UUCP-style "From" lines with the "remote from <host>" on the end.

w The user must have a valid account on this machine (getpwnam must succeed). If not, the
mail is bounced. This is required to get ".forward" capability.

x- This mailer wants a "Full-Name:" header line.

X This mailer wants to use the hidden dot algorithm as specified in RFC821; basically, any
line beginning with a dot will have an extra dot prepended (to be stripped at the other end).
This ensures that lines in the message containing a dot will not terminate the message
prematurely.

z Run Local Mail Transfer Protocol (LMTP) between sendmail and the local mailer. This is
a variant on SMTP defined in RFC 2033 that is specially designed for delivery to a local
mailbox.

0 Do not look up Mx records for hosts via SMTP.

3 Extend the list of characters converted to =XX notation when converting to Quoted-
Printable to include those that do not map cleanly between ASCII and EBCDIC. Useful
if you have IBM mainframes on site.

5 If no aliases are found for this address, pass the address through ruleset 5 for possible
alternate resolution. This is intended to forward the mail to an alternate delivery spot.

6 Strip headers to seven bits.

314 AIX Version 7.1: Files Reference

Item Description

7 Strip all output to seven bits. This is the default if the L flag is set. Note that clearing this
option is not sufficient to get full eight-bit data passed through sendmail. If the 7 option is
set, this is essentially always set, because the eighth bit was stripped on input. Note that this
option will only impact messages that did not have 8->7 bit MIME conversions performed.

8 If set, it is acceptable to send eight bit data to this mailer; the usual attempt to do 8->7 bit
MIME conversions will be bypassed.

9 If set, do limited 7->8 bit MIME conversions. These conversions are limited to text/plain
data.

: Check addresses to see if they begin ":include:". If they do, convert them to the "*include*"
mailer.

| Check addresses to see if they begin with a `|'. If they do, convert them to the "prog" mailer.

/ Check addresses to see if they begin with a `/'. If they do, convert them to the "*file*" mailer.

@ Look up addresses in the user database.

% Do not attempt delivery on initial recipient of a message or on queue runs unless the queued
message is selected using one of the -qI/-qR/-qS queue run modifiers or an ETRN request.

Note: Configuration files prior to level 6 assume the `A', `w', `5', `:', `|', `/', and `@' options on the mailer
named "local".

The mailer with the special name "error" can be used to generate a user error. The (optional) host field is
an exit status to be returned, and the user field is a message to be printed. The exit status may be numeric
or one of the values USAGE, NOUSER, NOHOST, UNAVAILABLE, SOFTWARE, TEMPFAIL, PROTOCOL, or
CONFIG to return the corresponding EX_ exit code. For example, the entry:

$#error $@ NOHOST $: Host unknown in this domain

on the RHS of a rule will cause the specified error to be generated and the "Host unknown" exit status to
be returned if the LHS matches. It is always available for use in O, S, and check_ ... rulesets and it cannot
be defined with M commands.

The mailer named "local" must be defined in every configuration file. This is used to deliver local
mail, and is treated specially in several ways. Additionally, three other mailers named "prog", "*file*",
and "*include*" may be defined to tune the delivery of messages to programs, files, and :include: lists
respectively. They default to:

Mprog, P=/bin/sh, F=lsoDq9, T=DNS/RFC822/X-Unix, A=sh -c $u
M*file*, P=[FILE], F=lsDFMPEuq9, T=DNS/RFC822/X-Unix, A=FILE $u
M*include*, P=/dev/null, F=su, A=INCLUDE $u

The Sender and Recipient rewrite sets may either be a simple ruleset ID or may be two IDs separated by
a slash If so, the first rewrite set is applied to envelope addresses, and the second is applied to headers.
Setting any value to zero disables the corresponding mailer-specific rewriting.

The Directory field is a path of directories to try. For example, the definition D=$z:/ tries to execute
the recipient's home directory, but if that is not available, it tries to execute in the root of the filesystem.
Use this on the prog mailer only, because some shells (e.g., csh) do not execute if they cannot read the
home directory. Because the queue directory usually cannot be read by unauthorized users, csh scripts
can fail if they are used as recipients.

The Userid field specifies the default user and group ID to run. It overrides the DefaultUser option q.v.
If the S mailer flag is also specified, the user and group ID will run in all circumstances. Use the form
user:group to set both the user and group ID. Either of these variables may be an integer or a symbolic
name that is looked up in the passwd and group files respectively.

The Charset field is used when converting a message to MIME. It is the character set used in the
Content-Type: header. If it is not set, the DefaultCharset option is used. If the DefaultCharset is not

Files Reference 315

set, the value unknown-8bit is used. The Charset field applies to the sender's mailer; not the recipient's
mailer. For example: if the envelope sender address is on the local network and the recipient is on an
external network, the character set is set from the Charset= field for the local network mailer, not the
external network mailer.

The Type field sets the type of information used in MIME error messages (as defined by RFC 1984). It
contains three values that are separated by slashes: the MTA type (a description of how hosts are named),
address type (a description of e-mail addresses), and diagnostic type (a description of error diagnostic
codes). Each must be a registered value or begin with X-. The default is dns/rfc822/smtp.

Mailer Specifications Examples

1. To specify a local delivery mailer enter:

Mlocal, P=/usr/bin/bellmail, F=lsDFMmn, S=10, R=20, A=mail $u

The mailer is called local. Its path name is /usr/bin/bellmail. The mailer uses the following
flags:

Item Description

l Specifies local delivery.

s Strips quotation marks from addresses.

DFM Requires Date:, From:, and Message-ID: fields.

m Delivers to multiple users.

n Does not need an operating system From line at the start of the message.

Rule set 10 should be applied to sender addresses in the message. Rule set 20 should be applied to
recipient addresses. Additional information sent to the mailer in the A field is the word mail and words
containing the recipient's name.

H — Define Header

The format of the header lines that sendmail inserts into the message are defined by the H line. The
syntax of this line is one of the following:

Hhname:htemplate

H[?mflags?]hname: htemplate

H[?${macro}?hname:htemplate

Continuation lines in this spec are reflected directly into the outgoing message. The htemplate is
macro expanded before insertion into the message. If the mflags (surrounded by question marks) are
specified, at least one of the specified flags must be stated in the mailer definition for this header to be
automatically output. If one of these headers is in the input, it is reflected to the output regardless of
these flags.

Some headers have special semantics that will be described later.

A secondary syntax allows validation of headers as they being read. To enable validation, use:

HHeader: $>Ruleset
HHeader: $>+Ruleset

The indicated Ruleset is called for the specified Header. Like other check_* rulesets, it can return
$#error to reject the message or $#discard to discard the message. The header is treated as a
structured field, so comments (in parentheses) are deleted before processing, unless the second form
$>+ is used.

For example, the following configuration lines:

316 AIX Version 7.1: Files Reference

HMessage-Id: $>CheckMessageId

SCheckMessageId
R<$+@$+> $@OK
R$* $#error $: Illegal Message-Id header

would refuse any message header that had a Message-Id: header of any of the following forms:

Message-Id: <>
Message-Id: some text
Message-Id: <legal test@domain> extra text

Message Headings in the sendmail.cf File

Lines in the configuration file that begin with a capital letter H, define the format of the headers used in
messages. The format of the H command is:

Lines in the configuration file that begin with a capital letter H, define the format of the headers used in
messages. The format of the H control line is:

H[?MailerFlags?]FieldName: Content

The variable parameters are defined as:

Parameter Definition

MailerFlags Determines whether the H line is used. This parameter is optional. If you supply
this parameter, surround it with ? (question marks). If the mailer requires the field
defined by this control line (as indicated in the mailer definition's flags field), then the
H control line is included when formatting the heading. Otherwise, the H control line
is ignored.

FieldName Contains the text displayed as the name of the field in the heading information.
Typical field names include From:, To:, and Subject:.

Content Defines the information that is displayed following the field name. Usually macros
specify this information.

These example lines are from a typical /etc/mail/sendmail.cf file:

Example Meaning

H?P?Return-Path:
<$g>

Defines a field called Return-Path that displays the content of the $g
macro (sender address relative to the recipient). The ?P? portion indicates
this line is only used if the mailer uses the P flag (the mailer requires a
Return-Path line). The header is generated only if the mailer has the
indicated flag. If the header appears in the input message, it is passed
through unchanged.

Files Reference 317

Example Meaning

HReceived: $?sfrom
$s $.by $j ($v/$Z)
id $i; $b

Defines a field called Received. This field includes:
$?sfrom $s $.

Displays the text from followed by the content of the $s macro if an s
macro is defined (sender's host name).

by $j
Displays the text by followed by the content of the $j macro (official
name for a specific location).

($v/$Z)
Displays the version of the sendmail command ($v) and the version
of the /etc/mail/sendmail.cf file ($Z), set off by parentheses and
separated by a slash.

id $i;
Displays the text id followed by the content of the $i macro (mail-
queue ID of the message) and a ; (semicolon).

$b
Displays the current date.

O — Set Option
There are several global options that can be set from a configuration file. The syntax of this line is:

O option=value

This sets option equal to value. The options supported are listed in the following table.

Option Description

AliasFile=spec, spec, ... Specify possible alias file(s). Each spec should be in the format class:: file where class:: is
optional and defaults to implicit if not included. Depending on how sendmail is compiled, valid
classes are:

implicit
search through a compiled-in list of alias file types, for back compatibility

hash
if NEWDB is specified

dbm
if NDBM is specified

stab
Internal symbol table. Not normally used unless there is no other database lookup

nis
if NIS is specified

If a list of specs are provided, sendmail searches them in order.

AliasWait=time-out Waits up to time-out (units default to minutes) for an @:@ entry to exist in the alias database
before starting up. If it does not appear in the time-out interval and the AutoRebuildAliases
option is also set, rebuild the database. Otherwise, issue a warning.

AllowBogusHELO Allows HELO SMTP commands that do not include a host name. Setting this violates RFC 1123
section 5.2.5, but is necessary to interoperate with several SMTP clients. If there is a value, it is
still checked for legitimacy.

BlankSub=c Sets the blank substitution character to c. Unquoted spaces in addresses are replaced by this
character. If not defined, it defaults to a space and no replacement is made.

CACERTPath Path to directory with certificates of CAs.

CACERTFile File containing one CA certificate.

CheckAliases Validate the RHS of aliases when rebuilding the alias database.

318 AIX Version 7.1: Files Reference

Option Description

CheckpointInterval=N Defines the queue checkpoint interval to every N addresses sent. If not specified, the default is
10. If your system crashes during delivery to a large list, this prevents retransmission to any but
the last recipients.

ClassFactor=fact The indicated factor is multiplied by the message class and subtracted from the priority. The
message class is determined by the Precedence: field in the user header and the P lines in the
configuration file. Messages with a higher Priority: will be favored. If not specified, the defaults
is 1800.

ClientCertFile The file containing the certificate of the client. This certificate is used when sendmail acts as
client.

ClientPortOptions=options Sets client SMTP options. The options are key=value pairs separated by commas. Known keys
are:

Port
Name/number of source port for connection. Default is any free port.

Addr
Address mask. Default is INADDR_ANY. Can be a numeric address in dot notation or a
network name.

Family
Address family. Default is INET.

SndBufSize
Size of TCP send buffer.

RcvBufSize
Size of TCP receive buffer.

Modifier
Flags for the daemon. Can be the following character:

h
Use name of interface for HELO command

If h is set, the name corresponding to the outgoing interface address (whether chosen via
the Connection parameter or the default) is used for the HELO/EHLO command.

ClientKeyFile The file containing the private key belonging to the client certificate.

ColonOkInAddr If set, colons are acceptable in e-mail addresses, for example:

 host:user

If not set, colons indicate the beginning of a RFC 822 group construct, illustrated below:

groupname: member1, member2, ... memberN;

Doubled colons are always acceptable, such as in

nodename::user

and proper routeaddr nesting is understood, for example:

<@relay:user@host>

This option defaults to on if the configuration version level is less than 6, for backward
compatibility. However, it must be set to off for full compatibility with RFC 822.

ConnectionCacheSize=N N is the maximum number of open connections that will be cached at a time. If not specified,
the default is 1. This delays closing the current connection until either this invocation of
sendmail connects to another host or it terminates. Setting it to 0 causes connections to
closed immediately. Because this consumes file descriptors, the connection cache should be
kept small: 4 is a practical maximum.

ConnectionCacheTimeout
=time-out

Timeout is the maximum amount of time a cached connection will be permitted to be idle. If this
time is exceeded, the connection is immediately closed. This value should be small: 10 minutes
is a practical maximum; the default is 5 minutes. Before sendmail uses a cached connection, it
always sends a RSET command to check the connection. If this fails, it reopens the connection.
This keeps your end from failing if the other end times out.

ConnectOnlyTo=address Can be used to override the connection address for testing purposes.

Files Reference 319

Option Description

ConnectionRateThrottle=N If set, allows no more than N incoming daemon connections in a one second period. This is
intended to flatten peaks and allow the load-average checking to cut in. If not specified, the
default is 0 (no limits).

ControlSocketName=name Defines the name of the control socket for daemon management. A running sendmail
daemon can be controlled through this named socket. Available commands are: help, restart,
shutdown, and status. The status command returns the current number of daemon children,
the maximum number of daemon children, free disk space blocks of the queue directory, and
the load average of the machine expressed as an integer. If not set, no control socket will be
available.

320 AIX Version 7.1: Files Reference

Option Description

DaemonPortOptions=options Set server SMTP options. Each instance of DaemonPortOptions leads to an additional incoming
socket. The options are key=value pairs. Known keys are:

Name
User-definable name for the daemon. Default is Daemon#. Is used for error messages and
logging.

To be able to send mail but not receive mail on a system, edit /etc/mail/sendmail.cf:

O DaemonPortOptions=Name=MTA

O DaemonPortOptions=NAME=NoMTA4, Family=inet, Addr=127.0.0.1

Port
Name/number of listening port. Default is smtp.

Addr
Address mask. Default is INADDR_ANY. This may be a numeric address in dot notation or a
network name.

Family
Address family. Default is INET (IPv4). IPv6 systems that need to accept IPv6 connections,
should add additional Family=inet6 DaemonPort Options lines.

Listen
Size of listen queue. Default is 10.

Modifier
Flags for the daemon. Can be a sequence, without delimiters, of the following characters:

a
Always require authentication.

b
Bind to interface through which mail has been received for the outgoing connection.

Note: Use the b flag only if outgoing mail can be routed through the incoming
connection's interface to its destination. No attempt is made to catch problems that
result from incorrectly configuring this parameter. It should only be used for virtual
hosting where each virtual interface can connect to every possible location. The b flag
can override the settings through ClientPort Options. In addition, sendmail will listen
on a new socket for each occurrence of the DaemonPortOptions subcommand in a
configuration file.

c
Perform hostname canonicalization (.cf). Can change the default for
hostname canonicalization in the sendmail.cf file. See the documentation for
FEATURE(nocanonify) in the/user/samples/tcpip/sendmail/README file.

f
Require fully qualified hostname (.cf). Cannot use addresses in the form user@host
unless they are directly submitted.

u
Allow unqualified addresses (.cf) (including sender addresses).

C
Do not perform hostname canonicalization. Can change the default for
hostname canonicalization in the sendmail.cf file. See the documentation for
FEATURE(nocanonify) in the/user/samples/tcpip/sendmail/README file.

E
Do not allow ETRN (see RFC 2476).

One way to specify a message submission agent (MSA) that always require authentication
is:

O DeamonPortOptions=Name=MSA,Port=587,M=Ea

Modifiers marked with (.cf) are effective only when used in the standard configuration file
(available through ${daemon_flags}) and cannot be used from the command line.

Files Reference 321

Option Description

DaemonPortOptions=options
cont.

SndBufSize
Size of TCP send buffer.

RcvBufSize
Size of TCP receive buffer children maximum number of children per daemon, see
MaxDaemonChildren.

DeliveryMode
Delivery mode per daemon, see DeliveryMode.

refuseLA
RefuseLA per daemon.

delayLA
DelayLA per daemon.

queueLA
QueueLA per daemon.

DefaultAuthInfo Filename that contains default authentication information for outgoing connections. This file
must contain the user ID, authorization ID, password (plain text), and the realm to use on
separate lines and must be readable only by root (or the trusted user). If no realm is specified,
$j is used.

DefaultCharSet=charset When a message that has 8-bit characters, but is not in MIME format, is converted to MIME (see
the EightBitMode option) a character set must be included in the Content-Type: header. This
character set is normally set from the Charset= field of the mailer descriptor. If that is not set,
the value of this option is used. If this option is not set, the value unknown-8bit is used.

DataFileBufferSize=threshold Sets threshold in bytes before a memory-based queue data file becomes disk-based. The
default is 4096 bytes.

DeadLetterDrop=file Defines the location of the systemwide dead.letter file, formerly hardcoded to /usr/tmp/
dead.letter. If this option is not set, sendmail will not attempt to save to a systemwide
dead.letter file in the event it cannot bounce the mail to the user or postmaster. Instead, it
will rename the qf file.

DefaultUser=user:group Set the default user ID for mailers to user:group. If group is omitted and user is a user name (as
opposed to a numeric user ID) the default group listed in the /etc/passwd file for that user is
used as the default group. Both user and group may be numeric. Mailers without the S flag in
the mailer definition will run as this user. When not specified, the default is 1:1. The value can
also be given as a symbolic user name.

DeliveryMode=x Deliver in mode x. Legal modes are:

i
Deliver interactively (synchronously).

b
Deliver in background (asynchronously).

q
Just queue the message (deliver during queue run).

d
Defer delivery and all map lookups (deliver during queue run).

Defaults to b if no option is specified, i if it is specified but given no argument (for example, Od
is equivalent to Odi). The -v command line flag sets this to i.

Note: For internal reasons, i does not work if a milter is enabled which can reject or delete
recipients. In that case the mode is changed to b.

DialDelay=sleeptime Dial-on-demand network connections can see time-outs if a connection is opened before the
call is set up. If this is set to an interval and a connection times out on the first connection
being attempted, sendmail will sleep for this amount of time and try again. This should give
your system time to establish the connection to your service provider. Units default to seconds,
so DialDelay=5 would use a five second delay. If not specified, the default is 0 (no retry).

322 AIX Version 7.1: Files Reference

Option Description

DontBlameSendmail
=option,option,...

In order to avoid possible cracking attempts caused by world- and group-writable files and
directories, sendmail does paranoid checking when opening most of its support files. However,
if a system must run with a group-writable /etc directory, then this checking must be turned
off. Note that turning off this checking will make your system more vulnerable to attack. The
arguments are individual options that turn off checking:

Safe
No special handling.

AssumeSafeChown
Assume that the chown call is restricted to root. Because some systems are set up to
permit regular users to give away their files to other users on some file systems, sendmail
often cannot assume that a given file was created by the owner, particularly when it is in a
writable directory. You can set this flag if you know that file giveaway is restricted on your
system.

ClassFileInUnsafeDirPath
When reading class files (using the F line in the configuration file), allow files that are in
unsafe directories.

DontWarnForwardFileInUnsafeDirPath
Prevent logging of unsafe directory path warnings for nonexistent forward files.

ErrorHeaderInUnsafeDirPath
Allow the file named in the ErrorHeader option to be in an unsafe directory.

FileDeliveryToHardLink
Allow delivery to files that are hard links.

FileDeliveryToSymLink
Allow delivery to files that are symbolic links.

ForwardFileInUnsafeDirPath
Allow .forward files in unsafe directories.

ForwardFileInUnsafeDirPathSafe
Allow .forward files that are in an unsafe directory to include references to program and
files.

ForwardFileIngroupWritableDirPath
Allow .forward files in group writable directories.

GroupWritableAliasFile
Allow group-writable alias files.

GroupWritableDirPathSafe
Change the definition of unsafe directory to consider group-writable directories to be safe.
World-writable directories are always unsafe.

GroupWritableForwardFileSafe
Accept group-writable .forward files.

GroupWritableIncludeFileSafe
Accept group-writable :include: files.

HelpFileinUnsafeDirPath
Allow the file named in the HelpFile option to be in an unsafe directory.

IncludeFileInUnsafeDirPath
Allow :include: files in unsafe directories.

Files Reference 323

Option Description

IncludeFileInUnsafeDirPathSafe
Allow .forward files that are in an unsafe directory to include references to program and
files.

IncludeFileIngroupWritableDirPath
Allow :include: files in group writable directories.

InsufficientEntropy
Try to use STARTTLS even if the PRGN for OpenSSL is not properly seeded despite the
security problems.

LinkedAliasFileInWritableDir
Allow alias files that are links in a writable directory.

LinkedClassFileInWritableDir
Allow class files that are links in writable directories.

LinkedForwardFileInWritableDir
Allow .forward files that are links in writable directories.

LinkedIncludeFileInWritableDir
Allow :include: files that are links in writable directories.

LinkedMapInWritableDir
Allow map files that are links in writable directories.

LinkedServiceSwitchFileInWritableDir
Allow the service switch file to be a link even if the directory is writable.

MapInUnsafeDirPath
Allow maps (such as hash, btree, and dbm files) in unsafe directories.

NonRootSafeAddr
Do not mark file and program deliveries as unsafe if sendmail is not running.

RunProgramInUnsafeDirPath
Run programs that are in writable directories.

RunWritableProgram
Run programs that are group- or world-writable.

TrustStickyBit
Allow group- or world-writable directories if the sticky bit is set on the directory. Do not set
this on systems which do not honor the sticky bit on directories.

WorldWritableAliasFile
Accept world-writable alias files.

WriteMapToHardLink
Allow writes to maps that are hard links.

WriteMapToSymLink
Allow writes to maps that are symbolic links.

WriteStatsToHardLink
Allow the status file to be a hard link.

WriteStatsToSymLink
Allow the status file to be a symbolic link.

Safe is the default. The details of these flags are described above. Use of this option is not
recommended.

DontExpandCnames The standards say that all host addresses used in a mail message must be fully canonical. For
example, if your host is named Cruft.Foo.ORG and also has an alias of FTP.Foo.ORG, the name
Cruft.Foo.ORG must be used at all times. This is enforced during host name canonicalization
($[... $] lookups). If this option is set, the protocols will be ignored and the wrong name will be
used. However, the IETF is moving toward changing this standard, so the behavior may become
acceptable. Please note that hosts downstream may still rewrite the address to be the true
canonical name.

DontInitGroups If set, sendmail will avoid using the initgroups(3) call. If you are running NIS, this causes
a sequential scan of the groups.byname map, which can cause your NIS server to be badly
overloaded in a large domain. The cost of this is that the only group found for users will be their
primary group (the one in the password file), which will make file access permissions somewhat
more restrictive. Has no effect on systems that do not have group lists.

324 AIX Version 7.1: Files Reference

Option Description

DontProbeInterfaces Sendmail normally finds the names of all interfaces active on your machine when it starts up
and adds their name to the $=w class of known host aliases. If you have a large number of
virtual interfaces or if your DNS inverse lookups are slow this can be time consuming. This
option turns off that probing. However, you will need to be certain to include all variant names in
the $=w class by some other mechanism.

DontPruneRoutes Sendmail tries to eliminate any unnecessary explicit routes when sending an error
message (as discussed in RFC 1123 S 5.2.6). For example, when sending an error
message to <@known1,@known2,@known3:user@unknown>, sendmail will strip off the
@known1,@known2 in order to make the route as direct as possible. However, if the RR option
is set, this will be disabled, and the mail will be sent to the first address in the route, even if
later addresses are known. This may be useful if you are caught behind a firewall.

DoubleBounceAddress =error-
address

If an error occurs when sending an error message, send the error report to the indicated
address. This is termed a double bounce because it is an error bounce that occurs when trying
to send another error bounce. The address is macro expanded at the time of delivery. If not set,
it defaults to postmaster.

Item Description

EightBitMode=action Set handling of eight-bit data. There are two kinds of eight-bit data:

• Data declared as eight-bit using the BODY=8BITMIME ESMTP declaration
or the -B8BITMIME command line flag

• Undeclared 8-bit data, which is input that just happens to be eight bits.

There are three basic operations that can happen:

• Undeclared 8-bit data can be automatically converted to 8BITMIME.
• Undeclared 8-bit data can be passed as-is, without conversion to MIME.
• Declared 8-bit data can be converted to 7-bits for transmission to a

non-8BITMIME mailer.

Possible actions are:

s
Reject undeclared 8-bit data (strict).

m
Convert undeclared 8-bit data to MIME (mime).

p
Pass undeclared 8-bit data (pass).

In all cases properly declared 8BITMIME data will be converted to 7BIT as
needed.

ErrorHeader=file-or-
message

Prepend error messages with the indicated message. If it begins with a
slash (/), it is assumed to be the pathname of a file containing a message,
which is the recommended setting. Otherwise, it is a literal message. The
error file might contain the name, e-mail address, and/or phone number of a
local postmaster who could provide assistance to end users. If the option is
missing or null, or if it names a file which does not exist or are not readable,
no message is printed.

Files Reference 325

Item Description

ErrorMode=x Dispose of errors using mode x. The values for x are:

p
Print error messages (default).

q
No messages, just give exit status.

m
Mail back errors.

w
Write back errors (mail if user not logged in).

e
Mail back errors and give zero exit status always.

.llbackMXhost=fallbackh
ost

If specified, the fallbackhost acts like a very low priority MX on every
host. This is intended to be used by sites with poor network connectivity.
Messages which are undeliverable due to temporary address failures, such
as in a DNS failure, also go to the FallBackMX host.

FallBackSmartHost=host
name

If specified, the FallBackSmartHost is be used in a last-ditch effort for each
host.

FastSplit If set to a value greater than zero (the default is one), it suppresses the
MX lookups on addresses when they are initially sorted, that is, for the first
delivery attempt. This usually results in faster envelope splitting unless the
MX records are readily available in a local DNS cache.

ForkEachJob If set, deliver each job that is run from the queue in a separate process.
Use this option if you are short of memory, because the default tends
to consume considerable amounts of memory while the queue is being
processed.

ForwardPath=path Sets the path for searching for users' .forward files. The default is
$z/.forward. Some sites that use the automounter may prefer to change
this to /var/forward/$u to search a file with the same name as the user
in a system directory. It can also be set to a sequence of paths separated by
colons. Sendmail stops at the first file it can successfully and safely open.
For example,

/var/forward/$u:$z/.forward

will search first in /var/forward/username and then in
~username/.forward, but only if the first file does not exist.

HelpFile=file Specifies the help file for SMTP. If no file name is specified, helpfile is
used.

HoldExpensive If an outgoing mailer is marked as being expensive, do not connect
immediately. This requires that queueing be compiled in, because it will
depend on a queue run process to actually send the mail.

HostsFile=path Specifies the path to the hosts database, normally /etc/hosts. This option
is only consulted when sendmail is canonicalizing addresses, and then only
when files is in the hosts service switch entry. In particular, this file is
never used when looking up host addresses; that is under the control of the
system gethostbyname(3) routine.

326 AIX Version 7.1: Files Reference

Item Description

HostStatusDirectory=pat
h

Sets the location of the long term host status information. When set,
information about the status of hosts (such as if the host down or not
accepting connections) will be shared between all sendmail processes.
Normally, this information is only held within a single queue run. This option
requires a connection cache of at least 1 to function. If the option begins
with a leading /, it is an absolute pathname; otherwise, it is relative to the
mail queue directory. A suggested value for sites desiring persistent host
status is .hoststat, which is a subdirectory of the queue directory.

IgnoreDots Ignore dots in incoming messages. This is always disabled when reading
SMTP mail, and as a result, dots are always accepted.

LDAPDefaultSpec=spec Sets a default map specification for LDAP maps. The value should only
contain LDAP specific settings such as -h host -p port -d bindDN.
The settings will be used for all LDAP maps unless the individual map
specification overrides a setting. This option should be set before any LDAP
maps are defined.

LogLevel=n Set the log level to n. Defaults to 9.

Mxvalue Set the macro x to value. This is intended only for use from the command
line. The -M flag is preferred.

MatchGECOS Allow fuzzy matching on the GECOS field. If this flag is set, and the usual
user name lookups fail (that is, there is no alias with this name and a
getpwnam fails), sequentially search the password file for a matching entry
in the GECOS field. This also requires that MATCHGECOS be turned on
during compilation. This option is not recommended.

Note: Fuzzy matching is performed only on the NIS modules and on local
users in the system.

MaxAliasRecursion=N N is the maximum depth of alias recursion. Default is 10.

MaxDaemonChildren=N If set, sendmail will refuse connections when it has more than N children
processing incoming mail or automatic queue runs. This does not limit the
number of outgoing connections. If not set, there is no limit to the number of
children; the system load averaging will controls this.

If the default DeliveryMode (background) is used, then sendmail may create
an almost unlimited number of children (depending on the number of
transactions and the relative execution times of mail reception and mail
delivery). If the limit should be enforced, then a DeliveryMode other than
background must be used. If not set, there is no limit to the number of
children, that is, the system load average controls this.

MaxHeadersLength=N N is the maximum length of the sum of all headers. This can be used to
prevent a denial of service attack. The default is no limit.

MaxHopCount=N The maximum hop count. Messages that have been processed more than N
times are assumed to be in a loop and are rejected. Default is 25.

MaxMessageSize=N Specify the maximum message size to be advertised in the ESMTP EHLO
response. Messages larger than N will be rejected.

MaxMimeHeaderLength
=N[/M]

Sets the maximum length of certain MIME header field values to N
characters. If M is specified, certain headers that take parameters will use M
instead of N. If M is not specified, these headers will use one half of N. By
default, these values are 0, which indicates no checks are done.

Files Reference 327

Item Description

MaxQueueRunSize=N N is the maximum number of jobs that will be processed in a single queue
run. If not set, there is no limit on the size. If you have very large queues
or a very short queue run interval this could be unstable. However, because
the first N jobs in queue directory order are run (rather than the N highest
priority jobs) this should be set as high as possible to avoid losing jobs that
happen to fall late in the queue directory.

Note: This option also restricts the number of entries printed by mailq. That
is, if the MaxQueueRunSize is set to a value N larger than zero, then only N
entries are printed per queue group.

MaxRecipientsPerMessa
ge =N

The maximum number of recipients that will be accepted per message in an
SMTP transaction. If not set, there is no limit on the number of recipients per
envelope.

Note: Setting this too low can interfere with sending mail from MUAs that
use SMTP for initial submission.

MeToo Send to me too, even if I am in an alias expansion. This option is deprecated
and will be removed from a future version.

MinFreeBlocks=N Sets at least N blocks free on the file system that holds the queue files
before accepting e-mail via SMTP. If there is insufficient space, sendmail
gives a 452 response to the MAIL command and invites the sender to try
again later.

MinQueueAge=age Do not process any queued jobs that have been in the queue less than the
indicated time interval. This promotes system responsiveness by processing
the queue frequently without taxing the system by trying jobs too often. The
default units are minutes.

MustQuoteChars=s Sets the list of characters that must be quoted if used in a full name that is
in the phrase part of a phrase <address> syntax. The default is '.. The
characters @,;:\()[] are always added to this list.

NoRecipientAction The action to take when you receive a message that has no valid recipient
headers, such as To:, Cc:, or Bcc:. It can be:

None
Passes the message on unmodified, which violates the protocol.

Add-To
Adds a To: header with any recipients it can find in the envelope (which
might expose Bcc: recipients).

Add-To-Undisclosed
Adds a header To: undisclosed-recipients:; to make the header
legal without disclosing anything.

Add-Bcc
Adds an empty Bcc: header.

OldStyleHeaders Assume that the headers may be in old format with spaces delimit names.
This actually turns on an adaptive algorithm: if any recipient address
contains a comma, parenthesis, or angle bracket, it will be assumed that
commas already exist. If this flag is not on, only commas delimit names.
Headers are always output with commas between the names. Defaults to
off.

328 AIX Version 7.1: Files Reference

Item Description

OperatorChars=charlist The list of characters that are considered to be operators, that is, characters
that delimit tokens. All operator characters are tokens by themselves;
sequences of non-operator characters are also tokens. White space
characters separate tokens but are not tokens themselves. For example,
AAA.BBB has three tokens, but AAA BBB has two. If not set, OperatorChars
defaults to .:@[]". In addition, the characters "()<>,;" are always
operators. Note that OperatorChars must be set in the configuration file
before any rulesets.

PidFile=filename Sets the filename of the pid file. Default is PATHSENDMAILPID. The filename
is macro-expanded before it is opened.

PostmasterCopy=postma
ster

If set, copies of error messages will be sent to the named postmaster. Only
the header of the failed message is sent. Errors resulting from messages
with a negative precedence will not be sent. Because most errors are user
problems, this is not a good idea on large sites, and may contain privacy
violations. The address is macro expanded at the time of delivery. Defaults
to no postmaster copies.

Files Reference 329

Item Description

PrivacyOptions=opt,opt,..
.

Sets privacy options. These are a way of insisting on stricter adherence to
the SMTP protocol. The options can be one of the following:

public
Allow open access.

needmailhelo
Insist on HELO or EHLO command before MAIL.

needexpnhelo
Insist on HELO or EHLO command before EXPN.

noexpn
Do not allow EXPN, implies noverb.

needvrfyhelo
Insist on HELO or EHLO command before VRFY.

novrfy
Do not allow VRFY.

noetrn
Do not allow ETRN.

noverb
Do not allow VERB.

restrictmailq
Restrict mailq command. If mailq is restricted, only people in the same
group as the queue directory can print the queue.

restrictqrun
Restrict -q command line flag. If queue runs are restricted, only root and
the owner of the queue directory can run the queue.

noreceipts
Do not return success DSNs.

nobodyreturn
Do not return the body of a message with DSNs.

goaway
Do not allow SMTP status queries. Sets all flags except noreceipts,
restrictmailq, restrictqrun, noetrn, and nobodyreturn.

authwarnings
Put X-Authentication-Warning: headers in messages. Authentication
Warnings add warnings about various conditions that may indicate
attempts to spoof the mail system, such as using an nonstandard queue
directory.

Item Description

ProcessTitlePrefix=string Prefix the process title shown on ps listings with string. The string will be
macro processed.

QueueDirectory=dir Use the named dir as the queue directory. To use multiple queues,
supply a value ending with an asterisk. For example, entering /var/spool/
mqueue/q* will use all of the directories or symbolic links to directories
beginning with q in /var/spool/mqueue as queue directories. Do not change
the queue directory structure while sendmail is running.

330 AIX Version 7.1: Files Reference

Item Description

QueueFactor=factor Use factor as the multiplier in the map function to decide when to just queue
up jobs rather than run them. This value is divided by the difference between
the current load average and the load average limit (QueueLA option)
to determine the maximum message priority that will be sent. Default is
600000.

QueueLA=LA When the system load average exceeds LA, just queue messages, do not try
to send them. Defaults to 8 multiplied by the number of processors online
on the system, if that can be determined.

QueueSortOrder=algorith
m

Sets the algorithm used for sorting the queue. Only the first character of the
value is used. Legal values are:

host
Orders by the name of the first host name of the first recipient. Makes
better use of the connection cache, but may tend to process low priority
messages that go to a single host over high priority messages that go to
several hosts; it probably should not be used on slow network links.

filename
Orders by the name of the queue file name. Saves the overhead of
reading all of the queued items before starting the queue run.

time
Orders by the submission time. Should not be used because it allows
large, bulk mail to go out before smaller, personal mail. May be
appropriate on certain hosts with very fast connections.

priority
Orders by message priority. Is the default.

QueueTimeout=time-out Do not use. Use Timeout.queuereturn.

RandFile Name of file containing random data or the name of the socket if EGD
is used. A required prefix egd: or file: specifies the type. STARTTLS
requires this filename if the compile flag HASURANDOM is not set (see /
user/samples/tcpip/sendmail/README).

ResolverOptions=options Set resolver options. Values can be set using +flag and cleared using -flag.
Available flags are:

• debug
• aaonly
• usevc
• primary
• igntc
• recurse
• defnames
• stayopen
• dnsrch

The string HasWildcardMX (without a + or -) can be specified to turn off
matching against MX records when doing name canonicalizations.

Note: In previous releases, this option indicated that the name server
be responding in order to accept addresses. This has been replaced by
checking to see if the DNS method is listed in the service switch entry for the
hosts service.

Files Reference 331

Item Description

RrtImpliesDsn If this option is set, a ReturnReceipt-To: header causes the request of a
DSN to be sent to the envelope sender as required by RFC1891, not to the
address given in the header.

RunAsUser=user The user parameter may be a user name (looked up in /etc/passwd) or
a numeric user ID. Either form can have :group attached, group can be
numeric or symbolic. If set to a non-zero/non-root value, sendmail will
change to this user ID shortly after startup. This avoids a certain class of
security problems. However, this means that all .forward and :include: files
must be readable by the indicated user and all files to be written must be
writable by user. Also, all file and program deliveries will be marked unsafe
unless the option DontBlameSendmail=NonRootAddrSafe is set, in which
case the delivery will be done as user. It is also incompatible with the
SafeFileEnvironment option. It may not actually add much to security on
an average system, and may in fact detract from security, because other file
permissions must be loosened. However, it may be useful on firewalls and
other places where users do not have accounts and the aliases file is well
constrained.

RecipientFactor=fact The indicated factor is added to the priority for each recipient, thus lowering
the priority of the job. This value penalizes jobs with large numbers of
recipients. Defaults to 30000.

RefuseLA=LA When the system load average exceeds LA, refuse incoming SMTP
connections. Defaults to 12 multiplied by the number of processors online
on the system, if that can be determined.

RetryFactor=fact The factor is added to the priority every time a job is processed. Each time
a job is processed, its priority will be decreased by the indicated value. In
most environments this should be positive, because hosts that are down
may be down for a long time. Default is 90000.

SafeFileEnvironment=dir If this option is set, sendmail will do a chroot(2) call into the indicated
directory before doing any file writes. If the file name specified by the user
begins with dir, that partial path name will be stripped off before writing. For
example, if the SafeFileEnvironment variable is set to /safe then aliases
of /safe/logs/file and /logs/file actually indicate the same file.
Additionally, if this option is set, sendmail will refuse to deliver to symbolic
links.

SaveFromLine Save From lines at the front of headers. They are assumed to be redundant
and are discarded.

SendMimeErrors If set, send error messages in MIME format (see RFC2045 and RFC1344 for
details). If disabled, sendmail will not return the DSN keyword in response
to an EHLO and will not do Delivery Status Notification processing as
described in RFC1891.

ServerCertFile File containing the certificate of the server. This certificate is used when
sendmail acts as server.

ServerKeyFile File containing the private key belonging to the server certificate.

332 AIX Version 7.1: Files Reference

Item Description

ServiceSwitchFile=filena
me

If your host operating system has a service switch abstraction, that service
will be consulted and this option is ignored. Otherwise, this is the name of a
file that provides the list of methods used to implement particular services.
The syntax is a series of lines, each of which is a sequence of words. The
first word is the service name, and following words are service types. The
services that sendmail consults directly are aliases and hosts. Service
types can be dns, nis, nisplus, or files. The appropriate support must be
compiled in before the service can be referenced. If ServiceSwitchFile is
not specified, it defaults to /etc/mail/service.switch. If that file does not
exist, the default switch is

aliases files
hosts dns nis files

The default file is /etc/mail/service.switch.

SevenBitInput Strip input to seven bits for compatibility with old systems. This should not
be necessary.

SingleLineFromHeader If set, From: lines that have embedded newlines are unwrapped onto one
line. This is to get around a bug in Lotus Notes® that apparently cannot
understand legally wrapped RFC822 headers.

SingleThreadDelivery If set, a client machine will never try to open two SMTP connections to a
single server machine at the same time, even in different processes. That
is, if another sendmail is already talking to some host, a new sendmail
will not open another connection. Although this reduces the load on the
other machine, it can cause mail to be delayed. For example, if one
sendmail is delivering a huge message, other sendmail processes will
not be able to send even small messages. Also, it requires another file
descriptor (for the lock file) per connection, so you may have to reduce
the ConnectionCacheSize option to avoid running out of per-process file
descriptors. Requires the HostStatusDirectory option.

SmtpGreetingMessage
=message

Specifies the message to print when the SMTP server starts up.

Defaults to $j Sendmail $v ready at $b.

StatusFile=file Log summary statistics in the named file. If no file name is specified,
statistics is used. If not set, no summary statistics will be saved. This
file does not grow in size. It can be printed using the mailstats(8) program.

SuperSafe Always instantiate the queue file, even if you are going to attempt immediate
delivery. Sendmail always instantiates the queue file before returning
control to the client under any circumstances. This should always be set.

TempFileMode=mode Specifies the file mode for queue files. It is interpreted in octal by default.
Default is 0600.

Timeout.type=time-out Sets time-out values. For more information, see “Read Timeouts” on page
305.

TimeZoneSpec=tzinfo Set the local time zone info to tzinfo. If this is not set, the TZ environment
variable is cleared and the system default is used. If set but null, the user's
TZ variable is used. If set and non-null, the TZ variable is set to this value.

TrustedUser=user The user parameter can be a user name (looked up in /etc/passwd) or a
numeric user ID. Trusted user for file ownership and starting the daemon.
If set, generated alias databases and the control socket (if configured) will
automatically be owned by this user.

Files Reference 333

Item Description

TryNullMXList If this system is the best (that is, lowest preference) MX for a given host,
its configuration rules should detect this situation and treat that condition
specially by forwarding the mail to a UUCP feed, treating it as local, and
so on. However, in some cases, such as in the case with Internet firewalls,
you may want to try to connect directly to that host as though it had no MX
records at all. Setting this option causes sendmail to try this. Unfortunately,
errors in your configuration are likely to be diagnosed as "host unknown" or
"message timed out" instead of something more meaningful. This option is
not recommended.

UnixFromLine=fromline Defines the format used when sendmail must add a UNIX-style From line,
such as a line beginning From<space>user). Defaults to From $g $d. Do
not change this unless your system uses a different mailbox format.

UnsafeGroupWrites If set, :include: and .forward files that are group writable are considered
unsafe, and they will not be able to reference programs or write directly to
files. World writable :include: and .forward files are always unsafe.

UserDatabaseSpec
=udbspec

The user database specification.

Verbose Run in Verbose mode. If this is set, sendmail adjusts options
HoldExpensive and DeliveryMode so that all mail is delivered completely
in a single job so that you can see the entire delivery process. The Verbose
option should never be set in the configuration file; it is intended for
command line use only.

XscriptFileBufferSize
=threshold

Defines the threshold in bytes, before a memory-based queue transcript file
becomes disk-based. The default is 4096 bytes.

All options can be specified on the command line using the -O or -o flag, but most will
cause sendmail to relinquish its setuid permissions. The options that will not cause this
are SevenBitInput, EightBitMode, MinFreeBlocks, CheckpointInterval, DeliveryMode, ErrorMode,
IgnoreDots, SendMimeErrors, LogLevel, OldStyleHeaders, PrivacyOptions, SuperSafe, Verbose,
QueueSortOrder, MinQueueAge, DefaultCharSet, DialDelay, NoRecipientAction, ColonOkInAddr,
MaxQueueRunSize, SingleLineFromHeader, and AllowBogusHELO. Actually, PrivacyOptions given on
the command line are added to those already specified in the sendmail.cf file and cannot be reset. Also,
M (define macro) when defining the r or s macros is also considered safe.

P - Precedence Definitions

Values for the "Precedence:" field may be defined using the P control line. The syntax of this field is:

Pname=num

When the name is found in a "Precedence:" field, the message class is set to num. Higher numbers
mean higher precedence. Numbers less than zero have the special property that if an error occurs during
processing, the body of the message will not be returned; this is expected to be used for "bulk" mail such
as through mailing lists. The default precedence is zero. For example, the list of default precedences is:

• Pfirst-class=0
• Pspecial-delivery=100
• Plist=-30
• Pbulk=-60
• Pjunk=-100

V - Configuration Version Level

334 AIX Version 7.1: Files Reference

To provide compatibility with old configuration files, the V line has been added to define basic semantics
of the configuration file. This is not intended as long term support. These compatibility features may be
removed in future releases.

Note: Configuration version levels are independent of configuration file version numbers. For example,
version number 8.9 configuration files use version level 8 configurations.

"Old" configuration files are defined as version level one.

Version level two files make the following changes:

1. Host name canonicalization ($[... $]) appends a dot if the name is recognized. This gives the
configuration file a way to determine if a match occurred. This initializes the host map with the -a.
flag. You can reset it to anything else by declaring the map explicitly.

2. Default host name extension is consistent throughout processing. Version level one configurations
turned off domain extension during certain points in processing by adding the local domain name.
Version level two configurations include a trailing dot to indicate that the name is already canonical.

3. Local names that are not aliases are passed through a new distinguished ruleset five. This can be used
to append a local relay. This can be prevented by resolving the local name by using the @ symbol as
a prefix (for example, @vikki). Something that resolves to a local mailer and a user name of vikki
will be passed through ruleset five, but a user name of @vikki will have the @ prefix stripped, will not
be passed through to ruleset five, but will otherwise be treated the same as the prior example. The
exception is that this might be used to implement a policy where mail sent to vikki is handled by a
central hub but mail sent to vikki@localhost is delivered directly.

Version level three files allow # initiated comments on all lines. Exceptions are backslash escaped #
marks and the $# syntax.

Version level four files are equivalent to level three files.

Version level five files change the default definition of $w to be the first component of the hostname.

Version level six configuration files change many of the local processing options (i.e., aliasing and
matching the address beginning for the | character) to mailer flags. This allows fine grained control over
the special local processing. Version level six files may also use long option names. The ColonOkInAddr
option (which allows colons in the local part of the address) defaults to on in configuration files with lower
version numbers. The configuration file requires additional "intelligence" to properly handle the RFC 822
group construct.

Version level seven configuration files use new option names to replace old macros.

Option Old Macro

$e became SmtpGreetingMessage

$1 became UnixFromLine

$o became OperatorChars

Prior to version seven, the F=q flag (use the return value 250 instead of 252 for SMTP VRFY commands)
was assumed.

Version level eight configuration files allow $# on the left side of ruleset lines.

Version level nine configuration files allow parentheses in rulesets, which means they are not treated as
comments and are removed.

The V line may have an optional /vendor variable to indicate that the configuration file uses vendor
specific modifications. You may use /Berkeley to indicate that the file uses the Berkeley sendmail
dialect.

K - Key File Declaration

Special maps can be defined using the line:

Files Reference 335

Kmapname mapclass arguments

The mapname is the name by which this map is referenced in the rewrite rules. The mapclass is the name
of a type of map; these are compiled in to sendmail. The arguments are interpreted depending on the
class; typically, there would be a single argument naming the file containing the map.

Maps are referenced using the syntax:

$(map key $@ arguments $: default $)

where either or both of the arguments or default portion may be omitted. The $@ arguments may appear
more than once. The indicated key and arguments are passed to the appropriate mapping function. If it
returns a value, it replaces the input. If it does not return a value and the default is specified, the default
replaces the input. Otherwise, the input is unchanged.

During replacement of either a map value or default, the string "%n" (where n is a digit) is replaced by the
corresponding argument. Argument zero is always the database key. For example, the rule:

R$- ! $+ $: $(uucp $1 $@ $2 $: %1 @ %0 . UUCP $)

looks up the UUCP name in a (user-defined) UUCP map. If not found, it turns it into ".UUCP" form. The
database might contain records like:

decvax %1@ %0.DEC.COM
research %1@%0.ATT.COM

Note: The default clauses never perform this mapping.

The built-in map with both name and class "host" is the host name canonicalization lookup. Thus, the
syntax:

$(host hostname$)

is equivalent to:

$[hostname$]

There are many defined classes.

Class Description

dbm Database lookups using the ndbm(3) library. Sendmail must be compiled with
NDBM defined.

btree Database lookups using the btree interface to the Berkeley DB library. Sendmail
must be compiled with NEWDB defined.

hash Database lookups using the hash interface to the Berkeley DB library. Sendmail
must be compiled with NEWDB defined.

nis NIS lookups. Sendmail must be compiled with NEWDB defined.

nisplus NIS+ lookups. Sendmail must be compiled with NISPLUS defined. The argument is
the name of the table to use for lookups, and the -k and -v flags may be used to set
the key and value columns respectively.

ldap LDAP X500 directory lookups. Sendmail must be compiled with LDAPMAP defined.
The map supports most of the standard arguments and command line arguments of
the ldapsearch program. By default, if a single query matches multiple values, only
the first value will be returned unless the -z (value separator) map flag is set. Also,
the -1 map flag will treat a multiple value return as if there were no matches.

ldapx LDAP X500 directory lookups. Sendmail must be compiled with LDAPMAP defined.
The map supports most of the standard arguments and command line arguments of
the ldapsearch program.

336 AIX Version 7.1: Files Reference

Class Description

text Text file lookups. The format of the text file is defined by the -k (key field number),
-v (value field number), and -z (field delimiter) flags.

stab Internal symbol table lookups. Used internally for aliasing.

implicit Really should be called "alias." This is used to get the default lookups for alias files,
and is the default if no class is specified for alias files.

user Looks up users using getpwnam(3). The -v flag can be used to specify the name of
the field to return (although this is normally used only to check the existence of a
user).

host Canonicalizes host domain names. Given a host name, it calls the name server to
find the canonical name for that host.

bestmx Returns the best MX record for a host name given as the key. The current machine
is always preferred. For example, if the current machine is one of the hosts listed
as the lowest preference MX record, it will be guaranteed to be returned. This can
be used to find out if this machine is the target for an MX record and mail can be
accepted on that basis. If the -z flag is given, all MX names are returned (separated
by the given delimiter).

sequence The arguments on the `K' line are a list of maps; the resulting map searches the
argument maps in order until it finds a match for the indicated key. For example, if
the key definition is:

Kmap1 ...
Kmap1 ...
Kseqmap sequence map1 map2

then a lookup against "seqmap" first does a lookup in map1. If that is found, it
returns immediately. Otherwise, the same key is used for map2.

syslog The key is logged via syslogd(8). The lookup returns the empty string.

switch Much like the "sequence" map except that the order of maps is determined by the
service switch. The argument is the name of the service to be looked up; the values
from the service switch are appended to the map name to create new map names.
For example, consider the key definition:

Kali switch aliases

together with the service switch entry:

aliases nis files

This causes a query against the map "ali" to search maps named "ali.nis" and
"ali.files" in that order.

Files Reference 337

Class Description

dequote Strip double quotes (") from a name. It does not strip backslashes, and will not strip
quotes if the resulting string would contain unscannable syntax (that is, basic errors
like unbalanced angle brackets; more sophisticated errors such as unknown hosts
are not checked). The intent is for use when trying to accept mail from systems
such as DECnet that routinely quote odd syntax such as:

"49ers::ubell"

A typical use is probably something like:

Kdequote dequote
...
R$- $: $(dequote $1 $)
R$- $+ $: $>3 $1 $2

Care must be taken to prevent unexpected results; for example,

"|someprogram < input > output"

will have quotes stripped, but the result is probably not what was intended.
Fortunately, these cases are rare.

regex The map definition on the K line contains a regular expression. Any key input
is compared to that expression using the POSIX regular expressions routines
regcomp(), regerr(), and regexec(). Refer to the documentation for those routines
for more information about regular expression matching. No rewriting of the key is
done if the -m flag is used. Without it, the key is discarded, or if -s is used, it is
substituted by the substring matches, delimited by the $| or the string specified
with the -d flag. The flags available for the map are:
-n

not
-f

case sensitive
-b

basic regular expressions (default is extended)
-s

substring match
-d

set the delimiter used for -s
-a

append string to key
-m

match only, do not replace/discard value

The -s flag can include an optional parameter which can be used to select the
substrings in the result of the lookup. For example, -s1,3,4.

program The arguments on the K line are the path name to a program and any initial
parameters to be passed. When the map is called, the key is added to the initial
parameters and the program is invoked as the default user/group ID. The first
line of standard output is returned as the value of the lookup. This has many
potential security problems and terrible performance. It should be used only when
absolutely necessary.

338 AIX Version 7.1: Files Reference

Class Description

macro Set or clear a macro value. To set a macro, pass the value as the first argument in
the map lookup. To clear a macro, do not pass an argument in the map lookup. The
map always returns the empty string. Examples of typical usage includes:

Kstorage macro

...

set macro ${MyMacro{ to the ruleset match
R$+ $:$(storage {MyMacro} $@ $1 $) $1
set macro ${MyMacro} to an empty string
R$* $:$(storage {MyMacro} $@ $) $1
set macro ${MyMacro}
R$- $:$(storage {MyMacro} $) $1

arith Perform simple arithmetic operations. The operation is given as key, currently +,
-, *, /, l (for less than), and = are supported. The two operands are given as
arguments. The lookup returns the result of the computation (True or False) for
comparisons, integer values otherwise. All options that are possible for maps are
ignored. A simple example is:

Kcomp arith

...

Scheck_etrn
R$* $: $(comp l $@ $&{load_avg} $@ 7 $) $1
RFALSE $# error ...

Most of these accept as arguments the same optional flags and a filename (or a mapname for NIS;
the filename is the root of the database path, so that .db or some other extension appropriate for the
database type will be added to get the actual database name). Known flags are:

Flag Description

-o Indicates that this map is optional. That is, if it cannot be opened, no error is produced,
and sendmail will behave as if the map existed but was empty.

-N, -O If neither -N or -O are specified, sendmail uses an adaptive algorithm to decide
whether or not to look for null bytes on the end of keys. It starts by trying both; if it
finds any key with a null byte, it never tries again without a null byte and vice versa. If
-N is specified, it never tries without a null byte and if -O is specified, it never tries with
a null byte. Setting one of these can speed matches but are never necessary. If both -N
and -O are specified, sendmail will never try any matches at all. That is, everything will
appear to fail.

-ax Append the string x on successful matches. For example, the default host map
appends a dot on successful matches.

-Tx Append the string x on temporary failures. For example, x would be appended if a DNS
lookup returned server failed or an NIS lookup could not locate a server. See the
-t flag for additional information.

-f Do not fold upper to lower case before looking up the key.

-m Match only (without replacing the value). If you only care about the existence of a
key and not the value (as you might when searching the NIS map "hosts.byname"
for example), this flag prevents the map from substituting the value. However, The -a
argument is still appended on a match, and the default is still taken if the match fails.

-kkeycol The key column name (for NIS+) or number (for text lookups).

-vvalcol The value column name (for NIS+) or number (for text lookups).

Files Reference 339

Flag Description

-zdelim The column delimiter (for text lookups). It can be a single character or one of the
special strings "\n" or "\t" to indicate newline or tab respectively. If omitted entirely,
the column separator is any sequence of whitespace.

-t Normally, when a map attempts to do a lookup and the server fails (e.g., sendmail
could not contact any name server — this is not the same as an entry not being found
in the map), the message being processed is queued for future processing. The -t flag
turns off this behavior, letting the temporary failure (server down) act as though it were
a permanent failure (entry not found). It is particularly useful for DNS lookups, where
another's misconfigured name server can cause problems on your machine. Care must
be taken to avoid "bouncing" mail that would be resolved correctly if another attempt
were made. A common strategy is to forward such mail to another mail server.

-D Perform no lookup in deferred delivery mode. This flag is set by default for the host
map.

-Sspacesub The character to use to replace space characters after a successful map lookup. This is
especially useful for regex and syslog maps.

-q Do not dequote the key before lookup.

-A When rebuilding an alias file, the -A flag causes duplicate entries in the text version to
be merged. For example, the following two entries:

list: user1,user2
list: user3

would be treated as if they were the following single entry:

list: user1,user2,user3

The following additional flags are present in the LDAP map only:

Flag Description

-R Do not auto chase referrals. Sendmail must be compiled with -DLAP_REFERRALS
to use this flag.

-n Retrieve attribute names only.

-rderef Set the alias dereference option to one of the following: never, always, search, or
find.

-sscope Set search scope to one of the following: base, one (one level), or sub (subtree).

-hhost LDAP server host name.

-bbase LDAP search base.

-pport LDAP service port.

-ltimelimit Time limit for LDAP queries.

-Zsizelimit Size (number of matches) limit for LDAP queries.

-ddistinguished_na
me

The distinguished name to use to log in to the LDAP server.

-Mmethod The method to authenticate to the LDAP server. Should be one of the following:
LDAP_AUTH_NONE, LDAP_AUTH_SIMPLE, OR LDAP_AUTH_KRBV4.

-Ppasswordfile The file containing the secret key for the LDAP_AUTH_SIMPLE authentication
method or the name of the Kerberos ticket file for LDAP_AUTH_KRBV4.

340 AIX Version 7.1: Files Reference

Flag Description

-1 Force LDAP searches to succeed only if a single match is found. If multiple values
are found, the search will be treated as if no match was found.

The dbm map appends the strings .pag and .dir to the given filename; the two db-based maps
append .db. For example, the map specification

Kuucp dbm -o -N /usr/lib/uucpmap

specifies an optional map named "uucp" of class "dbm"; it always has null bytes at the end of every string,
and the data is located in /usr/lib/uucpmap.{dir,pag}.

Commands and Operands

Command and Operand Description

CXWord1 Word2... Defines the class of words that can be used to match the left-hand side
of rewrite rules. Class specifiers (X) may be any of the uppercase letters
from the ASCII character set. Lowercase letters and special characters are
reserved for system use.

DXValue Defines a macro (X) and its associated Value. Macro specifiers may be any
of the uppercase letters from the ASCII character set. Lowercase letters and
special characters are reserved for system use.

FXFileName [Format] Reads the elements of the class (X) from the FileName variable, using
an optional scanf format specifier. The format specifier contains only one
conversion specification. One class number is read for each line in the
FileName variable.

H[?
MFlags?]HeaderName:
HeaderTemplate

Defines the header format the sendmail command inserts into a message.
Continuation lines are a part of the definition. The HeaderTemplate is macro-
expanded before insertion into the message. If the MFlags are specified and
at least one of the specified flags is included in the mailer definition, this
header is automatically written to the output message. If the header appears
in the input message, it is written to the output message regardless of the
MFlags variable.

MName, [Field=Value] Defines a Mail program where the Name variable is the name of the Mail
program and Field=Value pair defines the attributes of the mailer.

Ox[Value] Sets the option to the value of x. If the option is a valued option, you
must also specify the Value variable. Options may also be selected from the
command line.

Note: For valid values, see “O — Set Option” on page 318.

PName=Number Defines values for the Precedence: header field. When the Name variables
found in a message's Precedence: field, the message's precedence is set to
the Number variable. Higher numbers indicate higher precedences. Negative
numbers indicate that error messages are not returned. The default Number
is 0.

RLeftHandSide
RightHandSide
Comments

Defines a rewrite rule. One or more tab characters separate the three fields
of this command. If space characters are used as field separators, option J
must be set. The J option allows spaces as well as tabs to separate the left-
and right-hand sides of rewrite rules. The J option allows rewrite rules to be
modified using an editor that replaces tabs with spaces.

Sx Sets the rule set currently defined to the specified number(x). If a rule set
definition is started more than once, the new definition overwrites the old.

Files Reference 341

Command and Operand Description

TUser1 User2 ... Defines user IDs for the system administrators. These IDs have permission
to override the sender address using the -f flag. More than one ID can be
specified per line.

Files

Item Description

/etc/mail/sendmail.cf Specifies the path of the sendmail.cf file.

/etc/passwd Contains basic user attributes.

/etc/mail/aliases Contains alias definitions for the sendmail command.

Related reference
/etc/passwd File
Related information
sendmail command

setinfo File

Purpose
Describes the format of a set characteristics file.

Description
The setinfo file is an ASCII file that describes the characteristics of the set along with information that
helps control the flow of installation. It is created by the software set developer and is included in the Set
Installation Package (SIP). A SIP is a special purpose package that controls the installation and removal
of a set of packages.

Each entry in the setinfo file is a line that consists of predefined fields. Each entry corresponds to a
package belonging to the set and must contain the following <tab>-separated fields:

1. Package Abbr
This field contains the abbreviated name of the package. The abbreviation must be a short string
(no more than nine characters long) and must conform to the file naming rules. All characters in the
abbreviation must be alphanumeric and the first character cannot be numeric. install, new, and all
are reserved.

This abbreviated name must be the same as the one used in pkginfo.

2. Parts
This field specifies the number of parts this package consists of.

3. Default
This field contains the character 'y' indicating that the package is to be installed as a default.
Conversely, an 'n' indicates that the package will not be installed.

4. Category
The category under which the package belongs. Release 4 defines four categories: "application,"
"graphics," "system" and "utilities." All packages must be assigned to one of these categories. If you
choose, you can also assign a package to a category you defined. Categories are case-insensitive and
may contain only alphanumerics. Each category is limited to 16 characters.

5. Package Full-Name
Text that specifies the package name (maximum length of 256 ASCII characters). This field must be
the same as NAME in the pkginfo file.

342 AIX Version 7.1: Files Reference

The order of the packages listed in the setinfo file must reflect any package dependencies (if any) and
must represent the order in which packages occur on the media (in the case of datastream). Any package
for which there exists a dependency must be listed prior to the package(s) that depends on it.

Examples
Shown below is a setinfo file for set admin:

 #ident "@(#)set:cmn/set/admin/setinfo 1.2"
 #ident "$Header: $"

 # Format for the setinfo file. Field separator is: <tab>
 # pkg parts default category pkg full-name
 # abbr y/n

 oam 4 y application OA&M
 bkrs 1 y system Extended Backup and Restore
 face 1 y application FACE

Related reference
pkginfo File

setup.csh File

Purpose
Sets the C-shell environment variables needed to build an InfoCrafter database.

Description
The setup.csh file defines C-shell environment variables necessary to build an InfoCrafter database from
the command line. The setup.csh file contains the definition of the TOOLSDIR and TOPLEVEL_BUILDDIR
variables; if there are relative path names of source files in your input list, it also sets the
TOPLEVEL_SOURCEDIR variable. The TOOLSDIR variable is added to your path environment variable
so you can use the icft command without specifying the full path name.

The default value for the TOOLSDIR environment variable is /usr/lpp/icraft/bin. The
TOPLEVEL_SOURCEDIR and TOPLEVEL_BUILDDIR variables have no default values.

You must copy the setup.csh file from /usr/lpp/icraft/bin to another location (such as your home
directory) and edit it to define the variables. Then, use the source setup.csh command to assign the new
definitions to the variables.

Examples
A sample setup.csh file appears as follows:

setenv TOPLEVEL_SOURCEDIR $HOME/desktop
setenv TOOLSDIR /usr/lpp/icraft/bin
setenv TOPLEVEL_BUILDDIR $TOOLSDIR/master

To set the C-shell environment variables, enter the following:

source setup.csh

The following message is displayed:

setup.csh: assigning environment variables
 for InfoCrafter. . .

Files Reference 343

Files

Item Description

/usr/lpp/icraft/bin/setup.csh Contains the definitions of C-shell environment
variables.

Related reference
setup.sh File

setup.sh File

Purpose
Defines the Bourne or Korn shell environment variables needed to build an InfoCrafter database.

Description
The setup.sh file defines Bourne or Korn shell environment variables necessary to build an InfoCrafter
database from the command line using the icft command. The setup.sh file sets the TOOLSDIR and
TOPLEVEL_BUILDDIR variables. If there are relative path names of source files in your input list, it also
sets the TOPLEVEL_SOURCEDIR variable. The TOOLSDIR variable is added to your path environment
variable so you can enter the icft command without specifying the full path name.

Default value for the TOOLSDIR environment path variable is /usr/lpp/icraft/bin.
TOPLEVEL_SOURCEDIR and TOPLEVEL_BUILDDIR have no default values.

You must copy the setup.sh file from /usr/lpp/icraft/bin to another location (such as your home
directory) and edit it to define the variables. Then, use the . setup.sh command to set the variables
to the defined values.

Examples
A sample setup.sh file appears as follows:

TOPLEVEL_SOURCEDIR = $HOME/desktop
TOOLSDIR = /usr/lpp/icraft/bin
TOPLEVEL_BUILDDIR = $TOOLSDIR/master

To set Bourne or Korn shell environment variables, enter the following:

. setup.sh

The following message is given:

setup.sh: assigning environment variables for InfoCrafter

Files

Item Description

/usr/lpp/icraft/bin/setup.sh Contains definitions for Bourne and Korn shell
environment variables.

Related reference
setup.csh File

344 AIX Version 7.1: Files Reference

slp.conf File

Purpose
File used by SLP APIs.

Description
To use the /etc/slp.conf file, ensure that all parameters for an entry are contained on one line in the
configuration file. Comments can be included in the file beginning with a pound sign (#) in column 1.

The format is:

<keyword> = <value>

or

<keyword> = <value1>,<value2>,..., <valueN>

If there are more than 1 value to be configured, use a comma (,) as a separator.

If there are multiple lines configured against the same <keyword>, the first valid configured line is read,
and the rest are ignored.

Parameters
• net.slp.maxResults

A 32-bit integer that gives the maximum number of results to accumulate and return for a
synchronous request before the timeout. Positive integers and -1 are legal values. A value of -1
indicates that all results should be returned. The default value is -1. For example:

net.slp.maxResults = 35

• net.slp.useScopes
A value-list of strings that indicate the only scopes a UA or SA is allowed to use when making
requests or registering. Otherwise, indicates the scopes a DA must support. The default scope
"DEFAULT" is used if no other information is available. For example:

net.slp.useScopes = david,bob

• net.slp.DAAddress
A value-list of IP addresses or DNS resolvable host names giving the SLPv2 DAs to use for statically
configured UAs and SAs. The default is none. For example:

net.slp.DAAddress = 9.3.149.20, blahblah.ibm.com

• net.slp.isBroadcastOnly
A boolean indicating whether broadcast should be used instead of multicast. The default is false
(that is, multicast is used). For example:

net.slp.isBroadcastOnly = false

• net.slp.multicastTTL
A positive integer less than or equal to 255, giving the multicast TTL. The default is 255 (in
seconds). For example:

net.slp.multicastTTL = 255

Files Reference 345

• net.slp.DAActiveDiscoveryInterval
A 16-bit positive integer giving the number of seconds between DA active discovery queries.
If this parameter is set to 0, the active discovery is turned off. This property corresponds to the
protocol specification parameter CONFIG_DA_FIND. The default is 900 (in seconds). For example:

net.slp.DAActiveDiscoveryInterval = 1200

• net.slp.multicastMaximumWait
A 32-bit integer giving the maximum amount of time to perform multicast, in milliseconds. This
property corresponds to the CONFIG_MC_MAX parameter in the protocol specification. The default
is 15000 (in ms). For example:

net.slp.multicastMaximumWait = 10000

• net.slp.multicastTimeouts
A value-list of 32-bit integers used as timeouts, in milliseconds, to implement the multicast
convergence algorithm. Each value specifies the time to wait before sending the next request.
This property corresponds to the CONFIG_MC_RETRY parameter in the protocol specification.
The default is 3000,3000,3000,3000,3000 (in ms). There is no limitation on the maximum
number entries to be specified. However the total sum of the entries cannot be greater than
CONFIG_MC_RETRY (15000 in ms). For example:

net.slp.multicastTimeouts = 2000, 3000, 4000

• net.slp.DADiscoveryTimeouts
A value-list of 32-bit integers used as timeouts, in milliseconds, to implement the multicast
convergence algorithm during active DA discovery. Each value specifies the time to wait before
sending the next request. This property corresponds to the protocol specification parameter
CONFIG_RETRY. The default is 2000,2000,2000,2000,3000,4000 (in ms). There is no limitation
on the maximum number entries to be specified. However the total sum of the entries cannot be
greater than CONFIG_RETRY (15000 in ms). For example:

net.slp.DADiscoveryTimeouts = 2000, 3000, 4000

• net.slp.datagramTimeouts
A value-list of 32-bit integers used as timeouts, in milliseconds, to implement unicast datagram
transmission to DAs. The nth value gives the time to block waiting for a reply on the
nth try to contact the DA. The sum of these values is the protocol specification property
CONFIG_RETRY_MAX. The default is 2000, 2000, 2000, 2000, 3000, 4000 (in ms). There is no
limitation on the maximum number of entries to be specified. However, the total sum of the entries
cannot be greater than CONFIG_RETRY_MAX (15000 in ms). For example:

net.slp.datagramTimeouts = 2000, 3000, 4000

• net.slp.loglevel
By default, the SLP daemon logs messages up to level 3 to the syslog file. You can set the variable
slp.net.loglevel to 6 or 7 for additional logging. Supported values follows:
3

Logs error messages. This is default level.
6

Logs informational messages.
7

Logs debug level messages.

Related information
SLPAttrCallback
SLPClose
SLPEscape
SLPFindAttrs

346 AIX Version 7.1: Files Reference

SLPFindScopes
SLPFindSrvs
SLPFindSrvTypes
SLPFree
SLPGetProperty
SLPOpen
SLPParseSrvURL
SLPSrvTypeCallback
SLPSrvURLCallback
SLPUnescape

smbctune.conf File

Purpose
Contains the tunable parameter settings that are associated with the Server Message Block (SMB) client
file system.

Description
The /etc/smbc/smbctune.conf file contains the tunable parameters with their corresponding values
that are used by the smbctune command and the smbcd daemon to make the tunable parameter
changes persistent.

This file contains the same tunable parameters as specified by the smbctune command. By default, the
format of the /etc/smbc/smbctune.conf file is as follows:

default:
 smbc_lookup_cache_size=32
 smbc_max_concurrent_mount=8
 smbc_max_connections=0
 smbc_request_timeout=0
 smbc_krb5_lifetime=0
 smbc_krb5_renew_till=0
 smbc_oplock_enable=1
 smbc_file_lease_enable=1
 smbc_protocol_version=auto
 smbc_signing=enabled
 smbc_secure_negotiate=desired
 smbc_encryption=desired

The default keyword must be used to indicate that the same tunable parameters are applicable for each
SMB client system that connects to the SMB server.

Example
• To set the maximum number of concurrent mount operations to 1024, the number of maximum

available connections on the SMB client system to 4096, and the request timeout duration to 20
seconds, enter the following text in the smbctune.conf file:

default:
 smbc_request_timeout=20
 smbc_max_concurrent_mount=1024
 smbc_max_connections=4096

Files Reference 347

smi.my File

Purpose
Provides sample SMI input to the mosy command.

Description
The /usr/samples/snmpd/smi.my file is a sample input file to the mosy command, which creates an
objects definition file for use by the snmpinfo command. The mosy compiler requires its input file to
contain the ASN.1 definitions described in the Structure and Identification of Management Information
(SMI) RFC 1155 and the Management Information Base (MIB) RFC 1213. The smi.my file contains the
syntax descriptions from the SMI RFC 1155.

The smi.my file begins with a definition of the SNMP subtree of the MIB as assigned by the Internet
Activities Board (IAB). It then contains the syntax definitions defined in RFC 1155.

Comments are specified by - - (two dashes). A comment can begin at any location and extends to the end
of the line.

The smi.my file was created by extracting the definitions from Chapter 6 of RFC 1155. This file is
shipped as /usr/samples/snmpd/smi.my. The file is part of Simple Network Management Protocol Agent
Applications in Network Support Facilities.

Files

Item Description

/usr/samples/snmpd/mibII.my Contains the ASN.1 definitions for the MIB II variables
defined in RFC 1213.

/etc/mib.defs Defines the Management Information Base (MIB)
variables the snmpd agent should recognize and handle.
This file is in the format that the snmpinfo command
requires.

Related reference
mibII.my File
Related information
mosy command
snmpinfo command

smitacl.group File

Purpose
Contains the group access control list (ACL) definitions for the System Management Interface Tool (SMIT).

Description
The /etc/security/smitacl.group file contains the group ACL definitions for SMIT. This is an ASCII file
that contains a stanza for each system group. Each stanza is identified by a group name followed by
a : (colon) and contains attributes in the form Attribute=Value. Each attribute pair ends with a newline
character as does each stanza.

The file supports a default stanza. If an attribute is not defined, either the default stanza or the default
value for the attribute is used.

A stanza contains the following attribute:

348 AIX Version 7.1: Files Reference

Item Description

screens Describes the list of SMIT screens for this group. (It is of the type SEC_LIST.) Examples
include:

screens = * # Permit all screen access.
screens = !* # Deny all screen access.
screens = # Allows no specific screens
 # (screens can be added on a per user basis)
screens = user,group,!tcpip # Allow user & group
 # screens, but not
 # tcpip screen

For a typical stanza, see the "Examples" section. This file may viewed with the lssec command and
modified with the chsec command.

The screen names specified in the screens attribute are SMIT fastpath values. Many SMIT fastpath values
can be found in the commands documentation. The smit command may also be used to determine the
fastpath of the current screen. Please see the smit command for more information.

Security
Access Control: This file grants read and write access to the root user, and read access to members of the
security group.

Examples
1. A typical stanza looks like the following example for the group called group:

group:
 screens = *

2. To allow the mksysb screen only for a member of a group called bkupgrp, remove the default access
to all screens and specify only the mksysb screen for the bkupgrp group by typing:

default:
 screens =
bkupgrp:
 screens = mksysb

Note: Changing the default stanza will remove the default access to all screens for members of other
groups.

3. To allow members of the security group to view the screens for user and group administration, add
the following stanza:

security:
 screens = top_menu,security,users,groups

Additional screens may be granted to individual users by adding stanzas for each user to the
smitacl.user file.

Files

Item Description

/etc/security/roles Contains the list of valid roles.

/etc/security/user.roles Contains the list of roles for each user.

/etc/security/smitacl.group Contains the group ACL definitions.

/etc/security/smitacl.user Contains the user ACL definitions.

Files Reference 349

Related information
smit command
chsec command
lssec command
getusraclattr

smitacl.user File

Purpose
Contains the user access control list (ACL) definitions for the System Management Interface Tool (SMIT).

Description
The /etc/security/smitacl.user file contains the ACL definitions for SMIT. This is an ASCII file that
contains a stanza for each system user. Each stanza is identified by a user name followed by a : (colon)
and contains attributes in the form Attribute=Value. Each attribute pair ends with a newline character as
does each stanza.

The file supports a default stanza. If an attribute is not defined, either the default stanza or the default
value for the attribute is used.

A stanza contains the following attributes:

Attribute Description

screens Describes the list of SMIT screens for the user. (It is of the type SEC_LIST.) Examples
include:

screens = * # Permit all screen access.
screens = !* # Deny all screen access.
screens = # Allows no specific screens
 # (screens can be added on a per user basis)
screens = user,group,!tcpip # Allow user & group
 # screens, but not
 # tcpip screen

funcmode Describes if the role database and/or SMIT ACL database should be used to determine
accessibility. It also describes how to combine the screens data from the two databases.
(It is of the type SEC_CHAR.) Examples include:

funcmode = roles+acl # Use both roles and SMIT ACL # databases.
funcmode = roles # Use only the roles database.
funcmode = acl # Use only the SMIT ACL # database.

The defined values for funcmode are:

roles
Only the screen values from the roles database are used.

acl
Only the screen values from the SMIT ACL database are used.

roles+acl
The screen values from both the roles and the SMIT ACL databases are used.

For a typical stanza, see the "Examples" section . This file may viewed with the lssec command and
modified with the chsec command.

The screen names specified in the screens attribute are SMIT fastpath values. Many SMIT fastpath values
can be found in the commands documentation. The smit command may also be used to determine the
fastpath of the current screen. Please see the smit command for more information.

350 AIX Version 7.1: Files Reference

Security
Access Control: This file grants read and write access to the root user, and read access to members of the
security group.

Examples
1. To allow pwduser to access the groups which are accessible via the users and passwd SMIT

fastpaths, type the following:

pwduser:
 funcmode = roles+acl
 screens = users,passwd

2. To allow the mksysb screen only for user bkupuser, add the following stanza:

bkupuser:
 screens = mksysb

Files

Item Description

/etc/security/roles Contains the list of valid roles.

/etc/security/user.roles Contains the list of roles for each user.

/etc/security/smitacl.group Contains the group ACL definitions.

/etc/security/smitacl.user Contains the user ACL definitions.

Related information
smit command
chsec command
lssec command
getusraclattr

snmpd.conf File

Purpose
Defines a sample configuration file for the snmpdv1 agent.

Description
The snmpd.conf file provides the configuration information for the snmpdv1 agent. This file can be
changed while the snmpdv1 agent is running. If the refresh or kill -1 command is issued, the snmpdv1
agent will reread this configuration file. The snmpdv1 agent must be under System Resource Control
(SRC) for the refresh command to force the reread. This file is part of Simple Network Management
Protocol Agent Applications in Network Support Facilities.

This configuration file contains:

• Entries for Community names
• Access privileges and view definitions for incoming Simple Network Management Protocol (SNMP)

request packets
• Entries for host destinations for trap notification
• Entries for log file characteristics
• Entries for snmpd-specific parameters

Files Reference 351

• Entries for SNMP Multiplexing Protocol (SMUX) association configurations
• Entries for the sysLocation and sysContact variables.

The snmpd.conf file must be owned by the root user. If the snmpd.conf file is not owned by root, or if the
snmpdv1 daemon cannot open the configuration file, the snmpdv1 daemon issues a FATAL message to
the logfile if logging is enabled and snmpdv1 terminates.

Certain rules apply for specifying particular parameters in entries in the snmpd.conf configuration file.
Some entries require the specification of object identifiers or object names or both. The following rules
apply:

1. An object identifier is specified in dotted numeric notation and must consist of at least three elements.
The maximum number of elements in the object identifier is 50. Elements are separated by a . (dot).
The first element must be a single digit in the range of 0 to 2. The second element must be an integer
in the range of 1 to 40. The third and subsequent elements must be integers in the range of 1 to the
size of an unsigned integer.

2. An object name consists of a textual name with an optional numeric instance. The object name must
be known to the snmpdv1 agent. Object names typically are names of nodes in the Management
Information Base (MIB) tree. If the root of the MIB tree, iso, is specified as an object name,
the numeric instance is absolutely required. A . (dot) separates the textual name from the numeric
instance.

Community Entry

The community entry specifies the communities, associated access privileges and MIB views the
snmpdv1 agent allows. See example 1 for a sample entry. A community entry must be in the following
format:

community CommunityName IPAddress NetMask Permissions ViewName

The following definitions apply to the variables in a community entry:

Item Description

CommunityName The community name.

IPAddress The host name, IPv4 address in dotted-decimal format, or IPv6 address for the
specified community name.

NetMask A network mask in dotted-decimal format for the specified IPv4 address, or a
prefix length in the range of 0 through 128 for the specified IPv6 address.

Permissions Specifies one of:

• readOnly
• writeOnly
• readWrite
• none.

The Permissions string is case-insensitive.

ViewName A unique object identifier in dotted numeric notation that is associated with a
portion of the MIB tree to which the specified community name allows access.
The ViewName value is the same as that specified in the view entry.

The minimum specification required for a community entry is:

community CommunityName

The default values for this minimum community entry are:

352 AIX Version 7.1: Files Reference

Item Description

IPAddress 0.0.0.0

NetMask 0.0.0.0

Permissions readOnly

View iso.3

Fields to the right of the minimum entry are optional, with the limitation that no fields to the left of
a specified field are omitted. Any information to the right of the ViewName variable is ignored. If an
IPAddress of 0.0.0.0 is specified, the default NetMask is 0.0.0.0. If an IPAddress other than 0.0.0.0 is
specified, the default NetMask is 255.255.255.255.

The Permissions default is readOnly. If the ViewName is not specified, the view for this community
defaults to ISO, the entire MIB tree. For example:

community public 192.100.154.1

is a valid entry with the default values:

Item Description

NetMask 255.255.255.255

Permissions readOnly

View iso.3

The following entry is not valid because the required NetMask variable to the left of the Permissions
variable is not specified:

community public 192.100.154.1
readWrite

In this case, the value in the Permissions variable is accepted as the NetMask value. Since the value in
thePermissions variable is not in the format required for the NetMask variable, an error will occur. The
snmpdv1 agent logs an EXCEPTIONS message if logging is enabled. In the case of an invalid community
entry, the snmpdv1 agent ignores the entry.

View Entry

The view entry specifies the MIB subtrees to which a particular community has access. See example 3 for
a sample entry. A view entry must be in the following format:

view ViewName MibSubtree...

The following definitions apply to the variables in the view entry:

Item Description

ViewName Specifies a unique object identifier in dotted-numeric notation that is associated with
a portion of the MIB tree. This ViewName value is the same as that in the community
entry and must be formatted as described there.

MibSubtree A list of MIB subtrees, or MIB groups, specified as either an object name or an object
identifier, that is associated with the ViewName variable. If the MIBSubtree list is not
specified, the view defaults to iso, the entire MIB tree.

Together, the view entry and its associated community entry define an access privilege or MIB view
allowed by the snmpdv1 agent.

In the case of an invalid view entry, the snmpdv1 agent logs an EXCEPTIONS message, if logging is
enabled, and ignores the view entry.

Files Reference 353

If a ViewName is specified in the community entry, but there is no view entry to describe that ViewName,
snmpdv1 agent logs an EXCEPTIONS message stating that there is no such view for the community. The
snmpdv1 agent will allow no access for that community and view association.

Trap Entry

The trap entry specifies the hosts the snmpdv1 agent notifies in the event a trap is generated. See
Example 2 for a sample entry. A trap entry must be in the following format:

trap CommunityName IPAddress ViewName TrapMask

In this format, the variable definitions are as follows:

Item Description

CommunityName The community name to be encoded in the SNMP trap packet.

IPAddress The host name, or IPv4 address in dotted-decimal format, or IPv6 address for the
specified community name.

ViewName The snmpdv1 agent only checks the ViewName to verify that the format is valid
and that there are no duplicate ViewName variables specified.

TrapMask The trap mask in hexadecimal format. The bits from left to right stand for
coldStart trap, warmStart trap, linkDown trap, linkUp trap, authenticationFailure
trap, egpNeighborLoss trap, and enterpriseSpecific trap. The rightmost bit does
not have any meaning. A value of 1 will enable the corresponding trap to be sent.
Otherwise, the trap is blocked.

For example:

hexadecimal bits meaningh
fe 1111 1110 block no traps
7e 0111 1110 block coldStart trap
be 1011 1110 block warmStart trap
3e 0011 1110 block coldStart trap and warmStart trap

The minimum specification required for a trap entry is:

trap CommunityName IPAddress

The default value of TrapMask for this minimum trap entry is fe. There is no trap
blocked for this case.

Fields to the right of the minimum entry are optional, with the limitation that no
fields to the left of a specified field are omitted. There should be no information to
the right of the TrapMask variable.

In the case of an invalid trap entry, the snmpdv1 agent places an EXCEPTIONS
message in the log file if logging is enabled and ignores the trap entry.

It is assumed that all hosts listed in the trap entries are listening on well-known
UDP port 162 for SNMP traps. Because community views for traps are not
supported, the snmpdv1 agent will send trap messages for all traps generated
as indicated by the TrapMask variable to the hosts listed in the trap entries. If no
trap entry appears in the snmpd.conf file, the snmpdv1 agent will not send out
trap messages upon the generation of a trap.

Logging Entry

354 AIX Version 7.1: Files Reference

The logging entry specifies the characteristics for the snmpdv1 agent logging activities if logging is not
directed from the snmpd command with the -f option. See example 4 for a sample entry. A logging entry
must be in the following format:

logging FileName Enablement
logging size=Limit level=DebugLevel

The following definitions apply to the fields in the logging entries:

Item Description

FileName Specifies the complete path and file name of the log file.

Limit Specifies the maximum size in bytes of the specified log file. If the limit is specified as
0, the file size is unlimited.

DebugLevel Specifies the level of logging, which can be one of the following:
0

All NOTICES, EXCEPTIONS, and FATAL messages
1

Level 0 plus DEBUG messages
2

Level 1 plus a hexadecimal dump of incoming and outgoing packets
3

Level 2 plus an English version of the request and response packets

Enablement Specifies whether logging is active. The following options are available:
enabled

Turns logging on.
disabled

Turns logging off.

There is no default log file. The Enablement default is disabled. The log file size Limit default is 0, which
means unlimited. The DebugLevel default is 0 if the snmpd command is invoked without the -d option.
If the -d option is specified, the default DebugLevel is the value specified by the -d option on the snmpd
command line.

The size= and level= entries are absolutely required if a size or debug level are specified. There can be
no spaces around the = (equal sign).

There are no restrictions regarding the order in which the variables are entered in the logging entries. A
logging entry can contain single or multiple variables.

If the value for the size= field or DebugLevel variable cannot be converted into an integer, the default
size and debug level are used. Because the snmpd command sets the log file configuration parameters
immediately upon reading them, the parameters in the logging entry are not necessarily ignored if the
snmpd command determines there is an invalid field in that entry. For example, in the following invalid
logging entry:

logging size=100000 garbagestuff enabled

The snmpd command will set the size parameter, but will discard all information from the field value
of garbagestuff to the end of the line. In addition, an EXCEPTIONS message will be logged if logging is
enabled.

snmpd Entry

The snmpd entry specifies configuration parameters for the snmpdv1 agent. See example 5 for a sample
entry. An snmpd entry must be in the following format:

snmpd Variable=Value

Files Reference 355

The = (equal sign) is absolutely required; there can be no spaces around it.

The following definitions apply to the snmpd entry:

Item Description

Variable Specifies the specific configuration parameter. Variable can be one of the following values:

• maxpacket
• querytimeout.

Value Specifies the value of the specific variable.

The configurable variables and allowable values are:

Item Description

maxpacket The maximum packet size, in bytes, that the snmpdv1 agent will transmit. The
minimum to which this variable can be set is 300 bytes. The maximum value to
which this variable can be set is 56KB. If there is no snmpd entry for maxpacket,
the system socket default levels will be used.

querytimeout The time interval in seconds at which the snmpdv1 agent will query the interfaces
to check for interface status changes. The minimum value to which querytimeout
can be set is 30 seconds. If 0 is specified, the snmpdv1 agent will not query the
interfaces for status changes. If there is no snmpd entry for querytimeout, the
default value of 60 seconds is used.

The = (equal sign) is absolutely required; there can be no white space around it. There are no restrictions
on the order in which the variables are entered in the snmpd entry. An snmpd entry can contain single or
multiple variables.

The snmpdv1 agent sets the snmpd specific parameters immediately upon reading them. If the values
are invalid, the snmpdv1 agent ignores them. If the snmpdv1 agent encounters an invalid field in the
entry, processing is terminated for that entry and the snmpdv1 agent logs an EXCEPTIONS message if
logging is enabled.

smux Entry

The smux entry specifies configuration information for SMUX associations between the snmpdv1 agent
and SMUX peer clients. See example 6 for a sample entry. A smux entry must be in the following format:

smux ClientOID Password IPAddress NetMask

The following definitions apply to the smux entry:

Item Description

ClientOID Specifies the unique object identifier in dotted numeric notation of the SMUX peer client.
The ClientOID must match the ObjectID specified in the /etc/snmpd.peers file.

Password Specifies the password that the snmpdv1 agent requires from the SMUX peer client to
authenticate the SMUX association. The Password must match the Password in the /etc/
snmpd.peers file.

IPAddress The hostname, or IPv4 address in dotted notation, or IPv6 address of the host on which
the SMUX peer client is running.

NetMask Specifies a network mask in dotted decimal notation for the specified IPv4 address, or a
prefix length in the range of 0 through 128 for the specified IPv6 address.

The minimum specification for the smux entry is:

smux ClientOID Password

356 AIX Version 7.1: Files Reference

The default values for this minimum smux entry are:

Item Description

IPAddress 127.0.0.1

NetMask 255.255.255.255

Fields to the right of the minimum entry are optional, with the limitation that no fields to the left of a
specified field are omitted. Any information to the right of NetMask is ignored. If no password is specified,
there is no confirmation for the SMUX association. If neither theIPAddress nor NetMask are specified, the
SMUX association is limited to the local host.

In the case of an invalid smux entry, the snmpdv1 agent logs an EXCEPTIONS message if logging is
enabled and the snmpdv1 agent ignores that smux entry.

sysLocation and sysContact Entry

The sysLocation and sysContact entries specify the values of the sysLocation and sysContact variables.
The entry is specified in the following format:

sysLocation "Austin, Texas, USA, XYZ, Bld 905, 5C-11"
sysContact "Bill Roth, Amber Services, 1-512-849-3999"

The first part of the entry specifies the variable to be set, sysLocation or sysContact. The second part is a
quoted character string representing the variable's value. The length of this string should not exceed 256
characters. If more than one entry is in the file, the last entry is used to define the variable. If there is not
an entry for a particular variable, the value is defined to be the NULL string. If there is not a quoted string
after the variable name, the first word on the line is used as the value. If there is nothing after the variable
name, the NULL string is assumed.

The snmpdv1 daemon uses the defined configuration file, whether it is the default file or specified from
the command line, to save and read variables. The daemon does not need to be refreshed to get these
new variables.

Note: Since these variables are settable, the snmpdv1 daemon writes to the configuration file to update
these variables on a set request. If you are editing the file and a set request changes the variables, the
set request could be lost when the edited file is saved. This can be avoided by shutting down the daemon
to change the configuration file, or by using the snmpinfo command to set the variable through normal
methods.

Comments are specified by a # (pound sign) character and can be located anywhere in the snmpd.conf
file. A comment begins at the # character and continues to the end of the line.

Note: It does not matter in which order the specific configuration entries for community, traps, views,
logging, snmpd, and smux are placed in the snmpd.conf file. There is no order dependency for the
various entries.

Examples
1. Example of community entries in the snmpd.conf file:

Community specifications
community public
community private 192.100.154.7 255.255.255.255 readWrite 1.17.2
community monitor 192.100.154.1 255.255.255.0 readWrite 1.17.2
community private oilers
community simple giants
community test 0.0.0.0 0.0.0.0 none
community nobody 0.0.0.0 255.255.255.255 readWrite 1.17.35
community ipv6test 0::0 0
community ipv6monitor 2000:1:1:1:209:6bff:feae:6d67 64 readWrite 1.17.2

The first entry exemplifies the minimum required specification for a community entry. The IP address
defaults to 0.0.0.0. The network mask defaults to 0.0.0.0. The permissions default to readOnly. The
view defaults to the entire MIB tree. This configuration enables the snmpdv1 agent to accept all

Files Reference 357

readOnly requests under the community name public regardless of the IP address. Write or set
requests are rejected.

The second entry limits the snmpdv1 agent to accept readWrite requests under the community
name private only from IP address 192.100.154.7 for MIB variables that are associated with the
view name 1.17.2.

The third entry enables the snmpdv1 agent to accept readWrite requests under the community
name monitor from all IP addresses that start with 192.100.154, as indicated by the network mask,
for all MIB variables that are associated with the view name 1.17.2.

The fourth entry sets the network mask to the default 255.255.255.255 and the permissions to the
default, readOnly. This configuration enables the snmpdv1 agent to accept readOnly requests under
the community name private from the host named oilers for the entire MIB tree. The reuse of the
community name private is independent of the usage in the second example entry.

The fifth entry sets the network mask to the default 255.255.255.255 and the default permissions
to readOnly. This configuration enables the snmpdv1 agent to accept readOnly requests for the entire
MIB tree under the community name simple only from the host giants. Write or set requests are
rejected.

The sixth entry causes the snmpdv1 agent to reject all requests under the community name test,
regardless of the IP address, because of the permission restriction of none.

The seventh entry causes the snmpdv1 agent to reject all requests under the community name
nobody because the network mask limits the IP address to entry 0.0.0.0, which is reserved and not
available for a host.

The eighth entry causes the snmpdv1 agent to accept all requests through the IPv6 network under the
community name ipv6test.

The ninth entry causes the snmpdv1 agent to accept read and write requests under the community
name ipv6monitor from all IP addresses that start with 2000:1:1:1:209:6bff:feae:6d67, as
indicated by the network prefix length for all MIB variables that are associated with the view name
1.17.2.

2. Example of trap entries in the snmpd.conf file:

Trap host notification specifications
trap traps 192.100.154.7
trap traps 129.35.39.233
trap events giants
trap public oilers 1.2.3 be
trap private 129.35.42.2101.2.4 7etrap events 2000:1:1:1:209:6bff:feae:6d67

The first entry specifies that the snmpdv1 agent is to notify the host with IP address 192.100.154.7
of all traps generated. The community name embedded in the trap packet will be traps.

The second entry specifies that the snmpdv1 agent is to notify the host with IP address
129.35.39.233 of all traps generated. The community name embedded in the trap packet will be
traps.

The third entry specifies that the snmpdv1 agent is to notify the host giants of all traps generated.
The community name embedded in the trap packet will be events.

The fourth entry specifies that the snmpdv1 agent is to notify the host oilers of all traps generated
except for the warmStart trap. The community name embedded in the trap packet will be public. The
ViewName,1.2.3, is ignored.

The fifth entry specifies that the snmpdv1 agent is to notify the host 129.35.42.210 of all traps
generated except the coldStart trap. The community name embedded in the trap packet will be
private. The ViewName, 1.2.4, is ignored.

The sixth entry specifies that the snmpdv1 agent is to notify the IPv6 host
2000:1:1:1:209:6bff:feae:6d67 of all of the traps generated. The community name embedded
in the trap packet will be events.

358 AIX Version 7.1: Files Reference

3. Examples of view entries in the snmpd.conf file:

View specifications
view 1.17.2 system enterprises view
view 1.17.35
view 2.10.1 iso.3

The first entry associates the view name 1.17.2 with the system, enterprises, and view MIB groups. A
community name that is associated with view 1.17.2 will only be associated with the MIB variables in
these three groups. Thus, a host that has read permissions with this community name association can
only get values for MIB variables in these specified groups.

The second and third entries configure the snmpdv1 agent to allow access to the entire MIB tree for
hosts that have access privileges associated with these specified view names.

4. Examples of logging entries in the snmpd.conf file:

Logging specifications
logging /tmp/snmpdlog enabled
logging level=2 size=100000

These logging entries configure the snmpdv1 agent to log messages at debug level 2 and below to
the file named /tmp/snmpdlog. The size parameter limits the file size of the /tmp/snmpd log file to
100,000 bytes. When the log file reaches 100,000 bytes, the log file is rotated such that the full file is
renamed to /tmp/snmpdlog.0 and the new log file is named /tmp/snmpdlog.

5. Example of snmpd entries in the snmpd.conf file:

snmpd parameter specifications
snmpd maxpacket=2048
snmpd querytimeout=120

The first snmpd entry limits the size of packets transmitted by the snmpdv1 agent to 2048 bytes.

The second entry sets the querytimeout parameter to 120 seconds. This configures the snmpdv1
agent to query all the interfaces known to the TCP/IP kernel every two minutes for status changes.

6. Examples of smux entries in the snmpd.conf file:

smux configuration
smux 1.3.6.1.4.1.2.3.1.2.2 #gated

This smux entry configures the snmpdv1 agent to allow the SMUX association only the gated SMUX
peer client with no authentication. The SMUX peer must be running on the local host.

smux configuration
smux 1.3.6.1.4.1.2.3.1.2.2 private #gated

This smux entry configures the snmpdv1 agent to allow the SMUX association only the gated SMUX
peer client having the passwordprivate. The SMUX peer must be running on the local host.

smux configuration
smux 1.3.6.1.4.1.2.3.1.2.2 private 0.0.0.0 0.0.0.0

This smux entry configures the snmpdv1 agent to allow the SMUX association only the gated SMUX
peer client having the passwordprivate. The SMUX peer can be running on any host.

smux configuration
smux 1.3.6.1.4.1.2.3.1.2.2 private 192.100.154.7 255.255.255.255

This smux entry configures the snmpdv1 agent to allow the SMUX association only the gated SMUX
peer client having the passwordprivate. The gated SMUX peer must be running on the host with IP
address 192.100.154.7

smux configuration
smux 1.3.6.1.4.1.2.3.1.2.2 private 192.100.154.1 255.255.255.0

Files Reference 359

This entry configures the snmpdv1 agent to allow the SMUX association only the gated SMUX peer
client having the password private. The gated SMUX peer can be running on any host in the network
defined by 192.100.154.

smux configuration
smux 1.3.6.1.4.1.2.3.1.2.2 private 2000:1:1:1:209:6bff:feae:6d67 64

This entry configures the snmpdv1 agent to allow the SMUX association with only the gated SMUX
peer client that has the private password. The gated SMUX peer can be running on any IPv6 host in
the network defined by 2000:1:1:1:209:6bff:feae:6d67.

Note: The SMUX peer client object identifier must be unique. Only one form of the preceding examples
of smux entries for the gated SMUX peer client can be in the snmpd.conf file.

7. Example of sysLocation and sysContact entries in the snmpd.conf file:

Definitions for sysLocation and sysContact
sysLocation "Austin, Texas, USA, XYZ, Bld 905, 5C-11"
sysContact "Bill Roth, Amber Services, 1-512-849-3999"

These entries set the value for the sysLocation and sysContact variables.

Related information
snmpdv1 command
gated command
SNMP trap processing
SNMP daemon troubleshooting
SNMP daemon configuration

snmpd.boots File

Purpose
Provides the boot and engine ID information for the snmpdv3 agent.

Description
The snmpd.boots file provides the boot and engine ID information for the snmpdv3 agent. The file
contains two elements: an engineID, and, engineBoots, the number of times that the snmpv3 daemon
has been started.

Syntax
engineID engineBoots

The following list explains the variables in the syntax:
engineID

A string of 2 to 64 (must be an even number) hexadecimal digits. The engine identifier uniquely
identifies the agent within an administrative domain. By default, the engine identifier is created using
a vendor-specific formula and incorporates the IP address of the agent. However, users can choose to
use any engine identifer that is consistent with the snmpEngineID definition in RFC 2271, and that is
also unique within the administrative domain.

For the engineID that is associated with an IPv4 address, the first 8 hexadecimal digits represent a
vendor enterprise ID obtained from the Internet Assigned Numbers Authority (IANA). For IBM, this ID
is 00000002. The last 16 hexadecimal digits are determined by vendor-formula. For IBM, the formula
follows these rules:

• The first two hexadecimal digits indicate the content of the next 14 hexadecimal digits.

360 AIX Version 7.1: Files Reference

• The string 00 indicates that the next 6 hexadecimal digits are zeros, followed by the IP address of
the agent in the last 8 hexadecimal digits.

• The string 01 indicates that the next 6 hexadecimal digits contain a time stamp, followed by the IP
address of the agent in the last 8 hexadecimal digits.

The agent is always used without a time stamp, so the engineID for an SNMP agent at IPv4 address
9.67.113.10 is 00000002 00000000 09 43 71 0A (spaces are added for clarity).

An engineID associated with an IPv6 address follows these rules:

• The first 4 octets 80000002, which are a hexadecimal value, is an IANA assigned enterprise
number.

• The 5th octect 02, which is a hexadecimal value, indicates that it is an IP address.
• The 6th octet to the 31st octet are hexadecimal values of the 16 bytes IPv6 address.

For example, the engineID for an SNMP agent running on IPv6 address
2000:1:1:1:209:6bff:feae:6d67 is 80000002 02 200000010001000202096BFFFEAE6D67
(spaces are added for clarity).

engineBoots
The number of times (in decimal) the agent has been restarted since the engineID was last changed.

Note:

1. engineID and engineBoots must be specified in order and on the same line.
2. Comments are specified in the file by starting the line with either an asterisk (*) or a pound sign (#).
3. No comments are allowed between engineID and engineBoots values.
4. Only the first non-comment line is read. Subsequent lines are ignored.

Example
The first string of numbers is the engineID, the second string is the number of times the snmpv3 daemon
has been started.

00000002000000000903E65F 0000000003

Files

Item Description

etc/snmpd.boots Provides boot and engineID information.

Related information
snmpdv3 command
SNMP trap processing
SNMP daemon troubleshooting
SNMP daemon configuration

snmpdv3.conf File

Purpose
Defines a sample configuration file for the snmpdv3 agent.

Description
An entry must be contained on one line (i.e., the newline character will be treated as the end of an
entry) All of the entry definitions require that all fields on the entry are specified, either with a specific

Files Reference 361

value or a dash (-) to denote the default value. If an error is detected processing an entry and no
appropriate default value can be assumed, the entry will be discarded. Statements in the file are not
order-dependent. However, if more than one DEFAULT_SECURITY statement is found, the last one in the
file is the one that is used. For more information on sample configuration, refer to the /usr/samples/
snmpdv3/snmpdv3.conf file.

General Usage Rules

• All values for an entry must be on the same line.
• All keys need to be regenerated using the pwtokey command in order for these sample entries to

actually be used.
• In this sample, keys are generated for use with engine ID 00000002000000000943714F.
• Authentication keys were generated with password of username + password, such as u1password.
• Privacy keys were generated with password of username + privpass, such as u1privpass.
• Entries defined to use encryption support, which is available only as a separately orderable feature on

the base AIX product, are included below but commented out.

Comments may be entered in the snmpdv3.conf file, with the following restrictions:

• Comments must begin with the pound sign (#) or asterisk (*).
• Comments must begin in column 1. This allows the pound sign and asterisk to be used in names of

users, views, etc.

USM_USER entries
Defines a user for the User-based Security Model (USM). Format is:

userName engineID authProto authKey privProto privKey keyType storageType

where
userName

Indicates the name of the user for the User-based Security Model (USM) and must be unique to
the SNMP agent. The userName is used as the security name for the User-based Security Model.
The contents of this field will be used as the securityName value for other entries (such as the
VACM_GROUP entry) when the securityModel is USM. Valid value is:

• An octet string of 1 to 32 octets (characters).

There is no default value.
engineID

Indicates the engineID of the authoritative side of the message. The engineID for the AIX SNMP
agent is determined at agent initialization. It is either read in from the SNMPD.BOOTS file or it
is generated automatically and stored in the SNMPD.BOOTS file. It can be retrieved dynamically
by issuing a get request for object snmpEngineID. For get, getbulk, set, response, and trap
messages, the authoritative side is the SNMP agent. For inform messages, the authoritative side is
the notification receiver.

Note: The engineID is defined in RFC 2271.

Valid values are:

• An octet string of 1 to 32 octets (2 to 64 hex digits).
• A '-' (dash) indicates the default value.

The default value is the local SNMP agent's engineID.
authProto

Indicates the authentication protocol to be used on authenticated messages on behalf of this user.
Valid values are:

• HMAC-MD5 - indicates HMAC-MD5.
• HMAC-SHA - indicates HMAC-SHA.

362 AIX Version 7.1: Files Reference

• none - indicates no authentication is to be done.
• '-' (dash) - indicates the default value.

A The default value is HMAC-MD5 (if an authentication key is specified; if no authentication key is
specified, no authentication can be done for messages to/from this user).

authKey
Indicates the authentication key to be used in authenticating messages on behalf of this user. This
field will be ignored when authProto is specified as none. The keyType field will indicate whether
the key is localized or non-localized. Valid values are:

• An octet string of 16 bytes (32 hex digits) when authProto is HMAC-MD5.
• An octet string of 20 bytes (40 hex digits) when authProto is HMAC-SHA.
• A '-' (dash) indicates the default.

The default value is no key, indicating no authentication.
privProto

Indicates the privacy protocol to be used on encrypted messages on behalf of this user. Privacy
can be requested only if authentication is also requested. If authentication is not requested, this
field is ignored. Valid values are:

• DES - indicates CBC-DES (only with the additional encryption product).
• none - indicates no privacy.
• A '-' (dash) indicates default.

The default value is no privacy. No encryption will be done on messages to/from this user.
privKey

The privacy key to be used in authenticating messages to and from this user. This field will
be ignored when privProto is specified or defaulted as none. The keyType field will indicate
whether the key is localized or non-localized. Privacy can be requested only if authentication is
also requested. If authentication is not requested, this field is ignored. The privacy key and the
authentication key are assumed to have been generated using the same authentication protocol
(HMAC-MD5 or HMAC-SHA). Valid values are:

• An octet string of 16 bytes (32 hex digits) if the key is localized or if the key is non-localized and
the authProto is HMAC-MD5.

• An octet string of 20 bytes (40 hex digits) if the key is non-localized and the authProto is
HMAC-SHA.

• The '-' (dash) indicates default.

Default value is no key, indicating no encryption.
keyType

Indicates whether the keys defined by authKey and privKey are localized or non-localized.
Localized indicates that they have been generated with the appropriate engineID making the
key usable only at one snmpEngine. Non-localized indicates the key may be used at different
snmpEngines. The authKey and privKey, if both are specified, must both be localized or both be
non-localized. This field is ignored if no authentication or privacy is requested. Valid values are:

• L - indicates keys are localized.
• N - indicates keys are non-localized.
• '-' (dash) indicates default Default value is localized.

storageType
Indicates the type of storage in which this definition is to be maintained. StorageTypes are
defined in RFC1903. Valid values are:

• nonVolatile - indicates the entry definition will persist across reboots of the SNMP agent, but it
can, however, be changed or even deleted by dynamic configuration requests.

Files Reference 363

• permanent - indicates the entry definition will persist across reboots of the SNMP agent; it can
be changed but not deleted by dynamic configuration requests

• readonly - indicates the entry definition will persist across reboots of the SNMP agent; it cannot
be changed or deleted by dynamic configuration requests. readOnly is not permitted if the
authentication protocol is not 'none' (because keys must be changeable per RFC 2274 definition
of usmUserStorageType) .

• '-' (dash) - indicates default.

Default value is non-volatile.
VACM_GROUP entries

Defines a security group (made up of users or communities) for the View-based Access Control Model
(VACM). Format is:

groupName securityModel securityName storageType

where:
groupName

Indicates the group name for the View-based Access Control Model (VACM) and must be unique to
the SNMP agent. Valid value is:

• An octet string of 1 to 32 octets (characters).

There is no default value.
securityModel

Indicates the SNMP security model for this entry. When an SNMP message comes in, the
securityModel together with the securityName are used to determine to which group the
user (or community) represented by the securityName belongs. Valid values are: 'SNMPv1' -
indicates community-based security using SNMPv1 message processing. 'SNMPv2c' - indicates
community-based security using SNMPv2c message processing. 'USM' - indicates User-based
Security Model. A '-' (dash) - indicates default. Default value is 'USM'.

securityName
Indicates a member of this group. For community-based security, it will be a community name. For
the User-based Security Model, it will be a user name. Valid values are:

• An octet string of 1 to 32 octets (characters) indicating a USM userName when securityModel is
USM.

• An octet string of 1 to 32 octets (characters) indicating a community Name when securityModel
is 'SNMPv1' or 'SNMPv2c'.

There is no default value.
StorageType

As defined above on the USM_USER definition.
VACM_VIEW entries

Defines a particular set of MIB data, called a view, for the View-based Access Control Model. Format
is:

viewName viewSubtree viewMask viewType storageType

where:
viewName

Indicates the textual name of the view for the View-based Access Control Model. View names do
not need to be unique. Multiple entries with the same name together define one view. However,
the viewname, together with the subtree object ID, must be unique to an SNMP engine. Valid
values are:

• An octet string of 1 to 32 octets (characters).

There is no default value.

364 AIX Version 7.1: Files Reference

viewSubtree
Indicates the MIB object prefix of the MIB objects in the view. Valid values are:

• An object id of up to 128 sub-OIDs.
• A textual object name (or object prefix).
• A combination of textual object name followed by numeric sub-OIDs. The name must be found

within the compiled MIB or in the logical extension to the MIB, the MIBS.DATA file.

There is no default value.
viewMask

Indicates a mask that specifies which of the sub-OIDs in the subtree are relevant. See RFC2275
for a definition of the viewMask. Valid values are:

• A hex string of up to 16 octets (up to 128 bits) where each bit indicates whether or not the
corresponding sub-OID in the subtree is relevant.

• A '-' (dash) - indicates default.

The default value is a mask of all (meaning all sub-OIDs are relevant).
viewType

Indicates the type of the view definition. Valid values are:

• included - indicating the MIB objects identified by this view definition are within the view.
• excluded - indicating the MIB objects identified by this view definition are excluded from the

view.
• A '-' (dash) - indicates default.

The default value is included.
storageType

As defined above on the USM_USER definition.
VACM_ACCESS entries

Identifies the access permitted to different security groups for the View-based Access Control
Model.Format is:

groupName contextPrefix contextMatch securityLevel, securityModel
readView writeView notifyView storageType

where:
groupName

Indicates the group name for the View-based Access Control Model (VACM) for which access is
being defined. Valid values are:

• An octet string of 1 to 32 octets (characters).

There is no default value.
contextPrefix

Indicates an octet string to be compared with the incoming contextName if the value specified for
the contextMatch field is prefix. Note, however, that the SNMP agent in AIX supports MIB objects
in only the local (null) context. Valid values are:

• An octet string of 1 to 32 octets (characters).
• A '-' (dash) - indicates default.

The default value is the null context ("").
contextMatch

Indicates whether the incoming contextName must be compared with (and match exactly) the
entire contextName or whether only the first part of the contextName (up to the length of the
indicated value of the contextPrefix) must match. Valid values are:

• exact - indicates entire contextName must match.

Files Reference 365

• prefix - indicates only the prefix of the contextName must match.
• A '-' (dash) - indicates the default.

The default value is exact.
securityLevel

Indicates the securityLevel for this entry. Used in determining which access table entry to use.
Valid values are:

• noAuthNoPriv or 'none' - indicates no authentication or privacy protocols applied.
• AuthNoPriv or 'auth' - indicates authentication protocols applied but no privacy protocol is

applied.
• AuthPriv or 'priv' - indicates both authentication and privacy protocols applied (If the

additional encryption pack is not applied, this level can be configured but cannot actually be
used).

• A '-' (dash) - indicates default.

The default value is noAuthNoPriv.
securityModel

Indicates the SNMP security model for this entry. Used in determining which access table entry to
use. Valid values are:

• SNMPv1 - indicates community-based security using SNMPv1 message processing.
• SNMPv2c - indicates community-based security using SNMPv2c message processing.
• USM - indicates User-based Security Model.
• A '-' (dash) - indicates default.

The default value is USM.
readView

Indicates the name of the view to be applied when read operations (get, getnext, getbulk) are
performed under control of this entry in the access table. Valid values are:

• An octet string of 1 to 32 octets (characters) identifying a view defined by a VACM_VIEW
definition.

• A '-' (dash) - indicates default.

The default value is no view; no readView defined for members of this group.
writeView

Indicates the name of the view to be applied when write operations (set) are performed under
control of this entry in the access table. Valid values are:

• An octet string of 1 to 32 octets (characters) identifying a view defined by a VACM_VIEW
definition.

• A '-' (dash) - indicates default.

The default value is no view; no writeView defined for members of this group.
notifyView

Indicates the name of the view to be applied when notify operations (traps or informs) are
performed under control of this entry in the access table. Valid values are:

• An octet string of 1 to 32 octets (characters) identifying a view defined by a VACM_VIEW
definition.

• A '-' (dash) - indicates default.

Default value is no view; no notifyView defined for members of this group

NOTIFY entries
Identifies management targets to receive notifications. Format is:

366 AIX Version 7.1: Files Reference

notifyName tag type storageType

where:
notifyName

Is a locally unique identifier for this notify definition. Valid values are:

• An octet string of 1 to 32 octets (characters)

There is no default value.
tag

Indicates a tag value to be compared with the values in the tagLists defined in the
snmpTargetAddrTable (either on TARGET_ADDRESS entries or via dynamic configuration). For
each match of this tag with a value in the tagLists defined in the snmpTargetAddrTable), a
notification may be sent. See RFC2273 for a definition of SnmpTagValue. Valid values are:

• An octet string of 1 to 255 octets (characters). No delimiters are allowed.
• A '-' indicates the default.

Default value is no tag value.
type

Indicates which type of notification should be generated. Valid values are:

• trap - an unconfirmed notification; notification sent with trap PDUs.
• A '-' (dash) - indicates the default.

Default value is trap.
TARGET_ADDRESS

Defines a management application's address and parameters to be used in sending notifications.
Format is:

targetAddrName tDomain tAddress tagList targetParams timeout retryCount storageType

where:
targetAddrName

Indicates a locally unique identifier for this target address definition. Valid values are:

• An octet string of 1 to 32 octets (characters).

There is no default value.
tDomain

Indicates the transport type of the address indicated by tAddress. Valid values are:

• UDP - for UDP datagrams.
• A '-' (dash) - for the default value.

Default value is UDP.
tAddress

Indicates the transport address to which notifications are sent. Valid values are:

• A 1- to 21- octet string indicating the IP address and optionally the UDP port.

Form is

 ip_address:port

IP address must be specified as a.b.c.d where a, b, c and d are in the range of 0 to 255. The port, if
specified, must be in the range of 1 to 65535. Example:

9.37.84.48:162

The IP address may not be defaulted, but the port, if not specified, will default to 162.

Files Reference 367

tagList
Indicates a list of tag values which are used to select target addresses for a notification
operation. RFC2273 contains the complete definition of SnmpTagList and SnmpTagValue. The
AIX implementation accepts as valid values:

• An octet string of 1 to 255 octets (characters). No delimiters are allowed.
• '-' indicates the default.

The default value is an empty list.
targetParams

Indicates a TARGET_PARAMETERS paramsName value that indicates which security and message
processing is to be used in sending notifications to this target. Valid values are:

• An octet string of 1 to 32 octets (characters)

There is no default value.
timeout

Indicates the expected maximum round trip time for communicating with this target address (in
1/100ths of a second). timeout is used only for inform type notifications; it is not used for traps.
Valid values are:

• An integer in the range of (0..2147483647) specifying the number of hundredths of a second for
the timeout. Note, however, that this value is not used for notifications of type trap.

• '-' (dash) indicating the default.

Default value is 0, meaning no timeout value.
retryCount

Indicates the number of retries to be attempted when a response is not received for a generated
message. retryCount is used only for inform type notifications; it is not used for traps. Valid values
are:

• An interger in the range of (0 to 255), indicating the number of retries to be attempted. Note,
however, that this value is not used for notifications of type trap.

• A '-' (dash) indicating the default.

Default value is 0, meaning no retry.
TARGET_PARAMETERS

Defines the message processing and security parameters to be used in sending notifications to a
particular management target. Format is:

paramsName mpModel securityModel securityName securityLevel storageType

where:
paramsName

A locally unique identifier for this target parameters definition. Valid values are:

• An octet string of 1 to 32 octets (characters).

There is no default value.
mpModel

The message processing model to be used in sending notifications to targets with this parameter
definition. Valid values are:

• SNMPv1 - indicates SNMPv1.
• SNMPv2c - indicates SNMPv2c.
• SNMPv3 - indicates SNMPv3.

There is no default value.

368 AIX Version 7.1: Files Reference

securityModel
Indicates the security model to be used in sending notifications to targets with this parameter
definition. Valid values are:

• SNMPv1 indicates SNMPv1.
• SNMPv2c Indicates SNMPv2c.
• USM indicates User-based Security Model.

There is no default value.
securityName

Ientifies the principal (user or community) on whose behalf SNMP messages will be generated
using this parameter definition. For community based security, this would be a community name.
For USM, this would be a user name. Valid values are:

• An octet string of 1 to 32 octets (characters).

There is no default value.
securityLevel

Idicates the security level to be used in sending notifications to targets with this parameter
definition. Valid values are:

• noAuthNoPriv or none - indicates no authentication or privacy. protocols applied.
• AuthNoPriv or auth - indicates authentication protocols applied but no privacy protocol is

applied.
• AuthPriv or priv - indicates both authentication and privacy protocols applied. (If the additional

encryption pack is not applied, this level can be configured, but not actually used.)
• '-' (dash) - indicates default.

Default value is noAuthNoPriv.
NOTIFY_FILTER_PROFILE

Associates a notification filter profile with a particular set of target parameters. The format of this
parameter is as follows:

targetParamsName profileName storageType

The following list explains the meaning of the variables in the previous format:

• targetParamsName: Defines the message processing and security parameters to be used in
sending notifications to a particular management target.

• profileName: A locally unique identifier for this profile name definition. The valid value for this
parameter must be an octet string of 1 through 32 octets (characters). No default value is defined
for this parameter.

• storageType: Indicates the type of storage in which this definition is to be maintained.

NOTIFY_FILTER
Determines whether particular management targets receive particular notifications. The format of this
parameter is as follows:

profileName filterSubtree filterMask filterType storageType

The following list explains the meaning of the variables in the NOTIFY_FILTER parameter's format:

• profileName: A locally unique identifier for this profile name definition. The valid value for this
parameter must be an octet string of 1 through 32 octets (characters). No default value is defined
for this parameter.

• filterSubtree: Indicates the MIB subtree. When the filterSubtree parameter is combined with the
corresponding instance of snmpNotifyFilterMask, it defines a family of subtrees that are included
in, or excluded from, the filter profile. The following values are valid:

– An object ID of up to 128 sub-object IDs

Files Reference 369

– A textual object name (or object prefix)
– A combination of textual object name followed by numeric sub-object IDs

The name must be found within the compiled MIB or in the logical extension to the MIB, the
MIBS.DEFS file. There is no default value.

• filterMask: Indicates the bit mask in combination with the corresponding instance of
snmpNotifyFilterSubtree. This parameter defines a family of subtrees that are included in, or
excluded from, the filter profile. The valid values must be an octet string of 0 through 16 octets. The
default value is an octet string with a length of zero.

• filterType: Indicates the type of the filter definition. The following values are valid:

– included: Indicates the family of filter subtrees defined by this entry that are included in a filter.
– excluded: Indicates the family of filter subtrees defined by this entry that are excluded from a

filter.
– - (dash): Indicates the default value.

The default value for this parameter is included.
• storageType: Indicates the type of storage in which this definition is to be maintained.

COMMUNITY
Defines a community for community-based security.

By default, the AIX snmpdv3 agent does not configure any default community name, including the
public community name. The snmpdv3 agent neither work with the IPv4 address nor with the IPv6
address unless any COMMUNITY entry is configured for the IPv4 and/or IPv6 address.

The format is:

communityName securityName securityLevel netAddr netMask storageType

where:
communityName

Indicates a community name for community-based security (SNMPv1 or # SNMPv2c). Valid values
are:

• An octet string of 1 to 32 octets (characters).

There is no default value.
securityName

Indicates a securityName defined for this communityName. The securityName is the
more generic term for the principal (user or community) for which other entries, such as
VACM_GROUP and TARGET_PARAMETERS, are defined. Typically, the securityName would
match communityName or, at least, there would be a one-to-one correspondence between
securityName and communityName. (Until the community MIB support is implemented, the
community name must match the securityName exactly.) Valid values are:

• An octet string of 1 to 32 octets (characters).
• '-' (dash) - indicates default.

The default value is securityName equal to the specified communityName.
securityLevel

Indicates the security level to be applied when processing incoming or outgoing messages with
this community name.

Note: When the communityMIB is implemented, authNoPriv will also be a valid level of security,
but at the moment, it will be rejected because there is no way to store a securityLevel to be
associated with a communityName. When that happens, the following will be added to the list of
valid values below:

• authNoPriv or auth - indicates authentication protocols applied.

370 AIX Version 7.1: Files Reference

Note that no additional authentication checking is done by specifying auth. Authentication still
involves verifying that the community name is being used by an IP address for which it has
been defined and using the views defined for that entry. However, allowing the specification of
auth here does allow the system administrator to define a different set of views to be used if
the same community name is defined with two different securityNames (each with a different
securityLevel)

Valid values are:

• noAuthNoPriv or none - indicates no authentication or privacy protocols applied.
• '-' (dash) - indicates default.

Default value is noAuthNoPriv. Encryption is not supported on SNMPv1/SNMPv2c messages.
netAddr

A network address indicating the range of addresses for which this community name might be
used. The following values are valid:

• An IPv4 network address in the form of a.b.c.d, where a, b, c, and d are in the range of 0
through 255. However, not all of the four octets are required. Also, 255.255.255.255 is not a
valid network address.

• An IPv6 network address.

netMask
An IP address mask to be logically ANDed with the origin address of the incoming SNMP message.
If the resulting value equals the value specified for netAddr, the incoming message is accepted.
The following values are valid:

• A network address in the form of a.b.c.d, where a, b, c, and d are in the range of 0 through
255. However, not all of the four octets are required.

• A prefix length in the range of 0 through 128 for IPv6 address.

There is no default value.
storageType

As defined above on the USM_USER definition (Note, until the community MIB is implemented,
storage type values other than readOnly will be treated as readOnly; i.e., they cannot be changed
dynamically.)

DEFAULT_SECURITY
Identifies the default security posture to be configured for the SNMP agent; additional security
definitions defined by the use of the preceding eight entry definition types augment any default
security configurations defined as a result of the DEFAULT_SECURITY statement. Format is:

securityPosture password privacy

where:
securityPosture

Indicates the default security posture to be configured for the SNMP agent, as defined by
Appendix A of RFC 2275 (and outlined below). Valid values are:

• minimum-secure - indicates the SNMP agent will be configured with the least secure default
configurations

• semi-secure- indicates the SNMP agent will be configured with moderately secure default
configurations.

• no-access - indicates the SNMP agent will be configured with no default configurations.

The default value is no-access.
password

Indicates the password to be used to generate authentication and privacy keys for user 'initial' In
the case that no-access is specified as the securityPosture, this keyword is ignored. Valid values
are:

Files Reference 371

• An octet string of 8 to 255 octets (characters).
• '-' (dash) - indicating the default.

Default value is no password. Default only accepted if securityPosture is no-access.
privacy

Indicates whether or not encryption is to be supported for messages on behalf of user 'initial'.
Valid values are:

• Yes - indicates privacy is supported for user 'initial' (only with the additional encryption
product).

• No - indicates privacy is not supported for user initial.
• '-' (dash) - indicates default value.

Default value is no. If no-access is selected as the security posture, this value will be ignored.

Default security definitions based on the selected security posture:
no-access

No initial configurations are done.
semi-secure

The default (null) context is configured. If privacy is not requested, a default user is configured
as if the following USM_USER entry had been specified. USM_USER initial- HMAC-MD5 none
- N permanent where ### indicates the key generated from the password specified on the
DEFAULT_SECURITY entry. If privacy is requested (and available with the additional encryption
product) , a default user is configured as if the following USM_USER entry had been specified:
USM_USER initial - HMAC-MD5 ### DES ### N permanent where ### indicates the key generated
from the password specified on the DEFAULT_SECURITY entry.

A default group is configured as if the following VACM_GROUP entry had been specified:

VACM_GROUP initial USM initial readOnly. Three default access entries are configured as if the following
VACM_ACCESS entries had been specified:

VACM_ACCESS initial - exact none. USM restricted - restricted readOnly.
VACM_ACCESS initial - exact auth. USM internet internet internet readOnly
VACM_ACCESS initial - exact priv USM internet internet internet readOnly
Two default MIB views are configured as if the following
VACM_VIEW entries .had been specified:
VACM_VIEW internet internet - included readOnly
VACM_VIEW restricted system - included readOnly
VACM_VIEW restricted snmp - included readOnly
VACM_VIEW restricted snmpEngine - included readOnly
VACM_VIEW restricted snmpMPDStats - included readOnly
VACM_VIEW restricted usmStats - included readOnly

minimum-secure
The default (null) context is configured. If privacy is not requested, a default user is configured
as if the following USM_USER entry had been specified. : USM_USER initial - HMAC-MD5 ###
none - N permanent where ### indicates the key generated from the password specified on the
DEFAULT_SECURITY entry.

If privacy is requested (and available with the additional encryption product) , a default user is configured
as if the following USM_USER entry had been specified: USM_USER initial - HMAC-MD5 ### DES
N permanent where ### indicates the key generated from the password specified on the
DEFAULT_SECURITY entry.

A default group is configured as if the following VACM_GROUP entry had been specified: VACM_GROUP
initial USM initial readOnly.

Three default access entries are configured as if the following VACM_ACCESS entries had been specified:

VACM_ACCESS initial - exact none USM restricted - restricted readOnly
VACM_ACCESS initial - exact auth USM internet internet internet readOnly
VACM_ACCESS initial - exact priv USM internet internet internet

372 AIX Version 7.1: Files Reference

readOnly
Two default MIB views are configured as if the following VACM_VIEW entries had been specified:

VACM_VIEW internet internet - included readOnly
VACM_VIEW restricted internet - included readOnly

logging
Directs logging from the configuration file. Format is:

logging file=</path/filename> enabled|disabled
logging size=<limit> level=<debug level>

There can be no white spaces around the "=" in the file, size and level fields where </path/filename>
specifies the complete path and filename of the log file. Valid values are: An octet string of 1 to
255 octets (characters). Default value is /var/tmp/snmpdv3.log enabled|disabled. Valid values are:
'enabled' - turns logging on; 'disabled' - turns logging off. Default value is 'enabled'.

<limit>
Specifies the maximum size in bytes of the specified logfile Valid values are: '0' - meaning unlimited.
An unsigned integer number in the unit of byte. Default value is 0.

<debug level>
specifies the logging level. Valid values are: # 0, 1, 2, 3, or 4 Default value is 0.

logging file=/usr/tmp/snmpdv3.log enabled
logging size=0 level=0

smux entry
Sets the SMUX peer configuration parameters # Format is:

smux <client OIdentifier> <password> <address> <netmask>

Fields to the right of <client OIdentifier> are optional, with the limitation that no fields to the left
of a specified field are omitted. Where <client OIdentifier> defines the unique object identifer in
dotted decimal notation of the SMUX peer client. Valid values are: An unique object identifer in dotted
decimal notation up to 128 sub-OIDs of that SMUX peer. There is no default value.

<password>
Specifies the password that snmpd requires from the SMUX peer client to authenticate the SMUX
association. If no password is specified, there is no authentication for the SMUX association. Valid
values are: An octet string of 8 to 255 octets (characters). Default value is null string

<address>
Identifies the host on which the SMUX peer client is running. The following values are valid:

• A host name of 1 through 80 characters or an IPv4 address that must be specified in the format of
a.b.c.d, where a, b, c, and d are in the range of 0 through 255

• An IPv6 address.

The default value of the <address> member is 127.0.0.1
<netmask>

Specifies the network mask. Valid values are: network mask must be specified as a.b.c.d where a, b, c
and d are in the range of 0 to 255. Default value is 255.255.255.255.

smux 1.3.6.1.4.1.2.3.1.2.1.2 gated_password # gated

Any SNMP agent configuration entries added by dynamic configuration (SET) requests get added to the
end of the snmpdv3.conf file.

Related reference
clsnmp.conf File
snmpmibd.conf File
Related information
snmpdv3 command

Files Reference 373

clsnmp command
pwtokey command
pwchange command
SNMP trap processing
SNMP daemon troubleshooting
SNMP daemon configuration

snmpmibd.conf File

Purpose
Defines the configuration parameters for snmpmibd dpi2 sub-agent.

Description
The snmpmibd.conf file provides the configuration information for the snmpmibd dpi2 sub-agent. This
file can be changed while the snmpmibd dpi2 sub-agent is running. If the refresh command is issued,
the snmpmibd dpi2 sub-agent will reread this configuration file. The snmpmibd dpi2 sub-agent must be
under System Resource Control (SRC) for the refresh command to force the reread. To perform a reread,
as root user, run:

refresh -s snmpmibd

Keywords

The directives are specified in the form of <keyword>=<value>. The keyword is case-insensitive. The
value passed is also case-sensitive.
logFilename

The name of the most recent log file. Less recent log files have the number 1 to (n - 1) appended to
their names. The larger the number, the less recent the file.

logFileSize
The size of log files in K bytes. Maximum size of a log file. When the size of the most recent log file
reaches this value, it is renamed and a new log file is created.

numLogFiles
The number of log files desired. The maximum value for numLogFiles is 4. A new file is created when
the size of the log file is equal or more than the size specified by the keyword logFileSize. When the
number of log files reaches the numLogFiles the log files start rotating.

tracelevel
The tracing/debug level.

 8 = DPI level 1
 16 = DPI level 2
 32 = Internal level 1
 64 = Internal level 2
 128 = Internal level 3

Add the numbers for multiple trace levels

Example
logFileName=/usr/tmp/snmpmibd.log
logFileSize=0
numLogFiles=0
tracelevel=0

374 AIX Version 7.1: Files Reference

File
Item Description

/etc/snmpmibd.conf Defines the configuration parameters for snmpmibd dpi2 sub-agent.

Related reference
snmpdv3.conf File
Related information
snmpmibd command
refresh command

socks5c.conf File

Purpose
Contains mappings between network destinations and SOCKSv5 servers.

Description
The /etc/socks5c.conf file contains basic mappings (between network destinations, hosts or networks,
and SOCKSv5 servers) to use when accessing network destinations. It is an ASCII file that contains
records for server mappings. Text that follows a pound character (#) is ignored until the end of the line.
Each record is on a single line in the following format:

destination [/prefixlength] server [:port]

You must separate the fields with whitespace. Records are separated by new line characters. The fields
and modifiers in a record have the following values:

Item Description

destination Specifies a network destination. The destination variable may be either a name
fragment or a numeric address (with optional prefixlength). If destination is an
address, it may be either IPv4 or IPv6.

prefixlength If specified, indicates the number of leftmost (network order) bits of an address to
use when comparing to this record. It is valid only if destination is an address. If not
specified, all bits are used in comparisons.

server Specifies the SOCKSv5 server associated with destination. If server is NONE (must
be all uppercase), this record indicates that target addresses matching destination
should not use any SOCKSv5 server; instead, it should be contacted directly.

port If specified, indicates the port to use when contacting server.

If a name fragment destination is present in /etc/socks5c.conf, all target addresses in SOCKSv5
operations will be converted into hostnames for name comparison (in addition to numeric comparisons
with numeric records). The resulting hostname is considered to match if the last characters in the
hostname match the specified name fragment.

When using this configuration information to determine the address of the appropriate SOCKSv5 server
for a target destination, the best match is used. The best match is defined as follows:

• If destination is numeric, the most bits in the comparison (i.e., largest prefixlength) are used.
• If destination is a name fragment, the most characters in the name fragment are.

When both name fragment and numeric addresses are present, all name fragment entries are better than
numeric address entries.

The following two implicit records are assumed as defaults for all destinations not specified in /etc/
socks5c.conf.:

Files Reference 375

0.0.0.0/0 NONE #All IPv4 destinations; no associated server.

::/0 NONE #All IPv6 destinations; no associated server.

SOCKS5C_CONFIG Environment Variable

The SOCKS5C_CONFIG environment variable enables the SOCKS library. To enable the library and to
indicate that it uses the socks5c.conf file, you must set and export the variable to the pathname
of the file, which is /etc/socks5c.conf. However, you can use a different configuration file by setting
SOCKS5C_CONFIG to the pathname of that file. If the specified file is not found, then by default the
socks5c.conf file is used as a configuration file. If you set this variable to NULL, then SOCKS is not used
and traditional network operations occur instead.

Security
Access Control: This file should grant read (r) access to all users and grant write (w) access only to the
root user.

Examples

#Sample socks5c.conf file

9.0.0.0/8 NONE #Direct communication with all hosts in the 9 network.

129.35.0.0/16 sox1.austin.ibm.com

ibm.com NONE #Direct communication will all hosts matching "ibm.com" (e.g.
"aguila.austin.ibm.com")

Related information
socks5tcp_connect

space File

Purpose
Describes the format of a disk space requirements file.

Description
The space file is an ASCII file that gives information about disk space requirements for the target
environment. It defines the maximum additional space a package requires (for example, for files that are
installed with the installf command).

The generic format of a line in this file is:

 pathname blocks inodes

Definitions for the fields are as follows:

Item Description

pathname Specifies a directory name which may or may not be the mount point for a filesystem.
Names that do not begin with a slash (/) indicate relocatable directories.

blocks Defines the number of disk blocks required for installation of the files and directory entries
contained in the pathname (using a 512-byte block size).

inodes Defines the number of inodes required for installation of the files and directory entries
contained in the pathname.

376 AIX Version 7.1: Files Reference

Examples

 # extra space required by config data which is
 # dynamically loaded onto the system
 data 500 1

.srf File

Purpose
Contains all the text components with hypertext information embedded.

Description
The .srf file is one of several intermediate files produced for each document by InfoCrafter. The .srf file is
a binary file that contains all the text components with hypertext link information embedded.

Files

Item Description

.srf Contains text components with embedded linking information.

Related reference
.fig File

streamcmds File

Purpose
Contains auditstream commands.

Description
The /etc/security/audit/streamcmds file is an ASCII template file that contains the stream mode
commands that are invoked when the audit system is initialized. The path name of this file is defined
in the stream stanza of the /etc/security/audit/config file.

This file contains command lines, each of which is composed of one or more commands with input and
output that may be piped together or redirected. Although the commands usually are one or more of
the audit system commands (auditcat, auditpr, and, auditselect), this is not a requirement. The first
command, however, should be the auditstream command.

When the audit system is initialized, the audit start command runs each command. No path name
substitution is performed on $trail or $bin strings in the commands.

Security
Access Control: This file should grant read (r) access to the root user and members of the audit group, and
write (w) access to the root user only.

Files Reference 377

Examples
1. To read all records from the audit device, select and format those that involve unsuccessful events,

and print them on a line printer, include the following in the /etc/security/audit/streamcmds file:

/usr/sbin/auditstream | /usr/sbin/auditselect -e \
 "result == FAIL" |/usr/sbin/auditpr -v > /dev/lpr0

This command is useful for creating a hard-copy trail of system security violations.
2. To read all records from the audit device that have audit events in the authentication class, format

them, and display them on the system console. Include the following in the /etc/security/audit/
streamcmds file:

/usr/sbin/auditstream -c authentication | \
/usr/sbin/auditpr -t0 -v > /dev/console

This command allows timely auditing of user authentication events.

Files

Item Description

/etc/security/audit/streamcmds Specifies the path to the file.

/etc/security/audit/config Contains audit system configuration information.

/etc/security/audit/events Contains the audit events of the system.

/etc/security/audit/objects Contains audit events for audited objects (files).

/etc/security/audit/bincmds Contains auditbin backend commands.

Related information
audit command
Setting Up Auditing
Auditing overview
Security Administration

sysck.cfg File

Purpose
Contains file definitions for the trusted computing base.

Description
Note: The sysck command does not update this file. It is only updated by the tcbck command.

The /etc/security/sysck.cfg file is a stanza file that contains definitions of file attributes for the trusted
computing base. The name of each stanza is the pathname of a file, followed by a : (colon). Attributes are
in the form Attribute=Value. Each attribute is ended with a new-line character, and each stanza is ended
with an additional new-line character.

Each stanza can have one or more of the following attributes, and must have the type attribute:

Item Description

acl Defines the access control list of the file, including the SUID, SGID, and SVTX bits. The
value is the Access Control List, in the format described in Access control lists in Operating
system and device management.

378 AIX Version 7.1: Files Reference

Item Description

class Defines a group of files for checking, deleting, or updating. A file can be in more than one
class. The value is the ClassName [ClassName]parameter.

checksum Defines the checksum, as computed with the sysck checksum program. This attribute
is valid only for regular files. The value is the output of the sum -r command, including
spaces.

group Defines the group name or numeric group ID, expressed as the GroupName or GroupID
parameter.

links Defines the absolute paths that have hard links to this object. The value must be an
absolute pathname, expressed as the Path, [Path ...] parameter.

mode Defines the file mode, expressed as the Flag, Flag ..., PBits parameters. The Flag
parameter can contain the SUID, SGID, SVTX, and tcb mode attributes. The Pbits
parameter contains the base file permissions, expressed either in octal form, such as 640,
or symbolic form, such as rw-,r—, r—. The order of the attributes in the Flag parameter is
not important, but base permissions must be the last entry in the list. The symbolic form
may include only read (r), write (w), and execute (x) access. If the acl attribute is defined
in the stanza, the SUID, SGID, and SVTX mode attributes are ignored. For a typical mode
specification, see the Examples section.

owner Defines the name or numeric ID of the file owner, expressed as the OwnerName or the
OwnerID parameter.

size Defines the size of the file in bytes. This attribute is valid only for regular files. The value is
a decimal number. A VOLATILE value in the size field indicates that the size of the file will
change (so no checksum value can be given).

type The type of object. Select one of the following keywords: FILE, DIRECTORY, FIFO,
BLK_DEV, CHAR_DEV, or MPX_DE.

Stanzas in this file can be created and altered with the sysck command. Direct alteration by other means
should be avoided, since other accesses may not be supported in future releases.

Attributes that span multiple lines must be enclosed in double quotes and have new line characters
entered as \n.

Since device configuration and the sysck.cfg database are independent and are not integrated, there is no
automatic addition of syck.cfg entries when a device is added. Hence, given the automatic configuration
of devices at boot time, it is the responsibility of the administrator to maintain /etc/security/sysck.cfg.
This is also true in the case of mirrored rootvg, since /dev/ipldevice gets relinked dynamically to the
other disk when the system is rebooted off the mirrored disk.

Security
Access Control: This file should grant read (r) access to the root user and members of the security group,
and write (w) access to the root user only. General users do not need read (r) access.

Examples
1. A typical stanza looks like the following example for the /etc/passwd file:

/etc/passwd:
 type = file
 owner = root
 group = passwd
 mode = TCB,640

Files Reference 379

2. A typical mode specification looks like the following example for a program that is part of the trusted
computing base, that is a trusted process, and that has the setuid attribute enabled:

mode = SUID,TP,TCB,rwxr-x---

OR

mode = SUID,TP,TCB,750

Files

Item Description

/etc/security/sysck.cfg Specifies the path to the system configuration data base.

Related information
grpck command
installp command
pwdck command
usrck command
Access control lists

syslog.conf File

Purpose
Controls output of the syslogd daemon.

Description
Each line must consist of two parts:

1. A selector to determine the message priorities to which the line applies.
2. An action. Each line can contain an optional part.
3. Rotation.

The fields must be separated by one or more tabs or spaces.

Format
msg_src_list destination [rotate [size sizek|m] [files files] [time timeh|d|w|m|y] [compress] [archive
archive]]

where msg_src_list is a semicolon separated list of facility.priority where:
facility

all (except mark)
mark - time marks kern,user,mail,daemon, auth,....

priority
is one of (from high to low):
emerg/panic,alert,crit,err(or),warn(ing),notice,info,debug (meaning all messages of this priority or
higher)

destination
is:
/filename - log to this file username [,username2...] - write to user(s)
@hostname - send to syslogd on this machine

380 AIX Version 7.1: Files Reference

* - send to all logged in users
centralizedlog LogSpaceName/LogStreamName - send to the specified PowerHA pureScale®

logstream

[rotate [size sizek|m] [files files] [time timeh|d|w|m|y] [compress] [archive archive]] is:

If destination is a regular file and the word rotate is specified, then the destination is limited by either
size or time, or both. The size value causes the destination to be limited to size, with files files kept in the
rotation. The backup filenames are created by appending a period and a number to destination, starting
with .0. The time value causes the destination to be rotated after time. If both time and size are specified,
then logfiles will be rotated once the logfile size exceeds size or the after time, whichever is earlier.

If the compress option is specified then the logfile names will be generated with a .Z extension. The files
keyword will be applicable to the logfiles which are currently under rotation. For example, if we specify
the compress option, then only file with .Z extension will be under rotation and the number of such files
will be limited byfiles files. Any logfiles with an extension other than .Z will not be under the rotation
scheme and thus will not be under the restriction of files files. Similarly if the compress option is removed
then the files which have been generated with .Z extension will no longer be the part of rotation scheme
and will not be limited by the files files.

The minimum size that can be specified is 10k. The minimum number of files that can be specified is 2.
The default size is 1MB and the default for files is unlimited. Therefore, if only rotate is specified, the log
will be rotated with size = 1m. The compress option means that rotated log files that are not in use will be
compressed. The archive option will save rotated log files that are not in use to archive.

The default is not to rotate log files.

[perm [mode]] is:

If destination is a regular file, and the word perm is specified it means that rotated files is having the
permission specified by mode.

[Filter [filename]] is:

If the destination is a regular file, and word filter is specified it means that the messages coming from the
remote machine is logged on to the file specified with this keyword. The default is not to filter the remote
messages and not to set the permissions on rotate log files.

Requirement: The letter indicating the unit must immediately follow the number in the syntax. For
example, to specify the log rotation of every two days, the phrase time 2d is correct, but time 2 d is
not.

Note: To use a PowerHA pureScale logstream destination, the PowerHA pureScale client fileset must be
installed on the system and bindings information for the service named "CentralizedLogService" must be
setup. The log space and log stream objects specified as the PowerHA pureScale logstream destination
must exist.

Note: It is recommended not to use same destination file in multiple entries when using file rotation. The
following example shows bad configuration, which should be avoided.

user.debug /var/log/syslog.out rotate size 100k files 4
user.notice /var/log/syslog.out rotate size 200k files 16

The proper configuration for the above case follows:

user.debug /var/log/syslog.debug.out rotate size 100k files 4
user.notice /var/log/syslog.notice.out rotate size 200k files 16

Example
"mail messages, at debug or higher, go to Log file. File must exist."
"all facilities, at debug and higher, go to console"
"all facilities, at crit or higher, go to all users"
"user messages, at warning or higher, go to logstream"
mail.debug /usr/spool/mqueue/syslog

Files Reference 381

*.info /dev/console
*.crit *
user.warn centralizedlog CentralizedRAS/SyslogUserWarning

-or otherwise can have something like:

*.debug /var/log/syslog.debug100k.out rotate size 100k files 4
*.crit /var/log/syslog.dailycrit.out rotate time 1d

Files
Item Description

/etc/syslog.conf Controls the output of syslogd.

Related information
syslogd subroutine

targets File

Purpose
Defines iSCSI targets that will be accessed by the iSCSI software initiator.

Description
The iSCSI targets file defines the name and location of the iSCSI targets that the iSCSI software initiator
will attempt to access. This file is read any time the iSCSI software initiator driver is loaded.

Any line in this file that begins with "#" will be treated as a comment line and ignored. Other non-blank
lines will define a target that the iSCSI software initiator will access. The "\" character may be used
between fields as a line continuation character in order to make the file more readable.

The shipped version of this file contains comments that precisely define the format of the file. However,
there are no default target names; the shipped file contains only comments. In order to use the iSCSI
software initiator, the user must add target definitions to the file and then reload the iSCSI driver by
running cfgmgr or by rebooting the system.

Each target is defined by three or four fields, as follows:

HostNameOrAddress PortNumber iSCSIName

or

HostNameOrAddress PortNumber iSCSIName CHAPSecret

The fields that define the target are:
HostNameOrAddress

This is the TCP/IP location of the target. The location may be specified by a TCP/IP address in
dotted-decimal form, or by a host name which can be resolved to a valid TCP/IP address. The format
for the IP Address is taken from RFC2373.

PortNumber
The TCP/IP port number on which the iSCSI target is listening. The standard port number for iSCSI is
3260, but some targets may allow customizing the port number, so this field must be specified.

iSCSIName
The iSCSI name of the target. This name must match the name defined to the target. Note that
the iSCSI name will be converted to contain all lower case characters, in accordance with the iSCSI
standards.

382 AIX Version 7.1: Files Reference

CHAPSecret
This optional field specifies the secret to be used by this initiator if CHAP authentication is required.
The secret is a text string enclosed in double-quote characters. If this field is included in the target
line, the iSCSI software initiator will offer CHAP authentication to the target, and if the target requests
such authentication, this value will be used as the secret during the authentication process. If the
CHAPSecret field is not included in the target definition, the initiator will attempt to log in to the
target without any authentication.

Examples

1. iSCSI Target without CHAP(MD5) authentication - Assume the target is at address
192.168.3.2 and the valid port is 5003. The name of the target is iqn.com.ibm-4125-23wwt26. The
target line would look like the following:

192.168.3.2 5003 iqn.com.ibm-4125-23wwt26

2. iSCSI Target with CHAP(MD5) authentication - Assume the target is at address 10.2.1.105
and the valid port is 3260. The name of the target is iqn.com.ibm-k167-42.fc1a and the CHAP secret is
"This is my password." The target line would look like the following:

10.2.1.105 3260 iqn.com.ibm-k167-42.fc1a "This is my password."

3. iSCSI Target with CHAP(MD5) authentication and line continuation - Assume
the target is at address iscsi.fake.com and the valid port is 3260. The name of the target is
iqn.2003-01.com.ibm:00.fcd0ab21.shark128 and the CHAP secret is "123ismysecretpassword.fc1b".
The target line would look like the following:

 iscsi.fake.com 3260 iqn.2003-01.com.ibm:00.fcd0ab21.shark128 \
 "123ismysecretpassword.fc1b"

Files
Item Description

/etc/iscsi/targets The iSCSI targets file.

Temporary (TM.*) Files for BNU

Purpose
Store data files during transfers to remote systems.

Description
The Basic Networking Utilities (BNU) temporary (TM.*) files store data files during transfers to remote
systems.

After a data (D.*) file is transferred to a remote system by the uucico daemon, the BNU program
places the file in a subdirectory of the BNU spooling directory named /var/spool/uucp/SystemName.
The SystemName directory is named for the computer transmitting the file. The BNU program creates a
temporary data file to hold the original data file.

The full path name of the temporary data file is a form of the following:

/var/spool/uucp/SystemName/TM.xxPID.000

where the SystemName directory is named for the computer sending the file, and TM.xxPID.000 is the
name of the file; for example, TM.00451.000. The PID variable is the process ID of the job.

The uucico daemon normally deletes all temporary files when they are no longer needed. However,
temporary files can also be removed using the uucleanup command with the -T flag.

Files Reference 383

Files

Item Description

/etc/uucp/Systems file Describes accessible remote systems.

/var/spool/uucp/SystemName directory Contains BNU command, data, and
execute files.

/var/spool/uucppublic/* directories Contain files that BNU has transferred.

/var/spool/uucp/SystemName/D.* files Contain data to be transferred.

Related information
uucp command
uupick command
uuto command
uux command
Understanding the BNU File and Directory Structure

Workload Manager .times File

Purpose
Defines time ranges for configurations in a configuration set.

Description
Time ranges will appear in the configuration set files. These files are attribute files where the stanzas are
the configuration names, and the only attribute is the time range. No default record is allowed (useless
and confusing). A missing time range attribute stands for the default time range, which means always
outside the other defined time ranges if any.

Time Coherency Checks

It is mandatory that the time ranges do not overlap within a single file. In doing so, it would not be
possible to find which is the right config to use. The union of all time ranges must cover all times. The
default time range will help for ensuring this.

Note: It might not be possible to make changes to a correct file that result in another correct file without
having intermediate incorrect file contents from this coherency point of view, due to commands or SMIT
making one change at a time. For this reason, the content of the file is copied to .running at Workload
Manager explicit update time.

Syntax
This syntax applies to configuration set files and to confsetcntrl command, wherever a time range is
given. A time range is specified as a range of days with 0 representing Sunday and 6 representing
Saturday, and in 24 hour format, with hours and minutes specified. A default time range, which will
include all time ranges not otherwise specified, is indicated by a single minus sign (-).

Specification:

<time-range>: -
<time-range>: <weekday-range>,<time-of-the-day-range>
<time-range>: <weekday-range>
<time-range>: <time-of-the-day-range>
<weekday-range>: <weekday>-<weekday>
<weekday-range>: <weekday>
<weekday>: 0 through 6 for Sunday through Saturday
<time-of-the-day-range>: <time-of-the-day>-<time-of-the-day>
<time-of-the-day>: <hour>.<minute>

384 AIX Version 7.1: Files Reference

<hour>: 0 through 23
<minute>: 0 through 59

Note:

1. A colon is accepted to seperate hours and minutes instead of dot, provided that the field is quoted
(colon has a special meaning in attributes file format).

2. Value 24 is correct for ending <hour> if <minute> is null.
3. For convenience and for command parameters only, <weekday> may be specified with the name or

the abbreviation of the day of the week as they appear in the output of locale day or locale abday
commands, taking into account the current user locale (LC_TIME). This is not appropriate for attribute
files which do not have a defined locale.

Example
conf1: time = -
 conf2: time = "1-5,8:00-17:00"
 conf2: time = "6-0,14:00-17:00"
 conf3: time = "22:00-6:00"

Files

Item Description

$HOME/.time Specifies the complete path name of the .time file.

unix.map File

Purpose
Defines the operating system identity used for service provider applications on the node by the UNIX
host-based authentication (HBA) security mechanism.

Description
Applications that use the cluster security services library must obtain an identity from the security
mechanisms supported by the library. These identities are specific to the individual security mechanisms
supported by cluster security services. Because cluster security services supports multiple security
mechanisms and multiple applications, the cluster security services library must be informed of which
identity to use for an application when interacting with a specific security mechanism on its behalf.

The default security mechanism used by the cluster security services library is the HBA mechanism. The
unix.map file defines the identities used by the core cluster applications when interacting with the HBA
mechanism. The cluster security services library expects to locate this file in /var/ct/cfg/unix.map
(preferred) or /opt/rsct/cfg/unix.map (default).

This file is ASCII-text formatted, and can be modified with a standard text editor. However, this file should
not be modified unless the administrator is instructed to do so by the cluster softwre service provider.
If this configuration file is to be modified, the default /opt/rsct/cfg/unix.map file should not be
modified directly. Instead, the file should be copied to /var/ct/cfg/unix.map, and modifications
should be made to this copy. The default configuration file should never be modified.

All entries within this file use the following format:

SERVICE:service_name:user_name_running_the_service

Attribute
Definition

SERVICE
Required keyword

Files Reference 385

service_name
Specifies the name commonly used to refer to the application. For example, this could be the name
used by the system resource controller to refer to this application.

user_name_running_the_service
Specifies the operating system user identity used to execute the application process. It is the owner
identity that would be seen for the application process in the ps command output.

Security
• The default identity mapping definition file /opt/rsct/cfg/ctsec_map.global is readable by all

system users, but permissions prevent this file from being modified by any system user.
• When creating the override identity mapping definition files /var/ct/cfg/ctsec_map.global

and /var/ct/cfg/ctsec_map.local, make sure that the files can be read by any system user, but
that they can only be modified by the root user or other restrictive user identity not granted to normal
system users.

• By default, these files reside in locally-mounted file systems. While it is possible to mount
the /var/ct/cfg directory on a networked file system, this practice is discouraged. If
the /var/ct/cfg/ctsec_map.local file were to reside in a networked file system, any node with
access to that networked directory would assume that these definitions were specific to that node alone
when in reality they would be shared.

Restrictions
This file should not be modified unless the administrator is instructed to do so by the cluster softwre
service provider. Incorrect modification of this file will result in authentication failures for the applications
listed in this file and possibly their client applications. If this configuration file is to be modified,
the default /opt/rsct/cfg/unix.map file should not be modified directly. Instead, the file should
be copied to /var/ct/cfg/unix.map, and modifications should be made to this copy. The default
configuration file should never be modified.

Examples
This example shows the default contents of the configuration file:

SERVICE:ctrmc:root
SERVICE:rmc:root
SERVICE:ctloadl:loadl
SERVICE:ctdpcl:root
SERVICE:ctpmd:root

Location
/var/ct/cfg/unix.map

Contains the unix.map file

Files
/opt/rsct/cfg/unix.map

Default location of the unix.map file

updaters File for NIS

Purpose
Updates NIS maps.

386 AIX Version 7.1: Files Reference

Description
The /var/yp/updaters file is a makefile used for updating NIS maps. NIS maps can only be updated in a
secure network; that is, one that has a publickey file. Each entry in the file is a make target for a particular
NIS map. For example, if there is an NIS map named passwd.byname that can be updated, there should
be a make target named passwd.byname in the updaters file with the command to update the file.

The information necessary to make the update is passed to the update command through standard
input. All items are followed by a new line except for actual bytes of key and actual bytes of data. The
information passed is described below:

• Network name of client wishing to make the update (a string)
• Kind of update (an integer)
• Number of bytes in key (an integer)
• Actual bytes of key
• Number of bytes in data (an integer)
• Actual bytes of data

After getting this information through standard input, the command to update the map determines
whether the user is allowed to make the change. If the user is not allowed, the update command exits
with the YPERR_ACCESS status. If the user is allowed to make the change, the command should make
the change and exit with a status of 0. If any errors exist that may prevent the updaters file from making
the change, the command should exit with the status that matches a valid NIS error code described in the
rpcsvc/ypclnt.h file.

Related reference
publickey File for NIS
Related information
update command
ypupdated command
Checklist for Administering Secure NFS
Network File System (NFS) Overview for System Management

user File

Purpose
Contains extended user attributes.

Description
The /etc/security/user file contains extended user attributes. This is an ASCII file that contains attribute
stanzas for users. The mkuser command creates a stanza in this file for each new user and initializes its
attributes with the default attributes defined in the /usr/lib/security/mkuser.default file.

Each stanza in the /etc/security/user file is identified by a user name, followed by a : (colon), and
contains attributes in the form Attribute=Value. Each attribute value pair is ended by a new-line character,
and each stanza is ended by an additional new-line character. For an example of a stanza, see the
Examples section.

The file supports a default stanza. If an attribute is not defined for a user, the default value for the
attribute is used.

Attributes

If you have the proper authority, you can set the following user attributes:

Files Reference 387

Item Description

account_locked Indicates if the user account is locked. Possible values include:
true

The user's account is locked. The values yes, true, and always are
equivalent. The user is denied access to the system.

false
The user's account is not locked. The values no, false, and never
are equivalent. The user is allowed access to the system. This is the
default value.

admin Defines the administrative status of the user. Possible values are:
true

The user is an administrator. Only the root user can change the
attributes of users defined as administrators.

false
The user is not an administrator. This is the default value.

admgroups Lists the groups the user administrates. The Value parameter is a
comma-separated list of group names. For additional information on
group names, see the adms attribute of the /etc/security/group
file.

auditclasses Lists the user's audit classes. The Value parameter is a list of comma-
separated classes, or a value of ALL to indicate all audit classes.

auth1 Lists additional mandatory methods for authenticating the user. The
auth1 attribute has been deprecated and may not be supported in
a future release. The SYSTEM attribute should be used instead. The
authentication process will fail if any of the methods specified by the
auth1 attribute fail.

The Value parameter is a comma-separated list of Method;Name pairs.
The Method parameter is the name of the authentication method. The
Name parameter is the user to authenticate. If you do not specify a
Name parameter, the name of the user being authenticated is used.

Valid authentication methods for the auth1 and auth2 attributes are
defined in the /etc/security/login.cfg file.

auth2 Lists additional optional methods for authenticating the user. The
auth2 attribute has been deprecated and may not be supported in
a future release. The SYSTEM attribute should be used instead. The
authentication process will not fail if any of the methods specified by the
auth2 attribute fail.

The Value parameter is a comma-separated list of Method;Name pairs.
The Method parameter is the name of the authentication method. The
Name parameter is the user to authenticate. If you do not specify a
Name parameter, the name of the user being authenticated is used.

core_compress Enables or disables core file compression. Valid values for this attribute
are On and Off. If this attribute has a value of On, compression is
enabled; otherwise, compression is disabled. The default value of this
attribute is Off.

388 AIX Version 7.1: Files Reference

Item Description

core_path Enables or disables core file path specification. Valid values for this
attribute are On and Off. If this attribute has a value of On, core files will
be placed in the directory specified by core_pathname (the feature is
enabled); otherwise, core files are placed in the user's current working
directory. The default value of this attribute is Off.

core_pathname Specifies a location to be used to place core files, if the core_path
attribute is set to On. If this is not set and core_path is set to On, core
files will be placed in the user's current working directory. This attribute
is limited to 256 characters.

core_naming Selects a choice of core file naming strategies. Valid values for this
attribute are On and Off. A value of On enables core file naming in the
form core.pid.time, which is the same as what the CORE_NAMING
environment variable does. A value of Off uses the default name of core.

daemon Indicates whether the user specified by the Name parameter can
execute programs using the cron daemon or the src (system resource
controller) daemon. Possible values are:
true

The user can initiate cron and src sessions. This is the default.
false

The user cannot initiate cron and src sessions.

dce_export Allows the DCE registry to overwrite the local user information with the
DCE user information during a DCE export operation. Possible values
are:
true

Local user information will be overwritten.
false

Local user information will not be overwritten.

Files Reference 389

Item Description

dictionlist Defines the password dictionaries used by the composition restrictions
when checking new passwords.

The password dictionaries are a list of comma-separated, absolute path
names that are evaluated from left to right. All dictionary files and
directories must be write-protected from all users except root. The
dictionary files are formatted one word per line. The word begins in the
first column and terminates with a new-line character. Only 7-bit ASCII
words are supported for passwords. If text processing is installed on
your system, the recommended dictionary file is the /usr/share/dict/
words file. User name can be disallowed in the password by adding
an entry with the key word ‘$USER’ in the dictionary files. This key
word, ‘$USER’ cannot be part of any word or pattern of the entries
in dictionary files. A regular expression can also be disallowed in the
password, if mentioned in the dictionary file. To differentiate, between a
word and a pattern in the dictionary file. A pattern will be indicated with
‘*’ as first character. For example, if administrator wants to disallow any
password ending with “123”, then he/she can mention in the dictionary
file the following entry :

*.*123

First “*” will be used to indicate a pattern entry and remaining part will
be the pattern that is, “.*123”. If text processing is installed on your
system, the recommended dictionary file is the /usr/share/dict/words
file.

minloweralpha Defines the minimum number of lower case alphabetic characters that
must be in a new password. The value is a decimal integer string. The
default is a value of 0, indicating no minimum number. Range: 0 to
PW_PASSLEN.

minupperalpha Defines the minimum number of upper case alphabetic characters that
must be in a new password. The value is a decimal integer string. The
default is a value of 0, indicating no minimum number. Range: 0 to
PW_PASSLEN.

mindigit Defines the minimum number of digits that must be in a new password.
The value is a decimal integer string. The default is a value of 0,
indicating no minimum number. Range: 0 to PW_PASSLEN.

minspecialchar Defines the minimum number of special characters that must be in a
new password. The value is a decimal integer string. The default is a
value of 0, indicating no minimum number. Range: 0 to PW_PASSLEN.

efs_adminks_access Defines the efs_admin keystore location. Only one value is possible:
file

Keystore is stored in the /var/efs/efs_admin/ file.

Note: This attribute is valid only if the system is EFS-enabled.

390 AIX Version 7.1: Files Reference

Item Description

efs_allowksmodechangebyu
ser

Defines whether the user can change the mode or not. The following
values are possible:
yes

The user can change the keystore mode (using the efskeymgr
command).

no
The user cannot change the keystore mode (using the efskeymgr
command).

Note: This attribute is valid only if the system is EFS-enabled.

efs_file_algo Defines the algorithm that is used to generate the file protection key.
The following values are possible:

• AES_128_CBC
• AES_192_CBC
• AES_256_CBC

Note: This attribute is valid only if the system is EFS-enabled.

efs_initialks_mode Defines the initial mode of the user keystore. The following values are
possible:
guard

When a keystore is in root guard mode, the keys that are contained
in this keystore cannot be retrieved without the correct password of
this keystore.

admin
When a keystore is in root admin mode, the keys that are contained
in this keystore can be retrieved with the EFS (Encrypted File
System) admin key.

Notes:

• This attribute is valid only if the system is EFS-enabled.
• This is the initial mode of the keystore. Changing this value using the

chuser command, the chgroup command, or the chsec command, or
with manual editing, does not change the mode of the keystore. Use
this attribute only when you are creating the keystore and do not use it
again until the keystore is deleted and a new one is created. To change
the keystore mode, use the efskeymgr command.

efs_keystore_access Defines the user keystore location. The following values are possible:
none

There is no keystore.
file

Keystore is stored in the /var/efs/users/ directory.

Note: This attribute is valid only if the system is EFS-enabled.

Files Reference 391

Item Description

efs_keystore_algo Defines the algorithm that is used to generate the user private key when
the keystore is created. The following values are possible:

• RSA_1024
• RSA_2048
• RSA_4096

Notes:

• This attribute is valid only if the system is EFS-enabled.
• Changing the value of this attribute using the chuser command, the

chgroup command, or the chsec command, or with manual editing,
does not regenerate the private key. Use this attribute only when you
are creating the keystore and do not use it again until the keystore
is deleted and a new one is created. To change the algorithm for the
keys, use the efskeymgr command.

expires Identifies the expiration date of the account. The Value parameter is a
10-character string in the MMDDhhmmyy form, where MM = month, DD
= day, hh = hour, mm = minute, and yy = last 2 digits of the years 1939
through 2038. All characters are numeric. If the Value parameter is 0,
the account does not expire. The default is 0. See the date command for
more information.

histexpire Designates the period of time (in weeks) that a user cannot reuse
a password. The value is a decimal integer string. The default is 0,
indicating that no time limit is set.

histsize Designates the number of previous passwords a user cannot reuse. The
value is a decimal integer string. The default is 0.

login Indicates whether the user can log in to the system with the login
command. Possible values are:
true

The user can log in to the system. This is the default.
false

The user cannot log in to the system.

392 AIX Version 7.1: Files Reference

Item Description

logintimes Specifies the times, days, or both, the user is allowed to access the
system. The value is a comma-separated list of entries of the following
form:

[!]:time-time
 -or-
[!]day[-day][:time-time]
 -or-
[!]date[-date][:time-time]

The day variable must be one digit between 0 and 6 that represents one
of the days of the week. A 0 (zero) indicates Sunday and a 6 indicates
Saturday.

The time variable is 24-hour military time (1700 is 5:00 p.m.). Leading
zeroes are required. For example, you must enter 0800, not 800. The
time variable must be four characters in length, and there must be a
leading colon (:). An entry consisting of only a time specification applies
to every day. The start hour of a time value must be less than the end
hour.

The date variable is a four digit string in the form mmdd. mm represents
the calendar month and dd represents the day number. For example
0001 represents January 1. dd may be 00 to indicate the entire month,
if the entry is not a range, or indicating the first or last day of the
month depending on whether it appears as part of the start or end
of a range. For example, 0000 indicates the entire month of January.
0600 indicates the entire month of June. 0311-0500 indicates April 11
through the last day of June.

Entries in this list specify times that a user is allowed or denied
access to the system. Entries not preceded by an ! (exclamation
point) allow access and are called ALLOW entries. Entries prefixed with
an ! (exclamation point) deny access to the system and are called
DENY entries. The ! operator applies to only one entry, not the whole
restriction list. It must appear at the beginning of each entry.

loginretries Defines the number of unsuccessful login attempts allowed after the
last successful login before the system locks the account. The value
is a decimal integer string. A zero or negative value indicates that
no limit exists. Once the user's account is locked, the user will not
be able to log in until the system administrator resets the user's
unsuccessful_login_count attribute in the /etc/security/lastlog
file to be less than the value of loginretries. To do this, enter the
following:

chsec -f /etc/security/lastlog -s username -a \
unsuccessful_login_count=0

maxage Defines the maximum age (in weeks) of a password. The password must
be changed by this time. The value is a decimal integer string. The
default is a value of 0, indicating no maximum age.

maxexpired Defines the maximum time (in weeks) beyond the maxage value that a
user can change an expired password. After this defined time, only an
administrative user can change the password. The value is a decimal
integer string. The default is -1, indicating no restriction is set. If the
maxexpired attribute is 0, the password expires when the maxage
value is met. If the maxage attribute is 0, the maxexpired attribute
is ignored.

Files Reference 393

Item Description

maxrepeats Defines the maximum number of times a character can be repeated in
a new password. Since a value of 0 is meaningless, the default value of
8 indicates that there is no maximum number. The value is a decimal
integer string.

minage Defines the minimum age (in weeks) a password must be before it can
be changed. The value is a decimal integer string. The default is a value
of 0, indicating no minimum age.

minalpha Defines the minimum number of alphabetic characters that must be in
a new password. The value is a decimal integer string. The default is a
value of 0, indicating no minimum number.

mindiff Defines the minimum number of characters required in a new password
that were not in the old password. The value is a decimal integer string.
The default is a value of 0, indicating no minimum number.

minlen Defines the minimum length of a password. The value is a decimal
integer string. The default is a value of 0, indicates no minimum length.
The maximum value allowed is PW_PASSLEN attribute. This attribute
is determined by the minalpha attribute value added to the minother
attribute value. If the sum of these values is greater than the minlen
attribute value, the minimum length is set to the result.

Note: The PW_PASSLEN attribute is defined in /usr/include/userpw.h.
The value of the PW_PASSLEN attribute is determined by the system-
wide password algorithm that is defined in /etc/security/login.cfg .

The minimum length of a password is determined by the minlen
attribute and should never be greater than the PW_PASSLEN attribute.
If the minalpha attribute + minother attribute is greater than the
PW_PASSLEN attribute, then the minother attribute is reduced to
PW_PASSLEN attribute - minalpha attribute.

minother Defines the minimum number of non-alphabetic characters that must be
in a new password. The value is a decimal integer string. The default is a
value of 0, indicating no minimum number.

projects Defines the list of projects that the user's processes can be assigned to.
The value is a list of comma-separated project names and is evaluated
from left to right. The project name should be a valid project name as
defined in the system. If an invalid project name is found on the list, it
will be reported as an error by the user command.

pwdchecks Defines the password restriction methods enforced on new passwords.
The value is a list of comma-separated method names and is evaluated
from left to right. A method name is either an absolute path name or a
path name relative to /usr/lib of an executable load module.

pwdwarntime Defines the number of days before the system issues a warning that a
password change is required. The value is a decimal integer string. A
zero or negative value indicates that no message is issued. The value
must be less than the difference of the maxage and minage attributes.
Values greater than this difference are ignored, and a message is issued
when the minage value is reached.

registry Defines the authentication registry where the user is administered. It is
used to resolve a remotely administered user to the local administered
domain. This situation may occur when network services unexpectedly
fail or network databases are replicated locally. Example values are
files or NIS or DCE.

394 AIX Version 7.1: Files Reference

Item Description

rlogin Permits access to the account from a remote location with the telnet or
rlogin commands. Possible values are:
true

The user account can be accessed remotely. This is the default
rlogin value.

false
The user account cannot be accessed remotely.

su Indicates whether another user can switch to the specified user account
with the su command. Possible values are:
true

Another user can switch to the specified account. This is the default.
false

Another user cannot switch to the specified account.

sugroups Lists the groups that can use the su command to switch to the specified
user account. The Value parameter is a comma-separated list of group
names, or a value of ALL to indicate all groups. An ! (exclamation
point) in front of a group name excludes that group. If this attribute
is not specified, all groups can switch to this user account with the su
command.

SYSTEM Defines the system authentication mechanism for the user. The value
may be an expression describing which authentication methods are to
be used or it may be the keyword NONE.

The SYSTEM mechanism is always used to authenticate the user,
regardless of the value of the auth1 and auth2 attributes. If the SYSTEM
attribute is set to NONE, authentication is only performed using the
auth1 and auth2 attributes. If the auth1 and auth2 attributes are blank
or ignored, as with the TCP socket daemons (ftpd, rexecd and rshd), no
authentication will be performed.

The method names compat, files and NIS are provided by the security
library. Additional methods may be defined in the file /usr/lib/security/
methods.cfg.

Specify the value for SYSTEM using the following grammar:

"SYSTEM" ::= EXPRESSION
EXPRESSION ::= PRIMITIVE |
 "("EXPRESSION")" |
 EXPRESSION OPERATOR EXPRESSION
PRIMITIVE ::= METHOD |
 METHOD "["RESULT"]"
RESULT ::= "SUCCESS" | "FAILURE" | "NOTFOUND" |
 "UNAVAIL" | "*"
OPERATOR ::= "AND" | "OR"
METHOD ::= "compat" | "files" | "NONE" |
 [a-z,A-Z,0-9]*

An example of the syntax is:

SYSTEM = "DCE OR DCE[UNAVAIL] AND
compat"

Files Reference 395

Item Description

tpath Indicates the user's trusted path status. The possible values are:
always

The user can only execute trusted processes. This implies that the
user's initial program is in the trusted shell or some other trusted
process.

notsh
The user cannot invoke the trusted shell on a trusted path. If the
user enters the secure attention key (SAK) after logging in, the login
session ends.

nosak
The secure attention key (SAK) is disabled for all processes run by
the user. Use this value if the user transfers binary data that may
contain the SAK sequence. This is the default value.

on
The user has normal trusted path characteristics and can invoke a
trusted path (enter a trusted shell) with the secure attention key
(SAK).

ttys Lists the terminals that can access the account specified by the Name
parameter. The Value parameter is a comma-separated list of full path
names, or a value of ALL to indicate all terminals. The values of RSH
and REXEC also can be used as terminal names. An ! (exclamation point)
in front of a terminal name excludes that terminal. If this attribute is
not specified, all terminals can access the user account. If the Value
parameter is not ALL, then /dev/pts must be specified for network
logins to work.

umask Determines file permissions. This value, along with the permissions of
the creating process, determines a file's permissions when the file is
created. The default is 022.

The following attributes are valid only in the Trusted AIX system. See Trusted AIX in Security for more
information. Valid values for each attribute are defined in the /etc/security/enc/LabelEncodings file for
the system. Values must be defined in quotation marks (" ") if they have white spaces.

Item Description

minsl Defines the minimum sensitivity clearance level (SCL).

Note: The defsl value for the user dominates the minsl value.

maxsl Defines the maximum SCL.

Note: The maxsl value dominates the defsl value for the user.

defsl Defines the default sensitivity level that the user is assigned during login.

Note: The defsl value dominates the minsl value and is dominated by the
maxsl value.

mintl Defines the minimum integrity clearance level.

Note: The deftl value for the user dominates the mintl value.

maxtl Defines the maximum integrity clearance level.

Note: The maxtl value dominates the deftl value for the user.

396 AIX Version 7.1: Files Reference

Item Description

deftl Defines the default integrity clearance level that the user is assigned during
login.

Note: The deftl value dominates the mintl value and is dominated by the
maxtl value.

Changing the user File

You should access this file through the commands and subroutines defined for this purpose. You can use
the following commands to change the user file:

• chuser
• lsuser
• mkuser
• rmuser

The mkuser command creates an entry for each new user in the /etc/security/user file and initializes
its attributes with the attributes defined in the /usr/lib/security/mkuser.default file. To change attribute
values, use the chuser command. To display the attributes and their values, use the lsuser command. To
remove a user, use the rmuser command.

To write programs that affect attributes in the /etc/security/user file, use the subroutines listed in the
related information section.

Security
Access Control

This file should grant read (r) access only to the root user and members of the security group. Access for
other users and groups depends upon the security policy for the system. Only the root user should have
write (w) access.

Auditing Events

Event Information

S_USER_WRITE file name

Examples
1. A typical stanza looks like the following example for user dhs:

dhs:
 login = true
 rlogin = false
 ttys = /dev/console
 sugroups = security,!staff
 expires = 0531010090
 tpath = on
 admin = true
 auth1 = SYSTEM,METH2;dhs

2. To allow all ttys except /dev/tty0 to access the user account, change the ttys entry so that it reads
as follows:

ttys = !/dev/tty0,ALL

Files Reference 397

Files

Item Description

/etc/group Contains the basic group attributes.

/etc/passwd Contains the basic user attributes.

/etc/security/audit/config Contains audit system configuration
information.

/etc/security/environ Contains the environment attributes of users.

/etc/security/group Contains the extended attributes of groups.

/etc/security/limits Contains the process resource limits of users.

/etc/security/login.cfg Contains configuration information for user log
in and authentication.

/etc/security/passwd Contains password information.

/usr/lib/security/mkuser.default Contains default user configurations.

/etc/security/user Contains extended user attributes.

/etc/security/lastlog Contains last login information.

/etc/security/enc/LabelEncodings Contains label definitions for the Trusted AIX
system.

Related reference
passwd_policy File
pwdhist File
pwdpolicy.h File
Related information
chuser command
rmuser command
enduserdb subroutine
Security Administration
Trusted AIX

user.roles File

Purpose
Contains the list of roles for each user.

Description
The /etc/security/user.roles file contains the list of roles for each user. This is an ASCII file that contains
a stanza for system users. Each stanza is identified by a user name followed by a : (colon) and contains
attributes in the form Attribute=Value. Each attribute pair ends with a newline character as does each
stanza.

This file supports a default stanza. If an attribute is not defined, either the default stanza or the default
value for the attribute is used.

A stanza contains the following attribute:

Item Description

roles Contains the list of roles for each user.

398 AIX Version 7.1: Files Reference

For a typical stanza, see the "Examples" section.

Typically, the /etc/security/user.roles stanza contains an entry for every user and a list of data
associated with that user. The roles database does not require an entry per user. The size of each entry is
one line.

The user.roles file is kept separately from the /etc/security/user file for performance reasons. Several
commands scan this database, so system performance increases with smaller files to scan (especially on
systems with large numbers of users).

Changing the user.roles File
You should access this file through the commands and subroutines defined for this purpose. You can use
the following commands to change the user.roles file:

• chuser
• lsuser
• mkuser

The mkuser command creates an entry in the /etc/security/user.roles file for each new user when the
roles attribute is used. To change the attribute values, use the chuser command with the roles attribute.
To display the attributes and their values, use the lsuser command with the roles attribute.

To write programs that affect attributes in the /etc/security/user.roles file, use the subroutines listed in
Related Information.

Security
Access Control: This file grants read and write access to the root user, and read access to members of the
security group.

Examples
A typical stanza looks like the following example for the username role:

username:
 roles = role1,role2

Files

Item Description

/etc/security/roles Contains the list of valid roles.

/etc/security/user.roles Contains the list of roles for each user.

/etc/security/smitacl.group Contains the group ACL definitions.

/etc/security/smitacl.user Contains the user ACL definitions.

Related information
chuser command
lsuser command
mkuser command
getuserattr subroutine

Files Reference 399

vfs File

Purpose
Describes the virtual file systems (VFS) installed on the system.

Description
The /etc/vfs file describes the virtual file systems installed on the system. The name, type number, and
file-system helper program are among the types of information listed in the file. Commands, such as the
mount command, the fsck command (file system check), and the mkfs command (make file system), use
this information.

The vfs file is an ASCII file, with one record per line. The following are examples of the three types of lines
in the vfs file:

• Comments

This is a comment.
Comments begin with a # (pound sign).
Blank lines are ignored.
The following example only locally defines the default vfs file.

• General control

%defaultvfs jfs nfs

The fields for the %defaultvfs control line are:

Item Description

%defaultvfs Identifies the control line.

jfs Indicates the default local virtual file system.

nfs Indicates the remote virtual file system (optional).

• Entries

#Name Type Mount Helper Fs. helper
jfs 3 none /sbin/helpers/v3fshelper
nfs 2 /etc/nfsmnthelp none
cdrfs 5 none none

The comments are in text for explanatory purposes. The general control lines, which are designated by a
% (percent) character, configure the actions of the following commands:

• mount
• umount
• mkfs
• fsck
• fsdb
• df
• ff

For example, a line like %defaultvfs indicates the default local virtual file system is used if no VFS is
specified by the mount command or in the /etc/filesystems file. The entry is the name of the VFS as
indicated in the file. If a second entry is listed on the same line, it is taken to be the default remote VFS.
The %defaultvfs control line may leave off the remote VFS specification.

The VFS entries take the following form:

400 AIX Version 7.1: Files Reference

Item Description

name Canonical name of this type of virtual file system.

type Decimal representation of the virtual file system type number for the VFS.

mnt_helper Path name of the mount helper program of this VFS. If a mount helper is not required,
the entry should be displayed as none. If this path name does not begin with a slash, it
is relative to the /sbin/helpers directory.

fs_helper Path name of the file system helper program of this VFS. If a file system helper is not
required, the entry should be none. If this path name does not begin with a slash, it is
relative to the /sbin/helpers directory.

Files

Item Description

/etc/filesystems Lists the known file systems and defines their characteristics.

Related information
chvfs command
df command
lsvfs command
rmvfs command
File systems

Workload Manager classes File

Purpose
Contains the definition of Workload Manager (WLM) superclasses or subclasses for a given configuration.

Description
The classes file in the /etc/wlm/Config directory describes the superclasses of the WLM configuration,
Config. If the superclass Super of this configuration has subclasses defined, these subclasses are defined
in the file /etc/wlm/Config/Super/classes.

Some attributes apply to only superclasses or to only subclasses. The description of the classes file uses
the terms class or classes when a statement applies to both superclasses and subclasses.

The classes file is organized into stanzas. Each stanza names a WLM class and contains attribute-value
pairs that describe characteristics of the class.

Attributes

Each stanza names a WLM class. Class names can contain only upper- and lowercase letters, numbers,
and underscores. They are limited to 16 characters in length. The only names that have special meaning
to the system are Default, Shared, Unclassified, Unmanaged, and System. You cannot use Unclassified
and Unmanaged as class names. The superclasses Default, Shared, and System are always defined. The
subclasses Default and Shared are always defined.

The following attributes are defined in the classes file:

Item Description

tier Specifies the position of the class in the hierarchy of resource limitation desirability
for all classes. A class with a lower tier value will be more favored than a class with
a higher tier value. The tier value is a number from 0 to 9. If this attribute is not
defined, it defaults to 0.

Files Reference 401

Item Description

inheritance If the inheritance attribute is given the value Yes, the children of processes in this
class remain in the class upon execution, regardless of the automatic assignment
rules in effect. If this attribute is given No, the normal assignment rules apply. If
not defined, the attribute defaults to No.

localshm Indicates whether memory segments accessed by processes in different classes
remain local to the class they were initially assigned to or if they go to the Shared
class. The possible value is Yes or No. If not specified, the default is No.

authuser Specifies the user name of the user allowed to assign processes to this class. If not
defined, this attribute defaults to the empty string ("").

authgroup Specifies the group name of the group of users allowed to assign processes to this
class. If not defined, the attribute defaults to the empty string.

rset Names the resource set to which the processes in the class have access. If the
attribute is not defined, it defaults to an empty string, meaning that the class has
access to all the resources on the system.

adminuser Specifies the user name of the user allowed to administer the subclasses of this
superclass. If not defined, the attribute defaults to the empty string.

This attribute is valid only for superclasses.

admingroup Specifies the group name of the group of users allowed to administer the
subclasses of this superclass. (Primary group of users should match with this group
name.) If this attribute is not defined, it defaults to the empty string.

This attribute is valid only for superclasses.

delshm If set to "yes", or if a killed process due to a virtual memory limit is the last process
referencing a shared segment, the segment is deleted. The default is to not delete
the shared segments (value set to "no").

vmenforce When a class reaches its virtual memory limit, if vmenforce is set to "class", all
of the processes classified to the faulting class are killed. If vmenforce is set
to "proc" (default), then only the process that pushes the usage past the virtual
memory limit is killed.

The attributes that have not been explicitly set by a WLM administrator using any of the administration
tools (file editing, command line, or SMIT) are omitted in the property files.

The default values mentioned above are the system defaults and can be modified using a special stanza
named "default."

Files

Item Description

classes Defines the superclasses or subclasses of a WLM configuration

Security
The WLM property files defining the superclasses of a WLM configuration must have write permission
only for the root user. The WLM property files defining the subclasses of a superclass must have write
permission for the adminuser and admingroup for the superclass.

If there is no adminuser for the superclass, the files should be owned by root. If no admingroup exists
for a superclass, the WLM property files for the superclass should be group "system" with no write
permission for group.

402 AIX Version 7.1: Files Reference

Example
1. The following entry at the beginning of the classes file modifies the default values for the tier and

inheritance attributes so that if they are not defined for some (or all) of the classes specified in the file,
the tier value is 1 and the inheritance value is Yes:

default:
 tier = 1
 inheritance = "yes"

The scope of these user-defined default values is limited to the file where they appear. For instance, if
the above default stanza appears in the top-level classes file of a configuration, it does not affect the
default values for the classes files defining the subclasses of the various superclasses.

2. The following is an example of a typical /etc/wlm/Config/classes file:

* system defined classes
* All attributes to default value
* Attribute values can be specified
*
Default:
System:
Shared:
* User defined classes
*
Super1:
 inheritance = "yes"
 adminuser = "bob"
 authgroup = "devlt"
Super2:
 tier = 4
 localshm = "yes"
 admingroup = "sales"
 authuser = "sally"
 rset = "part1"

Note: The asterisk (*) is a comment character. Comments are added by directly editing the file.
However, when you use the command line, or SMIT to create, modify, or delete classes, the comments
are removed.

Related reference
Workload Manager shares File
Workload Manager limits File
Workload Manager rules File
Related information
lsclass command
rmclass command

Workload Manager limits File

Purpose
Describes the minimum and maximum limits for the resources allocated to superclasses or subclasses of
a WLM configuration.

Description
The limits file in the /etc/wlm/Config describes the resource limits for the superclasses of the WLM
configuration Config. If the superclass Super of this configuration has subclasses defined, the resource
limits for the subclasses are defined in the file /etc/wlm/Config/Super/limits.

The limits at the superclass level represent a percentage of the total amount of resources available on
the system and the limits at the subclass level represent a percentage of the resource made available
to the parent superclass. Despite this difference, the description of resource limits is relevant to both a
superclass and a subclass.

Files Reference 403

The limits file is organized into stanzas that are named after WLM classes and contain attribute-value
pairs specifying the minimum and maximum resource limit allocated to the class for the various
resources. The attribute names identify the resource. For each resource, the following values must be
provided:

• Minimum limit (expressed here as m)
• Soft maximum limit (expressed here as SM)
• Hard maximum limit (expressed here as HM)

The limits are expressed as percentages. Both the minimum and maximum limits are each a number
between 0 and 100. The hard maximum must be greater than or equal to the soft maximum, which in turn
must be greater than or equal to the minimum. When the limits are not specified for a class or a resource
type, the system defaults to 0 for the minimum and 100 for both the soft and hard maximum.

Use the following format for defining the limit values:

attribute_name = m%-SM%,HM%

In the AIX operating system you can also specify per-process and per-class total limits. These are hard
limits and can be specified in the following format:

attribute_name = <value> [unit]

The valid range of values for each attribute, as well as their default and allowed units are described in
Operating system and device management.

Attributes

Each stanza names a WLM class that must exist in the classes file at the corresponding level (superclass
or subclass).

The following attributes are defined in the limits file:

Item Description

CPU Represents the CPU limits for the class

memory Represents the physical memory limits for the class

diskIO Represents the disk I/O limits for the class

totalConnectTime The maximum amount of time a login session in the class can stay active. This is
specified as an integer with the units intended (s for seconds, m for minutes, h for
hours, d for days, and w for weeks). As a user approaches this connection time
limit, WLM will send warning messages. When the limit is reached, the user will be
notified and the login session will be terminated.

totalCPU The total amount of CPU time allowed for each process in the class. This is
specified as an integer with the units intended (s for seconds, m for minutes, h
for hours, d for days, and w for weeks).

totalDiskIO The total amount of DiskIO allowed for each process in the class. This is specified
as an integer with the units intended (KB for kilobytes, MB for megabytes, TB for
terabytes, PB for petabytes, and EB for exabytes).

totalLogins The total number of login sessions simultaneously available in the class. If a user
tries to log onto the system and the login shell would end up in a class that has
reached the totalLogins limit, the login operation will fail. Also, if an operation
would cause a login shell to be moved into a class that has reached the totalLogins
limit, the operation will also fail.

totalProcesses The maximum number of processes allowed in the class. If an operation would
result in a new process entering the class when the class has this many processes
in it, the operation will fail.

404 AIX Version 7.1: Files Reference

Item Description

totalThreads The maximum number of threads allowed in the class. If an operation would result
in a new thread entering the class when the class has this many threads in it,
the operation will fail. The total thread limit must be at least as large as the total
process limit for a class. If a class has a total thread limit but no total process limit
specified, the total process limit will be set to the total thread limit.

classVirtMem The maximum amount of virtual memory that a class can have at one time. This is
specified as an integer with units intended (MB for megabytes, GB for gigabytes,
TB for terabytes).

procVirtMem The maximum amount of virtual memory that a process can have at one time. This
is specified as an integer with units intended (MB for megabytes, GB for gigabytes,
TB for terabytes).

The default values mentioned above are the system defaults and can be modified using a special stanza
named "default."

Consider the following stanza at the beginning of the limits file:

default:
 CPU = 10%-50%,80%
 diskIO = 20%-60%,100%

This stanza modifies the default values of the limits for CPU and disk I/O so that if those attributes are not
specified for some (or all) of the classes, their minimum, soft maximum, and hard maximum default to the
values shown above. In this example, the default values for the physical memory limits (specified by the
memory attribute) are still the system default—the minimum 0% and the soft and hard maximum each
100%.

Classes that use only default values for all the resource types can be omitted in the file.

Security
The limits file defining the limits of the superclasses of a WLM configuration must have write permission
for root only. The limits file defining the limits for the subclasses of a superclass must have write
permission for the adminuser and admingroup for the superclass. If no adminuser exists for the
superclass, the limits file should be owned by root. If no admingroup exists for a superclass, the file
for the superclass should be owned by the "system" group and have no write permission for group.

Example
The following is an example of a typical /etc/wlm/Config/limits file:

* System Defined Classes
* In this example, the system administrator uses
* only default values for the System and Shared
* superclasses. The System class has a memory minimum of
* 1% by default - can be increased by system administrator
* The system administrator gives non default values
* only for the Default class:
*
System:
 memory = 1%-100%,100%
Default:
 CPU = 0%-50%,75%
 memory = 0%-25%,50%
*
* User defined classes
*
Super1:
 CPU = 10%-100%,100%
 memory = 20%-100%,100%
 diskIO = 0%-33%,50%
Super2:

Files Reference 405

 memory =0%-20%,50%
 diskIO =10%-66%,100%

Note: The asterisk (*) is a comment character.

Files

Item Description

limits Defines the resource entitlements for the superclasses or subclasses of a WLM
configuration

Related reference
Workload Manager classes File
Workload Manager shares File
Workload Manager rules File
Related information
lsclass command
chclass command
rmclass command

Workload Manager rules File

Purpose
Defines the automatic class assignment rules for the superclasses or subclasses of a given Workload
Manager (WLM) configuration.

Description
The /etc/wlm/Config/rules file describes the assignment rules for the superclasses of the WLM
configuration Config. If the superclass Super of this configuration has subclasses defined, the assignment
rules for the subclasses are defined in the file /etc/wlm/Config/Super/rules.

The assignment rules for the superclasses and subclasses are formatted the same.

The rules file is a standard text file. Each line represents an assignment rule for a specified class. Several
assignment rules can exist at the same time for the same class. Each rule lists the name of a class and a
list of values for some attributes of a process; these values are used as classification criteria. The various
fields of a rule are separated by white spaces. For attributes that you do not define, represent them with a
hyphen (-).

Note: Implicit rules exist for the default superclass and the default subclass of every superclass. These
rules catch all processes that did not match any rules explicitly stated in the rules file. They apply to a
WLM configuration regardless of whether they are explicitly stated.

Assignment Rules

Assignment rules are made of the fields described below. When present, the following fields must appear
in the order shown below. Order is important because the values are given to the field identified by its
position in the string. Only the first three fields (class, reserved, and user) are mandatory. The remaining
fields can be omitted if their values are hyphens.

For instance, the assignment rule

class1 - user1

is the same as the following:

class1 - user1 - - - -

406 AIX Version 7.1: Files Reference

The rule

class - - group1 - 32bit+fixed

is a valid rule equivalent to the following rule:

class - - group1 - 32bit+fixed -

But in the case of the rule class1 - group1, group1 is interpreted as a user name because of its
position in the string.

Item Description

class Contains the name of a class that is defined in the class file corresponding to the
level of the rules file (superclass or subclass). Class names can contain only upper-
and lowercase letters, numbers, and underscores and are limited to 16 characters
in length.

No assignment rule can be specified for the system-defined classes "Unclassified,"
"Unmanaged," and "Shared."

reserved This field must be set to a hyphen (-)

user Contains either a hyphen or a list of valid user names (as defined in the /etc/
passwd file). The list is composed of one or more names, separated by a comma (,).
To exclude a user from the class, place an exclamation mark (!) before the name of
that user. Use full Korn shell pattern-matching syntax to specify a wildcard pattern
to match a set of user names.

group Contains either a hyphen or a list of valid group names (as defined in the /etc/
group file). The list is composed of one or more names, separated by a comma. To
exclude a group from the class, place an exclamation mark before the name of that
group. Use full Korn shell pattern-matching syntax to specify a wildcard pattern to
match a set of group names.

application Contains either a hyphen or a list of application path names. This is the path name
of the file executed by the processes to be included in the class. The value can be
either a full path name or a wildcard pattern that matches a set of path names. The
list is composed of one or more path names, separated by a comma. To exclude
an application from the class, place an exclamation mark before the name of that
application.

Files Reference 407

Item Description

type Contains either a hyphen or a list of attributes for the process. The following are
possible values:
32bit

Indicates that the process is 32-bit
64bit

Indicates that the process is 64-bit
plock

Indicates that the process has called the plock subroutine to pin memory
fixed

Indicates that the process is fixed priority (SCHED_FIFO or SCHED_RR)

The value of the type field can be a comma-separated list of combinations
of one or more of the values above. Within the combination, each item must
be separated by a plus (+) sign. For example, the value fixed,64bit+plock
indicates that any fixed priority process (whether 32- or 64-bit) matches. In
addition, 64-bit processes calling the plock subroutine matches. But the value
fixed+64bit+plock indicates a different rule criteria: only processes that are
64-bit, fixed, and that are calling the plock subroutine match the criteria.

The 32bit value and 64bit value mutually exclude each other.

tag May contain either a hyphen or a list of application tags. The list is composed of one
or more application tag values separated by commas.

When classifying a process, WLM attempts to match the values of the process attributes (user, group,
application, type, and tag) with the values provided in the rules file. To match values, WLM uses the
following criteria:

• If the value in the rule is a hyphen, any value of the corresponding process attribute is a match.
• If the value of a process attribute (other than the type attribute) appears in the list of values specified

in the corresponding field in the rule and is not preceded by an exclamation mark, it is a match for the
specified attribute.

• If the values of the process type attribute (32bit/64bit, plock, fixed) match all the values (separated by
+ signs) provided in the list for the type field in the rule, they are a match for the process type.

• The process is classified in the class specified in the class field of the rule if ALL the values of the
process attributes match the values in the corresponding field of the rule.

• WLM scans the rules in the order in which they appear in the rules file and classifies the process in the
class specified in the first rule for which a match is detected. Therefore, the order of the rules in the file is
very important.

When classifying a process, WLM first scans the rules file for the superclasses of the current configuration
to determine which superclass the process is assigned to. Then, WLM scans the rules file for this
superclass to determine which subclass it assigns the process to.

Threads may also be assigned to a class if they have an application tag. They will be assigned using the
same rules as the process. However, threads that do not have an application tag will remain assigned to
their process' class.

Groupings

As an improvement for the AIX operating system, you can now use attribute value groupings in the rules
file. Attribute groupings can be used as element of a selection criteria in the rules file for superclasses or
subclasses. For more information, syntax and examples, see the groupings file.

408 AIX Version 7.1: Files Reference

Security
The file containing the assignment rules for the superclasses must have write permission for the root
user only. The The file containing the assignment rules for the subclasses of a superclass must have
write permission for the adminuser and admingroup for the superclass. If no adminuser exists for the
superclass, the file should be owned by root. If no admingroup exists for a superclass, the rules file for
the superclass should be owned by the system group and have no write permission for group.

Examples
1. The following is an example of a /etc/wlm/Config/rules file:

* This file contains the rules used by WLM to
* assign a process to a superclass
*
* class resvd user group application type tag
db1 - - - /usr/bin/oracle* - _DB1
db2 - - - /usr/bin/oracle* - _DB2
devlt - - dev - - -

VPs - bob,ted - - - -
acctg - - acct* - - -
System - root - - - -
Default - - - - - -

2. The following is an example of the rules file for the superclass devlt in the /etc/wlm/Config/
devlt/ directory:

* This file contains the rules used by WLM to
* assign a process to a subclass of the
* superclass devlt
*
* class resvd user group application type tag
hackers - jim,liz - - - -
hogs - - - - 64bit+plock -
editors - !sue - /bin/vi,/bin/emacs - -
build - - - /bin/make,/bin/cc - -
Default - - - - - -

Note: The asterisk (*) is a comment character.

Files

Item Description

rules Defines the class assignment rules for the superclasses or subclasses of a WLM
configuration

Related reference
Workload Manager groupings File
Workload Manager classes File
Workload Manager limits File
Workload Manager shares File
Related information
wlmcheck command
Files

Workload Manager shares File

Purpose
Contains the definition of the number of shares of all the resources allocated to superclasses or
subclasses for a given configuration.

Files Reference 409

Description
The shares file in the /etc/wlm/Config directory describes the resource allocations for the superclasses
of the WLM configuration named Config. If the superclass named Super of this configuration has
subclasses defined, the resource allocations for the subclasses are defined in the file /etc/wlm/Config/
Super/shares.

The file is organized into stanzas that are named after WLM classes and contain attribute-value pairs
specifying the number of shares allocated to the class for the various resources. The attribute names
identify the resource. The shares value is either an integer between 1 and 65535 or a hyphen (-) to
indicate that WLM does not regulate the class for the given resource. The hyphen is the system default.

Attributes

Each stanza names a WLM class that must exist in the classes file at the corresponding level (superclass
or subclass).

The following are class attributes defined in the shares file:

Item Description

CPU Specifies the number of CPU shares allocated to the class

memory Specifies the number of physical memory shares allocated to the class

diskIO Specifies the number of disk I/O shares allocated to the class

The default values mentioned above are the system default and can be modified using a special stanza
named "default."

Consider the following stanza at the beginning of the shares file:

default:
 CPU = 10
 diskIO = 4

This stanza defines the default values for the number of shares for CPU and disk I/O so that if the CPU
and diskIO attributes are not specified for some or all of the classes specified, the attributes default to 10
and 4, respectively. In this example, the default value for physical memory is still a hyphen, meaning no
regulation. Classes that use only default values for all the resource types can be omitted in the shares file.

Security
The shares file must have write permission for root user only. The shares file for superclasses must have
write permission for the adminuser and admingroup for the superclass.

If no adminuser exists for the superclass, the files should be owned by root. If no admingroup exists for
a superclass, the shares file for the superclass should be owned by the system group and should have no
write permission for group.

Example
The following is an example of a typical /etc/wlm/Config/shares file:

* System Defined Classes
* In this example, the system administrator uses
* only default values for the System
* and Shared
* superclasses, and those are omitted
* in the file
* The system administrator gives non
* default values
* only for the Default class:
*
Default:
 CPU = 5
 memory = 10
*

410 AIX Version 7.1: Files Reference

* User defined classes
*
Super1:
 CPU = 8
 memory = 20
 diskIO = 6
Super2:
 memory = 12
 diskIO = 6

Note: The asterisk (*) is a comment character.

Files

Item Description

shares Defines the resource entitlements for the superclasses or subclasses of a WLM
configuration

Related reference
Workload Manager classes File
Workload Manager limits File
Workload Manager rules File
Workload Manager shares File
Related information
lsclass command
chclass command

xferstats File for BNU

Purpose
Contains information about the status of file transfer requests.

Description
The /var/spool/uucp/.Admin/xferstats file contains information about the status of each Basic
Networking Utilities (BNU) file transfer request. The xferstats file contains:

• System name
• Name of the user requesting the transfer
• Date and time of the transfer
• Name of the device used in the transfer
• Size of the transferred file
• Length of time the transfer took

Examples
Following is a typical entry in the xferstats file:

zeus!jim M (10/11-16:10:33) (C,9234,1) [-] -> 1167 / 0.100secs

A file was transferred by user jim to system zeus at 4:10 p.m. on the 11th of October. The file size was
1167 bytes and the transfer took 0.100 seconds to complete.

Files Reference 411

Files

Item Description

/var/spool/uucp/.Admin directory Contains the xferstats file and other BNU
administrative files.

Related information
uucp command
cron command
Understanding the BNU File and Directory Structure
BNU maintenance

xtab File for NFS

Purpose
Contains entries for currently exported NFS directories.

Description
The /etc/xtab file contains entries for directories that are currently exported. This file should only be
accessed by programs using the getexportent subroutine. To remove entries from this file, use the -u flag
of the exportfs command.

Files

Item Description

/etc/exports Lists the directories that the server can export.

/etc/hosts Contains an entry for each host on the network.

/etc/netgroup Contains information about each user group on the network.

Related information
exportfs command
NFS Services

File Formats
Certain files in the operating system are required to have a specific format. The formats of the files that
are provided with the operating system are discussed in the documentation for those files. If a file is
generated by either the system or a user rather than provided on the distribution medium, it is discussed
as a file format in this documentation. File formats often are also associated with header files that contain
C-language definitions and structures for the files.

More information about the following file formats is provided in this documentation:

Item Description

acct Describes the format of the records in the system accounting files.

ar Describes the format of an archive file.

audit Describes values used by the auditing system as well as the structure of a bin.

bootptab Describes the default configuration database for the Internet Boot Protocol server
(bootpd).

CGM Defines a file format for storage and retrieval of device-independent graphics.

412 AIX Version 7.1: Files Reference

Item Description

charmap Defines character symbols as character encodings.

core Describes the structures created in a core file as a result of a core dump.

cpio Describes the cpio (copy in/out) archive file.

eqnchar Contains special character definitions for the eqn and neqn commands.

lastlog Defines the last login attributes for users.

ldapattribm
ap

Defines AIX® to LDAP attribute name mapping to support configurable LDAP server
schema.

locale
definition

Contains one or more categories that describe a locale.

locale
method

Specifies the methods to be overridden when constructing a locale.

magic Defines file types.

mailrc Sets defaults for the mail command.

mh_alias Defines aliases for the Message Handler (MH).

mib_defs Provides descriptions of Management Information Base (MIB) variables for the snmpinfo
command.

nroff and
troff input

Specifies input file format for the nroff and troff commands.

nterm Describes the format of the terminal driver tables for the nroff command.

profile Describes the format of the profile and .profile files, which set the user environment at
login time.

queuedefs Describes the format of the file used by the cron daemon to handle event types.

sccsfile Describes the format of a Source Code Control System (SCCS) file.

setmaps Defines the text of a code-set map file and a terminal map file.

terminfo Contains compiled terminfo source files.

TIFF Enables InfoCrafter to support scanned images that have been imported into Interleaf
documents.

trcfmt Stores trace templates.

troff Describes the output language of the troff command.

troff Font Describes the format of the troff command font files.

tunables Centralizes tunable parameter values.

UIL Contains information on the user interface for a widget-based application.

utmp,
wtmp,
failedlogin

Describes the format of the user and accounting information in the utmp, wtmp, and
failedlogin files.

vgrindefs Contains the language definition database for the vgrind command.

WML Generates variable UIL compiler components.

Files Reference 413

Asynchronous Terminal Emulation (ATE) File Formats
Item Description

ate.def Determines default settings for use in asynchronous connections and file transfers.

ATE Dialing
Directory

Lists phone numbers that the ATE program uses to establish modem connections.

Basic Networking Utilities (BNU) File Formats
Item Description

Devices Contains information about devices on the local system that can establish a connection to
a remote computer using the Basic Networking Utilities (BNU) program.

Dialcodes Contains the initial digits of telephone numbers used to establish remote connections
over a phone line.

Dialers Lists modems used for Basic Networking Utilities (BNU) remote communications links.

Maxuusched
s

Limits the number of instances of the uusched and uucico daemons that can run
simultaneously.

Maxuuxqts Limits the number of instances of the BNU uuxqt daemon that can run simultaneously on
the local system.

Permissions Specifies BNU permissions for remote systems that call or are called by the local system.

Poll Specifies when the BNU program should poll remote systems.

Systems Lists remote computers with which users of the local system can communicate using the
Basic Networking Utilities (BNU) program.

tip File Formats
Item Description

phones Describes connections used by the tip command to contact remote systems.

remote Describes remote systems contacted by the tip command.

.tiprc Provides initial settings of variables for the tip command.

TCP/IP System Management File Formats
Item Description

3270keys Defines user keyboard mapping and colors for TELNET (3270).

Domain
Cache

Defines the root name server or servers for a DOMAIN name server host.

Domain
Data

Stores name resolution information for the named daemon.

Domain
Local Data

Defines the local loopback information for named on the name server host.

Domain
Reverse
Data

Stores reverse name resolution information for the named daemon.

/etc/
ftpd.cnf

Specifies configuration parameters of the ftpd daemon to start a TLS session.

414 AIX Version 7.1: Files Reference

Item Description

.ftpcnf Specifies configuration parameters of the ftp command to start a TLS session.

ftpusers Specifies local user names that cannot be used by remote FTP clients.

gated.conf Contains configuration information for the gated daemon.

gateways Specifies Internet routing information to the routed and gated daemons on a network.

hosts Defines the Internet Protocol (IP) name and address of the local host and specifies the
names and addresses of remote hosts.

hosts.equiv Specifies remote systems that can execute commands on the local system.

hosts.lpd Specifies remote hosts that can print on the local host.

inetd.conf Defines how the inetd daemon handles Internet service requests.

map3270 Defines keyboard mapping and colors for the tn3270 command.

netcd.conf Defines parameters for the netcd daemon.

.netrc Specifies automatic login information for the ftp and rexec commands.

networks Contains the network name file.

protocols Defines the Internet protocols used on the local host.

rc.net Defines host configuration for the following areas: network interfaces, host name, default
gateway, and any static routes.

resolv.conf Defines DOMAIN name server information for local resolver routines.

rfc1108 Contains the mapping between AIX® Trusted Network labels and rfc1108 labels.

.rhosts Specifies remote users that can use a local user account on a network.

services Defines the sockets and protocols used for Internet services.

Standard
Resource
Record
Format

Defines the format of lines in the DOMAIN data files.

telnet.conf Translates a client's terminal-type strings into terminfo file entries.

cgaparams.
sec

Defines the color graphics adapter (CGA) parameter keywords for the ndpd-host daemon
and autoconf6 command.

ndpdh.cnf Defines the configuration file locations for the ndpd-host daemon and the autoconf6
command.

sendh_anc
hor

Defines the trusted anchor for the ndpd-host daemon.

sendr_anch
or

Defines the trusted anchors for the ndpd-router daemon.

tempaddr.c
onf

Defines if temporary addresses should be allowed or denied

.3270keys File Format for TCP/IP

Purpose
Defines keyboard mapping and colors for the tn and telnet command.

Files Reference 415

Description
The $HOME/.3270keys file specifies for a user a tn or telnet command key mapping that differs from the
default mapping found in the /etc/3270.keys file. You can use it, for example, to make the Action key act
as the Enter key.

If you are using a color display, you can also customize the colors for various 3270 display attributes
by setting attributes in the .3270keys file. The default mapping in the /etc/3270.keys file is generic.
The user can also load the user-defined files for specific terminal types by using the .3270keys file. The
.3270keys file is specified in the user's home directory. The default background color is black. You cannot
configure the background color.

The tn or telnet command first checks the $HOME directory for the .3270keys file and loads it. If the file
doesn't exist, the /etc/3270.keys file is loaded. Both files, by default, end with an if statement and a
list of terminal types. If the TERM environment variable matches one of the listed terminals, a second file
is loaded. If the TERM variable does not match, the tn or telnet command uses the generic key bindings
specified before the if statement and prints the message NOBINDINGS. This file is part of TCP/IP in
Network Support Facilities.

Note: When remapping keys to customize your $HOME/.3270keys file, remember that you cannot map
a 3270 function to the Esc key alone. You can specify the Esc key only in combination with another key.
Also, when mapping keys, do not duplicate key sequences. For example, if you have mapped the backtab
function to the ^A (the Ctrl-A key sequence), then mapping the PF1 function key to ^Aep (the Ctrl-Aep key
sequence) is going to conflict with the backtab mapping.

The $HOME/.3270keys.hft File

You can also use the /usr/lpp/tcpip/samples/3270keys.hft sample file to create a
$HOME/.3270keys.hft file by copying the sample file to your home directory and modifying it as
necessary.

The following options can be used in the sequence field:

Ite
m

Description

\b Backspace

\s Space

\t Tab

\n New line

\r Return

\e Escape

^ Mask next character with \037; for example, ^M.

~ Set high-order bit for next character.

The following are valid colors for 3270 display attributes:

• black
• blue
• red
• green
• white
• magenta
• cyan

For more information about changing the assignment of a key set, see Changing the assignment of a key
set in Networks and communication management.

416 AIX Version 7.1: Files Reference

Note: The 3270keys.hft file supports the Attention key, which sends an IAC BREAK TELNET protocol
sequence to the TELNET server on a VM or MVS™ system. The TELNET server is responsible for
implementing the Attention key. Example 2 shows the format for binding the Attention key to the Ctrl-F12
key sequence.

Examples
1. The following example binds the Backspace key and the Tab keys:

 3270 Function Sequence Key
bind backspace "\b" #backspace key
bind tab "\t" #tab key

The # (pound sign) is used to indicate comments.
2. The following example binds the Attention key to the Ctrl-F12 key sequence:

 3270 Function Sequence Key
bind attention "\e[036q" #attention key

Files

Item Description

/etc/3270.keys Contains the default keyboard mapping for non-HFT
keyboards.

/etc/3270keys.hft Contains the default keyboard mapping for HFT keyboards.

/usr/lpp/tcpip/samples/3270keys.hft Contains a sample HFT keyboard mapping.

Related reference
map3270 File Format for TCP/IP
Related information
telnet, tn, or tn3270 command
Changing the assignment of a key set

acct File Format

Purpose
Provides the accounting file format for each process.

Description
The accounting files provide a means to monitor the use of the system. These files also serve as a method
for billing each process for processor usage, materials, and services. The acct system call produces
accounting files. The /usr/include/sys/acct.h file defines the records in these files, which are written
when a process exits.

The acct structure

The acct structure in the acct.h header file contains the following fields:

Item Description

ac_flag Specifies one of the following accounting flags for the process for which the accounting
record is written:

AFORK The process was created using a fork command but an exec subroutine has not yet
followed. The exec subroutine turns off the AFORK flag.

Files Reference 417

Item Description

ASU The process used root user authority.

ac_stat Specifies the exit status. A flag that indicates how the process terminated.

ac_uid Specifies the user ID of the process for which the accounting record is written.

ac_gid Specifies the group ID of the process for which the accounting record is written.

ac_tty Specifies the terminal from which the process was started.

ac_wlmkey Holds a 64-bit numeric key representing the Workload Manager class to which the
process belonged. The Workload Manager Application Programming Interface provides
the wlm_key2class subroutine to convert the key back to a class name.

ac_btime Specifies the beginning time. The time at which the process started.

ac_utime Specifies the amount of user time, in seconds, used by the process.

ac_stime Specifies the amount of system time, in seconds, used by the process.

ac_etime Specifies the amount of time, in seconds, elapsed since the command ran.

ac_mem Specifies the average amount of memory used by the process. Every clock interrupt (or
clock tick,100 times per second), the sys_timer routine is called to update the user data
for the current process. If the process is in user mode, both its u_utime value and memory
usage values are incremented; otherwise, only its u_stime value is incremented. The
sys_timer routine calls the vms_rusage routine to obtain the kilobytes of real memory
being used by TEXTSEG (#1), the PRIVSEG (#2), and the big-data segments (#3-11), if
used. These values are added to the total memory usage value at each clock tick during
which the process is not in kernel mode. When the process ends, the acctexit routine
computes how many clock ticks occurred while the process executed (in both user and
kernel modes) and divides the total memory usage value by this number to give an
average memory usage for the process. This value is recorded as a two-byte unsigned
short integer.

ac_io Specifies the number of characters transferred by the process.

ac_rw Specifies the number of blocks read or written by the process.

ac_comm Specifies the name of the command that started the process. A child process created by
a fork subroutine receives this information from the parent process. An exec subroutine
resets this field.

The tacct Structure

The tacct structure, which is not part of the acct.h header file, represents the total accounting format
used by the various accounting commands:

struct tacct {
 uid_t ta_uid; /* user-ID */
 char ta_name[8]; /* login name */
 float ta_cpu[2]; /* cum. CPU time, p/np (mins) */
 float ta_kcore[2]; /* cum. kcore-mins, p/np */
 float ta_io[2]; /* cum. chars xferred (512s) */
 float ta_rw[2]; /* cum. blocks read/written */
 float ta_con[2]; /* cum. connect time, p/np, mins */
 float ta_du; /* cum. disk usage */
 long ta_qsys; /* queuing sys charges (pgs) */
 float ta_fee; /* fee for special services */
 long ta_pc; /* count of processes */
 unsigned short ta_sc; /* count of login sessions */
 unsigned short ta_dc; /* count of disk samples */
};

Related information
acctcms command
runacct command

418 AIX Version 7.1: Files Reference

acct subroutine
wlm_key2class subroutine
Accounting files

ar File Format (Big)

Purpose
Combines several files into one. This is the default ar library archive format for the operating system.

Description
The ar (archive) file format combines several files into one. The ar command creates an archive file. The
ld (link editor) command searches archive files to resolve program linkage. The /usr/include/ar.h file
describes the archive file format. This file format accommodates both 32-bit and 64-bit object files within
the same archive.

This is the default file format used by the ar command.

Fixed-Length Header

Each archive begins with a fixed-length header that contains offsets to special archive file members. The
fixed-length header also contains the magic number, which identifies the archive file. The fixed-length
header has the following format:

#define __AR_BIG__
#define AIAMAGBIG "<bigaf>\n" /* Magic string */
#define SAIAMAG 8 /*Length of magic string */
struct fl_hdr /*Fixed-length header */

{
char fl_magic[SAIAMAG]; /* Archive magic string */
char fl_memoff[20]; /*Offset to member table */
char fl_gstoff[20]; /*Offset to global symbol table */
char fl_gst64off[20]; /*Offset global symbol table for 64-bit objects */
char fl_fstmoff[20]; /*Offset to first archive member */
char fl_lstmoff[20]; /*Offset to last archive member */
char fl_freeoff[20]; /*Offset to first mem on free list */

} ;

The indexed archive file format uses a double-linked list within the archive file to order the file members.
Therefore, file members may not be sequentially ordered within the archive. The offsets contained in the
fixed-length header locate the first and last file members of the archive. Member order is determined by
the linked list.

The fixed-length header also contains the offsets to the member table, the global symbol table, and the
free list. Both the member table and the global symbol table exist as members of the archive and are
kept at the end of the archive file. The free list contains file members that have been deleted from the
archive. When adding new file members to the archive, free list space is used before the archive file size is
expanded. A zero offset in the fixed-length header indicates that the member is not present in the archive
file.

File Member Header

Each archive file member is preceded by a file member header, which contains the following information
about the file member:

#define AIAFMAG "`\n" /* Header trailer string*/
struct ar_hdr /* File member header*/
{
 char ar_size[20]; /* File member size - decimal */
 char ar_nxtmem[20]; /* Next member offset-decimal */
 char ar_prvmem[20]; /* Previous member offset-dec */
 char ar_date[12]; /* File member date-decimal */
 char ar_uid[12]; /* File member userid-decimal */
 char ar_gid[12]; /* File member group id-decimal */

Files Reference 419

 char ar_mode[12]; /* File member mode-octal */
 char ar_namlen[4]; /* File member name length-dec */
 union
 {
 char ar_name[2]; /* Start of member name */
 char ar_fmag[2]; /* AIAFMAG - string to end */
 };
 _ar_name; /* Header and member name */
};

The member header provides support for member names up to 255 characters long. The ar_namlen
field contains the length of the member name. The character string containing the member name begins
at the _ar_name field. The AIAFMAG string is cosmetic only.

Each archive member header begins on an even-byte boundary. The total length of a member header is:

sizeof (struct ar_hdr) + ar_namlen

The actual data for a file member begins at the first even-byte boundary beyond the member header and
continues for the number of bytes specified by the ar_size field. The ar command inserts null bytes for
padding where necessary.

All information in the fixed-length header and archive members is in printable ASCII format. Numeric
information, with the exception of the ar_mode field, is stored as decimal numbers; the ar_mode field is
stored in octal format. Thus, if the archive file contains only printable files, you can print the archive.

Member Table

A member table is always present in an indexed archive file. This table quickly locates members of the
archive. The fl_memoff field in the fixed-length header contains the offset to the member table. The
member table member has a zero-length name. The ar command automatically creates and updates (but
does not list) the member table. A member table contains the following information:

• The number of members. This member is 20 bytes long and stored in ASCII format as a decimal
number.

• The array of offsets into the archive file. The length is 20 times the number of members. Each offset is
20 bytes long and stored in ASCII format as a decimal number.

• The name string table. The size is:

ar_size - (20 * (the number of members +1));

that is, the size equals the total length of all members minus the length of the offsets, minus the length
of the number of members.

The string table contains the same number of strings as offsets. All strings are null-terminated. Each
offset from the array corresponds sequentially to a name in the string table.

Global Symbol Tables

Immediately following the member table, the archive file contains two global symbol tables. The first
global symbol table locates 32-bit file members that define global symbols; the second global symbol
table does the same for 64-bit file members. If the archive has no 32-bit or 64-bit file members, the
respective global symbol table is omitted. The strip command can be used to delete one or both global
symbol tables from the archive. The fl_gstoff field in the fixed-length header contains the offset to
the 32-bit global symbol table, and the fl_gst64off contains the offset to the 64-bit global symbol
table. The global symbol table members have zero-length names. The ar command automatically creates
and updates, but does not list the global symbol tables. A global symbol table contains the following
information:

• The number of symbols. This is 8 bytes long and can be accessed with the sgetl and sputl commands.
• The array of offsets into the archive file. The length is eight times the number of symbols. Each offset is

8 bytes long and can be accessed with the sgetl and sputl commands.
• The name-string table. The size is:

420 AIX Version 7.1: Files Reference

ar_size - (8 * (the number of symbols + 1));

That is, the size equals the total length of the members, minus the length of the offsets, minus the
length of the number of symbols.

The string table contains the same number of strings as offsets. All strings are null-terminated. Each
offset from the array corresponds sequentially to a name in the string table.

Related reference
XCOFF Object File Format
Related information
ar command
ld command
strip command
sgetl or sputl subroutine

ar File Format (Small)

Purpose
Describes the small indexed archive file format, in use prior to Version 4.3 of the operating system. This
format is recognized by commands for backward compatability purposes only. See ar File Format (Big)
for the current archive file format.

Description
The ar (archive) command combines several files into one. The ar command creates an archive file. The
ld (link editor) command searches archive files to resolve program linkage. The /usr/include/ar.h file
describes the archive file format. This archive format only handles 32-bit XCOFF members. The ar File
Format (Big) handles both 32-bit and 64-bit XCOFF members

Fixed-Length Header

Each archive begins with a fixed-length header that contains offsets to special archive file members. The
fixed-length header also contains the magic number, which identifies the archive file. The fixed-length
header has the following format:

#define AIAMAG "<aiaff>\n" /* Magic string */

#define SAIAMAG 8 /* Length of magic string */

struct fl_hdr /* Fixed-length header */

{
char fl_magic[SAIAMAG]; /* Archive magic string */
char fl_memoff[12]; /* Offset to member table */
char fl_gstoff[12]; /* Offset to global symbol table */
char fl_fstmoff[12]; /* Offset to first archive member */
char fl_lstmoff[12]; /* Offset to last archive member */
char fl_freeoff[12]; /* Offset to first mem on free list */

};

The indexed archive file format uses a double-linked list within the archive file to order the file members.
Therefore, file members may not be sequentially ordered within the archive. The offsets contained in the
fixed-length header locate the first and last file members of the archive. Member order is determined by
the linked list.

The fixed-length header also contains the offsets to the member table, the global symbol table, and the
free list. Both the member table and the global symbol table exist as members of the archive and are
kept at the end of the archive file. The free list contains file members that have been deleted from the
archive. When adding new file members to the archive, free list space is used before the archive file size is

Files Reference 421

expanded. A zero offset in the fixed-length header indicates that the member is not present in the archive
file.

File Member Header

Each archive file member is preceded by a file member header, which contains the following information
about the file member:

#define AIAFMAG "`\n" /* Header trailer string */
struct ar_hdr /* File member header */
{
 char ar_size[12]; /* File member size - decimal */
 char ar_nxtmem[12]; /* Next member offset - decimal*/
 char ar_prvmem[12]; /* Previous member offset - dec */
 char ar_date[12]; /* File member date - decimal */
 char ar_uid[12]; /* File member user id - decimal */
 char ar_gid[12]; /* File member group id - decimal */
 char ar_mode[12]; /* File member mode - octal */
 char ar_namlen[4]; /* File member name length - dec */
 union
 {
 char ar_name[2]; /* Start of member name */
 char ar_fmag[2]; /* AIAFMAG - string to end */
 };
 _ar_name; /* Header and member name */
};

The member header provides support for member names up to 255 characters long. The ar_namlen
field contains the length of the member name. The character string containing the member name begins
at the _ar_name field. The AIAFMAG string is cosmetic only.

Each archive member header begins on an even-byte boundary. The total length of a member header is:

sizeof (struct ar_hdr) + ar_namlen

The actual data for a file member begins at the first even-byte boundary beyond the member header and
continues for the number of bytes specified by the ar_size field. The ar command inserts null bytes for
padding where necessary.

All information in the fixed-length header and archive members is in printable ASCII format. Numeric
information, with the exception of the ar_mode field, is stored as decimal numbers; the ar_mode field is
stored in octal format. Thus, if the archive file contains only printable files, you can print the archive.

Member Table

A member table is always present in an indexed archive file. This table quickly locates members of the
archive. The fl_memoff field in the fixed-length header contains the offset to the member table. The
member table member has a zero-length name. The ar command automatically creates and updates (but
does not list) the member table. A member table contains the following information:

• The number of members. This member is 12 bytes long and stored in ASCII format as a decimal
number.

• The array of offsets into the archive file. The length is 12 times the number of members. Each offset is
12 bytes long and stored in ASCII format as a decimal number.

• The name string table. The size is:

ar_size - (12 * (the number of members +1));

that is, the size equals the total length of all members minus the length of the offsets, minus the length
of the number of members.

The string table contains the same number of strings as offsets. All strings are null-terminated. Each
offset from the array corresponds sequentially to a name in the string table.

Global Symbol Table

If an archive file contains XCOFF object-file members that are not stripped, the archive file will contain a
global symbol-table member. This global symbol table locates file members that define global symbols.

422 AIX Version 7.1: Files Reference

The strip command deletes the global symbol table from the archive. The fl_gstoff field in the
fixed-length header contains the offset to the global symbol table. The global symbol table member has
a zero-length name. The ar command automatically creates and updates, but does not list the global
symbol table. A global symbol table contains the following information:

• The number of symbols. This is 4 bytes long and can be accessed with the sgetl and sputl commands.
• The array of offsets into the archive file. The length is four times the number of symbols. Each offset is 4

bytes long and can be accessed with the sgetl and sputl commands.
• The name-string table. The size is:

ar_size - (4 * (the number of symbols + 1));

That is, the size equals the total length of the members, minus the length of the offsets, minus the
length of the number of symbols.

The string table contains the same number of strings as offsets. All strings are null-terminated. Each
offset from the array corresponds sequentially to a name in the string table.

Related reference
XCOFF Object File Format
Related information
ar command
ld command
strip command
sgetl or sputl subroutine

ate.def File Format

Purpose
Determines default settings for the Asynchronous Terminal Emulation (ATE) program.

Description
The ate.def file sets the defaults for use in asynchronous connections and file transfers. This file is part of
Asynchronous Terminal Emulation and is created in the current directory during the first run of ATE. The
ate.def file contains the default values in the ATE program uses for the following:

• Data transmission characteristics
• Local system features
• Dialing directory file
• Control keys

The first time the ATE program runs from a particular directory, it creates the ate.def file in that directory,
with settings as follows:

Item Description

LENGTH 8

STOP 1

PARITY 0

RATE 1200

DEVICE tty0

INITIAL ATDT

FINAL

Files Reference 423

Item Description

WAIT 0

ATTEMPTS 0

TRANSFER p

CHARACTER 0

NAME kapture

LINEFEEDS 0

ECHO 0

VT100 0

WRITE 0

XON/XOFF 1

DIRECTORY /usr/lib/dir

CAPTURE_KEY 002

MAINMENU_KEY 026

PREVIOUS_KEY 022

Edit the ate.def file with any ASCII text editor to permanently change the values of these characteristics.
Temporarily change the values of these characteristics with the ATE alter and modify subcommands,
accessible from either ATE Main Menu.

Parameters in the ate.def File

Type parameter names in uppercase letters in the ate.def file. Spell the parameters exactly as they
appear in the original default file. Define only one parameter per line. An incorrectly defined value for
a parameter causes ATE to return a system message. However, the program continues to run using the
default value.

These are the ate.def file parameters:

Item Description

LENGTH Specifies the number of bits in a data character. This length must match the length
expected by the remote system.

Options: 7 or 8.

Default: 8.

STOP Specifies the number of stop bits appended to a character to signal that character's
end during data transmission. This number must match the number of stop bits
used by the remote system.

Options: 1 or 2.

Default: 1.

PARITY Checks whether a character is successfully transmitted to or from a remote system.
Must match the parity of the remote system.

For example, if the user selects even parity, when the number of 1 bits in the
character is odd, the parity bit is turned on to make an even number of 1 bits.

Options: 0 (none), 1 (odd), or 2 (even).

Default: 0.

424 AIX Version 7.1: Files Reference

Item Description

RATE Determines the baud rate, or the number of bits transmitted per second (bps). The
speed must match the speed of the modem and that of the remote system.

Options: 50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2400, 4800, 9600, or
19,200.

Default: 1200.

DEVICE Specifies the name of the asynchronous port used to make a connection to a
remote system.

Options: Locally created port names.

Default: tty0.

INITIAL Defines the dial prefix, a string that must precede the telephone number when the
user autodials with a modem. For the proper dial commands, consult the modem
documentation.

Options: ATDT, ATDP, or other values, depending on the type of modem.

Default: ATDT.

FINAL Defines the dial suffix, a string that must follow the telephone number when the
user autodials with a modem. For the proper dial commands, consult the modem
documentation.

Options: Blank (none) or a valid modem suffix.

Default: No default.

WAIT Specifies the time to wait between redialing attempts. The wait period does not
begin until the connection attempt times out or until it is interrupted. If the
ATTEMPTS parameter is set to 0, no redial attempt occurs.

Options: 0 (none) or a positive integer designating the number of seconds to wait.

Default: 0.

ATTEMPTS Specifies the maximum number of times the ATE program tries to redial to make a
connection. If the ATTEMPTS parameter is set to 0, no redial attempt occurs.

Options: 0 (none) or a positive integer designating the number of attempts.

Default: 0.

TRANSFER Defines the type of asynchronous protocol that transfers files during a connection.
p

pacing:

File transfer protocol controls the data transmission rate by waiting for
a specified character or for a certain number of seconds between line
transmissions. This helps prevent loss of data when the transmission blocks
are either too large or sent too quickly for the system to process.

x
xmodem:

An 8-bit file transfer protocol to detect data transmission errors and retransmit
the data.

Options: p (pacing), x (xmodem).

Default: p.

Files Reference 425

Item Description

CHARACTER Specifies the type of pacing protocol to be used.
Character

Signal to transmit a line. Select one character.

When the send subcommand encounters a line-feed character while
transmitting data, the subcommand waits to receive the pacing character
before sending the next line.

When the receive subcommand is ready to receive data, it sends the pacing
character, then waits 30 seconds to receive data. The receive subcommand
sends a pacing character again whenever it finds a carriage-return character
in the data. The receive subcommand ends when it receives no data for 30
seconds.

Interval
Number of seconds the system waits between each line it transmits. The value
of the Interval variable must be an integer. The default value is 0, indicating a
pacing delay of 0 seconds.

Default: 0.

NAME File name for incoming data (capture file).

Options: A valid file name less than 40 characters long.

Default: The kapture file.

LINEFEEDS Adds a line-feed character after every carriage-return character in the incoming
data stream.

Options: 1 (on) or 0 (off).

Default: 0.

ECHO Displays the user's typed input.

For a remote computer that supports echoing, each character sent returns
and displays on the screen. When the ECHO parameter is on, each character
is displayed twice: first when it is entered, and again when it returns over a
connection. When the ECHO parameter is off, each character displays only when
it returns over the connection.

Options: 1 (on) or 0 (off).

Default: 0.

VT100 The local console emulates a DEC VT100 terminal so DEC VT100 codes can be
used with the remote system. With the VT100 parameter off, the local console
functions like a workstation.

Options: 1 (on) or 0 (off).

Default: 0.

426 AIX Version 7.1: Files Reference

Item Description

WRITE Captures incoming data and routes it to the file specified in the NAME parameter as
well as to the display. Carriage-return or line-feed combinations are converted to
line-feed characters before they are written to the capture file. In an existing file,
data is appended to the end of the file.

Note: The CAPTURE_KEY (usually the Ctrl-B key sequence) can be used to toggle
capture mode on or off during a connection.

Options: 1 (on) or 0 (off).

Default: 0.

XON/XOFF Controls data transmission at a port as follows:

• When an Xoff signal is received, transmission stops.
• When an Xon signal is received, transmission resumes.
• An Xoff signal is sent when the receive buffer is nearly full.
• An Xon signal is sent when the buffer is no longer full.

Options: 1 (On) or 0 (Off).

Default: 1.

DIRECTORY Names the file that contains the user's dialing directory.

Default: the /usr/lib/dir file.

CAPTURE_KEY Defines the control key sequence that toggles capture mode. When pressed, the
CAPTURE_KEY (usually the Ctrl-B key sequence) starts or stops capturing (saving)
the data that is displayed on the screen during an active connection.

Options: Any ASCII control character.

Default: ASCII octal 002 (STX).

MAINMENU_KEY Defines the control key sequence that returns the ATE Connected Main Menu so
the user can issue a command during an active connection. The MAINMENU_KEY
(usually the Ctrl-V key sequence) functions only from the connected state.

Options: Any ASCII control character.

Default: ASCII octal 026 (SYN).

PREVIOUS_KEY Defines the control key sequence that displays the previous screen anytime during
the program. The screen displayed varies, depending on the screen in use when the
user presses PREVIOUS_KEY (usually the Ctrl-R key sequence).

Options: Any ASCII control character.

Default: ASCII octal 022 (DC2). The ASCII control character is mapped to the
interrupt signal.

Note:

1. Changing or remapping may be necessary if control keys conflict across applications. For example, if
the control keys mapped for the ATE program conflict with those in a text editor, remap the ATE control
keys.

2. The ASCII control character selected may be in octal, decimal, or hexadecimal format, as follows:

Item Description

octal 000 through 037. The leading zero is required.

Files Reference 427

Item Description

decimal 0 through 31.

hexadecimal 0x00 through 0x1F. The leading 0x is required. The x may be uppercase or
lowercase.

Examples
To change characteristics of ATE emulation, create an ate.def file that defines those characteristics.

For example, to change the RATE to 300 bps, the DEVICE to tty3, the TRANSFER mode to x (xmodem
protocol), and the DIRECTORY to my.dir, create the following ate.def file in the directory running the
ATE program:

RATE 300
DEVICE tty3
TRANSFER x
DIRECTORY my.dir

The time the ATE program starts from that directory, the program uses the defined values.

Files

Item Description

/usr/lib/dir Contains the default dialing directory file.

Related information
ate command
Asynchronous communications
Asynchronous Terminal Emulation
ate.def configuration file
Setting up an ATE dialing directory

audit File Format

Purpose
Describes the auditing data structures.

Description
The /usr/include/sys/audit.h file contains structure and constant definitions for the auditing system
commands, subroutines, and daemons:

Audit Bin Format

The format of the audit bin is described by the aud_bin structure. An audit trail consists of a sequence of
bins, each of which must start with a bin head and end with a bin tail. The aud_bin structure contains the
following fields:

Item Description

bin_magic The magic number for the bin (0xf0f0).

bin_version The version number for the bin (0).

428 AIX Version 7.1: Files Reference

Item Description

bin_tail Indicates whether the bin describes the audit trail head or tail:
0

Identifies the bin header.
1

Identifies the bin end (tail).
2

Identifies the trail end.

bin_len The (unpacked) length of the bin's records. A nonzero value indicates that the bin
has a tail record.

bin_plen The current length of the bin's record (might be packed).

bin_time The time at which the head or tail was written.

bin_reserved1 Not currently used.

bin_reserved2 Not currently used.

Audit Class Format

The format of the audit class is described by the audit_class structure, which contains the following
fields:

Item Description

ae_name A pointer to the name of the audit class.

ae_list A pointer to a list of null-terminated audit event names for this audit class. The list is
ended by a null name (a leading null byte or two consecutive null bytes).

Note: Event and class names are limited to 15 significant characters.

ae_len The length of the event list in the ae_list member. This length includes the
terminating null bytes. On an AUDIT_SET operation, the caller must set this member
to indicate the actual length of the list (in bytes) pointed to by ae_list. On
an AUDIT_GET or AUDIT_LOCK operation, the auditevents subroutine sets this
member to indicate the actual size of the list.

Audit Object Format

The format of the audit object is described by the o_event structure, which contains the following fields:

Item Description

o_type Specifies the type of the object, in terms of naming space. Currently, only one object-
naming space is supported:
AUDIT_FILE

Denotes the file system naming space.

o_name Specifies the name of the object.

Files Reference 429

Item Description

o_event Specifies any array of event names to be generated when the object is accessed. Note
that event names are currently limited to 16 bytes, including the trailing null. The index
of an event name in this array corresponds to an access mode. Valid indexes are defined
in the audit.h file and include the following:

• AUDIT_READ
• AUDIT_WRITE
• AUDIT_EXEC

Note: The C++ compiler will generate a warning indicating that o_event is defined both
as a structure and a field within that structure. Although the o_event field can be used
within C++, the warning can by bypassed by defining O_EVENT_RENAME. This will
replace the o_event field with o_event_array. o_event is the default field.

Audit Record Format

Each audit record consists of a list of fixed-length event identifiers, each of which can be followed by a
variable-length tail. The format of the audit record is described by the aud_rec structure, which contains
the following fields to identify the event:

Item Description

ah_magic Magic number for audit record.

ah_length The length of the tail portion of the audit record.

ah_event[16] The name of the event and a null terminator.

ah_result An indication of whether the event describes a successful operation. The values for
this field are:
0

Indicates successful completion.
1

Indicates a failure.
>1

An errno value describing the failure.

The aud_rec structure also contains the following fields to identify the user and the process:

Item Description

ah_ruid The real user ID; that is, the ID number of the user who created the process that
wrote this record.

ah_luid The login ID of the user who created the process that wrote this record.

ah_name[16] The program name of the process, along with a null terminator.

ah_pid The process ID of the process that wrote this record.

ah_ppid The process ID of the parent of this process.

ah_time The time in seconds at which this audit record was written.

ah_ntime The nanoseconds offset from ah_time.

The record tail follows this header information.

Related information
audit command
auditselect command

430 AIX Version 7.1: Files Reference

audit subroutine
auditevents subroutine
auditlog subroutine

bootptab File Format

Purpose
Default configuration database for the Internet Boot Protocol server (bootpd).

Description
The bootpd configuration file contains entries for clients that use the bootpd daemon to get boot
information. This file may be modified using the System Management Interface Tool (SMIT) to configure a
Diskless client or the file may be modified manually.

The client host information consists of case-sensitive tag symbols used to represent host parameters.
These host parameter declarations are separated by : (colon). For example:

HostName:Tg=Value:Tg=Value:Tg=Value

where:

HostName
Specifies the name of a BOOTP client. This must always be the first field in the entry.

The bootpd daemon attempts to send the entire host name as it is specified in this field. However, if
the host name does not fit into the reply packet, the name is shortened to the host field (up to the
first period, if present) and tried again. An arbitrarily truncated host name is never sent. If nothing
reasonable fits, nothing is sent.

Guidelines and Restrictions
• Blank lines and lines beginning with # are ignored when the file is read.
• Host entries are separated from one another by new lines; a single host entry may be extended over

multiple lines if the lines end with a backslash (\). However, individual host entries must not exceed
1024 characters.

• Lines in the configuration file may be longer than 80 characters.
• Tags can be displayed in any order, with the following exceptions:

– The host name must be the first field in an entry, and
– The hardware type must precede the hardware address.

Related information
bootpd command

cgaparams.sec File Format for TCP/IP

Purpose
Defines the Cryptographically Generated Address (CGA) parameter keywords for the ndpd-host daemon
and autoconf6 command.

Description
The /etc/ndpd/cgaparams.sec file is the default CGA parameters file for the ndpd-host daemon and
the autoconf6 application. If the ndpd-host daemon or the autoconf6 application is started without
specifying an alternate file through the /etc/ndpd/ndpdh.cnf file or a user-specified configuration file,

Files Reference 431

then the ndpd-host daemon and the autoconf6 application read the /etc/ndpd/cgaparams.sec file.
The /etc/ndpd/cgaparams.sec file provides information about enabling the SEND mode with interface.

Prerequisite: To enable the SEND mode, the clic.rte fileset and OpenSSL must be installed.

The cgaparams.sec file has the following format when configuring the ndpd-host daemon or the
autoconf6 application:

Keyword Value Description

en<value> { CGA key
words }

0 through n Specifies the interface that is configured with the SEND
mode

The values and meanings of CGA keywords are listed in the table as follows:

Keyword Value Description

BEGIN_RSA_PRIVATE_KEY <
value >END_RSA_PRIVATE_KEY
< value >

ASN1 encoded
private key

Private key to be used for creating the RSA
Signature

BEGIN_RSA_PUBLIC_KEY <
value > END_RSA_PUBLIC_KEY <
value >

ASN1 encoded
public key

Public key to be embedded in CGA options

SEND < value > off, compatible,
only

Specifies the SEND mode. The SEND parameter
can be specified with one of the following
values:
off

Specifies that the SEND mode is not
enabled. The host will behave as it did prior
to RFC 3971/3972.

compatible
Specifies that the interface complies
to RFC 3971/3972 when it sends out
messages. It does not require the SEND
options in the incoming message. This
allows a mixed environment where certain
routers are SEND-capable while others are
not. However, if the SEND options are
embedded in the incoming packets, they
must be correct.

only
Specifies that the entire message must
conform to RFC 3971/3972, or the
message will be rejected.

Files
Item Description

/usr/samples/tcpip/send/
cgaparams.sec

Contains the sample cgaparams.sec file

Related reference
ndpdh.cnf File Format for TCP/IP
sendh_anchor File Format for TCP/IP
Related information
ndpd-host daemon

432 AIX Version 7.1: Files Reference

autoconf6 command
tempaddr.conf File Format for TCP/IP

Character Set Description (charmap) Source File Format

Purpose
Defines character symbols as character encodings.

Description
The character set description (charmap) source file defines character symbols as character encodings.
The /usr/lib/nls/charmap directory contains charmap source files for supported locales. The localedef
command recognizes two sections in charmap source files, the CHARMAP section and the CHARSETID
section:

Item Description

CHARMAP Maps symbolic character names to code points. This section must precede all
other sections, and is mandatory.

CHARSETID Maps the code points within the code set to a character set ID. This sections is
optional.

The CHARMAP Section

The CHARMAP section of the charmap file maps symbolic character names to code points. All supported
code sets have the portable character set as a proper subset. Only symbols that are not defined in the
portable character set must be defined in the CHARMAP section. The portable character set consists of
the following character symbols (listed by their standardized symbolic names) and encodings:

Symbol Name Code (hexadecimal)

<NUL> 000

<SOH>> 001

<STX> 002

<ETX> 003

<EOT> 004

<ENQ> 005

<ACK> 006

<alert> 007

<backspace> 008

<tab> 009

<new-line> 00A

<vertical-tab> 00B

<form-feed> 00C

<carriage-return> 00D

<SO> 00E

<SI> 00F

<DLE> 010

<DC1> 011

Files Reference 433

Symbol Name Code (hexadecimal)

<DC2> 012

<DC3> 013

<DC4> 014

<NAK> 015

<SYN> 016

<ETB> 017

<CAN> 018

 019

<SUB> 01A

<ESC> 01B

<IS4> 01C

<IS3> 01D

<IS2> 01E

<IS1> 01F

<space> 020

<exclamation-mark> 021

<quotation-mark> 022

<number-sign> 023

<dollar-sign> 024

<percent> 025

<ampersand> 026

<apostrophe> 027

<left-parenthesis> 028

<right-parenthesis> 029

<asterisk> 02A

<plus-sign> 02B

<comma> 02C

<hyphen> 02D

<period> 02E

<slash> 02F

<zero> 030

<one> 031

<two> 032

<three> 033

<four> 034

<five> 035

<six> 036

434 AIX Version 7.1: Files Reference

Symbol Name Code (hexadecimal)

<seven> 037

<eight> 038

<nine> 039

<colon> 03A

<semi-colon> 03B

<less-than> 03C

<equal-sign> 03D

<greater-than> 03E

<question-mark> 03F

<commercial-at> 040

<A> 041

 042

<C> 043

<D> 044

<E> 045

<F> 046

<G> 047

<H> 048

<I> 049

<J> 04A

<K> 04B

<L> 04C

<M> 04D

<N> 04E

<O> 04F

<P> 050

<Q> 051

<R> 052

<S> 053

<T> 054

<U> 055

<V> 056

<W> 057

<X> 058

<Y> 059

<Z> 05A

<left-bracket> 05B

Files Reference 435

Symbol Name Code (hexadecimal)

<backslash> 05C

<right-bracket> 05D

<circumflex> 05E

<underscore> 05F

<grave-accent> 060

<a> 061

 062

<c> 063

<d> 064

<e> 065

<f> 066

<g> 067

<h> 068

<i> 069

<j> 06A

<k> 06B

<l> 06C

<m> 06D

<n> 06E

<o> 06F

<p> 070

<q> 071

<r> 072

<s> 073

<t> 074

<u> 075

<v> 076

<w> 077

<x> 078

<y> 079

<z> 07A

<left-brace> 07B

<vertical-line> 07C

<right-brace> 07D

<tilde> 07E

 07F

The CHARMAP section contains the following sections:

436 AIX Version 7.1: Files Reference

• The CHARMAP section header.
• An optional special symbolic name-declarations section. The symbolic name and value must be

separated by one or more blank characters. The following are the special symbolic names and their
meanings:

Item Description

<code_set_name> Specifies the name of the coded character set for
which the charmap file is defined. This value determines
the value returned by the nl_langinfo subroutine. The
<code_set_name> must be specified using any character
from the portable character set, except for control and space
characters.

<mb_cur_max> Specifies the maximum number of bytes in a multibyte
character for the encoded character set. Valid values are 1 to
4. The default value is 1.

<mb_cur_min> Specifies the minimum number of bytes in a multibyte
character for the encoded character set. Since all supported
code sets have the portable character set as a proper subset,
this value must be 1.

<escape_char> Specifies the escape character that indicates encodings in
hexadecimal or octal notation. The default value is a \
(backslash).

<comment_char> Specifies the character used to indicate a comment within a
charmap file. The default value is a # (pound sign). With the
exception of optional comments following a character symbol
encoding, comments must start with a comment character in
the first column of a line.

• Character set mapping statements for the defined code set.

Each statement in this section defines a symbolic name for a character encoding. A character symbol
begins with the < (less-than) character and ends with the > (greater-than) character. The characters
between the < (less-than) and > (greater-than) can be any characters from the portable character set,
except for control and space characters. The > (greater-than) character may be used if it is escaped with
the escape character (as specified by the <escape_char> special symbolic name). A character symbol
cannot exceed 32 characters in length.

The format of a character symbol definition is:

<char_symbol> encoding
 optional comment

An encoding is specified as one or more character constants, with the maximum number of character
constants specified by the <mb_cur_max> special symbolic name. The localedef command supports
decimal, octal, and hexadecimal constants with the following formats:

hexadecimal constant \xddd
octal constant \oddd
decimal constant \dddd

Some examples of character symbol definitions are:

<A> \d65 decimal constant
 \x42 hexadecimal constant
<j10101> \x81\d254 mixed hex and decimal constants

A range of one or more symbolic names and corresponding encoding values may also be defined, where
the nonnumeric prefix for each symbolic name is common, and the numeric portion of the second
symbolic name is equal to or greater than the numeric portion of the first symbolic name. In this

Files Reference 437

format, a symbolic name value consists of zero or more nonnumeric characters followed by an integer
of one or more decimal digits. This format defines a series of symbolic names. For example, the string
<j0101>...<j0104> is interpreted as the <j0101>, <j0102>, <j0103>, and <j0104> symbolic
names, in that order.

In statements defining ranges of symbolic names, the encoded value is the value for the first symbolic
name in the range. Subsequent symbolic names have encoding values in increasing order. For example:

<j0101>...<j0104> \d129\d254

This character set mapping statement is interpreted as follows:

<j0101> \d129\d254
<j0102> \d129\d255
<j0103> \d130\d0
<j0104> \d130\d1

Symbolic names must be unique, but two or more symbolic names can have the same value.
• The END CHARMAP section trailer.

Examples
The following is an example of a portion of a possible CHARMAP section from a charmap file:

CHARMAP
<code_set_name> ISO8859-1
<mb_cur_max> 1
<mb_cur_min> 1
<escape_char> \
<comment_char> #
<NUL> \x00
<SOH> \x01
<STX> \x02
<ETX> \x03
<EOT> \x04
<ENQ> \x05
<ACK> \x06
<alert> \x07
<backspace \x09
<tab> \x09
<newline> \x0a
<vertical-tab> \x0b
<form-feed> \x0c
<carriage-return> \x0d
END CHARMAP

The CHARSETID Section

The CHARSETID section maps the code points within the code set to a character set ID. The CHARSETID
section contains the following sections:

• The CHARSETID section header.
• Character set ID mappings for the defined code sets.
• The END CHARSETID section trailer.

Character set ID mappings are defined by listing symbolic names or code points for symbolic names and
their associated character set IDs. The following are possible formats for a character set ID mapping
statement:

<character_symbol> number
<character_symbol>...<character_symbol> number
character_constant number
character_constant...character_constant number

The <character_symbol> used must have previously been defined in the CHARMAP section. The
character_constant must follow the format described for the CHARMAP section.

438 AIX Version 7.1: Files Reference

Individual character set mappings are accomplished by indicating either the symbolic name (defined in
the CHARMAP section or the portable character set) followed by the character set ID, or the code point
associated with a symbolic name followed by the character set ID value. Symbolic names and code points
must be separated from a character set ID value by one or more blank characters. Ranges of code points
can be mapped to a character set ID value by indicating appropriate combinations of symbolic names
and code point values as endpoints to the range, separated by ... (ellipsis) to indicate the intermediate
characters, and followed by the character set ID for the range. The first endpoint value must be less than
or equal to the second end point value.

Examples

The following is an example of a portion of a possible CHARSETID section from a charmap file:

CHARSETID
<space>...<nobreakspace> 0
<tilde>...<y-diaeresis> 1
END CHARSETID

Related reference
Locale Definition Source File Format
Locale Method Source File Format
LC_COLLATE Category for the Locale Definition Source File Format
LC_CTYPE Category for the Locale Definition Source File Format
LC_MESSAGES Category for the Locale Definition Source File Format
LC_MONETARY Category for the Locale Definition Source File Format
LC_NUMERIC Category for the Locale Definition Source File Format
LC_TIME Category for the Locale Definition Source File Format
Related information
locale command
Converters Overview for System Management

core File Format

Purpose
Contains an image of a process at the time of an error.

Description
A .core file is created in the current directory when various errors occur. Errors such as memory-address
violations, illegal instructions, bus errors, and user-generated quit signals, commonly cause this core
dump. The core file that is created contains a memory image of the terminated process. If the faulty
process is multi-threaded and the current core size ulimit is less than what is required to dump the data
section, then only the faulting thread stack area is dumped from the data section.

Note: The core dump file can be given a unique name by using the chcore command. The default
behavior is the same as in previous versions of the AIX operating system.

Any shared memory allocated by the process may also be optionally omitted from the core file. This data
is only omitted if the CORE_NOSHM environment variable is exported. The default is to include all shared
memory in the core file. The CORE_NOSHM variable can be set to any value.

Unique core file naming will only be enabled if the environment variable CORE_NAMING is exported. The
default name is core as in previous releases. The value of the variable should be set to true.

The contents of a core dump are organized sequentially in the core file as follows:

Files Reference 439

Item Description

Core header Defines basic information about the core dump, and contains
offsets that locate the remainder of the core dump information.

ldinfo structures Defines loader information.

mstsave structures Defines kernel thread state information. Since the faulting thread
mstsave structure is directly saved in the core header, additional
structures are saved here only for multi-threaded programs.

Default user stack Contains a copy of the user stack at the time of the core dump.

Default data area (Optional) Contains the user data section.

Memory mapped regions (Optional) Contains the anonymously mapped regions.

vm_info structures (Optional) Contains offset and size information for memory mapped
regions.

By default, the user data is, anonymously mapped regions, and vm_info structures are not included in a
core dump. This partial core dump includes the current process stack, thread stack, the thread mstsave
structures, the user structure, and the state of the registers at the time of the fault. A partial core dump
contains sufficient information for a stack traceback. The size of a core dump can also be limited by the
setrlimit subroutine.

To enable a full core dump, set the SA_FULLDUMP flag in the sigaction subroutine for the signal that is
to generate a full core dump. If this flag is set when the core is dumped, the data section is, anonymously
mapped regions, and vm_info structures are included in the core dump.

Core files are dumped in the following ways:

• All dumped cores are in the context of the running process. They are dumped with an owner and a group
matching the effective user ID (UID) and group ID (GID) of the process. If this UID/GID pair does not
have permission to write to the target directory that is determined according to the standard core path
procedures, no core file is dumped.

• If the real user ID (RUID) is root, the core file can always be dumped, but with a mode of 0600.
• If the effective user ID (EUID) matches the real user ID (RUID), and the effective group ID (EGID)

matches any group in the credential's group list, the core file is dumped with permissions of 0600.
• If the EUID matches the RUID, but the EGID does not match any group in the credential's group list, the

core file cannot be dumped. The effective user cannot see data that they do not have access to.
• If the EUID does not match the RUID, the core file can be dumped only if you have set a core directory

using the syscorepath command. This avoids dumping the core file into either the current working
directory or a user-specific core directory in such a way that you cannot remove the core file. Core is
dumped with a mode of 0600. If you have not used the syscorepath command to set a core directory,
no core is dumped.

The format of the core header is defined by the core_dump structure (in the core.h header file), which is
organized as follows:

Item Field
Name

Description

char c_signo The number of the signal which caused the error.

440 AIX Version 7.1: Files Reference

Item Field
Name

Description

char c_flag A bit field which describes the core dump type. The meanings of the bits
are as follows:
FULL_CORE

core contains the data sections (0x01)
CORE_VERSION_1

core was generated by AIX Version 4 or higher (0x02)
MSTS_VALID

core contains mstsave structures (0x04)
CORE_BIGDATA

core contains big data (0x08)
UBLOCK_VALID

core contains the u_block structure (0x10)
USTACK_VALID

core contains the user stack (0x20)
LE_VALID

core contains at least one module (0x40)
CORE_TRUNC

core was truncated (0x80)

ushort c_entries The number of core dump modules

struct ld_info * c_tab The offset to the beginning of the core table

caddr_t c_stack The offset to the beginning of the user stack

int c_size The size of the user stack

struct mstsave c_mst A copy of the faulting mst

struct user c_u A copy of the user structure

int c_nmsts The number of mstsave structures referenced by the c_msts field

struct mstsave * c_msts The offset to the other threads' mstsave structures

int c_datasiz
e

The size of the data region

caddr_t c_data The offset to user data

int c_vmregi
ons

The number of anonymously mapped regions

struct vm_info * c_vmm The offset to the start of the vm_info table

Related reference
param.h File
Related information
adb command
dbx command
syscorepath command
raise subroutine
sigaction subroutine

Files Reference 441

cpio File Format

Purpose
Describes the copy in/out (cpio) archive file.

Description
The cpio utility backs up and recovers files. The files are saved on the backup medium in the cpio format.

When the cpio command is used with the -c flag, the header for the cpio structure reads as follows:

sscanf(Chdr,"%6ho%6ho%6ho%6ho%6ho%6ho%6ho%6ho%11lo%6ho%11lo%s",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h_gid, &Hdr.h_nlink, &Hdr.h_rdev,
&Longtime, &Hdr.h_namesize, &Longfile, &Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h_filesize, respectively. The
contents of each file, and other items describing the file, are recorded in an element of the array of
structures with varying lengths.

Note: Files saved with the -c flag must be restored with the -c flag.

When the -c flag of the cpio command is not used, the header structure contains the following fields:

Item Description

h_magic Contains the constant octal 070707 (or 0x71c7).

h_dev Device that contains a directory entry for this file.

h_ino I-node number that identifies the input file to the file system.

h_mode Mode of the input file, as defined in the mode.h file.

h_uid User ID of the owner of the input file.

h_gid Group ID of the owner of the input file.

For remote files, these fields contain the ID after reverse translation:

Item Description

h_nlink Number of links that are connected to the input file.

h_rdev ID of the remote device from which the input file is taken.

h_mtime Time when data was last modified. For remote files, this field contains the time
at the server. This time can be changed by the creat, fclearf, truncate, mknod,
openx, pipe, utime, or writex subroutine.

h_namesize Length of the path name, including the terminating null byte.

h_filesize Length of the file in bytes. This is the length of the data section that follows the
header structure.

h_name Null-terminated path name. The length of the path name, including the null
byte, is indicated by the n variable, where n equals ((h_namesize % 2) +
h_namesize). That is, the n variable is equal to the h_namesize field if the
h_namesize field is even. If the h_namesize field is odd, the n variable is
equal to the h_namesize field + 1.

The last record of the archive always contains the name TRAILER!!!. Special files, directories, and the
trailer are recorded with the h_filesize field equal to 0.

Related reference
mode.h File

442 AIX Version 7.1: Files Reference

stat.h File
Related information
cpio command
fclear subroutine
truncate or ftruncate subroutine

cronlog.conf File

Purpose
Specifies the default configuration file of the cron daemon for logging information.

Description
The cronlog.conf configuration file informs the cron daemon where and how to log information. If you
do not use the -f flag, the cron daemon reads the default /etc/cronlog.conf configuration file. If
the cron daemon fails to open the configuration file, it continues with the /var/adm/cron/log file. The
cron daemon ignores blank lines and lines beginning with a # (pound sign).

Format
archive

Specifies that the saved rotated files will be copied to a directory. It is followed by the directory name.
If archive is not specified and rotation is valid, files are rotated in the directory of logfile.

compress
Specifies that the saved rotated files will be compressed. If keyword is not present then no
compression is done.

logfile
Specifies the full path name of the log file. If the file does not exist, it is created with permission 660.
Do not create the log file in the "/" file system. If the cron daemon cannot create the name of the log
file, the daemon creates a log of its activities in the /var/adm/cron/log file, and all of the features
below it are turned off.

quiet
Specifies that cron logging will be disabled.

rotate
Specifies the total number of rotated files. It is followed by a number. If a number is not specified then
there are unlimited number of rotated files. If the rotate keyword is not present, then no rotation is
done. If specified, minimum of number of rotated files is 2.

size
Limits the size of a logfile. It is followed by a number and either a k (kilobytes) or m (megabytes). The
default and minimum size is 30K. If the size value is invalid then rotation feature is turned off.

Examples
1. To log information in the directory /home/user, log file cron.out, size of 2M , total number of

rotated files = 4, archive in /usr/home, compress archive files, create the configuration file as follows:

 logfile=/home/user/cron.out
 size=2m
 rotate=4
 archive=/usr/home
 compress

Files Reference 443

2. To log information in directory /home/user, log file cron.out, size of 50k , unlimited log files, archive
in /usr/home, compress archive files, create the configuration file as follows:

 logfile=/home/user/cron.out
 size=50k
 rotate
 archive=/usr/home
 compress

3. To log information in directory /home/user, log file cron.out, size of 50k , total number of rotated
files = 4, create the configuration file as follows:

 logfile=/home/user/cron.out
 size=50K
 rotate=4

4. To log information in directory /home/user, log file cron.out, size of 50k , total number of rotated
files = 4, archive in /usr/home, archive files without compression, no logging of cron jobs, create the
configuration file as follows:

 logfile=/home/user/cron.out
 size=50K
 rotate=4
 archive=/usr/home
 quiet

In this case, cron.out will contain only debug or error messages.

Related information
cron command

Devices File Format for BNU

Purpose
Contains information about devices on the local system that can establish a connection to a remote
computer using the Basic Networking Utilities (BNU) program.

Description
The /etc/uucp/Devices file and its augmentations and alternatives specified in the /etc/uucp/ Sysfiles
file contains information about the devices on the local system that can establish a connection to a
remote computer using the Basic Networking Utilities (BNU) program. This file includes information for
hardwired, telephone, and TCP/IP communication links.

Note: Only someone with root user authority can edit the Devices file, which is owned by the uucp login
ID.

Fields in the Devices File

The Devices file must contain a description of each device on the local system that can establish a remote
connection using the BNU program. Each line in the Devices file includes the following fields:

Item Description

Type Typically specifies the type of hardwired or automatic calling unit (ACU)
device.

Line Specifies the device name for the port.

Line2 Specifies the dialer name if the Line entry specifies an 801 dialer.

Class Typically specifies the transmission speed.

444 AIX Version 7.1: Files Reference

Item Description

Dialer-Token Pairs Specifies a particular type of autodialer (modem) and the token (a
defined string of characters) that is passed to the dialer. Valid entries
for this field are defined in the /etc/uucp/Dialers file.

The fields appear on the line as follows:

Type Line Line2 Class Dialer-Token Pairs

Every field of a line in the Devices file must contain an entry. If a field does not apply to the particular type
of device or system, use a - (minus sign) as a placeholder.

Lines in the Devices file cannot wrap. Each entry must be on only one line in the file. However, the
Devices file can contain blank lines and comment lines. Comment lines begin with a # (pound sign). Blank
lines are ignored.

Type Field

Enter one of the following keywords in this field:

Keyword Explanation

ACU Use this keyword, entered in uppercase letters, if your site connects multiple systems
over the telephone network with automatic calling units (autodialers or modems).

Direct Use this keyword, beginning with an uppercase D, if your site uses hardwired lines to
connect multiple systems.

TCP Use this keyword, in uppercase letters, if your site uses TCP/IP.

SystemName Enter the name of a particular remote system hardwired to the local system. The
SystemName keyword is the name assigned to each individual system, such as hera,
zeus, or merlin.

This field corresponds to the Type field in the /etc/uucp/Systems file.

Line Field

The device name for the line, or port, used in the communication link is inserted here. For example,
use the appropriate device name for a hardwired line, such as tty1. For a line connected to an ACU (a
modem), use a device name appropriate to the dialer, such as tty1 or tty2. For a TCP connection, enter
a minus sign as a placeholder.

Line2 Field

Unless you are using an 801 dialer, use a - (minus sign) in this field as a placeholder. If you are using an
801 dialer, put the device name of the 801 ACU in this field. For example, if the entry in the Type field
is ACU and the Line field entry (specifying the modem) is tty1, the Line2 field entry (specifying the 801
dialer for the modem) might be tty3 or tty4.

Note: The Line2 field is used only to support older modems that require 801-type dialers. The modem is
plugged into one serial port, and the 801 dialer is plugged into a separate serial port.

Class Field

For an ACU or a hardwired line, the Class field can be the speed of the device. In this case, for a hardwired
line, use the transmission rate of the device connecting the two systems. For a telephone connection, use
the speed at which the ACU transmits data, such as 300 or 1200 bps.

This field can also contain a letter with a speed (for example, C1200 or 1200) to differentiate between
classes of dialers. For example, some offices have more than one telephone network, one for internal use
and one for external communications. In such a case, it is necessary to distinguish which lines should be
used for each connection.

The Class field in the Devices file is matched against the Class field in the /etc/uucp/Systems file. For
example, if the Systems file entry for system hera is:

Files Reference 445

hera Any ACU 1200 3-3-5-2 ogin: nuucp ssword: oldoaktree

BNU searches for an entry in the Devices file with a Type of ACU and a Class of 1200.

Some devices can be used at several specific speeds. In this case, make multiple entries for the device,
specifying each speed on a separate line in the Devices file. If BNU cannot connect at the first speed, it
will try the successive speeds.

If a device can be used at any speed, type the word Any in the Class field. Note that the A in Any must be
uppercase.

For a TCP/IP connection, enter a - (minus sign) as a placeholder.

Dialer-Token Pair Field

The Dialer-Token Pair field specifies a particular type of autodialer (modem) and the token (a defined
string of characters) that is passed to the dialer. Valid entries for this field are defined in the /etc/uucp/
Dialers file.

For a hardwired connection, enter the word direct (note the lowercase d) as the Dialer entry and leave
the Token entry blank.

For a telephone connection, enter the type of dialer and the token that is passed to that modem. The
Token field entry is either a telephone number or a predefined string used to reach the dialer.

For a telephone connection, enter one of the following as the Dialer field entry:

Entry Definition

hayes A Hayes dialer.

Other Dialers Other dialers that you can specify by including the relevant information in
the /etc/uucp/Dialers file.

TCP A TCP/IP connection. Enter TCP in the Dialer field entry if you have also entered
TCP in the Type field.

Each Dialer field entry included as part of a Dialer-Token Pair field in the Devices file has a corresponding
entry in the Dialers file.

If the Token field entry represents a telephone number, enter one of the following in the Token field to
specify how the BNU program should use the telephone number listed in the /etc/uucp/Systems file:

Entry Definition

\D The default token in a Dialer-Token Pair field. The \D token specifies that the BNU
program should take the phone number listed in the /etc/uucp/Systems file and pass
it to the appropriate dialer script (entry) in the /etc/uucp/Dialers file, without including
a dial-code abbreviation.

\T This token instructs the BNU program to process the phone number by including the
data specified in the /etc/uucp/Dialcodes file.

Note: If you are using dial-code abbreviations specified in the Dialcodes file for certain
telephone numbers, you must enter the \T string as the token in those entries in the
Dialers file.

blank Leaving the Token field blank is the same as entering \D, so a blank is usually
sufficient as a token if you have included complete telephone numbers in the /etc/
uucp/Systems file.

If the Token field does not represent a telephone number, enter the predefined string
necessary to reach the dialer.

446 AIX Version 7.1: Files Reference

Examples
Setting Up Entries for Hardwired Connections

To set up a Device file entry specifying a port and a remote system, make an entry as follows:

Direct tty1 - 1200 direct
zeus tty1 - 1200 direct

The Type field lists Direct (for a direct connection) in the first part and zeus (the name of the remote
system) in the second part. The local system is connected to system zeus by way of device tty1, which
is listed in the Line field in both parts of the example.

The Line2 field contains actual data only when the entry specifies a certain type of telephone connection.
A - (minus sign) is used as a placeholder in other types of connections, as in this example. This device
transmits at a rate of 1200 bps, which is listed in the Class field in both parts of the example. The word
direct in the Dialer field portion of the Dialer-Token Pair field indicates that this is a direct connection.

Setting Up Entries for Autodialer Connections

1. For a standard Hayes modem that can be used at only one baud rate, make an entry as follows:

ACU tty2 - 1200 hayes

The Type field is specified as ACU. The Line field is specified with the device name tty2. Because this
modem is not an 801 dialer, a - (minus sign) is used as a placeholder in the Line2 field. The Class field
entry is a transmission rate of 1200 baud. The Dialer field part of the Dialer-Token Pair field is specified
as a hayes modem, and the Token field part is left blank.

2. To specify a standard Hayes modem that can be used at different baud rates, make an entry as follows:

ACU tty3 - 1200 hayes
ACU tty3 - 300 hayes

These two lines specify the same modem, a hayes, which can be used at either 1200 or 300 baud, as
specified in the Class field. The modem is connected to a device named tty3 (the Line field), and the
Line2 field contains the - (minus sign) placeholder. The Dialer field part of the Dialer-Token Pair field is
specified as a hayes modem, and the Token field is left blank.

3. To specify a standard Hayes modem that can be used at any baud rate, make an entry as follows:

ACU tty2 - Any hayes

These two lines specify a hayes modem that can be used at any baud rate, as specified by the word
Any entered in the Class field. Note that the word Any must be entered with an uppercase A.

4. To specify a connection using a standard 801 dialer, make an entry as follows:

ACU tty4 tty5 1200 801
ACU tty6 tty7 300 801

In these entries, the ACU entries are connected to devices named tty4 and tty6, specified in the Line
field. In both cases, there is an entry in the Line2 field because a standard 801 autodialer is specified
in the Dialer-Token Pair field. Because 801 is specified as the dialer in these two examples, the Line2
field must contain the device names of the 801 ACUs. The Class field entry specifies a transmission
rate of 1200 baud for the first example and 300 for the second. The Token field part of the Dialer-Token
Pair field is blank.

Setting Up the Entry for Use with TCP/IP

If your site is using the TCP/IP system, enter the following in the Devices file:

TCP - - - TCP

TCP is specified in the Type field. minus signs are used as placeholders in the Line, Line2, and Class fields.
TCP is specified as the Dialer field entry, with the Token entry left blank.

Files Reference 447

Setting Up Entries for Both Local and Remote Systems

The following examples illustrate the entries needed in the Devices file for both local and remote systems
in order for the two systems to communicate using the BNU program.

1. To configure a hardwired connection, note the following information.

The following entries configure local and remote Devices files for a hardwired connection between
systems zeus and hera, where zeus is considered the local system and hera the remote system. The
hardwired device on system zeus is tty1; on system hera, it is tty2.

The Devices file on system zeus contains the following entry in order to connect to the remote
system, hera:

Direct tty1 - 1200 direct
hera tty1 - 1200 direct

The Devices file on system hera contains the following entry for communications with system zeus:

Direct tty2 - 1200 direct
zeus tty2 - 1200 direct

2. To configure a telephone connection, note the following information.

These files are set up to connect systems venus and merlin over a telephone line using modems.
System venus is considered the local system, and system merlin is considered the remote system.

On both systems, the device tty1 is hooked to a hayes modem at 1200 baud. Both computers
include partial phone numbers in their /etc/uucp/Systems files and dialing codes in their /etc/uucp/
Dialcodes files.

The Devices file on system venus contains the following entry for the connection to system merlin:

ACU tty1 - 1200 hayes \T

The Devices file on system merlin contains the following entry for the connection to system venus:

ACU tty1 - 1200 hayes \T

Files

Item Description

/etc/uucp directory Contains all the configuration files for BNU, including the
Devices file.

/etc/uucp/Dialcodes file Contains dialing code abbreviations.

/etc/uucp/Dialers file Specifies initial handshaking on a connection.

/etc/uucp/Systems file Describes accessible remote systems.

/etc/uucp/Sysfiles file Specifies possible alternative or augmentative files for /etc/
uucp/Devices.

Related reference
Sysfiles File Format for BNU
Related information
cu command
uucp command
uux command
Editing Devices File for Hardwired Connections

448 AIX Version 7.1: Files Reference

Dialcodes File Format for BNU

Purpose
Contains the initial digits of telephone numbers used to establish remote connections over a phone line.

Description
The /etc/uucp/Dialcodes file contains the initial digits of telephone numbers used by the Basic
Networking Utilities (BNU) program to establish remote connections over a phone line. The Dialcodes
file simplifies entries in the /etc/uucp/Systems file for sites where a number of device phone numbers
have the same prefix.

If users at your site communicate regularly by way of telephone lines and modems to multiple systems
all located at the same remote site, or to multiple systems located at different remote sites, use the
dial-code abbreviations in the /etc/uucp/Systems file rather than entering the complete phone number
of each remote modem in that file.

The Dialcodes file contains dial-code abbreviations and partial phone numbers that complete the
telephone entries in the /etc/uucp/Systems file. Entries in the Dialcodes file contain an alphabetic prefix
attached to a partial phone number that may include the following information in the order listed:

• Codes for an outside line
• Long-distance access codes
• A 1 (one) plus the area code (if the modem is out of the local area)
• The three-digit exchange number

The relevant alphabetic prefix (representing the partial phone number), together with the remaining four
digits of that number, is then entered in the Phone field in the /etc/uucp/Systems file.

Following is the form of an entry in a Dialcodes file:

DialCodeAbbreviation DialingSequence

The DialCodeAbbreviation part of the entry is an alphabetic prefix containing up to 8 letters, established
when setting up the dialing-code listing. The DialingSequence is composed of all the digits in the number
that precede the actual four-digit phone number.

Note:

1. If your site uses only a relatively small number of telephone connections to remote systems, include
the complete phone numbers of the remote modems in the /etc/uucp/Systems file rather than use
dial-code abbreviations.

2. Enter each prefix only once in the Dialcodes file. When you have set up a dial-code abbreviation, use
that prefix in all relevant entries in the /etc/uucp/Systems file.

3. Only someone with root user authority can edit the Dialcodes file, which is owned by the uucp
program login ID.

Example
The Dialcodes file on system venus contains the following dial-code prefix for use with a number in
the /etc/uucp/Systems file:

local 9=445

The Systems file on system venus contains the following entry for system zeus, including a phone
number and a dialing prefix:

zeus Any ACU 1200 local8784 in:--in: uzeus word: thunder

When BNU on system venus dials system zeus, BNU uses the expanded telephone number 9=4458784.

Files Reference 449

Files

Item Description

/etc/uucp directory Contains all the configuration files for BNU, including the
Dialcodes file.

/etc/uucp/Devices file Contains information about available devices.

/etc/uucp/Dialers file Specifies initial handshaking on a connection.

/etc/uucp/Systems file Describes accessible remote systems.

/etc/uucp/Sysfiles file Specifies possible files used instead of /etc/uucp/System
file, /etc/uucp/Devices file, and /etc/uucp/Dialers file.

Related information
cu command
tip command
uucp command
Configuring BNU

Dialers File Format for BNU

Purpose
Lists modems used for Basic Networking Utilities (BNU) remote communications links.

Description
The /etc/uucp/Dialers file and its surrogates, specified in the /etc/uucp/Sysfiles file, lists the modems
(dialers) used by the Basic Networking Utilities (BNU) program and specifies the initial handshaking
necessary to establish remote communications links. Handshaking is a series of expect-send sequences
that specify the initial communications that occur on a link before it is ready to send or receive data.
Using the handshaking, the local and remote systems confirm that they are compatible and configured to
transfer data.

The Dialers file(s) contains entries for each autodialer that is included in the /etc/uucp/Devices file
or one of its surrogate files. Surrogate file are specified in the /etc/uucp/Sysfiles file. It also contains
entries specifying no handshaking for direct hardware links (the direct entry) and TCP/IP links (the
TCP entry). The first field of the Dialers file, which specifies the dialer, is matched to the fifth field of the
Devices file, the Dialer-Token Pair field, to determine handshaking when making a connection.

Note: Only someone with root user authority can edit the Dialers file, which is owned by the uucp login
ID.

Fields in a Dialers File

Every modem (dialer) is listed on a line by itself in the Dialers file. Each line consists of three groups of
information: the Dialer Name field, the Dial Tone and Wait Characters field, and the Handshaking field.

Dialer Name Field

The first field in a Dialers file, the Dialer Name field, specifies the type of autodialer (modem) used in the
connection. It matches the fifth field, the Dialer-Token Pair field, in the Devices file(s). When a particular
device is used to make a connection, BNU uses the Dialer-Token Pair field in the Devices file(s) to find the
handshaking entry in the Dialers file(s).

If your system has direct hardware connections to one or more remote systems, include an entry with a
Dialer Name of direct. Similarly, if your system uses TCP/IP to connect to one or more other systems,
include an entry with a DialerName of TCP. These entries correspond, respectively, to the word direct
and the word TCP in the Dialer-Token Pairs field of entries in a Devices file. Omit the Dial Tone and Wait
Characters field and the Handshaking field, since no handshaking is needed on these connections.

450 AIX Version 7.1: Files Reference

Dial Tone and Wait Characters Field

The second field, the Dial Tone and Wait Characters field, consists of two sets of two characters, for a total
of four entries. These characters comprise a translation string. In the actual phone number of the remote
modem, the first character in each string is mapped to the second character in that set.

Entry Action

=,-, Translate the telephone number. Any = (equal sign) represents wait for dial tone and any -
(minus sign) represents pause.

"" Wait for nothing; continue with the rest of the string.

WAIT=n Enter this before any send string in the Dialers file, where n is the number of seconds to
wait before timing out.

This field generally translates the = and - characters into whatever the dialer uses for wait for dial tone
and pause.

For direct and TCP entries, omit this field.

Handshaking Field

The handshaking, or dialer negotiations, consists of an expect-send sequence of ASCII strings. This
sequence is given in the Handshaking field, which comprises the remainder of the entry. This string is
generally used to pass telephone numbers to a modem, or to make a connection to another system on
the same data switch as the local system. The string tells the cu or ct program or the uucico daemon the
sequence of characters to use to dial out on a particular type of modem. If the connection succeeds, the
appropriate line from a Dialers file is interpreted to perform the dialer negotiations.

The handshaking characters include the following key sequences:

Sequence Result

\c Suppress new line (\n)

\D Raw phone number

\T Translated phone number

\N Null character (\0)

\b Backspace

\n New line

\r Carriage return

\s Space

\t Tab

\\ Backslash

\E Turn echo check on

\e Turn echo check off

\d Delay two seconds

\p Pause about 1/4 second

\K Generate a break on the line

\M Set tty setting CLOCAL on

\m Turn tty setting CLOCAL off

For direct and TCP entries, omit this field.

Files Reference 451

Examples
Setting Up Entries in a Dialers File

1. The following example lists several entries in a typical Dialers file:

hayes =,-, "" \dAT\r\c OK \pATDT\T
\r\c CONNECT
penril =W-P "" \d > s\p9\c)-W\p\r\ds\p9\c-)
y/c : \E\T
P > 9\c OK
ventel =&-% "" \r\p \r\p-\r\p-$ <K\D%%\r>\c ;ONLINE!
vadic =K-K "" \005\p *-\005\p-* D\p BER? \E\D
\e \r\c
 LINE
direct
TCP

Note: In a Dialers file, each entry must be entirely on one line.

Notice that the next-to-last entry in the preceding example consists only of the word direct. This
entry indicates that hardwired connections do not require any handshaking. Similarly, the last entry,
TCP, indicates that TCP/IP connections require no handshaking.

2. The following example interprets the first line in the preceding Dialers file. This is a standard entry that
may be included in your Dialers file with modifications for use at your site.

hayes =,-, "" \dAT\r\c OK \pATDT\T
\r\c CONNECT

The first two sequences (=,-,"") comprise the Dial Tone and Wait Characters field. The remaining
strings comprise the Handshaking field. Following is an explanation of how each entry affects the
action of the dialer.

Entry Action

=,-, Translate the telephone number. Any = (equal sign) represents wait for dial tone and any
- (minus sign) represents pause.

"" Wait for nothing; continue with the rest of the string.

\dAT Delay; then send AT (the Hayes Attention prefix).

\r\c Send a carriage return (r) followed by a new line (c).

OK Wait for OK from the remote modem, signaling that the first part of the string has
executed.

\pATDT Pause (p); then send ATDT. AT is the Hayes Attention prefix, D represents a dialing signal,
and T represents a touch-tone dial tone.

\T Send the telephone number, which is specified in the Systems file, with dial-code
translation from the Dialcodes file.

\r\c Send a carriage return and a new line following the number.

CONNECT Wait for CONNECT from the remote modem, signaling that the modems are connected at
the baud rate specified in the Devices file.

Note: If you need to modify this example for use at your site and are unsure about the appropriate
entries in the handshaking string, refer to the documentation that accompanied the modems you are
including in the Dialers file.

Setting Up the Direct Entry

If your BNU configuration includes hardwired connections, a Dialers file must contain a direct entry, as
follows:

direct

452 AIX Version 7.1: Files Reference

This entry indicates that hardwired connections do not require any handshaking. It corresponds to the
word direct in the Dialer-Token Pairs field of entries for hardwired devices in a Devices file (see the /etc/
uucp/Devices file).

Setting Up the TCP/IP Entry

If your BNU configuration includes TCP/IP connections, the Dialers file used by the uucico service must
contain a TCP entry, as follows:

TCP

This entry indicates that TCP/IP connections do not require any handshaking. It corresponds to the word
TCP in the Dialer-Token Pairs field of entries for TCP/IP connections in the uucico service Devices file(s).

Setting Up Entries for Both Local and Remote Systems

The following example illustrates the entries needed in the Dialers file to correspond to entries in the
Devices file for both local and remote systems so that the two systems can communicate using the BNU
program.

These files are set up to connect systems venus and merlin over a telephone line using modems.
System venus is considered the local system, and system merlin is considered the remote system. On
both systems, the device tty1 is hooked to a hayes modem at 1200 baud.

• The Devices file on system venus contains the following entry for the connection to remote system
merlin:

ACU tty1 - 1200 hayes

• The Dialers file on system venus contains the following entry for its modem:

hayes =,-, "" \dAT\r\c OK \pATDT\T
\r\c CONNECT

• The Devices file on system merlin contains the following entry for the connection to system venus:

ACU tty1 - 1200 hayes

• The Dialers file on system merlin contains the following entry for its modem:

hayes =,-, "" \dAT\r\c OK \pATDT\T
\r\c CONNECT

Note: The Dialers file and Devices file for the system venus and merlin can be files other
than /etc/uucp/Dialers and /etc/uucp/Devices. Use of the /etc/uucp/Sysfiles file enables a system
administrator to allow the use of one or more files on each system to replace or augment the /etc/
uucp/Dialers and /etc/uucp/Devices file. See the Sysfiles Files Format for BNU in Files Reference.

Troubleshooting Connection Problems

Note: The Dialer and Systems files discussed in the section can be files other than /etc/uucp/Dialers
and /etc/uucp/Systems. See the Sysfiles Files Format for BNU in Files Reference.

When establishing a connection between a local and a remote system using a telephone line and modem,
the BNU program consults the Dialers file. (The BNU program also checks the Systems file to make sure
it contains a listing for the specified remote computer.) If users report a faulty connection, use the uucico
command to debug the connection problem. For example, if users are experiencing difficulties connecting
to remote system venus, issue the following command:

/usr/sbin/uucp/uucico -r1 -svenus -x9

where -r1 specifies the server mode, -svenus the name of the remote system to which you are trying to
connect, and -x9 the debug level that produces the most detailed debugging information.

Files Reference 453

Expect-send debugging output produced by the uucico command can come either from information in the
Dialers file or from information in the Systems file. If the relevant line in the Dialers file is not set up
correctly for the specified modem, the BNU program will probably display the following error message:

DIALER SCRIPT FAILED

If the dialer script fails, verify the following:

• Make sure that both the local and the remote modems are turned on, that they are both set up correctly,
and that the telephone number of the remote modem is correct.

• Check the Dialers file and make sure the information is correctly specified for the local modem. If
possible, also check the Dialers file on the remote system.

• Check the documentation that came with your modem to make sure you have used the correct expect-
send sequence characters in the Dialers file.

Files

Item Description

/etc/uucp directory Contains all the configuration files for BNU, including the
Dialers file.

/etc/uucp/Devices file Contains information about available devices.

/etc/uucp/Dialcodes file Contains dialing code abbreviations.

/etc/uucp/Systems file Describes accessible remote systems.

/etc/uucp/Sysfiles file Specifies possible alternative files for /etc/uucp/
System, /etc/uucp/Dialers, and /etc/uucp/Devices.

Related information
ct command
uukick command
Configuring BNU
Monitoring a BNU remote connection

Dialing Directory File Format for ATE

Purpose
Lists phone numbers used to establish modem connections.

Description
The ATE dialing directory file lists phone numbers that the Asynchronous Terminal Emulation (ATE) uses
to establish remote connections by modem.

Users name the dialing directory file with any valid file name and place it in any directory where read
and write access is owned. Edit the dialing directory file with any ASCII text editor. The default dialing
directory file is the /usr/lib/dir file.

The connect and directory subcommands of ATE access the dialing directory file. Use the connect
command to use numbers that are not in the dialing directory file. Use the directory subcommand to view
the dialing directory.

Users can have more than one dialing directory. To change the dialing directory file the ATE program uses,
modify the ate.def file in the current directory.

Note: The dialing directory file can contain up to 20 lines (one entry per line). ATE ignores subsequent
lines.

454 AIX Version 7.1: Files Reference

Format of Dialing Directory File Entries

The dialing directory file is similar to a page in a telephone book. This file contains entries for the remote
systems called with the ATE program. The format of a dialing directory entry is:

Name Phone Rate Length StopBit Parity Echo Linefeed

The fields must be separated by at least one space. More spaces can be used to make each entry easier to
read. The fields are:

Item Description

Name Identifies a telephone number. The name can be any combination of 20 or fewer
characters. Use the _ (underscore) instead of a blank between words in a name, for
example, data_bank.

Phone The telephone number to be dialed. The number can be up to 40 characters. Consult
the modem documentation for a list of acceptable digits and characters. For example,
if a 9 must be dialed to access an outside line, include a 9 and a , (comma) before the
telephone number as follows: 9,1112222.

Note: Although the telephone number can be up to 40 characters long, the directory
subcommand displays only the first 26 characters.

Rate Transmission or baud rate in bits per second (bps). Determines the number of
characters transmitted per second. Select a baud rate that is compatible with the
communication line being used. The following are acceptable rates: 50, 75, 110, 134,
150, 300, 600, 1200, 1800, 2400, 4800, 9600, or 19,200.

Length Number of bits that make up a character. The entry for the Length field can be 7 or 8.

StopBit Stop bits that signal the end of a character. The entry for the StopBit field can be 1 or
2.

Parity Checks whether a character was successfully transmitted to or from a remote system.
The entry for the Parity field can be 0 (none), 1 (odd), or 2 (even).

Echo Determines whether typed characters display locally. The entry for the Echo field can
be 0 (off) or 1 (on).

Linefeed Adds a line-feed character at the end of each line of data coming in from a remote
system. The line-feed character is similar in function to the carriage-return and new-
line characters. The entry for the Linefeed field can be 0 (off) or 1 (on).

Examples
Following is a sample dialing directory entry:

CompuAid 111-0000 1200 7 1 2 0 0

In this example, CompuAid is the Name, 111-0000 is the Phone, 1200 is the Rate, 7 is the Length, 1 is the
StopBit, 2 is the Parity, the first 0 is the Echo, and the second 0 is the Linefeed.

Files

Item Description

ate.def Contains ATE default values.

/usr/lib/dir Contains the default dialing directory listing.

Related information
ate command
Asynchronous Terminal Emulation

Files Reference 455

Asynchronous communications
ate.def configuration file
Setting up an ATE dialing directory

DOMAIN Cache File Format for TCP/IP

Purpose
Defines the root name server or servers for a DOMAIN name server host.

Description
The cache file is one of the DOMAIN data files and contains the addresses of the servers that are
authoritative name servers for the root domain of the network. The name of this file is defined in the
named boot file. If the host serves more than one domain, the cache file should contain an entry for the
authoritative name server for each domain.

All entries in this file must be in Standard Resource Record Format. Valid resource records in this file are:

• Name Server (NS)
• Address (A)

Except for comments (starting with a ; [semicolon] and continuing to the end of the line), the resource
records in the data files generally follow the format of the resource records that the named daemon
returns in response to queries from resolver routines.

Examples
The following examples show the various ways to use the cache data file. This example is valid for any
name server or either of the two networks.

Network abc consists of:

• gobi.abc, the primary name server for the abc network, 192.9.201.2
• mojave.abc, a host machine, 192.9.201.6
• sandy.abc, secondary name server for the abc network and gateway between abc and xyz,
192.9.201.3

Network xyz consists of:

• kalahari.xyz, primary name server for the xyz network, 160.9.201.4
• lopnor.xyz, a host machine, 160.9.201.5
• sahara.xyz, a host machine and cache-only name server for the xyz network, 160.9.201.13
• sandy.xyz, a secondary name server for the xyz network and gateway between abc and xyz,
160.9.201.3

Note: sandy, a gateway host, is on both networks and also serves as secondary name server for both.

The following are sample entries in a DOMAIN cache file on any of the name servers in either of the
domains:

;
;cache file for all nameservers in both domains
;
; root name servers.
abc IN NS gobi.abc.
xyz IN NS kalahari.xyz.
gobi.abc. 3600000 IN A 192.9.201.2
kalahari.xyz 3600000 IN A 160.9.201.4

456 AIX Version 7.1: Files Reference

Files

Item Description

/etc/named.conf Defines how the named daemon initializes the
DOMAIN name server file.

/usr/samples/tcpip/named.conf Sample named.conf file, which also contains
directions for its use.

/usr/samples/tcpip/named.data Sample named.data file, which also contains
directions for its use.

Related reference
DOMAIN Data File Format for TCP/IP
DOMAIN Reverse Data File Format for TCP/IP
DOMAIN Local Data File Format for TCP/IP
Related information
named command
TCP/IP name resolution

DOMAIN Data File Format for TCP/IP

Purpose
Stores name resolution information for the named daemon.

Description
The host's data file is one of the DOMAIN data files and contains name-to-address resolution mapping
information for all machines in the name server's zone of authority. The name of the host's data file
is specified in the named boot file. This file should exist only on name servers that are designated as
primary for a domain. There may be more than one host's data file per primary name server.

All entries in this file must be in Standard Resource Record Format. Valid resource records in this file are:

• Start of Authority (SOA)
• Name Server (NS)
• Address (A)
• Mailbox (MB)
• Mail Exchanger (MX)
• Mail Group (MG)
• Mail Rename (MR)
• Canonical Name (CNAME)
• Well Known Services (WKS)
• Host Information (HINFO)

Except for comments (starting with a ; (semicolon) and continuing to the end of the line), the resource
records in the data files generally follow the format of the resource records that the named daemon
returns in response to queries from resolver routines.

Two awk scripts, addrs.awk and hosts.awk, are provided in the /usr/samples/tcpip directory to assist
you in converting your existing /etc/hosts file to DOMAIN data files. The awk scripts also contain
instructions for their use. Refer to these files for more information on the conversion.

Files Reference 457

Examples
The following examples show the various ways to use the DOMAIN host's data file. In these examples,
two networks are represented: abc and xyz.

Network abc consists of:

• gobi.abc, the primary name server for the abc network, 192.9.201.2
• mojave.abc, a host machine, 192.9.201.6
• sandy.abc, secondary name server for the abc network and gateway between abc and xyz,
192.9.201.3

Network xyz consists of:

• kalahari.xyz, primary name server for the xyz network, 160.9.201.4
• lopnor.xyz, a host machine, 160.9.201.5
• sahara.xyz, a host machine and cache-only name server for the xyz network, 160.9.201.13
• sandy.xyz, a secondary name server for the xyz network and gateway between abc and xyz,
160.9.201.3

Note: Host sandy, a gateway host, is on both networks and also serves as secondary name server for
both.

1. The primary host data file for network abc, stored on host gobi.abc, contains the following entries:

;
;primary host data file for abc - gobi.abc
;
@ IN SOA gobi.abc. root.gobi.abc. (
 1.1 ;serial
 3600 ;refresh
 600 ;retry
 3600000;expire
 86400 ;minimum
)
;name servers for abc
 IN NS gobi.abc.
;other name servers
 IN NS kalahari.xyz.
kalahari.xyz. IN A 160.9.201.4
;
;define local loopback host
localhost IN A 127.1
;
;define all hosts in abc
loopback IN CNAME localhost.abc
gobi IN A 192.9.201.2
gobi-abc IN CNAME gobi.abc
sandy IN A 192.9.201.3
 IN WKS 192.9.201.3
udp tftp nameserver domain
 IN WKS 192.9.201.3 tcp (
 echo telnet smtp discard uucp-path
 systat daytime netstat chargen ftp
 time whois finger hostnames domain
)
sandy-abc IN CNAME sandy.abc
mojave IN A 192.9.201.6
 IN HINFO System ABC 3.1
mojave-abc IN CNAME mojave.abc.

2. The primary host data file for network xyz, stored on host kalahari.xyz, contains the following
entries:

;
;primary host data file for xyz - kalahari.xyz
;
@ IN SOA kalahari.xyz. root.kalahari.xyz. (
 1.1 ;serial
 3600 ;refresh
 600 ;retry
 3600000;expire

458 AIX Version 7.1: Files Reference

 86400 ;minimum
)
;
;nameservers for xyz
;
 IN NS kalahari.xyz.
;
;other nameservers
 IN NS gobi.abc.
gobi.abc. IN A 192.9.201.2
;
;define local loopback host
localhost IN A 127.1
;
;define all hosts in xyz
loopback IN CNAME localhost.xyz.
kalahari IN A 160.9.201.4
ns-xyz IN CNAME kalahari.xyz.
kalahari-xyz IN CNAME kalahari.xyz.
 IN HINFO System ABC 3.1
sahara IN A 160.9.201.13
 IN WKS 160.9.201.13 (
 udp tftp nameserver domain
)
 IN WKS 160.9.201.13 tcp (
 echo telnet smtp discard uucp-path
 systat daytime netstat chargen ftp
 time whois finger hostnames domain
)
 IN HINFO System ABC 3.1
lopnor IN A 160.9.201.5
lopnor-xyz IN CNAME lopnor.xyz.
 IN HINFO System ABC 3.1
sandy IN A 160.9.201.3

Files

Item Description

/etc/named.conf Defines how the named daemon initializes the
DOMAIN name server file.

/usr/samples/tcpip/addrs.awk Sample awk script for converting an /etc/hosts
file to an /etc/named.rev file. The awk script also
contains directions for its use.

/usr/samples/tcpip/hosts.awk Sample awk script for converting an /etc/hosts file
to an /etc/named.data file. The awk script also
contains directions for its use.

/usr/samples/tcpip/named.conf Sample named.conf file, which also contains
directions for its use.

/usr/samples/tcpip/named.data Sample named.data file, which also contains
directions for its use.

Related reference
DOMAIN Cache File Format for TCP/IP
DOMAIN Reverse Data File Format for TCP/IP
Standard Resource Record Format for TCP/IP
DOMAIN Local Data File Format for TCP/IP
Related information
named command
TCP/IP name resolution

Files Reference 459

DOMAIN Local Data File Format for TCP/IP

Purpose
Defines the local loopback information for the named daemon on the name server host.

Description
The local data file is one of the DOMAIN data files and contains local loopback information for the
name-server host. The name of the DOMAIN local data files is specified in the named boot file.

All entries in this file must be in Standard Resource Record Format. Valid resource records in the local
data file are:

• Start of Authority (SOA)
• Name Server (NS)
• Pointer (PTR)

The records in the DOMAIN data files are called resource records. Except for comments (starting with a ;
(semicolon) and continuing to the end of the line), the resource records in the data files generally follow
the format of the resource records that the named daemon returns in response to queries from resolver
routines.

Examples
The following examples show the various ways to use the DOMAIN local data file. In these examples, two
networks are represented: abc and xyz.

Network abc consists of:

• gobi.abc, the primary name server for the abc network, 192.9.201.2
• mojave.abc, a host machine, 192.9.201.6
• sandy.abc, secondary name server for the abc network and gateway between abc and xyz,

192.9.201.3.

Network xyz consists of:

• kalahari.xyz, primary name server for the xyz network, 160.9.201.4
• lopnor.xyz, a host machine, 160.9.201.5
• sahara.xyz, a host machine and cache-only name server for the xyz network, 160.9.201.13
• sandy.xyz, a secondary name server for the xyz network and gateway between abc and xyz,

160.9.201.3

Note: Host sandy, a gateway host, is on both networks and also serves as secondary name server for
both.

1. The named.abclocal file stored on gobi.abc contains the following entries:

;
;primary reverse file for local 127 network
;
@ IN SOA gobi.abc. root.gobi.abc.
 (
 1.1 ;serial
 3600 ;refresh
 600 ;retry
 3600000;expire
 86400 ;minimum
)
 IN NS gobi.abc.
1 IN PTR localhost.

2. The named.xyzlocal file stored on kalahari.xyz contains the following entries:

460 AIX Version 7.1: Files Reference

;
;primary reverse file for local 127 network
;
@ IN SOA kalahari.xyz. root.kalahari.xyz.
 (
 1.1 ;serial
 3600 ;refresh
 600 ;retry
 3600000;expire
 86400 ;minimum
)
 IN NS kalahari.xyz.
1 IN PTR localhost.

3. The named.seclocal file stored on sandy contains the following entries:

;
;primary reverse file for local 127 network
;
@ IN SOA sandy.abc. root.sandy.abc.
 (
 1.1 ;serial
 3600 ;refresh
 600 ;retry
 3600000;expire
 86400 ;minimum
)
 IN NS sandy.abc.
1 IN PTR localhost.

4. The named.calocal file stored on sahara.xyz contains the following entries:

;
;primary reverse file for local 127 network
;
@ IN SOA sahara.xyz. root.sahara.xyz.
 (
 1.1 ;serial
 3600 ;refresh
 600 ;retry
 3600000;expire
 86400 ;minimum
)
 IN NS sahara.xyz.
1 IN PTR localhost.

Files

Item Description

/etc/named.conf Defines how the named daemon initializes the
DOMAIN name-server file.

/usr/samples/tcpip/named.conf Sample named.conf file, which also contains
directions for its use.

/usr/samples/tcpip/named.data Sample named.data file, which also contains
directions for its use.

Related reference
DOMAIN Cache File Format for TCP/IP
DOMAIN Data File Format for TCP/IP
DOMAIN Reverse Data File Format for TCP/IP
Related information
named command
TCP/IP name resolution

Files Reference 461

DOMAIN Reverse Data File Format for TCP/IP

Purpose
Stores reverse name resolution information for the named daemon.

Description
The Reverse Data file is one of the DOMAIN data files and contains address to name resolution mapping
information for all machines in the name server's zone of authority. The name of the reverse hosts data
file is specified in the named boot file. There may be more than one reverse hosts data file per primary
name server.

All entries in this file must be in Standard Resource Record Format. Valid resource records in this file are:

• Start of Authority (SOA)
• Name Server (NS)
• Pointer (PTR)

Except for comments (starting with a ; (semicolon) and continuing to the end of the line), the resource
records in the data files generally follow the format of the resource records that the named daemon
returns in response to queries from resolver routines.

Two awk scripts, addrs.awk and hosts.awk, are provided in the /usr/samples/tcpip directory to
assist you in converting your existing /etc/hosts file to named data files. The awk scripts also contain
instructions for their use. Refer to these files for more information on the conversion.

Examples
The following examples show the various ways to use the DOMAIN Reverse Data file. In these examples,
two networks are represented: abc and xyz.

Network abc consists of:

• gobi.abc, the primary name server for the abc network, 192.9.201.2
• mojave.abc, a host machine, 192.9.201.6
• sandy.abc, secondary name server for the abc network and gateway between abc and xyz,
192.9.201.3

Network xyz consists of:

• kalahari.xyz, primary name server for the xyz network, 160.9.201.4
• lopnor.xyz, a host machine and cache-only name server for the xyz network, 160.9.201.5
• sahara.xyz, a host machine, 160.9.201.13
• sandy.xyz, a secondary name server for the xyz network and gateway between abc and xyz,
160.9.201.3

Note: Host sandy, a gateway host, is on both networks and also serves as secondary name server for
both.

1. The reverse data file for gobi.abc, primary name server for network abc, contains these entries:

;
;primary reverse host data file for abc - gobi.abc
;
@ IN SOA gobi.abc. root.gobi.abc. (
 1:1 ;serial
 3600 ;refresh
 600 ;retry
 3600000;expire
 86400 ;minimum
)
;nameservers for abc

462 AIX Version 7.1: Files Reference

 IN NS gobi.abc.
;other nameservers
 IN NS kalahari.xyz.
4.201.9.160.in-addr.arpa IN PTR kalahari.xyz
;
;define all hosts in abc
2 IN PTR gobi.abc.
3 IN PTR sandy.abc.
6 IN PTR mojave.abc.

2. The reverse data file for kalahari.xyz, primary name server for network xyz, contains these
entries:

;
;primary reverse host data file for xyz - kalahari.xyz
;
@ IN SOA kalahari.xyz. root.kalahari.xyz. (
 1:1 ;serial
 3600 ;refresh
 600 ;retry
 3600000;expire
 86400 ;minimum
)
;nameservers for xyz
 IN NS kalahari.xyz.
;other nameservers
 IN NS gobi.abc.
2.201.9.192.in-addr.arpa IN PTR gobi.abc
;
;define all hosts in xyz
4.201 IN PTR kalahari.xyz.
13.201 IN PTR sahara.xyz.
5.201 IN PTR lopnor.xyz.
3.201 IN PTR sandy.xyz.

Files

Item Description

/etc/named.conf Defines how the named daemon initializes the
DOMAIN name server file.

/usr/samples/tcpip/addrs.awk Sample awk script for converting an /etc/hosts
file to an /etc/named.rev file. The awk script also
contains directions for its use.

/usr/samples/tcpip/hosts.awk Sample awk script for converting an /etc/hosts file
to an /etc/named.data file. The awk script also
contains directions for its use.

/usr/samples/tcpip/named.conf Contains a sample named.conf file, which also
contains directions for its use.

/usr/samples/tcpip/named.data Contains a sample named.data file, which also
contains directions for its use.

Related reference
DOMAIN Cache File Format for TCP/IP
DOMAIN Data File Format for TCP/IP
DOMAIN Local Data File Format for TCP/IP
Standard Resource Record Format for TCP/IP
Related information
named command
TCP/IP name resolution
Name server resolution

Files Reference 463

eqnchar File Format

Purpose
Contains special character definitions for the eqn and neqn commands.

Description
The/usr/share/lib/pub/eqnchar file contains the following troff and nroff command character
definitions not ordinarily available on a phototypesetter or printer. These definitions are primarily
intended for use with the eqn and neqn commands. The eqnchar file format contains definitions for
the characters shown in the following character definition list.
This illustration shows symbols commonly used in equations.

The /usr/share/lib/pub/cateqnchar file is device-independent and should produce output that looks
reasonable on any device supported by the troff command. You can link the /usr/share/lib/pub/eqnchar
file to the /usr/share/lib/pub/cateqnchar file.

The eqnchar file format can be used with either the eqn or neqn command and then piped to the troff or
nroff command. For example:

eqn /usr/share/lib/pub/eqnchar [Flag...] [—] [File...] | troff [Flag...]

eqn /usr/share/lib/pub/cateqnchar [Flag...] [—] [File...] | troff [Flag...]

neqn /usr/share/lib/pub/eqnchar [Flag...] [—] [File...] | nroff [Flag...]

Files

Item Description

/usr/share/lib/pub/cateqnchar Contains the character definitions for troff-
supported device.

464 AIX Version 7.1: Files Reference

Related information
eqn command
mm command
mvt command
neqn command
troff command

/etc/ftpd.cnf File Format for TCP/IP

Purpose
Specifies the configuration parameters of the ftpd daemon to start a transport layer security (TLS)
session.

Description
The /etc/ftpd.cnf file is an ASCII file that contains configuration parameters of the ftpd daemon to
set up a TLS session upon receiving a TLS request from an ftp client.

The /etc/ftpd.cnf file contains the following entries separated by spaces, tabs, or new lines:

Item Description

CRL_PATH Specifies the path to the certificate-revocation-list file in privacy
enhanced mail (PEM) format. If the CRL_PATH entry is specified,
the digital certificate that the client provides is verified against the
certificate revocation list. If the ftp client is not using a digital
certificate, the connection fails. If the client provides a digital
certificate, but the certificate has been revoked, the TLS session fails.
If this parameter is not specified, the client does not have to provide
a digital certificate.

CA_PATH Specifies the path to the trusted certificate-authority file in PEM
format. If the CA_PATH entry is specified, the client certificate is
verified against the certificate authority. If the client does not provide
a digital certificate, the connection fails. If the client provides a
digital certificate, but the certificate authority has not signed the
certificate, the TLS session fails. If this parameter is not specified,
the client does not have to provide a digital certificate.

CIPHER_LIST Specifies the list that is used during the TLS session. If it is not
specified, a default cipher list is used.

DEPTH Verify the certificate that the ftp client provides in the digital
certificate hierarchy, if the CA_PATH configuration parameter has
been specified. If the DEPTH entry is not provided, a default value of
9 is used.

CERTIFICATE Specifies the path to a valid chain of digital-certificates files in PEM
format. This entry must be specified to start a TLS session. If this
entry is not specified, the ftpd server rejects all TLS requests.

CERTIFICATE_PRIVATE_KEY Specifies the path to the certificate private key in PEM format. This
entry must be specified to start a TLS session. If this entry is not
specified, the ftpd server rejects all TLS requests.

DH_PARAMETERS_DIR Specifies the path to a directory containing Diffie-Helman
parameters in PEM format. More than one file can be included in this
directory. The ftpd daemon searches for the appropriate parameter.

Files Reference 465

Examples
The following is an example of an entry in the /etc/ftpd.cnf file:

CRL_PATH /crl.pem
CA_PATH /ca.pem
CIPHER_LIST ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH
DEPTH 2
CERTIFICATE /cert.pem
CERTIFICATE_PRIVATE_KEY /privatekey.pem
DH_PARAMETERS_DIR /DH_DIR

Files

Item Description

/usr/samples/tcpip/ftpd.cnf Sample ftpd.cnf file

Related information
ftpd command

/etc/security/rtc/rtcd.conf file format for real-time compliance

Purpose
Contains configuration information for the rtcd daemon.

Description
The /etc/security/rtc/rtcd.conf file is the configuration file for the rtcd daemon. This file is
updated by the mkrtc command when configuring the real-time compliance subsystem. You can modify
the /etc/security/rtc/rtcd.conf file by using a file editor. If the real-time compliance subsystem
is configured and running, any change to this file becomes effective immediately and it is not necessary to
restart the rtcd daemon.

Each line is of the form:

attribute: value

The /etc/security/rtc/rtcd.conf file has the following attributes:

• alertStyle
Specifies the alert style. The valid values follows:
once

Alert once for the same set of compliance violations. This is default value.
event

Alert once for the same set of compliance violations, but keep alerting for each file modification
event.

always
Alert compliance violations and file modification on each file change event.

• alertMsgSize
Specifies the alert message size. The limited size is suitable for email addresses that are directed at
the smartphone SMS messaging. The valid values follows:
verbose

Provides the entire message. This is the default value.
limited

Limits the size of the alert message to the first violation and the first event. If there are more
than one violations or events, it is indicated in the message.

466 AIX Version 7.1: Files Reference

• debug
Specifies whether to turn on debug messages on. The valid values are on and off. The default value
is off.

• email
Specifies the email address to which the alerts will be sent. It allows multiple email:<email
address> pairs, each pair on a separate line.

• infolevel
Specifies the information level of file modification events. The valid values are 1, 2, and 3. The
default value is 1. A higher value indicates more details.

• emailSubject
Specifies the subject line that is used for the email alert.

• minCheckTime
Specifies the minimum amount of time between compliance verifications. This setting ensures
regular compliance check without file modification triggers, to check whether the files created by
user have compliance implications. For example, the .rhost file in the home directory of a user can
be checked by using this setting. The default minimum time is 30 minutes. If this value is set to 0,
the compliance check is never done.

• snmptrap
Specifies the parameters for the snmptrap notifications. See the snmptrap command for setting the
parameters for the snmptrap notifications. To enable the snmptrap alert, set it to yes. To disable
the snmptrap alert, set it to no. The following parameters are set to disable the snmptrap alert:

snmptrap_enable: no
snmptrap_host:localhost
snmptrap_community:myCommunity
snmptrap_oid:myOid

Security
The /etc/security/rtc/rtcd.conf file is owned by the root user and the security group. The /etc/
security/rtc/rtcd.conf file grants read (r) and write (w) access only to the root user.

Examples
The following list is an example of an entry in the /etc/security/rtc/rtcd.conf file:

• Lists the email addresses to send alerts to.

email: foo@abc.com
email: dummy@abc.com

• Specifies the subject of the email alert:

emailSubject: Compliance Alert

• Specifies the information level of file modifications:

infolevel: 1

• Specifies the alertStyle attribute of the email alert:

alertStyle: once

• Specifies whether to turn on debug.

debug: on

Files Reference 467

/etc/security/rtc/rtcd_policy.conf file format for real-time compliance

Purpose
Defines a list of files and the associated events to be monitored by the real-time compliance subsystem.

Description
The /etc/security/rtc/rtcd_policy.conf file contains a list of files and the associated events
to be monitored by the real-time compliance subsystem. The file is a stanza file with each stanza name
being a file name followed by a colon.

The attributes are in the following form:

attribute: value

Any change to this file becomes effective immediately, it is not required to restart the rtcd daemon.

Users can add or remove files from the /etc/security/rtc/rtcd_policy.conf file using the chsec
command. It is recommended to stop the real-time compliance subsystem if you are adding large number
of files using the chsec command to avoid potential alerts from these additions.

The /etc/security/rtc/rtcd_policy.conf file has the following attribute:

• eventtype
Defines the even type to be monitored. It can be one or both of the following values, separated by a
comma:
ModFile

File content modifications.
modFileAttr

File attribute modifications.

Security
The /etc/security/rtc/rtcd_policy.conf file is owned by the root user and the security group. It
grants read (r) and write (w) access only to the root user.

Examples
The following are examples of an entry in the /etc/security/rtc/rtcd.conf file:

/etc/inetd.conf:
 eventtype = modFile

/etc/security/audit/config:
 eventtype = modFile,modFileAttr

/usr/bin/chsec:
 eventtype = modFileAttr

/etc/ftpd.cnf File Format for TCP/IP

Purpose
Specifies the configuration parameters of the ftpd daemon to start a transport layer security (TLS)
session.

468 AIX Version 7.1: Files Reference

Description
The /etc/ftpd.cnf file is an ASCII file that contains configuration parameters of the ftpd daemon to
set up a TLS session upon receiving a TLS request from an ftp client.

The /etc/ftpd.cnf file contains the following entries separated by spaces, tabs, or new lines:

Item Description

CRL_PATH Specifies the path to the certificate-revocation-list file in privacy
enhanced mail (PEM) format. If the CRL_PATH entry is specified,
the digital certificate that the client provides is verified against the
certificate revocation list. If the ftp client is not using a digital
certificate, the connection fails. If the client provides a digital
certificate, but the certificate has been revoked, the TLS session fails.
If this parameter is not specified, the client does not have to provide
a digital certificate.

CA_PATH Specifies the path to the trusted certificate-authority file in PEM
format. If the CA_PATH entry is specified, the client certificate is
verified against the certificate authority. If the client does not provide
a digital certificate, the connection fails. If the client provides a
digital certificate, but the certificate authority has not signed the
certificate, the TLS session fails. If this parameter is not specified,
the client does not have to provide a digital certificate.

CIPHER_LIST Specifies the list that is used during the TLS session. If it is not
specified, a default cipher list is used.

DEPTH Verify the certificate that the ftp client provides in the digital
certificate hierarchy, if the CA_PATH configuration parameter has
been specified. If the DEPTH entry is not provided, a default value of
9 is used.

CERTIFICATE Specifies the path to a valid chain of digital-certificates files in PEM
format. This entry must be specified to start a TLS session. If this
entry is not specified, the ftpd server rejects all TLS requests.

CERTIFICATE_PRIVATE_KEY Specifies the path to the certificate private key in PEM format. This
entry must be specified to start a TLS session. If this entry is not
specified, the ftpd server rejects all TLS requests.

DH_PARAMETERS_DIR Specifies the path to a directory containing Diffie-Helman
parameters in PEM format. More than one file can be included in this
directory. The ftpd daemon searches for the appropriate parameter.

Examples
The following is an example of an entry in the /etc/ftpd.cnf file:

CRL_PATH /crl.pem
CA_PATH /ca.pem
CIPHER_LIST ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH
DEPTH 2
CERTIFICATE /cert.pem
CERTIFICATE_PRIVATE_KEY /privatekey.pem
DH_PARAMETERS_DIR /DH_DIR

Files

Item Description

/usr/samples/tcpip/ftpd.cnf Sample ftpd.cnf file

Files Reference 469

Related information
ftpd command

/etc/tnc_config File

Purpose
Stores the information on the various Integrity Measurement Collector (IMC) and Integrity Measurement
Verifier (IMV) modules configured on the system.

Description
The /etc/tnc_config file is a Trusted Network Connect (TNC) standard configuration file. It stores the
information on the various IMC and IMV modules configured on the system.

Format
ModuleType

Specifies type of the module, whether it is IMC or IMV.
Comment

Specifies the comment on the module.
ModulePath

Specifies the path of the module shared object.

The TNC server and client daemons use this configuration to load the various modules configured on the
system. The modules should be standard shared library archives, and the dlopen() calls is used to read
the symbols.

Examples
 IMC “FILESETS” /usr/lib/security/tnc/imc_filesets.a(shr.o)

.ftpcnf File Format for TCP/IP

Purpose
Specifies configuration parameters of the ftp command to start a transport layer security (TLS) session.

Description
The $HOME/.ftpcnf file is an ASCII file that contains configuration parameters of the ftp command to
set up a TLS session.

The $HOME/.ftpconf file contains the following entries separated by spaces, tabs, or new lines:

Item Description

CRL_PATH Specifies the path to the certificate-revocation-list file in privacy
enhanced mail (PEM) format. If you specify the CRL_PATH entry,
the digital certificate that the server provides is verified against the
certificate revocation list. If the certificate has been revoked, the TLS
session fails. If you do not specify the CRL_PATH entry, the digital
certificate is not verified against a certificate revocation list.

470 AIX Version 7.1: Files Reference

Item Description

CA_PATH Specify the path to the trusted certificate-authority file in PEM format. If
you specify the CA_PATH entry, the server certificate is verified against
the certificate authority. If the certificate authority has not signed the
digital certificate that the server provides, the TLS session fails. If you
do not specify the CA_PATH entry, the digital certificate that the server
provides is not verified against a trusted certificate authority.

CIPHER_LIST Specifies the list that is used during the TLS session. If you do not
specify the CIPHER_LIST entry, a default cipher list is used.

DEPHT Verifies the certificate that the ftpd server provides in the digital
certificate hierarchy, if you have specified the CA_PATH configuration
parameter. If you do not provide the DEPHT entry, a default value of 9 is
used.

CERTIFICATE Specifies the path to a valid chain of digital certificates in PEM format. If
you specify the CERTIFICATE entry, the ftp command uses the digital
certificate chain during the TLS session.

CERTIFICATE_PRIVATE_KE
Y

Specifies the path to the private key corresponding to the certificate in
PEM format.

Examples
The following is an example of an entry in the .ftpconf file:

CRL_PATH /home/USERNAME/crl.pem
CA_PATH /home/USERNAME/ca.pem
CIPHER_LIST ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH
DEPHT 2
CERTIFICATE /home/USERNAME/cert.pem
CERTIFICATE_PRIVATE_KEY /home/USERNAME/privatekey.pem

Files

Item Description

/usr/samples/tcpip/.ftpcnf Sample .ftpcnf file.

Related information
ftp command

ftpusers File Format for TCP/IP

Purpose
Specifies local user names that cannot be used by remote FTP clients.

Description
The /etc/ftpusers file contains a list of local user names that the ftpd server does not allow remote File
Transfer Protocol (FTP) clients to use. The format of the ftpusers file is a simple list of user names that
also appear in the /etc/passwd file.

Entries to this file can be made using the System Management Interface Tool (SMIT) or the ruser
command.

Files Reference 471

Examples
The following are sample entries in an ftpusers file:

root
guest
ftp
joan
UUCP

Files

Item Description

/etc/passwd Contains user authentication information.

Related information
ruser command
ftpd command
FTP command
TCP/IP protocols
Common TCP/IP problems with network interfaces

gated.conf File Format for TCP/IP

Purpose
Contains configuration information for the gated daemon.

Description
The /etc/gated.conf file contains configuration information for the gated daemon. The file contains a
sequence of statements. Statements are composed of tokens separated by white space. You can create
white space using any combination of blanks, tabs, and new lines. The gated.conf file supports several
statements:

Item Description

%directory (directive) Sets the directory for include files.

%include (directive) Includes a file into gated.conf.

traceoptions (trace) Specifies which events are traced.

options (definition) Defines gated.conf options.

interfaces (definition) Defines gated.conf interfaces.

autonomoussystem Defines the AS number.

routerid (definition) Defines the originating router (BGP, OSPF).

martians (definition) Defines invalid destination addresses.

rip (protocol) Enables RIP protocol.

ripng Enables or disables RIPNG. If the RIPNG statement is not specified, the
default is ripng on ;. The options are the same for RIPNG as they are for
RIP, but all the addresses will be IPv6 addresses.

hello (protocol) Enables HELLO protocol.

isis (protocol) Enables ISIS protocol.

472 AIX Version 7.1: Files Reference

Item Description

ospf (protocol) Enables OSPF protocol.

EGP (protocol) Enables EGP protocol.

bgp (protocol) Enables BGP protocol.

bgp4+ The options are the same as bgp but all the addresses will be IPv6
addresses.

icmp (protocol) Configures the processing of general ICMP packets.

snmp (protocol) Enables reporting to SNMP.

static (static) Defines static routes.

import (control) Defines which routes to import.

export (control) Defines which routes to export.

aggregate (control) Defines which routes to aggregate.

generate (control) Defines which routes to generate.

Directive Statements
Directive statements provide direction to the gated.conf configuration language parser about included
files and the directories in which these files reside. Directive statements are immediately acted upon by
the parser. Other statements terminate with a semi-colon (;), but directive statements terminate with a
newline. The two directive statements are:

Item Description

%directory "directory" Defines the directory where the include files are stored. When it
is used, gated.conf looks in the directory identified by pathname
for any included files that do not have a fully qualified filename,
that is, do not begin with "/". This statement does not actually
change the current directory, it just specifies the prefix applied to
included file names.

%include "filename" Identifies an include file. The contents of the file are included in
the gated.conf file at the point in the gated.conf file where the
%include directive is encountered. If the filename is not fully
qualified, that is, does not begin with "/", it is considered to be
relative to the directory defined in the %directory directive.
The %include directive statement causes the specified file to be
parsed completely before resuming with this file. Nesting up to
ten levels is supported.

In a complex environment, segmenting a large configuration into smaller more easily understood
segments might be helpful, but one of the great advantages of gated.conf is that it combines the
configuration of several different routing protocols into a single file. Segmenting a small file unnecessarily
complicates routing configurations.

Trace Statements
Trace statements control tracing options. gated.conf's tracing options may be configured at many levels.
Tracing options include the file specifications, control options, and global and protocol specific tracing
options. Unless overridden, tracing options from the next higher level are inherited by lower levels. For
example, BGP peer tracing options are inherited from BGP group tracing options, which are inherited from
global BGP tracing options, which are inherited from global gated.conf tracing options. At each level,
tracing specifications override the inherited options.

Files Reference 473

Global tracing options
There are two types of global options, those that only affect global operations, and those that have
potential significance to protocols.

Global significance only

The trace flags that only have global significance are:

Item Description

parse Traces the lexical analyzer and parser. Mostly used by gated.conf developers for
debugging.

adv Traces the allocation of and freeing of policy blocks. Mostly used by the gated.conf
developers for debugging.

symbols Used to trace symbols read from the kernel at startup. The only useful way to specify
this level of tracing is via the -t option on the command line since the symbols are read
from the kernel before parsing the configuration file.

iflist Used to trace the reading of the kernel interface list. It is useful to specify this with the
-t option on the command line since the first interface scan is done before reading the
configuration file.

Protocol significance

The options flags that have potential significance to protocols are:

Item Description

all Turn on all of the following.

general Shorthand notation for specifying both normal and route.

state Trace state machine transitions in the protocols.

normal Trace normal protocols occurrences. Abnormal protocol occurrences are always
traced.

policy Trace application of protocol and user-specified policy to routes being imported and
exported.

task Trace system interface and processing associated with this protocol or peer.

timer Trace timer usage by this protocol or peer.

route Trace routing table changes for routes installed by this protocol or peer.

Note:

1. Not all of the above options apply to all of the protocols. In some cases, their use does not make sense
(for instance, RIP does not have a state machine) and in some instances the requested tracing has not
been implemented (such as RIP support of the policy option).

2. It is not currently possible to specify packet tracing from the command line. This is because a global
option for packet tracing would potentially create too much output.

When protocols inherit their tracing options from the global tracing options, tracing levels that don't make
sense (such as parse, adv and packet tracing options) are masked out.

Global tracing statements have an immediate effect, especially parsing options that affect the parsing of
the configuration file. Tracing values inherited by protocols specified in the configuration file are initially
inherited from the global options in effect as they are parsed, unless they are overridden by more specific
options. After the configuration file is read, tracing options that were not explicitly specified are inherited
from the global options in effect at the end of the configuration file.

474 AIX Version 7.1: Files Reference

Packet tracing
Tracing of packets is very flexible. For any given protocol, there are one or more options for tracing
packets. All protocols allow use of the packets keyword that allows for tracing all packets sent and
received by the protocol. Most protocols have other options for limiting tracing to a useful subset of
packet types. These tracing options can be further controlled with the following modifiers:

detail
The detail must be specified before send or recv. Normally packets are traced in a terse form of
one or two lines. When detail is specified, a more verbose format is used to provide further detail on
the contents of the packet.

send
recv

These options limit the tracing to packets sent or received. Without these options both sent and
received packets will be traced.

Note: Detail, if specified, must be before send or recv. If a protocol allows for several different types
of packet tracing, modifiers may be applied to each individual type. But be aware that within one tracing
specification the trace flags are summed up, so specifying detail packets will turn on full tracing for
all packets.

Traceoptions syntax

traceoptions ["trace_file" [replace] [size size[k|m] files files]]
 [control_options] trace_options [except trace_options] ;

 traceoptions none ;

Item Description

trace_file Specifies the file to receive tracing information. If this file
name does not begin with a slash (/), the directory where
gated was started is prepended to the name.

replace Indicates tracing should start by replacing an existing file.
The default is to append to an existing file.

size size[k|m] files files Limits the maximum size of the trace file to the specified
size (minimum 10k). When the trace file reaches the
specified size, it is renamed to file.0, then file.1,
file.2 up to the maximum number of files (minimum
specification is 2).

control_options Specifies options that control the appearance of tracing.
Valid values are:
nostamp

Specifies that a timestamp should not be prepended
to all trace lines.

except trace_options Used to enable a broad class of tracing and then disable
more specific options.

none Specifies that all tracing should be turned off for this
protocol or peer.

Options Statements
Options statements allow specification of some global options. If used, options must appear before any
other type of configuration statement in the gated.conf file.

The options statement syntax is:

Files Reference 475

 options
 [nosend]
 [noresolv]
 [gendefault [preference preference] [gateway gateway]]
 [syslog [upto] log_level]
 [mark time]
 ;

The options list can contain one or more of the following options:

Item Description

gendefault [preference
preference] [gateway gateway]

When gendefault is enabled when a BGP or EGP neighbor is
up, it causes the creation of a default route with the special
protocol default. This can be disabled per BGP/EGP group with
the nogendefault option. By default, this route has a preference
of 20. This route is normally not installed in the kernel forwarding
table, it is only present so it can be announced to other protocols.
If a gateway is specified, the default route will be installed in the
kernel forwarding table with a next hop of the listed gateway.

Note: The use of the more general generate default option is
preferred to the use of this gendefault option. See the section
on Route Aggregation for more information on the generate
statement.

nosend Do not send any packets. This option makes it possible to run
gated.conf on a live network to test protocol interactions without
actually participating in the routing protocols. The packet traces in
the gated.conf log can be examined to verify that gated.conf is
functioning properly. This is most useful for RIP and HELLO.

noresolv By default, gated.conf will try to resolve symbolic names into IP
addresses; this option will prevent that.

syslog [upto] log_level Controls the amount of data gated.conf logs via syslog.

mark time Specifying this option causes gated to output a message to the trace
log at the specified interval. This can be used as one method of
determining if gated is still running.

Interface Statement
Interface Syntax

 interfaces {
 options
 [strictinterfaces]
 [scaninterval time]
 ;
 interface interface_list
 [preference preference]
 [down preference preference]
 [passive]
 [simplex]
 [reject]
 [blackhole]
 ;
 define address
 [broadcast address] | [pointtopoint address]
 [netmask mask]

476 AIX Version 7.1: Files Reference

 [multicast]
 ;
 } ;

An interface is the connection between a router and one of its attached networks. A physical interface
may be specified by interface name, by IP address, or by domain name, (unless the network is
an unnumbered point-to-point network.) Multiple levels of reference in the configuration language
allow identification of interfaces using wildcard, interface type name, or delete word addresses. The
interface_list is a list of one or more interface names including wildcard names (names without a number)
and names that may specify more than one interface or address, or the token all for all interfaces.

Item Description

interface interface_list Sets interface options on the specified interfaces. An interface list
is all or a list of interface names domain names, or numeric
addresses. Options available on this statement are:
preference preference

Sets the preference for routes to this interface when it is up and
appears to be functioning properly. The default preference is 0.

down preference preference
Sets the preference for routes to this interface when the gated
daemon does not believe it to be functioning properly, but the
kernel does not indicate it is down. The default value is 120.

passive
Prevents the gated daemon from changing the preference of
the route to this interface if it is not believed to be functioning
properly due to lack of received routing information. The gated
daemon will only perform this check if the interface is actively
participating in a routing protocol.

define address Defines interfaces that might not be present when the gated
daemon is started so they may be referenced in the configuration file
when strictinterfaces is defined. Possible define keywords
are:
broadcast address

Defines the interface as broadcast capable (for example,
Ethernet or Token Ring) and specifies the broadcast address.

pointopoint address
Defines the interface as a pointopoint interface (for example,
SLIP or PPP) and specifies the address on the local side. The first
address on the define statement references the address of the
host on the remote end of the interface, the address specified
after this pointopoint keyword defines the address on the
local side of the interface.

An interface not defined as broadcast or pointopoint is assumed
to be non-broadcast multiaccess (NBMA).

netmask mask
Specifies the subnetmask to be used on this interface. This is
ignored on pointopoint interfaces.

multicast
Specifies that the interface is multicast capable.

Files Reference 477

Interface Lists
An interface list is a list of references to interfaces or groups of interfaces. There are four methods
available for referring to interfaces. They are listed here from most general to most specific.

Item Description

all This refers to all available interfaces.

Interface name wildcard This refers to all the interfaces of the same type. The operating
system interfaces consist of the name of the device driver, like en,
and a unit number, like 0 or 5. References to the name contain
only alphabetic characters and match any interfaces that have the
same alphabetic part. For example, en would refer to all Ethernet
interfaces.

Interface name This refers to a specific interface, usually one physical interface.
These are specified as an alphabetic part followed by a numeric
part. This will match one specific interface. For example, en1 will
match an interface named en1, but not an interface named en10.
In case there are multiple addresses aliased to a single interface,
specify the particular ip address to be used by gated, instead of the
interface name.

Interface address This matches one specific interface. The reference can be by
protocol address (that is, 10.0.0.51), or by symbolic hostname
(that is, hornet.ibm.com). Note that a symbolic hostname
reference is only valid when it resolves to only one address. Use
of symbolic hostnames is not recommended.

If many interface lists are present in the config file with more than one parameter, these parameters are
collected at run-time to create the specific parameter list for a given interface. If the same parameter is
specified on more than one list, the parameter with the most specific interface is used.

For example, consider a system with three interfaces: en0, en1, and tr0.

 rip yes {
 interface all noripin noripout;
 interface en ripin;
 interface en1 ripout;
 } ;

RIP packets would only be accepted from interfaces en0 and en1, but not from tr0. RIP packets would
only be sent on interface en1.

IP Interface Addresses and Routes

Item Description

loopback This interface must have the address of 127.0.0.1. Packets
sent to this interface are sent back to the originator.
This interface is also used as a catch-all interface
for implementing other features, such as reject and
blackhole routes. Although a netmask is reported on this
interface, it is ignored. It is useful to assign an additional
address to this interface that is the same as the OSPF or BGP
router id; this allows routing to a system based on the
router id that will work if some interfaces are down.

478 AIX Version 7.1: Files Reference

Item Description

broadcast This is a multi-access interface capable of a physical level
broadcast, such as Ethernet, Token Ring, and FDDI.
This interface has an associated subnet mask and broadcast
address. The interface route to a broadcast network will be
a route to the complete subnet.

point-to-point This is a tunnel to another host, usually on some sort of
serial link. This interface has a local address, and a
remote address.

The remote address must be unique among all the interface
addresses on a given router. The local address may be
shared among many point-to-point and up to one non-
point-to-point interface. This is technically a form of the
router id method for addressless links. This technique
conserves subnets as none are required when using this
technique.

If a subnet mask is specified on a point-to-point
interface, it is only used by RIP version 1 and HELLO to
determine which subnets may be propagated to the router
on the other side of this interface.

non-broadcast multi-access or nbma This type of interface is multi-access, but not capable of
broadcast. An example would be frame relay. This type
of interface has a local address and a subnet mask.

The gated daemon ensures that there is a route available to each IP interface that is configured and up.
Normally this is done by the ifconfig command that configures the interface; the gated daemon does it to
ensure consistency.

For point-to-point interfaces, the gated daemon installs some special routes. If the local address
on one or more point-to-point interfaces is not shared with a non-point-to-point interface, the
gated daemon installs a route to the local address pointing at the loopback interface with a preference
of 110. This ensures that packets originating on this host destined for this local address are handled
locally. OSPF prefers to route packets for the local interface across the point-to-point link where
they will be returned by the router on the remote end. This is used to verify operation of the link.
Since OSPF installs routes with a preference of 10, these routes will override the route installed with a
preference of 110.

If the local address of one or more point-to-point interfaces is shared with a non-point-to-
point interface, the gated daemon installs a route to the local with a preference of 0 that will not
be installed in the forwarding table. This is to prevent protocols like OSPF from routing packets to this
address across a serial interface when this system could be functioning as a host.

When the status of an interface changes, the gated daemon notifies all the protocols, which take the
appropriate action. The gated daemon assumes that interfaces that are not marked UP do not exist.

The gated daemon ignores any interfaces that have invalid data for the local, remote, or broadcast
addresses or the subnet mask. Invalid data includes zeros in any field. The gated daemon will also
ignore any point-to-point interface that has the same local and remote addresses.

Definition Statements
Definition statements are general configuration statements that relate to all of gated daemon or at least
to more than one protocol. The three definition statements are autonomoussystem, routerid, and
martians. If used, autonomoussystem, routerid, and martians must appear before any other type
of configuration statement in the gated daemon file.

Files Reference 479

Autonomous System Configuration

autonomoussystem autonomous_system [loops number] ;

Sets the autonomous system number of this router to be autonomous system. This option is required if
BGP or EGP are in use. The AS number is assigned by the Network Information Center (NIC).

Loops is only for protocols supporting AS paths, such as BGP. It controls the number of times this
autonomous system may appear in an AS path and defaults to 1 (one).

Router ID Configuration

routerid host ;

Sets the router identifier for use by the BGP and OSPF protocols. The default is the address of the first
interface encountered by the gated daemon. The address of a non-point-to-point interface is preferred
over the local address of a point-to-point interface and an address on a loopback interface that is not the
loopback address (127.0.0.1) is most preferred.

Martian Configuration

 martians {
 host host [allow] ;
 network [allow] ;
 network mask mask [allow] ;
 network masklen number [allow] ;
 default [allow] ;
 } ;

Defines a list of martian addresses about which all routing information is ignored. Sometimes a
misconfigured system sends out obviously invalid destination addresses. These invalid addresses, called
martians, are rejected by the routing software. This command allows additions to the list of martian
addresses. See the section on Route Filtering for more information on specifying ranges. Also, the allow
parameter may be specified to explicitly allow a subset of a range that was disallowed.

Sample Definition Statements

 options gendefault ;
 autonomoussystem 249 ;
 interface 128.66.12.2 passive ;
 martians {
 0.0.0.26
 };

The statements in the sample perform the following functions:

• The options statement tells the system to generate a default route when it peers with an EGP or BGP
neighbor.

• The autonomoussystem statement tells the gated daemon to use the AS number 249 for EGP and BGP.
• The interface statement tells the gated daemon not to mark interface 128.66.12.2 as down even if it

sees no traffic.
• The martians statement prevents routes to 0.0.0.26 from ever being accepted.

The RIP Statement
rip yes | no | on | off [{
 broadcast ;
 nobroadcast ;
 nocheckzero ;
 preference preference ;

480 AIX Version 7.1: Files Reference

 defaultmetric metric ;
 query authentication [none | [[simple|md5] password]] ;
 interface interface_list
 [noripin] | [ripin]
 [noripout] | [ripout]
 [metricin metric]
 [metricout metric]
 [version 1]|[version 2 [multicast|broadcast]]
 [[secondary] authentication [none | [[simple|md5] password]] ;
 trustedgateways gateway_list ;
 sourcegateways gateway_list ;
 traceoptions trace_options ;
}] ;

The rip statement enables or disables RIP. If the rip statement is not specified, the default is rip
on ;. If enabled, RIP will assume nobroadcast when there is only one interface and broadcast when
there is more than one.

The options are as follows:

broadcast
Specifies that RIP packets will be broadcast regardless of the number of interfaces present. This
is useful when propagating static routes or routes learned from another protocol into RIP. In some
cases, the use of broadcast when only one network interface is present can cause data packets to
traverse a single network twice.

nobroadcast
Specifies that RIP packets will not be broadcast on attached interfaces, even if there is more than one.
If a sourcegateways clause is present, routes will still be unicast directly to that gateway.

nocheckzero
Specifies that RIP should not make sure that reserved fields in incoming version 1 RIP packets are
zero. Normally RIP will reject packets where the reserved fields are zero.

preference preference
Sets the preference for routes learned from RIP. The default preference is 100. This preference may
be overridden by a preference specified in import policy.

defaultmetric metric
Defines the metric used when advertising routes via RIP were learned from other protocols. If not
specified, the default value is 16 (unreachable). This choice of values requires you to explicitly specify
a metric in order to export routes from other protocols into RIP. This metric may be overridden by a
metric specified in export policy.

query authentication [none | [[simple|md5] password]] ;
Specifies the authentication required of query packets that do not originate from routers. The default
is none.

interface interface_list
Controls various attributes of sending RIP on specific interfaces. See the section on interface list
specification for a description of the interface_list.

Note: If there are multiple interfaces configured on the same subnet, RIP updates will only be sent
from the first one from which RIP output is configured.

The possible parameters are:

noripin
Specifies that RIP packets received via the specified interface will be ignored. The default is to
listen to RIP packets on all non-loopback interfaces.

ripin
This is the default. This argument may be necessary when noripin is used on a wildcard
interface descriptor.

Files Reference 481

noripout
Specifies that no RIP packets will be sent on the specified interfaces. The default is to send RIP
on all broadcast and non-broadcast interfaces when in broadcast mode. The sending of RIP on
point-to-point interfaces must be manually configured.

ripout
This is the default. This argument is necessary when it is desired to send RIP on point-to-point
interfaces and may be necessary when noripin is used on a wildcard interface descriptor.

metricin metric
Specifies the RIP metric to add to incoming routes before they are installed in the routing table.
The default is the kernel interface metric plus 1 (which is the default RIP hop count). If this value
is specified it will be used as the absolute value, the kernel metric will not be added. This option
is used to make this router prefer RIP routes learned via the specified interface(s) less than RIP
routes from other interfaces.

metricout metric
Specifies the RIP metric to be added to routes that are sent via the specified interface(s). The
default is zero. This option is used to make other routers prefer other sources of RIP routes over
this router.

version 1
Specifies that RIP packets sent via the specified interface(s) will be version 1 packets. This is the
default.

version 2
Specifies that RIP version 2 packets will be sent on the specified interfaces(s). If IP multicast
support is available on this interface, the default is to send full version 2 packets. If it is not
available, version 1 compatible version 2 packets will be sent.

multicast
Specifies that RIP version 2 packets should be multicast on this interface. This is the default.

broadcast
Specifies that RIP version 1 compatible version 2 packets should be broadcast on this interface,
even if IP multicast is available.

[secondary] authentication [none | [simple|md5] password]
This defines the authentication type to use. It applies only to RIP version 2 and is ignored
for RIP-1 packets. The default authentication type is none. If a password is specified, the
authentication type defaults to simple. The password should be a quoted string with between 0
and 16 characters.

If secondary is specified, this defines the secondary authentication. If omitted, the primary
authentication is specified. The default is primary authentication of none and no secondary
authentication.

trustedgateways gateway_list
Defines the list of gateways from which RIP will accept updates. The gateway_list is simply a list
of host names or IP addresses. By default, all routers on the shared network are trusted to supply
routing information. But if the trustedgateways clause is specified, only updates from the gateways
in the list are accepted.

sourcegateways gateway_list
Defines a list of routers to which RIP sends packets directly, not through multicast or broadcast. This
can be used to send different routing information to specific gateways. Updates to gateways in this list
are not affected by noripout on the interface.

traceoptions trace_options
Specifies the tracing options for RIP. (See Trace Statements and the RIP specific tracing options
below.)

Tracing options

The policy option logs info whenever a new route is announced, the metric being announced changes,
or a route goes or leaves holddown.

482 AIX Version 7.1: Files Reference

Packet tracing options (which may be modified with detail, send, or recv):

Item Description

packets All RIP packets.

request All RIP information request packets, such as REQUEST, POLL, and POLLENTRY.

response All RIP RESPONSE packets, which are the types of packets that actually contains
routing information.

other Any other type of packet. The only valid ones are TRACE_ON and TRACE_OFF both of
which are ignored.

The RIPNG Statement
Enables or disables ripng. If the ripng statement is not specified, the default is ripng on ;. The options are
the same as for rip, but all the addresses will be IPv6 addresses.

The syntax is:

 ripng yes | no | on | off [{
 broadcast ;
 nobroadcast ;
 nocheckzero ;
 preference <preference> ;
 defaultmetric <metric> ;
 query authentication [none | [[simple|md5] <password>]] ;
 interface <interface_list>
 [noripin] | [ripin]
 [noripout] | [ripout]
 [metricin <metric>]
 [metricout <metric>]
 [version 1]|[version 2 [multicast|broadcast]]
 [[secondary] authentication [none | [[simple|md5] <password>]] ;
 trustedgateways <gaeway_list> ;
 sourcegateways <gaeway_list> ;
 traceoptions <trace_options> ;
 }] ;

The Hello Statement
hello yes | no | on | off [{
 broadcast ;
 nobroadcast ;
 preference preference ;
 defaultmetric metric ;
 interface interface_list
 [nohelloin] | [helloin]
 [nohelloout] | [helloout]
 [metricin metric]
 [metricout metric] ;
 trustedgateways gateway_list ;
 sourcegateways gateway_list ;
 traceoptions trace_options ;
}] ;

The hello statement enables or disables HELLO. If the hello statement is not specified, the default
is hello off. If enabled, HELLO will assume nobroadcast when there is only one interface and
broadcast when there is more than one interface.

Files Reference 483

Item Description

broadcast Specifies that HELLO packets will be broadcast regardless of the
number of interfaces present. This is useful when propagating static
routes or routes learned from anther protocol into HELLO. In some
cases, the use of broadcast when only one network interface is
present can cause data packets to traverse a single network twice.

nobroadcast Specifies that HELLO packets will not be broadcast on attached
interfaces, even if there are more than one. If a sourcegateways
clause is present, routes will still be unicast directly to that gateway.

preference preference Sets the preference for routes learned from HELLO. The default
preference is op. This preference may be overridden by a preference
specified in import policy.

defaultmetric metric Defines the metric used when advertising routes via HELLO were
learned from other protocols. If not specified, the default value is
30000 (unreachable). This choice of values requires you to explicitly
specify a metric in order to export routes from other protocols into
HELLO. This metric may be overridden by a metric specified in export
policy.

484 AIX Version 7.1: Files Reference

Item Description

interface interface_list Controls various attributes of sending HELLO on specific interfaces.
See the section on interface list specification for the description of
the interface_list.

Note: If there are multiple interfaces configured on the same subnet,
HELLO updates will only be sent from the first one from which the
HELLO output is configured.

The possible parameters are:

nohelloin
Specifies that HELLO packets received via the specified interface
will be ignored. The default is to listen to HELLO on all non-
loopback interfaces.

helloin
This is the default. This argument may be necessary when
nohelloin is used on a wildcard interface descriptor.

nohelloout
Specifies that no HELLO packets will be sent on the specified
interfaces. The default is to send HELLO on all broadcast
and non-broadcast interfaces when in broadcast mode. The
sending of HELLO on point-to-point interfaces must be manually
configured.

helloout
This is the default. This argument is necessary when it is
desired to send HELLO on point-to-point interfaces and may
be necessary when nohelloin is used on a wildcard interface
descriptor.

metricin metric
Specifies the HELLO metric to add to incoming routes before
they are installed in the routing table. The default is the kernel
interface metric plus 1 (which is the default HELLO hop count). If
this value is specified it will be used as the absolute value; the
kernel metric will not be added. This option is used to make this
router prefer HELLO routes learned via the specified interface(s)
less than HELLO routes from other interfaces.

metricout metric
Specifies the HELLO metric to be added to routes that are sent
via the specified interface(s). The default is zero. This option is
used to make other routers prefer other sources of HELLO routes
over this router.

trustedgateways gateway_list Defines the list of gateways from which HELLO will accept updates.
The gateway_list is simply a list of host names or IP addresses.
By default, all routers on the shared network are trusted to
supply routing information. But if the trustedgateways clause is
specified, only updates from the gateways in the list are accepted.

sourcegateways gateway_list Defines a list of routers to which HELLO sends packets directly, not
through multicast or broadcast. This can be used to send different
routing information to specific gateways. Updates to gateways in this
list are not affected by noripout on the interface.

traceoptions trace_options Specifies the tracing options for HELLO. (See Trace Statements and
the HELLO specific tracing options below.)

The default preference is 90. The default metric is 30000.

Files Reference 485

Tracing options

The policy option logs info whenever a new route is announced, the metric being announced changes,
or a route goes or leaves holddown.

Packet tracing options (which may be modified with detail, send, and/or recv):

Item Description

packets All HELLO packets

The IS-IS Statement

 isis no | dual | ip | iso {
 level 1|2 ;
 [traceoptions <isis_traceoptions> ;]
 [systemid <6_digit_hexstring> ;]
 [area <hexstring> ;]
 [set <isis_parm> <value> ; ...]
 circuit <string>
 metric [level 1|2] <1..63>
 ...
 priority [level 1|2] <0..127>
 ...
 ;
 ...
 } ;

This statement enables the IS-IS protocol in the gated daemon. By default, IS-IS is disabled. The dual
option specifies that the IS-IS protocol is enabled for both ISO and IP addressing. The isis statement
consists of an initial description of the IS and a list of statements that determine the configuration of the
specific circuits and networks to be managed. Statements may appear in any order and include:

Item Description

level Indicates whether gated is running on a Level 1 (intra-area) or Level 2 (inter-
area) IS. The default is Level 1.

traceoptions Covered in the Tracing options section below.

systemid Overrides the autoconfigured system ID (determined from interface addresses
and corresponding netmasks). If no system identifier is specified, the system ID
portion of the first real circuit's NSAP is used. Once a system ID is set, it cannot
be changed without disabling and reenabling all of IS-IS.

area IS-IS area addresses are automatically configured based on the real circuits
over which IS-IS runs. Addresses specified in this statement are maintained in
addition to those configured automatically from the circuits. This command is
used primarily for simulation.

circuit Each circuit statement specifies one of the circuits the system will manage.
Circuits normally correspond to UNIX interfaces, with string being the interface
name, but simulated device names may also be specified. If the string is in the
form of "simN", where N is an integer, the circuit is assumed to be a simulated
circuit managed by the network simulator troll. The circuit attributes are a list of
options that may appear in any order in the circuit statement.

metric Allows specifications of Level 1 and Level 2 metrics for each circuit. Only the
default metric type is supported. IS-IS metrics must be in the range 1 to 63. If no
metric is set for the circuit, the default value is 63.

priority Determines designated router election results; higher values give a higher
likelihood of becoming the designated router. The level defaults to Level 1. If
no priority is specified, priority is set to a random value between 0 and 127.

486 AIX Version 7.1: Files Reference

On a level 2 IS, to configure a circuit with a Level 1 metric of 10 and a Level 2 metric of 20, add two metric
options to the circuit statement.

The default Level is 1: the default metric is 63. The default preference for IS-IS Level 1 is 15 for IS-IS
Level 2 is 18.

Tracing options

Traceoptions can be one or more of the following:

all
iih
lanadj
p2padj
lspdb
lspcontent
lspinput
flooding
buildlsp
csnp
psnp
route
update
paths
spf
events

The OSPF Statement
ospf yes | no | on | off [{
 defaults {
 preference preference ;
 cost cost ;
 tag [as] tag ;
 type 1 | 2 ;
 } ;
 exportlimit routes ;
 exportinterval time ;
 traceoptions trace_options ;
 monitorauthkey authkey ;
 monitorauth none | ([simple | md5] authkey) ;
 backbone | (area area) {
 authtype 0 | 1 | none | simple | md5 ;
 stub [cost cost] ;
 networks {
 network [restrict] ;
 network mask mask [restrict] ;
 network masklen number [restrict] ;
 host host [restrict] ;
 } ;
 stubhosts {
 host cost cost ;
 } ;
 interface interface_list; [cost cost] {
 interface_parameters
 } ;
 interface interface_list nonbroadcast [cost cost] {
 pollinterval time ;
 routers {
 gateway [eligible] ;
 } ;
 interface_parameters
 } ;

Files Reference 487

 Backbone only:
 virtuallink neighborid router_id transitarea area {
 interface_parameters
 } ;
 };
}];

The following are the interface_parameters referred to above. They may be specified on any class of
interface and are described under the interface clause.

 enable | disable;
 retransmitinterval time;
 transitdelay time;
 priority priority;
 hellointerval time;
 routerdeadinterval time;
 authkey auth_key | auth md5 key auth_key id key_id ;

defaults
These parameters specify the defaults used when importing OSPF ASE routes into the gated routing
table and exporting routes from the gated routing table into OSPF ASEs.
preference preference

Preference is used to determine how OSPF routes compete with routes from other protocols in
the gated routing table. The default value is 150.

cost cost
Cost is used when exporting a non-OSPF route from the gated routing table into OSPF as an ASE.
The default value is 1. This may be explicitly overridden in export policy.

tag [as] tag
OSPF ASE routes have a 32 bit tag field that is not used by the OSPF protocol, but may be used by
export policy to filter routes. When OSPF is interacting with an EGP, the tag field may be used to
propagate AS path information, in which case the as keyword is specified and the tag is limited to
12 bits of information. If not specified, the tag is set to zero.

type 1 | 2
Routes exported from the gated routing table into OSPF default to becoming type 1 ASEs. This
default may be explicitly changed here and overridden in export policy.

ASE export rate
Because of the nature of OSPF, the rate at which ASEs are flooded must be limited. These two
parameters can be used to adjust those rate limits.
exportinterval time

This specifies how often a batch of ASE link state advertisements will be generated and flooded
into OSPF. The default is once per second.

exportlimit routes
This parameter specifies how many ASEs will be generated and flooded in each batch. The default
is 100.

traceoptions trace_options
Specifies the tracing options for OSPF. (See Trace Statements and the OSPF specific tracing options
below.)

monitorauthkey authkey
OSPF state may be queried using the ospf_monitor command utility. This utility sends non-standard
OSPF packets that generate a text response from OSPF. By default, these requests are not
authenticated if an authentication key is configured, the incoming requests must match the specified
authentication key. No OSPF state may be changed by these packets, but the act of querying OSPF can
utilize system resources.

488 AIX Version 7.1: Files Reference

backbonearea area
Each OSPF router must be configured into at least one OSPF area. If more than one area is configured,
at least one must be backbone. The backbone may only be configured using the backbone keyword,
it may not be specified as area 0. The backbone interface may be a virtuallink.
authtype 0 | 1 | none | simple | md5

OSPF specifies an authentication scheme per area. Each interface in the area must use this same
authentication scheme although it may use a different authenticationkey. The currently valid
values are none (0) for no authentication, simple (1) for simple password authentication or md5
for MD5 authentication.

stub [cost cost]
A stub area is one in which there are no ASE routes. If a cost is specified, this is used to inject a
default route into the area with the specified cost.

networks
The networks list describes the scope of an area. Intra-area LSAs that fall within the specified
ranges are not advertised into other areas as inter-area routes. Instead, the specified ranges are
advertised as summary network LSAs. If restrict is specified, the summary network LSAs are
not advertised. Intra-area LSAs that do not fall into any range are also advertised as summary
network LSAs. This option is very useful on well designed networks in reducing the amount of
routing information propagated between areas. The entries in this list are either networks, or a
subnetwork/mask pair. See the section on Route Filtering for more detail about specifying ranges.

stubhosts
This list specifies directly attached hosts that should be advertised as reachable from this router
and the costs they should be advertised with. Point-to-point interfaces on which it is not desirable
to run OSPF should be specified here.

It is also useful to assign an additional address to the loopback interface (one not on the 127
network) and advertise it as a stub hosts. If this address is the same one used as the router-id,
it enables routing to OSPF routers by router-id, instead of by an interface address. This is more
reliable than routing to one of the router's interface addresses that may not always be reachable.

interface interface_list [cost cost]
This form of the interface clause is used to configure a broadcast (which requires IP multicast
support) or a point-to-point interface. See the section on interface list specification for the
description of the interface_list.

Each interface has a cost. The costs of all interfaces a packet must cross to reach a destination are
summed to get the cost to that destination. The default cost is one, but another non-zero value may
be specified.

Interface parameters common to all types of interfaces are:

retransmitinterval time
The number of seconds between link state advertisement retransmissions for adjacencies
belonging to this interface.

transitdelay time
The estimated number of seconds required to transmit a link state update over this interface.
Transitdelay takes into account transmission and propagation delays and must be greater than 0.

priority priority
A number between 0 and 255 specifying the priority for becoming the designated router on this
interface. When two routers attached to a network both attempt to become the designated router,
the one with the highest priority wins. A router whose router priority is set to 0 is ineligible to
become the designated router.

hellointerval time
The length of time, in seconds, between Hello packets that the router sends on the interface.

routerdeadinterval time
The number of seconds not hearing a router's Hello packets before the router's neighbors will
declare it down.

Files Reference 489

authkey auth_key | auth md5 key auth_key id key_id ;
Used by OSPF authentication to generate and verify the authentication field in the OSPF header.
The authentication key can be configured on a per interface basis. It is specified by one to eight
decimal digits separated by periods, a one to eight byte hexadecimal string preceded by 0x, or a
one to eight character string in double quotes.

For MD5 authentication, the auth_key is specified by a 1 to 8 character string in double quotes.
The id specifies the algorithm used by MD5 to calculate the message-digest and its value ranges
from 1 to 255.

Point-to-point interfaces also support this additional parameter:

nomulticast
By default, OSPF packets to neighbors on point-to-point interfaces are sent via the IP multicast
mechanism. If the use of IP multicasting is not desired, the nomulticast parameter may be
specified to force the use of unicast OSPF packets. gated.conf will detect this condition and
fall back to using sending unicast OSPF packets to this point-to-point neighbor.

If the use of IP multicasting is not desired because the remote neighbor does not support it, the
nomulticast parameter may be specified to force the use of unicast OSPF packets. This option may
also be used to eliminate warnings when gated.conf detects the bug mentioned above.

interface interface_list nonbroadcast [cost cost]
This form of the interface clause is used to specify a nonbroadcast interface on a non-broadcast
multi-access (NBMA) media. Since an OSPF broadcast media must support IP multicasting, a
broadcast-capable media, such as Ethernet, that does not support IP multicasting must be configured
as a non-broadcast interface.

A non-broadcast interface supports any of the standard interface clauses listed above, plus the
following two that are specific to non-broadcast interfaces:

pollinterval time
Before adjacency is established with a neighbor, OSPF packets are sent periodically at the
specified pollinterval.

routers
By definition, it is not possible to send broadcast packets to discover OSPF neighbors on a
non-broadcast, so all neighbors must be configured. The list includes one or more neighbors and
an indication of their eligibility to become a designated router.

virtuallink neighborid router_id transitarea area
Virtual links are used to establish or increase connectivity of the backbone area. The neighborid is
the router_id of the other end of the virtual link. The transit area specified must also be configured
on this system. All standard interface parameters defined by the interface clause above may be
specified on a virtual link.

Tracing options

In addition to the following OSPF specific trace flags, OSPF supports the state that traces interface and
neighbor state machine transitions.

Item Description

lsabuild Link State Advertisement creation

spf Shortest Path First (SPF) calculations

Packet tracing options (which may be modified with detail, send and recv):

Item Description

hello OSPF HELLO packets that are used to determine neighbor reachability.

dd OSPF Database Description packets that are used in synchronizing OSPF databases.

request OSPF Link State Request packets that are used in synchronizing OSPF databases.

490 AIX Version 7.1: Files Reference

Item Description

lsu OSPF Link State Update packets that are used in synchronizing OSPF databases.

ack OSPF Link State Ack packets that are used in synchronizing OSPF databases.

The EGP Statement
 EGP yes | no | on | off
 [{
 preference preference ;
 defaultmetric metric ;
 packetsize number ;
 traceoptions trace_options ;
 group
 [peeras autonomous_system]
 [localas autonomous_system]
 [maxup number]
 {
 neighbor host
 [metricout metric]
 [preference preference]
 [preference2 preference]
 [ttl ttl]
 [nogendefault]
 [importdefault]
 [exportdefault]
 [gateway gateway]
 [lcladdr local_address]
 [sourcenet network]
 [minhello | p1 time]
 [minpoll | p2 time]
 [traceoptions trace_options]
 ;
 } ;
 }] ;

preference preference
Sets the preference for routes learned from RIP. The default preference is 200. This preference may
be overridden by a preference specified on the group or neighbor statements or by import policy.

defaultmetric metric ;
Defines the metric used when advertising routes via EGP. If not specified, the default value is 255
that some systems may consider unreachable. This choice of values requires you to explicitly specify
a metric when exporting routes to EGP neighbors. This metric may be overridden by a metric specified
on the neighbor or group statements or in export policy.

packetsize maxpacketsize
This defines the expected maximum size of a packet that EGP expects to receive from this neighbor. If
a packet larger than this value is received, it will be incomplete and have to be discarded. The length
of this packet will be noted and the expected size will be increased to be able to receive a packet
of this size. Specifying the parameter here will prevent the first packet from being dropped. If not
specified, the default size is 8192 bytes. All packet sizes are rounded up to a multiple of the system
page size.

traceoptions trace_options
Specifies the tracing options for EGP. By default these are inherited from the global trace options.
These values may be overridden on a group or neighbor basis. (See Trace Statements and the EGP
specific tracing options below.)

Files Reference 491

group
EGP neighbors must be specified as members of a group. A group is usually used to group all
neighbors in one autonomous system. Parameters specified on the group clause apply to all of the
subsidiary neighbors unless explicitly overridden on a neighbor clause. Any number of group clauses
may specify any number of neighbor clauses.

Any parameters from the neighbor subclause may be specified on the group clause to provide
defaults for the whole group (which may be overridden for individual neighbors). In addition, the
group clause is the only place to set the following attributes:

peeras
Identifies the autonomous system number expected from peers in the group. If not specified, it
will be learned dynamically.

localas
Identifies the autonomous system that gated.conf is representing to the group. The default is that
which has been set globally in the autonomoussystem statement. This option is usually only
used when masquerading as another autonomous system and its use is discouraged.

maxup
Specifies the number of neighbors the gated daemon should acquire from this group. The default
is to acquire all of the neighbors in the group. The gated daemon will attempt to acquire the first
maxup neighbors in the order listed. If one of the first neighbors is not available, it will acquire
one further down the list. If after start-up the gated daemon does manage to acquire the more
desirable neighbor, it will drop the less desirable one.

neighbor neighbor_address
Each neighbor subclause defines one EGP neighbor within a group. The only part of the subclause that
is required is the neighbor_address argument that is the symbolic host name or IP address of the
neighbor. All other parameters are optional.
preference preference

Specifies the preference used for routes learned from these neighbors. This can differ from
the default EGP preference set in the EGP statement, so that the gated daemon can prefer
routes from one neighbor, or group of neighbors, over another. This preference may be explicitly
overridden by import policy.

preference2 preference
In the case of a preference tie, the second preference, preference2 may be used to break the
tie. The default value is 0.

metricout metric
This defines a metric to be used for all routes sent to this neighbor. The value overrides the
default metric set in the EGP statement and any metrics specified by export policy, but only for
this specific neighbor or group of neighbors.

nogendefault
Prevents gated.conf from generating a default route when EGP receives a valid update from its
neighbor. The default route is only generated when the gendefault option is enabled.

importdefault
Enables the gated daemon to accept the default route (0.0.0.0) if it is included in a received EGP
update. If not specified, the default route contained in an EGP update is ignored. For efficiency,
some networks have external routers announce a default route to avoid sending large EGP update
packets.

exportdefault
Enables the gated daemon to include the default route (0.0.0.0) in EGP updates sent to this EGP
neighbor. This allows the system to advertise the default route via EGP. Normally a default route is
not included in EGP updates.

gateway gateway
If a network is not shared with a neighbor, gateway specifies a router on an attached network to
be used as the next hop router for routes received from this neighbor. This option is only rarely
used.

492 AIX Version 7.1: Files Reference

lcladdr local_address
Specifies the address to be used on the local end of the connection with the neighbor. The local
address must be on an interface that is shared with the neighbor or with the neighbor's gateway
when the gateway parameter is used. A session will only be opened when an interface with the
appropriate local address (through which the neighbor or gateway address is directly reachable) is
operating.

sourcenet network
Specifies the network queried in the EGP Poll packets. By default, this is the network shared
with the neighbor's address specified. If there is no network shared with the neighbor, one of the
networks the neighbor is attached to should be specified. This parameter can also be used to
specify a network shared with the neighbor other than the one on which the EGP packets are sent.
This parameter is normally not needed.

p1 time
minhello time

Sets the minimum acceptable interval between the transmission of EGP HELLO packets. The
default hello interval is 30 seconds. If the neighbor fails to respond to three hello packets, the
gated daemon stops trying to acquire the neighbor. Setting a larger interval gives the neighbor a
better chance to respond. Minhello is an alias for the P1 value defined in the EGP specification.

p2 time
minpoll time

Sets the time interval between polls to the neighbor. The default is 120 seconds. If three polls
are sent without a response, the neighbor is declared "down" and all routes learned from that
neighbor are removed from the routing database. A longer polling interval supports a more stable
routing database but is not as responsive to routing changes. Minpoll is an alias for the P2 value
defined in the EGP specification.

ttl ttl
By default, the gated daemon sets the IP TTL for local neighbors to one and the TTL for non-local
neighbors to 255. This option is provided when attempting to communicate with improperly
functioning routers that ignore packets sent with a TTL of one.

traceoptions trace_options
Specifies the tracing options for this EGP neighbor. By default, these are inherited from group or
EGP global trace options. (See Trace Statements and the EGP specific tracing options below.)

Tracing options

The state and policy options work with EGP.

Packet tracing options (which may be modified with detail, send and recv):

Item Description

packets All EGP packets

hello EGP HELLO/I-HEARD-U packets that are used to determine neighbor reachability.

acquire EGP ACQUIRE/CEASE packets that are used to initiate and terminate EGP sessions.

update EGP POLL/UPDATE packets that are used to request and receive reachability updates.

The BGP Statement
 bgp yes | no | on | off
 [{
 preference preference ;
 defaultmetric metric ;
 traceoptions trace_options ;
 group type (external peeras autonomous_system)
 | (internal peeras autonomous_system)
 | (IGP peeras autonomous_system proto proto)

Files Reference 493

 | (routing peeras autonomous_system proto proto
 interface interface_list)
 | (test peeras autonomous_system)
 {
 allow {
 network
 network mask mask
 network masklen number
 all
 host host
 } ;
 peer host
 [metricout metric]
 [localas autonomous_system]
 [nogendefault]
 [gateway gateway]
 [preference preference]
 [preference2 preference]
 [lcladdr local_address]
 [holdtime time]
 [version number]
 [passive]
 [indelay time]
 [outdelay time]
 [keep [all | none]]
 [noaggregatorid]
 [keepalivesalways]
 [v3asloopokay]
 [nov4asloop]
 [logupdown]
 [ttl ttl]
 [traceoptions trace_options]
 ;
 } ;
 }] ;

 external | internal | IGP | test

The bgp statement enables or disables BGP. By default, BGP is disabled. The default metric for
announcing routes via BGP is not to send a metric.

Item Description

preference preference Sets the preference for routes learned from RIP. The
default preference is 170. This preference may be
overridden by a preference specified on the group or
peer statements or by import policy.

defaultmetric metric Defines the metric used when advertising routes via
BGP. If not specified, no metric is propagated. This
metric may be overridden by a metric specified on the
neighbor or group statements or in export policy.

traceoptions trace_options Specifies the tracing options for BGP. By default these
are inherited from the global trace options. These
values may be overridden on a group or neighbor basis.
(See Trace Statements and the BGP specific tracing
options below.)

Groups

494 AIX Version 7.1: Files Reference

BGP peers are grouped by type and the autonomous system of the peers. Any number of groups may be
specified, but each must have a unique combination of type and peer autonomous system. There are four
possible group types:

group type external peeras autonomous_system
In the classic external BGP group, full policy checking is applied to all incoming and outgoing
advertisements. The external neighbors must be directly reachable through one of the machine's local
interfaces. By default no metric is included in external advertisements, and the next hop is computed
with respect to the shared interface.

group type internal peeras autonomous_system
An internal group operating where there is no IP-level IGP. All neighbors in this group are required to
be directly reachable via a single interface. All next hop information is computed with respect to this
interface. Import and export policy may be applied to group advertisements. Routes received from
external BGP or EGP neighbors are by default readvertised with the received metric.

group type IGP peeras autonomous_system proto proto
An internal group that runs in association with an interior protocol. The IGP group examines routes
that the IGP is exporting and sends an advertisement only if the path attributes could not be entirely
represented in the IGP tag mechanism. Only the AS path, path origin, and transitive optional attributes
are sent with routes. No metric is sent, and the next hop is set to the local address used by
the connection. Received internal BGP routes are not used or readvertised. Instead, the AS path
information is attached to the corresponding IGP route and the latter is used for readvertisement.
Since internal IGP peers are sent only a subset of the routes that the IGP is exporting, the export
policy used is the IGP's. There is no need to implement the "don't routes from peers in the same
group" constraint since the advertised routes are routes that IGP already exports.

group type routing peeras autonomous_system proto proto interface interface_list
An internal group that uses the routes of an interior protocol to resolve forwarding addresses. A
type routing group propagates external routes between routers that are not directly connected, and
computes immediate next hops for these routes by using the BGP next hop that arrived with the
route as a forwarding address to be resolved via an internal protocol's routing information. In essence,
internal BGP is used to carry AS external routes, while the IGP is expected to only carry AS internal
routes, and the latter is used to find immediate next hops for the former.

The proto names the interior protocol to be used to resolve BGP route next hops, and may be the
name of any IGP in the configuration. By default, the next hop in BGP routes advertised to type routing
peers will be set to the local address on the BGP connection to those peers, as it is assumed a route
to this address will be propagated via the IGP. The interface_list can optionally provide list interfaces
whose routes are carried via the IGP for which third party next hops may be used instead.

group type test peeras autonomous_system
An extension to external BGP that implements a fixed policy using test peers. Fixed policy and
special case code make test peers relatively inexpensive to maintain. Test peers do not need to be
on a directly attached network. If the gated daemon and the peer are on the same (directly attached)
subnet, the advertised next hop is computed with respect to that network, otherwise the next hop is
the local machine's current next hop. All routing information advertised by and received from a test
peer is discarded, and all BGP advertisable routes are sent back to the test peer. Metrics from EGP-
and BGP-derived routes are forwarded in the advertisement, otherwise no metric is included.

Group parameters
The BGP statement has group clauses and peer subclauses. Any number of peer subclauses may be
specified within a group. A group clause usually defines default parameters for a group of peers, these
parameters apply to all subsidiary peer subclauses. Any parameters from the peer subclause may be
specified on the group clause to provide defaults for the whole group (which may be overridden for
individual peers).

Files Reference 495

Specifying peers
Within a group, BGP peers may be configured in one of two ways. They may be explicitly configured with a
peer statement, or implicitly configured with the allow statement. Both are described here:

Item Description

allow The allow clause allows for peer connections from any addresses in the specified
range of network and mask pairs. All parameters for these peers must be
configured on the group clause. The internal peer structures are created when an
incoming open request is received and destroyed when the connection is broken.
For more detail on specifying the network/mask pairs, see the section on Route
Filtering.

peer host A peer clause configures an individual peer. Each peer inherits all parameters
specified on a group as defaults. Those defaults may be overridden by parameters
explicitly specified on the peer subclause.

Within each group clause, individual peers can be specified or a group of potential peers can be specified
using allow. Allow is used to specify a set of address masks. If the gated daemon receives a BGP
connection request from any address in the set specified, it will accept it and set up a peer relationship.

Peer parameters
The BGP peer subclause allows the following parameters, which can also be specified on the group
clause. All are optional.

metricout metric
If specified, this metric is used as the primary metric on all routes sent to the specified peer(s). This
metric overrides the default metric, a metric specified on the group and any metric specified by export
policy.

localas autonomous_system
Identifies the autonomous system that the gated daemon is representing to this group of peers. The
default is that which has been set globally in the autonomoussystem statement.

nogendefault
Prevents gated.conf from generating a default route when EGP receives a valid update from its
neighbor. The default route is only generated when the gendefault option is enabled.

gateway gateway
If a network is not shared with a peer, gateway specifies a router on an attached network to be used
as the next hop router for routes received from this neighbor. This parameter is not needed in most
cases.

preference preference
Specifies the preference used for routes learned from these peers. This can differ from the default
BGP preference set in the bgp statement, so that the gated daemon can prefer routes from one peer,
or group of peer, over others. This preference may be explicitly overridden by import policy.

preference2 preference
In the case of a preference tie, the second preference, preference2 may be used to break the tie.
The default value is 0.

lcladdr local_address
Specifies the address to be used on the local end of the TCP connection with the peer. For external
peers the local address must be on an interface that is shared with the peer or with the peer's
gateway when the gateway parameter is used. A session with an external peer will only be opened
when an interface with the appropriate local address (through which the peer or gateway address is
directly reachable) is operating. For other types of peers, a peer session will be maintained when any
interface with the specified local address is operating. In either case, incoming connections will only
be recognized as matching a configured peer if they are addressed to the configured local address.

496 AIX Version 7.1: Files Reference

holdtime time
Specifies the BGP holdtime value to use when negotiating the connection with this peer, in seconds.
According to BGP, if the gated daemon does not receive a keepalive, update, or notification message
within the period specified in the Hold Time field of the BGP Open message, then the BGP connection
will be closed. The value must be either 0 (no keepalives will be sent) or at least 3.

version version
Specifies the version of the BGP protocol to use with this peer. If not specified, the highest supported
version is used first and version negotiation is attempted. If it is specified, only the specified version
will be offered during negotiation. Currently supported versions are 2, 3 and 4.

passive
Specifies that active OPENs to this peer should not be attempted. the gated daemon should wait for
the peer to issue an OPEN. By default, all explicitly configured peers are active, they periodically send
OPEN messages until the peer responds.

indelay time
outdelay time

Used to dampen route fluctuations. Indelay is the amount of time a route learned from a BGP peer
must be stable before it is accepted into the gated routing database. Outdelay is the amount of time
a route must be present in the gated routing database before it is exported to BGP. The default value
for each is 0, meaning that these features are disabled.

keep all
Used to retain routes learned from a peer even if the routes' AS paths contain one of our exported AS
numbers.

noaggregatorid
Causes the gated daemon to specify the routerid in the aggregator attribute as zero (instead of its
routerid) in order to prevent different routers in an AS from creating aggregate routes with different AS
paths.

keepalivesalways
Causes the gated daemon to always send keepalives, even when an update could have correctly
substituted for one. This allows interoperability with routers that do not completely obey the protocol
specifications on this point.

v3asloopokay
By default, the gated daemon will not advertise routes whose AS path is looped (that is, with an
AS appearing more than once in the path) to version 3 external peers. Setting this flag removes this
constraint. Ignored when set on internal groups or peers.

nov4asloop
Prevents routes with looped AS paths from being advertised to version 4 external peers. This can be
useful to avoid advertising such routes to peers that would incorrectly forward the routes on to version
3 neighbors.

logupdown
Causes a message to be logged via the syslog mechanism whenever a BGP peer enters or leaves the
ESTABLISHED state.

traceoptions trace_options
Specifies the tracing options for this BGP neighbor. By default, these are inherited from group or BGP
global trace options.(See Trace Statements and the BGP specific tracing options below.)

Tracing options

Note: The state option works with BGP, but does not provide true state transition information.

Packet tracing options (which may be modified with detail, send, and recv):

Item Description

packets All BGP packets.

open BGP OPEN packets that are used to establish a peer relationship.

Files Reference 497

Item Description

update BGP UPDATE packets that are used to pass network reachability information.

keepalive BGP KEEPALIVE packets that are used to verify peer reachability.

The BGP4+ Statement
The options are the same for BGP4+ as they are for bgp but all the addresses will be IPv6 addresses.

The syntax is:

 bgp4+ yes | no | on | off
 [{
 preference <preference> ;
 defaultmetric <metric> ;
 traceoptions <trace_options> ;
 group type (external peeras <autonomous_system>)
 | (internal peeras <autonomous_system>)
 | (igp peeras <autonomous_system> proto <proto>)
 | (routing peeras <autonomous_system> proto <proto>
 interface <interface_list>)
 | (test peeras <autonomous_system>)
 {
 allow {
 <network>
 <network> masklen <number>
 all
 host <IPv6 host address>
 } ;
 peer <IPv6 host address>
 [metricout <metric>]
 [localas <autonomous_system>]
 [nogendefault]
 [gateway <gateway>]
 [preference <preference>]
 [preference2 <preference>]
 [lcladdr <local_address>]
 [holdtime <time>]
 [version <number>]
 [passive]
 [sendbuffer <number>]
 [recvbuffer <number>]
 [indelay <time>]
 [outdelay <time>]
 [keep [all | none]]
 [analretentive]
 [noauthcheck]
 [noaggregatorid]
 [keepalivesalways]
 [v3asloopokay]
 [nov4asloop]
 [logupdown]
 [ttl <ttl>]
 [traceoptions <trace_options>]
 ;
 } ;
 }] ;

The ICMP Statement

 icmp {
 traceoptions trace_options ;
 }

Item Description

traceoptions trace_options; Specifies the tracing options for ICMP. (See Trace
Statements and the ICMP specific tracing options
below.)

Tracing options

498 AIX Version 7.1: Files Reference

Packet tracing options (which may be modified with detail and recv):

Item Description

packets All ICMP packets received.

redirect Only ICMP REDIRECT packets received.

routerdiscovery Only ICMP ROUTER DISCOVERY packets received.

info Only ICMP informational packets, which include mask request/response,
info request/response, echo request/response, and time stamp request/
response.

error Only ICMP error packets, which include time exceeded, parameter problem,
unreachable and source quench.

The SNMP Statement
The Simple Network Management Protocol (SNMP) is a not a routing protocol but a network management
protocol. The snmp statement controls whether gated.conf tries to contact the SNMP Multiplexing
daemon to register supported variables. The SNMP daemon, smuxd, must be run independently. The
snmp statement only controls whether gated.conf keeps the management software apprised of its status.

gated.conf communicates with the SNMP daemon via the SMUX protocol that is described in RFC 1227.

 snmp yes | no | on | off
[{
 port port ;
 debug;
 traceoptions traceoptions;
 }] ;

Reporting is enabled by specifying yes or on and disabled with no or off. The default is on.

Item Description

port port By default, the SMUX daemon listens for requests on
port 199. The gated.conf subroutine can be configured
to try to contact the SMUX daemon on a different port by
explicitly specifying the port.

debug Specifying this option enables debugging of the ISODE
SMUX code. The default is debugging disabled.

traceoptions trace_options Specifies the tracing options for SMUX. (See Trace
Statements and the SMUX specific tracing options below.)

Tracing options

There are no SNMP-specific trace options. The detail, send, and recv options are not supported.

Item Description

receive SNMP requests received from the SMUX daemon and the associated responses.

register Protocol requests to register variables.

resolve Protocol requests to resolve variable names.

trap SNMP trap requests from protocols.

Static Statements
Static statements define the static routes used by the gated daemon. A single static statement can
specify any number routes. The static statements occur after protocol statements and before control
statements in the gated.conf file. Any number of static statements may be specified, each containing

Files Reference 499

any number of static route definitions. These routes can be overridden by routes with better preference
values.

 static {
 (host host) | default |
 (network [(mask mask) | (masklen number)])
 gateway gateway_list
 [interface interface_list]
 [preference preference]
 [retain]
 [reject]
 [blackhole]
 [noinstall] ;
 (network [(mask mask) | (masklen number)])
 interface interface
 [preference preference]
 [retain]
 [reject]
 [blackhole]
 [noinstall] ;
 } ;

host host gateway gateway_list (network [(mask mask) | (masklen number)]) default gateway
gateway_list

This is the most general form of the static statement. It defines a static route through one or more
gateways. Static routes are installed when one or more of the gateways listed are available on
directly attached interfaces.

Parameters for static routes are:

Item Description

interface interface_list When this parameter is specified, gateways are only
considered valid when they are on one of these interfaces.
See the section on interface_list specification for the
description of the interface_list.

preference preference This option selects the preference of this static route. The
preference controls how this route competes with routes
from other protocols. The default preference is 60.

retain Normally the gated daemon removes all routes except
interface routes from the kernel forwarding table during
a graceful shutdown. The retain option may be used to
prevent specific static routes from being removed. This
is useful to ensure that some routing is available when
gated is not running.

reject Instead of forwarding a packet like a normal route,
reject routes cause packets to be dropped and
unreachable messages to be sent to the packet
originators. Specifying this option causes this route to
be installed as a reject route. Not all kernel forwarding
engines support reject routes.

blackhole A blackhole route is the same as a reject route except
that unreachable messages are not supported.

500 AIX Version 7.1: Files Reference

Item Description

noinstall Normally the route with the lowest preference is installed
in the kernel forwarding table and is the route exported to
other protocols. When noinstall is specified on a route,
it will not be installed in the kernel forwarding table when
it is active, but it will still be eligible to be exported to
other protocols.

(network [(mask mask) | (masklen number)]) interface interface
This form defines a static interface route that is used for primitive support of multiple network
addresses on one interface. The preference, retain, reject, blackhole and noinstall
options are the same as described above.

The Import Statement
Importation of routes from routing protocols and installation of the routes in the gated daemon's routing
database is controlled by import statements. The format of an import statement varies depending on
the source protocol.

Specifying preferences
In all cases, one of two keywords may be specified to control how routes compete with other protocols:

 restrict
 preference preference

Item Description

restrict Specifies that the routes are not desired in the routing table. In
some cases, this means that the routes are not installed in the
routing table. In others, it means that they are installed with a
negative preference; this prevents them from becoming active so
they will not be installed in the forwarding table, or exported to
other protocols.

preference preference Specifies the preference value used when comparing this route
to other routes from other protocols. The route with the lowest
preference available at any given route becomes the active route,
is installed in the forwarding table, and is eligible to be exported
to other protocols. The default preferences are configured by the
individual protocols.

Route Filters

All the formats allow route filters as shown below. See the section on route filters for a detailed
explanation of how they work. When no route filtering is specified (that is, when restrict is specified on
the first line of a statement), all routes from the specified source will match that statement. If any filters
are specified, only routes that match the specified filters will be imported. Put differently, if any filters are
specified, an all restrict; is assumed at the end of the list.

 network [exact | refines]
 network mask mask [exact | refines]
 network masklen number [exact | refines]
 default
 host host

Files Reference 501

Importing Routes from BGP and EGP
import proto bgp | EGP autonomoussystem autonomous_system
 restrict ;
import proto bgp | EGP autonomoussystem autonomous_system
 [preference preference] {
 route_filter [restrict | (preference preference)] ;
} ;

import proto bgp aspath aspath_regexp
 origin any | ([IGP] [EGP] [incomplete])
 restrict ;
import proto bgp aspath aspath_regexp
 origin any | ([IGP] [EGP] [incomplete])
 [preference preference] {
 route_filter [restrict | (preference preference)] ;
} ;

EGP importation may be controlled by autonomous system.

BGP also supports controlling propagation by the use of AS path regular expressions, which are
documented in the section on Matching AS paths.

Note: EGP and BGP versions 2 and 3 only support the propagation of natural networks, so the host and
default route filters are meaningless. BGP version 4 supports the propagation of any destination along
with a contiguous network mask.

EGP and BGP both store any routes that were rejected implicitly by not being mentioned in a route
filter, or explicitly with the restrict keyword in the routing table with a negative preference. A
negative preference prevents a route from becoming active, which prevents it from being installed in
the forwarding table, or exported to other protocols. This alleviates the need to break and re-establish a
session upon reconfiguration if importation policy is changed.

Importing Routes from RIP, HELLO and Redirects
import proto rip | hello | redirect
 [(interface interface_list) | (gateway gateway_list)]
 restrict ;
import proto rip | hello | redirect
 [(interface interface_list) | (gateway gateway_list)]
 [preference preference] {
 route_filter [restrict | (preference preference)] ;
} ;

The importation of RIP, HELLO, and Redirect routes may be controlled by any of protocol, source interface,
and source gateway. If more than one is specified, they are processed from most general (protocol) to
most specific (gateway).

RIP and HELLO don't support the use of preference to choose between routes of the same protocol. That
is left to the protocol metrics. These protocols do not save routes that were rejected since they have short
update intervals.

Importing Routes from OSPF
import proto ospfase [tag ospf_tag] restrict ;
import proto ospfase [tag ospf_tag]
 [preference preference] {
 route_filter [restrict | (preference preference)] ;
} ;

502 AIX Version 7.1: Files Reference

Due to the nature of OSPF, only the importation of ASE routes may be controlled. OSPF intra- and
inter-area routes are always imported into the gated routing table with a preference of 10. If a tag is
specified, the import clause will only apply to routes with the specified tag.

It is only possible to restrict the importation of OSPF ASE routes when functioning as an AS border router.
This is accomplished by specifying an export ospfase clause. Specification of an empty export clause may
be used to restrict importation of ASEs when no ASEs are being exported.

Like the other interior protocols, preference can not be used to choose between OSPF ASE routes, that
is done by the OSPF costs. Routes that are rejected by policy are stored in the table with a negative
preference.

The Export Statement
The import statement controls routes received from other systems that are used by the gated daemon,
and the export statement controls which routes are advertised by the gated daemon to other systems.
Like the import statement, the syntax of the export statement varies slightly per protocol. The syntax
of the export statement is similar to the syntax of the import statement, and the meanings of many of
the parameters are identical. The main difference between the two is that while route importation is just
controlled by source information, route exportation is controlled by both destination and source.

The outer portion of a given export statement specifies the destination of the routing information you
are controlling. The middle portion restricts the sources of importation that you wish to consider And the
innermost portion is a route filter used to select individual routes.

Specifying Metrics
The most specific specification of a metric is the one applied to the route being exported. The values
that may be specified for a metric depend on the destination protocol that is referenced by this export
statement.

 restrict
 metric metric

Item Description

restrict Specifies that nothing should be exported. If specified on the destination portion
of the export statement, it specifies that nothing at all should be exported to
this destination. If specified on the source portion, it specifies that nothing from
this source should be exported to this destination. If specified as part of a route
filter, it specifies that the routes matching that filter should not be exported.

metric metric Specifies the metric to be used when exporting to the specified destination.

Route Filters

All the formats allow route filters as shown below. See the section on route filters for a detailed
explanation of how they work. When no route filtering is specified (that is, when restrict is specified on
the first line of a statement), all routes from the specified source will match that statement. If any filters
are specified, only routes that match the specified filters will be exported. Put differently, if any filters are
specified, an all restrict ; is assumed at the end of the list.

 network [exact | refines]
 network mask mask [exact | refines]
 network masklen number [exact | refines]
 default
 host host

Specifying the Destination
As mentioned above, the syntax of the export statement varies depending on the protocol to which it
is being applied. One thing that applies in all cases is the specification of a metric. All protocols define a

Files Reference 503

default metric to be used for routes being exported, in most cases this can be overridden at several levels
of the export statement.

The specification of the source of the routing information being exported (the export_list) is described
below.

Exporting to EGP and BGP

export proto bgp | EGP as autonomous system
 restrict ;
export proto bgp | EGP as autonomous system
 [metric metric] {
 export_list ;
} ;

Exportation to EGP and BGP is controlled by autonomous system, the same policy is applied to all routers
in the AS.

EGP metrics range from 0 to 255 inclusive with 0 being the most attractive.

BGP metrics are 16 bit unsigned quantities, that is, they range from 0 to 65535 inclusive with 0 being the
most attractive.

If no export policy is specified, only routes to attached interfaces will be exported. If any policy is
specified, the defaults are overridden. It is necessary to explicitly specify everything that should be
exported.

Note: EGP and BGP versions 2 and 3 only support the propagation of natural networks, so the host and
default route filters are meaningless. BGP version 4 supports the propagation of any destination along
with a contiguous network mask.

Exporting to RIP and HELLO
export proto rip | hello
 [(interface interface_list) | (gateway gateway_list)]
 restrict ;
export proto rip | hello
 [(interface interface_list) | (gateway gateway_list)]
 [metric metric] {
 export_list ;
} ;

Exportation to RIP and HELLO is controlled by any of protocol, interface or gateway. If more than one is
specified, they are processed from the most general (protocol) to the most specific (gateway).

It is not possible to set metrics for exporting RIP routes into RIP, or exporting HELLO routes into HELLO.
Attempts to do this are silently ignored.

If no export policy is specified, RIP and interface routes are exported into RIP and HELLO and interface
routes are exported into HELLO. If any policy is specified, the defaults are overridden. It is necessary to
explicitly specify everything that should be exports.

RIP version 1 and HELLO assume that all subnets of the shared network have the same subnet mask so
they are only able to propagate subnets of that network. RIP version 2 removes that restriction and is
capable of propagating all routes when not sending version 1 compatible updates.

To announce routes that specify a next hop of the loopback interface (that is, static and internally
generated default routes) via RIP or HELLO, it is necessary to specify the metric at some level in the
export clause. For example, just setting a default metric for RIP or HELLO is not sufficient. This is a
safeguard to verify that the announcement is intended.

504 AIX Version 7.1: Files Reference

Exporting to OSPF

export proto osfpase [type 1 | 2] [tag ospf_tag]
 restrict ;
export proto osfpase [type 1 | 2] [tag ospf_tag]
 [metric metric] {
 export_list ;
} ;

It is not possible to create OSPF intra- or inter-area routes by exporting routes from the the gated
daemon routing table into OSPF. It is only possible to export from the gated daemon routing table into
OSPF ASE routes. It is also not possible to control the propagation of OSPF routes within the OSPF
protocol.

There are two types of OSPF ASE routes, type 1 and type 2. See the OSPF protocol configuration for a
detailed explanation of the two types. The default type is specified by the defaults subclause of the
ospf clause. This may be overridden by a specification on the export statement.

OSPF ASE routes also have the provision to carry a tag. This is an arbitrary 32 bit number that can be used
on OSPF routers to filter routing information. See the OSPF protocol configuration for detailed information
on OSPF tags. The default tag specified by the ospf defaults clause may be overridden by a tag
specified on the export statement.

Specifying the Source
The export list specifies export based on the origin of a route and the syntax varies depending on the
source.

Exporting BGP and EGP Routes

proto bgp | EGP autonomoussystem autonomous_system
 restrict ;
proto bgp | EGP autonomoussystem autonomous_system
 [metric metric] {
 route_filter [restrict | (metric metric)] ;
} ;

BGP and EGP routes may be specified by the source autonomous system. All routes may be exported by
as path, see the Exporting by AS Path section for more information.

Exporting RIP and HELLO Routes
proto rip | hello
 [(interface interface_list) | (gateway gateway_list)]
 restrict ;
proto rip | hello
 [(interface interface_list) | (gateway gateway_list)]
 [metric metric] {
 route_filter [restrict | (metric metric)] ;
} ;

RIP and HELLO routes may be exported by protocol, source interface, and/or source gateway.

Exporting OSPF Routes

proto ospf | ospfase restrict ;
proto ospf | ospfase [metric metric] {
 route_filter [restrict | (metric metric)] ;
} ;

Both OSPF and OSPF ASE routes may be exported into other protocols. See below for information on
exporting by tag.

Files Reference 505

Exporting Routes from Non-routing Protocols
Non-routing with Interface

proto direct | static | kernel
 [(interface interface_list)]
 restrict ;
proto direct | static | kernel
 [(interface interface_list)]
 [metric metric] {
 route_filter [restrict | (metric metric)] ;
} ;

These protocols may be exported by protocol, or by the interface of the next hop. These protocols are:

Item Description

direct Routes to directly attached interfaces.

static Static routes specified in a static clause.

kernel Routes learned from the routing socket are installed in the gated routing table with a
protocol of kernel. These routes may be exported by referencing this protocol.

Non-routing by Protocol

proto default | aggregate
 restrict ;
proto default | aggregate
 [metric metric] {
 route_filter [restrict | (metric metric)] ;
} ;

These protocols may only be referenced by protocol.

Item Description

default Refers to routes created by the gendefault option. It is recommended that route
generation be used instead.

aggregate Refers to routes synthesized from other routes when the aggregate and generate
statements are used. See the section on Route Aggregation for more information.

Exporting by AS Path

proto proto | all aspath aspath_regexp
 origin any | ([IGP] [EGP] [incomplete])
 restrict ;
proto proto | all aspath aspath_regexp
 origin any | ([IGP] [EGP] [incomplete])
 [metric metric] {
 route_filter [restrict | (metric metric)] ;
} ;

When BGP is configured, all routes are assigned an AS path when they are added to the routing table. For
all interior routes, this AS path specifies IGP as the origin and no ASEs in the AS path (the current AS is
added when the route is exported). For EGP routes this AS path specifies EGP as the origin and the source
AS as the AS path. For BGP routes, the AS path is stored as learned from BGP.

AS path regular expressions are documented in the section on Matching AS paths.

Exporting by Route Tag

proto proto | all tag tag restrict ;
proto proto | all tag tag
 [metric metric] {

506 AIX Version 7.1: Files Reference

 route_filter [restrict | (metric metric)] ;
} ;

Both OSPF and RIP version 2 currently support tags; all other protocols always have a tag of zero. The
source of exported routes may be selected based on this tag. This is useful when routes are classified by a
tag when they are exported into a given routing protocol.

Route Aggregation
Route aggregation is a method of generating a more general route given the presence of a specific route.
It is used, for example, at an autonomous system border to generate a route to a network to be advertised
via EGP given the presence of one or more subnets of that network learned via RIP. No aggregation is
performed unless explicitly requested in an aggregate statement.

Route aggregation is also used by regional and national networks to reduce the amount of routing
information passed around. With careful allocation of network addresses to clients, regional networks can
just announce one route to regional networks instead of hundreds.

Aggregate routes are not actually used for packet forwarding by the originator of the aggregate route, only
by the receiver (if it wishes).

A slight variation of aggregation is the generation of a route based on the existence of certain conditions.
This is sometimes known as the route of last resort. This route inherits the next hops and aspath from the
contributor specified with the lowest (most favorable) preference. The most common usage for this is to
generate a default based on the presence of a route from a peer on a neighboring backbone.

Aggregation and Generation syntax
aggregate default
 | (network [(mask mask) | (masklen number)])
 [preference preference] [brief] {
 proto [all | direct | static | kernel | aggregate | proto]
 [(as autonomous system) | (tag tag)
 | (aspath aspath_regexp)]
 restrict ;
 proto [all | direct | static | kernel | aggregate | proto]
 [(as autonomous system) | (tag tag)
 | (aspath aspath_regexp)]
 [preference preference] {
 route_filter [restrict | (preference preference)] ;
 } ;
} ;

generate default
 | (network [(mask mask) | (masklen number)])
 [preference preference] {
 [(as autonomous system) | (tag tag)
 | (aspath aspath_regexp)]
 restrict ;
 proto [all | direct | static | kernel | aggregate | proto]
 [(as autonomous system) | (tag tag)
 | (aspath aspath_regexp)]
 [preference preference] {
 route_filter [restrict | (preference preference)] ;
 } ;
} ;

Routes that match the route filters are called contributing routes. They are ordered according to the
aggregation preference that applies to them. If there are more than one contributing routes with the same

Files Reference 507

aggregating preference, the route's own preferences are used to order the routes. The preference of the
aggregate route will be that of contributing route with the lowest aggregate preference.

Item Description

preference preference Specifies the preference to assign to the resulting
aggregate route. The default preference is 130.

brief Used to specify that the AS path should be truncated
to the longest common AS path. The default is to build
an AS path consisting of SETs and SEQUENCEs of all
contributing AS paths.

proto proto In addition to the special protocols listed, the
contributing protocol may be chosen from among any of
the ones supported (and currently configured into) gated.

as autonomous_system Restrict selection of routes to those learned from the
specified autonomous system.

tag tag Restrict selection of routes to those with the specified
tag.

aspath aspath_regexp Restrict selection of routes to those that match the
specified AS path.

restrict Indicates that these routes are not to be considered as
contributors of the specified aggregate. The specified
protocol may be any of the protocols supported by the
gated daemon.

route_filter See the section on Route Filters for more detail.

A route may only contribute to an aggregate route that is more general than itself; it must match the
aggregate under its mask. Any given route may only contribute to one aggregate route, which will be the
most specific configured, but an aggregate route may contribute to a more general aggregate.

Route Filters

All the formats allow route filters as shown below. See the section on route filters for a detailed
explanation of how they work. When no route filtering is specified (that is, when restrict is specified
on the first line of a statement), all routes from the specified source will match that statement. If any
filters are specified, only routes that match the specified filters will be considered as contributors. Put
differently, if any filters are specified, an all restrict ; is assumed at the end of the list.

network [exact | refines]
 network mask mask [exact | refines]
 network masklen number [exact | refines]
 default
 host host

Preference
Preference is the value the gated daemon uses to order preference of routes from one protocol or peer
over another. Preference can be set in the gated.conf configuration file in several different configuration
statements.

Preference can be set based on network interface over another, from one protocol over another, or from
one remote gateway over another.

Preference may not be used to control the selection of routes within an IGP, this is accomplished
automatically by the protocol based on metric. Preference may be used to select routes from the same
EGP learned from different peers or autonomous systems.

508 AIX Version 7.1: Files Reference

Each route has only one preference value associated with it, even though preference can be set at many
places in the configuration file. Simply, the last or most specific preference value set for a route is the
value used. The preference value is an arbitrarily assigned value used to determine the order of routes
to the same destination in a single routing database. The active route is chosen by the lowest preference
value.

Some protocols implement a second preference (preference2), sometimes refered to as a tie-breaker.

Selecting a Route
• The route with the best (numerically smallest) preference is preferred.
• If the two routes have the same preference, the route with the best (numerically smallest) preference2

(also known as a tie-breaker) is preferred.
• A route learned from a IGP is preferred to a route learned from an EGP. Least preferred is a route

learned indirectly by an IGP from an EGP.
• If AS path information is available it is used to help determine the most preferred route.

– A route with an AS path is preferred over one without an AS path.
– If the AS paths and origins are identical, the route with the lower metric is preferred.
– A route with an AS path origin of IGP is preferred over a route with an AS path origin of EGP. Least

preferred is an AS path with an unknown origin.
– A route with a shorter AS path is preferred.

• If both routes are from the same protocol and AS, the one with the lowest metric is preferred.
• The route with the lowest numeric next-hop address is used.

Assigning Preferences
A default preference is assigned to each source from which the gated daemon receives routes. Preference
values range from 0 to 255 with the lowest number indicating the most preferred route.

The following table summarizes the default preference values for routes learned in various ways. The
table lists the statements (some of these are clauses within statements) that set preference, and shows
the types of routes to which each statement applies. The default preference for each type of route is
listed, and the table notes preference precedence between protocols. The narrower the scope of the
statement, the higher precedence its preference value is given, but the smaller the set of routes it affects.

 Preference Of Defined by Statement Default
 direct connnected networks interface 0
 OSPF routes ospf 10
 IS-IS level 1 routes isis level 1 15
 IS-IS level 2 routes isis level 2 18
 internally generated default gendefault 20
 redirects redirect 30
 routes learned via route socket kernel 40
 static routes from config static 60
 ANS SPF (SLSP) routes slsp 70
 HELLO routes hello 90
 RIP routes rip 100
 point-to-point interface 110
 routes to interfaces that are down interfaces 120
 aggregate/generate routes aggregate/generate 130
 OSPF AS external routes ospf 150
 BGP routes bgp 170
 EGP EGP 200

Sample Preference Specifications

 interfaces {
 interface 138.66.12.2 preference 10 ;
 } ;
 rip yes {
 preference 90 ;

Files Reference 509

 } ;
 import proto rip gateway 138.66.12.1 preference 75 ;

In these statements, the preference applicable to routes learned via RIP from gateway 138.66.12.1 is
75. The last preference applicable to routes learned via RIP from gateway 128.66.12.1 is defined in
the accept statement. The preference applicable to other RIP routes is found in the rip statement. The
preference set on the interface statement applies only to the route to that interface.

The Router Discovery Protocol
The Router Discovery Protocol is an IETF standard protocol used to inform hosts of the existence of
routers. It is used in place of, or in addition to statically configured default routes in hosts.

The protocol is split into two portions, the server portion which runs on routers, and the client portion that
runs on hosts. The gated daemon treats these much like two separate protocols, only one of which may
be enabled at a time.

The Router Discovery Server
The Router Discovery Server runs on routers and announces their existence to hosts. It does this
by periodically multicasting or broadcasting a Router Advertisement to each interface on which it is
enabled. These Router Advertisements contain a list of all the routers addresses on a given interface and
their preference for use as default routers.

Initially, these Router Advertisements occur every few seconds, then fall back to every few minutes. In
addition, a host may send a Router Solicitation to which the router will respond with a unicast Router
Advertisement (unless a multicast or broadcast advertisement is due momentarily).

Each Router Advertisement contains an Advertisement Lifetime field indicating for how long the advertised
addresses are valid. This lifetime is configured such that another Router Advertisement will be sent before
the lifetime has expired. A lifetime of zero is used to indicate that one or more addresses are no longer
valid.

The Router Advertisements are by default sent to the all-hosts multicast address 224.0.0.1. However,
the use of broadcast may be specified. When Router Advertisements are being sent to the all-hosts
multicast address, or an interface is configured for the limited-broadcast address 255.255.255.255, all
IP addresses configured on the physical interface are included in the Router Advertisement. When the
Router Advertisements are being sent to a net or subnet broadcast, only the address associated with that
net or subnet is included.

The Router Discovery Server Statement
routerdiscovery server yes | no | on | off [{
 traceoptions trace_options ;
 interface interface_list
 [minadvinterval time]
 [maxadvinterval time]
 [lifetime time]
 ;
 address interface_list
 [advertise] | [ignore]
 [broadcast] | [multicast]
 [ineligible] | [preference preference]
 ;
}] ;

traceoptions trace_options
Specifies the Router Discovery tracing options. (See Trace Statements and the Router Discovery
specific tracing options below.)

510 AIX Version 7.1: Files Reference

interface interface_list
Specifies the parameters that apply to physical interfaces. Note a slight difference in convention from
the rest of the gated daemon, interface specifies just physical interfaces (such as en0 and tr0), while
address specifies protocol (in this case IP) addresses.

Interface parameters are:

maxadvinterval time
The maximum time allowed between sending broadcast or multicast Router Advertisements from
the interface. Must be no less than 4 and no more than 30:00 (30 minutes or 1800 seconds). The
default is 10:00 (10 minutes or 600 seconds).

minadvinterval time
The minimum time allowed between sending unsolicited broadcast or multicast Router
Advertisements from the interface. Must be no less than 3 seconds and no greater than
maxadvinterval. The default is 0.75 * maxadvinterval.

lifetime time
The lifetime of addresses in a Router Advertisement. Must be no less than maxadvinterval
and no greater than 2:30:00 (two hours, thirty minutes or 9000 seconds). The default is 3 *
maxadvinterval.

address interface_list
Specifies the parameters that apply to the specified set of addresses on this physical interface. Note a
slight difference in convention from the rest of gated.conf; interface specifies just physical interfaces
(such as en0 and tr0), while address specifies protocol (in this case IP) addresses.
advertise

Specifies that the specified address(es) should be included in Router Advertisements. This is the
default.

ignore
Specifies that the specified address(es) should not be included in Router Advertisements.

broadcast
Specifies that the given address(es) should be included in a broadcast Router Advertisement
because this system does not support IP multicasting, or some hosts on attached network do not
support IP multicasting. It is possible to mix addresses on a physical interface such that some
are included in a broadcast Router Advertisement and some are included in a multicast Router
Advertisement. This is the default if the router does not support IP multicasting.

multicast
Specifies that the given address(es) should only be included in a multicast Router Advertisement.
If the system does not support IP multicasting the address(es) will not be included. If the
system supports IP multicasting, the default is to include the address(es) in a multicast Router
Advertisement if the given interface supports IP multicasting, if not the address(es) will be
included in a broadcast Router Advertisement.

preference preference
The preferability of the address(es) as a default router address, relative to other router addresses
on the same subnet. A 32-bit, signed, twos-complement integer, with higher values meaning more
preferable. Note that hex 80000000 may only be specified as ineligible. The default is 0.

ineligible
Specifies that the given address(es) will be assigned a preference of (hex 80000000) that means
that it is not eligible to be the default route for any hosts.

This is useful when the address(es) should not be used as a default route, but are given as the
next hop in an ICMP redirect. This allows the hosts to verify that the given addresses are up and
available.

The Router Discovery Client
A host listens for Router Advertisements via the all-hosts multicast address (224.0.0.2), If IP
multicasting is available and enabled, or on the interface's broadcast address. When starting up, or when

Files Reference 511

reconfigured, a host may send a few Router Solicitations to the all-routers multicast address, 224.0.0.2,
or the interface's broadcast address.

When a Router Advertisement with non-zero lifetime is received, the host installs a default route to each
of the advertised addresses. If the preference ineligible, or the address is not on an attached interface,
the route is marked unusable but retained. If the preference is usable, the metric is set as a function of
the preference such that the route with the best preference is used. If more than one address with the
same preference is received, the one with the lowest IP address will be used. These default routes are not
exportable to other protocols.

When a Router Advertisement with a zero lifetime is received, the host deletes all routes with next-hop
addresses learned from that router. In addition, any routers learned from ICMP redirects pointing to these
addresses will be deleted. The same will happen when a Router Advertisement is not received to refresh
these routes before the lifetime expires.

The Router Discovery Client Statement
routerdiscovery client yes | no | on | off [{
 traceoptions trace_options ;
 preference preference ;
 interface interface_list
 [enable] | [disable]
 [broadcast] | [multicast]
 [quiet] | [solicit]
 ;
}] ;

traceoptions trace_options
Specifies the tracing options for Router Discovery Client. (See Trace Statements and the Router
Discovery Client specific tracing options below.)

preference preference ;
Specifies the preference of all Router Discovery default routes. The default is 55.

interface interface_list
Specifies the parameters that apply to physical interfaces. Note a slight difference in convention from
the rest of gated, interface specifies just physical interfaces (such as en0 and tr0). The Router
Discovery Client has no parameters that apply only to interface addresses.
enable

Specifies that Router Discovery should be performed on the specified interface(s). This is the
default.

disable
Specifies that Router Discovery should not be performed on the specified interface(s).

broadcast
Specifies that Router Solicitations should be broadcast on the specified interface(s). This is the
default if IP multicast support is not available on this host or interface.

multicast
Specifies that Router Solicitations should be multicast on the specified interface(s). If IP multicast
is not available on this host and interface, no solicitation will be performed. The default is to
multicast Router Solicitations if the host and interface support it, otherwise Router Solicitations
are broadcast.

quiet
Specifies that no Router Solicitations will be sent on this interface, even though Router Discovery
will be performed.

solicit
Specifies that initial Router Solicitations will be sent on this interface. This is the default.

Tracing options

512 AIX Version 7.1: Files Reference

The Router Discovery Client and Server support the state trace flag that traces various protocol
occurrences.

Item Description

state State transitions

The Router Discovery Client and Server do not directly support any packet tracing options, tracing of
router discovery packets is enabled via the ICMP Statement.

Route Filtering
Routes are filtered by specifying configuration language that will match a certain set of routes by
destination, or by destination and mask. Among other places, route filters are used on martians,
import and export statements.

The action taken when no match is found is dependent on the context, for instance import and export
route filters assume an all reject ; at the end of a list.

A route will match the most specific filter that applies. Specifying more than one filter with the same
destination, mask and modifiers will generate an error.

Filtering syntax

 network [exact | refines]
 network mask mask [exact | refines]
 network masklen number [exact | refines]
 all
 default
 host host

These are all the possible formats for a route filter. Not all of these formats are available in all places, for
instance the host and default formats are not valid for martians.

In most cases it is possible to specify additional parameters relevent to the context of the filter. For
example, on a martian statement it is possible to specify the allow keyword, on an import statement
you can specify a preference, and on a export you can specify a metric.

network [exact | refines]
network mask mask [exact | refines]
network masklen number [exact | refines]

Matching usually requires both an address and a mask, although the mask is implied in the shorthand
forms listed below. These three forms vary in how the mask is specified. In the first form, the mask is
implied to be the natural mask of the network. In the second, the mask is explicitly specified. In the
third, the mask is specified by the number of contiguous one bits.

If no additional parameters are specified, any destination that falls in the range given by the network
and mask is matched, the mask of the destination is ignored. If a natural network is specified, the
network, any subnets, and any hosts will be match. The two optional modifiers cause the mask of the
destination to be considered also:

exact
This parameter specifies that the mask of the destination must match the supplied mask exactly.
This is used to match a network, but no subnets or hosts of that network.

refines
Specifies that the mask of the destination must be more specified (that is, longer) than the filter
mask. This is used to match subnets and/or hosts of a network, but not the network.

all
This entry matches anything. It is equivalent to:

0.0.0.0 mask 0.0.0.0

Files Reference 513

default
Matches the default route. To match, the address must be the default address and the mask must be
all zeros. This is equivalent to:

0.0.0.0 mask 0.0.0.0 exact

host host
Matches the specific host. To match, the address must exactly match the specified host and the
network mask must be a host mask (that is, all ones). This is equivalent to:

host mask 255.255.255 exact

Matching AS Paths
An AS path is a list of autonomous_systems that routing information has passed through to get to this
router, and an indicator of the origin of the AS path. This information can be used to prefer one path to a
destination network over another. The primary method for doing this with gated.conf is to specify a list of
patterns to be applied to AS paths when importing and exporting routes.

Each autonomous system that a route passed through prepends its AS number to the beginning of the AS
path.

The origin information details the completeness of AS path information. An origin of IGP indicates the
route was learned from an interior routing protocol and is most likely complete. An origin of EGP indicates
the route was learned from an exterior routing protocol that does not support AS paths (EGP, for example)
and the path is most likely not complete. When the path information is definitely not complete, an origin of
incomplete is used.

AS path regular expressions are defined in RFC 1164 section 4.2.

AS Path Matching Syntax
An AS path is matched using the following syntax:

aspath aspath_regexp origin any | ([IGP] [EGP] [incomplete])

This specifies that an AS matching the aspath_regexp with the specified origin is matched.

AS Path Regular Expressions
Technically, an AS path regular expression is a regular expression with the alphabet being the set of AS
numbers. An AS path regular expression is composed of one or more AS paths expressions. An AS path
expressions is composed of AS path terms and AS path operators.

AS Path Terms
An AS path term is one of the following three objects:

autonomous_system
.
(aspath_regexp)

Item Description

autonomous_system Is any valid autonomous system number, from one through 65534
inclusive.

. Matches any autonomous system number.

(aspath_regexp) Contains parentheses group subexpressions—an operator, such as *
or ? works on a single element or on a regular expression enclosed in
parentheses.

514 AIX Version 7.1: Files Reference

AS Path Operators
An AS path operator is one of the following:

aspath_term {m,n}
aspath_term {m}
aspath_term {m,}
aspath_term *
aspath_term +
aspath_term ?
aspath_term | aspath_term

Item Description

aspath_term {m,n} a regular expression followed by {m,n} (where m and n are
both non-negative integers and m <= n) means at least m
and at most n repetitions.

aspath_term {m} a regular expression followed by {m} (where m is a positive
integer) means exactly m repetitions.

aspath_term {m,} a regular expression followed by {m,} (where m is a
positive integer) means m or more repetitions.

aspath_term * an AS path term followed by * means zero or more
repetitions. This is shorthand for {0,}.

aspath_term + a regular expression followed by + means one or more
repetitions. This is shorthand for {1,}.

aspath_term ? a regular expression followed by ? means zero or one
repetition. This is shorthand for {0,1}.

aspath_term | aspath_term matches the AS term on the left, or the AS term on the right.

gateways File Format for TCP/IP

Purpose
Specifies Internet routing information to the routed daemon on a network.

Description
The /etc/gateways file identifies gateways for the routed daemon. Ordinarily, the daemon queries the
network and builds routing tables. The daemon builds the tables from routing information transmitted
by other hosts directly connected to the network. Gateways that the daemon cannot identify through its
queries are known as distant gateways. Such gateways should be identified in the gateways file, which
the routed daemon reads when it starts.

The general format of an entry (contained on a single line) in the gateways file is:

Following is a brief description of each element in an gateways file entry:

Item Description

Destination A keyword that indicates whether the route is to a network or a specific host. The
two possible keywords are net and host.

Name1 The name associated with Destination. The Name1 variable can be either a
symbolic name (as used in the /etc/hosts or /etc/networks file) or an Internet
address specified in dotted-decimal format.

gateway An indicator that the following string identifies the gateway host.

Name2 The name or address of the gateway host to which messages should be
forwarded.

Files Reference 515

Item Description

metric An indicator that the next string represents the hop count to the destination host
or network.

Value The hop count, or number of gateways from the local network to the destination
network.

Type A keyword that indicates whether the gateway should be treated as active,
passive, or external. The three possible keywords are:

active An active gateway is treated like a network interface. That is, the gateway is
expected to exchange Routing Information Protocol (RIP) information. As long as
the gateway is active, information about it is maintained in the internal routing
tables. This information is included with any routing information transmitted
through RIP. If the gateway does not respond for a period of time, the associated
route is deleted from the internal routing tables.

passive A passive gateway is not expected to exchange RIP information. Information
about the gateway is maintained in the routing tables indefinitely and is included
with any routing information transmitted through RIP.

external An external gateway is identified to inform the routed daemon that another
routing process will install such a route and that alternative routes to that
destination should not be installed. Information about external gateways is not
maintained in the internal routing tables and is not transmitted through RIP.

Note: These routes must be to networks.

Examples
1. To specify a route to a network through a gateway host with an entry in the gateways file, enter a line

in the following format:

net net2 gateway host4 metric 4 passive

This example specifies a route to a network, net2, through the gateway host4. The hop count
metric to net2 is 4 and the gateway is treated as passive.

2. To specify a route to a host through a gateway host with an entry in the gateways file, enter a line in
the following format:

host host2 gateway host4 metric 4 passive

This example specifies a route to a host, host2, through the gateway host4. The hop count metric
to host2 is 4 and the gateway is treated as passive.

3. To specify a route to a host through an active Internet gateway with an entry in the gateways file, enter
a line in the following format:

host host10 gateway 192.100.11.5 metric 9
active

This example specifies a route to a specific host, host10, through the gateway 192.100.11.5. The
hop count metric to host10 is 9 and the gateway is treated as active

4. To specify a route to a host through a passive Internet gateway with an entry in the gateways file,
enter a line in the following format:

host host10 gateway 192.100.11.5 metric 9
passive

5. To specify a route to a network through an external gateway with an entry in the gateways file, enter a
line in the following format:

516 AIX Version 7.1: Files Reference

net net5 gateway host7 metric 11 external

This example specifies a route to a network, net5, through the gateway host7. The hop count
metric to net5 is 11 and the gateway is treated as external (that is, it is not advertised through RIP
but instead through an unspecified routing protocol).

Files

Item Description

/usr/lpp/tcpip/samples/gateways Contains the sample gateways file, which also
contains directions for its use.

Related information
routed command
TCP/IP routing gateways
TCP/IP protocols
TCP/IP routing

hosts File Format for TCP/IP

Purpose
Defines the Internet Protocol (IP) name and address of the local host and specifies the names and
addresses of remote hosts.

Description
The /etc/hosts file contains the Internet Protocol (IP) host names and addresses for the local host and
other hosts in the Internet network. This file is used to resolve a name into an address (that is, to translate
a host name into its Internet address). When your system is using a name server, the file is accessed only
if the name server cannot resolve the host name.

When the local host is using the DOMAIN protocol, the resolver routines query a remote DOMAIN name
server before searching this file. In a flat network with no name server, the resolver routines search this
file for host name and address data.

Entries in the hosts file have the following format:

Address HostName

In this entry, Address is an IP address specified in either dotted decimal or octal format, and HostName
is the name of a host specified in either relative or absolute domain name format. If you specify the
absolute domain name, the portion of the name preceding the first . (period) has a maximum length of
63 characters and cannot contain blanks. For both formats of the name, the total number of characters
cannot exceed 255 characters, and each entry must be contained on one line. Multiple HostNames (or
aliases) can be specified.

Note: Valid host names or alias host names must contain at least one alphabetic character. If you choose
to specify a host name or alias that begins with an x followed by any hexadecimal digit (0-f), the host
name or alias must also contain at least one additional letter that cannot be expressed as a hexadecimal
digit. The system interprets a leading x followed by a hexadecimal digit as the base 16 representation of
an address, unless there is at least one character in the host name or alias that is not a hexadecimal digit.
Thus, xdeer would be a valid host name, whereas xdee would not.

This file can contain two special case entries that define reserved (or well-known) host names. These host
names are:

Files Reference 517

Item Description

timeserver Identifies a remote time server host. This host name is used by the setclock
command.

printserver Identifies the default host for receiving print requests.

In this hosts file entry, the Address parameter is an IP address specified in either dotted decimal or
octal format, and each HostName parameter is a host name specified in either relative or absolute
domain name format. These never have the full domain name listed; they are always listed as either
printserver or timeserver.

Note: The local /etc/resolv.conf file defines where DOMAIN name servers are, and the name server file
defines where Internet services are available. Although it is not necessary to define well-known hosts in
the hosts file when using the DOMAIN protocol, it may be useful if they are not defined by your name
server.

Entries in this file can be made by using the System Management Interface Tool (SMIT) or the hostent
command, or by creating and editing the file with an editor.

Examples
In these examples, the name of the local host is the first line in each hosts file. This is to help you identify
the host whose file is being displayed. Your host does not have to be defined on the first line of your hosts
file.

1. The following sample entries might be contained in the hosts files for two different hosts on a network
that is not running a DOMAIN name server:

Host1

185.300.10.1 host1
185.300.10.2 host2
185.300.10.3 host3
185.300.10.4 host4 merlin
185.300.10.5 host5 arthur king
185.300.10.5 timeserver

Host 2

185.300.10.2 host2
185.300.10.1 host1
185.300.10.3 host3
185.300.10.4 host4 merlin
185.300.10.5 host5 arthur king

In this sample network with no name server, the hosts file for each host must contain the Internet
address and host name for each host on the network. Any host that is not listed cannot be accessed.
The host at Internet address 185.300.10.4 in this example can be accessed by either name: host4
or merlin. The host at Internet address 185.300.10.5 can be accessed by any of the names host5,
arthur, or king.

2. Following is a sample entry in the hosts files for a different host on a DOMAIN network, but the host is
not the name server, and the host is keeping some additional host names for a smaller network:

Host 5

128.114.1.15 name1.xyz.aus.century.com name1
128.114.1.14 name2.xyz.aus.century.com name2
128.114.1.16 name3.xyz.aus.century.com name3

In this sample, host5 is not a name server, but is attached to a DOMAIN network. The hosts file
for host5 contains address entries for all hosts in the smaller network, and the DOMAIN data files
contain the DOMAIN database. The entries in thehost5 hosts file that begin with 128.114 indicate
that host5 resolves names for hosts on the smaller network.

518 AIX Version 7.1: Files Reference

Related reference
ethers File for NIS
irs.conf File
netsvc.conf File
resolv.conf File Format for TCP/IP
resolv.ldap File Format for TCP/IP
Related information
hostent command
setclock command
gethostbyaddr
Domain Name Protocol (DOMAIN)
IP command

hosts.equiv File Format for TCP/IP

Purpose
Specifies remote systems that can execute commands on the local system.

Description
The /etc/hosts.equiv file, along with any local $HOME/.rhosts files, defines the hosts (computers on
a network) and user accounts that can invoke remote commands on a local host without supplying a
password. A user or host that is not required to supply a password is considered trusted.

When a local host receives a remote command request, the appropriate local daemon first checks
the /etc/hosts.equiv file to determine if the request originates with a trusted user or host. For example,
if the local host receives a remote login request, the rlogind daemon checks for the existence of a
hosts.equiv file on the local host. If the file exists but does not define the host or user, the system
checks the appropriate $HOME/.rhosts file. This file is similar to the /etc/hosts.equiv file, except that it
is maintained for individual users.

Both files, hosts.equiv and .rhosts must have permissions denying write access to group and other. If
either group or other have write access to a file, that file will be ignored.

Do not give write permission to the /etc/hosts.equiv file to group and others. Permissions of the /etc/
hosts.equiv file should be set to 600 (read and write by owner only).

If a remote command request is made by the root user, the /etc/hosts.equiv file is ignored and only
the /.rhosts file is read.

Note: Be careful when establishing trusted relationships. Networks that use trusted facilities can be less
secure than those that do not.

Granting and Denying Trust

You grant trust from a local host to a remote host or remote user. The local machine's /etc/hosts.equiv
file contains entries for each trusted host or user. The format of an entry is:

HostName [UserName]

The HostName field specifies the name of the host to trust. The UserName field specifies the name of the
user on that remote host to trust. The UserName field is optional.

You can use the + (plus sign) as a wildcard in either the HostName or UserName field to grant trust to all
users from a particular host or from all hosts that a specific user has an account on. To grant trust to every
user on every machine on the network, place a plus sign (+) at the beginning of the file.

Files Reference 519

Note: When granting access through the /etc/hosts.equiv file, extreme caution must be used. Lines that
include a UserName, either as an individual user, a netgroup, or the + (plus sign used as a wildcard
character), permit the qualifying users to access the system as any non-root local user.

You deny a host or user trust by omitting them from the /etc/hosts.equiv file altogether. By omitting the
host or user, you imply they are not trusted. This is the most secure way to deny trust. Otherwise, you can
explicitly deny trust to a specific host or user by using the - (minus sign). The format to explicitly deny a
host is:

-HostName

The format to explicitly deny a specific user from a host is:

HostName [-UserName]

Using NIS with the /etc/hosts.equiv file

If your network uses the Network Information Services (NIS), you can use netgroups in place of either the
HostName or UserName field. The system resolves the netgroup depending on which field the netgroup
replaces. For example, if you place a netgroup in the HostName field, the system resolves the hosts
component of the netgroup. If the netgroup appears in the UserName field, the user component is
resolved. Use the following format to grant trust to a netgroup:

+@NetGroup

To deny trust, use the following:

-@NetGroup

Refer to the NIS netgroup file for more information on netgroups.

Ordering Entries in the /etc/hosts.equiv File

The order of entries in the /etc/hosts.equiv file is important. When verifying trust, the system parses
the /etc/hosts.equiv file from top to bottom. When it encounters an entry that matches the host or user
attempting a remote command, the system stops parsing the file and grants or denies trust based on the
entry. Any additional entries that appear later in the file are ignored.

Examples
1. To allow all the users on remote hosts emerald and amethyst to log in to host diamond, enter:

emerald
amethyst

These entries in diamond's /etc/hosts.equiv file allow all the users on emerald and amethyst with
local accounts on diamond to remotely log in without supplying a password.

2. To allow only the user gregory to remotely login to diamond from host amethyst, enter:

emerald
amethyst gregory

This entry in diamond's /etc/hosts.equiv file forces all the users on amethyst, except for gregory,
to supply a password when remotely logging in to diamond.

3. To grant trust to peter regardless of the host he attempts to execute remote commands from, enter:

emerald
amethyst gregory
+ peter

This entry in diamond's /etc/hosts.equiv file allows peter to execute remote commands on
diamond from any host that he has an account on.

520 AIX Version 7.1: Files Reference

4. To allow all hosts in the century netgroup to execute remote commands on host diamond, enter:

emerald
amethyst gregory
+ peter
+@century

This entry in diamond's /etc/hosts.equiv file grants trust to all hosts in the century netgroup. This
means that any user with an account on a century host and an account on diamond can execute
remote commands on diamond without supplying a password.

5. To allow all the users in the engineers netgroup with accounts on citrine to execute remote
commands on host diamond, enter:

emerald
amethyst gregory
+ peter
+@century
citrine +@engineers

This entry in diamond's /etc/hosts.equiv file grants trust to all of netgroup engineers users with an
account on citrine.

6. To grant trust to all users with accounts on hosts in the servers netgroup that are users in the
sysadmins netgroup, enter:

emerald
amethyst gregory
+ peter
+@century
citrine +@engineers
+@servers +@sysadmins

This entry in diamond's /etc/hosts.equiv file grants trust to any user in the sysadmins netgroup who
is remotely executing commands from hosts that are in the servers netgroup.

7. To force an engineers netgroup user lydia who has an account on citrine to use a password
while allowing all other engineers users not to, enter:

emerald
amethyst gregory
+ peter
+@century
citrine -lydia
citrine +@engineers
+@servers +@sysadmins

This entry in diamond's /etc/hosts.equiv file grants trust to all of netgroup engineers users, except
for lydia, who must supply a password. The order of entries is very important. Recall that the system
grants trust based on the first entry it encounters. If the order of the entries appeared as follows:

emerald
amethyst gregory
+ peter
+@century
citrine +@engineers
citrine -lydia
+@servers +@sysadmins

User lydia, as a member of engineers, would be allowed to execute remote commands on
diamond even though a later entry explicitly denies her trust.

Files

Item Description

$HOME/.rhosts Specifies remote users who can use a local-user account.

Files Reference 521

Related reference
pam_rhosts_auth Module
netgroup File for NIS
.rhosts File Format for TCP/IP
hosts.lpd File Format for TCP/IP
Related information
lpd command
rcp command
rsh command
TCP/IP name resolution

hosts.lpd File Format for TCP/IP

Purpose
Specifies remote hosts that can print on the local host.

Description
The /etc/hosts.lpd file defines which remote systems are permitted to print on the local system. The
remote systems listed in this file do not have the full privileges given to files listed in the /etc/hosts.equiv
file.

Host-Name Field

The hosts.lpd file supports the following host-name entries:

+
HostName
-HostName
+@NetGroup
-@NetGroup

A + (plus sign) signifies that any host on the network can print using the local host. The HostName entry
is the name of a remote host and signifies that HostName can print, using the local host. A -HostName
entry signifies the host is not allowed to print using the local host. A +@NetGroup or -@NetGroup entry
signifies all hosts in the netgroup or no hosts in the netgroup, respectively, are allowed to print using the
local host.

The @NetGroup parameter is used by Network Information Service (NIS) for grouping. Refer to the NIS
netgroup file for more information on netgroups.

Entries in this file can be made using the System Management Interface Tool (SMIT) or the ruser
command.

Note: Comments must be entered on separate lines in the hosts.lpd file. Comments should not be
entered on lines containing host names.

To implement hosts.lpd file changes without restarting the system, use the System Resource Controller
(SRC) refresh command.

Examples
1. To allow remote specified hosts to print using a local host, enter:

hamlet
lear
prospero
setebos

522 AIX Version 7.1: Files Reference

These entries in the local host's /etc/hosts.lpd file allow hosts hamlet, lear, prospero, and
setebos to print files, using the local host.

2. To prevent a remote host from printing using a local host, enter:

-hamlet

This entry in the local host's /etc/hosts.lpd file prevents host hamlet from printing files, using the
local host.

3. To allow all hosts in an NIS netgroup to print using the local host, enter:

+@century

This entry in the local host's /etc/hosts.lpd file allows all hosts in the century netgroup to print files,
using the local host. The @ (at sign) signifies the network is using NIS grouping.

Files

Item Description

/etc/hosts.equiv Specifies remote systems that can execute commands on the local system.

Related reference
netgroup File for NIS
hosts.equiv File Format for TCP/IP
Related information
lpd command
ruser command
Managing and Using Remote Printers and Queues

hty_config File Format

Purpose
Specifies the number of htys to configure on a Network Terminal Accelerator adapter.

Description
The /etc/hty_config file supplies the hty_load command with information to define ports for a specified
device. The System Management Interface Tool (SMIT) writes to this file when hty devices are configured,
specifying the device by supplying the adapter minor number for the device. Both the number of ports and
the device are specified in a three-column table that can have multiple lines.

The Cluster Address column defines the cluster controller's network address. For the boards, the
cluster address should be set to 1. Any other value may cause unpredictable results.

After you have configured the Network Terminal Accelerator adapter with SMIT, the hty_config file
appears similar to the following:

Adapter Cluster Number
minor # address of ports
------- ------- --------
0 1 256
1 1 700
2 1 85

In this example, the host has three adapters, the first of which is configured for 256 hty devices, the
second for 700, and the third for 85.

Related information
hty_load command

Files Reference 523

inetd.conf File Format for TCP/IP

Purpose
Defines how the inetd daemon handles Internet service requests.

Description
The /etc/inetd.conf file is the default configuration file for the inetd daemon. This file enables you to
specify the daemons to start by default and supply the arguments that correspond to the desired style of
functioning for each daemon. This file is part of TCP/IP in Network Support Facilities.

If you change the /etc/inetd.conf file, run the refresh -s inetd or kill -1 InetdPID command to inform the
inetd daemon of the changes to its configuration file. The inetd.conf file specifies which daemons start by
default and supplies arguments determining the style of functioning for each daemon.

The following daemons are controlled by the inetd daemon:

• comsat
• ftpd
• telnetd
• rshd
• rlogind
• rexecd
• fingerd
• tftpd
• talkd
• uucpd

The ftpd, rlogind, rexecd, rshd, talkd, telnetd, and uucpd daemons are started by default. The tftpd,
fingerd, and comsat daemons are not started by default unless they are uncommented in the /etc/
inetd.conf file.

Service Requests
The following Internet service requests are supported internally by the inetd daemon and are generally
used for debugging:

Item Description

ECHO Returns data packets to a client host.

DISCARD Discards received data packets.

CHARGEN Discards received data packets and sends predefined or random data.

DAYTIME Sends the current date and time in user-readable form.

TIME Sends the current date and time in machine-readable form.

The inetd daemon reads its configuration file only when the inetd daemon starts, when the inetd daemon
receives a SIGHUP signal, or when the SRC refresh -s inetd command is entered. Each line in the inetd
configuration file defines how to handle one Internet service request only.

Each line is of the form:

ServiceName SocketType ProtocolName Wait/NoWait UserName ServerPath ServerArgs

These fields must be separated by spaces or tabs and have the following meanings:

524 AIX Version 7.1: Files Reference

Item Description

ServiceName Contains the name of an Internet service defined in the etc/services file.
For services provided internally by the inetd daemon, this name must be the
official name of the service. That is, the name must be identical to the first
entry on the line that describes the service in the /etc/services file.

SocketType Contains the name for the type of socket used for the service. Possible values
for the SocketType parameter are:
stream

Specifies that a stream socket is used for the service.
dgram

Specifies that a datagram socket is used for the service
sunrpc_tcp

Specifies that a Sun remote procedure call (RPC) socket is used for the
service, over a stream connection.

sunrpc_udp
Specifies that a Sun RPC socket is used for the service, over a datagram
connection.

ProtocolName Contains the name of an Internet protocol defined in the /etc/protocols file.
For example, use the tcp value for a service that uses TCP/IP and the udp
value for a service that uses the User Datagram Protocol (UDP).

Wait/NoWait/SRC Contains either the wait, the nowait, or the SRC instruction for datagram
sockets and the nowait instruction for stream sockets. The Wait/NoWait/SRC
field determines whether the inetd daemon waits for a datagram server
to release the socket before continuing to listen at the socket. The SRC
instruction works like wait, but instead of forking and waiting for the child
to die, it does a startsrc on the subsystem and stores information about the
starting of the service. When the service is removed from the inetd.conf file
and inetd is restarted, the service then has a stopsrc issued to the service
to stop it. If |DEBUG[=level] is specified after wait or nowait, the SO_DEBUG
socket debugging flag will be turned on for this service. If level is specified,
the trace level is set to the specified level; otherwise the level is set to
normal. Valid values for level are min, normal, or detail.

UserName Specifies the user name that the inetd daemon should use to start the server.
This variable allows a server to be given less permission than the root user.

ServerPath Specifies the full path name of the server that the inetd daemon should
execute to provide the service. For services that the inetd daemon provides
internally, this field should be internal.

ServerArgs Specifies the command line arguments that the inetd daemon should use
to execute the server. The maximum number of arguments is five. The first
argument specifies the name of the server used. If the SocketType parameter
is sunrpc_tcp or sunrpc_udp, the second argument specifies the program
name and the third argument specifies the version of the program. For
services that the inetd daemon provides internally, this field should be empty.

Examples
The following are example entries in the /etc/inetd.conf file for an inetd daemon that:

• Uses the ftpd daemon for servicing ftp requests
• Uses the talkd daemon for ntalk requests
• Uses the telnetd daemon for telnet requests, sets the SO_DEBUG flag for sockets used for this service,

and sets the trace level for these sockets to normal.

Files Reference 525

• Provides time requests internally.

ftp;stream tcp nowait root /usr/sbin/ftpd ftpd
ntalk dgram udp wait root /usr/sbin/talkd talkd
telnet stream tcp6 nowait|DEBUG root /usr/sbin/telnetd telnetd -a
time stream tcp nowait root internal
time dgram udp wait root internal

Files

Item Description

etc/services Defines the sockets and protocols used for Internet services.

/etc/protocols Defines the Internet protocols used on the local host.

Related reference
protocols File Format for TCP/IP
services File Format for TCP/IP
Related information
kill command
refresh command
Configuring the inetd daemon

lastlog File Format

Purpose
Defines the last login attributes for users.

Description
The /etc/security/lastlog file is an ASCII file that contains stanzas with the last login attributes for
users. Each stanza is identified by a user name and contains attributes in the Attribute=Value form. Each
attribute is ended by a new-line character, and each stanza is ended by an additional new-line character.

Each stanza can have the following attributes:

Item Description

time_last_login Specifies the number of seconds since the epoch
(00:00:00 GMT, January 1, 1970) since the last
successful login. The value is a decimal integer.

tty_last_login Specifies the terminal on which the user last logged in.
The value is a character string.

host_last_login Specifies the host from which the user last logged in. The
value is a character string.

526 AIX Version 7.1: Files Reference

Item Description

unsuccessful_login_count Specifies the number of unsuccessful login attempts
since the last successful login. The value is a decimal
integer. This attribute works in conjunction with the
user's loginretries attribute, specified in the /etc/
security/user file, to lock the user's account after
a specified number of consecutive unsuccessful login
attempts. Once the user's account is locked, the user
will not be able to log in until the system administrator
resets the user's unsuccessful_login_count attribute to
be less than the value of loginretries. To do this, enter
the following:

chsec -f /etc/security/lastlog -s username
-a \ unsuccessful_login_count=0

time_last_unsuccessful_login Specifies the number of seconds since the epoch
(00:00:00 GMT, January 1, 1970) since the last
unsuccessful login. The value is a decimal integer.

tty_last_unsuccessful_login Specifies the terminal on which the last unsuccessful
login attempt occurred. The value is a character string.

host_last_unsuccessful_login Specifies the host from which the last unsuccessful login
attempt occurred. The value is a character string.

All user database files should be accessed through the system commands and subroutines defined for
this purpose. Access through other commands or subroutines may not be supported in future releases.

The mkuser command creates a user stanza in the lastlog file. The attributes of this user stanza are
initially empty. The field values are set by the login command as a result of logging in to the system. The
lsuser command displays the values of these attributes; the rmuser command removes the user stanza
from this file, along with the user account.

Note: If the /etc/nologin file exists, any user, except root user, cannot login. Any other user login
attempt is considered as unsuccessful, irrespective of correct or incorrect user login credentials, and this
unsuccessful attempt is updated in /etc/security/lastlog file. The /etc/nologin file is deleted
when the system is rebooted.

Security
Access Control: This command should grant read (r) access to the root user, members of the security
group, and others consistent with the security policy for the system. Only the root user should have write
(w) access.

Examples
A typical stanza is similar to the following example for user bck:

bck:
 time_last_unsuccessful_login = 732475345
 tty_last_unsuccessful_login = tty0
 host_last_unsuccessful_login = waterski
 unsuccessful_login_count = 0
 time_last_login = 734718467
 tty_last_login = lft/0
 host_last_login = waterski

Files Reference 527

Files

Item Description

/etc/security/lastlog Specifies the path to the lastlog file.

/etc/group Contains the basic attributes of groups.

/etc/security/group Contains the extended attributes of groups.

/etc/passwd Contains the basic attributes of users.

/etc/security/passwd Contains password information.

/etc/security/environ Contains the environment attributes of users.

/etc/security/user Contains the extended attributes of users.

/etc/security/limits Contains the process resource limits of users.

Related information
login command
rmuser command
su command
getuserattr subroutine

ldap.cfg File Format

Purpose
The secldapclntd LDAP client side daemon configuration file.

Description
The /etc/security/ldap/ldap.cfg file contains information for the secldapclntd daemon to start and
function properly as well as information for fine tuning the daemon's performance. The /etc/security/
ldap/ldap.cfg file is updated by the mksecldap command at client setup.

The /etc/security/ldap/ldap.cfg file may contain the following fields:

Item Description

ldapservers Specifies a comma separated list of Lightweight Directory Access Protocol
(LDAP) Security Information Servers. These servers can either be the primary
server or the replica of the primary server. The first server in the list has the
highest priority.

binddn Specifies the distinguished name (DN) LDAP used to bind to the LDAP Security
Information Server(s).

bindpwd Specifies the password for the binddn.

authtype Specifies the authentication mechanism to use. Valid values are unix_auth and
ldap_auth. The default is unix_auth.

• unix_auth - Retrieves the user password from LDAP and authenticate the user
locally.

• ldap_auth - Binds to the LDAP server as the authenticating user in order to
authenticate.

Note: Password will be sent in clear text to the LDAP server for ldap_auth
authentication mechanism. Use of SSL is strongly encouraged.

528 AIX Version 7.1: Files Reference

Item Description

useSSL Specifies whether to use the SSL communication. Valid values are yes, SSL, TLS,
NONE and no. The default value is no.

Note: You will need the SSL key and the password to the key to enable this
feature.

ldapsslkeyf Specifies the full path of the SSL or TLS key.

ldapsslkeypwd Specifies the password of the SSL or TLS key.

Note: Comment out this line to use stashed password. The password stash file
must reside in the same directory as the SSL, or TLS key, and must have the
same name as the key file but with an extension of .sth instead of .kdb.

useKRB5 Specifies whether to use Kerberos for the initial bind to the server. Valid values
are yes or no. The default is no.

Note: The Kerberos principal, key path and kinit command directory are required
to enable this feature. If Kerberos bind is enabled then the binddn and bindpwd
are not required.

krbprincipal Specifies the Kerberos principal used to bind to the server.

krbkeypath Specifies the path to the kerberos keytab. The default is /etc/security/ldap/
krb5.keytab.

krbcmddir Specifies the directory that contains the Kerberos kinit command. The default
is /usr/krb5/bin/.

pwdalgorithm Specifies the password encryption algorithm used for the unix_auth mode. The
ldap_auth mode ignores this attribute. Valid value is either crypt or system. The
default value is crypt.
crypt

Specifies the legacy crypt() (DES) algorithm.
system

Specifies to use the system-wide password algorithm configured in the /etc/
security/login.cfg file. To use the system-wide password algorithm, the
LDAP server's password encryption must be disabled to avoid double
encryption. Double encryption can make the password unusable. Ensure that
all clients of the LDAP server understand the algorithm that is used.

userattrmappath Specifies the full path to the AIX-LDAP attribute map for users.

groupattrmappath Specifies the full path to the AIX-LDAP attribute map for groups.

idattrmappath Specifies the full path to the AIX-LDAP attribute map for IDs. These IDs are used
by the mkuser command when creating LDAP users.

userbasedn Specifies the user base DN. For more information, see Detailed information.

groupbasedn Specifies the group base DN. For more information, see Detailed information.

idbasedn Specifies the ID base DN. For more information, see Detailed information.

hostbasedn Specifies the host base DN. For more information, see Detailed information.

servicebasedn Specifies the service base DN. For more information, see Detailed information.

protocolbasedn Specifies the protocol base DN. For more information, see Detailed information.

networkbasedn Specifies the network base DN. For more information, see Detailed information.

netgroupbasedn Specifies the netgroup base DN. For more information, see Detailed information.

Files Reference 529

Item Description

rpcbasedn Specifies the RPC base DN. For more information, see Detailed information.

aliasbasedn Specifies the alias base DN. For more information, see Detailed information.

automountbasedn Specifies the automount base DN. For more information, see Detailed
information.

bootparambasedn Specifies the bootparams base DN. For more information, see Detailed
information.

etherbasedn Specifies the ether base DN. For more information, see Detailed information.

authbasedn Specifies the authorizations base DN. For more information, see Detailed
information.

rolebasedn Specifies the roles base DN. For more information, see Detailed information

privcmdbasedn Specifies the privileged commands base DN. For more information, see Detailed
information

privdevbasedn Specifies the privileged devices base DN. For more information, see Detailed
information

privfilebasedn Specifies the privileged files base DN. For more information, see Detailed
information

domainbasedn Specifies the domain base DN. For more information, see Detailed information

domobjbasedn Specifies the domain object base DN. For more information, see Detailed
information

tsddatbasedn Specifies the file’s Trusted Signature Database base DN. For more information,
see Detailed information.

tepoliciesbasedn Specifies the machine’s trusted execution policies base DN. For more
information, see Detailed information.

userclasses Specifies a comma-separated list of object classes that are used for the user
entry. For more information, see Detailed information.

groupclasses Specifies a comma-separated list of object classes that are used for the group
entry. For more information, see Detailed information.

ldapversion Specifies the LDAP server protocol version. Default is 3.

ldapport Specifies the port on which the LDAP server listens to. The default value is 389.
Also, TLS use this port as default port.

ldapsslport Specifies the SSL port on which the LDAP server listens. The default value is 636.

followaliase Specifies whether to follow aliases. Valid values are NEVER, SEARCHING,
FINDING, and ALWAYS. Default is NEVER.

usercachesize Specifies the user cache size. Valid values are 100 - 65536 entries. The default
value is 1000.

groupcachesize Specifies the group cache size. Valid values are 10 - 65536 entries. The default
value is 100.

cachetimeout Specifies the cache TTL (time to live) for users and groups. Value must be >=0
seconds. Default is 300. Set to 0 to disable caching.

Note: The cachetimeout field is a deprecated attribute. Please use the
usercachetimeout and groupcachetimeout attributes instead.

530 AIX Version 7.1: Files Reference

Item Description

usercachetimeout Specifies the cache TTL (time to live) for users. Value must be >= 0 seconds.
Default is 300. Set to 0 to disable user caching. When specified, this value
overrides the cachetimeout setting.

groupcachetimeout Specifies the cache TTL (time to live) for groups. Value must be >= 0 seconds.
Default is 300. Set to 0 to disable group caching. When specified, this value
overrides the cachetimeout setting.

ldapsizelimit Specifies the maximum entries to be reqested to the ldap server in an ALL query.
Default is 0 (no limit). If the ldapsizelimit is greater than the server size limit, the
server size limits the number of entries returned. Setting the ldapsizelimit to a
lower number increases the performance of some commands. For example, the
lsuser -R LDAP ALL command.

heartbeatinterval Specifies the interval in seconds that the client contacts the server for server
status. Valid values are 60 - 3,600 seconds. Default is 300.

numberofthread Specifies the number of threads for the secldapclntd daemon. Valid values are 1
- 256. Default is 10.

nsorder Specifies the order of host name resolution by the secldapclntd daemon. The
default order is dns, nis, local. For more information about valid resolvers, see
TCP⁄IP Name Resolution.

Note: Do not use nis_ldap, because it could result in the secldapclntd daemon
hang.

searchmode Specifies the set of user and group attributes to be retrieved. This attribute
is intended for use for performance reasons. The AIX commands may not be
enabled to support all non-OS attributes. Valid values are ALL and OS. The
default is ALL.

• ALL - Retrieve all attributes of an entry.
• OS - Retrieve only the operating system required attributes of an entry. Non-OS

attributes like telephone number, binary images etc. will not be returned.

Note: Only use OS when entries have many non-OS required attributes or
attributes with large value, e.g. binary data, to reduce sorting effort by the
LDAP server.

defaultentrylocation Specifies the location of the default entry. Valid values are ldap and local. The
default is ldap.

ldap - Use the default entry in LDAP for all attribute default values.
local - Use the default stanza from local /etc/security/user file for all
attribute default values.

ldaptimeout Specifies the timeout period in seconds for LDAP client requests to the server.
This value determines how long the client will wait for a response from the LDAP
server. Valid range is 0 - 3600 (1 hour). Default is 60 seconds. Set this value to 0
to disable the timeout.

connectionsperserver Specifies the maximum number of connections to the LDAP server. If the
specified value is greater than the value in the numberofthread field, the
secldapclntd field uses the value of the numberofthread field instead. The
secldapclntd daemon starts with one connection and dynamically adds new
connections at high LDAP request demand into the connectionsperserver field,
and closes the idle connections at low demand. The valid value of this field
ranges from 1 through 100. The default value is 10.

Files Reference 531

Item Description

connectionmissratio Specifies the percentage of LDAP operations that can miss an LDAP handle in
the first attempt (handle-miss). If the number of missed attempts reaches this
value, the secldapclntd daemon adds a new connection. The total number of
connections do not exceed the value of the connectionsperserver field. The valid
value of this field ranges from 10 through 90. The default value is 50.

newconnT Specifies the interval to check for connection-miss-ratio (connectionmissratio) to
determine if a new connection needs to be created.

connectiontimeout Specifies time in seconds that an LDAP connection to the server can be idle
before the secldapclntd daemon closes it. The valid value is 5 seconds or
greater. The default value is 300.

serverschematype Specifies the schema type of the LDAP server. It is set by the mksecldap
command at LDAP client configuration time. Do not modify this attribute. Valid
values are: rfc2307aix, rfc2307, aix, sfu30, and sfur2.

enableutf8_xlation Enables the saving of data to the LDAP server in UTF-8 format. Valid values are
yes and no. The default value is no.

rbacinterval Specifies the time interval (in seconds) for the secldapclntd daemon to invoke
the setkst command to update the kernel RBAC tables. The value must be
greater than 60 seconds. Set the value to 0 to disable the setkst command. The
default value is 3600.

useprivport Specifies whether to use local privileged ports to connect to LDAP servers. The
valid values are yes and no. The default value is no. The useprivport attribute is
for backward compatibility only.

memberfulldn Specifies whether to use DN or account name for group members. The valid
values are yes and no. The default value is no. In most cases when you use
account names, do not change the value of the memberfulldn attribute. If
you want group members in DN format, set the value to yes. For backward
compatibility, if the LDAP server is Active Directory, the group member attribute
is mapped to the msSFU30PosixMember member. The secldapclntd daemon
always uses DN format regardless of this setting.

pwdpolicydn Specifies the DN of the LDAP server global password policies. The secldapclntd
daemon uses this policy entry to inform the user what is wrong in case of a
noncompliant password. If you have specified password policies, these policies
are used instead of the global policies.

usrkeystorebasedn Specifies the User’s EFS PKCS#12 keystore base DN. For more information, see
Detailed information.

grpkeystorebasedn Specifies the Groups’s EFS PKCS#12 keystore base DN. For more information,
see Detailed information.

efscookiesbasedn Specifies the EFS Cookie base DN. For more information, see Detailed
information.

admkeystorebasedn Specifies the EFS Admin’s PKCS#12 keystore base DN. For more information,
see Detailed information.

followreferrals Specifies if the AIX LDAP client should chase the referrals received from the
LDAP server. The valid values are on and off, default is on meaning chase the
referrals.

532 AIX Version 7.1: Files Reference

Item Description

caseExactAccountNa
me

Specifies whether to match account names as case-sensitive or case-insensitive.
Most LDAP servers treat account names as case-insensitive. Therefore, account
names like foo, Foo, FOo, and FOO are treated as the same user, and these
servers allow only one of them defined in LDAP. The valid values are:
No

Specifies to return account name which matches the requested name as
case-insensitive. For example, querying user foo may return any of foo, Foo,
FOo, and FOO. This is the default value.

Yes
Specifies to return account name which matches the requested name as
case-sensitive. For example, querying user foo will fail if one of the names
Foo, FOo, or FOO exists in LDAP instead of foo.

auditpolicy Specifies the action that needs to be taken if there is any change in audit
configuration on LDAP. It is effective only when an attribute auditrefreshed is
set. It takes following two values:
WARN

Logs in message in the syslog file on LDAP client, whenever there is a change
in audit configuration on LDAP so that administrator starts auditing on the
LDAP client.

RESTART
Automatically starts the auditing on the LDAP client, whenever there is a
change in audit configuration on LDAP.

auditrefreshed Specifies the time interval (in seconds) or time in 24 hour format for
the secldapclntd daemon to take action according to the auditpolicy attribute.
If the auditpolicy attribute is not set then this attribute is disabled. The time
interval mentioned in seconds. The value must be greater than 60 seconds. Set
the value to 0 to disable it. The default value is 3600. If the time is mentioned in
24 hr format then it should start with letter T.

Detailed information

• Multiple base DNs

All of the base DN attributes accept multiple values, with each <basedn>: <value> pair on a
separate line. For example, to allow users in the ou=dept1users,cn=aixdata base DNs and the
ou=dept2users,cn=aixdata base DNs to log in to the system, you can specify the userbasedn
attribute as follows:

userbasedn: ou=dept1users,cn=aixdata
userbasedn: ou=dept2users,cn=aixdata

You can specify up to 10 base DNs for each entity in the /etc/security/ldap/ldap.cfg file. The base
DNs are prioritized in the order they appear in the /etc/security/ldap/ldap.cfg file. The following list
describes the system behaviors in regards to multiple base DNs:

– Query operations, such as the lsuser command, are done according to the base DN order that is
specified until a matching account is found. A failure is returned only if all of the base DNs are
searched without finding a match.

– Modification operations, such as the chuser command, are done to the first matching account.
– Deletion operations, such as the rmuser command, are done to the first matching account.
– Creation operations, such as the mkuser command, are done only to the first base DN.

• Domain RBAC base DNs

Files Reference 533

#domainbasedn:ou=domains,cn=aixdata
#domobjbasedn:ou=domobjs,cn=aixdata

The time interval in minutes specifies the frequency in which the kernel RBAC and the domain RBAC
tables are updated. A value of 0 disables the automatic update.

rbacinterval: 0

• Extended base DN format

You can specify optional parameters of search scope and search filter for base DN attributes. You can
append the parameters to the base DN with fields separated by question mark (?) characters. The
following list shows the valid base DN formats:

– This format represents the default format that the secldapclntd daemon uses:

userbasedn: ou=people, cn=aixdata

– This format limits the search by a scope attribute:

userbasedn: ou=people, cn=aixdata?scope

The scope attribute accepts the following values:

- sub
- one
- base

If you do not specify the scope attribute, the default value is sub.
– This format limits the search by a filter attribute.

userbasedn: ou=people, cn=aixdata??filter

The filter attribute limits the entries that are defined in the LDAP server. You can use this filter
to make only users with certain properties visible to the system. The following list shows some
valid filter formats, where attribute is the name of an LDAP attribute, and value specifies the search
criteria, which can be a wild card (*).

- (attribute=value)
- (&(attribute=value)(attribute=value))
- (|(attribute=value)(attribute=value))

– This format uses both a scope attribute and a filter attribute.

userbasedn: ou=people, cn=aixdata?scope?filter

• Object classes

The first object class in the list is the key object class, which can be used for search operations. By
default, the keyobjectclass attribute in the attribute mapping file is used for this purpose. But if the
mapping file does not exist, or the keyobjectclass attribute is not present in the mapping file, the first
object class in this list is used.

Related reference
irs.conf File
LDAP Attribute Mapping File Format
resolv.ldap File Format for TCP/IP
Related information
mksecldap command
restart-secldapclntd command
ls-secldapclntd command

534 AIX Version 7.1: Files Reference

flush-secldapclntd command

LDAP Attribute Mapping File Format

Purpose
Defines AIX to LDAP attribute name mapping to support configurable LDAP server schema.

Description
These map files are used by the /usr/lib/security/LDAP module and the secldapclntd daemon
for translation between AIX attribute names to LDAP attribute names. Each entry in a mapping file
represents a translation for an attribute. A entry has five space separated fields:

AIX_Attribute_Name AIX_Attribute_Type LDAP_Attribute_Name LDAP_Value_Type LDAP_Value_Unit

Item Description

AIX_Attribute_Name Specifies the AIX attribute name.

AIX_Attribute_Type Specifies the AIX attribute type. Values are SEC_CHAR, SEC_INT, SEC_LIST, and SEC_BOOL.

LDAP_Attribute_Name Specifies the LDAP attribute name.

LDAP_Value_Type Specifies the LDAP value type. Values are s for single value and m for multi-value.

LDAP_Value_Unit Specifies the LDAP value unit for some attributes. The following values are available for the maxage, minage,
maxexpires, and the pwdwarntime attributes:

• seconds

• minutes

• hours

• days

• weeks

• months

• years

The following values are available for the cpu, cpu_hard, fsize, fsize_hard, rss, rss_hard, stack, and the
stack_hard attributes:

• bytes

• 512-byte blocks

• kilobytes

• megabytes

• gigabytes

The following values are available for the lastupdate attribute:

• Coordinated Universal Time (UTC) recorded in 100 nanoseconds, since January 1, 1601.

Note: The attributes of Microsoft Active Directory Server, such as pwdLastSet, store values only in the UTC unit,
that is,these attribute values of the Microsoft Active Directory Server do not support any other units.

For all of the other attributes, the value is N/A. If no unit mapping is required, the values are also N/A.

TO_BE_CACHED Specifies whether this attribute is to be cached. Valid values are yes and no. Default is yes.

Files
AIX includes the following sets of attribute mapping files in the /etc/security/ldap directory:

The following attribute mappings are defined for AIX specific schema:

Item Description

aixuser.map Specifies the mapping for the aixAccount object class.

aixgroup.map Specifies the mapping for the aixAccessGroup object class.

aixid.map Specifies the mapping for the aixAdmin object class.

The following attribute mappings are defined for nisSchema (RFC 2307):

Files Reference 535

Item Description

2307user.map Specifies the mapping for the posixAccount object class.

2307group.map Specifies the mapping for the posixGroup object class.

The following attribute mappings are defined for nisSchema with AIX extensions:

Item Description

2307aixuser.map Specifies the mapping for the posixAccount object class and the
aixAuxAccount object class.

2307aixgroup.map Specifies the mapping for the posixGroup object class and the aixAuxGroup
object class.

The following attribute mappings are defined for Active Directory with service for UNIX:

Item Description

sfu30user.map Specifies the mapping for the user object class.

sfu30group.map Specifies the mapping for the group object class.

The following attribute mappings are defined for Active Directory with Windows 2003 R2 schema:

Item Description

sfur2user.map Specifies the mapping for the user object class.

sfur2group.map Specifies the mapping for the group object class.

The mksecldap command, at LDAP client configuration, will automatically figure out the server type and
select the corresponding mapping files to use. If an LDAP server uses schema that is not included in these
mapping files under the /etc/security/ldap directory, you must configure the LDAP client manually by
creating your own mapping sets and edit the /etc/security/ldap.cfg file to use your mapping files.

The user and group maps might contain an entry that is used to designate the required object class that
each user or group must have. This object class will be used in the filter for searches performed on user
or group entries. As an example, listed below are the default entries for the keyobjectclass in the
aix2307user.map and aix2307group.map files.

aix2307user.map:
 keyobjectclass SEC_CHAR posixgroup s na yes
aix2307group.map:
 keyobjectclass SEC_CHAR posixaccount s na yes

The aixid.map contains attribute mappings for user and group IDs. The IDs are used when one creates a
new LDAP user/group with the mkuser or mkgroup command.

Related reference
ldap.cfg File Format
Related information
mksecldap command
secldapclntd command
restart-secldapclntd command
ls-secldapclntd command
flush-secldapclntd command

536 AIX Version 7.1: Files Reference

Locale Definition Source File Format

Purpose
Contains one or more categories that describe a locale.

Description
A locale definition source file contains one or more categories that describe a locale. Files using this
format can be converted into a locale by using the localedef command. Locales can be modified only by
editing a locale definition source file and then using the localedef command again on the new source
file. Locales are not affected by a locale definition source file unless the file is first converted using the
localedef command.

The locale definition source file sections define categories of locale data. A source file should not contain
more than one section for the same category. The following categories are supported:

Item Description

LC_COLLATE Defines character or string collation information.

LC_CTYPE Defines character classification, case conversion, and other character
attributes.

LC_MESSAGES Defines the format for affirmative and negative responses.

LC_MONETARY Defines rules and symbols for formatting monetary numeric information.

LC_NUMERIC Defines a list of rules and symbols for formatting non-monetary numeric
information.

LC_TIME Defines a list of rules and symbols for formatting time and date
information.

The category definition consists of:

• The category header (category name)
• The associated keyword/value pairs that comprise the category body
• The category trailer (which consists of END category-name)

For example:

LC_CTYPE source for LC_CTYPE category END LC_CTYPE

The source for all of the categories is specified using keywords, strings, character literals, and character
symbols. Each keyword identifies either a definition or a rule. The remainder of the statement containing
the keyword contains the operands to the keyword. Operands are separated from the keyword by one
or more blank characters. A statement may be continued on the next line by placing a / (slash) as the
last character before the new-line character that terminates the line. Lines containing the comment_char
entry in the first column are treated as comment lines. The default is # (pound sign).

The first category header in the file can be preceded by a line that changes the comment character. It has
the following format, starting in column 1:

comment_char character

where character is the new comment character.

Blank lines and lines containing the comment character in the first position are ignored.

A character symbol begins with the < (less-than) character, followed by up to 30 non-control, non-space
characters, and ends with the > (greater-than) character. For example, <A-diaeresis> is a valid
character symbol. Any character symbol referenced in the source file should either be one of the portable

Files Reference 537

character set symbols or should be defined in the provided character set description (charmap) source
file.

A character literal is the character itself, or else a decimal, hexadecimal, or octal constant. A decimal
constant is of the form:

\dxxx

where x is a decimal digit. A hexadecimal constant is of the form:

\xddd

where d is a hexadecimal digit. An octal constant is of the form:

\ddd

where d is an octal digit.

A string is a sequence of character symbols, or literals enclosed by " " (double-quotation marks). For
example:

"<A-diaeresis> \d65\d120 "

The explicit definition of each category in a locale definition source file is not required. When a category is
undefined in a locale definition source file, it defaults to the C locale definition.

The first category header in the file can be preceded by a line that changes the escape character used in
the file. It has the following format, starting in column 1:

escape_char character

where character is the new escape character.

The escape character defaults to the / (backslash).

Files

Item Description

/usr/lib/nls/loc/* Specifies locale definition source files for supported locales.

/usr/lib/nls/charmap/* Specifies character set description (charmap) source files for
supported locales.

Related reference
Character Set Description (charmap) Source File Format
Locale Method Source File Format
LC_TIME Category for the Locale Definition Source File Format
LC_MESSAGES Category for the Locale Definition Source File Format
LC_MONETARY Category for the Locale Definition Source File Format
LC_NUMERIC Category for the Locale Definition Source File Format
Related information
locale command
Changing Your Locale

LC_COLLATE Category for the Locale Definition Source File Format

Purpose
Defines character or string collation information.

538 AIX Version 7.1: Files Reference

Description
A collation element is the unit of comparison for collation. A collation element may be a character or a
sequence of characters. Every collation element in the locale has a set of weights, which determine if
the collation element collates before, equal to, or after the other collation elements in the locale. Each
collation element is assigned collation weights by the localedef command when the locale definition
source file is converted. These collation weights are then used by applications programs that compare
strings.

Comparison of strings is performed by comparing the collation weights of each character in the string until
either a difference is found or the strings are determined to be equal. This comparison may be performed
several times if the locale defines multiple collation orders. For example, in the French locale, the strings
are compared using a primary set of collation weights. If they are equal on the basis of this comparison,
they are compared again using a secondary set of collation weights. A collating element has a set of
collation weights associated with it that is equal to the number of collation orders defined for the locale.

Every character defined in the charmap file (or every character in the portable character set if no
charmap file is specified) is itself a collating element. Additional collating elements can be defined using
the collating-element statement. The syntax is:

collating-element character-symbol from string

The LC_COLLATE category begins with the LC_COLLATE keyword and ends with the END LC_COLLATE
keyword.

The following keywords are recognized in the LC_COLLATE category:

Item Description

copy The copy statement specifies the name of an existing locale to be used as
the definition of this category. If a copy statement is included in the file,
no other keyword can be specified.

collating-element The collating-element statement specifies multicharacter collating
elements.

The syntax for the collating-element statement is:

collating-element <collating-symbol> from <string>

The collating-symbol value defines a collating element that is a string of one or more characters as a
single collating element. The collating-symbol value cannot duplicate any symbolic name in the current
charmap file, or any other symbolic name defined in this collation definition. The string value specifies
a string of two or more characters that define the collating-symbol value. Following are examples of the
syntax for the collating-element statement:

collating-element <ch> from <c><h> collating-element <e-acute> from <acute><e> collating-element
<11> from <1><1>

A collating-symbol value defined by the collating-element statement is recognized only with the
LC_COLLATE category.

Item Description

collating-symbol The collating-symbol statement specifies collation symbols for use in
collation sequence statements.

The syntax for the collating-symbol statement is:

collating-symbol <collating-symbol>

The collating-symbol value cannot duplicate any symbolic name in the current charmap file, or any
other symbolic name defined in this collation definition. Following are examples of the syntax for the
collating-symbol statement:

collating-symbol <UPPER_CASE> collating-symbol <HIGH>

Files Reference 539

A collating-symbol value defined by the collating-symbol statement is recognized only within the
LC_COLLATE category.

Item Description

order_start The order_start statement must be followed by one or more collation order
statements, assigning collation weights to collating elements. This statement is
mandatory.

The syntax for the order_start statement is:

order_start <sort-rules>, <sort-rules>,...<sort-rules> collation order statements order_end

The <sort-rules> directives have the following syntax:

keyword, keyword,...keyword; keyword, keyword,...keyword

where keyword is one of the keywords forward, backward, and position.

The sort-rules directives are optional. If present, they define the rules to apply during string comparison.
The number of specified sort-rules directives defines the number of weights each collating element is
assigned (that is, the number of collation orders in the locale). If no sort-rules directives are present,
one forward keyword is assumed and comparisons are made on a character basis rather than a string
basis. If present, the first sort-rules directive applies when comparing strings using primary weight, the
second when comparing strings using the secondary weight, and so on. Each set of sort-rules directives is
separated by a ; (semicolon). A sort-rules directive consists of one or more comma-separated keywords.
The following keywords are supported:

Item Description

forward Specifies that collation weight comparisons proceed from the beginning of a string toward
the end of the string.

backward Specifies that collation weight comparisons proceed from the end of a string toward the
beginning of the string.

position Specifies that collation weight comparisons consider the relative position of elements in
the string not subject to the special symbol IGNORE. That is, if strings compare equal, the
element with the shortest distance from the starting point of the string collates first.

The forward and backward keywords are mutually exclusive. Following is an example of the syntax for
the <sort-rules> directives:

order_start forward; backward, position

The optional operands for each collation element are used to define the primary, secondary, or
subsequent weights for the collating element. The special symbol IGNORE is used to indicate a collating
element that is to be ignored when strings are compared.

A collation statement with the ellipsis keyword on the left-hand side results in the collating-element-list
on the right-hand side being applied to every character with an encoding that falls numerically between
the character on the left-hand side in the preceding statement and the character on the left-hand side
of the following statement. If the ellipsis occur in the first statement, it is interpreted as though the
preceding line specified the NUL character. (The NUL character is a character with all bits set to 0.) If the
ellipsis occur in the last statement, it is interpreted as though the following line specified the greatest
encoded value.

An ellipsis keyword appearing in place of a collating-element-list indicates the weights are to be assigned,
for the characters in the identified range, in numerically increasing order from the weight for the character
symbol on the left-hand side of the preceding statement.

Note: The use of the ellipsis keyword results in a locale that may collate differently when compiled with
different character set description (charmap) source files. For this reason, the localedef command issues
a warning when the ellipsis keyword is encountered.

540 AIX Version 7.1: Files Reference

All characters in the character set must be placed in the collation order, either explicitly or implicitly by
using the UNDEFINED special symbol. The UNDEFINED special symbol includes all coded character set
values not specified explicitly or with an ellipsis symbol. These characters are inserted in the character
collation order at the point indicated by the UNDEFINED special symbol in the order of their character
code set values. If no UNDEFINED special symbol exists and the collation order does not specify all
collation elements from the coded character set, a warning is issued and all undefined characters are
placed at the end of the character collation order.

Examples
The following is an example of a collation order statement in the LC_COLLATE locale definition source file
category:

order_start forward;backward
UNDEFINED IGNORE;IGNORE
<LOW> <LOW>;<space>
... <LOW>;...
<a> <a>;<a>
<a-acute> <a>;<a-acute>
<a-grave> <a>;<a-grave>
<A> <a>;<A>
<A-acute> <a>;<A-acute>
<A-grave> <a>;<A-grave>
<ch> <ch>;<ch>
<Ch> <ch>;<Ch>
<s> <s>;<s>
<ss> <s><s>;<s><s>
<eszet> <s><s>;<eszet><eszet>
... <HIGH>;...
<HIGH>
order_end

This example is interpreted as follows:

• The UNDEFINED special symbol indicates that all characters not specified in the definition (either
explicitly or by the ellipsis symbol) are ignored for collation purposes.

• All collating elements between <space> and <a> have the same primary equivalence class and
individual secondary weights based on their coded character set values.

• All characters based on the uppercase or lowercase a character belong to the same primary
equivalence class.

• The <c><h> multicharacter collating element is represented by the <ch> collating symbol and belongs
to the same primary equivalence class as the <C><h> multicharacter collating element.

• The <eszet> character is collated as an <s><s> string. That is, one <eszet> character is expanded to
two characters before comparing.

Files

Item Description

/usr/lib/nls/loc/* Specifies locale definition source files for supported locales.

/usr/lib/nls/charmap/* Specifies character set description (charmap) source files for
supported locales.

Related reference
Character Set Description (charmap) Source File Format
Locale Method Source File Format
Related information
ed command
locale command
Changing Your Locale

Files Reference 541

LC_CTYPE Category for the Locale Definition Source File Format

Purpose
Defines character classification, case conversion, and other character attributes.

Description
The LC_CTYPE category of a locale definition source file defines character classification, case conversion,
and other character attributes. This category begins with an LC_CTYPE category header and terminates
with an END LC_CTYPE category trailer.

All operands for LC_CTYPE category statements are defined as lists of characters. Each list consists of
one or more semicolon-separated characters or symbolic character names.

The following keywords are recognized in the LC_CTYPE category. In the descriptions, the term
automatically included means that an error does not occur if the referenced characters are included
or omitted. The characters will be provided if they are missing and will be accepted if they are present.

Item Description

copy Specifies the name of an existing locale to be used as the definition of this
category. If a copy statement is included in the file, no other keyword can be
specified.

upper Defines uppercase letter characters. No character defined by the cntrl, digit,
punct, or space keyword can be specified. At a minimum, the uppercase letters
A-Z must be defined.

lower Defines lowercase letter characters. No character defined by the cntrl, digit,
punct, or space keyword can be specified. At a minimum, the lowercase letters
a-z must be defined.

alpha Defines all letter characters. No character defined by the cntrl, digit, punct, or
space keyword can be specified. Characters defined by the upper and lower
keywords are automatically included in this character class.

digit Defines numeric digit characters. Only the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9
can be specified.

alnum Defines alphanumeric characters. No character defined by the cntrl, punct, or
space keyword can be specified. Characters defined by the alpha and digit
keywords are automatically included in this character class.

space Defines whitespace characters. No character defined by the upper, lower,
alpha, digit, graph, cntrl, or xdigit keyword can be specified. At a minimum,
the <space>, <form-feed>, <newline>, <carriage return>, <tab>,
and <vertical-tab> characters, and any characters defined by the blank
keyword, must be specified.

cntrl Defines control characters. No character defined by the upper, lower, alpha,
digit, punct, graph, print, xdigit, or space keyword can be specified.

punct Defines punctuation characters. A character defined as the <space> character
and characters defined by the upper, lower, alpha, digit, cntrl, or xdigit
keyword cannot be specified.

graph Defines printable characters, excluding the <space> character. If this keyword
is not specified, characters defined by the upper, lower, alpha, digit, xdigit,
and punct keywords are automatically included in this character class. No
character defined by the cntrl keyword can be specified.

542 AIX Version 7.1: Files Reference

Item Description

print Defines printable characters, including the <space> character. If this keyword
is not specified, the <space> character and characters defined by the upper,
lower, alpha, digit, xdigit, and punct keywords are automatically included
in this character class. No character defined by the cntrl keyword can be
specified.

xdigit Defines hexadecimal digit characters. The digits 0-9 and the letters A-F and a-f
can be specified. The xdigit keyword defaults to its normal class limits.

blank Defines blank characters. If this keyword is not specified, the <space> and
<horizontal-tab> characters are included in this character class. Any
characters defined by this statement are automatically included in the space
keyword class.

charclass Defines one or more locale-specific character class names as strings separated
by semicolons. Each named character class can then be defined subsequently
in the LC_CTYPE definition. A character class name consists of at least one, and
at most 32 bytes, of alphanumeric characters from the portable character set
symbols. The first character of a character class name cannot be a digit. The
name cannot match any of the LC_CTYPE keywords defined in this section.

charclass-name Defines characters to be classified as belonging to the named locale-specific
character class. Locale-specific named character classes need not exist in the
POSIX locale.

If a class name is defined by a charclass keyword, but no characters are
subsequently assigned to it, it represents a class without any characters
belonging to it.

The charclass-name can be used as the Property parameter in the wctype
subroutine, in regular expressions and shell pattern-matching expressions, and
by the tr command.

toupper Defines the mapping of lowercase characters to uppercase characters.
Operands for this keyword consist of semicolon-separated character pairs.
Each character pair is enclosed in () (parentheses) and separated from the next
pair by a , (comma). The first character in each pair is considered lowercase;
the second character is considered uppercase. Only characters defined by the
lower and upper keywords can be specified.

tolower Defines the mapping of uppercase characters to lowercase characters.
Operands for this keyword consist of semicolon-separated character pairs.
Each character pair is enclosed in () (parentheses) and separated from the next
pair by a , (comma). The first character in each pair is considered uppercase;
the second character is considered lowercase. Only characters defined by the
lower and upper keywords can be specified.

The tolower keyword is optional. If this keyword is not specified, the mapping defaults to the reverse
mapping of the toupper keyword, if specified. If the toupper and tolower keywords are both unspecified,
the mapping for each defaults to that of the C locale.

The LC_CTYPE category does not support multicharacter elements. For example, the German sharp-s
character is traditionally classified as a lowercase letter. There is no corresponding uppercase letter; in
proper capitalization of German text, the sharp-s character is replaced by the two characters ss. This kind
of conversion is outside of the scope of the toupper and tolower keywords.

Examples
The following is an example of a possible LC_CTYPE category listed in a locale definition source file:

Files Reference 543

LC_CTYPE
#"alpha" is by default "upper" and "lower"
#"alnum" is by default "alpha" and "digit"
#"print" is by default "alnum", "punct" and the space character
#"graph" is by default "alnum" and "punct"
#"tolower" is by default the reverse mapping of "toupper"
#
upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\
 <N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>
#
lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\
 <n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>
#
digit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\
 <seven>;<eight>;<nine>
#
space <tab>;<newline>;<vertical-tab>;<form-feed>;\
 <carriage-return>;<space>
#
cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;/
 <form-feed>;<carriage-return>;<NUL>;<SOH>;<STX>;/
 <ETX>;<EOT>;<ENQ>;<ACK>;<SO>;<SI>;<DLE>;<DC1>;<DC2>;/
 <DC3>;<DC4>;<NAK>;<SYN>;<ETB>;<CAN>;;<SUB>;/
 <ESC>;<IS4>;<IS3>;<IS2>;<IS1>;
#
punct <exclamation-mark>;<quotation-mark>;<number-sign>;\
 <dollar-sign>;<percent-sign>;<ampersand>;<asterisk>;\
 <apostrophe>;<left-parenthesis>;<right-parenthesis>;
 <plus-sign>;<comma>;<hyphen>;<period>;<slash>;/
 <colon>;<semicolon>;<less-than-sign>;<equals-sign>;\
 <greater-than-sign>;<question-mark>;<commercial-at>;\
 <left-square-bracket>;<backslash>;<circumflex>;\
 <right-square-bracket>;<underline>;<grave-accent>;\
 <left-curly-bracket>;<vertical-line>;<tilde>;\
 <right-curly-bracket>
#
xdigit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\
 <seven>;<eight>;<nine>;<A>;;<C>;<D>;<E>;<F>;\
 <a>;;<c>;<d>;<e>;<f>
#
blank <space>;<tab>
#
toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);\
 (<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);\
 (<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);\
 (<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);\
 (<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);\
 (<z>,<Z>)
#
END LC_CTYPE

Files

Item Description

/usr/lib/nls/loc/* Specifies locale definition source files for supported locales.

/usr/lib/nls/charmap/* Specifies character set description (charmap) source files for
supported locales.

Related reference
Character Set Description (charmap) Source File Format
Related information
locale command
tr command
wctype subroutine
Changing Your Locale

544 AIX Version 7.1: Files Reference

LC_MESSAGES Category for the Locale Definition Source File Format

Purpose
Defines the format for affirmative and negative system responses.

Description
The LC_MESSAGES category of a locale definition source file defines the format for affirmative and
negative system responses. This category begins with an LC_MESSAGES category header and terminates
with an END LC_MESSAGES category trailer.

All operands for the LC_MESSAGES category are defined as strings or extended regular expressions
enclosed by " " (double-quotation marks). These operands are separated from the keyword they define by
one or more blanks. Two adjacent " " (double-quotation marks) indicate an undefined value. The following
keywords are recognized in the LC_MESSAGES category:

Item Description

copy Specifies the name of an existing locale to be used as the definition of this category. If
a copy statement is included in the file, no other keyword can be specified.

yesexpr Specifies an extended regular expression that describes the acceptable affirmative
response to a question expecting an affirmative or negative response.

noexpr Specifies an extended regular expression that describes the acceptable negative
response to a question expecting an affirmative or negative response.

yesstr A colon-separated string of acceptable affirmative responses. This string is accessible
to applications through the nl_langinfo subroutine as nl_langinfo (YESSTR).

nostr A colon-separated string of acceptable negative responses. This string is accessible to
applications through the nl_langinfo subroutine as nl_langinfo (NOSTR).

Examples
The following is an example of a possible LC_MESSAGES category listed in a locale definition source file:

LC_MESSAGES
#
yesexpr "([yY][[:alpha:]]*)|(OK)"
noexpr "[nN][[:alpha:]]*"
yesstr "Y:y:yes"
nostr "N:n:no"
#
END LC_MESSAGES

Files

Item Description

/usr/lib/nls/loc/* Specifies locale definition source files for supported locales.

/usr/lib/nls/charmap/* Specifies character set description (charmap) source files for
supported locales.

Related reference
Character Set Description (charmap) Source File Format
Locale Definition Source File Format
Related information
locale command
Changing Your Locale

Files Reference 545

LC_MONETARY Category for the Locale Definition Source File Format

Purpose
Defines rules and symbols for formatting monetary numeric information.

Description
The LC_MONETARY category of a locale definition source file defines rules and symbols for formatting
monetary numeric information. This category begins with an LC_MONETARY category header and
terminates with an END LC_MONETARY category trailer.

All operands for the LC_MONETARY category keywords are defined as string or integer values. String
values are enclosed by " " (double-quotation marks). All values are separated from the keyword they
define by one or more spaces. Two adjacent double-quotation marks indicate an undefined string value.
A -1 indicates an undefined integer value. The following keywords are recognized in the LC_MONETARY
category:

Item Description

copy Specifies the name of an existing locale to be used as the definition
of this category. If a copy statement is included in the file, no other
keyword can be specified.

int_curr_symbol Specifies the string used for the international currency symbol.
The operand for the int_curr_symbol keyword is a four-character
string. The first three characters contain the alphabetic international-
currency symbol. The fourth character specifies a character separator
between the international currency symbol and a monetary quantity.

currency_symbol Specifies the string used for the local currency symbol.

mon_decimal_point Specifies the string used for the decimal delimiter used to format
monetary quantities.

mon_thousands_sep Specifies the character separator used for grouping digits to the left of
the decimal delimiter in formatted monetary quantities.

mon_grouping Specifies a string that defines the size of each group of digits in
formatted monetary quantities. The operand for the mon_grouping
keyword consists of a sequence of semicolon-separated integers.
Each integer specifies the number of digits in a group. The initial
integer defines the size of the group immediately to the left of the
decimal delimiter. The following integers define succeeding groups to
the left of the previous group. If the last integer is not -1, the size of
the previous group (if any) is repeatedly used for the remainder of the
digits. If the last integer is -1, no further grouping is performed.

The following is an example of the interpretation of the mon_grouping
statement. Assuming the value to be formatted is 123456789 and the
operand for the mon_thousands_sep keyword is ' (single-quotation
mark), the following results occur:

mon_grouping Value Formatted Value

3;-1 123456'789

3 123'456'789

3;2;-1 1234'56'789

546 AIX Version 7.1: Files Reference

mon_grouping Value Formatted Value

3;2 12'34'56'789
-1

123456789

positive_sign Specifies the string used to indicate a nonnegative-valued formatted
monetary quantity.

negative_sign Specifies the string used to indicate a negative-valued formatted
monetary quantity.

int_frac_digits Specifies an integer value representing the number of fractional digits
(those after the decimal delimiter) to be displayed in a formatted
monetary quantity using the int_curr_symbol value.

frac_digits Specifies an integer value representing the number of fractional digits
(those after the decimal delimiter) to be displayed in a formatted
monetary quantity using the currency_symbol value.

p_cs_precedes Specifies an integer value indicating whether the int_curr_symbol
or currency_symbol string precedes or follows the value for a
nonnegative formatted monetary quantity. The following integer values
are recognized:
0

Indicates that the currency symbol follows the monetary quantity.
1

Indicates that the currency symbol precedes the monetary
quantity.

p_sep_by_space Specifies an integer value indicating whether the int_curr_symbol or
currency_symbol string is separated by a space from a nonnegative
formatted monetary quantity. The following integer values are
recognized:
0

Indicates that no space separates the currency symbol from the
monetary quantity.

1
Indicates that a space separates the currency symbol from the
monetary quantity.

2
Indicates that a space separates the currency symbol and the
positive_sign string, if adjacent.

n_cs_precedes Specifies an integer value indicating whether the int_curr_symbol
or currency_symbol string precedes or follows the value for a
negative formatted monetary quantity. The following integer values are
recognized:
0

Indicates that the currency symbol follows the monetary quantity.
1

Indicates that the currency symbol precedes the monetary
quantity.

Files Reference 547

mon_grouping Value Formatted Value

n_sep_by_space Specifies an integer value indicating whether the int_curr_symbol
or currency_symbol string is separated by a space from a negative
formatted monetary quantity. The following integer values are
recognized:
0

Indicates that no space separates the currency symbol from the
monetary quantity.

1
Indicates that a space separates the currency symbol from the
monetary quantity.

2
Indicates that a space separates the currency symbol and the
negative_sign string, if adjacent.

p_sign_posn Specifies an integer value indicating the positioning of the
positive_sign string for a nonnegative formatted monetary quantity.
The following integer values are recognized:
0

Indicates that a left_parenthesis and right_parenthesis symbol
enclose both the monetary quantity and the int_curr_symbol or
currency_symbol string.

1
Indicates that the positive_sign string precedes the quantity and
the int_curr_symbol or currency_symbol string.

2
Indicates that the positive_sign string follows the quantity and the
int_curr_symbol or currency_symbol string.

3
Indicates that the positive_sign string immediately precedes the
int_curr_symbol or currency_symbol string.

4
Indicates that the positive_sign string immediately follows the
int_curr_symbol or currency_symbol string.

548 AIX Version 7.1: Files Reference

mon_grouping Value Formatted Value

n_sign_posn Specifies an integer value indicating the positioning of the
negative_sign string for a negative formatted monetary quantity. The
following integer values are recognized:
0

Indicates that a left_parenthesis and right_parenthesis symbol
enclose both the monetary quantity and the int_curr_symbol or
currency_symbol string.

1
Indicates that the negative_sign string precedes the quantity and
the int_curr_symbol or currency_symbol string.

2
Indicates that the negative_sign string follows the quantity and
the int_curr_symbol or currency_symbol string.

3
Indicates that the negative_sign string immediately precedes the
int_curr_symbol or currency_symbol string.

4
Indicates that the negative_sign string immediately follows the
int_curr_symbol or currency_symbol string.

debit_sign Specifies the string used for the debit symbol (DB) to indicate a
nonnegative formatted monetary quantity.

credit_sign Specifies the string used for the credit symbol (CR) to indicate a
negative formatted monetary quantity.

left_parenthesis Specifies the character, equivalent to a ((left parenthesis), used by
the p_sign_posn and n_sign_posn statements to enclose a monetary
quantity and currency symbol.

right_parenthesis Specifies the character, equivalent to a) (right parenthesis), used by
the p_sign_posn and n_sign_posn statements to enclose a monetary
quantity and currency symbol.

A unique customized monetary format can be produced by changing the value of a single statement.
For example, the following table shows the results of using all combinations of defined values for the
p_cs_precedes, p_sep_by_space, and p_sign_posn statements.

Table 4. Results of Various Locale Variable Value Combinations

Item Description

p_cs_precedes p_sign_posn p_sep_by_space =

p_cs_precedes = 1 p_sign_posn = 0 2
($1.25)

1
($ 1.25)

0
($1.25)

Files Reference 549

Table 4. Results of Various Locale Variable Value Combinations (continued)

Item Description

p_sign_posn = 1 2
+ $1.25

1
+$ 1.25

0
+$1.25

p_sign_posn = 2 2
$1.25 +

1
$ 1.25+

0
$1.25+

p_sign_posn = 3 2
+ $1.25

1
+$ 1.25

0
+$1.25

p_sign_posn = 4 2
$ +1.25

1
$+ 1.25

0
$+1.25

p_cs_precedes = 0 p_sign_posn = 0 2
(1.25 $)

1
(1.25 $)

0
(1.25$)

p_sign_posn = 1 2
+1.25 $

1
+1.25 $

0
+1.25$

p_sign_posn = 2 2
1.25$ +

1
1.25 $+

0
1.25$+

550 AIX Version 7.1: Files Reference

Table 4. Results of Various Locale Variable Value Combinations (continued)

Item Description

p_sign_posn = 3 2
1.25+ $

1
1.25 +$

0
1.25+$

p_sign_posn = 4 2
1.25$ +

1
1.25 $+

0
1.25$+

Example
The following is an example of a possible LC_MONETARY category listed in a locale definition source file:

LC_MONETARY
#
int_curr_symbol "<U><S><D>"
currency_symbol "<dollar-sign>"
mon_decimal_point "<period>"
mon_thousands_sep "<comma>"
mon_grouping <3>
positive_sign "<plus-sign>"
negative_sign "<hyphen>"
int_frac_digits <2>
frac_digits <2>
p_cs_precedes <1>
p_sep_by_space <2>
n_cs_precedes <1>
n_sep_by_space <2>
p_sign_posn <3>
n_sign_posn <3>
debit_sign "<D>"
credit_sign "<C><R>"
left_parenthesis "<left-parenthesis>"
right_parenthesis "<right-parenthesis>"
#
END LC_MONETARY

Files

Item Description

/usr/lib/nls/loc/* Specifies locale definition source files for supported locales.

/usr/lib/nls/charmap/* Specifies character set description (charmap) source files for
supported locales.

Related reference
Character Set Description (charmap) Source File Format
Locale Definition Source File Format
Related information
locale command
Changing Your Locale

Files Reference 551

LC_NUMERIC Category for the Locale Definition Source File Format

Purpose
Defines rules and symbols for formatting non-monetary numeric information.

Description
The LC_NUMERIC category of a locale definition source file defines rules and symbols for formatting
non-monetary numeric information. This category begins with an LC_NUMERIC category header and
terminates with an END LC_NUMERIC category trailer.

All operands for the LC_NUMERIC category keywords are defined as string or integer values. String
values are enclosed by " " (double-quotation marks). All values are separated from the keyword they
define by one or more spaces. Two adjacent double-quotation marks indicate an undefined string value.
A -1 indicates an undefined integer value. The following keywords are recognized in the LC_NUMERIC
category:

Item Description

copy The copy statement specifies the name of an existing locale to be used as the
definition of this category. If a copy statement is included in the file, no other
keyword can be specified.

decimal_point Specifies the string used for the decimal delimiter used to format numeric,
non-monetary quantities.

thousands_sep Specifies the string separator used for grouping digits to the left of the decimal
delimiter in formatted numeric, non-monetary quantities.

grouping Defines the size of each group of digits in formatted monetary quantities.
The operand for the grouping keyword consists of a sequence of semicolon-
separated integers. Each integer specifies the number of digits in a group.
The initial integer defines the size of the group immediately to the left of the
decimal delimiter. The following integers define succeeding groups to the left of
the previous group. If the last integer is not -1, the size of the previous group (if
any) is used repeatedly for the remainder of the digits. If the last integer is -1,
no further grouping is performed.

The following is an example of the interpretation of the grouping statement. Assuming the value to be
formatted is 123456789 and the operand for the thousands_sep keyword is ' (single quotation mark) the
following results occur:

Grouping Value Formatted Value

3;-1 123456'789

3 123'456'789

3;2;-1 1234'56'789

3;2 12'34'56'789

-1 123456789

Examples
Following is an example of a possible LC_NUMERIC category listed in a locale definition source file:

LC_NUMERIC
#
decimal_point "<period>"
thousands_sep "<comma>"
grouping <3>

552 AIX Version 7.1: Files Reference

#
END LC_NUMERIC

Files

Item Description

/usr/lib/nls/loc/* Specifies locale definition source files for supported locales.

/usr/lib/nls/charmap/* Specifies character set description (charmap) source files for
supported locales.

Related reference
Character Set Description (charmap) Source File Format
Locale Definition Source File Format
Related information
locale command
Changing Your Locale

LC_TIME Category for the Locale Definition Source File Format

Purpose
Defines rules and symbols for formatting time and date information.

Description
The LC_TIME category of a locale definition source file defines rules and symbols for formatting time and
date information. This category begins with an LC_TIME category header and terminates with an END
LC_TIME category trailer.

Keywords
All operands for the LC_TIME category keywords are defined as string or integer values. String values
are enclosed by " " (double-quotation marks). All values are separated from the keyword they define
by one or more spaces. Two adjacent double-quotation marks indicate an undefined string value. A -1
indicates an undefined integer value. Field descriptors are used by commands and subroutines that
query the LC_TIME category to represent elements of time and date formats. The following keywords are
recognized in the LC_TIME category:

Item Description

copy The copy statement specifies the name of an existing locale to be used as the
definition of this category. If a copy statement is included in the file, no other
keyword can be specified.

abday Defines the abbreviated weekday names corresponding to the %a field descriptor.
Recognized values consist of 7 semicolon-separated strings. Each string must be of
equal length and contain 5 characters or less. The first string corresponds to the
abbreviated name (Sun) for the first day of the week (Sunday), the second to the
abbreviated name for the second day of the week, and so on.

day Defines the full spelling of the weekday names corresponding to the %A field
descriptor. Recognized values consist of seven semicolon-separated strings. The
first string corresponds to the full spelling of the name of the first day of the week
(Sunday), the second to the name of the second day of the week, and so on.

Files Reference 553

Item Description

abmon Defines the abbreviated month names corresponding to the %b field descriptor.
Recognized values consist of 12 semicolon-separated strings. Each string must be
of equal length and contain 5 characters or less. The first string corresponds to the
abbreviated name (Jan) for the first month of the year (January), the second to the
abbreviated name for the second month of the year, and so on.

mon Defines the full spelling of the month names corresponding to the %B field descriptor.
Recognized values consist of 12 semicolon-separated strings. The first string
corresponds to the full spelling of the name for the first month of the year (January),
the second to the full spelling of the name for the second month of the year, and so
on.

d_t_fmt Defines the string used for the standard date and time format corresponding to the
%c field descriptor. The string can contain any combination of characters and field
descriptors.

d_fmt Defines the string used for the standard date format corresponding to the %x
field descriptor. The string can contain any combination of characters and field
descriptors.

t_fmt Defines the string used for the standard time format corresponding to the %X
field descriptor. The string can contain any combination of characters and field
descriptors.

am_pm Defines the strings used to represent ante meridiem (before noon) and post meridiem
(after noon) corresponding to the %p field descriptor. Recognized values consist of
two semicolon-separated strings. The first string corresponds to the ante meridiem
designation, the last string to the post meridiem designation.

t_fmt_ampm Defines the string used for the standard 12-hour time format that includes an
am_pm value (the %p field descriptor). This statement corresponds to the %r
field descriptor. The string can contain any combination of characters and field
descriptors.

554 AIX Version 7.1: Files Reference

Item Description

era Defines how the years are counted and displayed for each era (or emperor's reign) in
a locale, corresponding to the %E field descriptor modifier. For each era, there must
be one string in the following format:

direction:offset:start_date:end_date:name:format

The variables for the era-string format are defined as follows:

direction
Specifies a - (minus sign) or + (plus sign) character. The plus sign character
indicates that years count in the positive direction when moving from the start
date to the end date. The minus sign character indicates that years count in the
negative direction when moving from the start date to the end date.

offset
Specifies a number representing the first year of the era.

start_date
Specifies the starting date of the era in the yyyy/mm/dd format, where yyyy, mm,
and dd are the year, month, and day, respectively. Years prior to the year AD 1
are represented as negative numbers. For example, an era beginning March 5th
in the year 100 BC would be represented as -100/03/05.

end_date
Specifies the ending date of the era in the same form used for the start_date
variable or one of the two special values -* or +*. A -* value indicates that the
ending date of the era extends backward to the beginning of time. A +* value
indicates that the ending date of the era extends forward to the end of time.
Therefore, the ending date can be chronologically before or after the starting date
of the era. For example, the strings for the Christian eras AD and BC would be
entered as follows:

+:0:0000/01/01:+*:AD:%o %N
+:1:-0001/12/31:-*:BC:%o %N

name
Specifies a string representing the name of the era that is substituted for the %N
field descriptor.

format
Specifies a string for formatting the %E field descriptor. This string is usually a
function of the %o and %N field descriptors.

An era value consists of one string for each era. If more than one era is specified,
each era string is separated by a ; (semicolon).

era_year Defines the string used to represent the year in alternate-era format corresponding
to the %Ey field descriptor. The string can contain any combination of characters and
field descriptors.

era_d_fmt Defines the string used to represent the date in alternate-era format corresponding
to the %Ex field descriptor. The string can contain any combination of characters and
field descriptors.

era_t_fmt Defines the alternative time format of the locale, as represented by the %EX field
descriptor for the strftime subroutine.

era_d_t_fmt Defines the alternative date and time format of the locale, as represented by the %Ec
field descriptor for the strftime subroutine.

Files Reference 555

Item Description

alt_digits Defines alternate strings for digits corresponding to the %o field descriptor.
Recognized values consist of a group of semicolon-separated strings. The first string
represents the alternate string for 0, the second string represents the alternate string
for one, and so on. A maximum of 100 alternate strings can be specified.

Field Descriptors
The LC_TIME locale definition source file uses field descriptors to represent elements of time and date
formats. Combinations of these field descriptors create other field descriptors or create time-and-date
format strings. When used in format strings containing field descriptors and other characters, field
descriptors are replaced by their current values. All other characters are copied without change. The
following field descriptors are used by commands and subroutines that query the LC_TIME category for
time formatting:

Item Description

%a Represents the abbreviated weekday name (for example, Sun) defined by the abday
statement.

%A Represents the full weekday name (for example, Sunday) defined by the day statement.

%b Represents the abbreviated month name (for example, Jan) defined by the abmon
statement.

%B Represents the full month name (for example, January) defined by the month statement.

%c Represents the time-and-date format defined by the d_t_fmt statement.

%C Represents the century as a decimal number (00 to 99).

%d Represents the day of the month as a decimal number (01 to 31).

%D Represents the date in %m/%d/%y format (for example, 01/31/91).

%e Represents the day of the month as a decimal number (01 to 31). The %e field descriptor
uses a two-digit field. If the day of the month is not a two-digit number, the leading digit is
filled with a space character.

%Ec Specifies the locale's alternate appropriate date and time representation.

%EC Specifies the name of the base year (period) in the locale's alternate representation.

%Ex Specifies the locale's alternate date representation.

%EX Specifies the locale's alternate time representation.

%Ey Specifies the offset from the %EC (year only) field descriptor in the locale's alternate
representation.

%EY Specifies the full alternate year representation.

%Od Specifies the day of the month using the locale's alternate numeric symbols.

%Oe Specifies the day of the month using the locale's alternate numeric symbols.

%OH Specifies the hour (24-hour clock) using the locale's alternate numeric symbols.

%OI Specifies the hour (12-hour clock) using the locale's alternate numeric symbols.

%Om Specifies the month using the locale's alternate numeric symbols.

%OM Specifies the minutes using the locale's alternate numeric symbols.

%OS Specifies the seconds using the locale's alternate numeric symbols.

%OU Specifies the week number of the year (Sunday as the first day of the week) using the
locale's alternate numeric symbols.

556 AIX Version 7.1: Files Reference

Item Description

%Ow Specifies the weekday as a number in the locale's alternate representation (Sunday = 0).

Item Description

%OW Specifies the week number of the year (Monday as the first day of the week) using the
locale's alternate numeric symbols.

%Oy Specifies the year (offset from the %C field descriptor) in alternate representation.

%h Represents the abbreviated month name (for example, Jan) defined by the abmon
statement. This field descriptor is a synonym for the %b field descriptor.

%H Represents the 24-hour clock hour as a decimal number (00 to 23).

%I Represents the 12-hour clock hour as a decimal number (01 to 12).

%j Represents the day of the year as a decimal number (001 to 366).

%m Represents the month of the year as a decimal number (01 to 12).

%M Represents the minutes of the hour as a decimal number (00 to 59).

%n Specifies a new-line character.

%N Represents the alternate era name.

%o Represents the alternate era year.

%p Represents the a.m. or p.m. string defined by the am_pm statement.

%r Represents the 12-hour clock time with a.m./p.m. notation as defined by the t_fmt_ampm
statement.

%S Represents the seconds of the minute as a decimal number (00 to 59).

%t Specifies a tab character.

%T Represents 24-hour clock time in the format %H:%M:%S (for example, 16:55:15).

%U Represents the week of the year as a decimal number (00 to 53). Sunday, or its equivalent
as defined by the day statement, is considered the first day of the week for calculating the
value of this field descriptor.

%w Represents the day of the week as a decimal number (0 to 6). Sunday, or its equivalent
as defined by the day statement, is considered as 0 for calculating the value of this field
descriptor.

%W Represents the week of the year as a decimal number (00 to 53). Monday, or its equivalent
as defined by the day statement, is considered the first day of the week for calculating the
value of this field descriptor.

%x Represents the date format defined by the d_fmt statement.

%X Represents the time format defined by the t_fmt statement.

%y Represents the year of the century (00 to 99).

Note: When the environment variable XPG_TIME_FMT=ON, %y is the year within the
century. When a century is not otherwise specified, values in the range 69-99 refer to
years in the twentieth century (1969 to 1999, inclusive); values in the range 00-68 refer to
2000 to 2068, inclusive.

%Y Represents the year as a decimal number (for example, 1989).

%Z Represents the time-zone name, if one can be determined (for example, EST); no
characters are displayed if a time zone cannot be determined.

%% Specifies a % (percent sign) character.

Files Reference 557

Example
The following is an example of a possible LC_TIME category listed in a locale definition source file:

LC_TIME
#
#Abbreviated weekday names (%a)
abday "<S><u><n>";"<M><o><n>";"<T><u><e>";"<W><e><d>";\
 "<T><h><u>";"<F><r><i>";"<S><a><t>"
#
#Full weekday names (%A)
day "<S><u><n><d><a><y>";"<M><o><n><d><a><y>";\
 "<T><u><e><s><d><a><y>";"<W><e><d><n><e><s><d><a><y>";\
 "<T><h><u><r><s><d><a><y>";"<F><r><i><d><a><y>";\
 "<S><a><t><u><r><d><a><y>"
#
#Abbreviated month names (%b)
abmon "<J><a><n>";"<F><e>";"<M><a><r>";"<A><p><r>";\
 "<M><a><y>";"<J><u><n>";"<J><u><l>";"<A><u><g>";\
 "<S><e><p>";"<O><c><t>";"<N><o><v>";"<D><e><c>"
#
#Full month names (%B)
mon "<J><a><n><u><a><r><y>";"<F><e><r><u><a><r><y>";\
 "<M><a><r><c><h>";"<A><p><r><i><l>";"<M><a><y>";\
 "<J><u><n><e>";"<J><u><l><y>";"<A><u><g><u><s><t>";\
 "<S><e><p><t><e><m><e><r>";"<O><c><t><o><e><r>";\
 "<N><o><v><e><m><e><r>";"<D><e><c><e><m><e><r>"
#
#Date and time format (%c)
d_t_fmt "%a %b %d %H:%M:%S %Y"
#
#Date format (%x)
d_fmt "%m/%d/%y"
#
#Time format (%X)
t_fmt "%H:%M:%S"
#
#Equivalent of AM/PM (%p)
am_pm "<A><M>";"<P><M>"
#
#12-hour time format (%r)
t_fmt_ampm "%I:%M:%S %p"
#
era "+:0:0000/01/01:+*:AD:%o %N";\
 "+:1:-0001/12/31:-*:BC:%o %N"
era_year ""
era_d_fmt ""
alt_digits "<0><t><h>";"<1><s><t>";"<2><n><d>";"<3><r><d>";\
 "<4><t><h>";"<5><t><h>";"<6><t><h>";"<7><t><h>";\
 "<8><t><h>";"<9><t><h>";"<1><0><t><h>"
#
END LC_TIME

Files

Item Description

/usr/lib/nls/loc/* Specifies locale definition source files for supported locales.

/usr/lib/nls/charmap/* Specifies character set description (charmap) source files for
supported locales.

Related reference
Locale Definition Source File Format
Character Set Description (charmap) Source File Format
Related information
locale command
Changing Your Locale

558 AIX Version 7.1: Files Reference

Locale Method Source File Format

Purpose
Specifies the methods to be overridden when constructing a locale.

Description
The methods source file maps methods names to the National Language Support (NLS) subroutines
that implement those methods. The methods file also specifies the libraries where the implementing
subroutines are stored.

The methods correspond to those subroutines that require direct access to the data structures
representing locale data.

The following is the expected grammar for a methods file:

method_def : "METHODS"
 | method_assign_list "END METHODS"
 ;

method_assign_list :
 method_assign_list method_assign
 | method_assign_list
 | method_assign
 ;

method_assign :
 "csid" meth_name meth_lib_path
 | "fnmatch" meth_name meth_lib_path
 | "get_wctype" meth_name meth_lib_path
 | "is_wctype" meth_name meth_lib_path
 | "mblen" meth_name meth_lib_path
 | "__mbstopcs" meth_name meth_lib_path
 | "mbstowcs" meth_name meth_lib_path
 | "__mbtopc" meth_name meth_lib_path
 | "mbtowc" meth_name meth_lib_path
 | "__pcstombs" meth_name meth_lib_path
 | "__pctomb" meth_name meth_lib_path
 | "regcomp" meth_name meth_lib_path
 | "regerror" meth_name meth_lib_path
 | "regexec" meth_name meth_lib_path
 | "regfree" meth_name meth_lib_path
 | "rpmatch" meth_name meth_lib_path
 | "strcoll" meth_name meth_lib_path
 | "strfmon" meth_name meth_lib_path
 | "strftime" meth_name meth_lib_path
 | "strptime" meth_name meth_lib_path
 | "strxfrm" meth_name meth_lib_path
 | "towlower" meth_name meth_lib_path
 | "towupper" meth_name meth_lib_path
 | "wcscoll" meth_name meth_lib_path
 | "wcsftime" meth_name meth_lib_path
 | "wcsid" meth_name meth_lib_path
 | "wcstombs" meth_name meth_lib_path
 | "wcswidth" meth_name meth_lib_path
 | "wcsxfrm" meth_name meth_lib_path
 | "wctomb" meth_name meth_lib_path
 | "wcwidth" meth_name meth_lib_path
 ;

meth_name: global_name
 | cfunc_name
 ;

global_name: "CSID_STD"
 | "FNMATCH_C"
 | "FNMATCH_STD"
 | "GET_WCTYPE_STD"
 | "IS_WCTYPE_SB"
 | "IS_WCTYPE_STD"
 | "LOCALECONV_STD"

Files Reference 559

 | "MBLEN_932"
 | "MBLEN_EUCJP"
 | "MBLEN_SB"
 | "__MBSTOPCS_932"
 | "__MBSTOPCS_EUCJP"
 | "__MBSTOPCS_SB"
 | "MBSTOWCS_932"
 | "MBSTOWCS_EUCJP"
 | "MBSTOWCS_SB"
 | "__MBTOPC_932"
 | "__MBTOPC_EUCJP"
 | "__MBTOPC_SB"
 | "MBTOWC_932"
 | "MBTOWC_EUCJP"
 | "MBTOWC_SB"
 | "NL_MONINFO"
 | "NL_NUMINFO"
 | "NL_RESPINFO"
 | "NL_TIMINFO"
 | "__PCSTOMBS_932"
 | "__PCSTOMBS_EUCJP"
 | "__PCSTOMBS_SB"
 | "__PCTOMB_932"
 | "__PCTOMB_EUCJP"
 | "__PCTOMB_SB"
 | "REGCOMP_STD"
 | "REGERROR_STD"
 | "REGEXEC_STD"
 | "REGFREE_STD"
 | "RPMATCH_C"
 | "RPMATCH_STD"
 | "STRCOLL_C"
 | "STRCOLL_SB"
 | "STRCOLL_STD"
 | "STRFMON_STD"
 | "STRFTIME_STD"
 | "STRPTIME_STD"
 | "STRXFRM_C"
 | "STRXFRM_SB"
 | "STRXFRM_STD"
 | "TOWLOWER_STD"
 | "TOWUPPER_STD"
 | "WCSCOLL_C"
 | "WCSCOLL_STD"
 | "WCSFTIME_STD"
 | "WCSID_STD"
 | "WCSTOMBS_932"
 | "WCSTOMBS_EUCJP"
 | "WCSTOMBS_SB"
 | "WCSWIDTH_932"
 | "WCSWIDTH_EUCJP"
 | "WCSWIDTH_LATIN"
 | "WCSXFRM_C"
 | "WCSXFRM_STD"
 | "WCTOMB_932"
 | "WCTOMB_EUCJP"
 | "WCTOMB_SB"
 | "WCWIDTH_932"
 | "WCWIDTH_EUCJP"
 | "WCWIDTH_LATIN"
 ;

Where cfunc_name is the name of a user supplied subroutine, and meth_lib_path is an optional path
name for the library containing the specified subroutine.

Note: If a 64-bit locale is to be created, then meth_lib_path must specify the path for a single archive for
the two shared objects, one 32-bit and the other 64-bit, containing the specified subroutines. Specifying
separate paths to the 32-bit and 64-bit shared objects will result in localedef failing due to incompatible
XCOFF format.

The localedef command parses this information to determine the methods to be used for this locale. The
following subroutines must be specified in the method file:

• __mbtopc
• __mbstopcs
• __pctomb

560 AIX Version 7.1: Files Reference

• __pcstombs
• mblen
• mbstowcs
• mbtowc
• wcstombs
• wcswidth
• wctomb
• wcwidth

Any other method not specified in the method file retains the default.

Mixing of cfunc_name values and global_name values is not allowed. A method file should not
include both. If the localedef command receives a method file containing both cfunc_name values and
global_name values, an error is generated and the locale is not created.

It is not mandatory that the METHODS section specify the library name. If an individual method does not
specify a library, the method inherits the most recently specified library. The libc.a library is the default
library.

The method for the mbtowc and wcwidth subroutines should avoid calling other methods where
possible.

An understanding of how the __mbtopc, __mbstopcs, __pctomb, and __pcstombs subroutines process
wide characters is useful when constructing a method file. These subroutines should not be used in
applications programs.

__mbtopc Subroutine

The __mbtopc subroutine converts a character to a process code.

The syntax for the __mbtopc subroutine is as follows:

size_t __mbtopc(PC, S, LenS, Err) wchar_t * PC; uchar * S; size_t LenS; int * Err;

The input buffer pointed to by the S parameter contains the number of bytes of character data specified
in the LenS parameter. The __mbtopc subroutine attempts to convert the character to a process code. If
a valid character is found in the input buffer pointed to by the S parameter, the character is converted and
stored in the PC parameter, and the number of bytes in the character is returned.

If the number of bytes specified by the LenS parameter in the input buffer pointed to by the S parameter
form an invalid character, the subroutine returns 0 and sets the Err parameter to the value -1. If
a character cannot be formed in the number of bytes specified by the LenS parameter or less, the
subroutine returns 0 and sets the Err parameter to the number of bytes required to form a character
beginning with the data pointed to by the S parameter.

The parameters have the following values:

Item Description

PC Points to a wide character to contain the converted character.

S Points to the buffer of character data to be converted.

LenS Specifies the number of bytes of character data pointed to by the S parameter.

Err Specifies an error value indicating why the conversion failed.

__mbstopcs Subroutine

The __mbstopcs subroutine converts a character string to a process code string.

The syntax for the __mbstopcs subroutine is as follows:

size_t __mbstopcs(PC, LenPC, S, LenS, StopCh, EndPtr, Err) wchar_t * PC; size_t LenPC; uchar * S; size_t
LenS; uchar StopCh; uchar ** EndPtr; int * Err;

Files Reference 561

The input buffer pointed to by the S parameter contains the number of bytes of character data specified
in the LenS parameter. The __mbstopcs subroutine attempts to convert the character data to process
codes. The conversion of characters continues until one of the following occurs:

• The number of bytes specified by the LenS parameter have been converted.
• The number of characters specified by the LenPC parameter have been converted.
• The byte value specified in the StopCh parameter is encountered in the input buffer pointed to by the S

parameter.
• An invalid or incomplete character is found in the input buffer pointed to by the S parameter.

If the number of bytes specified by the LenS parameter or the number of characters specified by
the LenPC parameter are successfully converted, the __mbstopcs subroutine returns the number of
characters converted, sets the Err parameter to 0, and sets the EndPtr parameter to point immediately
after the last character converted in the input buffer pointed to by the S parameter.

If the byte specified by the StopCh parameter is found in the input buffer pointed to by the S parameter,
the following occurs:

• Conversion ceases.
• The value specified by the StopCh parameter is placed in the PC parameter.
• The EndPtr parameter is set to point immediately after the value specified by the StopCh parameter.
• The Err parameter is set to 0.
• The number of characters converted is returned.

If an invalid character is found in the input buffer pointed to by the S parameter, the EndPtr parameter
is set to point to the start of this character, the Err parameter is set to (size_t)-1, and the __mbstopcs
subroutine returns the number of characters converted.

If an incomplete character is found at the end of the input buffer pointed to by the S parameter, the
EndPtr parameter is set to point to the start of the incomplete character, and the Err parameter is
set to the number of bytes in a character starting with the byte pointed to by EndPtr parameter. The
__mbstopcs subroutine returns the number of characters converted.

The parameters have the following values:

Item Description

PC Points to a wchar_t array to contain the converted characters.

LenPC Specifies the maximum number of wide characters that can be placed in the PC
parameter.

S Points to a buffer of character data to be converted.

LenS Specifies the number of bytes of character data in the S parameter.

StopCh Specifies a single-byte character value to indicate end of data in the S parameter.

EndPtr Points into the S parameter where character conversion ended.

Err Specifies an error value indicating why the conversion failed.

__pctomb Subroutine

The __pctomb subroutine converts a process code to a character.

The syntax for the __pctomb subroutine is as follows:

size_t __pctomb(S, LenS, PC, Err) char * S; size_t LenS; wchar_t * PC; int * Err;

The input buffer pointed to by the PC parameter contains a wide character that the subroutine attempts to
convert to a character in the input buffer pointed to by the S parameter. If a valid process code is found in
the input buffer pointed to by the PC parameter, it is converted and stored in the input buffer pointed to by
the S parameter, and the number of bytes in the character is returned.

562 AIX Version 7.1: Files Reference

If the wide character in the input buffer pointed to by the PC parameter is invalid, the __pctomb
subroutine returns 0 and sets the Err parameter to the value (size_t)-1. If the length of the character
is greater than the number of bytes specified by the LenS parameter, the __pctomb subroutine returns 0
and sets the Err parameter to the number of bytes required to form the character.

The parameters have the following values:

Item Description

S Points to a buffer to contain the converted process code.

LenS Specifies the size of the character array pointed to by the S parameter.

PC Points to the wide character to be converted.

Err Specifies an error value indicating why the conversion failed.

__pcstombs Subroutine

The __pcstombs subroutine converts a wide character string to a character string.

The syntax for the __pcstombs subroutine is as follows:

size_t __pcstombs(S, LenS, PC, LenPC, StopCh, EndPtr, Err) char * S; size_t LenS; wchar_t * PC; size_t
LenPC; wchar_t StopCh; char ** EndPtr; int * Err;

The input buffer pointed to by the PC parameter contains the number of wide characters specified by the
LenPC parameter. The __pcstombs subroutine attempts to convert the process codes to characters. The
conversion continues until one of the following occurs:

• The number of wide characters specified by the LenPC parameter have been converted.
• The number of bytes specified by the LenS parameter have been converted.
• The character value specified in the StopCh parameter is encountered in the input buffer pointed to by

the PC parameter.
• An invalid wide character is found in the input buffer pointed to by the PC parameter.

If the number of bytes specified by the LenS parameter or the number of characters specified by the
LenPC parameter are successfully converted, the __pcstombs subroutine returns the number of bytes
placed in the buffer pointed to by the S parameter, sets the Err parameter to 0, and sets the EndPtr
parameter to point immediately after the last character converted in the input buffer pointed to by the PC
parameter.

If the character specified by the StopCh parameter is found in the input buffer pointed to by the PC
parameter, the following occurs:

• Conversion ceases.
• The character specified by the StopCh parameter is placed at the end of the data currently pointed to by

the S parameter.
• The EndPtr parameter is set to point immediately after the character specified by the StopCh parameter.
• The Err parameter is set to 0.
• The number of bytes placed in the buffer pointed to by the S parameter is returned.

If an invalid wide character is found in the input buffer pointed to by the PC parameter, the EndPtr
parameter is set to point to the start of this character, the Err parameter is set to (size_t)-1, and the
__pcstombs subroutine returns the number of bytes placed in the buffer pointed to by the S parameter.

The parameters have the following values:

Item Description

S Points to a buffer to contain the converted data.

LenS Specifies the size in bytes of the character array pointed to by the S parameter.

Files Reference 563

Item Description

PC Points to a wchar_t array to be converted.

LenPC Specifies the number of wide characters in the array pointed to by the PC parameter.

StopCh Specifies a wide-character value to indicate end of data in the array pointed to by the PC
parameter.

EndPtr Points into the S parameter where character conversion ended.

Err Specifies the error value indicating why the conversion failed.

Files

Item Description

/usr/lib/nls/loc/* Specifies locale definition source files for supported locales.

/usr/lib/nls/charmap/* Specifies character set description (charmap) source files for
supported locales.

Related reference
Character Set Description (charmap) Source File Format
Locale Definition Source File Format
LC_COLLATE Category for the Locale Definition Source File Format
Related information
locale command
Locale Overview for System Management

magic File Format

Purpose
Defines file types.

Description
The /etc/magic file is used by commands such as the following to determine the type of a given file:

• file command
• more command

Entering the following command would result in a printed message describing the file type of the
FileName parameter:

file FileName

If FileName contains a byte pattern corresponding to an executable file, the pattern would match a stanza
in the /etc/magic file and the executable message would be displayed. If the FileName is a data file, a
data message is displayed, and so on.

The fields of the magic file are as follows:

1. Byte offset
2. Value type
3. Optional relational operator ("=" by default) and value to match (numeric or string constant)
4. String to be printed

564 AIX Version 7.1: Files Reference

Numeric values may be decimal, octal, or hexadecimal. Strings can be entered as hexadecimal values by
preceding them with '0x'.

The last string can have one printf format specification.

The > (greater than) symbol in occasional column 1s is magic; it forces commands to continue scanning
and matching additional lines. The first line not marked with the > sign terminates the search.

Examples

0 short 2345 this is a dummy type file

0 long 0x1234 this is a different dummy type file

>12 long >0 another possible type

0 short 7895 last type of file

Related information
file command
more or page command

.mailrc File Format

Purpose
Sets defaults for the mail command.

Description
The .mailrc file can be placed in your $HOME directory to personalize the Mail program. You can create
the .mailrc file with any ASCII editor. Once the file is created, the Mail program reads the file when you
send or read mail, and applies the options you have set. In the file, you can define aliases for other users'
mail addresses. You can also change the way mail is displayed and stored on your system.

The Mail program uses a master file in the same format, /usr/share/lib/Mail.rc. Options you set in your
$HOME/.mailrc file override comparable options in the Mail.rc file.

A line that begins with a # (pound sign) followed by a space is treated as a comment. The Mail program
ignores the entire line and any entries or options it contains.

Entries

Use the following mail subcommands as entries in the .mailrc file:

mail Subcommand Definition

 alias NewAlias { Address... | PreviousAlias... } Defines an alias or distribution list. The alias can be
defined as an actual mail address, or as another
alias defined in a previous entry in the .mailrc
file. To define a group, enter multiple addresses or
previous aliases separated by spaces.

ignore FieldList Adds the header fields in the FieldList parameter to
the list of fields to be ignored. Ignored fields are
not displayed when you look at a message with the
type or print subcommand. Use this subcommand
to suppress machine-generated header fields. Use
the Type or Print subcommand to print a message
in its entirety, including ignored fields.

Files Reference 565

mail Subcommand Definition

 set [OptionList | Option=Value...] Sets an option. The argument following the set
option can be either an OptionList giving the name
of a binary option (an option that is either set or
unset) or an Option=Value entry used to assign a
value to an option.

unset OptionList Disables the values of the options specified in
OptionList. This action is the inverse of the set
OptionList entry.

Binary Options for the set and unset Entries

Use the set entry to enable options and the unset entry to disable options. Add the options you want to
set or unset to the $HOME/.mailrc file. The options and the actions they generate are as follows:

Item Description

append Adds messages saved in your mailbox to the end rather than to the beginning of
the $HOME/mbox file.

ask Prompts for the subject of each message sent. If you do not wish to create a
subject field, press the Enter key at the prompt.

askcc Prompts for the addresses of people who should receive copies of the message. If
you do not wish to send copies, press the Enter key at the prompt.

autoprint Sets the delete subcommand to delete the current message and display the next
message.

debug Displays debugging information. Messages are not sent while in debug mode. This
is the same as specifying the -d flag on the command line.

dot Interprets a period entered on a line by itself as the end of a message you are
sending.

hold Holds messages that you have read but have not deleted or saved in the system
mailbox instead of in your personal mailbox. This option has no effect on deleted
messages.

ignore Ignores interrupt messages from your terminal and echoes them as @ (at sign)
characters.

ignoreeof Sets the mail command to refuse the Ctrl-D key sequence as the end of a message.

keepsave Prevents the Mail program from deleting messages that you have saved with the
s or w mailbox subcommand. Normally, messages are deleted automatically when
you exit the mail command. Use the keepsave and hold options to hold messages
in your system mailbox. Otherwise, the messages are placed in your personal
mailbox ($HOME/mbox).

metoo Includes the sender in the alias expansion. By default, expanding the alias
removes the sender. When this option is set in your .mailrc file, sending a message
using an alias that includes your name sends a copy of the message to your
mailbox.

noheader Suppresses the list of messages in your mailbox when you start the Mail program.
Instead, only the mailbox prompt (&) is displayed. To get a list of messages, use
the h mailbox subcommand.

nosave Prevents retention of interrupted letters in the $HOME/dead.letter file.

quiet Suppresses the printing of the banner when the Mail program starts. The banner is
the line that shows the name of the Mail program.

566 AIX Version 7.1: Files Reference

Item Description

Replyall Reverses the meaning of the reply subcommand and the Reply subcommand.

verbose Displays the actual delivery of messages on the terminal. This is the same as
specifying the -v flag on the command line.

Value Options for the set Entry

You can use a set entry to assign values to the following options. For example, enter set screen=20 to
limit headers to 20 lines per screen.

Item Description

crt=Lines Defines the number of lines of a mail message the Mail program displays
before pausing for input (this option starts the pg command to control the
scrolling).

EDITOR=Editor Gives the full path name of the editor to be started with the e mailbox
subcommand or the ~e mail editor subcommand. The default editor
is /usr/bin/e.

escape=Character Changes the escape character used for mail editor subcommands. The
default character is ~ (tilde).

folder=PathName Gives the path name of a directory in which to store mail folders. Once the
directory is defined, you can use the + (plus sign) notation to refer to it when
using the FileName parameter with mailbox subcommands.

record=FileName Defines a file in which to record outgoing mail. The path name must be
absolute (that is, a full path name), or be given relative to the current
directory.

Note: If you set up a file to record outgoing messages, read the file
periodically with the mail -f command and delete unnecessary messages.
Otherwise, the file will grow and eventually use all of your storage space.

screen=Lines Defines the number of lines of message headers displayed (for example, in
response to the h mailbox subcommand) before pausing for input.

toplines=Lines Defines the number of lines displayed by the top mailbox subcommand.

VISUAL=Editor Gives the full path name of the editor to be started with the v mailbox
subcommand or the ~v mail editor subcommand. The default editor
is /usr/bin/vi.

Examples
1. To ignore the Message-ID field and the Received field, place the following entry in the .mailrc file:

ignore message-id received

When messages are displayed in the mailbox, the machine message ID number and the date your
system received the message are not displayed.

2. To set a folder directory, place the following entry in the .mailrc file:

set folder=/home/kaye/notes

To save message 1 from the mailbox in the folder procedures, enter the following at the mailbox
prompt (&):

s 1 +procedure

Files Reference 567

Message 1 is saved in the /home/kaye/notes/procedures file (if the file already exists, the
message is appended to the file).

3. To record outgoing mail in a folder directory, place the following pair of entries in the .mailrc file:

set record=/home/pierre/letters/mailout
set folder=/home/pierre/letters

Outgoing mail is placed in the /home/pierre/letters/mailout file, and can be read with the
following command:

mail -f +mailout

4. To combine the delete and print commands and also instruct the Mail program to include your user ID
when expanding aliases, enter the following in your .mailrc file:

set autoprint metoo

The autoprint option causes the next message to be displayed whenever you delete a message. The
metoo option causes the Mail program to send a copy of messages to you when it expands mail
aliases. By default, the Mail program discards your user address when it expands an alias, so that you
do not get a copy of mail you send.

5. To unset an option that is set in the /usr/share/lib/Mail.rc file, enter the following in your .mailrc file:

unset askcc

This entry prevents the mail editor from requesting a carbon copy list when you create messages, even
if the askcc option is set in the Mail.rc file.

6. To set aliases for two users and a distribution list that includes several users, enter the following in
your .mailrc file:

alias george george@thor.valhalla.dbm.comm
alias bill @odin.UUCP:@depta.UCCP:@deptb:bill@deptc
alias mygroup amy@cleo george bill

To send mail to user bill using his alias, enter:

mail bill

To send mail to everyone in the mygroup list, enter:

mail mygroup

When you complete and send the message, the mail command actually addresses it as follows:

amy@cleo george@thor.valhalla.dbm.comm @odin.UUCP:@depta.UCCP:
@deptb:bill@deptc

Files

Item Description

/usr/share/lib/Mail.rc Contains systemwide defaults for the Mail program.

$HOME/.mailrc Contains user-specific defaults for the Mail program.

Related reference
aliases File for Mail
Related information
mail command
pg command
Creating and sending mail

568 AIX Version 7.1: Files Reference

map3270 File Format for TCP/IP

Purpose
Defines keyboard mapping and colors for the tn3270 command.

Description
The /etc/map3270 file defines keyboard mapping and colors for the tn3270 command. When emulating
3270 terminals, mapping must be performed between key sequences entered on a user's (ASCII)
keyboard and the keys that are available on a 3270 emulator.

For example, the 3270 emulator key EEOF erases the contents of the current field from the location of
the cursor to the end of the field. In order to accomplish this function, the terminal user and a program
emulating a 3270 emulator must be compatible with regard to what keys invoke the EEOF function.

The requirements for these sequences are:

• The first character of the sequence is outside of the standard ASCII printable characters.
• No one sequence is an initial part of another (although sequences may share initial parts).

The /etc/map3270 file consists of entries for various terminals. The first part of an entry lists names of
terminals using that entry. These names should be the same as those in the /usr/share/lib/terminfo/*.ti
files.

Note: Often, several terminals from different /usr/share/lib/terminfo/*.ti entries use the same /etc/
map3270 file entry. For example, both 925 and 925vb (for 925 with visual bells) might use the same
map3270 file entry. Each name is separated by a | (vertical bar), after which comes a { (left brace); the
definitions; and finally, a } (right brace).

Format

The definitions begin with a reserved keyword, which identifies the 3270 function. The keyword is
followed by an = (equal sign), which in turn is followed by the various string sequences to generate
the particular function. The definitions end with a ; (semi-colon). The string sequences are printable ASCII
characters enclosed inside ' ' (single quotes) and separated by | (vertical bars).

Special characters can be used within ' ' (single quotes). A ^ (caret) indicates a control character. For
example, the string '^a' represents Ctrl-A; that is, hexadecimal 1 (the string '^A' generates the same
code). To generate delete or rubout, enter '^d' '^?' (Ctrl-D or Ctrl-?). To represent a control
character in the /etc/map3270 file, you must use the caret. Typing Control-A or Ctrl-A does not work.

Note: The Ctrl-^ key sequence (to generate a hexadecimal 1E) is represented as '^^' (not '^\^').

The \ (backslash) special character precedes other characters to change their meaning. Because this has
little effect for most characters, its use is not recommended. The backslash prevents a single quote from
terminating a string, for example the string '^\'' represents Ctrl-'. For a backslash to be part of a string,
place two backslashes ('\\') in the string.

In addition, the following characters are special:

'\e' Specifies an escape character.
'\n' Specifies a new line.
'\t' Specifies a tab.
'\r' Specifies a carriage return.

It is not necessary for each character in a string to be enclosed within single quotes. The string '\e\e\e'
means three escape characters.

Comments, which may appear anywhere on a line, begin with a # (pound sign) and terminate at the end of
that line. However, comments cannot begin inside a quoted string. A pound sign inside a quoted string has
no special meaning.

Files Reference 569

3270 Keys Supported
Note: Some of the following keys do not exist on a 3270 emulator. The functions listed with an * (asterisk)
are not supported by the tn3270 command. An unsupported function causes the tn3270 command to
send a bell sequence to the user's terminal.

The /etc/map3270 file supports the following list of 3270 key names:

Key Name Functional Description

altk* Alternate keyboard dvorak

aplend* Treat input as ASCII

aploff* APL off

aplon* APL on

attention Attention key. The attention key sends an IAC BREAK TELNET protocol sequence to
the TELNET server on a VM or MVS system. The TELNET server is responsible for
implementing the attention key.

btab Field tab back

clear Local clear of the 3270 screen

clrtab Clear all column tabs

colbak Column back tab

coltab Column tab

cursel* Cursor select

delete Delete character

deltab Delete a column tab

disc Disconnect (suspend)

down Down cursor

dp Duplicate character

eeof Erase end of field

einp Erase input

enter Enter key

erase Erase last character

escape Enter TELNET command mode

ferase Erase field

fieldend Tab to last non-blank of current or next unprotected (writable) field

flinp Flush input

fm Field mark character

home Home the cursor

indent Indent one tab stop

init* New terminal type

insrt Toggle insert mode

Item Description

left Left cursor

570 AIX Version 7.1: Files Reference

Item Description

lprt* Local print

master_reset Reset, unlock, and redisplay

nl New line

pa1 Program attention 1

pa2 Program attention 2

pa3 Program attention 3

pfk1 Program function key 1

pfk2 Program function key 2

. .

. .

. .

pfk36 Program function key 36.

pcoff* Xon/xoff off

pcon* Xon/xoff on

reset Reset key-unlock keyboard

reshow Redisplay the screen

right Right cursor

sethom Set home position

setmrg Set left margin

settab Set a column tab

synch In synch with the user

tab Field tab

treq Test request

undent Undent one tab stop

up Up cursor

werase Erase last word

wordbacktab Tab to beginning of current or last word

wordend Tab to end of current or next word

wordtab Tab to beginning of next word

xoff* Hold output

xon* Release output

A Sample Entry
The following default entry is included within the tn3270 command and is used when it is unable to locate
a version in the user's environment or the /etc/map3270 file.

name { # actual name comes from TERM variable
clear = '^z';
flinp = '^x';
enter = '^m';
delete = '^d' | '^?'; # note that '^?' is delete (rubout)

Files Reference 571

synch = '^r';
reshow = '^v';
eeof = '^e';
tab = '^i';
btab = '^b';

nl = '^n';
left = '^h';
right = '^l';
up = '^k';
down = '^j';
einp = '^w';
reset = '^t';
xoff = '^s';
xon = '^q';
escape = '^c';
ferase = '^u';
insrt = ' ';
program attention keys
pa1 = '^p1'; pa2 = '^p2'; pa3 = '^p3';
program function keys
pfk1 = '1'; pfk2 = '2'; pfk3 = '3'; pfk4 = '4';
pfk5 = '5'; pfk6 = '6'; pfk7 = '7'; pfk8 = '8';
pfk9 = '9'; pfk10 = ' '; pfk11 = '-'; pfk12 = '=';
pfk13 = ''; pfk14 = '@'; pfk15 = '0;
pfk17 = ''; pfk18 = ''; pfk19 = ''; pfk20 = ';
pfk21 = ' pfk22 = ')'; pfk23 = '_'; pfk24 = ' ';
}

3270 Key Definitions
The following table shows the proper keys to emulate each 3270 function when using the default key
mapping supplied with the tn3270 command.

Table 5. 3270 Key Definitions

Function 3270 Key Default Key(s)

Command Keys Enter RETURN

Clear Ctrl-z

Attention Ctrl-F12

Cursor Movement Keys New line Ctrl-n or Home

Tab Ctrl-i

Back tab Ctrl-b

Cursor left Ctrl-h

Cursor right Ctrl-l

Cursor up Ctrl-k

Cursor down Ctrl-j or LINE FEED

Edit Control Keys Delete char Ctrl-d or RUB

Erase EOF Ctrl-e

Erase input Ctrl-w

Insert mode ESC Space

End insert ESC Space

Item Description

Program Function Keys PF1 ESC 1

572 AIX Version 7.1: Files Reference

Item Description

PF2 ESC 2

... ...

PF10 ESC 0

PF11 ESC -

PF12 ESC =

PF13 ESC !

PF14 ESC @

... ...

PF24 ESC +

Program Attention Keys PA1 Ctrl-p 1

PA2 Ctrl-p 2

PA3 Ctrl-p 3

Local Control Keys Reset after error Ctrl-r

Purge input buffer Ctrl-x

Keyboard unlock Ctrl-t

Redisplay screen Ctrl-v

Other Keys Erase current field Ctrl-u

Files

Item Description

/etc/3270.keys Contains the default keyboard mapping.

/usr/share/lib/terminfo/*.ti Files containing terminal information.

Related reference
.3270keys File Format for TCP/IP
Related information
telnet, tn, or tn3270 command
Changing the assignment of a key set

Maxuuscheds File Format for BNU

Purpose
Limits the number of instances of the uusched and uucico daemons that can run simultaneously.

Description
The /etc/uucp/Maxuuscheds file limits the number of instances of the Basic Networking Utilities (BNU)
uusched daemons that can run simultaneously. Since each instance of the uusched daemon is associated
with one instance of the uucico daemon, the file limits the instances of the uucico daemon in a similar
way. This file is used in conjunction with the lock files in the /etc/locks directory to determine the number
of systems currently being polled. Use this file to help manage system resources and load averages.

Files Reference 573

The Maxuuscheds file contains an ASCII number that can be changed for your installation. The default is
2. The larger the number, the greater the potential load on the local system. In any case, the limit should
always be less than the number of outgoing lines used by BNU.

The Maxuuscheds file requires neither configuration nor maintenance, unless the system on which it is
installed is contacted frequently and heavily by users on remote systems.

Files

Item Description

/etc/locks directory Contains lock files that prevent multiple uses of devices and
multiple calls to systems.

/etc/uucp directory Contains some of the configuration files for BNU, including the
Maxuuscheds file.

Related information
uucico command
Configuring BNU
Understanding the BNU File and Directory Structure

Maxuuxqts File Format for BNU

Purpose
Limits the number of instances of the BNU uuxqt daemon that can run simultaneously on the local
system.

Description
The /etc/uucp/Maxuuxqts file limits both the number of instances of the Basic Networking Utilities
(BNU) uuxqt daemon that can run simultaneously on the local system and the number of commands from
remote systems that can run at one time.

This file contains an ASCII number that can be changed for your installation. The default value is 2. The
larger the number, the greater the potential load on the local system.

The Maxuuxqts file requires neither configuration nor maintenance, unless the system on which it is
installed is used frequently and heavily by users on remote systems.

Files

Item Description

/etc/uucp directory Contains some of the configuration files for BNU, including the
Maxuuxqts file.

Related information
uuxqt command
Configuring BNU
Understanding the BNU File and Directory Structure

.mh_alias File Format

Purpose
Defines aliases.

574 AIX Version 7.1: Files Reference

Description
An alias file contains lines that associate an alias name with an address or group of addresses. The
Message Handler (MH) package reads both personal alias files (customarily the $HOME/.mh_alias file)
and a systemwide alias file, the /etc/mh/MailAliases file. Depending on the MH configuration, aliases
may also be defined in the /etc/aliases file (see the sendmail command).

The alias file name is an argument to several MH commands. These commands can be set automatically
by entries in the .mh_profile file. Personal alias files can have any name, but must follow the format
described here. The /etc/mh/MailAliases file is the default alias file for systemwide aliases. This file is
set up by a user with root user authority.

Specify your personal alias file in your .mh_profile file. Otherwise, you must use the -alias flag each time
you use an MH command that requires this flag.

Each line of an .mh_alias file has one of the following formats:

• Alias : Address-Group
• Alias ; Address-Group
• <Alias-File

The variables are described as follows:

Item Description

Alias Specifies a simple address.

Address Specifies a simple Internet-style address.

Group Specifies a group name (or number) from the /etc/group file.

Alias-File Specifies a system file name. The MH package treats alias file names as case-sensitive.
Alias expansion is case-sensitive as well.

The Address-Group variable can be either of the following:

Item Description

AddressList List of addresses that make up a group.

<Alias-File System file to be read for more alias definitions.

The addresses in the AddressList variable must be separated by commas.

Note: f there are references to aliases within an alias definition, those aliases must be defined in a
following line of the alias file.

Special Characters

Item Description

\ (backslash) You can continue an alias definition on the next line by ending the line to
be continued with a \ (backslash) followed by a new-line character.

< (less than) If a line starts with a < (less-than sign), MH reads the file specified
after the less-than sign for more alias definitions. The reading is done
recursively.

If an address group starts with a < (less-than sign), MH reads the file
specified after the less-than sign and adds the contents of that file to the
address list for the alias.

= (equal) If an address group starts with an = (equal sign), MH consults the /etc/
group file for the group specified after an equal sign. The MH package
adds each login name occurring as a member of the group to the address
list for the alias.

Files Reference 575

Item Description

+ (plus) If an address group starts with a + (plus sign), MH consults the /etc/
group file to determine the ID of the group. Each login name appearing
in the /etc/passwd file that matches the address group is added to the
address list for the alias.

* (asterisk) If an address group is defined by an * (asterisk), MH consults the /etc/
passwd file and adds all login names with a user number greater than 200
(or the value set for everyone in the /etc/mh/mtstailor file) to the address
list for the alias.

The following list explains how the system resolves aliases at posting time:

1. The system builds a list of all addresses from the message to be delivered, eliminating duplicate
addresses.

2. If the draft originated on the local host, the system performs alias resolution for addresses that have
no specified host.

3. For each line in the alias file, the system compares the alias with all existing addresses. If a match is
found, the system removes the matched alias from the address list. The system then adds each new
address in the address group to the address list. The alias itself is not usually output. Instead, the
address group to which the alias maps is output. If the alias is terminated with a ; (semicolon) instead
of a : (colon), both the alias and the address are output in the correct form. (This correct form makes
replies possible since MH aliases and personal aliases are unknown to the mail transport system.)

In pattern matching, a trailing * (asterisk) in an alias matches just about anything appropriate.

Examples
The following example of an .mh_alias file illustrates some of its features:

</home/sarah/morealiases
systems:= systems
staff:+ staff
everyone:+*
manager: harold@harold
project:lance,mark@remote,peter,manager

The first line says that more aliases should be read from the /home/sarah/morealiases file. The
systems alias is defined as all users listed as members of the group systems in the /etc/group file. The
staff alias is defined as all users whose group ID in the /etc/passwd file is equivalent to the staff
group. Finally, the everyone alias is defined as all users with a user ID in the /etc/passwd file greater
than 200.

The manager alias is defined as an alias for user harold@harold. The project alias is defined as the
users lance, mark@remote, peter, and manager.

Files

Item Description

/etc/aliases Contains systemwide aliases for the sendmail command.

/etc/group Contains basic group attributes.

/etc/passwd Contains user authentication information.

/etc/mh/MailAliases Contains the defaults alias file for systemwide aliases, which is set up
by a user with root user authority.

/etc/mh/mtstailor Tailors the Message Handler (MH) environment to the local
environment.

576 AIX Version 7.1: Files Reference

Item Description

.mh_profile Customizes the Message Handler (MH) package.

Related reference
/etc/passwd File
.mh_profile File
Related information
ali command
post command
sendmail command
whom command

mib.defs File Format

Purpose
Provides descriptions of Management Information Base (MIB) variables for the snmpinfo command.

Description
The mib.defs file provides object descriptions of MIB variables for the snmpinfo command issued with
the get, next, set, and dump options. See the snmpinfo command for more information. This command is
part of Simple Network Management Protocol Agent Applications in Network Support Facilities.

The mib.defs file is not intended to be edited by the user. The file should be created with the mosy
command. See the mosy command for information on how to create the mib.defs file. This file has the
following format:

The MIB group fields are separated by spaces or tabs and contain the following information:

Item Description

GroupDescriptor Holds the textual name of the MIB group.

GroupEntry Denotes the parent MIB group and the location of this MIB group in the
parent group. This field is used by the snmpinfo command to resolve the
ASN.1 dotted notation for MIB variables under this group.

The MIB groups are defined as follows:

Group Descriptor Group Entry

internet iso.3.6.1

directory internet.1

mgmt internet.2

. .

. .

. .

mib-2 mgmt.1

system mib-2.1

. .

. .

Files Reference 577

The object definitions of MIB variables are formatted as follows:

Object Descriptor Group Entry Syntax Access Status

sysDescr system.1 DisplayString read-only mandatory

The MIB variable fields are separated by spaces or tabs, and contain the following information:

Item Description

ObjectDescriptor Holds the textual name of the object.

GroupEntry Denotes the MIB object group and the location of this MIB variable in this
group. This field is used by the snmpinfo command to resolve the ASN.1
dotted notation for this MIB variable.

Syntax Denotes the type of the object as one of the following:

• INTEGER
• OCTET STRING or DisplayString
• OBJECT IDENTIFIER
• Network Address
• Counter
• Gauge
• TimeTicks
• Opaque

Access Designates the access permissions for the object and can be one of the
following:

• Read-only
• Read-write
• Write-only
• Not-accessible

Status Designates the RFC 1213 compliance status of the object and can be one
of the following:

• Mandatory
• Optional
• Deprecated
• Obsolete

The parent MIB group definition required for a particular MIB variable GroupEntry definition must precede
the object definition for the MIB variable.

Comments begin with a # (pound sign) or - - (two dashes) and continue to the end of the line.

Files

Item Description

/usr/samples/snmpd/smi.my Defines the ASN.1 definitions by which the SMI is
defined as in RFC 1155.

/usr/samples/snmpd/mibII.my Defines the ASN.1 definitions for the MIB II variables
as defined in RFC 1213.

578 AIX Version 7.1: Files Reference

Related information
mosy command
snmpinfo command
Understanding the Management Information Base (MIB)

named.conf File Format for TCP/IP

Purpose
Defines the configuration and behavior of the named daemon.

Description
The /etc/named.conf file is the default configuration file for the named8 and named9 server. If the
named daemon is started without specifying an alternate file, the named daemon reads this file for
information on how to set up the local name server.

The format of the named.conf file is different depending on which version of the named server is
configured. The file format information for both named8 and named9 can be found below.

Note: The named daemon reads the configuration file only when the named daemon starts, or when the
named daemon receives an SRC refresh command or a SIGHUP signal.

The data in the named.conf file specifies general configuration characteristics for the name server,
defines each zone for which the name server is responsible (its zones of authority), and provides further
config information per zone, possibly including the source DOMAIN database file for the zone.

Any database files referenced in the named.conf file must be in the Standard Resource Record Format.
These data files can have any name and any directory path. However, for convenience in maintaining the
named database, they are given names in the following form: /etc/named.extension. The general format
of named data files is described in DOMAIN Data File, DOMAIN Reverse Data File, DOMAIN Cache File,
and DOMAIN Local File.

Format of the named.conf file when configuring named8
General

Comments in the named.conf file can begin with a # (pound sign) or // (two forward slashes), or can be
enclosed in the C-style comment characters, for example, /* comment text */.

Configuration options are lines of text beginning with a keyword, possibly including some option text or a
list, and ending in a ; (semicolon).

The named.conf file is organized into stanzas. Each stanza is an enclosed set of configuration options
that define either general characteristics of the daemon or a zone configuration. Certain stanza definitions
are allowed only at the top level, therefore nesting these stanzas is not allowed. The current top-level
configuration stanza keywords are: acl, key, logging, options, server, and zone.

Further configuration information can be incorporated through the include keyword into the conf file. This
keyword directs the daemon to insert the contents of the indicated file into the current position of the
include directive.

Access Control List (ACL) Definition

acl acl-name {
 access-element;
 [access-element; ...]
};

Defines an access control list to be referenced throughout the configuration file byacl-name. Multiple acl
definitions can exist within one configuration file if each acl-name is unique. Additionally, four default
access control lists are defined:

Files Reference 579

• any Any host is allowed.
• none No host is allowed.
• localhost Only the localhost is allowed.
• localnets Only hosts on a network matching a name server interface is allowed.

Option Values Explanation

access-element IP-address IP-prefix acl-
reference

Defines a source as allowed
or disallowed. Multiple access-
elements are allowed inside the
acl stanza.

Each element can be an IP
address in dot notation (for
example, 9.3.149.66) an IP
prefix in CIDR or slash notation
(for example, 9.3.149/24) or
a reference to another access
control list (for example,
localhost).

Additionally, each element
indicates whether the element
is allowed or disallowed access
through an ! (exclamation point)
modifier prepended to the
element.

For example:

acl hostlist1 {
 !9.53.150.239;
 9.3.149/24;
};

When the access control list
“ hostlist1” is referenced
in the configuration, it implies
to allow access from any
host whose IP address begins
with 9.3.149 and to disallow
access from the internet host
9.53.150.239.

Key Definition

key key-name {
 algorithm alg-id;
 secret secret-string;
};

Defines an algorithm and shared secret key to be referenced in a server stanza and used for
authentication by that name server. This feature is included for future use and is currently unused in
the name server.

580 AIX Version 7.1: Files Reference

Option Values Explanation

algorithm alg-id string A quoted-string that defines the
type of security algorithm that
is used when interpreting the
secret string. None are defined at
this time.

secret secret-string string A quoted-string that is used by
the algorithm to authenticate the
host.

Logging Configuration

logging {

 [channel channel-name {
 (file file-name
 [versions (num-vers | unlimited)]
 [size size-value]
 | syslog (kern | user | mail | daemon |
 syslog | lpr | news | uucp)
 | null);
 [print-category (yes | no);]
 [print-severity (yes | no);]
 [print-time (yes | no);]
 }; ...]
 [category category-name {
 channel-reference;
 [channel-reference; ...]
 }; ...]
};

In this newest version of the name server, the logging facility has been greatly improved to allow for much
reconfiguration of the default logging mechanism. The logging stanza is used to define logging output
channels and to associate the predefined logging categories with either the predefined or user-defined
logging output channels.

When no logging stanza is included in the conf file, the name server still logs messages and errors just
as it has in previous releases. Informational and some critical messages are logged through the syslog
daemon facility, and debug and other esoteric information are logged to the named.run file when the
global debug level (set with the -d command-line option) is non-zero.

Files Reference 581

Option Values Explanation

channel Defines an output channel to be
referenced later by the channel-
name identifier. An output
channel specifies a destination
for output messages to be sent
as well as some formatting
information to be used when
writing the output message. More
than one output channel can be
defined if each channel-identifier
is unique. Also, each output
channel can be referenced from
multiple logging categories.

There are four predefined output
channels:

• default_syslog sends “info”
and higher severity messages
to syslog's “daemon” facility

• default_debug writes debug
messages to the named.run
file as specified by the global
debug level

• default_stderr writes “info”
and higher severity messages
to stderr

• null discards all messages

file file-name string Defines an output channel as
one that logs messages to an
output file. The file used for
output is specified with the file-
name string. Additionally, the
file option allows controlling the
number of versions of the output
file that should be kept, and the
size limit that the output file
should not exceed.

The file, syslog, and null output
paths are mutually exclusive.

582 AIX Version 7.1: Files Reference

Option Values Explanation

versions num-versions unlimited Specifies the number of old
output files that should be
kept. When an output file is
reopened, rather than replacing
a possible existing output file,
the existing output file is saved
as an old output file with
a .value extension. Using the
num-versions value, one can limit
the number of old output files to
be kept. However, specifying the
unlimited keyword indicates
to continually accumulate old
output file versions. By default,
no old versions of any log file are
kept.

size size-value Specifies the maximum size
of the log file used by this
channel. By default, the size is
unlimited. However, when a size
is configured, once size-value
bytes are written to the file,
nothing more is written until the
file is reopened.

Accepted values for size-value
include the word “unlimited” and
numbers with k, m, or g modifiers
specifying kilobytes, megabytes,
and gigabytes respectively. For
example, 1000k and 1m indicate
one thousand kilobytes and one
megabyte respectively.

Files Reference 583

Option Values Explanation

syslog kern user mail daemon auth
syslog lpr news uucp

Defines an output channel as one
that redirects its messages to
the syslog service. The supported
value keywords correspond to
facilities logged by the syslog
service.

Ultimately, the syslog service
defines which received messages
are logged through the service,
therefore, if defining a channel
to redirect its messages to the
syslog service's user facility
would not result in any visibly
logged messages if the syslog
service is not configured to
output messages from this
facility.

For more information concerning
the syslog service, see the
syslogd daemon.

The file, syslog, and null output
paths are mutually exclusive.

null Defines an output channel
through which all messages
are discarded. All other output
channel options are invalid for
an output channel whose output
path is null.

584 AIX Version 7.1: Files Reference

Option Values Explanation

severity critical error warning notice info
debug [level] dynamic

Sets a threshold of message
severities to be logged through
the output channel. While these
severity definitions are like those
used by the syslog service,
for the name server they also
control output through file path
channels. Messages must meet
or exceed the severity level to
be logged through the output
channel. The dynamic severity
specifies that the name server's
global debug level (specified
when the daemon is invoked
with the -d flag) controls which
messages pass through the
output channel.

Also, the debug severity can
specify a level modifier which
is an upper threshold for debug
messages whenever the name
server has debugging enabled at
any level. A lower debug level
indicates less information is to
be logged through the channel.
It is not necessary for the global
debug level to meet or exceed
the debug level value.

If used with the syslog output
path, the syslog facility ultimately
controls what severities are
logged through the syslog
service. For example, if the syslog
service is configured to only
log daemon.info messages, and
the name server is configured
to channel all debug messages
to the syslog service, the syslog
service filters the messages from
its output path.

Files Reference 585

Option Values Explanation

print-category print-severity
print-time

yes no Controls the format of the output
message when it is sent through
the output path. Regardless of
which, how many, or in which
order these options are listed
inside the channel stanza, the
message is prepended with the
text in a time, category, severity
order.

The following is an example of a
message with all three print-
options enabled:

28-Apr-1997
15:05:32.863 default:
notice: Ready to
answer queries.

By default, no extra text is
prepended to an output message.

Note that when the syslog service
logs messages, it also prepends
the date and time information
to the text of the message.
Thus, enabling print-time on
a channel that uses the syslog
output path would result in the
syslog service logging a message
with two dates prepended to it.

category The category keyword defines
a stanza which associates a
logging or messaging category
with predefined or user-defined
output channels.

By default, the following
categories are defined:

category default
{ default_syslog;
default_debug; };
category panic
{ default_syslog;
default_debug; };

586 AIX Version 7.1: Files Reference

Option Values Explanation

category-name default config parser queries
lame-servers statistics panic
update ncache xfer-in xfer-out
db event-lib packet notify cname
security os insist maintenance
load response-checks

The category-name specifies
which logging category is to
be associated with the listed
channel-references. This results
in any output text generated
by the name server daemon
for that logging category to be
redirected through each of the
channel-references listed.

The default category defines
all messages that are not listed
in one of the specific categories
listed. Also, the insist and
panic categories are associated
with messages that define a
fatal inconsistency in the name
server's state. The remaining
categories define messages that
are generated when handling
specific functions of the name
server. For example, the update
category is used when logging
errors or messages specific to
the handling of a dynamic zone
update, and the parser category
is used when logging errors or
messages during the parsing of
the conf file.

channel-reference References a channel-name
identifier defined previously
in the logging configuration
stanza. Therefore, every message
associated with the defined
category-name is logged through
each of the defined channel-
references.

Global Options

options {
 [directory path-string;]
 [named-xfer path-string;]
 [dump-file path-string;]
 [pid-file path-string;]
 [statistics-file path-string;]
 [auth-nxdomain (yes | no);]
 [fake-iquery (yes | no);]
 [fetch-glue (yes | no);]
 [multiple-cnames (yes | no);]
 [notify (yes | no);]
 [recursion (yes | no);]
 [forward (only | first);]
 [forwarders { ipaddr; [...] };]
 [check-names
 (master|slave|response)
 (warn|fail|ignore);]
 [allow-query { access-element; [...] };]
 [allow-transfer { access-element; [...]);]
 [listen-on [port port-num] { access-element; [...] }; ...]
 [query-source [address (ipaddr|*)] [port (port|*)];]
 [max-transfer-time-in seconds;]

Files Reference 587

 [transfer-format (one-answer | many-answers);]
 [transfers-in value;]
 [transfers-out value;]
 [transfers-per-ns value;]
 [coresize size-value;]
 [datasize size-value;]
 [files size-value;]
 [stacksize size-value;]
 [clean-interval value;]
 [interface-interval value;]
 [statistics-interval value;]
 [topology { access-element; [...] };]
};

Defines many globally available options to modify basic characteristics of the name server.

Because some of the options in this configuration stanza may modify the behavior in how the named
daemon reads and interprets later sections of the named file, it is highly recommended that the options
stanza be the first stanza listed in the configuration file.

Option Values Default

directory
Indicates the directory from which all relative
paths are anchored. The path-string parameter
must be a quoted string. For example, to indicate
that all zone files exist in the “/usr/local/named/
data” without listing each file in the zone
definitions, specify the global option directory as:
options { directory “/usr/local/named/
data”; };

path-string “.”

named-xfer
Specifies the path and executable name of the
named-xfer command used for inbound zone
transfers. The path-string parameter must be a
quoted string.

path-string “/usr/sbin/named-
xfer”

dump-file
Specifies a filename to which the database in the
memory is dumped whenever the named daemon
receives a SIGINT signal.

path-string “/usr/tmp/
named_dump.db”

pid-file
Specifies the file in which the named daemon
writes its PID value.

path-string “/etc/named.pid”

statistics-file
Specifies the file to which the name server
appends operating statistics when it receives the
SIGILL signal.

path-string “/usr/tmp/
named.stats”

auth-nxdomain
Controls whether the server should respond
authoritatively when returning an NXDOMAIN
response.

yes no yes

fake-iquery
Controls whether the server should respond to
obsolete IQUERY requests.

yes no no

588 AIX Version 7.1: Files Reference

Option Values Default

fetch-glue
Controls whether the server should search for
“glue” records to include in the additional section
of a query response.

yes no yes

multiple-cnames
Controls whether the server will allow multiple
CNAME records for one domain name in any of its
zone databases. This practice is discouraged but
an option remains for backwards compatibility.

yes no no

notify
Controls whether the name server will send
NOTIFY messages to its slave servers upon
realization of zone changes. Because the slave
servers almost immediately respond to the
NOTIFY message with a request for zone transfer,
this limits the amount of time that the databases
are out of synchronization in the master and slave
relationship.

yes no yes

recursion
Controls whether the server will attempt to
resolve names outside of its domains on behalf
of the client. If set to no, the name server returns
a referral to the client in order for the client to
continue searching for the name. Used with the
fetch-glue option, one can contain the amount
of data that grows in the memory cache of the
name server.

yes no yes

forward
Controls how forwarding is used when forwarding
is enabled. When set to first, the name server
attempts to search for a name whenever the
forwarded host does not provide an answer.
However, when set to only, the name server does
not attempt this extra work.

only first first

forwarders
Enables the use of query forwarding when
defining a Forwarding Name Server. The ipaddr
parameter list specifies the hosts to which the
query should be forwarded when it cannot be
resolved from the local database. Each ipaddr is
an internet address in standard dot notation.

ipaddr (empty list)

Files Reference 589

Option Values Default

check-names
Controls how the name server handles non-RFC
compliant host names and domain names through
each of its operation domains.

The master keyword specifies how to handle
malformed names in a master zone file.
The slave keyword specifies how to handle
malformed names received from a master server.
The response keyword specifies how to handle
malformed names received in response to a
query.

ignore directs the server to ignore any
malformed names and continue normal
processing. warn directs the server to warn the
administrator through logging, but to continue
normal processing. fail directs the server to
reject the name entirely. For the responses to
queries, this implies that the server will return a
REFUSED message to the original query host.

master ignore master
warn master fail slave
ignore slave warn slave
fail response ignore
response warn response
fail

master fail slave
warn response ignore

Item Description

allow-query
Limits the range of querying hosts allowed
to access the system. Each access-element is
specified in the same manner as in the acl stanza
defined earlier.

access-element any

allow-transfer
Limits the range of querying hosts that are
requesting zone transfers. Each access-element is
specified in the same manner as in the acl stanza
defined earlier.

access-element any

listen-on
Limits the interfaces available to the name server
daemon and controls which port to use to listen
for queries. By default, the name server uses all
interfaces on the system and listens on port 53.
Additionally, multiple listen-on definitions are
allowed within the options stanza.

Each access element is specified in the same
manner as in the acl stanza defined earlier. The
following example limits the name server to using
only the interface with address 9.53.150.239:

listen-on port 53 { 9.53.150.239; };

port port-num access-
element

port 53
{ localhost; }

query-source
Modifies the default address and port from which
queries will originate.

address ipaddr address *
port port port *

address * port *

590 AIX Version 7.1: Files Reference

Item Description

max-transfer-time-in
Specifies the maximum amount of time an
inbound zone transfer is allowed to run before
it is aborted. This is used to control an event in
which a child process of the name server does not
execute or terminate properly.

seconds 120

transfer-format
Controls the method in which full zone transfers
are sent to requestors. The one-answer method
uses one packet per zone resource record while
many-answers inserts as many resource records
into one packet as possible. While the many-
answers method is more efficient, it is only
understood by the newest revisions of the name
server. This option can be overridden in the server
stanza to specify the method on a per name
server basis.

one-answer many-
answers

many-answers

transfers-in
Specifies the maximum number of concurrent
inbound zone transfers. While this limits the
amount of time each slave zone is out of
synchronization with the master's database,
because each inbound transfer runs in a separate
child process, increasing the value may also
increase the load on the slave server.

value 10

transfers-out
Specifies the maximum number of concurrent
outbound zone transfers for the name server. This
option is currently unused in the server, but will
be available at a later time.

value N/A

transfers-per-ns
Specifies the maximum amount of concurrent
zone transfers from a specific remote name
server. While this limits the amount of time
each slave zone is out of synchronization with
the master's database, increasing this value may
increase the load on the remote master server.

value 2

coresize
Configures some process-specific values for the
daemon.

The default values or those inherited by the
system and by the system's resources.

Each size-value can be specified as a number or
as a number followed by the k, m, and g modifiers
indicating kilobytes, megabytes, and gigabytes
respectively.

size-value default

datasize
See coresize.

size-value default

Files Reference 591

Item Description

files
See coresize.

value unlimited

stacksize
See coresize.

size-value default

clean-interval
Controls the intervals for the periodic
maintenance tasks of the name server.

The clean-interval specifies how frequently
the server removes expired resource records from
the cache. The interface-interval specifies
how frequently the server rescans for interfaces
in the system. The statistics-interval
specifies how frequently the name server will
output statistics data.

A minutes value of zero indicates that the service
task should only run when the configuration file is
reread.

minutes 60

interface-interval
See clean-interval.

minutes 60

statistics-interval
See clean-interval.

minutes 60

cleandb-time
Specifies a time of day in which the database
is scanned and any dynamic records whose set
of SIG resource records are all expired are
removed. For a dynamic zone which has update-
security set to presecured, only the expired
SIG KEY remains.

The default is to never perform this scan. Instead,
the expired records remain until the name is
queried.

time is specified as HH:MM in a 24-hour format.

time N/A

topology
Specifies a search order to use to find a
preference in a list of addresses corresponding to
a name server. Whenever a query is forwarded or
a query must be made to another name server, it
may be necessary to choose an address from a
list of available addresses.

Each access-element, while seemingly similar to
those specified in an acl stanza, is interpreted
by its position in the list. The first elements in
the list are preferred more than those following
them. Negated elements (those specified with
the ! (exclamation point) modifier) are considered
least desirable.

access-element localhost;
localnets;

592 AIX Version 7.1: Files Reference

Server Specific Options

server ipaddr
{
 [bogus (yes | no);]
 [transfers value;
]
 [transfer-format (one-answer |
many-answers);]
}

Modifies the behavior in which the remote name server matching the specified ipaddr IP address should
be treated.

Option Values Explanation

bogus yes no Indicates that the name server
identified by the stanza should
not be used again. The default
value is no.

transfers value Overrides the globally available
option transfers-per-ns.
Specifies a maximum value
for the number of concurrent
inbound zone transfers from the
foreign name server identified by
the stanza.

transfer-format one-answer many-answers Overrides the globally available
option transfer-format to a
specific value for the specified
server. The transfer-format
option indicates to the name
server how to form its outbound
full zone transfers. By default,
the value is inherited from
the options stanza (where it
defaults to many-answers).
one-answer specifies that only
one resource record can be
sent per packet during the
zone transfer, whereas many-
answers indicates to entirely
fill the outbound packet with
resource records. The many-
answers format is only available
in the newest revisions of the
name server.

Zone Definition

zone domain-string [class] {
 type (hint | stub | slave | master);
 [file path-string;]
 [masters { ipaddr; [...] };]
 [check-names (warn | fail | ignore);]
 [allow-update { access-element; [...] };]
 [update-security (unsecured | presecured | controlled);]
 [allow-query { access-element; [...] };]
 [allow-transfer { access-element; [...] };]
 [max-transfer-time-in seconds;]
 [notify (yes | no);]
 [also-notify { ipaddr; [...] };]
 [dont-notify { ipaddr; [...] };]

Files Reference 593

 [notify-delaytime seconds;]
 [notify-retrytime seconds;]
 [notify-retrycount value;]
 [dump-interval seconds;]
 [incr-interval seconds;]
 [deferupdcnt value;]
 [key-xfer (yes | no);]
 [timesync (yes | no);]
 [timesync-xfer (yes | no);]
 [save-backups (yes | no);]
 [ixfr-directory path-string;]
 [separate-dynamic (yes | no);]
};

The zone stanza is used to define a zone, its type, possible location of data, and operating parameters.
The domain-string is a quoted string specifying the zone, where “.” is used to specify the root zone. The
class parameter specifies the class of the zone as either in, hs, hesiod, or chaos. By default, the class is
assumed to be IN.

Option and Description Values Default

type
Defines the type of the zone. hint zones,
previously regarded as cache zones, only
describe a source for information not contained
in the other defined zones. A stub zone is
one similar to a slave zone. While the slave
zone replicates the entire database of its master,
the stub zone only replicates the NS resource
records. The master zone maintains a database
on disk.

Based upon the selection of zone type, some of
the other options are required while others may
be impertinent. Zones of type hint and master
require the file option, while zones of type
slave and stub require the masters option.
Additionally, the only other option available to a
hint zone is the check-names option.

hint stub slave master N/A

file
Specifies the location for the source of data
specific to the zone. This parameter is only
optional for stub and slave zones, where its
inclusion indicates that a locally saved copy of
the remote zone can be kept. The path-string
parameter is a quoted string which can specify
the file name either non-relative or relative to
the options stanza's directory. If the path is
intended to be specified relative to the server
root, the options stanza must be specified
before the zone stanza.

path-string N/A

masters
Specifies a list of sources that are referenced for
a slave or stub zone to retrieve its data. This
option is not valid for any other type of zone, and
must be included for either of these two types.

ipaddr N/A

594 AIX Version 7.1: Files Reference

Option and Description Values Default

check-names
Overrides the check-names option in the global
options stanza. The default value is inherited
from the options stanza, where its default is
fail for master zones and warn for slave
zones.

warn fail ignore

allow-update
Indicates from what source addresses a zone
accepts dynamic updates. access-elements are
specified in the same manner as they are for the
acl stanza. Because of the inherent insecurity of
a dynamic update, this value defaults to none.
If no update-security is specified, dynamic
updates should be limited to a specific set of
secured machines.

access-element none

update-security
Valid only when the allow-update option
specifies at least one source address, update-
security defines what type of secured update
mechanism the zone uses. The current zone
update security method is a non-standard two-
key method, but is compatible with previous
releases of the name server.

presecured indicates that a zone only accepts
updates for which names and resource records
exist, unless the update is signed by the
authorizing key of the zone. Normally, this
means that the zone must be prepopulated
with the names and records it is to maintain.
controlled specifies a zone in which names
can be added to the database without the
signature of the zone's authorizing key, but
existing records cannot be modified without
being signed by the KEY resource record's
corresponding private key.

Note that a proper presecured or controlled
zone must contain a zone KEY resource record.

See the TCP/IP name resolution for more
information regarding zone update security.

unsecured presecured
controlled

unsecured

allow-query
Overrides the globally available option allow-
query. This option's default is inherited from the
global options stanza, where its default is any.

access-element NA

allow-transfer
Overrides the globally available option allow-
transfer. This option's default is inherited from
the global options stanza, where its default is
any.

access-element NA

Files Reference 595

Option and Description Values Default

max-transfer-time-in
Overrides the globally available option max-
transfer-time-in. This option's default is
inherited from the global options stanza, where
its default is 120.

seconds

notify
Overrides the globally available option notify.
This option's default is inherited from the global
options stanza, where its default is yes.

yes no

also-notify
The default NOTIFY mechanism notifies slave
servers of a change in the DOMAIN database in
order to limit the amount of time that the slave
server retains a zone out of synchronization with
the master server. The also-notify option
allows for the addition of addresses to submit
the notifications.

ipaddr N/A

dont-notify
Specifies a list of IP addresses to be removed
from the default list of NOTIFY recipients. This
option is useful if a name server is known to be
problematic when receiving NOTIFY requests.

ipaddr N/A

notify-delaytime
Specifies an estimated time of delay between
notifications to multiple name servers. Because
the receipt of a NOTIFY message usually triggers
the prompt request for a zone transfer, this
option can tune to latency in which each server
responds with the request for the modified zone.

The real value used is randomized between
the specified number of seconds and twice this
value.

seconds 30

notify-retrytime
Specifies the number of seconds in which the
name server waits to retransmit a NOTIFY
message which has gone unresponded.

seconds 60

notify-retrycount
Specifies the maximum number of tries that
the name server attempts to send unanswered
NOTIFY messages to other name servers.

value 3

596 AIX Version 7.1: Files Reference

Option and Description Values Default

dump-interval
Specifies an interval in which the name server
rewrites a dynamic zone to the zone file. In the
interim, all updates and other transactions are
logged in the transaction log file for performance
reasons. Aside from this periodic zone dump, the
transaction log file is only discarded and the zone
is only dumped when the name server is properly
shut down.

This option is only valid for zones in which the
allow-update option specifies at least one
valid accessor.

Note: The transaction log file name is the zone
file name with an appended “.log” extension.

seconds 3600

incr-interval
Specifies an interval in which the name server
accepts dynamic updates while not increasing
the zone's SOA record's serial level. Because a
change in the zone SOA record instantiates a
NOTIFY message, limiting this occurrence limits
the amount of zone transfer requests at the
expense of minimal zone differences between a
dynamic master server and its slave.

This option is only valid for zones in which the
allow-update option specifies at least one
valid accessor.

seconds 300

deferupdcnt
Specifies a threshold value for the number of
properly applied updates received during one
incr-interval interval. If more than value
updates are realized during the interval, the
name server modifies the zone SOA serial
level and later will NOTIFY each of the slave
servers. Use this value to limit the database
replication inconsistencies in an environment
where dynamic zone updates occur infrequently
but in large magnitude.

This option is only valid for zones in which the
allow-update option specifies at least one
valid accessor.

value 100

key-xfer
Specifies whether the server should transmit KEY
resource records during a zone transfer. In a very
controlled environment where KEY queries are
only made to the master name server, setting this
option to no saves the zone transfer time and
improves performance.

yes no yes

Files Reference 597

Option and Description Values Default

timesync
Specifies that a name server should calculate the
true expiration time of a SIG resource record
using its own clock rather than relying on the
expiration time set by a possible update source.
This removes the inconsistencies involved when
dynamic zone updaters have their system clocks
misaligned from the name server host. Because
enabling this option modifies the output and
interpretation of a SIG resource record in a
DOMAIN database file, disabling this option
may be required when manually transferring a
DOMAIN database file to another name server.

yes no yes

timesync-xfer
Specifies which SIG resource record expiration
time is transferred during a zone transfer.
Enabling this option is only valid when the
timesync option is enabled.

yes no yes

ixfr-directory
Specifies a directory in which temporary data
files are contained for use with this zone.
The datafiles contain incremental zone changes
and are essential to the proper use of the
Incremental Zone Transfer (IXFR) method.
Because these files are created and destroyed
dynamically by the name server, one should not
specify a globally-writable directory. Additionally,
the directory specified must be unique from
other ixfr-directory options specified in
other zones.

The default value for this directory is derived
from the zone's file name or domain name. By
default, a directory is created in an “ixfrdata”
directory within the name server's default
directory. Contained in this directory will be
subdirectory matching the base name of the
zone's file name or domain name.

It is not necessary to specify this option for the
proper behavior of the IXFR feature.

path-string

598 AIX Version 7.1: Files Reference

Option and Description Values Default

save-backups
To properly calculate an incremental zone
difference between server invocations, it is
necessary to determine the zone database
differences prior to the shutdown of the server
and after the loading of the server. By enabling
this option, a backup of the zone file is written
and read upon loading of the name server to
determine any zone differences.

While enabling this option is necessary to use
the IXFR transfer method after a stop and restart
transition of the name server, it is not necessary
to realize incremental zone differences when a
zone file is modified and signalled to reload
through the SRC refresh command or SIGHUP
signal.

yes no no

separate-dynamic
Instructs the name server to retain $INCLUDE
references in a dynamic zone when the DOMAIN
database file is written to disk. The behavior of
this feature implies that resource records that
can be modified through the dynamic update
mechanism exist in the DOMAIN database file
referenced by the file option, while other
resource records that should not be modified
through the dynamic update mechanism be
contained in files included (through the
$INCLUDE directive) by the DOMAIN database
file.

yes no no

Examples
The following examples show some of the various methods to use to configure a simple named.conf file.
In these examples, two networks are represented: abc and xyz.

Network abc consists of:

• gobi.abc, the master name server for the abc network, 192.9.201.2
• mojave.abc, a host machine, 192.9.201.6
• sandy.abc, a slave name server for the abc network and the gateway between abc and xyz,

192.9.201.3

Network xyz consists of:

• kalahari.xyz, master name server for the xyz network, 160.9.201.4
• lopnor.xyz, a host machine, 160.9.201.5
• sahara.xyz, a host machine and hint name server for the xyz network, 160.9.201.13
• sandy.xyz, a slave name server for the xyz network and gateway between abc and xyz, 160.9.201.3

Note: sandy, a gateway host, is on both networks and also serves as a slave name server for both
domains.

1. The /etc/named.conf file for gobi.abc, the master name server for network abc, contains these
entries:

Files Reference 599

conf file for abc master server - gobi.abc # server 192.9.201.3 { transfer-format many-answers; };

zone “abc” in { type master; file “/etc/named.abcdata”; allow-update { localhost; }; };

zone “201.9.192.in-addr.arpa” in { type master; file “/etc/named.abcrev”; allow-update
{ localhost; }; };

zone “0.0.127.in-addr.arpa” in { type master; file “/etc/named.abclocal”; };
2. The /etc/named.conf file for kalahari.xyz, the master name server for network xyz, contains

these entries:

conf file for abc master server - kalahari.xyz # acl xyz-slaves { 160.9.201.3; };

options { directory “/etc”; allow-transfer { xyz-slaves; localhost; }; };

zone “xyz” in { type master; file “named.xyzdata”; };

zone “9.160.in-addr.arpa” in { type master; file “named.xyxrev”; };

zone “0.0.127.in-addr.arpa” in { type master; file “named.xyzlocal”; };
3. The /etc/named.conf file for sandy, the slave name server for networks abc and xyz, contains the

following entries:

conf file for slave server for abc and xyz - sandy # options { directory “/etc”; };

zone “abc” in { type slave; masters { 192.9.201.2; }; file “named.abcdata.bak”; };

zone “xyz” in { type slave; masters { 160.9.201.4; }; file “named.xyzdata.bak”; };

zone “201.9.192.in-addr.arpa” in { type slave; masters { 192.9.201.2; }; };

zone “9.160.in-addr.arpa” in { type slave; masters { 192.9.201.4; }; };

zone “0.0.127.in-addr.arpa” in { type master; file “named.local”; };
4. The /etc/named.conf file for sahara, a hint name server for the network xyz, contains the following

entries:

conf file for hint server for xyz - sahara # zone “.” in { type hint; file “/etc/named.ca”; };

zone “0.0.127.in-addr.arpa” in { type master; file “/etc/named.local”; };

Format of the named.conf file when configuring named9
General

A BIND 9 configuration consists of statements and comments. Statements end with a semicolon.
Statements and comments are the only elements that can appear without enclosing braces. Many
statements contain a block of substatements, which are also terminated with a semicolon.

The following statements are supported:

Item Description

acl Defines a named IP address matching list, for access control and other uses.

controls Declares control channels to be used by the rndc utility.

include Includes a file.

key Specifies key information for use in authentication and authorization using TSIG.

600 AIX Version 7.1: Files Reference

Item Description

logging Specifies what the server logs, and where the log messages are sent.

options Controls global server configuration options and sets defaults for other statements.

server Sets certain configuration options on a per-server basis.

trusted-keys Defines trusted DNSSEC keys.

view Defines a view.

zone Defines a zone.

The logging and options statements may only occur once per configuration.

acl Statement Grammar

acl acl-name {
 address_match_list
};

acl Statement Definition and Usage

The acl statement assigns a symbolic name to an address match list. It gets its name from a primary use
of address match lists: Access Control Lists (ACLs).

Note that an address match list's name must be defined with acl before it can be used elsewhere; no
forward references are allowed.

The following ACLs are built-in:

Item Description

any Matches all hosts.

none Matches no hosts.

localhost Matches the IPv4 addresses of all network interfaces on the system.

localnets Matches any host on an IPv4 network for which the system has an interface.

The localhost and localnets ACLs do not currently support IPv6 (that is, localhost does not match the
host's IPv6 addresses, and localnets does not match the host's attached IPv6 networks) due to the lack
of a standard method of determining the complete set of local IPv6 addresses for a host.

controls Statement Grammar

controls {
 inet (ip_addr | *) [port ip_port] allow { address_match_list }
 keys { key_list };
 [inet ...;]
};

controls Statement Definition and Usage

The controls statement declares control channels to be used by system administrators to affect the
operation of the local nameserver. These control channels are used by the rndc utility to send commands
to and retrieve non-DNS results from a nameserver.

An inet control channel is a TCP/IP socket accessible to the Internet, created at the specified ip_port on
the specified ip_addr. If no port is specified, port 953 is used by default. "*" cannot be used for ip_port.

The ability to issue commands over the control channel is restricted by the allow and keys
clauses. Connections to the control channel are permitted based on the address permissions
in address_match_list. key_id members of the address_match_list are ignored, and instead are
interpreted independently based the key_list. Each key_id in the key_list is allowed to be used to
authenticate commands and responses given over the control channel by digitally signing each message

Files Reference 601

between the server and a command client. All commands to the control channel must be signed by one of
its specified keys to be honored.

If no controls statement is present, named9 sets up a default control channel listening on the loopback
address 127.0.0.1 and its IPv6 counterpart ::1. In this case, and also when the controls statement is
present but does not have a keys clause, named9 attempts to load the command channel key from
the /etc/rndc.key file in (or whatever sysconfdir was specified as when BIND was built). To create a
rndc.key file, run rndc-confgen -a.

The rndc.key feature was created to ease the transition of systems from BIND 8, which did not have
digital signatures on its command channel messages and thus did not have a keys clause. It makes it
possible to use an existing BIND 8 configuration file in BIND 9 unchanged, and still have rndc work the
same way ndc worked in BIND 8, simply by executing the command rndc-keygen -a after BIND 9 is
installed.

Since the rndc.key feature is only intended to allow the backward-compatible usage of BIND 8
configuration files, this feature does not have a high degree of configurability. You cannot easily change
the key name or the size of the secret, so you should make a rndc.conf with your own key if you wish to
change those things. The rndc.key file also has its permissions set such that only the owner of the file
(the user that named is running as) can access it. If you desire greater flexibility in allowing other users to
access rndc commands then you need to create an rndc.conf and make it group readable by a group that
contains the users who should have access. The UNIX control channel type of BIND 8 is not supported
in BIND 9. If it is present in the controls statement from a BIND 8 configuration file, it is ignored and a
warning is logged.

include Statement Grammar

include filename;

include Statement Definition and Usage

The include statement inserts the specified file at the point that the include statement is encountered.
The include statement facilitates the administration of configuration files by permitting the reading or
writing of some things but not others. For example, the statement could include private keys that are
readable only by a nameserver.

key Statement Grammar

key key_id {
 algorithm string;
 secret string;
};

key Statement Definition and Usage

The key statement defines a shared secret key for use with TSIG.

The key statement can occur at the top level of the configuration file or inside a view statement. Keys
defined in top-level key statements can be used in all views. Keys intended for use in a controls statement
must be defined at the top level.

The key_id, also known as the key name, is a domain name uniquely identifying the key. It can be used in
a "server" statement to cause requests sent to that server to be signed with this key, or in address match
lists to verify that incoming requests have been signed with a key matching this name, algorithm, and
secret. The algorithm_id is a string that specifies a security/authentication algorithm. The only algorithm
currently supported with TSIG authentication is hmac-md5. The secret_string is the secret to be used by
the algorithm, and is treated as a base-64 encoded string.

logging Statement Grammar

logging {
 [channel channel_name {
 (file path name
 [versions (number | unlimited)]
 [size size spec]
 | syslog syslog_facility

602 AIX Version 7.1: Files Reference

 | stderr
 | null);
 [severity (critical | error | warning | notice |
 info | debug [level] | dynamic);]
 [print-category yes or no;]
 [print-severity yes or no;]
 [print-time yes or no;]
 };]
 [category category_name {
 channel_name ; [channel_name ; ...]
 };]
 ...
};

logging Statement Definition and Usage

The logging statement configures a wide variety of logging options for the nameserver. Its channel phrase
associates output methods, format options, and severity levels with a name that can then be used with
the category phrase to select how various classes of messages are logged.

Only one logging statement is used to define as many channels and categories as are wanted. If there is
no logging statement, the logging configuration will be:

logging {
 category "unmatched" { "null"; };
 category "default" { "default_syslog"; "default_debug"; };
};

In BIND 9, the logging configuration is only established when the entire configuration file has been
parsed. In BIND 8, it was established as soon as the logging statement was parsed. When the server
is starting up, all logging messages regarding syntax errors in the configuration file go to the default
channels, or to standard error if the -g option was specified.

The channel Phrase

All log output goes to one or more channels; you can make as many of them as you want.

Every channel definition must include a destination clause that says whether messages selected for the
channel go to a file, to a particular syslog facility, to the standard error stream, or are discarded. It can
optionally also limit the message severity level that is accepted by the channel (the default is info), and
whether to include a named-generated time stamp, the category name and/or severity level (the default is
not to include any).

The null destination clause causes all messages sent to the channel to be discarded; in that case, other
options for the channel are meaningless.

The file destination clause directs the channel to a disk file. It can include limitations both on how large
the file is allowed to become, and how many versions of the file are saved each time the file is opened.

If you use the versions log file option, then named9 retains that many backup versions of the file by
renaming them when opening. For example, if you choose to keep 3 old versions of the file lamers.log
then just before it is opened lamers.log.1 is renamed to lamers.log.2, lamers.log.0 is renamed to
lamers.log.1, and lamers.log is renamed to lamers.log.0. You can say versions unlimited; to not
limit the number of versions. If a size option is associated with the log file, then renaming is only done
when the file being opened exceeds the indicated size. No backup versions are kept by default; any
existing log file is simply appended.

The size option for files is used to limit log growth. If the file ever exceeds the size, then named9 stops
writing to the file unless it has a versions option associated with it. If backup versions are kept, the files
are rolled as described above and a new one begun. If there is no versions option, no more data is written
to the log until some out-of-band mechanism removes or truncates the log to less than the maximum size.
The default behavior is not to limit the size of the file.

Example usage of the size and versions options:

channel "an_example_channel" {
 file "example.log" versions 3 size 20m;
 print-time yes;

Files Reference 603

 print-category yes;
};

The syslog destination clause directs the channel to the system log. Its argument is a syslog facility as
described in the syslog man page. How syslog handles messages sent to this facility is described in the
syslog.conf man page. If you have a system which uses a very old version of syslog that only uses two
arguments to the openlog() function, then this clause is silently ignored. The severity clause works like
syslog's "priorities," except that they can also be used if you are writing straight to a file rather than
using syslog. Messages which are not at least of the severity level given are not selected for the channel;
messages of higher severity levels are accepted.

If you are using syslog, then the syslog.conf priorities also determine what eventually passes
through. For example, defining a channel facility and severity as daemon and debug but only logging
daemon.warning via syslog.conf causes messages of severity info and notice to be dropped. If
the situation is reversed, with named9 writing messages of only warning or higher, then syslogd prints all
messages it received from the channel.

The stderr destination clause directs the channel to the server's standard error stream. This is intended
for use when the server is running as a foreground process, for example when debugging a configuration.

The server can supply extensive debugging information when it is in debugging mode. If the server's
global debug level is greater than zero, then debugging mode is active. The global debug level is set either
by starting the named9 server with the -d flag followed by a positive integer, or by running rndc trace.
The global debug level can be set to zero, and debugging mode turned off, by running ndc notrace. All
debugging messages in the server have a debug level, and higher debug levels give more detailed output.
Channels that specify a specific debug severity, for example:

channel "specific_debug_level" {
 file "foo";
 severity debug 3;
};

gets debugging output of level 3 or less any time the server is in debugging mode, regardless of the
global debugging level. Channels with dynamic severity use the server's global level to determine what
messages to print.

If print-time has been turned on, then the date and time are logged. print-time may be specified for
a syslog channel, but is usually pointless since syslog also prints the date and time. If print-category
is requested, then the category of the message is logged as well. Finally, if print-severity is on, then
the severity level of the message is logged. The print- options may be used in any combination, and are
always printed in the following order: time, category, severity. Here is an example where all three print-
options are on:

28-Feb-2000 15:05:32.863 general: notice: running

There are four predefined channels that are used for named9's default logging as follows.

channel "default_syslog" {
 syslog daemon; // send to syslog's daemon
 // facility
 severity info; // only send priority info
 // and higher
};

channel "default_debug" {
 file "named.run"; // write to named.run in
 // the working directory
 // Note: stderr is used instead
 // of "named.run"
 // if the server is started
 // with the '-f' option.
 severity dynamic; // log at the server's
 // current debug level
};

channel "default_stderr" { // writes to stderr
 stderr;
 severity info; // only send priority info

604 AIX Version 7.1: Files Reference

 // and higher
};

channel "null" {
 null; // toss anything sent to
 // this channel
};

The default_debug channel has the special property that it only produces output when the server's
debug level is nonzero. It normally writes to a file named9run in the server's working directory.

For security reasons, when the -u command-line option is used, the named9run file is created only after
named9 has changed to the new UID, and any debug output generated while named9 is starting up and
still running as root is discarded. If you need to capture this output, you must run the server with the -g
option and redirect standard error to a file.

Once a channel is defined, it cannot be redefined. Thus you cannot alter the built-in channels directly, but
you can modify the default logging by pointing categories at channels you have defined.

The category Phrase

There are many categories, so you can send the logs you want to see wherever you want, without seeing
logs you do not want. If you do not specify a list of channels for a category, then log messages in that
category are sent to the default category instead. If you do not specify a default category, the following
"default default" is used:

category "default" { "default_syslog"; "default_debug"; };

As an example, if you want to log security events to a file, but you also want to keep the default logging
behavior, specify the following:

channel "my_security_channel" {
 file "my_security_file";
 severity info;
};
category "security" {
 "my_security_channel";
 "default_syslog";
 "default_debug";
};

To discard all messages in a category, specify the null channel:

category "xfer-out" { "null"; };
category "notify" { "null"; };

Following are the available categories and brief descriptions of the types of log information they contain.

Item Description

default The default category defines the logging options for those categories where no
specific configuration has been defined.

general The catch-all. Many things still are not classified into categories, and they all end up
here.

database Messages relating to the databases used internally by the name server to store zone
and cache data.

security Approval and denial of requests.

config Configuration file parsing and processing.

resolver DNS resolution, such as the recursive lookups performed on behalf of clients by a
caching name server.

xfer-in Zone transfers the server is receiving.

xfer-out Zone transfers the server is sending.

Files Reference 605

Item Description

notify The NOTIFY protocol.

client Processing of client requests.

unmatched Messages that named was unable to determine the class of or for which there was no
matching view. A one line summary is also logged to the client category. This category
is best sent to a file or stderr, by default it is sent to the null channel.

network Network operations.

update Dynamic updates.

queries Queries. Using the category queries enables query logging.

dispatch Dispatching of incoming packets to the server modules where they are to be
processed.

dnssec DNSSEC and TSIG protocol processing.

lame-servers Lame servers. These are misconfigurations in remote servers, discovered by BIND 9
when trying to query those servers during resolution.

options Statement Grammar

options {
 [version version_string;]
 [directory path_name;]
 [named-xfer path_name;]
 [tkey-domain domainname;]
 [tkey-dhkey key_name key_tag;]
 [dump-file path_name;]
 [memstatistics-file path_name;]
 [pid-file path_name;]
 [statistics-file path_name;]
 [zone-statistics yes_or_no;]
 [auth-nxdomain yes_or_no;]
 [deallocate-on-exit yes_or_no;]
 [dialup dialup_option;]
 [fake-iquery yes_or_no;]
 [fetch-glue yes_or_no;]
 [has-old-clients yes_or_no;]
 [host-statistics yes_or_no;]
 [minimal-responses yes_or_no;]
 [multiple-cnames yes_or_no;]
 [notify yes_or_no | explicit;]
 [recursion yes_or_no;]
 [rfc2308-type1 yes_or_no;]
 [use-id-pool yes_or_no;]
 [maintain-ixfr-base yes_or_no;]
 [forward (only | first);]
 [forwarders { ip_addr [port ip_port] ; [ip_addr [port ip_port] ; ...] };]
 [check-names (master | slave | response)(warn | fail | ignore);]
 [allow-notify { address_match_list };]
 [allow-query { address_match_list };]
 [allow-transfer { address_match_list };]
 [allow-recursion { address_match_list };]
 [allow-v6-synthesis { address_match_list };]
 [blackhole { address_match_list };]
 [listen-on [port ip_port] { address_match_list };]
 [listen-on-v6 [port ip_port] { address_match_list };]
 [query-source [address (ip_addr | *)] [port (ip_port | *)];]
 [max-transfer-time-in number;]
 [max-transfer-time-out number;]
 [max-transfer-idle-in number;]
 [max-transfer-idle-out number;]
 [tcp-clients number;]
 [recursive-clients number;]
 [serial-query-rate number;]
 [serial-queries number;]
 [transfer-format (one-answer | many-answers);]
 [transfers-in number;]
 [transfers-out number;]
 [transfers-per-ns number;]
 [transfer-source (ip4_addr | *) [port ip_port] ;]
 [transfer-source-v6 (ip6_addr | *) [port ip_port] ;]

606 AIX Version 7.1: Files Reference

 [notify-source (ip4_addr | *) [port ip_port] ;]
 [notify-source-v6 (ip6_addr | *) [port ip_port] ;]
 [also-notify { ip_addr [port ip_port] ; [ip_addr [port ip_port] ; ...] };]
 [max-ixfr-log-size number;]
 [coresize size_spec ;]
 [datasize size_spec ;]
 [files size_spec ;]
 [stacksize size_spec ;]
 [cleaning-interval number;]
 [heartbeat-interval number;]
 [interface-interval number;]
 [statistics-interval number;]
 [topology { address_match_list }];
 [sortlist { address_match_list }];
 [rrset-order { order_spec ; [order_spec ; ...]] };
 [lame-ttl number;]
 [max-ncache-ttl number;]
 [max-cache-ttl number;]
 [sig-validity-interval number ;]
 [min-roots number;]
 [use-ixfr yes_or_no ;]
 [provide-ixfr yes_or_no;]
 [request-ixfr yes_or_no;]
 [treat-cr-as-space yes_or_no ;]
 [min-refresh-time number ;]
 [max-refresh-time number ;]
 [min-retry-time number ;]
 [max-retry-time number ;]
 [port ip_port;]
 [additional-from-auth yes_or_no ;]
 [additional-from-cache yes_or_no ;]
 [random-device path_name ;]
 [max-cache-size size_spec ;]
 [match-mapped-addresses yes_or_no;]

options Statement Definition and Usage

The options statement sets up global options to be used by BIND. This statement may appear only once
in a configuration file. If more than one occurrence is found, the first occurrence determines the actual
options used, and a warning is generated. If there is no options statement, an options block with each
option set to its default is used.

version
The version the server should report through a query of name version.bind in class CHAOS. The
default is the real version number of this server.

directory
The working directory of the server. Any non-absolute pathnames in the configuration file are taken as
relative to this directory. The default location for most server output files (for example, named.run) is
this directory. If a directory is not specified, the working directory defaults to ".," the directory from
which the server was started. The directory specified should be an absolute path.

named-xfer
This option is obsolete. It was used in BIND 8 to specify the pathname to the named-xfer program. In
BIND 9, no separate named-xfer program is needed; its functionality is built into the name server.

tkey-domain
The domain appended to the names of all shared keys generated with TKEY. When a client requests
a TKEY exchange, it may or may not specify the desired name for the key. If present, the name of the
shared key is client specified part + tkey-domain. Otherwise, the name of the shared key is random
hex digits + tkey-domain. In most cases, the domainname should be the server's domain name.

tkey-dhkey
The Diffie-Hellman key used by the server to generate shared keys with clients using the Diffie-
Hellman mode of TKEY. The server must be able to load the public and private keys from files in the
working directory. In most cases, the keyname should be the server's host name.

dump-file
The pathname of the file the server dumps the database to when instructed to do so with rndc
dumpdb. If not specified, the default is named_dump.db.

Files Reference 607

memstatistics-file
The pathname of the file the server writes memory usage statistics to on exit. If not specified, the
default is named.memstats.

Note: Not yet implemented in BIND 9.

pid-file
The pathname of the file the server writes its process ID in. If not specified, the default is /var/run/
named.pid. The pid-file is used by programs that want to send signals to the running nameserver.

statistics-file
The pathname of the file the server appends statistics to when instructed to do so using rndc stats. If
not specified, the default is named.stats in the server's current directory.

port
The UDP/TCP port number the server uses for receiving and sending DNS protocol traffic. The default
is 53. This option is mainly intended for server testing; a server using a port other than 53 will not be
able to communicate with the global DNS.

random-device
The source of entropy to be used by the server. Entropy is primarily needed for DNSSEC operations,
such as TKEY transactions and dynamic update of signed zones. This option specifies the device (or
file) from which to read entropy. If this is a file, operations requiring entropy fail when the file has
been exhausted. If not specified, the default value is /dev/random (or equivalent) when present, and
none otherwise. The random-device option takes effect during the initial configuration load at server
startup time and is ignored on subsequent reloads.

Boolean Options
auth-nxdomain

If yes, then the AA bit is always set on NXDOMAIN responses, even if the server is not actually
authoritative. The default is no; this is a change from BIND 8. If you are using very old DNS software,
you may need to set it to yes.

deallocate-on-exit
This option was used in BIND 8 to enable checking for memory leaks on exit. BIND 9 ignores the
option and always performs the checks.

dialup
If yes, the server treats all zones as if they are doing zone transfers across a dial on demand
dialup link, which can be brought up by traffic originating from this server. This has different effects
according to zone type and concentrates the zone maintenance so that it all happens in a short
interval, once every heartbeat-intervaland hopefully during the one call. It also suppresses some of
the normal zone maintenance traffic. The default is no.The dialup option may also be specified in the
view and zone statements, in which case it overrides the global dialup option.

If the zone is a master zone then the server sends out a NOTIFY request to all the slaves. This triggers
the zone serial number check in the slave (providing it supports NOTIFY) allowing the slave to verify
the zone while the connection is active.

If the zone is a slave or stub zone, then the server suppresses the regular "zone up to date" (refresh)
queries and only perform them when the heartbeat-interval expires in addition to sending NOTIFY
requests.

Finer control can be achieved by using notify, which only sends NOTIFY messages; notify-
passive, which sends NOTIFY messages and suppresses the normal refresh queries; and refresh,
which suppresses normal refresh processing and send refresh queries when the heartbeat-interval
expires and passive which just disables normal refresh processing.

fake-iquery
In BIND 8, this option was used to enable simulating the obsolete DNS query type IQUERY. BIND 9
never does IQUERY simulation.

608 AIX Version 7.1: Files Reference

fetch-glue
This option is obsolete. In BIND 8, fetch-glue yes caused the server to attempt to fetch glue
resource records it did not have when constructing the additional data section of a response. This is
now considered bad practice, and BIND 9 never does it.

has-old-clients
This option was incorrectly implemented in BIND 8, and is ignored by BIND 9. To achieve the
intended effect of has-old-clients yes, specify the two separate options auth-nxdomain yes and
rfc2308-type1 no instead.

host-statistics
In BIND 8, this enables keeping of statistics for every host that the nameserver interacts with. It is not
implemented in BIND 9.

maintain-ixfr-base
This option is obsolete. It was used in BIND 8 to determine whether a transaction log was kept for
Incremental Zone Transfer. BIND 9 maintains a transaction log whenever possible. If you need to
disable outgoing incremental zone transfers, use provide-ixfr no.

minimal-responses
If yes, then when generating responses, the server only adds records to the authority and additional
data sections when they are required. This may improve the performance of the server. The default is
no.

multiple-cnames
This option was used in BIND 8 to allow a domain name to allow multiple CNAME records in violation
of the DNS standards. BIND 9.2 strictly enforces the CNAME rules both in master files and dynamic
updates.

notify
If yes (default), DNS NOTIFY messages are sent when a zone the server is authoritative for changes.
The messages are sent to the servers listed in the zone's NS records (except the master server
identified in the SOA MNAME field), and to any servers listed in the also-notify option.If explicit,
notifies are sent only to servers explicitly listed using also-notify. If no, no notifies are sent.

The notify option may also be specified in the zone statement, in which case it overrides the options
notify statement. It would only be necessary to turn off this option if it caused slaves to crash.

recursion
If yes, and a DNS query requests recursion, then the server attempts to do all the work required to
answer the query. If recursion is off and the server does not already know the answer, it returns a
referral response. The default is yes.

Note: Setting recursion no does not prevent clients from getting data from the cache on the server; it
only prevents new data from being cached as an effect of client queries. Caching may still occur as an
effect the server's internal operation, such as NOTIFY address lookups.

rfc2308-type1
Setting this to yes causes the server to send NS records along with the SOA record for negative
answers. The default is no.

Note: Not yet implemented in BIND 9.

use-id-pool
This option is obsolete. BIND 9 always allocates query IDs from a pool.

zone-statistics
If yes, the server, by default, collects statistical data on all zones in the server. These statistics may
be accessed using rndc stats, which dumps them to the file listed in the statistics-file. See “The
Statistics File” on page 616.

use-ixfr
This option is obsolete. If you need to disable IXFR to a particular server or servers see the
information on the provide-ixfr option in “Server Statement Definition and Usage” on page 617.

provide-ixfr
See the description of provide-ixfr in “Server Statement Definition and Usage” on page 617.

Files Reference 609

request-ixfr
See the description of request-ixfr in “Server Statement Definition and Usage” on page 617.

treat-cr-as-space
This option was used in BIND 8 to make the server treat carriage return ("\r") characters the same
way as a space or tab character to facilitate loading of zone files on a UNIX system that were
generated on a Windows NT or DOS machine. In BIND 9, both UNIX "\n" and NT/DOS "\r\n" newlines
are always accepted, and the option is ignored.

additional-from-auth, additional-from-cache
These options control the behavior of an authoritative server when answering queries which have
additional data, or when following CNAME and DNAME chains.When both of these options are set
to yes (default) and a query is being answered from authoritative data (a zone configured into the
server), the additional data section of the reply is filled in using data from other authoritative zones
and from the cache. In some situations this is undesirable, such as when there is concern over the
correctness of the cache, or in servers where slave zones may be added and modified by untrusted
third parties. Also, avoiding the search for this additional data speeds up server operations at the
possible expense of additional queries to resolve what would otherwise be provided in the additional
section.

For example, if a query asks for an MX record for host foo.example.com, and the record found is
"MX 10 mail.example.net", normally the address records for mail.example.net are provided
as well, if known. Setting these options to no disables this behavior.

These options are intended for use in authoritative-only servers, or in authoritative-only views.
Attempts to set them to no without also specifying recursion no; causes the server to ignore the
options and log a warning message.

Specifying additional-from-cache no actually disables the use of the cache not only for additional
data lookups but also when looking up the answer. This is usually the desired behavior in an
authoritative-only server where the correctness of the cached data is an issue.

When a name server is non-recursively queried for a name that is not below the apex of any served
zone, it normally answers with an "upwards referral" to the root servers or the servers of some
other known parent of the query name. Since the data in an upwards referral comes from the cache,
the server will not be able to provide upwards referrals when additional-from-cache no has been
specified. Instead, it responds to such queries with REFUSED. This should not cause any problems
since upwards referrals are not required for the resolution process.

match-mapped-addresses
If yes, then an IPv4-mapped IPv6 address matches any address match list entries that match
the corresponding IPv4 address. Enabling this option is sometimes useful on IPv6-enabled Linux®

systems, to work around a kernel quirk that causes IPv4 TCP connections such as zone transfers to be
accepted on an IPv6 socket using mapped addresses, causing address match lists designed for IPv4
to fail to match. The use of this option for any other purpose is discouraged.

Forwarding

The forwarding facility can be used to create a large site-wide cache on a few servers, reducing traffic
over links to external nameservers. It can also be used to allow queries by servers that do not have
direct access to the Internet, but wish to look up exterior names anyway. Forwarding occurs only on those
queries for which the server is not authoritative and does not have the answer in its cache.

forward
This option is only meaningful if the forwarders list is not empty. A value of first, the default, causes
the server to query the forwarders first, and if that does not answer the question the server then looks
for the answer itself. If only is specified, the server only queries the forwarders.

forwarders
Specifies the IP addresses to be used for forwarding. The default is the empty list (no forwarding).

Forwarding can also be configured on a per-domain basis, allowing for the global forwarding options to be
overridden in various ways. You can set particular domains to use different forwarders, or have a different
forward only/first behavior, or not forward at all. See “Zone Statement Grammar” on page 619.

610 AIX Version 7.1: Files Reference

Access Control
Access to the server can be restricted based on the IP address of the requesting system.

allow-notify
Specifies which hosts are allowed to notify slaves of a zone change in addition to the zone masters.
The allow-notify option may also be specified in the zone statement, in which case it overrides the
options allow-notify statement. It is only meaningful for a slave zone. If not specified, the default is
to process notify messages only from a zone's master.

allow-query
Specifies which hosts are allowed to ask ordinary questions. The allow-query option may also be
specified in the zone statement, in which case it overrides the options allow-query statement. If not
specified, the default is to allow queries from all hosts.

allow-recursion
Specifies which hosts are allowed to make recursive queries through this server. If not specified, the
default is to allow recursive queries from all hosts. Note that disallowing recursive queries for a host
does not prevent the host from retrieving data that is already in the cache on the server.

allow-transfer
Specifies which hosts are allowed to receive zone transfers from the server. allow-transfer may also
be specified in the zone statement, in which case it overrides the options allow-transfer statement.
If not specified, the default is to allow transfers from all hosts.

blackhole
Specifies a list of addresses that the server does not accept queries from or uses to resolve a query.
Queries from these addresses are not responded to. The default is none.

Interfaces

The interfaces and ports that the server answers queries from may be specified using the listen-on
option. listen-on takes an optional port, and an address_match_list. The server listens on all
interfaces allowed by the address match list. If a port is not specified, port 53 is used.

Multiple listen-on statements are allowed. For example:

listen-on { 5.6.7.8; };
listen-on port 1234 { !1.2.3.4; 1.2/16; };

This enables the nameserver on port 53 for the IP address 5.6.7.8, and on port 1234 of an address on the
machine in net 1.2 that is not 1.2.3.4.

If no listen-on is specified, the server listens on port 53 on all interfaces.

Query Address

If the server does not know the answer to a question, it queries other nameservers. query-source
specifies the address and port used for such queries. If address is * or is omitted, a wildcard IP address
(INADDR_ANY) is used. If port is * or is omitted, a random unprivileged port is used. The defaults are as
follows:

query-source address * port *;
query-source-v6 address * port *

Note: The address specified in the query-source option is used for both UDP and TCP queries, but the
port applies only to UDP queries. TCP queries always use a random unprivileged port.

Zone Transfers
BIND has mechanisms in place to facilitate zone transfers and set limits on the amount of load that
transfers place on the system. The following options apply to zone transfers.

also-notify
Defines a global list of IP addresses of name servers that are also sent NOTIFY messages whenever a
fresh copy of the zone is loaded, in addition to the servers listed in the zone's NS records. This helps

Files Reference 611

to ensure that copies of the zones quickly converge on stealth servers. If an also-notify list is given in
a zone statement, it overrides the options also-notify statement. When a zone notify statement is set
to no, the IP addresses in the global also-notify list are not sent NOTIFY messages for that zone. The
default is the empty list (no global notification list).

max-transfer-time-in
Inbound zone transfers running longer than this many minutes are terminated. The default is 120
minutes (2 hours).

max-transfer-idle-in
Inbound zone transfers making no progress in this many minutes are terminated. The default is 60
minutes (1 hour).

max-transfer-time-out
Outbound zone transfers running longer than this many minutes are terminated. The default is 120
minutes (2 hours).

max-transfer-idle-out
Outbound zone transfers making no progress in this many minutes are terminated. The default is 60
minutes (1 hour).

serial-query-rate
Slave servers periodically query master servers to find out if zone serial numbers have changed. Each
such query uses a minute amount of the slave server's network bandwidth. To limit the amount of
bandwidth used, BIND 9 limits the rate at which queries are sent. The value of the serial-query-rate
option, an integer, is the maximum number of queries sent per second. The default is 20.

serial-queries
In BIND 8, the serial-queries option set the maximum number of concurrent serial number queries
allowed to be outstanding at any given time. BIND 9 does not limit the number of outstanding serial
queries and ignores the serial-queries option. Instead, it limits the rate at which the queries are sent
as defined using the serial-query-rate option.

transfer-format
Zone transfers can be sent using two different formats, one-answer and many-answers. The
transfer-format option is used on the master server to determine which format it sends. one-answer
uses one DNS message per resource record transferred. many-answers packs as many resource
records as possible into a message. many-answers is more efficient, but is only supported by
relatively new slave servers, such as BIND 9, BIND 8.x and patched versions of BIND 4.9.5. The
default is many-answers. transfer-format may be overridden on a per-server basis by using the
server statement.

transfers-in
The maximum number of inbound zone transfers that can be running concurrently. The default value
is 10. Increasing transfers-in may speed up the convergence of slave zones, but it also may increase
the load on the local system.

transfers-out
The maximum number of outbound zone transfers that can be running concurrently. Zone transfer
requests in excess of the limit are refused. The default value is 10.

transfers-per-ns
The maximum number of inbound zone transfers that can be concurrently transferring from a
given remote nameserver. The default value is 2. Increasing transfers-per-ns may speed up the
convergence of slave zones, but it also may increase the load on the remote nameserver. transfers-
per-ns may be overridden on a per-server basis by using the transfers phrase of the server
statement.

transfer-source
transfer-source determines which local address is bound to IPv4 TCP connections used to fetch
zones transferred inbound by the server. It also determines the source IPv4 address, and optionally
the UDP port, used for the refresh queries and forwarded dynamic updates. If not set, it defaults to
a system controlled value which is usually the address of the interface "closest to" the remote end.
This address must appear in the remote end's allow-transfer option for the zone being transferred,
if one is specified. This statement sets the transfer-source for all zones, but can be overridden on a

612 AIX Version 7.1: Files Reference

per-view or per-zone basis by including a transfer-source statement within the view or zone block in
the configuration file.

notify-source
notify-source determines which local source address, and optionally UDP port, is used to send
NOTIFY messages. This address must appear in the slave server's masters zone clause or in an
allow-notify clause. This statement sets the notify-source for all zones, but can be overridden on a
per-zone / per-view basis by including a notify-source statement within the zone or view block in the
configuration file.

Operating System Resource Limits

The server's usage of many system resources can be limited. Scaled values are allowed when specifying
resource limits. For example, 1G can be used instead of 1073741824 to specify a limit of one gigabyte.
The unlimited option requests unlimited use, or the maximum available amount. The default option uses
the limit that was in force when the server was started.

The following options set operating system resource limits for the name server process. Some operating
systems do not support some or any of the limits. On such systems, a warning is issued if the unsupported
limit is used.

coresize
The maximum size of a core dump. The default is default.

datasize
The maximum amount of data memory the server may use. The default is default. This is a hard
limit on server memory usage. If the server attempts to allocate memory in excess of this limit, the
allocation fails, which may in turn leave the server unable to perform DNS service. Therefore, this
option is rarely useful as a way of limiting the amount of memory used by the server, but it can be
used to raise an operating system data size limit that is too small by default. If you wish to limit
the amount of memory used by the server, use the max-cache-size and recursive-clients options
instead.

files
The maximum number of files the server may have open concurrently. The default is unlimited.

stacksize
The maximum amount of stack memory the server may use. The default is default.

Server Resource Limits

The following options set limits on the server's resource consumption that are enforced internally by the
server rather than the operating system.

max-ixfr-log-size
This option is obsolete; it is accepted and ignored for BIND 8 compatibility.

recursive-clients

The maximum number of simultaneous recursive lookups the server performs on behalf of clients.
The default is 1000. Because each recursing client uses a fair bit of memory, on the order of 20 KB,
the value of the recursive-clients option may have to be decreased on hosts with limited memory.

tcp-clients

The maximum number of simultaneous client TCP connections that the server accepts. The default is
100.

max-cache-size

The maximum amount of memory to use for the cache on the server, in bytes. When the amount of
data in the cache reaches this limit, the server causes the records to expire prematurely so that the
limit is not exceeded. In a server with multiple views, the limit applies separately to the cache of each
view. The default value is unlimited, indicating that records are purged from the cache only when
their TTLs expire. The minimum value that you can set for this limit is 2 MB.

Periodic Task Intervals

Files Reference 613

cleaning-interval

The server removes expired resource records from the cache every cleaning-interval minutes. The
default is 60 minutes. If set to 0, periodic cleaning does not occur.

heartbeat-interval

The server performs zone maintenance tasks for all zones marked as dialup whenever this interval
expires. The default is 60 minutes. Reasonable values are up to 1 day (1440 minutes). If set to 0, zone
maintenance for these zones does not occur.

interface-interval

The server scans the network interface list every interface-interval minutes. The default is 60
minutes. If set to 0, interface scanning only occurs when the configuration file is loaded. After
the scan, listeners are started on any new interfaces (provided they are allowed by the listen-on
configuration). Listeners on interfaces that have gone away are cleaned up.

statistics-interval

Nameserver statistics are logged every statistics-interval minutes. The default is 60. If set to 0, no
statistics are logged.

Note: Not yet implemented in BIND 9.

Topology
All other things being equal, when the server chooses a nameserver to query from a list of
nameservers, it prefers the one that is topologically closest to itself. The topology statement takes an
address_match_list and interprets it in a special way. Each top-level list element is assigned a distance.
Non-negated elements get a distance based on their position in the list, where the closer the match is to
the start of the list, the shorter the distance is between it and the server. A negated match is assigned the
maximum distance from the server. If there is no match, the address gets a distance which is further than
any non-negated list element, and closer than any negated element. For example,

topology {
 10/8;
 !1.2.3/24;
 { 1.2/16; 3/8; };
};

prefers servers on network 10 the most, followed by hosts on network 1.2.0.0 (netmask 255.255.0.0) and
network 3, except for hosts on network 1.2.3 (netmask 255.255.255.0), which is preferred least of all.

The default topology is

 topology { localhost; localnets; };

Note: The topology option is not implemented in BIND 9.

The sortlist Statement
The response to a DNS query may consist of multiple resource records (RRs) forming a resource records
set (RRset). The name server normally returns the RRs within the RRset in an indeterminate order (but
see the rrset-order statement in “RRset Ordering” on page 615). The client resolver code should
rearrange the RRs as appropriate, that is, using any addresses on the local net in preference to other
addresses. However, not all resolvers can do this or are correctly configured. When a client is using a
local server the sorting can be performed in the server, based on the client's address. This only requires
configuring the nameservers, not all the clients.

The sortlist statement (see below) takes an address_match_list and interprets it even more specifically
than the topology statement does (“Topology” on page 614). Each top-level statement in the sortlist
must itself be an explicit address_match_list with one or two elements. The first element (which may

614 AIX Version 7.1: Files Reference

be an IP address, an IP prefix, an ACL name or a nested address_match_list) of each top-level list is
checked against the source address of the query until a match is found.

Once the source address of the query has been matched, if the top-level statement contains only one
element, the actual primitive element that matched the source address is used to select the address in
the response to move to the beginning of the response. If the statement is a list of two elements, then the
second element is treated the same as the address_match_list in a topology statement. Each top-level
element is assigned a distance and the address in the response with the minimum distance is moved to
the beginning of the response.

In the following example, any queries received from any of the addresses of the host itself get responses
preferring addresses on any of the locally connected networks. Next most preferred are addresses on
the 192.168.1/24 network, and after that either the 192.168.2/24 or 192.168.3/24 network with no
preference shown between these two networks. Queries received from a host on the 192.168.1/24
network prefer other addresses on that network to the 192.168.2/24 and 192.168.3/24 networks.
Queries received from a host on the 192.168.4/24 or the 192.168.5/24 network only prefer other
addresses on their directly connected networks.

sortlist {
 { localhost; // IF the local host
 { localnets; // THEN first fit on the
 192.168.1/24; // following nets
 { 192.168.2/24; 192.168.3/24; }; }; };
 { 192.168.1/24; // IF on class C 192.168.1
 { 192.168.1/24; // THEN use .1, or .2 or .3
 { 192.168.2/24; 192.168.3/24; }; }; };
 { 192.168.2/24; // IF on class C 192.168.2
 { 192.168.2/24; // THEN use .2, or .1 or .3
 { 192.168.1/24; 192.168.3/24; }; }; };
 { 192.168.3/24; // IF on class C 192.168.3
 { 192.168.3/24; // THEN use .3, or .1 or .2
 { 192.168.1/24; 192.168.2/24; }; }; };
 { { 192.168.4/24; 192.168.5/24; }; // if .4 or .5, prefer that net
 };
};

The following example gives reasonable behavior for the local host and hosts on directly connected
networks. It is similar to the behavior of the address sort in BIND 4.9.x. Responses sent to queries
from the local host favor any of the directly connected networks. Responses sent to queries from any
other hosts on a directly connected network prefer addresses on that same network. Responses to other
queries are not sorted.

sortlist {
 { localhost; localnets; };
 { localnets; };
};

RRset Ordering
When multiple records are returned in an answer it may be useful to configure the order of the records
placed into the response. The rrset-order statement permits configuration of the ordering of the records
in a multiple record response. See also the sortlist statement, “The sortlist Statement” on page 614.

An order_spec is defined as follows:

[class class_name][type type_name][name "domain_name"]
 order ordering

If no class is specified, the default is ANY. If no type is specified, the default is ANY. If no name is
specified, the default is " *".

The legal values for ordering are:

Item Description

fixed Records are returned in the order they are defined in the zone file.

Files Reference 615

Item Description

random Records are returned in some random order.

cyclic Records are returned in a round-robin order.

For example:

rrset-order {
 class IN type A name "host.example.com" order random;
 order cyclic;
};

causes any responses for type A records in class IN that have " host.example.com" as a suffix, to
always be returned in random order. All other records are returned in cyclic order.

If multiple rrset-order statements appear, they are not combined — the last one applies.

Note: The rrset-order statement is not yet implemented in BIND 9. BIND 9 currently supports only
a "random-cyclic" ordering, where the server randomly chooses a starting point within the RRset and
returns the records in order starting at that point, wrapping around the end of the RRset if necessary.

Tuning
lame-ttl

Sets the number of seconds to cache a lame server indication. 0 disables caching. (This is not
recommended.) Default is 600 (10 minutes). Maximum value is 1800 (30 minutes).

max-ncache-ttl
To reduce network traffic and increase performance the server stores negative answers. max-ncache-
ttl is used to set a maximum retention time for these answers in the server in seconds. The default
max-ncache-ttl is 10800 seconds (3 hours). max-ncache-ttl cannot exceed 7 days and is silently
truncated to 7 days if set to a greater value.

max-cache-ttl
max-cache-ttl sets the maximum time for which the server will cache ordinary (positive) answers.
The default is one week (7 days).

min-roots
The minimum number of root servers that is required for a request for the root servers to be accepted.
Default is 2.

Note: Not yet implemented in BIND 9.

sig-validity-interval

Specifies the number of days into the future when DNSSEC signatures automatically generated as a
result of dynamic updates ((Section 4.1)) will expire. The default is 30 days. The signature inception
time is unconditionally set to one hour before the current time to allow for a limited amount of clock
skew.

min-refresh-time, max-refresh-time, min-retry-time, max-retry-time

These options control the server's behavior on refreshing a zone (querying for SOA changes) or
retrying failed transfers. Usually the SOA values for the zone are used, but these values are set by the
master, giving slave server administrators little control over their contents.

These options allow the administrator to set a minimum and maximum refresh and retry time either
per-zone, per-view, or per-server. These options are valid for master, slave and stub zones, and clamp
the SOA refresh and retry times to the specified values.

The Statistics File
The statistics file generated by BIND 9 is similar, but not identical, to that generated by BIND 8.

616 AIX Version 7.1: Files Reference

The statistics dump begins with the line +++ Statistics Dump +++ (973798949), where the number in
parentheses is a standard UNIX-style timestamp, measured as seconds since January 1, 1970. Following
that line, are a series of lines containing a counter type, the value of the counter, optionally a zone name,
and optionally a view name. The lines without view and zone listed are global statistics for the entire
server. Lines with a zone and view name for the given view and zone (the view name is omitted for the
default view). The statistics dump ends with the line —- Statistics Dump —- (973798949), where the
number is identical to the number in the beginning line.

The following statistics counters are maintained:

Item Description

success The number of successful queries made to the server or zone. A successful
query is defined as query which returns a NOERROR response other than a
referral response.

referral The number of queries which resulted in referral responses.

nxrrset The number of queries which resulted in NOERROR responses with no data.

nxdomain The number of queries which resulted in NXDOMAIN responses.

recursion The number of queries which caused the server to perform recursion in order
to find the final answer.

failure The number of queries which resulted in a failure response other than those
above.

server Statement Grammar

server ip_addr {
 [bogus yes_or_no ;]
 [provide-ixfr yes_or_no ;]
 [request-ixfr yes_or_no ;]
 [edns yes_or_no ;]
 [transfers number ;]
 [transfer-format (one-answer | many-answers) ;]]
 [keys { string ; [string ; [...]] } ;]
};

Server Statement Definition and Usage
The server statement defines characteristics to be associated with a remote nameserver.

The server statement can occur at the top level of the configuration file or inside a view statement. If a
view statement contains one or more server statements, only those apply to the view and any top-level
ones are ignored. If a view contains no server statements, any top-level server statements are used as
defaults.

If you discover that a remote server is giving out bad data, marking it as bogus prevents further queries to
it. The default value of bogus is no.

The provide-ixfr clause determines whether the local server, acting as master, responds with an
incremental zone transfer when the given remote server, a slave, requests it. If set to yes, incremental
transfer is provided whenever possible. If set to no, all transfers to the remote server are nonincremental.
If not set, the value of the provide-ixfr option in the view or global options block is used as a default.

The request-ixfr clause determines whether the local server, acting as a slave, requests incremental zone
transfers from the given remote server, a master. If not set, the value of the request-ixfr option in the
view or global options block is used as a default.

IXFR requests to servers that do not support IXFR automatically fall back to AXFR. Therefore, there is no
need to manually list which servers support IXFR and which ones do not; the global default of yes should

Files Reference 617

always work. The purpose of the provide-ixfr and request-ixfr clauses is to make it possible to disable
the use of IXFR even when both master and slave claim to support it, for example if one of the servers is
buggy and crashes or corrupts data when IXFR is used.

The edns clause determines whether the local server will attempt to use EDNS when communicating with
the remote server. The default is yes.

The server supports two zone transfer methods. The first, one-answer, uses one DNS message per
resource record transferred. many-answers packs as many resource records as possible into a message.
many-answers is more efficient, but is only known to be understood by BIND 9, BIND 8.x, and patched
versions of BIND 4.9.5. You can specify which method to use for a server with the transfer-format option.
If transfer-format is not specified, the transfer-format specified by the options statement is used.

transfers is used to limit the number of concurrent inbound zone transfers from the specified server. If no
transfers clause is specified, the limit is set according to the transfers-per-ns option.

The keys clause is used to identify a key_id defined by the key statement, to be used for transaction
security when talking to the remote server. The key statement must come before the server statement
that references it. When a request is sent to the remote server, a request signature is generated using
the key specified here and appended to the message. A request originating from the remote server is not
required to be signed by this key.

Although the grammar of the keys clause allows for multiple keys, only a single key per server is currently
supported.

trusted-keys Statement Grammar

trusted-keys {
 string number number number string ;
 [string number number number string ; [...]]
};

trusted-keys Statement Definition and Usage

The trusted-keys statement defines DNSSEC security roots. A security root is defined when the public key
for a non-authoritative zone is known, but cannot be securely obtained through DNS, either because it is
the DNS root zone or its parent zone is unsigned. Once a key has been configured as a trusted key, it is
treated as if it had been validated and proven secure. The resolver attempts DNSSEC validation on all DNS
data in subdomains of a security root.

The trusted-keys statement can contain multiple key entries, each consisting of the key's domain name,
flags, protocol, algorithm, and the base-64 representation of the key data.

view Statement Grammar

view view_name [class] {
 match-clients { address_match_list } ;
 match-destinations { address_match_list } ;
 match-recursive-only { yes_or_no } ;
 [view_option; ...]
 [zone-statistics yes_or_no ;]
 [zone_statement; ...]
};

6.2.20. view Statement Definition and Usage

The view statement is a powerful new feature of BIND 9 that lets a name server answer a DNS query
differently depending on who is asking. It is particularly useful for implementing split DNS setups without
having to run multiple servers.

Each view statement defines a view of the DNS namespace that is seen by a subset of clients. A
client matches a view if its source IP address matches the address_match_list of the view's match-
clients clause and its destination IP address matches the address_match_list of the view's match-
destinations clause. If not specified, both match-clients and match-destinations default to matching
all addresses. A view can also be specified as match-recursive-only, which means that only recursive
requests from matching clients match that view. The order of the view statements is significant — a client
request is resolved in the context of the first view that it matches.

618 AIX Version 7.1: Files Reference

Zones defined within a view statement are only accessible to clients that match the view. By defining
a zone of the same name in multiple views, different zone data can be given to different clients, for
example, "internal" and "external" clients in a split DNS setup.

Many of the options given in the options statement can also be used within a view statement, and then
apply only when resolving queries with that view. When no view-specific value is given, the value in the
options statement is used as a default. Also, zone options can have default values specified in the view
statement; these view-specific defaults take precedence over those in the options statement.

Views are class-specific. If no class is given, class IN is assumed. Note that all non-IN views must contain
a hint zone, since only the IN class has compiled-in default hints.

If there are no view statements in the config file, a default view that matches any client is automatically
created in class IN, and any zone statements specified on the top level of the configuration file are
considered to be part of this default view. If any explicit view statements are present, all zone statements
must occur inside view statements.

Here is an example of a typical split DNS setup implemented using view statements.

view "internal" {
 // This should match our internal networks.
 match-clients { 10.0.0.0/8; };
 // Provide recursive service to internal clients only.
 recursion yes;
 // Provide a complete view of the example.com zone
 // including addresses of internal hosts.
 zone "example.com" {
 type master;
 file "example-internal.db";
 };
};
view "external" {
 match-clients { any; };
 // Refuse recursive service to external clients.
 recursion no;
 // Provide a restricted view of the example.com zone
 // containing only publicly accessible hosts.
 zone "example.com" {
 type master;
 file "example-external.db";
 };
};

Zone Statement Grammar

zone zone_name [class] [{
 type (master | slave | hint | stub | forward) ;
 [allow-notify { address_match_list } ;]
 [allow-query { address_match_list } ;]
 [allow-transfer { address_match_list } ;]
 [allow-update { address_match_list } ;]
 [update-policy { update_policy_rule [...] } ;]
 [allow-update-forwarding { address_match_list } ;]
 [also-notify { ip_addr [port ip_port] ; [ip_addr [port ip_port] ; ...] };]
 [check-names (warn|fail|ignore) ;]
 [dialup dialup_option ;]
 [file string ;]
 [forward (only|first) ;]
 [forwarders { ip_addr [port ip_port] ; [ip_addr [port ip_port] ; ...] };]
 [ixfr-base string ;]
 [ixfr-tmp-file string ;]
 [maintain-ixfr-base yes_or_no ;]
 [masters [port ip_port] { ip_addr [port ip_port] [key key]; [...] } ;]
 [max-ixfr-log-size number ;]
 [max-transfer-idle-in number ;]
 [max-transfer-idle-out number ;]
 [max-transfer-time-in number ;]
 [max-transfer-time-out number ;]
 [notify yes_or_no | explicit ;]
 [pubkey number number number string ;]
 [transfer-source (ip4_addr | *) [port ip_port] ;]
 [transfer-source-v6 (ip6_addr | *) [port ip_port] ;]
 [notify-source (ip4_addr | *) [port ip_port] ;]
 [notify-source-v6 (ip6_addr | *) [port ip_port] ;]

Files Reference 619

 [zone-statistics yes_or_no ;]
 [sig-validity-interval number ;]
 [database string ;]
 [min-refresh-time number ;]
 [max-refresh-time number ;]
 [min-retry-time number ;]
 [max-retry-time number ;]

}];

zone Statement Definition and Usage

Zone Types

Item Description

master The server has a master copy of the data for the zone and will be able to provide
authoritative answers for it.

slave A slave zone is a replica of a master zone. The masters list specifies one or more IP
addresses of master servers that the slave contacts to update its copy of the zone.
By default, transfers are made from port 53 on the servers; this can be changed
for all servers by specifying a port number before the list of IP addresses, or on a
per-server basis after the IP address. Authentication to the master can also be done
with per-server TSIG keys. If a file is specified, then the replica is written to this
file whenever the zone is changed, and reloaded from this file on a server restart.
Use of a file is recommended, since it often speeds server start-up and eliminates a
needless waste of bandwidth. Note that for large numbers (in the tens or hundreds
of thousands) of zones per server, it is best to use a two level naming scheme for
zone file names. For example, a slave server for the zone example.com might place
the zone contents into a file called ex/example.com where ex/ is just the first two
letters of the zone name. (Most operating systems behave very slowly if you put 100K
files into a single directory.)

stub A stub zone is similar to a slave zone, except that it replicates only the NS records of a
master zone instead of the entire zone. Stub zones are not a standard part of the DNS;
they are a feature specific to the BIND implementation.

Stub zones can be used to eliminate the need for glue NS record in a parent zone
at the expense of maintaining a stub zone entry and a set of name server addresses
in named.conf. This usage is not recommended for new configurations, and BIND
9 supports it only in a limited way. In BIND 4/8, zone transfers of a parent zone
included the NS records from stub children of that zone. This meant that, in some
cases, users could get away with configuring child stubs only in the master server
for the parent zone. BIND 9 never mixes together zone data from different zones in
this way. Therefore, if a BIND 9 master serving a parent zone has child stub zones
configured, all the slave servers for the parent zone also need to have the same child
stub zones configured.

Stub zones can also be used as a way of forcing the resolution of a given domain to
use a particular set of authoritative servers. For example, the caching name servers
on a private network using RFC2157 addressing may be configured with stub zones
for 10.in-addr.arpa to use a set of internal name servers as the authoritative
servers for that domain.

620 AIX Version 7.1: Files Reference

Item Description

forward A "forward zone" is a way to configure forwarding on a per-domain basis. A zone
statement of type forward can contain a forward and/or forwarders statement,
which will apply to queries within the domain given by the zone name. If no
forwarders statement is present or an empty list for forwarders is given, then no
forwarding is done for the domain, canceling the effects of any forwarders in the
options statement. Thus if you want to use this type of zone to change the behavior of
the global forward option (that is, "forward first to", then "forward only", or vice versa,
but want to use the same servers as set globally) you need to respecify the global
forwarders.

hint The initial set of root nameservers is specified using a "hint zone". When the server
starts up, it uses the root hints to find a root nameserver and get the most recent
list of root nameservers. If no hint zone is specified for class IN, the server uses a
compiled-in default set of root servers hints. Classes other than IN have no built-in
defaults hints.

Class

The zone's name may optionally be followed by a class. If a class is not specified, class IN (for
Internet), is assumed. This is correct for the vast majority of cases.

The hesiod class is named for an information service from MIT's Project Athena. It is used to share
information about various systems databases, such as users, groups, printers, and so on. The keyword HS
is a synonym for hesiod.

Another MIT development is CHAOSnet, a LAN protocol created in the mid-1970s. Zone data for it can be
specified with the CHAOS class.

Zone Options

allow-notify

See the description of allow-notify in “Access Control” on page 611.

allow-query

See the description of allow-query in “Access Control” on page 611.

allow-transfer

See the description of allow-transfer in “Access Control” on page 611.

allow-update

Specifies which hosts are allowed to submit Dynamic DNS updates for master zones. The default is to
deny updates from all hosts.

update-policy

Specifies a "Simple Secure Update" policy. See “Dynamic Update Policies” on page 623.

allow-update-forwarding

Specifies which hosts are allowed to submit Dynamic DNS updates to slave zones to be forwarded
to the master. The default is { none; }, which means that no update forwarding is performed.
To enable update forwarding, specify allow-update-forwarding { any; };. Specifying values
other than { none; } or { any; } is usually counterproductive, since the responsibility for update
access control should rest with the master server, not the slaves.

Note that enabling the update forwarding feature on a slave server may expose master servers relying
on insecure IP address based access control to attacks.

Files Reference 621

also-notify

Only meaningful if notify is active for this zone. The set of machines that will receive a DNS NOTIFY
message for this zone is made up of all the listed nameservers (other than the primary master)
for the zone plus any IP addresses specified with also-notify. A port may be specified with each
also-notify address to send the notify messages to a port other than the default of 53. also-notify is
not meaningful for stub zones. The default is the empty list.

check-names

This option was used in BIND 8 to restrict the character set of domain names in master files or DNS
responses received from the network. BIND 9 does not restrict the character set of domain names
and does not implement the check-names option.

database

Specify the type of database to be used for storing the zone data. The string following the database
keyword is interpreted as a list of whitespace-delimited words. The first word identifies the database
type, and any subsequent words are passed as arguments to the database to be interpreted in a way
specific to the database type.

The default is "rbt", BIND 9's native in-memory red-black-tree database. This database does not
take arguments.

Other values are possible if additional database drivers have been linked into the server. Some sample
drivers are included with the distribution but none are linked in by default.

dialup

See the description of dialup in “Boolean Options” on page 608.

forward

Only meaningful if the zone has a forwarders list. The only value causes the lookup to fail after trying
the forwarders and getting no answer, while first would allow a normal lookup to be tried.

forwarders

Used to override the list of global forwarders. If it is not specified in a zone of type forward, no
forwarding is done for the zone; the global options are not used.

ixfr-base

Was used in BIND 8 to specify the name of the transaction log (journal) file for dynamic update and
IXFR. BIND 9 ignores the option and constructs the name of the journal file by appending " .jnl" to
the name of the zone file.

ixfr-tmp-file

Was an undocumented option in BIND 8. Ignored in BIND 9.

max-transfer-time-in

See the description of max-transfer-time-in in “Zone Transfers” on page 611.

max-transfer-idle-in

See the description of max-transfer-idle-in in “Zone Transfers” on page 611.

max-transfer-time-out

See the description of max-transfer-time-out in “Zone Transfers” on page 611.

max-transfer-idle-out

See the description of max-transfer-idle-out in “Zone Transfers” on page 611.

notify

See the description of notify in “Boolean Options” on page 608.

622 AIX Version 7.1: Files Reference

pubkey

In BIND 8, this option was intended for specifying a public zone key for verification of signatures in
DNSSEC signed zones when they are loaded from disk. BIND 9 does not verify signatures on loading
and ignores the option.

zone-statistics

If yes, the server keeps statistical information for this zone, which can be dumped to the statistics-
file defined in the server options.

sig-validity-interval

See the description of sig-validity-interval in “Tuning” on page 616.

transfer-source

See the description of transfer-source in “Zone Transfers” on page 611

notify-source

See the description of notify-source in “Zone Transfers” on page 611

min-refresh-time, max-refresh-time, min-retry-time, max-retry-time

See the description in “Tuning” on page 616.

Dynamic Update Policies
BIND 9 supports two alternative methods of granting clients the right to perform dynamic updates to a
zone, configured by the allow-update and update-policy option, respectively.

The allow-update clause works the same way as in previous versions of BIND. It grants given clients the
permission to update any record of any name in the zone.

The update-policy clause is new in BIND 9 and allows more fine-grained control over what updates are
allowed. A set of rules is specified, where each rule either grants or denies permissions for one or more
names to be updated by one or more identities. If the dynamic update request message is signed (that is,
it includes either a TSIG or SIG(0) record), the identity of the signer can be determined.

Rules are specified in the update-policy zone option, and are only meaningful for master zones. When
the update-policy statement is present, it is a configuration error for the allow-update statement to be
present. The update-policy statement only examines the signer of a message; the source address is not
relevant.

This is how a rule definition looks:

(grant | deny) identity nametype name [types]

Each rule grants or denies privileges. Once a message has successfully matched a rule, the operation
is immediately granted or denied and no further rules are examined. A rule is matched when the signer
matches the identity field, the name matches the name field, and the type is specified in the type field.

The identity field specifies a name or a wildcard name. The nametype field has 4 values: name,
subdomain, wildcard, and self

Item Description

name Matches when the updated name is the same as the name in the name field.

subdomain Matches when the updated name is a subdomain of the name in the name field
(which includes the name itself).

wildcard Matches when the updated name is a valid expansion of the wildcard name in the
name field.

Files Reference 623

Item Description

self Matches when the updated name is the same as the message signer. The name field
is ignored.

If no types are specified, the rule matches all types except SIG, NS, SOA, and NXT. Types may be
specified by name, including "ANY" (ANY matches all types except NXT, which can never be updated).

Zone File

DOMAIN Data File, DOMAIN Reverse Data File, DOMAIN Cache File, and DOMAIN Local

Types of Resource Records and When to Use Them

This section, largely borrowed from RFC 1034, describes the concept of a Resource Record (RR) and
explains when each is used. Since the publication of RFC 1034, several new RRs have been identified and
implemented in the DNS. These are also included.

Resource Records

A domain name identifies a node. Each node has a set of resource information, which may be empty. The
set of resource information associated with a particular name is composed of separate RRs. The order of
RRs in a set is not significant and need not be preserved by nameservers, resolvers, or other parts of the
DNS. However, sorting of multiple RRs is permitted for optimization purposes, for example, to specify that
a particular nearby server be tried first. See “The sortlist Statement” on page 614 and “RRset Ordering”
on page 615.

The components of a Resource Record are:

Item Description

owner name the domain name where the RR is found.

type an encoded 16 bit value that specifies the type of the resource in this resource
record. Types refer to abstract resources.

TTL the time to live of the RR. This field is a 32 bit integer in units of seconds, and is
primarily used by resolvers when they cache RRs. The TTL describes how long an
RR can be cached before it should be discarded.

class an encoded 16 bit value that identifies a protocol family or instance of a protocol.

RDATA the type and sometimes class-dependent data that describes the resource.

The following are types of valid RRs (some of these listed, although not obsolete, are experimental (x) or
historical (h) and no longer in general use):

Item Description

A a host address.

A6 an IPv6 address.

AAAA Obsolete format of IPv6 address

AFSDB (x) location of AFS® database servers. Experimental.

CNAME identifies the canonical name of an alias.

DNAME for delegation of reverse addresses. Replaces the domain name specified with
another name to be looked up. Described in RFC 2672.

624 AIX Version 7.1: Files Reference

Item Description

HINFO identifies the CPU and OS used by a host.

ISDN (x) representation of ISDN addresses. Experimental.

KEY stores a public key associated with a DNS name.

LOC (x) for storing GPS info. See RFC 1876. Experimental.

MX identifies a mail exchange for the domain. See RFC 974 for details.

NS the authoritative nameserver for the domain.

NXT used in DNSSEC to securely indicate that RRs with an owner name in a certain
name interval do not exist in a zone and indicate what RR types are present for
an existing name. See RFC 2535 for details.

PTR a pointer to another part of the domain name space.

RP (x) information on persons responsible for the domain. Experimental.

RT (x) route-through binding for hosts that do not have their own direct wide area
network addresses. Experimental.

SIG ("signature") contains data authenticated in the secure DNS. See RFC 2535 for
details.

SOA identifies the start of a zone of authority.

SRV information about well known network services (replaces WKS).

WKS (h) information about which well known network services, such as SMTP, that a
domain supports. Historical, replaced by newer RR SRV.

The following classes of resource records are currently valid in the DNS:

Item Description

IN For information about other, older classes of RRs the Internet system.

RDATA is the type-dependent or class-dependent data that describes the resource:

Item Description

A for the IN class, a 32 bit IP address.

A6 maps a domain name to an IPv6 address, with a provision for indirection for leading
"prefix" bits.

CNAME a domain name.

DNAME provides alternate naming to an entire subtree of the domain name space, rather
than to a single node. It causes some suffix of a queried name to be substituted
with a name from the DNAME record's RDATA.

Files Reference 625

Item Description

MX a 16 bit preference value (lower is better) followed by a host name willing to act as a
mail exchange for the owner domain.

NS a fully qualified domain name.

PTR a fully qualified domain name.

SOA several fields.

The owner name is often implicit, rather than forming an integral part of the RR. For example, many
nameservers internally form tree or hash structures for the name space, and chain RRs off nodes. The
remaining RR parts are the fixed header (type, class, TTL) which is consistent for all RRs, and a variable
part (RDATA) that fits the needs of the resource being described.

The meaning of the TTL field is a time limit on how long an RR can be kept in a cache. This limit does not
apply to authoritative data in zones; it is also timed out, but by the refreshing policies for the zone. The
TTL is assigned by the administrator for the zone where the data originates. While short TTLs can be used
to minimize caching, and a zero TTL prohibits caching, the realities of Internet performance suggest that
these times should be on the order of days for the typical host. If a change can be anticipated, the TTL can
be reduced prior to the change to minimize inconsistency during the change, and then increased back to
its former value following the change.

The data in the RDATA section of RRs is carried as a combination of binary strings and domain names. The
domain names are frequently used as "pointers" to other data in the DNS.

Textual expression of RRs

RRs are represented in binary form in the packets of the DNS protocol, and are usually represented in
highly encoded form when stored in a nameserver or resolver. In the examples provided in RFC 1034,
a style similar to that used in master files was employed in order to show the contents of RRs. In this
format, most RRs are shown on a single line, although continuation lines are possible using parentheses.

The start of the line gives the owner of the RR. If a line begins with a blank, then the owner is assumed to
be the same as that of the previous RR. Blank lines are often included for readability.

Following the owner, we list the TTL, type, and class of the RR. Class and type use the mnemonics defined
above, and TTL is an integer before the type field. In order to avoid ambiguity in parsing, type and class
mnemonics are disjoint, TTLs are integers, and the type mnemonic is always last. The IN class and TTL
values are often omitted from examples in the interests of clarity.

The resource data or RDATA section of the RR are given using knowledge of the typical representation for
the data.

For example, we might show the RRs carried in a message as:

Item Description Value

ISI.EDU. MX 10 VENERA.ISI.EDU.

MX 10 VAXA.ISI.EDU

VENERA.ISI.EDU A 128.9.0.32

A 10.1.0.52

VAXA.ISI.EDU A 10.2.0.27

A 128.9.0.33

626 AIX Version 7.1: Files Reference

The MX RRs have an RDATA section which consists of a 16 bit number followed by a domain name. The
address RRs use a standard IP address format to contain a 32 bit internet address.

This example shows six RRs, with two RRs at each of three domain names.

Similarly we might see:

Item Description Value

XX.LCS.MIT.EDU. IN A 10.0.0.44

CH A MIT.EDU. 2420

This example shows two addresses for XX.LCS.MIT.EDU, each of a different class.

Discussion of MX Records

As described above, domain servers store information as a series of resource records, each of which
contains a particular piece of information about a given domain name (which is usually, but not always,
a host). The simplest way to think of an RR is as a typed pair of datum, a domain name matched with
relevant data, and stored with some additional type information to help systems determine when the RR
is relevant.

MX records are used to control delivery of email. The data specified in the record is a priority and
a domain name. The priority controls the order in which email delivery is attempted, with the lowest
number first. If two priorities are the same, a server is chosen randomly. If no servers at a given priority
are responding, the mail transport agent falls back to the next largest priority. Priority numbers do not
have any absolute meaning — they are relevant only respective to other MX records for that domain name.
The domain name given is the machine to which the mail is delivered. It must have an associated A record
— CNAME is not sufficient.

For a given domain, if there is both a CNAME record and an MX record, the MX record is in error, and is
ignored. Instead, the mail is delivered to the server specified in the MX record pointed to by the CNAME.

example.com. IN MX 10 mail.example.com.
 IN MX 10 mail2.example.com.
 IN MX 10 mail.backup.org.
mail.example.com. IN A 10.0.0.1
mail2.example.com. IN A 10.0.0.2

For example:

Mail delivery is attempted to mail.example.com and mail2.example.com (in any order), and if
neither of those succeed, delivery to mail.backup.org is attempted.

Setting TTLs

The time to live of the RR field is a 32 bit integer represented in units of seconds, and is primarily used
by resolvers when they cache RRs. The TTL describes how long an RR can be cached before it should be
discarded. The following three types of TTL are currently used in a zone file.

Item Description

SOA The last field in the SOA is the negative caching TTL. This controls how long other servers
will cache no-such-domain (NXDOMAIN) responses from you.

The maximum time for negative caching is 3 hours (3h).

$TTL The $TTL directive at the top of the zone file (before the SOA) gives a default TTL for
every RR without a specific TTL set.

RR TTLs Each RR can have a TTL as the second field in the RR, which controls how long other
servers can cache it.

Files Reference 627

All these TTLs default to units of seconds, though units can be explicitly specified, for example, 1h30m.

Inverse Mapping in IPv4

Reverse name resolution (that is, translation from IP address to name) is achieved by means of the
in-addr.arpa domain and PTR records. Entries in the in-addr.arpa domain are made in least-to-most
significant order, read left to right. This is the opposite order to the way IP addresses are usually written.
Thus, a machine with an IP address of 10.1.2.3 would have a corresponding in-addr.arpa name of
3.2.1.10.in-addr.arpa. This name should have a PTR resource record whose data field is the name of the
machine or, optionally, multiple PTR records if the machine has more than one name. For example, in the
[example.com] domain:

Item Description

$ORIGIN 2.1.10.in-addr.arpa

3 IN PTR foo.example.com.

Note: The $ORIGIN lines in the examples are for providing context to the examples only-they do not
necessarily appear in the actual usage. They are only used here to indicate that the example is relative to
the listed origin.

Other Zone File Directives

The Master File Format was initially defined in RFC 1035 and has subsequently been extended. While the
Master File Format itself is class independent all records in a Master File must be of the same class.

Master File Directives include $ORIGIN, $INCLUDE, and $TTL.

The $ORIGIN Directive

Syntax: $ORIGIN domain-name [comment]

$ORIGIN sets the domain name that is appended to any unqualified records. When a zone is first read in
there is an implicit $ORIGIN < zone-name> . The current $ORIGIN is appended to the domain specified
in the $ORIGIN argument if it is not absolute.

$ORIGIN example.com.
WWW CNAME MAIN-SERVER

is equivalent to

WWW.EXAMPLE.COM. CNAME MAIN-SERVER.EXAMPLE.COM.

The $INCLUDE Directive

Syntax: $INCLUDE filename [origin] [comment]

Read and process the file filename as if it were included into the file at this point. If origin is specified
the file is processed with $ORIGIN set to that value, otherwise the current $ORIGIN is used.

The origin and the current domain name revert to the values they had prior to the $INCLUDE once the file
has been read.

Note: RFC 1035 specifies that the current origin should be restored after an $INCLUDE, but it is silent on
whether the current domain name should also be restored. BIND 9 restores both of them. This could be
construed as a deviation from RFC 1035, a feature, or both.

The $TTL Directive

Syntax: $TTL default-ttl [comment]

Set the default Time To Live (TTL) for subsequent records with undefined TTLs. Valid TTLs are of the range
0-2147483647 seconds.

$TTL is defined in RFC 2308.

628 AIX Version 7.1: Files Reference

BIND Master File Extension: the $GENERATE Directive

Syntax: $GENERATE range lhs type rhs [comment]

$GENERATE is used to create a series of resource records that only differ from each other by an iterator.
$GENERATE can be used to easily generate the sets of records required to support sub /24 reverse
delegations described in RFC 2317: Classless IN-ADDR.ARPA delegation.

$ORIGIN 0.0.192.IN-ADDR.ARPA.
$GENERATE 1-2 0 NS SERVER$.EXAMPLE.
$GENERATE 1-127 $ CNAME $.0

is equivalent to

0.0.0.192.IN-ADDR.ARPA NS SERVER1.EXAMPLE.
0.0.0.192.IN-ADDR.ARPA NS SERVER2.EXAMPLE.
1.0.0.192.IN-ADDR.ARPA CNAME 1.0.0.0.192.IN-ADDR.ARPA
2.0.0.192.IN-ADDR.ARPA CNAME 2.0.0.0.192.IN-ADDR.ARPA
...
127.0.0.192.IN-ADDR.ARPA CNAME 127.0.0.0.192.IN-ADDR.ARPA
.

Item Description

range This can be one of two forms: start-stop or start-stop/step. If the first
form is used then step is set to 1. All of start, stop, and step must be
positive.

lhs lhs describes the owner name of the resource records to be created.
Any single $ symbols within the lhs side are replaced by the iterator
value. To get a $ in the output you need to escape the $ using a
backslash \, e.g. \$. The $ may optionally be followed by modifiers
which change the offset from the interator, field width, and base.
Modifiers are introduced by a { immediately following the $ as $
{offset[,width[,base]]}. For example, ${-20,3,d} which subtracts 20
from the current value, prints the result as a decimal in a zero padded
field of with 3. Available output forms are decimal (d), octal (o) and
hexadecimal (x or X for uppercase). The default modifier is ${0,0,d}. If
the lhs is not absolute, the current $ORIGIN is appended to the name.

For compatibility with earlier versions, $$ is still recognised as
indicating a literal $ in the output.

type At present the only supported types are PTR, CNAME, DNAME, A,
AAAA, and NS.

rhs rhs is a domain name. It is processed similarly to lhs.

The $GENERATE directive is a BIND extension and not part of the standard zone file format.

Files

Item Description

/usr/samples/tcpip/named.conf Contains the sample named.conf file.

ndpdh.cnf File Format for TCP/IP

Purpose
Defines the configuration file locations for the ndpd-host daemon and the autoconf6 command.

Files Reference 629

Description
The /etc/ndpd/ndpdh.cnf file is the default configuration file for the ndpd-host daemon and the
autoconf6 command. If the ndpd-host daemon or the autoconf6 command is started without specifying
an alternate file, they will read this file for information about how to locate all of the necessary files for
enabling the SEND mode.

Prerequisite: To enable the SEND mode, the clic.rte fileset and OpenSSL must be installed.

The format of the ndpdh.cnf file when configuring the ndpd-host daemon and the autoconf6 command is
shown as follows:

Keywords Values Description

cga-params-file Any file name Name of the Cryptographically Generated Address (CGA)
file

anchor-file Any file name Name of the trust anchor file

Files
Item Description

/usr/samples/tcpip/send/ndpdh.cnf Contains the sample ndpdh.cnf file

Related reference
cgaparams.sec File Format for TCP/IP
sendh_anchor File Format for TCP/IP
Related information
ndpd-host daemon
autoconf6 command
tempaddr.conf File Format for TCP/IP

netcd.conf File Format for netcd

Purpose
Defines parameters for the netcd daemon.

Description
The /etc/netcd.conf file is the default configuration file for the netcd daemon. This file is part of TCP/IP in
Network Support Facilities.

To change the /etc/netcd.conf file, run the stopsrc -s netcd command and then the startsrc -s netcd
command. The netcd.conf file specifies the map resolvers that are cached, and supplies parameters to
the netcd daemon.

A template of the netcd.conf file is provided in the /usr/samples/tcpip directory.

Attention: Further installations can overwrite the /usr/samples/tcpip/netcd.conf file. You can
copy this file to another location and use it as a template to create your customized netcd
configuration.

If you do not use any configuration files, the netcd daemon proceeds with the default values indicated
later in this section.

There are 4 types of declarations (a declaration or statement being a line starting with one of the
keywords followed by parameters):

• cache description declarations (keyword - cache)
• security declarations (keywords - owner, group and home_dir)

630 AIX Version 7.1: Files Reference

• log file declarations (keywords - log_file, log_rotate, and log_size)
• additional declarations to control the netcd daemon (keywords - net_scan_frequency,

local_scan_frequency, and socket_queue_size)

Syntax
The general syntax is a string of characters that follows one or more spaces or tabs that follow the
keyword, as shown in the following example:

cache <space><space><tab><tab> dns <space><space> local <tab><tab> foo

The syntax for each individual keyword is described in the following sections.

Cache description declarations

Syntax

cache <type_of_cache> <type_of_map> <hash_size> <cache_ttl>

0 to n cache declarations describe what is cached. If no such line is specified, the default line is cache
all all 128 60.

The type_of_cache parameter can have the following values:

• local - local resolver
• dns - DNS resolver
• nis - nis resolver
• nisplus - nisplus resolver
• yp - yellow pages services
• ulm - other resolvers that you are using on your machine (if any)
• all - local, dns, nis, nisplus, ulm, and yp for the type_of_cache parameter
• a ulm name - the name of a specific resolver other than local, dns, nis, and nisplus that you installed

Any string other than local, dns, nis, nisplus, yp, ulm, and all is taken as a ulm name. You can declare up
to 16 ulms.

The type_of_map parameter can have the following values:

• hosts - hosts map type of the resolver
• protocols - protocols map type of the resolver
• services - services map type of the resolver
• networks - networks map type of the resolver
• netgroup - netgroup map type of the resolver
• all - all map types applicable for the type_of_map parameter that you specified
• a yp map name - the name of a yellow page service from the list passwd.byname, passwd.byuid,

group.byname, group.bygid, netid.byname, and passwd.adjunct.byname

The map types supported for local, nis, nisplus and ulm resolutions are hosts, services, networks,
protocols and netgroup. For the dns cache, hosts is the only map supported.

The maps supported for yp are passwd.byname, passwd.byuid, group.byname, group.bygid,
netid.byname, and passwd.adjunct.byname.

The hash_size parameter specifies the number of lines for the cache (a cache is a hash table). The default
value is 128.

The cache_ttl parameter specifies the length of time during which an entry is kept in the cache. Its unit is
minute. The value of 0 is infinite; the default value is 60. The cache_ttl parameter is not taken into account
for local caches. For dns, it is not suggested to specify a non-null value, because if you specify a non-null

Files Reference 631

value, it overwrites the DNS time-to-live (TTL) sent back when DNS finds the entry. Otherwise, each entry
is kept in the cache for the duration of the TTL that the DNS specifies.

Security declarations

The three following declarations allow the netcd daemon to run in the secure mode (for example, security
against code execution because of stack overflow):

Item Description

owner <value> Specifies the owner of the netcd daemon during its execution. The
default value is root.

group <value> Specifies the group owner of the netcd daemon during its
execution. The default value is system.

home_dir <value> Specifies the working directory for the netcd daemon during its
execution. The default value is /.

Log file declarations

Item Description

log_file <file> Specifies the name of the log file for the netcd
daemon. The default value is /var/tmp/netcd.log.

log_rotate <number> Specifies the number of rotations for the log file.
The default is no rotation, which is specified by not
including a log_rotate declaration.

log_size <number> Specifies the size of the log file, in case of rotation,
in KB.

Additional declarations

Item Description

net_scan_frequency <value> Specifies the scan frequency, in minutes, of the
network cache for expired entries because of TTL.
The default value is 1.

local_scan_frequency <value> Specifies the scan frequency, in minutes, of the
local files for modified dates. When a local file
(for example, /etc/hosts) is detected as modified,
the corresponding local cache is reloaded with the
content of the file. The default value is 1.

socket_queue_size <value> Specifies the size of the message queue for
the socket that the netcd daemon uses to
communicate with the requesting applications.
This value indicates how many waiting requests
the netcd daemon will accept. The default value
is 256.

Examples
1. To cache only local host resolutions with a hash table of 1024 lines, use the following cache

declaration:

cache local hosts 1024

2. To cache all of the local resolutions with caches of 512 lines, use the following cache declaration:

cache local all 512

632 AIX Version 7.1: Files Reference

3. For all protocol resolutions with a hash table of 600 lines and with an expiration of 1 day, use the
following cache declaration:

cache all protocols 600 1440

4. For a david ulm for all maps with a hash table of 128 lines and with an expiration of 1 hour by default,
use the following cache declaration:

cache david all 128

Netcd dns configuration for negative response
Netcd dns configuration for negative response is supported for AIX 7.1 TL 5 and AIX 7.2 TL 2.

Netcd can be configured to use a local TTL value for negative queries. This TTL value may be an entry
in the netcd configuration file. This will ensure that negative responses cached by netcd daemon will be
erased after this time interval expires.

cache <type_of_cache> <type_of_map> <hash_size> <cache_ttl>:<negative cache_ttl>

1. Cache dns hosts 128 obey the TTL from dns server for positive and negative responses
2. Cache dns hosts 128 20 overwrite the TTL from dns server for positive and negative responses
3. Cache dns hosts 128 20:30 overwrite the TTL from dns server for positive and negative responses

with different TTL values
4. Cache dns hosts 128 0:20 overwrite the TTL from dns server for negative response only
5. Cache dns hosts 128 20:0 overwrite the TTL from dns server for positive response only
6. Cache dns hosts 128: ERROR
7. Cache dns hosts 128 20: ERROR
8. Cache dns hosts 128: 20 ERROR

Related information
kill command
startsrc command
stopsrc command
netcdctrl command

.netrc File Format for TCP/IP

Purpose
Specifies automatic login information for the ftp and rexec commands.

Description
The $HOME/.netrc file contains information used by the automatic login feature of the rexec and ftp
commands. It is a hidden file in a user's home directory and must be owned either by the user executing
the command or by the root user. If the .netrc file contains a login password, the file's permissions must
be set to 600 (read and write by owner only). This file is part of TCP/IP in Network Support Facilities.

Note: The .netrc file is not used by any programs when the securetcpip command is running on your
system.

The .netrc can contain the following entries (separated by spaces, tabs, or new lines):

Files Reference 633

Item Description

machine HostName The HostName variable is the name of a remote host. This entry begins
the definition of the automatic login process for the specified host. All
following entries up to the next machine entry or the end of the file apply
to that host.

default The default variable is the same as machine except that default matches
any name. There can be only one default entry. It must be the last entry
(after all machine entries); otherwise, entries that follow it will be ignored.
This is normally used as:

default login anonymous password user@site

thereby giving the user automatic anonymous ftp login to machines not
specified in the .netrc file. This can be overridden by using the -n flag to
disable the auto-login.

login UserName The UserName variable is the full domain user name for use at the remote
host. If this entry is found, the automatic login process initiates a login,
using the specified name. If this entry is missing, the automatic login
process is unsuccessful.

password Password The Password variable is the login password to be used. The automatic
login process supplies this password to the remote server. A login
password must be established at the remote host, and that password
must be entered in the .netrc file. Otherwise the automatic login process
is unsuccessful, and the user is prompted for the login password.

Note: You cannot use a space when you enter the password.

account Password The Password variable is the account password to be used. If this entry
is found and an account password is required at the remote host, the
automatic login process supplies the password to the remote server. If the
remote host requires an account password but this entry is missing, the
automatic login process prompts for the account password.

macdef MacroName The MacroName variable is the name of an ftp subcommand macro. The
macro is defined to contain all of the following ftp subcommands up to
the next blank line or the end of the file. If the macro is named init,
the ftp command executes the macro upon successful completion of
the automatic login process. The rexec command does not recognize a
macdef entry.

Examples
The following is an example of an entry in a .netrc file:

machine host1.austin.century.com login fred password bluebonnet

Files

Item Description

/usr/samples/tcpip/netrc Sample .netrc file

Related information
ftp command
rexec command
securetcpip command

634 AIX Version 7.1: Files Reference

Creating the .netrc file

networks File Format for TCP/IP

Purpose
Contains network name information.

Description
The /etc/networks file contains information about the known networks that comprise the DARPA
Internet. Each network is represented by a single line in the networks file. The format for the entries
in the networks file is:

Name Number Aliases

The fields are described as follows:

Item Description

Name Specifies an official network name.

Number Specifies a network number.

Aliases Specifies any unofficial names used for the network.

Items on a line are separated by one or more spaces or tab characters. Comments begin with a # (pound
sign). Routines that search the networks file do not interpret characters from the beginning of a comment
to the end of that line. Network numbers are specified in dotted-decimal notation. A network name can
contain any printable character except a field delimiter, new-line character, or comment character.

The networks file is normally created from the official network database maintained at the Network
Information Center (NIC). The file can be modified locally to include unofficial aliases or unknown
networks.This file is part of TCP/IP in Network Support Facilities.

Files

Item Description

/usr/samples/tcpip/networks Contains a sample networks file, which also
contains directions for its use.

Related reference
irs.conf File
Related information
routed command
getnetent subroutine
TCP/IP name resolution

nroff or troff Input File Format

Purpose
Specifies input file format for the nroff and troff commands.

Files Reference 635

Description
The nroff and troff commands format text for printing by interspersing the text with control sequences.
Control sequences are either control line requests or escape requests that control text processing by the
printing device.

Control lines begin with a control character followed by a one- or two-character name that specifies a
basic request or a user-defined macro. Default control characters are the . (dot) or the ' (apostrophe). The
' (apostrophe) control character suppresses the nroff or troff command break function, which is caused
by some requests. This break function forces output of a partially filled line. To separate the control
character from the request or macro, use white space created with either a tab or the space bar. The nroff
and troff commands ignore control lines with unrecognized names.

Escape requests can be inserted anywhere in the input text by means of an escape character. The \
(backslash) character is the default escape character. For example, the escape request \nr causes the
contents of the number register, r, to be read.

Note: If text must begin a line with a . (dot), a zero-width character sequence (\&) must precede the
control character. This is true even if the control character is preceded by an escape request. The
zero-width character prevents the command from interpreting the text as a control character. See the
example for an illustration of the use of a zero-width character.

Examples
To print the words .dean, enter:

\fB\&.dean

If you neglected to add the \&, the formatter would read the statement as the macro request:

.de an

Related information
nroff command
troff command

nterm File Format

Purpose
Describes terminal driving tables for the nroff command.

Description
The nroff command uses driving tables to customize its output for various types of output devices
such as printing terminals, special word-processing terminals (such as Diablo, Qume, or NEC Spinwriter
mechanisms), or special output-filter programs. These driving tables are written as ASCII files and are
installed in the /usr/share/lib/nterm/tab.Name file, where the Name variable is the name for a terminal
type.

The first line of a driving table should contain the name of the terminal, which is simply a string with no
imbedded white space (any combination of spaces, tabs, and newline characters). The next part of the
driver table is structured as follows:

• bset [Integer]
• breset [Integer]
• hor [Integer]
• vert [Integer]
• newline [Integer]

636 AIX Version 7.1: Files Reference

• char [Integer]
• em [Integer]
• halfline [Integer]
• adj [Integer]
• twinit [Character String]
• twrest [Character String]
• twnl [Character String]
• hlr [Character String]
• hlf [Character String]
• flr [Character String]
• bdon [Character String]
• bdoff [Character String]
• iton [Character String]
• itoff [Character String]
• ploton [Character String]
• plotoff [Character String]
• up [Character String]
• down [Character String]
• right [Character String]
• left [Character String]
• codeset [Character String]

The meanings of these fields are as follows:

Item Description

bset Specifies bits to set in the c_oflag field of the termio structure before output.

breset Specifies bits to reset in the c_oflag field of the termio structure before output.

hor Specifies horizontal resolution in units of 1/240 of an inch.

vert Defines vertical resolution in units of 1/240 of an inch.

newline Defines space moved by a new-line (linefeed) character in units of 1/240 of an inch.

char Defines a quantum of character sizes, in units of 1/240 of an inch (that is, a
character is a multiple of char units wide).

em Defines the size of an em space in units of 1/240 of an inch.

halfline Defines the amount of space moved by a half-linefeed (or half-reverse-linefeed)
character in units of 1/240 of an inch.

adj Defines a quantum of white space, in 1/240 of an inch; that is, white spaces are a
multiple of adj units wide.

Note: If this is less than the size of the space character, the nroff command
outputs fractional spaces using plot mode. Also, if the -e switch to the nroff
command is used, the adj variable is set equal to the hor variable by the nroff
command.

twinit Specifies a sequence of characters used to initialize the terminal in a mode suitable
for the nroff command.

twrest Specifies a sequence of characters used to restore the terminal to normal mode.

twnl Specifies a sequence of characters used to move down one line.

Files Reference 637

Item Description

hlr Specifies a sequence of characters used to move up one-half line.

hlf Specifies a sequence of characters used to move down one-half line.

flr Specifies a sequence of characters used to move up one line.

bdon Specifies a sequence of characters used to turn on hardware boldface mode, if any.

bdoff Specifies a sequence of characters used to turn off hardware boldface mode, if any.

iton Specifies a sequence of characters used to turn on hardware italics mode, if any.

itoff Specifies a sequence of characters used to turn off hardware italics mode, if any.

ploton Specifies a sequence of characters used to turn on hardware plot mode (for Diablo-
type mechanisms), if any.

plotoff Specifies a sequence of characters used to turn off hardware plot mode (for Diablo-
type mechanisms), if any.

up Specifies a sequence of characters used to move up one resolution unit (vert) in
plot mode, if any.

down Specifies a sequence of characters used to move down one resolution unit (vert) in
plot mode, if any.

right Specifies a sequence of characters used to move right one resolution unit (hor) in
plot mode, if any.

left Specifies a sequence of characters used to move left one resolution unit (hor) in
plot mode, if any.

codeset
CodeSetName

Specifies the code set for the particular output device. CodesetName is any valid
name for use with the iconv command. The code set defines character entries
within the font description file for the character set section. The code set field is
optional. If used, the code set field must follow the "left" field and precede the
character set section, if provided. The default is IBM-850.

The nroff command uses the specified CodesetName and the code set implied
by the current locale to determine if code set conversions are necessary for the
input characters. The iconv function is used to perform the code set conversion if
necessary.

This part of the driving table is fixed-format; you cannot change the order of entries. Entries should be on
separate lines each containing two fields (no comments allowed) separated by white space; for example:

bset 0
breset 0
Hor 24

Follow this first part of the driving table with a line containing only the word charset, and then specify
a table of special characters that you want to include. That is, specify all the non-ASCII characters that
the nroff command knows by 2-character names, such as \(hy. If the nroff command does not find the
word charset where it expects, it terminates processing with an error message.

Each definition after charset occupies one line and has the following format:

chname width output

The chname field is the (2-letter) name of the special character, the width field is its width in ems, and
the output field is the string of characters and escape sequences to send to the terminal to produce the
special character.

International Character Support

638 AIX Version 7.1: Files Reference

For fonts for large character sets in which most characters are the same width, as in Japanese, Chinese,
and Korean, prototype characters are provided for the character set section of the nterm table. These
prototype characters specify the width of characters of varying byte lengths. The code field for prototype
character entries must contain a single ? (question mark). The prototype character entries apply to all
characters not explicitly defined on their own in the character set section. It is assumed the output device
code for characters handled via prototype characters is the same as the input code for characters (with
possible codeset conversions). The following are the prototype character definitions:

X1 Width ? Represents the width of all one-byte characters not defined
elsewhere.
X2 Width ? Represents the width of all two-byte characters not defined
elsewhere.
X3 Width ? Represents the width of all three-byte characters not defined
elsewhere.
X4 Width ? Represents the width of all four-byte characters not defined
elsewhere.

If any field in the charset part of the driving table does not pertain to the output device, you can give
that particular sequence as a null string or leave out the entry. Special characters that do not have a
definition in this file are ignored on output by the nroff command.

You can put the charset definitions in any order, so it is possible to speed up the nroff command by
putting the most used characters first. For example:

charset
em 1-
hy 1-
\-1-
bu 1 +\bo

The best way to create a terminal table for a new device is to take an existing terminal table and edit it
to suit your needs. Once you create such a file, put it in the /usr/share/lib/nterm directory. Then, give it
the name tab.xyz, where the xyz variable is the name of the terminal and also the name that you pass the
nroff command by way of the -T flag. For example:

nroff -Txyz

Files

Item Description

/usr/share/lib/nterm/tab.Name Contains terminal files.

Related information
iconv command
nroff command
International character support in text formatting

Permissions File Format for BNU

Purpose
Specifies BNU permissions for remote systems that call or are called by the local system.

Description
The /etc/uucp/Permissions file specifies access for remote systems that use the Basic Networking
Utilities (BNU) program to communicate with the local system. The Permissions file contains an entry
for each system the local system contacts using BNU. These entries correspond to entries in the /etc/
uucp/Systems file or other systems files listed in the /etc/uucp/Sysfiles file with the same format. The

Files Reference 639

Permissions file also contains an entry for each login ID that remote systems are permitted to use when
using BNU to log into the local system.

Entries in the Permissions file specify:

• The login ID for a remote system
• The circumstances under which a remote system is allowed to send files to and receive files from the

local system
• The commands a remote system is permitted to execute on the local system.

The access permissions set in a Permissions file affect remote systems as a whole. They do not pertain
to individual users who work on those remote systems. Permissions limiting uucico and uuxqt daemon
activities restrict the BNU access to a local system by all users on a specified remote system. The default
permissions for sending and receiving files and executing commands are very restrictive. However, the file
also provides options that enable you to change these defaults if you want to allow remote systems to
have less restricted access to the local system.

Each entry in a Permissions file is a logical line. If an entry is too long to fit on the screen, make the last
character in that physical line a \ (backslash), which indicates continuation, and then type the remainder
of the entry on the next physical line.

Each logical line contains a required entry specifying a login ID (LOGNAME entry) or the name of a remote
system (MACHINE entry), followed by optional option/value pairs separated by either spaces or tabs.
Both the LOGNAME and MACHINE entries and the option/value pairs are composed of name/value pairs.
Name/value pairs consist of the name of the entry or option followed by an = (equal sign) and the value of
the entry or option, with no spaces allowed within the pair.

The Permissions file can also contain comment lines and blank lines. Comment lines begin with a #
(pound sign) and occupy the entire physical line. Blank lines are ignored.

Note:

1. Access permissions set in the Permissions file affect all BNU communications, including those made
through the mail facility or over a TCP/IP connection. Entries in a Permissions file do not affect a
remote-system user with a valid login on a specified local system. Remote login commands (such
as cu, ct, tn, or tip) connect to and log in on a system regardless of the restrictions set up in the
localPermissions file. A user with a valid login ID is subject only to the permission codes established
for that user's user ID (UID) and group ID (GID).

2. Examples of using the Permissions file are provided. The examples include issuing default or
restricted access to remote systems and combining LOGNAME and MACHINE entries.

LOGNAME and MACHINE Entries
The Permissions file contains two types of required entries:

Item Description

LOGNAME Specifies the login IDs and access permissions for remote systems that are allowed to
contact the local system.

MACHINE Specifies the names and access permissions for the remote systems that the local system
can contact.

Both LOGNAME and MACHINE entries specify what the remote system can do on the local system.
LOGNAME entries take effect when a remote system contacts the local system. MACHINE entries take
effect when the local system contacts a remote system. The permissions given to the remote system in
the two types of entries can be the same or different.

For example, if remote system hera contacts local system zeus and logs in as uhera, the
LOGNAME=uhera entry in the Permissions file on zeus controls what actions system hera can take
on system zeus. If system zeus contacts system hera, the MACHINE=hera entry in the Permissions file
on zeus controls what actions system hera can take on system zeus.

640 AIX Version 7.1: Files Reference

The most restrictive LOGNAME and MACHINE entry is an entry without any option/value pairs, which
means that the remote system's access to the local system is defined by the default permissions. To
override these defaults, include option/value pairs in the entry. The available options are:

• REQUEST
• SENDFILES
• READ,WRITE
• NOREAD,NOWRITE
• COMMANDS
• VALIDATE
• CALLBACK

These options allow different remote systems different types of access to the local system when using
the BNU file transport and command execution programs. A LOGNAME and a MACHINE entry can be
combined into a single entry when both include the same options.

LOGNAME Entry

A LOGNAME entry specifies one or more login IDs for remote systems permitted to log into the local
system to conduct uucico and uuxqt daemon transactions, plus the access permissions for those remote
systems. The login ID can be any valid login name. The LOGNAME entry specifies permissions for the
remote system when it contacts the local system. The format of a LOGNAME entry is:

LOGNAME=LoginID[:LoginID . . .] [Option=Value . . .]

Remote systems log in with one of the IDs listed in the LoginID list. While logged in with that ID, the
remote system has the permissions specified in the Option=Value list. The remote system that is calling
must be listed in the /etc/uucp/Systems file or an alternative uucico service systems file specified
in /etc/uucp/Sysfiles on the local system.

To specify more than one login ID with the same option/value pairs, list them in the same LOGNAME entry,
separated by colons but without spaces. To specify multiple login IDs with different option/value pairs, list
them in separate LOGNAME entries.

The most restrictive LOGNAME entry is an entry without any option/value pairs. The remote system's
access to the local system is then defined by these default permissions:

• The remote system cannot ask to receive any queued files from the local system.
• The local system cannot send queued work to the calling remote system when the remote system has

completed its current operations. Instead, the queued work can be sent only when the local system
contacts the remote system.

• The remote system cannot send files to (write) or transfer files from (read) any location except the BNU
public directory (/var/spool/uucppublic/Syste mName) on the local system.

• Users on the remote system can execute only the default commands on the local system. (The default
command set includes only the rmail command, which users implicitly execute by issuing the mail
command.)

To override these defaults, include option/value pairs in the LOGNAME entry.

Note: A login ID can appear in only one LOGNAME entry. If there is a single entry for a login ID, that entry
alone is sufficient for all remote systems using that login ID.

Attention: Allowing remote systems to log in to the local system with the uucp login ID
seriously jeopardizes the security of your system. Remote systems logged in with the uucp
ID can display and possibly modify (depending on the other permissions specified in the
LOGNAME entry) the local Systems and Permissions files. It is strongly recommended that
you create other BNU login IDs for remote systems and reserve the uucp login ID for the person
responsible for administering BNU on the local system. Each remote system that contacts the
local system should have a unique login ID with a unique UID.

MACHINE Entry

Files Reference 641

The Permissions file contains a MACHINE entry for each remote system the local system is permitted to
contact. The access permissions specified in the MACHINE entry affect the remote system's access to the
local system when the local system contacts the remote system. Following is the format of a MACHINE
entry:

MACHINE=SystemName[:SystemName . . .] [Option=Value . . .]

OR

MACHINE=OTHER [Option=Value . . .]

The most restrictive type of MACHINE entry, which uses the default permissions, is:

MACHINE=SystemName[:SystemName . . .]

The system names are separated by a colon. The entry includes no spaces or tab characters. There are
no option/value pairs, indicating that remote system access to the local system is defined by the following
default permissions:

• The remote system cannot ask to receive any local system files queued to run on the calling remote
system.

• The remote system cannot access (read) any files except those in the public directory on the local
system.

• The remote system can send (write) files only to the local public directory.
• The remote system can execute only those commands in the default command set on the local system.

To override these defaults, include option/value pairs in the LOGNAME entry.

The SystemName list in a MACHINE entry may include a number of different remote systems. A MACHINE
entry can also be:

MACHINE=OTHER [Option=Value . . .]

where the word OTHER represents a system name. This sets up access permissions for remote systems
not specified in the existing MACHINE entries in a Permissions file. The MACHINE=OTHER entry is useful
in these circumstances:

• When your installation includes a large number of remote systems that the local system regularly
contacts for uucico and uuxqt daemon transactions

• When it is occasionally necessary to change the default command set specified in the COMMANDS
option in the MACHINE entry.

Rather than create separate MACHINE entries for each of a large group of remote systems, set up one
MACHINE=OTHER entry that includes the appropriate commands specified in a COMMANDS option entry.
Then, when it becomes necessary to change the default command set, change the list of commands in
only one entry rather than in numerous entries. Usually, a MACHINE=OTHER entry also specifies more
restrictive option values for the unidentified remote systems.

Note: The local system cannot call any remote system that is not listed by name in a MACHINE entry,
unless there is a MACHINE=OTHER entry in the Permissions file on the local system.

Option/Value Pairs
Option/value pairs can be used with the LOGNAME and MACHINE entries. The default permissions are
restrictive, but can be changed with one or more of the option/value pairs. These options allow different
remote systems different types of access to the local system when using the BNU file transport and
command execution programs.

CALLBACK Option

The CALLBACK option, included in LOGNAME entries, specifies that no file transfer transactions will occur
until the local system contacts the targeted remote system. The format of the CALLBACK option is either:

CALLBACK=no

642 AIX Version 7.1: Files Reference

OR

CALLBACK=yes

Note: If two systems both include the CALLBACK=yes option in their respective Permissions files, they
cannot communicate with each other using BNU.

The default value, CALLBACK=no, specifies that the remote system may contact the local system and
begin transferring files without the local system initiating the operations.

For tighter security, use the CALLBACK=yes option to specify that the local system must contact the
remote system before the remote system may transfer any files to the local system.

If you include the CALLBACK=yes option in the LOGNAME entry, you must also have a MACHINE entry for
that system so that your system can call it back. You can have a MACHINE=OTHER entry to allow your
system to call any remote system, including the one for which the CALLBACK=yes option is specified.

The default value, CALLBACK=no, is generally sufficient for most sites.

COMMANDS Option

The COMMANDS option, included only in a MACHINE entry, specifies the commands that the remote
systems listed in that MACHINE entry can execute on the local system. The format of the COMMANDS
option is either:

COMMANDS=CommandName[:CommandName . . .]

OR

COMMANDS=ALL

The default is COMMANDS=rmail:uucp. Under the default, remote systems can run only the rmail
and uucp commands on the local system. (Users enter the mail command, which then calls the rmail
command.)

The commands listed in the COMMANDS option override the default. You can also specify path names
to those locations on the local system where commands issued by users on remote systems are stored.
Specifying path names is useful when the default path of the uuxqt daemon does not include the
directory where a command resides.

Note: The default path of the uuxqt daemon includes only the /usr/bin directory.

To allow a certain remote system to execute all available commands on the local system, use the
COMMANDS=ALL format. This specifies that the command set available to the designated remote system
includes all commands available to users on the local system.

Note: The COMMANDS option can jeopardize the security of your system. Use it with extreme care.

NOREAD and NOWRITE Options

The NOREAD and NOWRITE options, used in both LOGNAME and MACHINE entries, delineate exceptions
to the READ and WRITE options by explicitly forbidding access by the remote system to directories and
files on the local system.

The formats of these options follow:

NOREAD=PathName[:PathName . . .]

NOWRITE=PathName[:PathName . . .]

Note: The specifications you enter with the READ, WRITE, NOREAD, and NOWRITE options affect the
security of your local system in terms of BNU transactions.

READ and WRITE Options

The READ and WRITE options, used in both LOGNAME and MACHINE entries, specify the path names of
directories that theuucico daemon can access when transferring files to or from the local system. You can
specify more than one path for uucico daemon activities.

Files Reference 643

The default location for both the READ and WRITE options is the /var/spool/uucppublic directory (the
BNU public directory) on the local system. The formats for these options follow:

READ=PathName[: PathName . . .]

WRITE=PathName[: PathName . . .]

The source file, destination file, or directory must be readable or writable for the other group for the
BNU program to access it. Set these permissions with the chmod command. A user without root user
authority can take away permissions granted by the READ and WRITE options, but that user cannot grant
permissions that are denied by these options.

If the READ and WRITE options are not present in the Permissions file, the BNU program transfers files
only to the/var/spool/uucppublic directory. However, if you specify path names in these options, enter
the path name for every source and destination, including the /var/spool/uucppublic directory if the
remote system is to be permitted access to it.

Attention: Specifications with the READ, WRITE, NOREAD, and NOWRITE options affect the
security of your local system in terms of BNU transactions. The subdirectories of directories
specified in the READ and WRITE options can also be accessed by the remote system unless
these subdirectories are forbidden with the NOREAD or NOWRITE options.

REQUEST Option

The REQUEST option, used in both LOGNAME and MACHINE entries, enables a remote system to ask to
receive any queued files containing work that users on the local system have requested to be executed on
that remote system. The default is not to allow such requests.

When a remote system contacts the local system to transfer files or execute commands, the remote
system may also request permission to receive any files queued on the local system for transfer to or
execution on that remote system. This format of the REQUEST option permits such requests:

REQUEST=yes

The default, REQUEST=no, does not have to be entered. This specifies that the remote system cannot ask
to receive any work queued for it on the local system. The local system must contact the remote system
before transmitting files and execute commands queued on the local system to the remote system.

Use the REQUEST=yes option in both LOGNAME and MACHINE entries to allow remote-system users
to transfer files to and execute commands on a local system on demand. Restrict access with the
REQUEST=no option so that the local system retains control of file transfers and command executions
initiated by remote systems.

Note: Entries in the Permissions file affect only BNU transactions. They do not affect remote-system
users with valid logins on a local system.

SENDFILES Option

The default allows the local system to transfer queued work to the remote system only when the local
system contacts the remote system. However, when a remote system finishes transferring files to or
executing commands on a local system, that local system may try to send queued work to the calling
remote system immediately. To enable an immediate transfer, use the following SENDFILES option:

SENDFILES=yes

The SENDFILES=yes option allows the transfer of queued work from the local to the remote system
once the remote system has completed its operations. The default value, SENDFILES=call, specifies that
local files queued to run on the remote system are sent only when the local system contacts the remote
system.

Note:

1. The SENDFILES option is ignored when it is included in a MACHINE entry.
2. Entries in the Permissions file affect only BNU transactions. They do not affect remote-system users

with valid logins on a local system.

VALIDATE Option

644 AIX Version 7.1: Files Reference

The VALIDATE option provides more security when including commands in the default command set that
could cause damage when executed by a remote system on a local system. Use this option, specified only
in a MACHINE entry, in conjunction with a COMMANDS option. The format of the VALIDATE option is:

VALIDATE=LoginName[: LoginName . . .]

The VALIDATE option verifies the identity of the calling remote system. Including this option in a
MACHINE entry means that the calling remote system must have a unique login ID and password for
file transfers and command executions.

Note: This option is meaningful only when the login ID and password are protected. Giving a remote
system a special login and password that provide unlimited file access and remote command-execution
ability is equivalent to giving any user on that remote system a normal login and password on the local
system, unless the special login and password are well-protected.

The VALIDATE option links a MACHINE entry, which includes a specified COMMANDS option, to a
LOGNAME entry associated with a privileged login. The uuxqt daemon, which executes commands on
the local system on behalf of users on a remote system, is not running while the remote system is logged
in. Therefore, the uuxqt daemon does not know which remote system sent the execution request.

Each remote system permitted to log in to a local system has its own spooling directory on that local
system. Only the BNU file transport and command execution programs are allowed to write to these
directories. For example, when the uucico daemon transfers execution files from the remote system
hera to the local system zeus, it places these files in the /var/spool/uucppublic/hera directory on
system zeus.

When the uuxqt daemon attempts to execute the specified commands, it determines the name of
the calling remote system (hera) from the path name of the remote-system spooling directory (/var/
spool/uucppublic/hera). The daemon then checks for that name in a MACHINE entry in the
Permissions file. The daemon also checks for the commands specified in the COMMANDS option in a
MACHINE entry to determine whether the requested command can be executed on the local system.

Security
Access Control: Only a user with root authority can edit the Permissions file.

Examples
The following are examples of using the Permissions file.

Providing Default Access to Remote Systems

1. To provide the default permissions to any system logging in as uucp1, enter:

LOGNAME=uucp1

2. To provide the default permissions to systems venus, apollo, and athena when called by the local
system, enter:

MACHINE=venus:apollo:athena

Providing Less Restricted Access to Remote Systems

1. The following LOGNAME entry allows remote system merlin to read and write to more directories
than just the spool directory:

LOGNAME=umerlin READ=/ NOREAD=/etc:/usr/sbin/uucp
WRITE=/home/merlin:/var/spool/uucppublic

A system logging in as user umerlin can read all directories except the /usr/sbin/uucp and /etc
directories, but can write only to the /home/merlin and public directories. Because the login name
umerlin has access to more information than is standard, BNU validates the system before allowing
merlin to log in.

Files Reference 645

2. The following example allows remote system hera unrestricted access to system zeus, and shows
the relationship between the LOGNAME and MACHINE entries:

LOGNAME=uhera REQUEST=yes SENDFILES=yes READ
=/ WRITE=/MACHINE=hera VALIDATE=uhera REQUEST=yes \COMMANDS=ALL READ=/ WRITE=/

The remote system hera may engage in the following uucico and uuxqt transactions with system
zeus:

• System hera may request that files be sent from system zeus, regardless of which system placed
the call (REQUEST=yes appears in both entries);

• System zeus may send files to system hera when system hera contacts system zeus
(SENDFILES=yes in the LOGNAME entry);

• System hera may execute all available commands on system zeus (COMMANDS=ALL in the
MACHINE entry);

• System hera may read from and write to all directories and files under the root directory on system
zeus, regardless of which system placed the call (READ=/ WRITE=/ in both entries).

Because the entries provide system hera with relatively unrestricted access to system zeus, BNU
validates the log name before permitting system hera to log in.

Note: This entry allows unrestricted access to the local system by the remote system listed in the
MACHINE entry. This entry can jeopardize the security of your system.

Combining LOGNAME and MACHINE Entries

1. Following are LOGNAME and MACHINE entries for system hera:

LOGNAME=uhera REQUEST=yes SENDFILES=yes
MACHINE=hera VALIDATE=uhera REQUEST=yes COMMANDS=rmail:news:uucp

Since they have the same permissions and apply to the same remote system, these entries can be
combined as:

LOGNAME=uhera SENDFILES=yes REQUEST=yes \
MACHINE=hera VALIDATE=uhera COMMANDS=rmail:news:uucp

2. LOGNAME and MACHINE entries used for more than one remote system can be combined if they have
the same permissions. For example:

LOGNAME=uucp1 REQUEST=yes SENDFILES=yes
MACHINE=zeus:apollo:merlin REQUEST=yes COMMANDS=rmail:uucp

can be combined as:

LOGNAME=uucp1 REQUEST=yes SENDFILES=yes \MACHINE=zeus:apollo:
merlin COMMANDS=rmail:uucp

Either form of the entries allows systems zeus, apollo, and merlin the same permissions. They can:

• Log into the local system as uucp1.
• Execute the rmail and uucp commands.
• Request files from the local system, regardless of which system placed the call.

Allowing Access to Unnamed Systems

To allow your system to call systems that are not specified by name in a MACHINE entry, use a
MACHINE=OTHER entry as follows:

MACHINE=OTHER COMMANDS=rmail

This entry allows your system to call any machine. The machine called will be able to request execution of
the rmail command. Otherwise, the default permissions apply.

646 AIX Version 7.1: Files Reference

Permissions File Entries for Three Systems

The following examples show the Permissions files for three connected systems:

On system venus:

LOGNAME=uhera MACHINE=hera \
READ=/ WRITE=/ COMMANDS=ALL \
NOREAD=/usr/secure:/etc/uucp \
NOWRITE=/usr/secure:/etc/uucp
SENDFILES=yes REQUEST=yes VALIDATE=hera

On system hera:

LOGNAME=uvenus MACHINE=venus \
READ=/ WRITE=/ COMMANDS=rmail:who:lp:uucp \
SENDFILES=yes REQUEST=yes

LOGNAME=uucp1 MACHINE=OTHER \
REQUEST=yes SENDFILES=yes

On system apollo:

LOGNAME=uhera MACHINE=hera \
READ=/var/spool/uucppublic:/home/hera \
REQUEST=no SENDFILES=call

Given these permissions:

• System hera logs into system venus as uhera. It can request or send files regardless of who initiated
the call and can read or write to all directories except /usr/secure and /usr/sbin/uucp. It can execute
any command. However, before system venus allows any system to log in as uhera, it checks to make
sure that system is hera.

• System venus logs into system hera as uvenus. After it logs in, it can read or write to all directories on
system hera and can request or send commands regardless of who initiated the call. It can execute the
rmail, who, lp, and uucp commands only.

• System hera logs into system apollo as uhera. After it logs in, it can send files, but requests to
receive files will be denied. It can read and write only from the public directory and the /home/hera
directory, and can execute only the default list of commands.

• System apollo logs into system hera as uucp1, since it does not have a unique login ID on system
hera. It can request and send files, regardless of who initiated the call. It can read and write only from
the public directory (the default) and execute only the default list of commands.

Note: The uucp1 login ID defined on system hera can be used by any remote system, not just by
system apollo. In addition, the presence of the MACHINE=OTHER entry allows system hera to call
machines not specified elsewhere in the Permissions file. If system hera calls an unknown machine,
the permissions in the MACHINE=OTHER entry take effect.

Files

Item Description

/etc/uucp/Permissions file Describes access permissions for remote
systems.

/etc/uucp/Systems file Describes accessible remote systems.

/etc/uucp/Sysfiles file Specifies possible alternative files for the /etc/
uucp/Systems file.

/var/spool/uucppublic directory Contains files that have been transferred.

Related information
chmod command

Files Reference 647

mail command
rmail command
uucheck command
Configuring BNU

phones File Format for tip

Purpose
Describes connections used by the tip command to contact remote systems.

Description
The /etc/phones-file file lists the remote systems that can be contacted using the tip command, along
with the telephone numbers used to contact those systems.

A sample phones-file file for the tip command is included with the operating system. The sample file is
named /usr/lib/phones-file. A user with root user authority can copy the sample file to the /etc/phones
file and modify it to suit the needs of a particular site.

Any tip user can create an individual phones file in the format of the phones-file file. The individual
phones file can be named with any operating system file name and placed in any directory to which the
user has access. To instruct the tip command to use the new file, either set the tip command phones
variable or set an environment variable named PHONES.

Systems listed in the phones file must also be described in the /etc/remote-file file, in the file specified
by the REMOTE environment variable, or in the file specified by the tip command remote variable.

Format of Entries

The format of an entry in the phones file is:

SystemName PhoneNumber

The SystemName field and the PhoneNumber field must be separated by at least one space. More than
one space can be used to improve readability.

Item Description

SystemName Specifies the name of the remote system to be contacted.

PhoneNumber Specifies the telephone number, including line access codes, to be used to reach the
remote system. Dashes may be used for readability.

If more than one phone number can be used to reach a certain system, make multiple entries for that
system, placing each entry on a separate line.

Any line beginning with a # (pound sign) is interpreted as a comment.

Examples
1. To list phone numbers in a phones file, make entries similar to the following:

hera 1237654
zeus 9-512-345-9999

System hera is contacted using the telephone number 123-7654. To contact system zeus, a line-
access code of 9 is followed by the telephone number 512-345-9999.

2. To define more than one phone number for the same system, make multiple entries for that system, as
follows:

648 AIX Version 7.1: Files Reference

decvax 9-915-987-1111
decvax 9-915-987-2222

If the tip command cannot reach the decvax system using the first phone number, it attempts to
contact the system using the second phone number.

Files

Item Description

/etc/phones Denotes complete path name of the phones file.

/usr/lib/phones-file Contains an example phones file.

/etc/remote Describes remote systems that can be contacted using the tip
command.

Related information
tip command
Communication with connected systems using the tip command

Poll File Format for BNU

Purpose
Specifies when the BNU program should poll remote systems.

Description
The /etc/uucp/Poll file specifies when the Basic Networking Utilities (BNU) program should poll (initiate
automatic calls to) designated remote computers. This file is used in conjunction with the /var/spool/
cron/crontabs/uucp file, uudemon.hour command, and uudemon.poll command. Together, these files
are responsible for initiating automatic calls to certain remote systems.

Each entry in the Poll file contains the name of the remote computer followed by a sequence of times
when the BNU program should poll that system. Modify the times specified in the Poll file based on how
the systems at your site are used. Specify times as digits between 0 and 23. The format of the entry is as
follows:

SystemName Time [Time ...]

The fields in the Poll file entry must be separated by at least one space. More spaces can be used for
readability. A tab character between the SystemName field and the first Time field is optional.

Note:

1. Only someone with root user authority can edit the Poll file, which is owned by the uucp program login
ID.

2. Most versions of UUCP require a tab character between the SystemName field and the first Time field.
In BNU, either a tab or spaces will work.

Examples
Following is a standard entry in the Poll file:

hera <TAB> 0 4 8 12 16 20

This entry specifies that the local system will poll the remote system hera every 4 hours.

The tab character can be replaced by one or more spaces. Thus the preceding entry is equivalent to the
following one:

Files Reference 649

hera 0 4 8 12 16 20

Files

Item Description

/etc/locks Contains lock files that prevent multiple uses of
devices and multiple calls to systems.

/var/spool/cron/crontabs/uucp Schedules BNU jobs for the cron daemon.

Related information
uucpadm command
cron command
Configuring BNU
Understanding the BNU File and Directory Structure

profile File Format

Purpose
Sets the user environment at login time.

Description
The $HOME/.profile file contains commands that the system executes when you log in. The .profile also
provides variable profile assignments that the system sets and exports into the environment. The /etc/
profile file contains commands run by all users at login.

After the login program adds the LOGNAME (login name) and HOME (login directory) variables to the
environment, the commands in the $HOME/.profile file are executed, if the file is present. The .profile
file contains the individual user profile that overrides the variables set in the profile file and customizes
the user-environment profile variables set in the /etc/profile file. The .profile file is often used to set
exported environment variables and terminal modes. The person who customizes the system can use
the mkuser command to set default .profile files in each user home directory. Users can tailor their
environment as desired by modifying their .profile file.

Note: The $HOME/.profile file is used to set environments for the Bourne and Korn shells. An equivalent
environment for the C shell is the $HOME/.cshrc file.

Examples
The following example is typical of an /etc/profile file:

#Set file creation mask unmask 022
#Tell me when new mail arrives
MAIL=/usr/mail/$LOGNAME
#Add my /bin directory to the shell
search sequence
PATH=/usr/bin:/usr/sbin:/etc::
#Set terminal type
TERM=lft
#Make some environment variables global
export MAIL PATH TERM

Files

Item Description

/etc/profile Contains profile variables.

650 AIX Version 7.1: Files Reference

Related information
bsh command
env command
login command
stty command
Profiles overview

protocols File Format for TCP/IP

Purpose
Defines the Internet protocols used on the local host.

Description
The /etc/protocols file contains information about the known protocols used in the DARPA Internet. Each
protocol is represented by a single line in the protocols file. Each entry corresponds to the form:

Name Number Aliases

The fields contain the following information:

Item Description

Name Specifies an official Internet Protocol name.

Number Specifies a protocol number.

Aliases Specifies any unofficial names used for the protocol.

Items on a line are separated by one or more spaces or tab characters. Comments begin with the #
(pound sign), and routines that search the protocols file do not interpret characters from the beginning
of a comment to the end of the line. A protocol name can contain any printable character except a field
delimiter, new line character, or comment character.

The protocol and alias names are case sensitive.

The lines appear as follows:

ip 0 #dummy for IP
icmp 1 #control message protocol
#ggp 2 #gateway^2 (not normally used)
tcp 6 #tcp
#egp 8 #exterior gateway protocol
#pup 12 #pup
udp 17 #user datagram protocol

Related reference
irs.conf File
inetd.conf File Format for TCP/IP
Related information
getprotoent subroutine
TCP/IP protocols

queuedefs File Format

Purpose
Specifies the handling of cron daemon events.

Files Reference 651

Description
The /var/adm/cron/queuedefs file defines how the system handles different cron daemon events types.
The file specifies the maximum number of processes per event type to schedule at one time, the nice
value of the event type, and how long to wait before retrying to execute a process. The following event
types can be scheduled by the cron daemon:

• at command events
• batch command events
• crontab command events
• sync subroutine events
• ksh command events
• csh command events

This file is empty as shipped, but can be modified to change how the cron daemon handles each event
type. Each entry in the queuedefs file is of the form:

EventType.[Jobsj][Nicen][Waitw]

The fields are described as follows:

Item Description

EventType Specifies a character representing an event type. The following are valid values for the
EventType field:

a Specifies an at command event.

b Specifies a batch command event.

c Specifies a crontab command event.

d Specifies a sync subroutine event.

e Specifies a ksh command event.

f Specifies a csh command event.

Jobsj Specifies the maximum number of jobs the cron daemon can start at one time. The
default value is 100.

Nicen Specifies the nice value for job execution. The default value is 2.

Waitw Specifies the time, in seconds, to wait before attempting to execute the command again.
The default value is 60 seconds.

Note: You must have root user authority to modify this file.

The at command allows you to specify the time when a command should be run. Each command or
program will be assigned a job number and will be queued in the /var/spool/cron/atjobs directory.

The queueing system may also be set up by defining a batch queue in the /etc/qconfig file and using
the enq command to submit a job to this queue. This queue may be set up with a first-come, first-serve
discipline. The following stanzas should be added to the /etc/qconfig file to enable this:

bsh
device = bshdev
discipline = fcfs
bshdev:
backend = usr/bin/sh

This configuration may already exist in the /etc/qconfig file. If you want your commands and programs to
run under the Korn shell, you should change the last line in the above stanza to:

backend = usr/bin/ksh

652 AIX Version 7.1: Files Reference

After creating the above stanza in the /etc/qconfig file, enable the queue by issuing the following:

qchk -A

Programs and commands may now be run on a first-come, first-serve basis using the enq command. For
example, to run the program PROGRAM1 from the bsh queue, enter:

enq -P bsh PROGRAM1

The flags for the batch facility and queueing are:

Item Description

at -qa This is for queueing at jobs.

at -qb This is for queueing batch jobs.

at -qe This is for queueing ksh jobs.

at -qf This is for queueing csh jobs.

Examples
1. To set the at command job queue to handle 4 concurrent jobs with a nice value of 1 and no retries,

enter:

a.4j1n

2. To set the crontab command job queue to handle 2 concurrent jobs with a nice value of 2 and a retry in
90 seconds if the fork subroutine fails, enter:

c.2j2n90w

Related information
at command
enq command
ksh command
rc command
fork subroutine

rc.net File Format for TCP/IP

Purpose
Defines host configuration for network interfaces, host name, default gateway, and static routes.

Description
The /etc/rc.net file is a shell script that contains configuration information. The stanzas allow you to
enable the network interfaces and set the host name, the default gateway, and any static routes for the
current host. This file can be used as a one-step configuration alternative to using individually the set of
commands and files necessary to configure a host.

The rc.net shell script is run by the configuration manager program during the second phase of
configuration. If TCP/IP is installed, a second script, rc.tcpip, is run from the init command after the
second phase of configuration has completed and after the init command has started the SRC master.

Stanzas in the file should appear in the order in which they are presented here.

The rc.net shell script may also be run by the configuration manager program (cfgmgr) if cfgmgr is run
after system configuration is completed. It is often run at other times to configure new devices that have

Files Reference 653

been added to the system since boot time. If cfgmgr runs rc.net, both the configuration methods and
rc.net itself check to see if networking devices are already in the Available state. If so, the values of
device attributes are not changed to avoid overwriting any configuration changes that have been made
since boot time.

If /etc/rc.net is run without cfgmgr, device attributes will be reset to the values in the ODM database
regardless of the states of the devices. This allows a system's configuration to be restored to the values
specified in the ODM database.

Using the Configuration Methods
These stanzas use the configuration methods for TCP/IP to manipulate the ODM database.

Configuring Network Interfaces

For each network adapter that has been previously configured, a set of stanzas is required. The following
stanzas define, load, and configure the appropriate network interfaces for every configured network
adapter. These configuration methods require that the interface and protocol information be entered
in the ODM database, using either SMIT or high-level configuration commands such as the mkdev
command. The network interface configuration information is held in the running system only and must be
reset at each system restart.

/usr/lib/methods/defif >>
$LOGFILE 2>&1
/usr/lib/methods/cfgif $* >> $LOGFILE
 2>&1

The defif method defines the network interfaces. The cfgif method configures the network interfaces in
the configuration database.

The second part of the stanzas indicates that output should be sent to a log file. The log file must include
the full path name. If no log file is specified, the default log file is /dev/null.

Along with the network interface configuration, you must run the slattach command for SLIP connections.
The slattach command is used to assign a TTY line to an interface for SLIP. For each SLIP interface, the
slattach command must be executed for the appropriate TTY.

At times, when diskless clients reboot using these configuration methods they hang on LED 581. This
happens because diskless clients use server disk space to store the logging information. To get the client
to reboot when this happens, execute the /usr/lib/methods/cgfig configuration method in the client
rc.net file that resides on the server without message logging as follows:

/usr/lib/methods/cfgif $*

Setting the Host Name, Default Gateway, and Any Static Routes

The following stanzas set the host name, default gateway, and static routes, using the definet and cfginet
subroutines to alter the ODM database for the inet0 object.

/usr/lib/methods/definet >>
$LOGFILE 2>&1/usr/lib/methods/cfginet >> $LOGFILE
2>&1

The second part of the stanzas indicates that output should be sent to a log file. The log file must include
the full path name. If no log file is specified, the default log file is /dev/null.

Using Traditional Configuration Commands
These stanzas use configuration commands for TCP/IP to set configuration values.

Configuring Network Interfaces

The following stanza defines, loads, and configures the specified network interface:

654 AIX Version 7.1: Files Reference

/usr/sbin/ifconfig Interface inet
InternetAddress up>>$LOGFILE 2 &1

The Interface parameter should specify the type and number of the interface, for example, tr0. The
InternetAddress parameter should specify the Internet address of the interface, for example, 192.1.8.0.

The last part of the stanza indicates that output should be sent to a log file. The log file must include the
full path name. If no log file is specified, the default log file is /dev/null.

Setting the Host Name, Default Gateway, and Any Static Routes

These stanzas should follow any stanzas for the network interfaces. These stanzas use the hostname
command to set the host name and the route command to define the default gateway and any static
routes. The static route information is held in the running system only and must be reset at each system
restart.

/usr/bin/hostname Hostname >>
 $LOGFILE 2>&1/usr/sbin/route add 0
 Gateway >> $LOGFILE 2>&1
/usr/sbin/route add DestinationAddress
Gateway >>$LOGFILE 2>&1

The add variable for the route command adds a static route to the host. This route can be to the default
gateway (by specifying a hop count, or metric, of 0), or to another host through a gateway.

The last part of the stanzas indicates that output should be sent to a log file. The log file must include the
full path name. If no log file is specified, the default log file is /dev/null.

Miscellaneous Functions
Use these stanzas to set the host ID and user name. By default, the host ID and user name are set to the
host name. However, these stanzas can be altered to customize the host ID and user name.

/usr/sbin/hostid `hostname'
/usr/bin/uname -s `hostname | sed -e 's/\..*$//'`
 >> $LOGFILE 2>&1

To customize these stanzas, replace the hostname entry in single quotation marks with the desired host
ID or user name.

The second part of the user name stanza indicates that output should be sent to a log file. The log file
must include the full path name. If no log file is specified, the default log file is /dev/null.

Load Network File System (NFS)
If you have the Network File System (NFS) installed on the current host, the following stanza loads and
configures the NFS kernel extension:

if [-x /usr/sbin/gfsinstall -a
 -x /usr/lib/drivers/nfs.ext] ; then
 /usr/sbin/gfsinstall -a /usr/lib/drivers/
nfs.ext >>$LOGFILE 2>&1fi

The last part of the NFS stanza indicates that output should be sent to a log file. The log file must include
the full path name. If no log file is specified, the default log file is /dev/null.

Examples
1. To set up a Token-Ring interface, using the ifconfig command, include the following stanza:

/usr/sbin/ifconfig tr0 inet
 192.1.8.0 up >>$LOGFILE 2>&1

This stanza defines Token-Ring interface tr0, with the Internet address 192.1.8.0.

Files Reference 655

2. To set the host name, using the hostname command, include the following stanza:

/usr/bin/hostname robo.austin.century.com
 >>$LOGFILE 2>&1

This stanza sets host name robo.austin.century.com. The host name in this example includes
domain and subdomain information, which is necessary if the host is using the domain naming system.

3. To set up a default gateway, using the route command, include the following stanza:

/usr/sbin/route add 0
192.100.13.7 >>$LOGFILE 2>&1

The value 0 for the Metric parameter means that any packets sent to destinations not previously
defined and not on a directly connected network go through the default gateway. The 192.100.13.7
address is the default gateway.

4. To set up a static route, using the route command, include the following stanza:

/usr/sbin/route add net
192.100.201.7 192.100.13.7>>$LOGFILE 2>&1

The 192.100.201.7 address is the receiving computer (the Destination parameter). The
192.100.13.7 address is the routing computer (the Gateway parameter).

Files

Item Description

/etc/rc.tcpip Initializes daemons at each system restart.

Related information
hostname command
ifconfig command
route command
cfgif command
Installation of TCP/IP

rc.ntx File Format

Purpose
Supplies configuration information for the Network Terminal Accelerator adapter card.

Description
The /etc/rc.ntx file invokes the hty_load command to load the /etc/hty_config file. This file can also
specify a route to a gateway, using the ntx_route command. Also, the rc.ntx file enables SNMP.

The /etc/rc.ntx file can be used to perform different configuration tasks. For example, to supply a route to
an additional gateway, add the following line immediately after the comment about additional routes, and
supply an IP address for the Destination and Gateway parameters:

/usr/bin/ntx_route -drhp$i net Destination
Gateway

Following is the file as it is shipped with the software package. You can add additional commands to the
file, as indicated above.

echo "Executing hty_load"
/usr/bin/hty_load -f /etc/hty_config
echo "Finished executing hty_load"

656 AIX Version 7.1: Files Reference

#
Maximum number of Network Terminal Accelerator adapters
supported on each workstation.
#

MAX_RHP_DEVICES=7

i=0
while [$i -le $MAX_RHP_DEVICES]
do
 if [-f /etc/rhp$i.ntx_comun.conf]; then
 echo "Configuring SNMP communities on NTX
 Adapter rhp$i"
 /usr/bin/ntx_comun -d /dev/rhp$i -f
 /etc/rhp$i.ntx_comun.conf
 fi
 if [-f /etc/rhp$i.ntx_traps.conf]; then
 echo "Configuring SNMP traps on NTX Adapter rhp$i"
 /usr/bin/ntx_traps -d /dev/rhp$i -f
 /etc/rhp$i.ntx_traps.conf
 fi
 if [-f /etc/rhp$i.ntx_nms.conf]; then
 echo "Configuring SNMP nms on NTX Adapter rhp$i"
 /usr/bin/ntx_nms -d /dev/rhp$i -f
 /etc/rhp$i.ntx_nms.conf
 fi
 if [-f /etc/rhp$i.ntx_descr.conf]; then
 echo "Configuring SNMP site-specific variables on
 NTX Adapter rhp$i"
 /usr/bin/ntx_descr -d /dev/rhp$i -f
 /etc/rhp$i.ntx_descr.conf
 fi
 if [-c /dev/rhp$i]; then
 STATE=`lsattr -E -l rhp$i -a snmp -F value`
 echo "Turning $STATE SNMP on NTX Adapter rhp$i"
 /usr/bin/ntx_snmp -d /dev/rhp$i $STATE
 fi
 # Additional routes for each NTX Adapter can be added here
 # example: /usr/bin/ntx_route -d /dev/rhp$i X.X.X X.X.X.X

 i=`expr $i + 1` # increment count

 done

Related information
hty_load command

remote File Format for tip

Purpose
Describes remote systems contacted by the tip command.

Description
The /etc/remote-file file describes the remote systems that can be contacted using the tip command.
When a user invokes the tip command, the command reads the remote file to find out how to contact
the specified remote system. If invoked with the SystemName parameter, the tip command searches the
remote file for an entry beginning with that system name. If invoked with the PhoneNumber parameter,
the command searches the remote file for an entry beginning with tipBaudRate, where BaudRate
designates the baud rate to be used for the connection.

Any tip user can create an individual remote file in the format of the remote file. The individual remote
file can be named with any operating system file name and placed in any directory to which the user has
access. To instruct the tip command to use the new file, set the REMOTE environment variable before
issuing the tip command, or use the tip command remote variable.

A sample remote file for tip is included with the operating system. The sample file is named /usr/lib/
remote-file. This sample file contains two examples, either of which is a complete remote file. One of

Files Reference 657

the examples uses a set of general dialer definitions, followed by general system definitions, and specific
systems. The second example defines each system individually.

Any user can copy the sample file to some other directory and modify it for individual use. A user with
root user authority can copy the sample file to the /etc/remote file and modify it to suit the needs of a
particular site.

Format of Entries

The general format of an entry in the /etc/remote-file file is a system name, baud rate, or dialer name
followed by a description and one or more attributes, as follows:

SystemName[|SystemName ...]| Description:Attribute[:Attribute ...]:

OR

tipBaudRate|Description: Attribute[:Attribute ...]:

OR

DialerName[|DialerName ...]| Description:Attribute[:Attribute ...]:

The name of the system or dialer is followed by a | (pipe symbol) and a description of the system or dialer.
More than one system or dialer name can be given; in this case, they must be separated by pipe symbols
and precede the Description parameter. The last section in this list is always treated by the tip command
as a description, not a system name.

The Description field is followed by a : (colon) and a list of attributes separated by colons. Each entry must
also end with a colon.

An entry can be continued on the next line by typing a \ (backslash). The continuation line must begin with
a : (colon) and can be indented for readability.

Any line beginning with a # (pound sign) is read as a comment line.

Note: Spaces can be used only within the Description parameter or in comment lines.

Attributes Used to Define Systems and Dialers

Use the following attributes to describe systems in the remote file:

Item Description

at=ACUType Defines the type of automatic calling unit (also known as the ACU
or modem). This attribute should be specified in each entry (or in
another entry included with the tc attribute) unless the system is
linked to a modem. The ACUType must be one of the following:

• biz31f
• biz31w
• bix22f
• biz22w
• df02
• df03
• dn11
• ventel
• hayes
• courier
• vadic
• v3451
• v831

658 AIX Version 7.1: Files Reference

Item Description

br#BaudRate Specifies the baud rate to be used on the connection. The default
rate is 1200 baud. This attribute should be specified in each entry
or in another entry included with the tc attribute. The baud rate
specified can be overridden using the tip command -BaudRate
parameter.

cu=Device Specifies the device for the call unit if it is different from the
device defined in the dv statement. The default is the device
defined in the dv statement.

du Makes a call. This attribute must be specified in each entry or in
another entry included with the tc attribute.

dv=Device[,Device ...] Lists one or more devices to be used to link to the remote
system. If the first device listed is not available, the tip command
attempts to use the next device in the list, continuing until it finds
one available or until it has tried all listed devices.

This attribute must be specified in each entry or in another entry
included with the tc attribute.

el=Mark Defines the mark used to designate an end-of-line in a file
transfer. This setting is the same as that defined by the tip
command eol variable.

fs=Size Specifies the frame size. The default is the value of the BUFSIZ
environment variable. This value can also be changed using the
tip command framesize variable.

ie=InputString Specifies the input end-of-file mark. The default setting is null
value.

oe=OutputString Specifies the output end-of-file mark. The default setting is a null
value.

pa=Parity Specifies the required parity setting for connecting to the remote
system. The default setting is Even. Valid choices are: Even (7
bits, even parity), Odd (7 bits, odd parity), None (7 bits, no parity),
and Graphic (8 bits, no parity).

pn= Lists telephone numbers to be used to call the remote system.
This entry is required if a modem is used to call a remote
system, except in a tipBaudRate entry when a telephone number
is entered with the tip command.

If the tip command is invoked with the PhoneNumber parameter,
the pn attribute in the appropriate tipBaudRate entry is ignored
and the number given when the command is invoked is used
instead.

The pn attribute can be in either of the following forms:

pn=@
Instructs tip to search the /etc/phones-file file, or the file
specified with the phones variable, for the telephone number.

pn=Number[,Number ...]
Lists one or more phone numbers to be used to call the
remote system.

tc=Entry Refers to another entry in the file. This allows you to avoid
defining the same attributes in more than one entry. If used, this
attribute should be at the end of the entry.

Files Reference 659

Item Description

tc=DialerName Includes the specified DialerName entry. The DialerName entry
must be defined elsewhere in the remote file.

tc=SystemName Includes the specified SystemName entry. The SystemName entry
must be defined elsewhere in the remote file.

Setting Up Group Entries

Set up entries in the remote file in two ways. Define each system individually, giving all of its attributes in
that entry. This works well if you are contacting several dissimilar systems.

Or group the systems by similarity. To do this, use two or three groups, depending on how the systems are
similar. The groups can be arranged by:

• Dialer definitions, including the device, baud rate, call unit, ACU type, and dial-up connection flag.
• General system definitions, including any information that several systems have in common. Use the tc

attribute to refer to a dialer entry.
• Specific system descriptions, which use the tc attribute to refer to one of the general system types or a

dialer entry.

You can omit either the dialer definitions or the general system definitions, depending on the way the
remote systems are grouped.

Examples
Defining a System Individually

To define a system without using the tc= attribute, enter:

vms750|ghost|NPG 750:\
 :dv=/dev/tty36,/dev/tty37:br#9600:el=^Z^U^C^S^Q^O:\
 :ie=$@:oe=^Z:

This entry defines system vms750, which can also be referred to as ghost. The system can be
accessed using either /dev/tty36 or /dev/tty37, at a baud rate of 9600. The end-of-line mark is
^Z^U^C^S^Q^O. The input end-of-file mark is $@ and the output end-of-file mark is ^Z. Since no phone
number is defined, the system is accessed over a direct connection.

Grouping Systems by Similarity

The following examples use a dialer entry and a general system entry, followed by specific system entries
that refer to the general entries.

1. To define a dialer, enter:

dial1200|1200 Baud Able Quadracall attributes:
\ :dv=/dev/cul1:br#1200:at=dn11:du:

This entry defines a dialer called dial1200. The dialer is connected to device /dev/cul1 and is an
ACU type of dn11. The dial-up connection (du) flag is set.

2. To define a general system type and refer to a dialer entry, enter:

unix1200|1200 Baud dial-out to another UNIX system:\ :el=^U^C^R^O^D^S^Q:ie=%
$:oe=^D:tc=dial1200:

This entry defines a system type called unix1200. The end-of-line mark for communication with
this type of remote system is ^U^C^R^O^D^S^Q. The input end-of-file mark is %$ and the output
end-of-file mark is ^D. The dialer defined by the dial1200 entry is used.

3. To describe a specific system, enter:

zeus|CSRG ARPA VAX-11/780:pn=@:tc=unix1200:

660 AIX Version 7.1: Files Reference

This entry describes system zeus, which is described as a CSRG ARPA VAX-11. The tip command
then searches the /etc/phones file for the telephone number (pn=@) and uses the attributes of a
unix1200 system type (tc=unix1200).

Files

Item Description

/etc/remote Denotes the complete path name of the remote file.

/etc/phones Lists the phone numbers used to contact remote systems.

/usr/lib/remote-file Contains an example remote file.

Related information
tip command
Communication with connected systems using the tip command

resolv.conf File Format for TCP/IP

Purpose
Defines Domain Name Protocol (DOMAIN) name-server information for local resolver routines.

Description
If the /etc/resolv.conf file exists, the local resolver routines either use a local name resolution database
maintained by a local named daemon (a process) to resolve Internet names and addresses, or they use
the Domain Name Protocol to request name resolution services from a remote DOMAIN name server
host. If no resolv.conf file exist than the resolver routines continue searching their direct path, which may
include searching through /etc/hosts file or the NIS hosts map.

Note: If the resolv.conf file does not exist, the resolver routines attempt name resolution using the
default paths, the /etc/netsvc.conf file, or the NSORDER environment variable.

If the host is a name server, the resolv.conf file must exist and contain a nameserver reference to itself as
well as a default domain.

The resolv.conf file can contain one domain entry or one search entry, a maximum of three
nameserver entries, and any number of options entries.

A domain entry tells the resolver routines which default domain name to append to names that do not
end with a . (period). There can be only one domain entry. This entry is of the form:

domain DomainName

The DomainName variable is the name of the local Internet domain. If there is no domain or search
entry in the file, the gethostbyname subroutine returns the default domain (that is, everything following
the first period). If the host name does not have a domain name included, the root domain is assumed.

A search entry defines the list of domains to search when resolving a name. Only one domain entry or
search entry can be used. If the domain entry is used, the default search list is the default domain. A
search entry should be used when a search list other than the default is required. The entry is of the
form:

search DomainName ...

The search entry can have up to a maximum of 1024 characater strings for the DomainName variable.
The first DomainName variable is interpreted as the default domain name. The DomainName variable is
the name of a domain that should be included in the search list.

Note:

Files Reference 661

1. The domain entry and search entry are mutually exclusive. If both entries are used, the one that
appears last will override the other.

2. The resolver routines require you to set the default domain. If the default domain is not set in the /etc/
resolv.conf file, then you must set it in the HostName on the machine.

A nameserver entry defines the Internet emaill address of a remote DOMAIN name server to the
resolver routines on the local domain. This entry is of the form:

nameserver Address

The Address variable is the dotted decimal address of the remote name server. If more than one name
server is listed, the resolver routines query each name server (in the order listed) until either the query
succeeds or the maximum number of attempts have been made.

The Address variable is the address of the preferred network on which you want the address returned. The
Netmask variable is the netmask of the corresponding network address.

The options entry specifies miscellaneous behaviors of the resolver. The entry is of the form:

options OptionName

The OptionName variable can have one of the following values:

Item Description

debug Turns on the RES_DEBUG resolver option, which enables resolver debugging.

ndots:n Specifies that for a domain name with n or more periods (.) in it, the resolver should try to
look up the domain name "as is" before applying the search list.

timeout:n Enables you to specify the initial timeout for a query to a nameserver. The default value is
five seconds. The maximum value is 30 seconds. For the second and successive rounds
of queries, the resolver doubles the initial timeout and is divided by the number of
nameservers in the resolv.conf file.

attempts:
n

Enables you to specify how many queries the resolver should send to each nameserver in
the resolv.conf file before it stops execution. The default value is 4. The maximum value is
5.

rotate Enables the resolver to use all the nameservers in the resolv.conf file, not just the first one.

inet6 Uses or maps IPv6 in the gethostbyname subroutine.

Entries in this file can be made using the System Management Interface Tool (SMIT), by using the
namerslv command, or by creating and editing the file with an editor.

Examples
To define a domain host that is not a name server, enter:

domain abc.aus.century.com
nameserver 192.9.201.1
nameserver 192.9.201.2

The example contains entries in the resolv.conf file for a host that is not a name server.

Files

Item Description

/usr/lpp/tcpip/samples/
resolv.conf

Contains the sample resolv.conf file.

662 AIX Version 7.1: Files Reference

Related reference
irs.conf File
hosts File Format for TCP/IP
Related information
namerslv command
named command
gethostbyaddr subroutine
TCP/IP name resolution

resolv.ldap File Format for TCP/IP

Purpose
Defines Lightweight Directory Access Protocol (LDAP) server information for ldap mechanism used by
local resolver subroutines.

Description
The /etc/resolv.ldap file specifies the IP address of the LDAP server, which contains the name resolution
database. This database is used by the local resolver subroutines to resolve symbolic host names into
Internet email addresses. LDAP server specifications are obtained from resolv.ldap file only for the ldap
mechanism.

Note: Although still supported, the use of the ldap mechanism is not recommended. Instead, the use of
the nis_ldap mechanism is advised. For the nis_ldap mechanism, use the ldap.cfg file for configuring the
LDAP server and other details.

However, if the resolv.ldap file does not exist, then the resolver subroutines continue searching their
direct paths, which may include searching through a DNS server, the /etc/hosts file, or the NIS hosts map.
In addition to the default paths, the resolver subroutines may also use the /etc/irs.conf file, the /etc/
netsvc.conf file, or the NSORDER environment variable.

The resolv.ldap file contains one ldapserver entry, which is required, and one searchbase entry,
which is optional. The ldapserver entry specifies the Internet email address of the LDAP server to the
resolver subroutines. The entry must take the following format:

ldapserver Address [Port]

The Address parameter specifies the dotted decimal address of the LDAP server. The Port parameter is
optional; it specifies the port number that the LDAP server is listening on. If you do not specify the Port
parameter, then it defaults to 389.

The searchbase optional entry specifies the base DN (distinguished name) of the name resolution
database on the LDAP server. This entry must take the following format:

searchbase baseDN

The baseDN parameter specifies the starting point for the name resolution database on the LDAP server.
If you do not define this entry, then the searchbase entry defaults to cn=hosts.

Example
To define an LDAP server with an IP address 192.9.201.1, that listens on the port 636, and with a
searchbase cn=hosttab, enter the following:

ldapserver 192.9.201.1 636
searchbase cn=hosttab

Files Reference 663

Files

Item Description

/etc/resolv.ldap Contains the IP address of the LDAP server.

Related reference
irs.conf File
hosts File Format for TCP/IP
netsvc.conf File
ldap.cfg File Format
Related information
TCP/IP name resolution

rfc1108 table

Description
An rfc1108 table contains the mapping between AIX Trusted Network labels and rfc1108 labels. This
mapping is used by the AIX Trusted Network implementation of RIPSO. A sample file containing this table
is stored in the /usr/samples/tcpip/rfc1108.example directory.

Each entry in the file must have the following fields. Each field is separated by a "|" from the one
preceding it. The entry is ended by the newline character.

Item Description

index Tracks the maximum number of the entries and designates an entry number for each
entry.

rfclable Specifies the rfc name for the label. These names are specified in RFC1108 that the U.S.
Department of Defense published.

rfcvalue Specifies the rfc value corresponding to rfclabel. These values are specified in RFC1108
that the U.S. Department of Defense published.

ourlabel Specifies the classification level that the AIX Trusted Network system uses. The system
corresponds to the value of the rfclabel field for the purpose of translation between
the RFC1108 labeling system and the local labeling system. Thus, the processing of
a packet with the rfclabel field takes place at the corresponding ourlabel field. The
specified classification level must be one of the classifications that are specified in the
Label Encodings file that the local system uses.

valid Indicates whether datagrams, which is the information transmitted over the TCP/IP
network, with labeling as specified previously are accepted or transmitted. This flag is
not enforced.

A 1 in this field indicates that datagrams labeled as specified in this entry are processed
unless other conditions preclude it. This is the default value.

A 0 in this field indicates that datagrams labeled as specified in this entry are neither
accepted nor transmitted.

All other values for this field are not valid. If more than one character is supplied, only the
first character is significant.

Examples
The following is an example of an rfc1108 file:

1|top secret|61|TOP SECRET|1

664 AIX Version 7.1: Files Reference

Files

Item Description

/usr/samples/tcpip/
rfc1108.example

An example of the rfc1108 ASCII table file.

/etc/security/enc/
LabelEncodings

The system Label Encodings file.

Related information
tninit command

.rhosts File Format for TCP/IP

Purpose
Specifies remote users that can use a local user account on a network.

Description
The $HOME/.rhosts file defines which remote hosts (computers on a network) can invoke certain
commands on the local host without supplying a password. This file is a hidden file in the local user's
home directory and must be owned by the local user. It is recommended that the permissions of
the .rhosts file be set to 600 (read and write by the owner only). The group user and others should
not have write permission for the .rhosts file. If write permission is granted to the group user (and
others), then permission to invoke any command on the local host will not be given to the remote host .
The format of the $HOME/.rhosts file is:

HostNameField [UserNameField]

When a remote command executes, the local host uses the local /etc/hosts.equiv file and the
$HOME/.rhosts file of the local user account to validate the remote host and remote user.

Host-Name Field

The .rhosts file supports the following host-name entries:

+
HostName
-HostName
+@NetGroup
-@NetGroup

A + (plus sign) signifies that any host on the network is trusted. The HostName entry is the name of a
remote host and signifies that any user logging in from HostName is trusted. A -HostName entry signifies
that the host is not trusted. A +@NetGroup or -@NetGroup entry signifies that all hosts in the netgroup or
no hosts in the netgroup, respectively, are trusted.

The @NetGroup parameter is used by Network Information Service (NIS) for grouping. Refer to the NIS
netgroup file for more information.

User-Name Field

The .rhosts file supports the following user-name entries:

+
UserName
-UserName
+@NetGroup
-@NetGroup

A + (plus sign) signifies that any user on the network is trusted. The UserName entry is the login name of
the remote user and signifies that the user is trusted. If no user name is specified, the remote user name

Files Reference 665

must match the local user name. A -UserName entry signifies that the user is not trusted. A +@NetGroup
or -@NetGroup entry signifies that all users in the netgroup or no users in the netgroup, respectively, are
trusted.

The @NetGroup parameter is used by NIS for grouping. Refer to the NIS netgroup file for more
information.

Examples
1. To allow remote users to log in to a local-user account, enter:

hamlet dewey
hamlet irving

These entries in the local user's $HOME/.rhosts file allow users dewey and irving at remote host
hamlet to log in as the local user on the local host.

2. To prevent any user on a given remote host from logging in to a local-user account, enter:

-hamlet

This entry in the local user's $HOME/.rhosts file prevents any user on remote host hamlet from
logging in as a local user on the local host.

3. To allow all hosts in a netgroup to log in to a local-user account, while restricting specified users, enter:

+@century -joe
+@century -mary
+@century

This entry in the local user's $HOME/.rhosts file allows all hosts in the century netgroup to log
in to the local host. However, users joe and mary are not trusted, and therefore are requested to
supply a password. The deny, or - (minus sign), statements must precede the accept, or + (plus sign),
statements in the list. The @ (at sign) signifies the network is using NIS grouping.

Files

Item Description

/etc/host.equiv Specifies remote systems that can execute commands on the local system.

netgroup Lists the groups of users on the network.

Related reference
hosts.equiv File Format for TCP/IP
netgroup File for NIS
Related information
lpd command
rcp command
TCP/IP name resolution

sccsfile File Format

Purpose
Describes the format of a Source Code Control System (SCCS) file.

Description
The SCCS file is an ASCII file consisting of the following logical parts:

666 AIX Version 7.1: Files Reference

Item Description

Checksum The logical sum of all characters except the characters in the first line

Delta table Information about each delta including type, SCCS identification (SID) number,
date and time of creation, and comments about the delta

User Names Login names, group names, or numerical group IDs of users who are allowed to add
or remove deltas from the SCCS file

Header flags Flags defining how some SCCS commands work with the SCCS file, or defining
values for identification keywords in the file

Comments Descriptive information about the file

Body The actual text lines intermixed with control lines

Note: Several lines in an SCCS file begin with the ASCII SOH (start-of-heading) character (octal 001). This
character is called the control character and is represented graphically as the @ (at sign) in the following
text. Any line described in the following text that does not begin with the control character contains text
from the source file. Text lines cannot begin with the control character.

Checksum

The checksum is the first line of an SCCS file. This line has the following format:

@hNumber

The control character and variables in the checksum line have the following meanings:

Item Description

@h Designates a magic number of 064001 octal (or 0x6801).

Number Represents the logical sum of all characters in the SCCS file (not including the characters
in this line). It is recalculated each time the SCCS file is updated with SCCS commands,
and is used to detect possibly damaging changes made to an SCCS file by non-SCCS
commands.

Delta Table

Each time a group of changes, known as a delta, is made to an SCCS file, the delta table creates a new
entry. Each entry contains descriptive information about the delta. The @s (at sign, letter s) character
defines the beginning of a delta table entry, and the @e (at sign, letter e) character defines the end of the
entry. For each delta created, there is a delta table entry in the following format:

@s NumberLinesInserted/NumberLinesDeleted/NumberLinesUnchanged
@d DeltaType SIDDate Time UserID Number PreNumber
@i NumbersIncluded . . .
@x NumbersExcluded . . .
@g NumbersIgnored . . .
@m ModificationRequestNumber
@c Comments . . .

The control characters and variables in the delta table entries have the following meanings:

Item Description

@s Designates the first line of each entry, which contains the number of lines inserted,
deleted, and unchanged from the previous delta.

Files Reference 667

Item Description

@d Designates the second line of each entry, which contains the following variables:
DeltaType

Type of delta. The letter d designates a normal delta; the letter r designates a delta
that has been removed with the rmdel command.

SID
SCCS ID (SID) of the delta.

Date
Date, in the YY/MM/DD format, that the delta was created.

Time
Time, in the HH:MM:SS format, that the delta was created.

UserID
Login name that corresponds to the real user ID at the time the delta was created.

Number
Serial numbers of the delta.

PreNumber
Serial numbers of the delta's predecessor.

@i Indicates the serial numbers of the deltas that are included in the creation of this delta by
using the get command with the -i flag. This line can contain several delta numbers and is
optional.

@x Indicates the serial numbers of the deltas that were excluded from the creation of this
delta by using the get command with the -x flag. This line can contain several delta
numbers and is optional.

@g Indicates the serial numbers of the deltas that were ignored in the creation of this delta by
using the delta command with the -g flag. This line can contain several delta numbers and
is optional.

@m Indicates a modification request (MR) number associated with the delta. There can be
several MR lines in an SCCS file, each one containing a different MR number. These lines
are optional.

@c Comment lines associated with the delta. There can be several comment lines in an SCCS
file. These lines are optional.

@e Ends the delta table entry.

User Names

This section of the file contains the list of login names, group names, or numerical group IDs of users who
can add deltas to the file. The names and IDs are separated by new-line characters. This section uses the
following control characters:

Item Description

@u A bracketing line that indicates the beginning of a user-name list. This line appears before
the first line in the list.

@U A bracketing line that indicates the end of a user name list. This line appears after the last
line in the list.

An empty list allows any user to make a delta. The list is changed using the admin command with the -a
or -e flag.

Header Flags

Flags control commands and define keywords used internally in the SCCS. Header flags are set using the
admin command with various flags. The format of each line is:

668 AIX Version 7.1: Files Reference

@f Flag Text

The control character and variables in the header flags section have the following meanings:

Item Description

@fb Branch. Allows the use of the -b flag of the get command to cause a branch in the delta
tree.

@fc Ceiling. Defines the highest release number from 0 through 9999 that can be retrieved by
a get command for editing. This release number is called the ceiling release number.

@fd Default SCCS ID. Defines the default SID to be used when one is not specified with a get
command. When this flag is not set, the get command uses the most recently created
delta.

@ff Floor. Defines the lowest release number from 0 through 9999 that can be retrieved by a
get command for editing. This release number is called the floor release number.

@fi ID keywords. Controls the No ID keywords error warning message. When this flag is
not set, the message is only a warning. When this flag is set, the absence of ID keywords
causes an error and the delta fails.

@fj Joint edit. Causes the get command to allow concurrent edits of the same base SID.

@fl Lock releases. Defines a list of releases that cannot be edited with the get command using
the -e flag.

@fm Module name. Defines the replacement of a module name for the 11 identification
keyword. This value is used to override the default.

@fn No changes. Causes the delta command to insert null deltas (delta entries with no
changes) for any skipped releases when a delta for a new release is created. For example,
delta 5.1 is created after delta 2.1, skipping releases 3 and 4. When this flag is omitted,
skipped releases are omitted from the delta table.

@fq User-defined flag. Defines the replacement of the identification keyword.

@ft Type of program. Defines the replacement of the identification keyword.

@fv Program name. Controls prompting for MR numbers in addition to comments on delta
creation. If a value is assigned, it defines an MR number validity-checking program.

Comments

When comments are taken from a file containing descriptive text by using the admin command with the
-t flag option, the contents of that file are displayed in the comments section. Typically, the comments
section contains a description of the purpose of the entire file and uses the following control characters:

Item Description

@t A bracketing line that indicates the beginning of the comments section. This line appears
before the first comment line.

@T A bracketing line that indicates the end of the comments section. This line appears after
the last comment line.

Body

The body consists of two types of lines: control lines and text lines. Control lines bracket text lines. The
text lines contain pieces of text that were inserted or deleted for a particular version of the file. The
control lines that bracket a piece of text indicate whether a piece of text was inserted or deleted, and in
what version. When a particular version of a file is created from the SCCS file, the control lines identify the
pieces of text that should be added or deleted for that version of the file.

Files Reference 669

Control lines can be nested within one another, so the same portion of text can be bracketed by several
sets of control lines. The body of a long SCCS file can be very complicated. The SCCS commands, however,
provide a better way to understand the different versions of an SCCS file.

Item Description

@INumber Indicates an insert control line. The Number variable indicates the serial number
that corresponds to the delta for the control line. Text inserted between this
control line and an end control line with the same serial number was inserted
as part of the delta that corresponded to the same serial number.

@DNumber Indicates a delete control line. The Number variable indicates the serial number
that corresponds to the delta for the control line is indicated by the Number
variable. Text deleted between this control line and an end control line with the
same serial number was deleted as part of the delta that corresponded to the
same serial number.

@ENumber Indicates an end control line. The serial number that corresponds to the delta for
the control line is indicated by the Number variable. This indicates the end of a
section of text to be inserted or deleted.

Within the text are also identification keywords that are specific to the SCCS file system. These keywords
represent identifying information about the SCCS file. When using the get command without the -e or -k
flag, these keywords will be replaced by their values. Because different versions have different identifying
information, the identification keywords provide an easy way for the SCCS file system to provide the
correct identifying information for any version of the file requested by the get command. Keywords can be
used to provide several kinds of information:

• Version identification information:

Keyword Value

%M% Module name; the value of the m header flag in the SCCS file

%I% SID (1, 1, 0, 0)

%R% Release

%L% Level

%B% Branch

%S% Sequence

• Time and date information:

Keyword Value

11/10/24 Date of the current get command (YY/MM/DD)

10/24/11 Date of the current get command (MM/DD/YY)

01:02:56 Time of the current get command (HH:MM:SS)

11/05/10 Date newest applied delta was created (YY/MM/DD)

5/10/11 Date newest applied delta was created (MM/DD/YY)

06:12:56 Time newest applied delta was created (HH:MM:SS)

• Name information:

Keyword Value

/family/aix/vc/8/9/7/3/
s.11

SCCS file name

670 AIX Version 7.1: Files Reference

Keyword Value

/family/aix/vc/8/9/7/3/
s.11

Full path name of the SCCS file

• Flag values:

Keyword Value

-q Value of the -q header flag in the SCCS file.

-t Module type; the value of the -t header flag in the SCCS file.

• Line numbers:

Keyword Value

562 The current line number. This keyword identifies message output by the program.
It should not be used on every line to provide sequence numbers.

• Constructing what strings:
Keyword Value

src/idd/en_US/files/aixfiles/sccsfile.ide, idaixfiles, idd71D A shorthand notation for constructing what strings for program files specific to other operating
systems. Its value equals the following key letters:

src/idd/en_US/files/aixfiles/sccsfile.ide, idaixfiles, idd71D =
@(#)11<tab>1.14

@(#) 11 1.14@(#) Another shorthand notation for constructing what strings for program files specific to this operating
system. Its value is the characters and key letters:

@(#) 11 1.14@(#) = @(#) 11 1.14 @(#)

@(#) The 4-character string @(#) (at sign, left parenthesis, pound sign, right parenthesis) recognized by
the what command.

Related information
Source Code Control System (SCCS) Overview
admin command
delta command
prs command
what command

sendh_anchor File Format for TCP/IP

Purpose
Defines the trusted anchor for the ndpd-host daemon.

Description
The /etc/ndpd/sendh_anchor file is the default trust anchor file for the ndpd-host daemon. If the
ndpd-host daemon is started without specifying an alternate file through the /etc/ndpd/ndpdh.cnf
file or a user-specified configuration file, the application will read the /etc/ndpd/sendh_anchor file for
information about the trust anchor.

The format of the sendh_anchor file when configuring the ndpd-host daemon is shown as follows:

Keyword Value Description

-----BEGIN CERTIFICATE-----
<value>-----END
CERTIFICATE-----

Certificate of the trust
anchor

Certificate to be used to validate Router
Advertisements.

Files Reference 671

Files
Item Description

/usr/samples/tcpip/send/
sendh_anchor

Contains the sample sendh_anchor file.

Related reference
cgaparams.sec File Format for TCP/IP
ndpdh.cnf File Format for TCP/IP
Related information
ndpd-host daemon
tempaddr.conf File Format for TCP/IP

sendr_anchor File Format for TCP/IP

Purpose
Defines the trusted anchors for the ndpd-router daemon.

Description
The /etc/ndpd/sendr_anchor file is the trust anchor file for the ndpd-router daemon.

The keywords, values and the corresponding meaning of each value of the sendr_anchor file for
configuring the ndpd-hostis are shown as follows:

Keyword Value Description

-----BEGIN CERTIFICATE-----
<value>-----END
CERTIFICATE-----

an X509v3 type
certificate

One or more certificates of a chain, starting
from the certificate of the topmost router to the
certificate of this router.

-----BEGIN RSA PRIVATE
KEY----- <value> -----END RSA
PRIVATE KEY-----

private key for
this router

Private key that corresponds to the public key
embedded in the certificate of this router. This
keyword must be the last entry in the file, which
follows the certificate of this router.

Files
Item Description

/usr/samples/tcpip/send/sendr_anchor Contains the sample sendr_anchor file.

Related information
ndpd-router Daemon

services File Format for TCP/IP

Purpose
Defines the sockets and protocols used for Internet services.

Description
The /etc/services file contains information about the known services used in the DARPA Internet
network. Each service is listed on a single line corresponding to the form:

ServiceName PortNumber/ProtocolName Aliases

672 AIX Version 7.1: Files Reference

These fields contain the following information:

Item Description

ServiceName Specifies an official Internet service name.

PortNumber Specifies the socket port number used for the service.

ProtocolName Specifies the transport protocol used for the service.

Aliases Specifies a list of unofficial service names.

Items on a line are separated by spaces or tabs. Comments begin with a # (pound sign) and continue until
the end of the line.

The service and alias names are case sensitive.

If you edit the /etc/services file, run the refresh -s inetd or kill -1 InetdPID command to inform the inetd
daemon of the changes.

Examples
Entries in the services file for the inetd internal services may look like this:

echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
daytime 13/tcp
daytime 13/udp
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp 21/tcp
time 37/tcp timeserver
time 37/udp timeserver

Related reference
irs.conf File
inetd.conf File Format for TCP/IP
Related information
getservent subroutine
Object Data Manager (ODM) Overview for Programmers
TCP/IP daemons

setmaps File Format

Purpose
Defines the text of a code-set map file and a terminal map file.

Description
The text of a code set map file consists of a description of the code set. The text of a terminal map file
consists of a set of rules.

Code-Set Map File

The text of a code set map file is a description of the code set. It specifies the optional converter modules
to push on the stream. The code set map file is located in the /usr/lib/nls/csmap directory. Its name is
the code set name.

The code set map file contains the following lines:

Files Reference 673

Item Description

Name : name

Type : M | S

Multibyte handling : EUC

ioctl EUC_WSET : w1:d1, w2:d2, w3:d3

lower converter : /usr/lib/drivers/lwconv

upper converter : /usr/lib/drivers/upconv

The lines have the following meaning:

Item Description

Name Specifies the code set name. It is also the code set map file name.

Type Specifies the code set type. It can be one of the following:
M

Denotes a multibyte code set.
S

Denotes a single byte code set.

Multibyte handling Specifies the type of multibyte handling of the code set. This line is
required only if Type is M. It must be EUC, denoting an EUC multibyte
code set.

ioctl EUC_WSET Specifies the parameters for the EUC_WSET ioctl operation. This line is
required only if Type is M. The w1, w2, and w3 parameters specify the
memory width of the code set; the d1, d2, and d3 parameters specify
the screen width of the code set.

lower converter

upper converter Specifies the lower and upper converters to use on the stream. This line
is required only if the code set is a non-EUC multibyte code set.

For example, the code set map file for the ISO 8859-1 code set would contain the following lines:

Name: ISO8859-1
Type: S

Another example: the code set map file for the IBM-943 code set would contain the following lines:

Name : IBM-943
Type : M
Multibyte handling : EUC
ioctl EUC_WSET : 2:2,1:1,2:2
lower converter : /usr/lib/drivers/lc_sjis
upper converter : /usr/lib/drivers/up_sjis

Terminal Map File

The text of a terminal map file is a set of rules. Each rule has the following format:

pattern:replacement

The size of the input pattern string is limited to 10 characters in length and the size of the replacement
pattern string is limited to 16 characters in length.

The pattern string can include the following special characters:

674 AIX Version 7.1: Files Reference

Item Description

? Matches any single byte.

@x Matches this rule only if the pattern processor is in state x, where x is any single
byte. (This sequence does not match a character in the input buffer.)

\?, \@, or \\ Prevents the pattern processor from interpreting ? (question mark), @ (at sign), or
\ (backslash) as special characters.

\ddd Represents any byte in octal notation.

\xdd Represents any byte in hexadecimal notation.

The replacement string can include the following special characters:

Item Description

$n Uses the nth character in the input string that matched this pattern, where n is a
decimal digit.

@x Moves the pattern processor into state x. (This sequence does not become part of
the replacement string.)

\$, \@, or \\ Prevents the pattern processor from interpreting $, @, or \ as special characters.

\ddd Represents any byte in octal notation.

\xdd Represents any byte in hexadecimal notation.

Files

Item Description

/usr/lib/nls/csmap/sbcs Code set map for a single-byte code page

/usr/lib/nls/csmap/IBM-932 Code set map for the IBM-932 code page

/usr/lib/nls/csmap/IBM-943 Code set map for the IBM-943 code page

/usr/lib/nls/csmap/IBM-eucJP Code set map for the IBM-eucJP code page

/usr/lib/nls/csmap/IBM-eucKR Code set map for the IBM-eucKR code page

/usr/lib/nls/csmap/IBM-eucTW Code set map for the IBM-eucTW code page

/usr/lib/nls/termmap/*.in Input map files

/usr/lib/nls/termmap/*.out Output map files

Related reference
eucioctl.h File
Related information
setmaps command
setcsmap subroutine
tty Subsystem Overview

simprof File Format

Purpose
Specifies PC Simulator startup options.

Files Reference 675

Description
When you start PC Simulator with the pcsim command, PC Simulator searches for a profile of startup
options. The profile used by PC Simulator is the simprof file format. It is a pure ASCII text file that you can
edit with any text editor.

You can specify the name of a profile with the -profile flag at the pcsim command. If you do not enter a
-profile flag, PC Simulator searches for the simprof default profile. This sample profile, included with PC
Simulator, is located in the /usr/lpp/pcsim/samples directory.

You can define more than one profile. These profiles can be for different users or for starting PC Simulator
with different options. PC Simulator first searches for the specified profile in the current working directory,
then in the $HOME directory, and finally in the /usr/lpp/pcsim directory. To operate with only one profile,
you can copy the simprof sample profile to one of these directories, and edit it to set the options you
want.

Even if PC Simulator finds a profile, it searches all three directories. It can, therefore, find more than one
profile with the same file name. If this happens, PC Simulator accumulates options from each profile. It
overlays values for the same option in each profile and uses the last value it reads. You can set options
with flags from the command line that override any options in a profile.

Examples
A simulator profile resembles an AIXwindows default profile. Options are listed by flag name, followed by
a : (colon), then a parameter value. The simprof sample profile included with PC Simulator is similar to
this example, except that it includes no parameter values.

If an option is not listed or no value is specified, PC Simulator starts with the default value for this option.
A blank space between the colon and parameter value is optional. Any text following a # (pound sign) is a
comment. PC Simulator expands environment variables inside the simprof file.

Note: If there is no diskette drive present, the entries for Adiskette and Bdiskette should be removed
from the profile. If there is only one diskette drive present, the entry for Bdiskette should be removed
from the profile.

Cdrive : /home/dos1/txt.fil # select file /home/dos1/txt.fil
 # for fixed disk C:
Ddrive : /home/dos2 # select directory /home/dos2
 # for fixed disk D:
permission : 666 # read/write permissions to
 # all users for files saved
 # to fixed disk
Adiskette : 3 # select 3.5-inch diskette drive
Bdiskette : # no B diskette drive selected
dtime : 5 # release diskette drive to
 # AIX after 5 seconds
display : # use default AIXwindows
 # server, unix:0
dmode : V # select VGA display mode
geometry : # use default window size
 # & position, 720x494+152+265
iconGeometry : =64X64+10+10 # size and position of icon
iconName : # use default, pcsim
kbdmap : # no file selected
name : BUDGET # name in window title bar
refresh : 100 # refresh display every
 # 100 milliseconds
lpt1 : lp0 # emulate DOS lpt1 with AIX lp0
lpt2 : # none selected
lpt3 : # none selected
mouse : com1 # emulate Microsoft serial mouse
ptime : 30 # print job file buffering
 # time out after 30 seconds
xmemory : 1024 # provide 1MB extended memory

676 AIX Version 7.1: Files Reference

Files

Item Description

/usr/lpp/pcsim/samples/simprof Contains an example startup profile.

Standard Resource Record Format for TCP/IP

Purpose
Defines the format of lines in the named data files.

Description
Records in the named files are called resource records. Files using the standard resource record format
are:

• DOMAIN data file
• DOMAIN reverse data file
• DOMAIN cache file
• DOMAIN local file

Resource records in the named files have the following general format:

{Name} {TTL} AddressClass RecordType RecordSpecificData

Field Definitions

Name Varies depending on the RecordType field. The Name field
can specify the name of a domain, a zone of authority, the
name of a host, the alias of a host or of a mailbox, or a
user login ID. The Name field must begin in column one. If
this field is left blank, the name defaults to the value of the
previous resource record.

TTL Time to live. This specifies how long the record is stored
in the database. If this field is left blank, the time to live
defaults to the time to live specified in the start of authority
record. This field is optional.

AddressClass Address class of the record. There are three valid entries for
this field: ANY for all address classes, IN for Internet, and
CHAOS for Chaos net.

RecordType The type of resource record. Valid record types are:

SOA Start of authority record

NS Name server record

A Address record

HINFO Host information record

WKS Well-known services record

CNAME Canonical name record

PTR Domain name pointer record

MB Mailbox record

MR Mail rename name record

MINFO Mailbox information record

Files Reference 677

Field Definitions

MG Mail group member record

MX Mail exchanger record

Details and examples of record types are given below.

RecordSpecificData These fields are dependent on the RecordType field.

Although case distinctions are kept when loading databases, all queries to the name server database are
case insensitive.

The following characters have special meanings:

Special Characters

. If used in the Name field, a . (period) indicates the current
domain.

Note: Use the . (period) at the end of resource records to append
the path of the current domain.

. . If used in the Name field, two periods indicate the null domain
name of the root domain.

@ If used in the Name field, an @ (at sign) indicates the current
origin.

\X Where X is any character except numbers 0 through 9 or the
character . (period), a backslash preceding a character indicates
that the character's special meaning should not be used. For
example, \@ (backslash, at sign) can be used to put an @
character in the label of an entry in the Name field.

\DDD Where each D is any number between 0 and 9. Each number is
identified as the binary octet corresponding to the number. These
octets are not checked for special meaning.

Note: The \DDD character is not used in the Name field of a
resource record.

() Parentheses indicate that data broken into more than one line
should be grouped together. The () (parentheses) are currently
used in the SOA and WKS resource records.

; Indicates a comment line. All characters after the ; (semicolon)
are ignored.

* An * (asterisk) indicates wildcards.

Note: The * (asterisk) character is not used in the Name field of a
resource record.

There are two special types of lines that are not data lines. Instead they specify special processing. These
lines are the $INCLUDE and $ORIGIN lines.

678 AIX Version 7.1: Files Reference

Special Types of Lines

$INCLUDE FileName This line begins in column one and is followed by a file name. It indicates
that the specified file should be included in the name server database.
This is useful in separating different types of data into multiple files. For
example:

$INCLUDE /usr/named/data/mailbox

indicates that this file should be loaded into the name server's database.
Data files specified by the $INCLUDE line are not treated differently
from any other named data file.

$ORIGIN OriginName This line begins in column one and is followed by the name of a domain.
This line indicates that the origin from more than one domain in a data
file should be changed.

Resource Record Types
Following is a list of the resource record types used in the named data files:

• Start of authority record
• Name server record
• Address record
• Host information record
• Well-known services record
• Canonical name record
• IN-ADDR.ARPA record
• Domain-name pointer record
• Gateway PTR record
• Mailbox record
• Mail rename name record
• Mailbox information record
• Mail group member record
• Mail exchanger record

Start of Authority Record

The start of authority (SOA) record indicates the start of a zone of authority. There should be only one
start of authority record per zone, indicated by a value of SOA in the RecordType field. However, the SOA
record for the zone should be in each named.data and named.rev file on each name server in the zone.
Its structure corresponds to the following format:

{Name}{TTL} AddressClass RecordType Origin PersonInCharge @ IN SOA merl.century.com
jane.merl.century.com (1.1 ;Serial 3600 ;Refresh 600 ;Retry 3600000 ;Expire 86400) ;Minimum

Fields

Item Description

Name Name of the zone.

TTL Time to live.

AddressClass Internet (IN).

RecordType Start of authority (SOA).

Files Reference 679

Item Description

Origin Name of the host on which this data file resides.

PersonInCharge Person responsible for keeping the data file current. The format is similar to a
mailing address, but the @ (at sign) that normally separates the user from the
host name is replaced by a . (period).

Serial Version number of this data file. This number should be incremented each time
a change is made to the data. The upper limit for the number to the right of the
decimal point is 9999.

Refresh The number of seconds after which a secondary name server checks with the
primary name server to see if an update is needed. A suggested value for this
field is 3600 (1 hour).

Retry The number of seconds after which a secondary name server is to retry after a
refresh attempt fails. A suggested value for this field is 600 (10 minutes).

Expire The upper limit in seconds that a secondary name server can use the data
before it expires because it has not been refreshed. This value should be fairly
large, and a suggested value is 3600000 (42 days).

Minimum The minimum time, in seconds, to use as time-to-live values in resource
records. A suggested value is 86400 (one day).

Name Server Record

The name server record specifies the name server responsible for a given domain. There should be one
name server record for each primary server for the domain, indicated by a value of NS in the RecordType
field. The name server record can be in the named.data file, the named.rev file, the named.ca file, and
the named.local file. Its structure corresponds to the following format:

{Name} {TTL} AddressClass RecordType NameServerName

 IN NS arthur.century.com

Fields

Item Description

Name Indicates the domain serviced by the specified name server. In this case, the
domain defaults to the value in the previous resource record.

TTL Time to live.

AddressClass Internet (IN).

RecordType Name server (NS).

NameServerName The name server responsible for the specified domain.

Address Record

The address record specifies the address for the host and is indicated by a value of A in the RecordType
field. Address records can be entries in the named.ca, named.data, and named.rev files. Its structure
corresponds to the following format:

{Name} {TTL} AddressClass RecordType Address

arthur IN A 132.10.8.1
 IN A 10.0.4.1

680 AIX Version 7.1: Files Reference

Fields

Item Description

Name Name of the host.

TTL Time to live.

AddressClass Internet (IN).

RecordType Address (A).

Address Internet address of the host in dotted decimal form. There should be one address
record for each Internet address of the host.

If the name server host for a particular domain resides inside the domain, then an
A (address) resource record that specifies the address of the server is required.
This address record is only needed in the server delegating the domain, not in
the domain itself. If, for example, the server for domain aus.century.com was
fran.aus.century.com, then the NS record and the required A record would
look like:

aus.century.com. IN NS fran.aus.century.com.
fran.aus.century.com. IN A 192.9.201.14

Host Information Record

The host information (HINFO) record lists host specific information, and is indicated by HINFO in the
RecordType field. This lists the hardware and operating system that are running at the specified host.
Note that the hardware and operating system information is separated by a single space. There must be
one host information record for each host. The HINFO record is a valid entry in the named.data and the
named.rev files. Its structure corresponds to the following format:

{Name} {TTL} AddressClass RecordType Hardware OS

Fields

Item Description

Name Name of the host.

TTL Time to live.

AddressClass Address class. Valid values are IN for Internet and CHAOS for Chaos net.

RecordType Host information (HINFO).

Hardware Make and model of hardware.

OS Name of the operating system running on the host.

Well-Known Services Record

The well-known services (WKS) record lists the well-known services supported by a particular protocol
at a specified address. This record is indicated by WKS in the RecordType field. Although TCP/IP provides
the record for backward compatibility, it is now obsolete.

The services and port numbers come from the list of services in the /etc/services file. There should be
only one WKS record per protocol per address. The WKS record is a valid entry in the named.data file. Its
structure corresponds to the following format:

Files Reference 681

{Name}{TTL} AddressClass RecordType Address Protocol ListOfServices

 IN WKS 125.10.0.4 UDP (who route timed domain)
 IN WKS 125.10.0.4 TCP (echo telnet ftp netstat finger)

Fields

Item Description

Name Name of the host. In this case, the name of the host defaults to the value in the
previous resource record.

TTL Time to live

AddressClass Internet (IN)

RecordType Well-known services (WKS)

Address Internet address of the adapter in dotted decimal form

Protocol Protocol used by the list of services at the specified address

ListOfServices Services supported by a protocol at the specified address

Canonical Name Record

The canonical name record specifies an alias for a canonical name (CNAME), and is indicated by CNAME
in the RecordType field. The CNAME record is the only Resource record that can use the alias of a
canonical name. All other resource records must use the full canonical (or domain) name. The CNAME
record is a valid entry in the named.data file. For each CNAME record, there must be a corresponding
address (A) record. Its structure corresponds to the following format:

{Aliases} {TTL} AddressClass RecordType CanonicalName

knight IN CNAME lancelot
john IN CNAME lancelot

Fields

Item Description

Aliases Alias by which the host is known

TTL Time to live

AddressClass Internet (IN)

RecordType Canonical name (CNAME)

CanonicalName Official name associated with the alias

IN-ADDR.ARPA Record

The structure of names in the domain system is set up in a hierarchical fashion. The address of a name
can be found by tracing down the domain structure, contacting a server for each label in the name.
Because the structure is based on names, there is no easy way to translate a host address back into its
host name.

In order to allow simple reverse translation, the IN-ADDR.ARPA domain was created. This domain uses
host addresses as part of a name that points to the data for that host. The IN-ADDR.ARPA domain
provides an index to the resource records of each host based on its address. There are subdomains within
the IN-ADDR.ARPA domain for each network, based on network number. Also, to maintain consistency
and natural groupings, the 4 octets of a host number are reversed. The IN-ADDR.ARPA domain is defined
by the IN-ADDR.ARPA record in the named.boot files and the DOMAIN hosts data file.

682 AIX Version 7.1: Files Reference

For example, the ARPANET is net 10, which means that there is a domain called 10.in-addr.arpa.
Within this domain, there is a PTR resource record at 51.0.0.10.IN-ADDR, which points to the resource
records for the host sri-nic.arpa (whose address is 10.0.0.51). Since the NIC is also on the MILNET
(net 26, address 26.0.0.73), there is also a PTR resource record at 73.0.0.26.in-addr.arpa that
points to the same resource records for SRI-NIC.ARPA. The format of these special pointers is defined in
the following section on PTR resource records, along with the examples for the NIC.

Domain-Name Pointer Record

The Domain-Name Pointer record allows special names to point to some other location in the domain.
This record is indicated by PTR in the RecordType field. PTR resource records are mainly used in IN-
ADDR.ARPA records to translate addresses to names.

Note: PTR records should use official host names, not aliases.

The PTR record is a valid entry in the named.rev file. Its structure corresponds to the following format:

{Aliases} {TTL} AddressClass RecordType RealName

 7.0 IN PTR arthur.century.com.

Fields

Item Description

Aliases Specifies where this record should point in the domain. Also specifies the Internet
address of the host with the octets in reverse order. If you have not defined the
IN-ADDR.ARPA domain in your named.boot file, this address must be followed
by .in-addr.arpa.

TTL Time to live.

AddressClass Internet (IN).

RecordType Pointer (PTR).

RealName The domain name of the host to which this record points.

Gateway PTR Record

The IN-ADDR domain is also used to locate gateways on a particular network. Gateways have the same
kind of PTR resource records as hosts, but they also have other PTR records used to locate them by
network number alone. These records have 1, 2, or 3 octets as part of the name, depending on whether
they are class A, B, or C networks, respectively.

The gateway host named gw, for example, connects three different networks, one for each class, A, B, and
C. The gw gateway has the standard resource records for a host in the csl.sri.com zone:

gw.csl.sri.com. IN A 10.2.0.2
 IN A 128.18.1.1
 IN A 192.12.33.2

In addition, this gateway has one of the following pairs of number-to-name translation pointers and
gateway location pointers in each of the three different zones (one for each network). In each example,
the number-to-name pointer is listed first, followed by the gateway location pointer.

Class A

2.0.2.10.in-addr.arpa. IN PTR gw.csl.sri.com.
10.in-addr.arpa. IN PTR gw.csl.sri.com.

Class B

1.1.18.128.in-addr.arpa. IN PTR gw.csl.sri.com.
18.128.in-addr.arpa. IN PTR gw.csl.sri.com.

Files Reference 683

Class C

2.33.12.192.in-addr.arpa. IN PTR gw.csl.sri.com.
33.12.192.in-addr.arpa. IN PTR gw.csl.sri.com.

For example, a user named elizabeth used the following resource record to have her mail delivered to
host venus.abc.aus.century.com:

elizabeth IN MB venus.abc.aus.century.com.

Mailbox Record

The mailbox (MB) record defines the machine where a user wants to receive mail, and is indicated by MB
in the RecordType field. The MB record is a valid entry in the named.data file. Its structure corresponds to
the following format:

{Aliases} {TTL} AddressClass RecordType Machine

 jane IN MB merlin.century.com

Fields

Item Description

Aliases The user login ID

TTL Time to live

AddressClass Internet (IN)

RecordType Mailbox (MB)

Machine Name of the machine at which the user wants to receive mail

Mail Rename Name Record

The mail rename (MR) name record allows a user to receive mail addressed to a list of aliases. This record
is indicated by MR in the RecordType field. The MR record is a valid entry in the named.data file. Its
structure corresponds to the following format:

{Aliases} {TTL} AddressClass RecordType CorrespondingMB

 merlin IN MR jane

Fields

Item Description

Aliases Alias for the mailbox name listed in the last field.

TTL Time to live.

AddressClass Internet (IN).

RecordType Mail rename (MR).

CorrespondingMB The name of the mailbox. This record should have a corresponding MB record.

Mailbox Information Record

The mailbox information (MINFO) record creates a mail group for a mailing list, and is indicated by MINFO
in the RecordType field. This record usually has a corresponding mail group record, but may also be used
with a mailbox record. The MINFO record is a valid entry in the named.data file. Its structure corresponds
to the following format:

684 AIX Version 7.1: Files Reference

{Name} {TTL} AddressClass RecordType Requests Maintainer

postmaster IN MINFO post-request greg.century.com

Fields

Item Description

Name The name of the mailbox.

TTL Time to live.

AddressClass Internet (IN).

RecordType Mail Information record (MINFO).

Requests Where mail requests (such as a request to be added to the mailing list) should be
sent.

Maintainer The mailbox that should receive error messages. This is particularly useful when
mail errors should be reported to someone other than the sender.

Mail Group Member Record

The mail group member (MG) record lists the members of a mail group. This record is indicated by MG in
the RecordType field. The MG record is a valid entry in the named.data file. Its structure corresponds to
the following format:

{MailGroupName} {TTL} AddressClass RecordType MemberName

 dept IN MG Tom

Fields

Item Description

MailGroupName Name of the mail group.

TTL Time to live.

AddressClass Internet (IN).

RecordType Mail group member record (MG).

MemberName The login ID of the group member.

Mail Exchanger Record

The mail exchanger (MX) records identify machines (gateways) that know how to deliver mail to a
machine that is not directly connected to the network. This record is indicated by MX in the RecordType
field. Wildcard names containing an * (asterisk) can be used for mail routing with MX records. There may
be servers on the network that state that any mail to a domain is to be routed through a relay. The MX
record is a valid entry in the named.data file. Its structure corresponds to the following format:

{Name} {TTL} AddressClass RecordType PrefValue MailExchanger

Ann.bus.com IN MX 0 Hamlet.Century.Com
*.dev.bus.com IN MX 0 Lear.Century.Com

Fields

Files Reference 685

Item Description

Name Specifies the full name of the host to which the mail exchanger knows how to
deliver mail.

Note: The * (asterisk) in the second name entry is a wildcard name entry.
It indicates that any mail to the domain dev.bus.com should be routed
through the mail gateway Lear.Century.Com.

TTL Time to live.

AddressClass Internet (IN).

RecordType Mail Exchanger (MX).

PrefValue Indicates the order the mailer should follow when there is more than one way
to deliver mail to a host.

MailerExchanger The full name of the mail gateway. See RFC 974 for more information.

Examples
The following is an example of a mailing list:

dept IN MINFO dept-request jane.merlin.century.com
 IN MG greg.arthur.century.com
 IN MG tom.lancelot.century.com
 IN MG gary.guinevere.century.com
 IN MG kent.gawain.century.com

Related reference
DOMAIN Data File Format for TCP/IP
DOMAIN Reverse Data File Format for TCP/IP
Related information
named command
TCP/IP name resolution
Name server resolution

Sysfiles File Format for BNU

Purpose
Gives system administrators flexibility in configuring their Systems, Devices and Dialers files for use with
BNU commands.

Description
The /etc/uucp/Sysfiles file let system administrators specify alternate Systems, Devices and Dialers
files to replace the default files in the /etc/uucp directory or to supplement those files to enable a
separation of the data needed to access remote systems. It is organized so a user can invoke two distinct
types of services, uucico and cu. The uucico service refers to the /usr/sbin/uucp/uucico command and
the commands that invoke it, for example uucp, uux, uusend, uucico. It automatically logs into remote
systems and sends and receives data. The cu service connects to remote systems without attempting to
login and uses the cu, ct, and slattach commands to contact remote systems. The responses to the user
name and password prompts as well as any data transfer is the responsibility of the user. Based upon
these differences a system administrator can split the data used to contact remote systems according the
service types

686 AIX Version 7.1: Files Reference

The Sysfiles file contains a description of each BNU service on the local system that can establish a
remote connection. Each line in the Sysfiles file corresponds to the following syntax:

service=uucico|cu [systems=filename[:filename]] \
 [devices=filename[:filename]] \
 [dialers=filename[:filename]] \

If a service does not have a corresponding line in the Sysfiles file, the default files are used.

Examples
1. A Sysfiles configuration that splits the configuration files for uucico and cu into different sets of files

would be as follows:

service=uucico systems=Systems.cico devices=Devices.cico \
 dialers=Dialers.cico
service=cu systems=Systems.cu devices=Devices.cu \
 dialers=Dialers.cu

These two lines in a Sysfiles file state that two separate sets of Systems, Devices and Dialers files
are used for each service. Each service is specified by the service= at the beginning of a line with
no leading white space. The files used for each service is named on the same line according to the
substrings appended to the systems=, devices= and dialers=. Their default location is in the /etc/
uucp directory.

2. A configuration to split the uucico and cu service entries into separate files, but to combine common
configuration data would be as follows:

service=uucico systems=Systems.cico:Systems \
 devices=Devices.cico:Devices \
 dialers=Dialers.cico:Dialers
service=cu systems=Systems.cu:Systems \
 devices=Devices.cu:Devices \
 dialers=Dialers.cu:Dialers

This example provides separate Systems, Devices, and Dialers files for each service, but combines
any common data into the default files. As the example shows, multiple Systems, Devices and Dialers
files can be specified for each service. A colon is used as the filename delimiter in such a case.

3. This example specifies separate Systems files for each service. Each service uses the default Devices
and Dialers files.

service=uucico systems=Systems.cico
service=cu systems=Systems.cu

If no Sysfiles service entry is made for a Systems, Devices, or Dialers file, the default file is used. Any
files specified in Sysfiles to serve as Systems, Devices, or Dialers files need to conform to the syntax
used in the default files, /etc/uucp/Systems, /etc/uucp/Devices or /etc/uucp/Dialers.

Files

Item Description

/etc/uucp Contains all the default configuration files for BNU, including the Sysfiles
file.

/etc/uucp/Sysfiles Contains information about alternate Systems, Devices and Dialers
files.

/etc/uucp/Systems Lists and describes remote systems accessible to a local system, using
the Basic Networking Utilities (BNU).

/etc/uucp/Devices Contains information about available devices.

Files Reference 687

Item Description

/etc/uucp/Dialers Contains dialing sequences for various types of modems and other types
of dialers.

Related reference
Devices File Format for BNU
Related information
uucico command
ct command
uucp command

Systems File Format for BNU

Purpose
Lists and describes remote systems accessible to a local system, using the Basic Networking Utilities
(BNU).

Description
BNU Systems files, /etc/uucp/Systems by default, list the remote computers with which users of a
local system can communicate using the Basic Networking Utilities (BNU) program. Other files specified
in the /etc/uucp/Sysfiles file can be configured and BNU Systems files. Each entry in a Systems file
represents a remote system, and users on the local system cannot communicate with a remote system
unless that system is listed in the local Systems file. A Systems file must be present on every computer at
your site that uses the BNU facility.

Each entry in a Systems file contains:

• Name of the remote system
• Times when users can connect to the remote system
• Type of link (direct line or modem link)
• Speed of transmission over the link
• Information needed to log in to the remote system

Note:

1. When a remote system not listed in a Systems file attempts to contact the remote system, the BNU
program calls the /usr/sbin/uucp/remote.unknown shell procedure.

2. Only someone with root user authority can edit a Systems file, which is owned by the uucp program
login ID.

Fields in a Systems File
Each entry in a Systems file is a logical line containing fields and optional subfields. These fields appear in
the following order:

SystemName Time[;RetryTime] Type[,ConversationProtocol] Class Phone Login

There must be an entry in every field of a line in a Systems file. If a field does not apply to the particular
remote system (for example, a hardwired connection would not need a telephone number in the Phone
field), use a - (minus sign) as a placeholder.

Lines in a Systems file cannot wrap. In addition, each entry must be on only one line in the file. However,
a Systems file can contain blank lines and comment lines. Comment lines begin with a # (pound sign).
Blank lines are ignored.

System Name

688 AIX Version 7.1: Files Reference

The SystemName field contains the name of the remote system. You can list an individual remote
system in a Systems file more than once. Each additional entry for a system represents an alternate
communication path that the BNU program uses in sequential order when trying to establish a connection
between the local and the remote system.

Time

The Time field contains a string that indicates the days of the week and the times of day during
which users on the local system can communicate with the specified remote system. For example,
the MoTuTh0800-1730 string indicates that local users can contact the specified remote system on
Mondays, Tuesdays, and Thursdays from 8 a.m. until 5:30 p.m.

The day part of the entry can be a list including any day or days represented by Mo, Tu, We, Th, Fr, Sa, or
Su. The day entry may also be Wk if users can contact the remote system on any weekday, or Any if they
can use the remote system on any day of the week including Saturday and Sunday.

Enter the time at which users can contact the remote system as a range of times, using the 24-hour
clock notation. For example, if users can communicate with the specified remote system only during the
morning hours, type a range such as 0800-1200. If users can contact the remote computer at any time of
day or night, simply leave the time range blank.

It is also possible to specify times during which users cannot communicate with the remote system by
specifying a time range that spans 0000. For example, typing 0800-0600 means that users can contact
the specified system at any time except between 6 a.m and 8 a.m. This is useful if a free line is needed at
a certain time of day in order to use the remote system for administrative purposes.

If the remote system calls the local system, but users on the local system cannot call the remote system,
the time entry may be Never.

Multiple Time fields are separated by a , (comma). For example, Wk1800-0600,Sa,Su means that users
can contact the remote system on any weekday at any time except between the hours of 6 p.m. and 6
a.m. and at any time on Saturday and Sunday.

RetryTime Subfield

The RetryTime subfield is an optional subfield that specifies the minimum time in minutes between an
unsuccessful attempt to reach the remote system and the retry time when the BNU program again
attempts to communicate with that system. This subfield is separated from the rest of the string by
a ; (semicolon). For example, Wk1800-0600,Sa,Su;2 indicates that if the first attempt to establish
communications fails, BNU should continue to attempt to contact the remote system at no less than
2-minute intervals.

Note:

1. This subfield, when present, overrides the default retry time of 5 minutes.
2. The retry time does not cause BNU to attempt contact with the system once the time has elapsed. It

specifies the minimum time BNU must wait before attempting to contact the remote system.

Type

The Type field identifies the type of connection used to communicate with the remote system. The
available types of connections are ACU for a telephone connection using a modem, the remote system
name (as in the SystemName field) for a hardwired connection, and TCP for a connection using TCP/IP.
There must be a corresponding entry for the type of connection in either the /etc/uucp/Devices file or the
Devices file specified in the /etc/uucp/Sysfiles file.

Conversation Protocol Subfield

If you use the TCP entry in the Type field, the ConversationProtocol subfield, associated with the caller,
specifies a conversation protocol. The default is the g protocol. To use a different subfield, enter a ,
(comma) and the letter representing one of the other conversation protocols, either t or e. These
protocols are faster and more efficient than the g protocol.

Files Reference 689

Protocol Explanation

g This is the default. The g protocol is preferred for modem connections, but it involves
a large overhead in running BNU commands because it uses the checksumming and
packetizing functions.

t The t protocol presumes an error-free channel and is essentially the g protocol without the
checksumming and packetizing functions. Use the t protocol:

• To communicate with a site running the operating system version of the BNU program
• To communicate with a site running the Berkeley version of the UNIX-to-UNIX Copy

Program (UUCP).

The t protocol cannot be used when the Type field is ACU or when a modem connection is
being used.

e Use the e protocol:

• To communicate with a site running the BNU program on
• To communicate with a site running the operating system version of the BNU program.

The e protocol is not reliable for modem connections.

Use either the t or e protocol to communicate with a site running the operating system
version of the BNU program. Use the e protocol for a site running a non-operating system
version of the BNU program. Use the t protocol for sites running the Berkeley version of
the UNIX-to-UNIX Copy Program (UUCP).

Class

The Class field typically specifies the speed at which the specified hardwired or telephone line transmits
data. It is generally 300, 1200, 2400, or higher for a hardwired device, and 300, 1200, or 2400 for a
telephone connection.

This field can also contain a letter with a speed (for example, C1200, D1200) to differentiate between
classes of dialers. For example, some offices have more than one telephone network, one for internal use
and one for external communications. In such a case, it is necessary to distinguish which lines should be
used for each connection.

If the entry in the Type field is ACU, the Class field in a Systems file is matched against the Class field in a
Devices file to find the device to use for connections. For example, if a Systems file entry for system hera
is:

hera Any ACU 1200 3-3-5-2 ogin: nuucp ssword: oldoaktree

BNU searches for an entry in the Devices file with a Type of ACU and a Class of 1200 and connects to
system hera using the first available device that meets these specifications.

If the device can match any speed, enter the word Any in the Class field. Note that the word Any begins
with an uppercase A.

Do not include a transmission rate for a TCP/IP connection. If you do not type a transmission rate in the
Class field, use a - (minus sign) as a placeholder.

Phone

For a telephone connection over a modem, the Phone field specifies the telephone number used to
reach the remote modem. If this entry represents a hardwired connection, type a - (minus sign) as a
placeholder. If this entry represents a telephone connection using a modem, type the remote modem's
phone number.

The Phone field for a telephone connection must include all of the following items that apply, in the
following order:

1. Outside line code

690 AIX Version 7.1: Files Reference

2. Long-distance access codes
3. Number 1 (one) plus the area code (if the modem is out of the local area)
4. Three-digit exchange number
5. Four-digit modem number

Entering a complete phone number is the most efficient method of including phone numbers if your
site uses only a relatively small number of telephone connections. However, if your site includes a large
number of remote connections established using a phone line and a modem, you may prefer to use
the /etc/uucp/Dialcodes file to set up dial-code abbreviations.

For example, if your site communicates regularly using modems to other systems at the same remote
site, it is more efficient to use a dial-code abbreviation in a Systems file than to type the complete phone
number of each remote modem.

The dial-code entry in the /etc/uucp/Dialcodes file defines an alphabetic abbreviation that represents
the following portions of the phone number:

• Outside line code
• Long-distance access code
• Number 1 (one) plus the area code (if the modem is out of the local area)
• Three-digit exchange number

In the Phone field in a Systems file entry, type the alphabetic abbreviation followed by the four-digit
modem number.

Note: Enter the alphabetic abbreviation in the /etc/uucp/Dialcodes file only once for all the remote
modems listed in a Systems file. Then use the same abbreviation for all entries in a Systems file for
modems at that site.

For callers that are actually switches, the Phone field is the token the switch requires to get to the
particular computer. The token you enter here is used by the functions specified in the Type field of
the /etc/uucp/Dialcodes file.

Login

The Login field specifies login information that the remote system must receive before allowing the calling
local system to establish a connection. The Login field is a series of fields and subfields called expect-send
characters.

Expect-Send Characters in Login Fields

Enter the required login information as:

[Expect Send] ...

The Expect subfield contains characters that the local system expects to receive from the remote system.
Once the local system receives those characters, it sends another string of characters that comprise the
Send subfield.

For example, the first Expect subfield generally contains the remote system's login prompt, and the first
Send subfield generally contains the remote system login ID. The second Expect subfield contains the
remote password prompt, and the second Send subfield contains the remote system password.

The Expect subfield may include subfields entered in the following form:

Expect[-Send-Expect] ...

In this case, the first Expect subfield still represents the string that the local system expects to receive
from the remote system. However, if the local system does not receive (or cannot read) the first Expect
string, it sends its own string (the Send string within brackets) to the remote system. The local system
then expects to receive another Expect string from the remote system.

Files Reference 691

For example, the Expect string may contain the following characters:

login:--login:

The local system expects to receive the login: string. If the remote system sends that string and the
local system receives it correctly, the BNU program goes on to the next field in the expect-send sequence.
However, if the local system does not receive the login: string, it sends a null character followed by a
new line, and then expects to receive a second login: string from the remote computer.

If the remote system does not send an Expect string to the local system, type "" (two double quotation
marks), representing a null string, in the first Expect subfield.

Every time the local system sends a field, it automatically transmits a new line following that Send
subfield. To disable this automatic new line, type \c (backslash and the letter c) as the last two
characters in the Send string.

Two special strings can be included in the login sequence. The EOT string sends an ASCII EOT (end of
transmission) character, and the BREAK string attempts to send an ASCII BREAK character.

Valid Expect-Send Sequences

Following are the valid expect-send strings for the Login field:

String Explanation

\N Null character.

\b Backspace character.

\c At the end of a field, suppress the new line that normally follows the characters in a Send
subfield. Otherwise, ignore this string.

\d Delay 2 seconds before sending or reading more characters.

\p Pause for approximately .25 to .50 seconds.

\E Turn on the echo check.

\e Turn off the echo check.

\K Send a BREAK character. This is the same as entering BREAK. This character can be used to
cycle a modem's speed.

\n New-line character.

\r Carriage return.

\s Space character.

\t Tab character.

\\ Backslash character.

EOT EOT character. When you enter this string, the system sends two EOT new-line characters.

BREAK BREAK character. This character can be used to cycle the modem speed.

\ddd Collapse the octal digits (ddd) into a single character and send that character.

Using the BREAK Character to Cycle a Modem

A BREAK or \K character is usually sent to cycle the line speed on computers that have a multispeed
modem. For example, if you are using a 2400 baud modem to contact a remote system with a multi speed
modem that normally answers the phone at 9600 baud, you can begin the chat script for that system with
a \K character to cause the remote system modem to cycle down to 2400 baud.

692 AIX Version 7.1: Files Reference

Entries for Use with TCP/IP
If your site is using TCP/IP, include the relevant TCP/IP entries in a Systems file. For a remote system
connected to the local system using TCP/IP, the entries in the SystemName, Time, and Login fields are
the same as for a remote system using any other type of connection. For the Type field, decide on the
appropriate TCP/IP conversation protocol to enter in the TCP ConversationProtocol subfield. Enter TCP
followed by a ,(comma) followed by the letter representing the protocol. In the Class and Phone fields,
enter a - (minus sign) as a placeholder.

Examples
Setting Up Entries Using Modems

1. A standard entry for a telephone connection using a modem looks like this:

merlin 0830-1730 ACU 1200 123-4567 in:--in: uucp1 word: rainday

This entry allows users to contact system merlin daily between 8:30 a.m. and 5:30 p.m., using an
ACU at 1200 bps. The telephone number is 123-4567. The login name on merlin is uucp1 and the
password is rainday. The local system expects the phrase in: before it sends the login name. If the
local system does not receive the phrase in:, it sends a null character and a new-line character and
expects the phrase again.

2. To use a 1200 baud modem to contact a system with a multispeed modem, make an entry similar to
the following:

athena Any ACU 1200 123-7654 \K\K in:--in: uucpa word: shield

The \K prefacing the login script instructs the remote modem to cycle down one speed. If the modem
has three speeds, 9600, 2400, and 1200, the first \K character causes it to cycle to the 2400 baud
setting, and the second \K character causes it to use the 1200 baud setting. (A third \K causes the
modem to start the cycle over by returning to 9600 baud.)

Setting Up Entries Using Direct Connections

A standard entry for a hardwired connection between a local and a remote system looks like this:

hera Any hera 1200 - login:--login: uzeus word: thunder

The remote system is hera, which can be called at any time. The entry in the Type field is also hera,
indicating a directory connection at 1200 bps (the Class field). There is a placeholder in the Phone field
since no telephone number is necessary.

Setting Up Entries Using TCP/IP Connections

In order to make the appropriate entries in a Systems file, decide on the appropriate TCP/IP conversation
protocol to enter in the TCP Caller subfield. For example, enter the following in a Systems file to use
TCP/IP to connect to system venus with the default g protocol:

venus Any TCP - - in:--in: uzeus word: lamplight

Replace the send and expect characters in the sample login field with the login prompt, login, password
prompt, and password appropriate to the remote system for which you are establishing a connection.

Using Dialcode Abbreviations

To use a dialcode abbreviation defined in the /etc/uucp/Dialcodes file, enter the following in a Systems
file:

merlin Any ACU 1200 local8784 in:--in: uucp1 word: magic

Files Reference 693

This assumes that an entry for the dial code local exists in the Dialcodes file. For example, the following
entry:

local 9=445

in the Dialcodes file would cause BNU to expand the telephone number as 9=4458784.

Setting Up Entries for Both Local and Remote Systems

For a direct connection between two systems, a Systems file on system zeus contains the following entry
for the remote system hera:

hera Any hera 1200 - "" \r\d\r\d\r in:--in: uzeus word: thunder

A Systems file on system hera contains the following entry for system zeus:

zeus Any zeus 1200 - "" \r\d\r\d\r in:--in: uhera word: lostleaf

Files

Item Description

/etc/uucp directory Contains all the configuration files for BNU,
including a Systems file.

/etc/uucp/Sysfiles file Specifies possible alternative foles for
the /etc/uucp/Systems file.

/etc/uucp/Devices file Contains information about available
devices.

/etc/uucp/Dialcodes file Contains dialing code abbreviations.

/etc/uucp/Permissions file Describes access permissions for remote
systems.

/usr/sbin/uucp/remote.unknown file Records contacts from unknown systems.

Related information
mail command
sendmail command
uucpd command
uusched command
Configuring BNU
Monitoring a BNU remote connection

telnet.conf File Format for TCP/IP

Purpose
Translates a client's terminal-type strings into terminfo file entries.

Description
The telnetd daemon uses the /etc/telnet.conf file during terminal negotiation to translate a client's
terminal-type strings into terminfo file entries. The telnet.conf file is used when a client's terminal does
not correspond directly to a terminfo file entry. If this is the case, the telnet.conf file can map standard
terminal names (defined in RFC-1060 Assigned Numbers) to terminfo file entries that the system can
emulate.

694 AIX Version 7.1: Files Reference

Each line in the telnet.conf file can contain up to 255 characters. Lines beginning with a # (pound sign)
are comment lines.

The telnet.conf file is structured in a two-column line format, with dashes separating the items in each
column. The first column specifies a manufacturer, model type, and optional additional information.
The second column specifies the terminfo file entry that corresponds to the manufacturer, model,
and optional information in the first column. The items in the first column can be either uppercase or
lowercase. The items in the second column must be lowercase. RFC-1060 specifies the first terminal type
in the telnet.conf file. The format for the telnet.conf file is:

Manufacturer-Model-Options TerminfoModel-Options

Security
Suggested permissions for the telnet.conf file are rw-rw-r— or 664. Suggested ownership is root for
owner and system for group.

Examples
Sample telnet.conf entries might look like the following:

DEC-VT100-AM vt100-am
diablo-1620-m8 1620-m8
h-19-a 19-a
TI-800 ti-800

In the first entry, the manufacturer is DEC (Digital Equipment Corporation), the model is VT100, and the
AM option specifies automargin. In the second entry, the manufacturer is diablo, the model is 1620, and
the m8 option specifies a left margin of 8 columns. In the third entry, the manufacturer is h (Heath), the
model is 19, and the a option specifies ANSII mode. In the fourth entry, the manufacturer is TI (Texas
Instruments), and the model is 800; no options are specified. For additional terminfo options, refer to the
*.ti files in the /usr/lib/terminfo directory.

Files

Item Description

terminfo Describes terminal by capability.

Related information
telnet command
telnetd command

tempaddr.conf File Format for TCP/IP

Purpose
Defines if temporary addresses should be allowed or denied for a set of prefixes or for a particular
interface.

Available Directives
The main directives for the /etc/ndpd/tempadr.conf file is:

Syntax
<allow | deny> all

This directive tells whether temporary addresses should/should not be generated for the prefixes not
mentioned in tempaddr.conf.

Files Reference 695

<allow | deny> <interface> all
This directive tells whether temporary addresses should or should not be generated for all the
prefixes on the specified interface.

<allow | deny> <interface> <prefix>/ <prefix length>
This directive tells whether temporary addresses should/should not be generated for the prefix/ list
of prefixes on the specified interface. Multiple prefixes and prefix lengths are separated by comma (,)
Most recent entry in the tempaddr.conf file will override the older entries while generating temporary
addresses.

Files
Item Description

/usr/samples/tcpip/tempaddr.conf Contains the sample tempaddr.conf data.

Related information
ndpd-host daemon
cgaparams.sec File Format for TCP/IP
ndpdh.cnf File Format for TCP/IP
sendh_anchor File Format for TCP/IP

tepolicies.dat File Format

Purpose
Contains trusted execution policies for the system.

Description
The /etc/security/tsd/tepolicies.dat file is a configuration file where the system wide trusted execution
policies are defined. The trusted execution policies can be configured using the following policies:

TE=ON
CHKEXEC=ON
CHKSHLIB=OFF
CHKSCRIPT=OFF
CHKKERNEXT=OFF
STOP_UNTRUSTD=OFF
STOP_ON_CHKFAIL=OFF
LOCK_KERN_POLICIES=OFF
TSD_FILES_LOCK=OFF
TSD_LOCK=OFF
TEP=OFF
TEP=/usr/bin:/usr/sbin:/etc:/bin:/sbin:/sbin/helpers/jfs2:/usr/lib/instl:/usr/ccs/bin
TLP=OFF
TLP=/usr/lib:/usr/ccs/lib:/lib:/var/lib

The description of each configuration parameter and more details of the trusted execution can be found in
the Security policies configuration topic.

Related reference
/etc/nscontrol.conf File

terminfo Directory

Purpose
Contains compiled terminfo source files.

696 AIX Version 7.1: Files Reference

Description
Terminfo is a compiled database describing the capabilities of terminals. Terminals are described in the
terminfo source files via entries. Each entry contains information about the capabilities for a particular
terminal or set of common terminals. Capabilities include the operations that can be performed, the
padding requirements, cursor positioning, command sequences, and initialization sequences.

The compiled terminfo database is used by applications such as curses and vi that must have knowledge
of the terminal but do not want to be terminal-dependent.

An example of a terminfo source file is provided.

This article explains the terminfo source file format. Before a terminfo description can be used by
applications, the terminfo source file it resides in must be compiled using the tic command. Using the tic
command results in the creation of one or more binaries, one for each terminal. The collection of terminfo
binaries in a directory (usually /usr/share/lib/terminfo) is known as the terminfo database, or terminfo.

Source File Entries
You can edit or modify source files. A source file can contain one or more terminal descriptions or entries.
A terminfo source file has a .ti suffix. Examples of source files are the /usr/share/lib/terminfo/ibm.ti
file, which describes IBM terminals, and the /usr/share/lib/terminfo/dec.ti file, which describes DEC
terminals.

See the infocmp command for obtaining the source description for a terminal when only the binary is
available.

Each entry in a terminfo source file consists of a number of fields separated by commas. White space
between commas is ignored. The following example shows a source file entry:

ibm6155-113|IBM 6155 Black & White display,
 font0=\E[10m, font1=\E[11m, font2=\E[12m,
 bold=\E[12m, sgr0=\E[0;10m,
 cols#113, lines#38,
 sgr=\E[%?%p1%t;7%;%?%p2%t;4%;%?%p3%t;7%;%?%p4%t;5%;%?%p6%t;12%;m,
 blink@, use=ibm5151,

Entries can continue onto multiple lines by placing white space at the beginning of each subsequent line.
To create a comment line, begin the line with a # (pound sign) character. To comment out an individual
terminal capability, put a period before the capability name.

The first field (or line) for each terminal gives the various names by which the terminal is known,
separated by | (pipe symbol) characters. The first given name should be the most common abbreviation
for the terminal. (This name is the one most commonly used when setting the TERM environment
variable.) The last name given should be a long name fully identifying the terminal. All other names
are understood as synonyms for the terminal name. All names but the last should contain no blanks. The
last name may contain blanks for readability. All names should be unique.

The remaining fields identify the terminal 's capabilities.

When choosing terminal names, there are some conventions you should follow. The root name should
represent the particular hardware class of the terminal. Do not use hyphens in the root name, except
to avoid synonyms that conflict with other names. To indicate possible modes for the hardware or user
preferences, append a - (minus sign) and one of the following suffixes:

Table 6. Root Name Suffixes

Suffix Meaning Example

-am With automatic margins (usually default) Terminal-am

-m Monochrome mode Terminal-m

-w Wide mode (more than 80 columns) Terminal-w

-nam Without automatic margins Terminal-nam

Files Reference 697

Table 6. Root Name Suffixes (continued)

Suffix Meaning Example

-n Number of lines on the screen Terminal-60

-na No arrow keys (leave them in local) Terminal-na

-np Number of pages of memory Terminal-4p

-rv Reverse video Terminal-rv

-s Status line simulation. The terminal
allows for one or more lines that are
normally part of the screen to be used
for the status line. This is not the same
as terminals that have permanently
dedicated status lines.

Terminal-s

-unk Unknown mode. This entry can be used
to define a general description of a
terminal that has several of the modes
described above. The other entries
would use the unknown entry as a base
description and add the appropriate
customization. See the use= field.

Terminal-unk

A terminal in 132-column mode would be Terminal-w.

Types of Capabilities
A terminfo entry can define any number of capabilities. All capabilities belong to one of three types:

Item Description

Boolean Indicates that the terminal has a particular feature. Boolean capabilities are true if the
corresponding name is contained in the terminal description.

Numeric Gives the size of the terminal or the size of particular delays.

String Gives a sequence that can be used to perform particular terminal operations.

This article provides tables that document the capability types. All the tables list the following:

Item Description

Variable The name the application uses to access a capability.

Cap Name The short capability name. This name is used in the terminfo database text and by
the person creating or editing a source file entry. You can use the tput command to
output the value of a capability for a particular terminal.

I.Code The 2-letter internal code used in the compiled database. This code always
corresponds to a termcap capability name.

Description A description of the capability.

Capability names have no absolute length limit. An informal limit of five characters is adopted to keep
them short and to allow the tabs in the caps source file to be aligned. Whenever possible, names are
chosen to be the same as or similar to the ANSI X3.64 standard of 1979.

Boolean Capabilities

698 AIX Version 7.1: Files Reference

A Boolean capability indicates that the terminal has some particular feature. For instance, the am
capability in a terminal description indicates that the terminal has automatic margins (such as an
automatic new line when the end of a line is reached). The following are the Boolean capabilities:

Table 7. Boolean Capabilities

Variable Cap Name I.Code

auto_left_margin
Indicates cub1 wraps from column 0 to last column.

bw bw

auto_right_margin
Indicates terminal has automatic margins.

am am

back_color_erase
Erases screen with current background.

bce ut

can_change
Can redefine existing color.

ccc cc

ceol_standout_glitch
Indicates that standout is not erased by overwriting.

xhp xs

col_addr_glitch
Indicates only positive motion for hpa/mhpa caps.

xhpa YA

cpi_changes_res
Indicates resolution changed when changing character pitch.

cpix YF

cr_cancels_micro_mode
Indicates cr turns off micro mode.

crxm YB

dest_tabs_magic_smso (or teleray_glitch)
Indicates destructive tabs and blanks inserted while entering
standout mode.

xt xt

eat_newline_glitch
Ignores new-line character after 80 columns.

xenl xn

erase_overstrike
Erases overstrikes with a blank.

eo eo

generic_type
Indicates generic line type, such as, dialup or switch.

gn gn

hard_copy
Indicates hardcopy terminal.

hc hc

hard_cursor
Indicates cursor is hard to see.

chts HC

has_meta_key
Indicates terminal has a meta key, such as shift or sets parity bit.

km km

has_print_wheel
Indicates operator needed to change character set.

daisy YC

has_status_line
Indicates terminal has a dedicated status line.

hs hs

Files Reference 699

Table 7. Boolean Capabilities (continued)

Variable Cap Name I.Code

hue_lightness_saturation
Uses HLS color notation (Tektronix).

hls hl

insert_null_glitch
Indicates insert mode distinguishes nulls.

in in

lpi_changes_res
Indicates resolution changed when changing line pitch.

lpix YG

memory_above
Display retained above the screen (usually multi-page terminals).

da da

memory_below
Display retained below the screen (usually multi-page terminals)

db db

move_insert_mode
Indicates safe to move while in insert mode.

mir mi

move_standout_mode
Indicates safe to move in standout modes.

msgr ms

needs_xon_xoff
Indicates padding will not work, that xon/xoff is required.

nxon nx

no_esc_ctlc (or beehive_glitch)
Indicates a terminal with F1=escape and F2=Ctrl-C.

xsb xb

no_pad_char
Indicates pad character does not exist.

npc NP

non_dest_scroll_region
Indicates non-destructive scrolling region.

ndscr ND

non_rev_rmcup
Indicates smcup does not reverse rmcup.

nrrmc NR

over_strike
Indicates terminal overstrikes.

os os

prtr_silent
Indicates printer will not echo on screen.

mc5i 5i

row_addr_glitch
Indicates only positive motion for vpa/mvpa caps.

xvpa YD

semi_auto_right_margin
Indicates printing in last column causes carriage return.

sam YE

status_line_esc_ok
Indicates escape can be used on the status line.

eslok es

tilde_glitch
Indicates terminal cannot print the ~ (tilde) character.

hz hz

700 AIX Version 7.1: Files Reference

Table 7. Boolean Capabilities (continued)

Variable Cap Name I.Code

transparent_underline
Overstrikes with underline character.

ul ul

xon_xoff
Indicates terminal uses xon/xoff handshaking.

xon xo

Numeric Capabilities

Numeric capabilities are followed by the # (pound sign) character and a numeric value. The cols#80
capability indicates the terminal has 80 columns. The following are the numeric capabilities:

Table 8. Numeric Capabilities

Variable Cap Name I.Code

buffer_capacity
Specifies the number of bytes buffered before printing.

bufsz Ya

columns
Specifies the number of columns in a line.

cols co

dot_horz_spacing
Identifies the horizontal spacing of dots in dots per inch.

spinh Yc

dot_vert_spacing
Specifies vertical spacing of pins in pins per inch.

spinv Yb

init_tabs
Provides initial tabs every specified number of spaces.

it it

label_height
Specifies the number of rows in each label.

lh lh

label_width
Specifies the number of columns in each label.

lw lw

lines
Specifies the number of lines on screen or page.

lines li

lines_of_memory
Specifies the number of lines of memory if > lines. A value of
0 indicates a variable number.

lm lm

magic_cookie_glitch
Indicates number of blank characters left by smso or rmso.

xmc sg

max_attributes
Identifies the maximum combined video attributes the
terminal can display.

ma ma

max_colors
Specifies the maximum number of colors supported.

colors Co

max_micro_address
Indicate the limit on use of mhpa and mvpa.

maddr Yd

Files Reference 701

Table 8. Numeric Capabilities (continued)

Variable Cap Name I.Code

max_micro_jump
Specifies the limit on use of the mcub1, mcuf1, mcuu1, and
mcud1 capabilities.

mjump Ye

max_pairs
Specifies the maximum number of color pairs supported.

pairs pa

maximum_windows
Specifies the maximum number of defineable windows.

wnum MW

micro_char_size
Specifies the character step size when in micro mode.

mcs Yf

micro_line_size
Identifies the line step size when in micro mode.

mls Yg

no_color_video
Indicates video attributes that cannot be used with colors.

ncv NC

num_labels
Specifies the number of labels on the screen. This value
starts at 1.

nlab Nl

number_of_pins
Identifies the number of pins in the print-head.

npins Yh

output_res_char
Specifies the horizontal resolution in units per character.

orc Yi

output_res_horz_inch
Specifies the horizontal resolution in units per inch.

orhi Yk

output_res_line
Specifies the vertical resolution in units per line.

orl Yj

output_res_vert_inch
Indicates vertical resolution in units per inch.

orvi Yl

padding_baud_rate
Indicates lowest baud rate where carriage-return and line-
return padding is needed.

pb pb

print_rate
Indicates print rate in characters per second.

cps Ym

virtual_terminal
Indicates virtual terminal number.

vt vt

wide_char_size
Identifies the character step size when the terminal is in
double-wide mode.

widcs Yn

width_status_lines
Specifies the number of columns in status lines.

wsl ws

702 AIX Version 7.1: Files Reference

String Capabilities

You define string-valued capabilities, such as the el capability (clear to end of line) with a 2-character
code, an = (equal sign), and a string ending with a , (comma). A delay in milliseconds can appear anywhere
in a string capability. To define a delay, enclose the delay between a $< and a >. The following shows the
el capability with a delay of 3:

el=\EK$<3>

The tputs subroutine provides padding characters for a delay. A delay can be a number, such as 20,
or a number followed by an * (asterisk), such as 3*. An asterisk indicates that the required padding is
proportional to the number of lines affected by the operation. The number given represents the required
padding for each affected unit. (For insert character, the factor is the number of lines affected, which
is always 1, unless the terminal has the xenl capability and the software supports it). If you specify an
asterisk, it is sometimes useful to give a delay of the form a.b, such as 3.5, to specify a delay for each
unit to tenths of milliseconds. You can only specify one decimal place.

The terminfo database provides several escape sequences in the string-valued capabilities for easy
encoding of characters. The following escape codes are recognized:

Escape Code Meaning

\E,\e Escape

\n New line

\l Line feed

\r Carriage return

\t Tab

\b Backspace

\f Form feed

\s Space

\^ Caret

\\ Backslash

\, Comma

\: Colon

\nnn Character with octal value nnn

^x Ctrl-x for any appropriate x

\0 Null character. \0 actually produces \200, which does not end a string but behaves
as a null character on most terminals.

The following conventions are used in the String Capabilities table:

(G)
Indicates that the string is passed through tparm, with parameters as given (#i).

(*)
Indicates that padding can be based on the number of lines affected.

(#i)
Indicates the ith parameter.

Files Reference 703

Table 9. String Capabilities

Variable Cap Name I.Code

appl_defined_str
Application-defined terminal string.

apstr za

asc_chars
Alternate character set mapping of glyph to
characters.

acsc ac

back_tab
Back tab.

cbt bt

bell
Produces an audible signal (bell).

bel bl

box_chars_1
Box characters, primary set.

box1 bx

box_chars_2
Box characters, alternate set.

box2 by

box_attr_1
Attributes for box_chars_1.

batt1 Bx

box_attr_2
Attributes for box_chars_2.

batt2 By

carriage_return
Indicates carriage return. (*)

cr cr

change_char_pitch
Change number of characters per inch.

cpi ZA

change_line_pitch
Change number of lines per inch.

lpi ZB

change_res_horz
Change horizontal resolution.

chr ZC

change_res_vert
Change vertical resolution.

cvr XD

char_padding
Specifies character padding when in replace
mode.

rmp rP

change_scroll_region
Changes scroll region to lines #1 through #2.
(G)

csr cs

char_set_names
List of character set names.

csnm Zy

clear_all_tabs
Clears all tab stops.

tbc ct

704 AIX Version 7.1: Files Reference

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

clear_margins
Clear left and right soft margins.

mgc MC

clear_screen
Clears screen and puts cursor in home
position. (*)

clear cl

clr_bol
Clear to beginning of line, inclusive.

el1 cb

clr_eol
Clears to end of line.

el ce

clr_eod
Clears to end of the display.(*)

ed cd

color_bg_0
Background color 0, black.

colb0 d0

color_bg_1
Background color 1, red.

colb1 d1

color_bg_2
Background color 2, green.

colb2 d2

color_bg_3
Background color 3, brown.

colb3 d3

color_bg_4
Background color 4, blue.

colb4 d4

color_bg_5
Background color 5, magenta.

colb5 d5

color_bg_6
Background color 6, cyan.

colb6 d6

color_bg_7
Background color 7, white.

colb7 d7

color_fg_0
Foreground color 0, black.

colf0 c0

color_fg_1
Foreground color 1, red.

colf1 c1

color_fg_2
Foreground color 2, green.

colf2 c2

color_fg_3
Foreground color 3, brown.

colf3 c3

color_fg_4
Foreground color 4, blue.

colf4 c4

Files Reference 705

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

color_fg_5
Foreground color 5, magenta.

colf5 c5

color_fg_6
Foreground color 6, cyan.

colf6 c6

color_fg_7
Foreground color 7, white.

colf7 c7

column_address
Sets cursor column. (G)

hpa ch

command_character
Indicates that a terminal command-
prototype character can be set.

cmdch CC

create_window
Define win #1 to go from #2, #3 to #4, #5.

cwin CW

cursor_address
Indicates screen-relative cursor motion row
#1, col #2. (G)

cup cm

cursor_down
Moves cursor down one line.

cud1 do

cursor_home
Moves cursor to home position (if no cup
addressing).

home ho

cursor_invisible
Makes cursor invisible.

civis vi

cursor_left
Moves cursor left one space.

cub1 le

cursor_mem_address
Indicates memory relative cursor
addressing. (G)

mrcup CM

cursor_normal
Makes cursor appear normal (undo vs or vi).

cnorm ve

cursor_right
Indicates nondestructive space (cursor
right).

cuf1 nd

cursor_to_ll
Moves cursor to first column of last line (if no
cup addressing).

ll ll

cursor_up
Moves cursor up one line.

cuu1 up

706 AIX Version 7.1: Files Reference

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

cursor_visible
Makes cursor very visible.

cvvis vs

define char
Define a character in a character set.

defc ZE

delete_character
Deletes character. (*)

dch1 dc

delete_line
Deletes line. (*)

dl1 dl

dial_phone
Dial phone number #1.

dial DI

dis_status_line
Disables status line.

dsl ds

display_clock
Display time-of-day clock.

dclk DK

down_half_line
Indicates subscript (forward 1/2 line feed).

hd hd

ena_acs
Enable alternate character set.

enacs eA

enter_alt_charset_mode
Starts alternate character set.

smacs as

enter_am_mode
Turn on automatic margins.

smam SA

enter_blink_mode
Enables blinking.

blink mb

enter_bold_mode
Enables bold (extra bright)mode.

bold md

enter_bottom_mode
Starts bottom line mode. This string
capability is an aid for drawing tables and
is valid only for aixterm and aixterm-m
terminal definitions.

btml bm

enter_ca_mode
Begins programs that use cup addresing.

smcup ti

enter_delete_mode
Starts delete mode.

smdc dm

enter_dim_mode
Enables half-bright mode.

dim mh

Files Reference 707

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

enter_doublewide_mode
Enable double-wide printing.

swidm ZF

enter_draft_quality
Set draft quality print.

sdrfq ZG

enter_insert_mode
Starts insert mode.

smir im

enter_italics_mode
Enable italics.

sitm ZH

enter_leftward_mode
Enable leftward carrige motion.

slm Zl

enter_lvert_mode
Starts left vertical line mode. This string
capability is an aid for drawing tables. Valid
only for aixterm and aixterm-m terminal
definitions.

lvert lv

enter_micro_mode
Enable micro motion capabilities.

smicm ZJ

enter_near_letter_quality
Set near-letter quality print.

snlq ZK

enter_normal_quality
Set normal quality print.

snrmq ZL

enter_protected_mode
Enables protected mode.

prot mp

enter_reverse_mode
Enables reverse video mode.

rev mr

enter_rvert_mode
Starts right vertical line mode. This string
capability is an aid for drawing tables and
is valid only for aixterm and aixterm-m
terminal definitions.

rvert rv

enter_secure_mode
Enables blank mode (characters are
invisible).

invis mk

enter_shadow_mode
Enable shadow printing.

sshm ZM

enter_standout_mode
Begins standout mode.

smso so

enter_subscript_mode
Enable subscript printing.

ssubm ZN

708 AIX Version 7.1: Files Reference

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

enter_superscript_mode
Enable superscript printing.

ssupm ZO

enter_topline_mode
Starts top line mode. This string capability is
an aid for drawing tables and is valid only for
aixterm and aixterm-m terminal definitions.

topl tp

enter_underline_mode
Starts underscore mode.

smul us

enter_upward_mode
Enable upward carriage motion.

sum ZP

enter_xon_mode
Turn on xon/xoff handshaking.

smxon SX

erase_chars
Erases #1 characters. (G)

ech ec

exit_alt_charset_mode
Ends alternate character set.

rmacs ae

exit_am_mode
Turn off automatic margins.

rmam RA

exit_attribute_mode
Disables all attributes.

sgr0 me

exit_ca_mode
Ends programs that use cup addressing.

rmcup te

exit_delete_mode
Ends delete mode.

rmdc ed

exit_doublewide_mode
Disable double-wide printing.

rwidm ZQ

exit_insert_mode
Ends insert mode.

rmir ei

exit_italics_mode
Disable italics.

ritm ZR

exit_leftward_mode
Enable rightward (normal) carriage motion.

rlm ZS

exit_micro_mode
Disable micro motion capabilities.

micm ZT

exit_shadow_mode
Disable shadow printing.

rshm ZU

exit_standout_mode
Ends standout mode.

rmso se

Files Reference 709

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

exit_subscript_mode
Disable subscript printing.

rsubm ZV

exit_superscript_mode
Disable superscript printing.

rsupm ZW

exit_underline_mode
Ends underscore mode.

rmul ue

exit_upward_mode
Enable downard (normal) carrige motion.

rum ZX

exit_xon_mode
Turn off xon/xoff handshaking.

rmxon RX

flash_screen
Indicates visual bell (may not move cursor).

flash vb

fixed_pause
Pause for 2-3 seconds.

pause PA

flash_hook
Flash the switch hook.

hook fh

font_0
Select font 0.

font0 f0

font_1
Select font 1.

font1 f1

font_2
Select font 2.

font2 f2

font_3
Select font 3.

font3 f3

font_4
Select font 4.

font4 f4

font_5
Select font 5.

font5 f5

font_6
Select font 6.

font6 f6

font_7
Select font 7.

font7 f7

form_feed
Ejects page (hardcopy terminal). (*)

ff ff

from_status_line
Returns from status line.

fsl fs

710 AIX Version 7.1: Files Reference

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

goto_window
Go to window #1.

wingo WG

hangup
Hang-up phone.

hup HU

init_1string
Initializes terminal.

is1 i1

init_2string
Initializes terminal.

is2 is

init_3string
Initializes terminal.

is3 i3

init_file
Identifies file containing is long initialization
strings.

if if

init_prog
Locates the program for initialization.

iprog iP

initialize_color
Initialize the color definition.

initc Ic

initialize_pair
Initialize color pair.

initp Ip

insert_character
Inserts character.

ich1 ic

insert_line
Adds new blank line. (*)

il1 al

insert_padding
Inserts pad after character inserted. (*)

ip ip

key_a1
Specifies upper left of keypad.

ka1 K1

key_a3
Specifies upper right of keypad.

ka3 K3

key_action
Sent by action key.

kact kJ

key_b2
Specifies center of keypad.

kb2 K2

key_backspace
Sent by backspace key.

kbs kb

key_beg
Beginning key. KEY_BEG

kbeg @1

Files Reference 711

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

key_btab
Sent by backtab key. KEY_BTAB

kcbt kB

key_c1
Specifies lower left of keypad.

kc1 K4

key_c3
Specifies lower right of keypad.

kc3 K5

key_cancel
Cancel key. KEY_CANCEL

kcan @2

key_catab
Sent by clear-all-tabs key.

ktbc ka

key_clear
Sent by clear screen or erase key.

kclr kC

key_close
Close key. KEY_CLOSE

kclo @3

key_command
Command-request key.

kcmd @4

key_command_pane
Command-pane key.

kcpn @7

key_copy
Copy key. KEY_COPY

kcpy @5

key_create
Create key. KEY_CREATE

kcrt @6

key_ctab
Sent by clear tab key.

kctab kt

key_dc
Sent by delete-character key.

kdch1 kD

key_dl
Sent by delete-line key.

kdl1 kL

key_do
Do request key.

kdo ki

key_down
Sent by terminal down-arrow key.

kcud1 kd

key_eic
Sent by rmir or smir in insert mode.

krmir kM

key_end
End key. KEY_END

kend @7

712 AIX Version 7.1: Files Reference

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

key_enter
Enter/send (unreliable). KEY_ENTER.

kent @8

key_eol
Sent by clear-to-end-of-line key.

kel kE

key_eos
Sent by clear-to-end-of-screen key.

ked kS

key_exit
Exit key. KEY_EXIT.

kext @9

key_f0
Sent by function key F0.

kf0 k0

key_f1
Sent by function key F1.

kf1 k1

key_f2
Sent by function key F2.

kf2 k2

key_f3
Sent by function key F3.

kf3 k3

key_f4
Sent by function key F4.

kf4 k4

key_f5
Sent by function key F5.

kf5 k5

key_f6
Sent by function key F6.

kf6 k6

key_f35
Sent by function key 35. KEY_F(35)

kf35 FP

key_f36
Sent by function key 36. KEY_F(36)

kf36 FP

key_f37
Sent by function key 37. KEY_F(37)

kf37 FQ

key_f38
Sent by function key 38. KEY_F(38)

kf38 FR

key_f39
Sent by function key 39. KEY_F(39)

kf39 FS

key_f40
Sent by function key 40. KEY_F(40)

kf40 FT

key_f41
Sent by function key 41. KEY_F(41)

kf41 FU

Files Reference 713

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

key_f42
Sent by function key 42. KEY_F(42)

kf42 FV

key_f43
Sent by function key 43. KEY_F(43)

kf43 FW

key_f44
Sent by function key 44. KEY_F(44)

kf44 FX

key_f45
Sent by function key 45. KEY_F(45)

kf45 FY

key_f46
Sent by function key 46. KEY_F(46)

kf46 FZ

key_f47
Sent by function key 47. KEY_F(47)

kf47 Fa

key_f48
Sent by function key 48. KEY_F(48)

kf48 Fb

key_f49
Sent by function key 49. KEY_F(49)

kf49 Fc

key_f50
Sent by function key 50. KEY_F(50)

kf50 Fd

key_f51
Sent by function key f51. KEY_F(51)

kf51 Fe

key_f52
Sent by function key f52. KEY_F(52)

kf52 Ff

key_f53
Sent by function key f53. KEY_F(53)

kf53 Fg

key_f54
Sent by function key f54. KEY_F(54)

kf54 Fi

key_f55
Sent by function key f55. KEY_F(55)

kf55 Fj

key_f56
Sent by function key f56. KEY_F(56)

kf56 Fk

key_f57
Sent by function key f57. KEY_F(57)

kf57 Fl

key_f58
Sent by function key f58. KEY_F(58)

kf58 Fm

key_f59
Sent by function key f59. KEY_F(59)

kf59 Fn

714 AIX Version 7.1: Files Reference

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

key_f60
Sent by function key f60. KEY_F(60)

kf60 Fo

key_f61
Sent by function key f61. KEY_F(61)

kf61 Fp

key_f62
Sent by function key f62. KEY_F(62)

kf62 Fq

key_f63
Sent by function key f63. KEY_F(63)

kf63 Fr

key_find
Find key. KEY_FIND

kfnd @0

key_help
Help key.

khlp kq

key_home
Sent by home key.

khome kh

key_ic
Sent by insert-character/ enter-insert-mode
key.

kich1 kI

key_il
Sent by insert line key.

kil1 kA

key_left
Sent by terminal left-arrow key.

kcub1 kl

key_ll
Sent by home-down key.

kll kH

key_mark
Mark key. KEY_MARK

kmrk %2

key_message
Message key. KEY_MESSAGE

kmsg %3

key_move
Move key. KEY_MOVE

kmov %4

key_newline
New-line key.

knl kn

key_next
Next object key. KEY_NEXT

knxt %5

key_next_pane
Next-pane key.

knpn kv

key_npage
Sent by next-page key.

knp kN

Files Reference 715

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

key_open
Open key. KEY_OPEN

kopn %6

key_options
Options key. KEY_OPTIONS

kopt %7

key_ppage
Sent by previous-page key.

kpp kP

key_prev_pane
Sent by previous-pane key.

kppn kV

key_prev_cmd
Sent by previous-command key.

kpcmd kp

key_previous
Previous object key. KEY_PREVIOUS

kprv %8

key_print
Print or copy. KEY_PRINT

kprt %9

key_quit
Quit key.

kquit kQ

key_redo
Redo key. KEY_REDO

krdo %0

key_reference
Reference key. KEY_REFERENCE

kref &1

key_refresh
Refresh key. KEY_REFRESH

krfr &2

key_replace
Replace key. KEY_REPLACE

krpl &3

key_restart
Restart key. KEY_RESTART

krst &4

key_resume
Resume key. KEY_RESUME

kres &5

key_right
Sent by terminal right-arrow key.

kcuf1 kr

key_save
Save key. KEY_SAVE

ksav &6

key_sbeg
Shifted beginning key. KEY_SBEG

kBEG &9

key_scancel
Shifted cancel key. KEY_SCANCEL

kCAN &0

716 AIX Version 7.1: Files Reference

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

key_scommand
Shifted command key. KEY_SCOMMAND

kCMD *1

key_scopy
Shifted copy key. KEY_SCOPY

kCPY *2

key_screate
Shifted create key. KEY_SCREATE

kCRT *3

key_scroll_left
Scroll left.

kscl kz

key_scroll_right
Scroll right.

kscr kZ

key_sdc
Shifted delete-character key. KEY_SDC

kDC *4

key_sdl
Shifted delete-line key. KEY_SDL

kDL *5

key_select
Select key.

kslt *6

key_send
Shifted end key. KEY_SEND

kEND *7

key_seol
Shifted clear-line key. KEY_SEOL

kEOL *8

key_sexit
Shifted exit key. KEY_SEXIT

kEXT *9

key_sf
Sent by scroll-forward/ scroll-down key.

kind kF

key_sf1
Special function key 1.

ksf1 S1

key_sf2
Special function key 2.

ksf2 S2

key_sf3
Special function key 3.

ksf3 S3

key_sf4
Special function key 4.

ksf4 S4

key_sf5
Special function key 5.

ksf5 S5

key_sf6
Special function key 6.

ksf6 S6

Files Reference 717

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

key_sf7
Special function key 7.

ksf7 S7

key_sf8
Special function key 8.

ksf8 S8

key_sf9
Special function key 9.

ksf9 S9

key_sf10
Special function key 10.

ksf10 S0

key_sfind
Shifted find key. KEY_SFIND

kFND *0

key_shelp
Shifted help key. KEY_SHELP

kHLP #1

key_shome
Shifted home key. KEY_SHOME

kHOM #2

key_sic
Shifted input key. KEY_SIC

kIC #3

key_sleft
Shifted left-arrow key. KEY_SLEFT

kLFT #4

key_smap_in1
Input for special mapped key 1.

kmpf1 Kv

key_smap_in2
Input for special mapped key 2.

kmpf2 Kw

key_smap_in3
Input for special mapped key 3.

kmpf3 Kx

key_smap_in4
Input for special mapped key 4.

kmpf4 Ky

key_smap_in5
Input for special mapped key 5.

kmpf5 Kz

key_smap_in6
Input for special mapped key 6.

kmpf6 Kr

key_smap_in7
Input for special mapped key 7.

kmpf7 Ks

key_smap_in8
Input for special mapped key 8.

kmpf8 Kt

key_smap_in9
Input for special mapped key 9.

kmpf9 Ku

718 AIX Version 7.1: Files Reference

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

key_smap_out1
Output for mapped key 1.

kmpt1 KV

key_smap_out2
Output for mapped key 2.

kmpt2 KW

key_smap_out3
Output for mapped key 3.

kmpt3 KX

key_smap_out4
Output for mapped key 4.

kmpt4 KY

key_smap_out5
Output for mapped key 5.

kmpt5 KZ

key_smap_out6
Output for mapped key 6.

kmpt6 KR

key_smap_out7
Output for mapped key 7.

kmpt7 KS

key_smap_out8
Output for mapped key 8.

kmpt8 KT

key_smap_out9
Output for mapped key 9.

kmpt9 KU

key_smessage
Shifted message key. KEY_SMESSAGE

kMSG %a

key_smove
Shifted move key. KEY_SMOVE

kMOV %b

key_snext
Shifted next key. KEY_SNEXT

kNXT %c

key_soptions
Shifted options key. KEY_SOPTIONS

kOPT %d

key_sprevious
Shifted previous key. KEY_SPREVIOUS

kPRV %e

key_sprint
Shifted print key. KEY_SPRINT

kPRT %f

key_sr
Sent by scroll-backward key.

kri kR

key_redo
Shifted redo key. KEY_SREDO

kRDO %g

key_replace
Shifted replace key. KEY_REPLACE

kRPL %h

Files Reference 719

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

key_sright
Shifted right-arrow key. KEY_SRIGHT

kRIT %i

key_srsume
Shifted resume key. KEY_SRSUME

kRES %j

key_ssave
Shifted save key. KEY_SSAVE

kSAV !1

key_ssuspend
Shifted suspend key. KEY_SSUPEND

kSPD !2

key_stab
Sent by set-tab key.

khts kT

key_sundo
Shifted undo key. KEY_SUNDO

kUND !3

key_suspend
Suspend key. KEY_SUSPEND

kspd &7

key_tab
Tab key.

ktab ko

key_undo
Undo key. KEY_UNDO

kund &8

key_up
Sent by terminal up-arrow key.

kcuu1 ku

keypad_local
Ends keypad transmit mode.

rmkx ke

keypad_xmit
Puts terminal in keypad transmit mode.

smkx ks

lab_f0
Labels function key F0, if not F0.

lf0 l0

lab_f1
Labels function key F1, if not F1.

lf1 l1

lab_f2
Labels function key F2, if not F2.

lf2 l2

lab_f3
Labels function key F3, if not F3.

lf3 l3

lab_f4
Labels function key F4, if not F4.

lf4 l4

lab_f5
Labels function key F5, if not F5.

lf5 l5

720 AIX Version 7.1: Files Reference

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

lab_f6
Labels function key F6, if not F6.

lf6 l6

lab_f7
Labels function key F7, if not F7.

lf7 l7

lab_f8
Labels function key F8, if not F8.

lf8 l8

lab_f9
Labels function key F9, if not F9.

lf9 l9

lab_f10
Labels function key F10, if not F10.

lf10 la

label_format
Label format.

fln Lf

label_off
Turn off soft labels.

rmln LF

label_on
Turn on soft labels.

smln LO

meta_on
Enables meta mode (8th bit).

smm mm

meta_off
Disables meta mode.

rmm mo

micro_column_address
Move N steps from the left.

mhpa ZY

micro_down
Move 1 step down.

mcud1 ZZ

micro_left
Move 1 step left.

mcub1 Za

micro_right
Move 1 step right.

mcuf1 Zb

micro_row_address
Move N steps from the top.

mvpa Zc

micro_up
Move 1 step up.

mcuu1 Zd

newline
Performs new-line function (behaves like
carriage return followed by line feed).

nel nw

order_of_pins
Matches software bits to print-head pins.

porder Ze

Files Reference 721

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

orig_colors
Original colors.

oc oc

orig_pair
Original color-pair.

op op

pad_char
Pads character (instead of NULL).

pad pc

parm_dch
Deletes #1 characters. (G)

dch DC

parm_delete_line
Deletes #1 lines. (G)

dl DL

parm_down_cursor
Moves cursor down #1 lines. (G*)

cud DO

parm_down_micro
Move N steps down. (G*)

mcud Zf

parm_ich
Inserts #1 blank characters. (G*)

ich IC

parm_index
Scrolls forward #1 lines. (G)

indn SF

parm_insert_line
Adds #1 new blank lines. (G*)

il AL

parm_left_cursor
Moves cursor left #1 spaces. (G)

cub LE

parm_left_micro
Move N steps left.

mcub Zg

parm_right_cursor
Moves cursor right #1 spaces. (G*)

cuf RI

parm_right_micro
Move N steps right.

mcuf Zh

parm_rindex
Scrolls backward #1 lines. (G)

rin SR

parm_up_cursor
Moves cursor up #1 lines. (G*)

cuu UP

parm_up_micro
Move N steps up.

mcuu Zi

pkey_key
Programs function key #1 to type string #2.

pfkey pk

722 AIX Version 7.1: Files Reference

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

pkey_local
Programs function key #1 to execute string
#2.

pfloc pl

pkey_xmit
Programs function key #1 to transmit string
#2.

pfx px

plab_norm
Program label #1 to show string #2.

pln pn

print_screen
Prints contents of the screen.

mc0 ps

prtr_non
Enables the printer for #1 bytes.

mc5p pO

prtr_off
Disables the printer.

mc4 pf

prtr_on
Enables the printer.

mc5 po

pulse
Select pulse dialing.

pulse PU

quick_dial
Dial phone number #1, without progress
detection.

qdial QD

remove_clock
Remove time-of-day clock.

rmclk RC

repeat_char
Repeats #1 character #2 times. (G*)

rep rp

req_for_input
Send next input char (for pty's).

rfi RF

reset_1string
Resets terminal to known modes.

rs1 r1

reset_2string
Resets terminal to known modes.

rs2 r2

reset_3string
Resets terminal to known modes.

rs3 r3

reset_file
Identifies the file containing reset string.

rf rf

restore_cursor
Restores cursor to position of last sc
(save_cursor).

rc rc

Files Reference 723

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

row_address
Positions cursor to an absolute vertical
position (set row). (G)

vpa cv

save_cursor
Saves cursor position.

sc sc

scroll_forward
Scrolls text up.

ind sf

scroll_reverse
Scrolls text down.

ri sr

select_char_set
Select character set.

scs Zj

set_attributes
Defines the video attributes. (G) #1-#9

sgr sa

set_background
Set background color.

setb Sb

set_bottom_margin
Set soft bottojm margin at current line.

smgb Zk

set_bottom_margin_parm
Set soft bottom margin.

smgbp Zl

set_clock
Set time-of-day clock.

sclk SC

set_color_pair
Set color pair.

scp sp

set_foreground
Set foreground color.

setf Sf

set_left_margin
Set soft left margin.

smgl ML

set_left_margin_parm
Set soft left margin.

smglp Zm

set_right_margin
Set soft right margin.

smgr MR

set_right_margin_parm
Set soft right margin.

smgrp Zn

set_tab
Sets a tab in every row of the current
column.

hts st

set_top_margin
Set top margin at current line.

smgt Zo

724 AIX Version 7.1: Files Reference

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

set_top_margin_parm
Set soft top margin.

smgtp Zp

set_window
Indicates current window is lines #1-#2,
columns #3-#4. (G)

wind wi

start_bit_image
Start printing bit-image graphics.

sbim Zq

start_char_set_def
Start definition of a character set.

scsd Zr

stop_bit_image
End printing bit image graphics.

rbim Zs

stop_char_set_def
End definition of a character set.

rcsd Zt

subscript_characters
List of charcters that can appear in subscript.

subcs Zu

superscript_characters
List of characters that can appear in
superscript.

supcs Zv

tab
Tabs to next 8-space hardware tab stop.

ht ta

these_cause_cr
Printing any of these characters cause a
carrige return.

docr Zw

tone
Select touch-tone dialing.

tone TO

to_status_line
Moves to status line, column #1. (G)

tsl ts

underline_char
Underscores one character and moves
beyond it.

uc uc

up_half_line
Indicates superscript (reverse 1/2 line-feed)

hu hu

user0
User string 0.

u0 u0

user1
User string 1.

u1 u1

user2
User string 2.

u2 u2

Files Reference 725

Table 9. String Capabilities (continued)

Variable Cap Name I.Code

user3
User string 3.

u3 u3

user4
User string 4.

u4 u4

user5
User string 5.

u5 u5

user6
User string 6.

u6 u6

user7
User string 7.

u7 u7

user8
User string 8.

u8 u8

user9
User string 9.

u9 u9

wait_tone
Wait for dial tone.

wiat WA

xoff_character
X-off character.

xoffc XF

xon_character
X-on character.

xonc XN

zero_motion
No motion for the subsequent character.

zerom Zx

Preparing Descriptions
You can create a terminal description by copying and then modifying the description of a similar terminal.
You can check the accuracy of your partial descriptions with the vi editor. Some terminals may reveal
bugs in the vi editor as well as deficiencies in the ability of the terminfo database to provide a terminal
description.

To test a new terminal description, set the TERMINFO environment variable to the path name of the
directory containing the compiled description on which you are working. Programs then check that
directory instead of the /usr/share/lib/terminfo directory.

To test for correct padding (if known), do the following:

1. Edit the /etc/passwd file at 9600 baud.
2. Delete about 16 lines from the middle of the screen.
3. Press the u key several times quickly.

If the terminal fails to display the result properly, more padding is usually needed. You can perform a
similar test for insert character.

Note: Excessive padding slows down the terminal.

726 AIX Version 7.1: Files Reference

Basic Capabilities
This section describes some basic terminal capabilities. If a terminal supports one of these capabilities,
the terminal's terminfo source file entry indicates it. The following list is a list of basic capabilities:

Item Description

am Indicates that the cursor moves to the beginning of the next line when it reaches the right
margin. This capability also indicates whether the cursor can move beyond the bottom right
corner of the screen.

bel Produces an audible signal (such as a bell or a beep).

bw Indicates that a backspace from the left edge of the terminal moves the cursor to the last
column of the previous row.

clear Clears the screen, leaving the cursor in the home position.

cols Specifies the number of columns on each line for the terminal.

cr Moves the cursor to the left edge of the current row. This code is usually carriage return
(Ctrl-M).

cub1 Moves the cursor one space to the left, such as backspace.

cuf1 Moves the cursor to the right one space.

cuu1 Moves the cursor up one space.

cud1 Move the cursor down one space.

hc Specifies a printing terminal with no softcopy unit. You should also specify the os capability.

ind Scrolls text up.

lf Specifies a line-feed.

lines Specifies the number of lines on a cathode ray tube (CRT) terminal.

nel Specifies a newline. The terminal behaves as if it received a carriage return followed by a line
feed.

os Indicates that when a character is displayed or printed in a position already occupied by
another character, the terminal overstrikes the existing character, rather than replacing it with
the new character. The os capability applies to storage scope, printing, and APL terminals.

ri Scrolls text down.

If the LINES and COLUMNS environment variables are set, these variables override the values in the
terminfo database.

The local cursor motions encoded in the terminfo database files are undefined at the left and top edges of
a CRT terminal. Programs should never attempt to backspace around the left edge (unless the bw string is
given) or to go up locally off the top.

To scroll text up, a program should go to the bottom left corner of the screen and send the index string.
To scroll text down, a program goes to the top left corner of the screen and sends the reverse index
string. The index string is specified by the ind capability and the reverse index string is specified by the
ri capability. The index string and the reverse index string are undefined when not on their respective
corners of the screen.

The am capability determines whether the cursor sticks at the right edge of the screen when text is
output, but this does not necessarily apply when the cursor is moved to the right (the cuf1 capability)
from the last column. A terminal has local motion from the left edge only if the bw capability is defined.
The cursor then goes to the right edge of the previous row when moved to the left (the cub1 capability)
from the left edge. If the terminal does not have the bw capability, the effect is undefined, which is useful
for drawing a box around the edge of the screen, for example.

Files Reference 727

A terminal has switch-selectable automatic margins if the am capability is specified. If the terminal has a
command that moves to the first column of the next line, you can define the nel (new-line) capability. It
does not matter whether the command clears the remainder of the current line. Therefore, if the terminal
has no cr and lf, a working nel can still be crafted out of one or both of them.

These capabilities suffice to describe printing terminals and simple CRT terminals. Thus, the Model 33
Teletype is described as:

33 | tty33 | tty | Model 33 Teletype
 bel=^G, cols#72, cr=^M, cud1=^J, hc, ind=^J, os, xon,

Another terminal is described as:

xxxx | x | xxxxxxxx,
 am, bel=^G, clear=^Z, cols#80, cr=^M, cub1=^H, cud1=^J,
 ind=^J, lines#24,

Parameterized Strings
Cursor-addressing and other strings requiring parameters are described by parameterized string
capabilities. These strings have escape sequences similar to the printf %x format. For example, to
address the cursor, you specify the cup capability using the row and column parameters.

The parameterized capabilities include:

Item Description

cub1 Backspaces the cursor one space.

cup Addresses the cursor using the row and column parameters. Rows and columns are
numbered starting with 0 and refer to the physical screen visible to the user, not to
memory.

hpa and vpa Indicates the cursor has row or column absolute cursor addressing: horizontal
position absolute (hpa) or vertical absolute (vpa).

Sometimes the hpa and vpa capabilities are shorter than the more general two-
parameter sequence and you can use them in preference to the cup capability.
Parameterized local motions (such as, a move of n spaces to the right) are defined
with the cud, cub, cuf, and cuu capabilities, with a single parameter indicating how
many spaces to move. These capabilities are primarily useful if the terminal does
not have cup capability.

indn and rin Scrolls text. These are parameterized versions of the basic ind and ri capabilities.
The n value is a number of lines.

mrcup Indicates the terminal has memory-relative cursor addressing.

The parameter mechanism uses a stack and has special % (percent sign) codes to manipulate the stack.
Typically, a sequence pushes one of the parameters onto the stack and then prints it in some format.
Often, more complex operations are necessary. The encodings have the following meanings:

Item Description

%% Outputs a % (percent sign).

%[[:] Flags] [Width [.Precision]] [doxXs] As in the printf command, flags are the [- + #] and
space.

%d Prints pop() as in the printf command (numeric
string from stack).

%2d Prints pop() like %2d (minimum 2 digits output
from stack).

728 AIX Version 7.1: Files Reference

Item Description

%3d Prints pop() like %3d (minimum 3 digits output
from stack).

%02d Prints as in the printf command (2 digits output).

%03d Prints as in the printf command (3 digits output).

%c Prints pop() gives %c (character output from
stack).

%s Prints pop() gives %s (string output from stack).

%p[i] Pushes the ith parameter onto the stack where i is
a number between 1 and 9.

%P[a-z] Sets variable [a-z] to pop() (variable output from
stack).

%g[a-z] Gets variable [a-z] and pushes it onto the stack.

%'c' Character constant c.

%{nn} Integer constant nn.

%l Push strlen (pop())

%+ %- %* %/ %m Arithmetic operators (%m is modulus): push (pop()
operation pop()).

%& %| %^ Bit operations: push (pop() operation pop()).

%= %> %< Logical operations: push (pop() operation pop()).

%! %~ Unary operations: push (operation pop()).

%i Add 1 to first two parameters (for ANSI terminals).

%?expr %t thenpart %e elsepart %; If-then-else. The %e elsepart is optional. You can
make an else-if construct as with Algol 68 in the
following example, where ci denotes conditions
and bi bodies.

%? c1 %t b1 %e c2 %t b2 %e c3 %t b3 %e b4 %;

Binary operations are in postfix form with the operands in the usual order. That is, to get x - 5 use
%gx%{5}%-.

If you use the - (minus sign) flag with %[doxXs], then you must place a colon between the %
(percent sign) and the - (minus sign) to differentiate the flag from the %- binary operation, for example,
%:-16.16s.

Consider a terminal that needs to be sent \E&a12c03Y padded for 6 milliseconds to get to row 3 and
column 12. Here the order of the rows and columns is inverted, and the row and column are zero-padded
as two digits. Thus, the cup capability of this terminal is cup=\E&a%p2%2.2dc%p1%2.2dY$<6>.

Some terminals need the current row and column sent, preceded by a ^T, with the row and column
encoded in binary: cup=^T%p1%c%p2%c. Terminals that use %c need to be able to backspace the cursor
(cub1) and to move the cursor up one line on the screen (cuu1). This is necessary because it is not always
safe to transmit \n, ^D, and \r characters, since the system may change or discard them.

Note: The library routines dealing with the terminfo database files set terminal modes so that tabs are
not expanded by the operating system; thus, \t (tab) is safe to send.

A final example is a terminal that uses row and column offset by a blank character: cup=\E=%p1%'\s'%+
%c%p2'\s'%+%c. After sending \E=, this operation pushes the first parameter, pushes the ASCII value
for a space (32), adds them (pushing the sum on the stack in place of the two previous values), and

Files Reference 729

outputs that value as a character. Then the same is done for the second parameter. More complex
arithmetic is possible using the stack.

Cursor Motions
The top left corner of the screen is the home position. If the terminal has a fast way to get the cursor to
the home position, specify the home capability. Specify, a fast way of getting to the bottom left corner
with the ll capability. This method may involve going up (cuu1) from the home position, but a program
should never do this itself (unless ll does) because the effect of moving up from the home position is not
certain.

Note: The home position is the same as addressing (0,0) to the top left corner of the screen, not of
memory.

If the terminal has row or column absolute-cursor addressing, you should specify the single hpa
capability (horizontal position above) and the vpa capability (vertical position absolute). Sometimes these
are shorter than the more general two parameter sequence and you can use them instead of the cup
capability.

If the terminal has parameterized local motions for example, it is capable of moving the cursor n spaces
right, you can specify the cud, cub, cuf, and cuu capabilities with a single parameter indicating how many
spaces to move. These capabilities are useful if the terminal does not have the cup capability.

Area Clears
The following capabilities clear large areas of the terminal:

Ite
m

Description

ed Clears from the current position to the end of the display. This is defined only from the first column
of a line. (Thus, it can be simulated by a request to delete a large number of lines, if a true ed is not
available.)

el Clears from the current cursor position to the end of the line without moving the cursor.

el1 Clears from the beginning of the line to the current position, inclusive. The cursor is not moved.

Scrolling
The following insert-line and delete-line capabilities are used to indicate a terminal can:

Item Description

csr Change the scrolling region. This capability takes two parameters: the top and bottom lines of the
scrolling region. The top line of the screen is 0. After using this capability, the cursor position is
undefined. See the sc and rc capabilities in this section.

da Retain the display above the screen. If a line is deleted or the screen is scrolled, non-blank lines
can be brought in at the top. This capability is usually defined for multipage terminals.

db Retain the display below the screen. If a line is deleted or the screen is reverse scrolled, the
terminal can bring the non-blank lines at the bottom. This capability is usually defined for
multipage terminals.

dl1 Delete the line the cursor is on. This is done only from the first position on the line to be deleted.
Additionally, the dl capability takes a single parameter indicating the number of lines to be
deleted.

il1 Create a new blank line before the line where the cursor is currently located and scrolls the rest
of the screen down. This is done only from the first position of a line. The cursor then appears
on the newly blank line. Additionally, the il capability can take a single parameter indicating the
number of lines to insert.

730 AIX Version 7.1: Files Reference

Item Description

ind Index or scroll forward. A terminal with this capability can shift the display up one line by deleting
the top line and adding a blank line at the bottom.

indn Specify the number of lines to scroll forward. This capability has meaning only if the ind capability
is also defined.

rc Restore the cursor. This capability is useful with the csr and sc capabilities.

ri Reverse scrolling. With this capability, the terminal can shift the screen down by deleting the
bottom line and adding a blank line at the top.

rin Specify the number of lines to reverse scroll. This capability has meaning only if the ri capability
also is defined.

sc Save the cursor. If defined, you can use the sc capability to save the cursor before using the csr
capability. Saving the cursor is necessary because the cursor position is undefined after you use
the csr capability. Use the rc capability to restore the cursor to the position it held before you
used the csr capability.

wind Indicates the terminal has the ability to define a window as part of memory. This is a
parameterized string capability with four parameters: the starting and ending lines in memory
and the starting and ending columns in memory, in that order.

A terminal that has the csr capability can scroll part of its screen while leaving other lines above and
below the region untouched. A forward scroll applied to a region deletes the top of the region, shifts, and
adds a line to the bottom of the region. When finished with the scrolling region, you should use the csr
capability to restore the scrolling region to the full screen.

Be sure you move the cursor into the scrolling region with the cup capability before you attempt to scroll
the region. You should not move the cursor from the region until you are done with it.

Note: If you are using a terminals csr capability, you may also need to use the sc and rc capability.

Terminals that have csr defined have a destructive scrolling region. Once a line is scrolled off the screen,
the terminal cannot retrieve it. A terminal with a non-destructive scrolling region can restore scrolled lines
by reversing the scrolling. Unless the ind, ri, indn, rin, dl, and dl1 all simulate destructive scrolling, do not
specify the csr capability if the terminal has non-destructive scrolling regions.

On multipage terminals, scrolling can put a line onto another page and scrolling in the opposite direction
brings the line back. Similarly, deleting a line can cause a line from another page to appear on the screen.
Multipage terminals should have the da and db capabilities defined so that program that use scrolling can
adjust their behavior.

A few terminals can define a window as part of memory. For these types of terminals, all clearing,
deletion, insertion, and wrapping commands affect the area in memory where the window is defined.

Insert or Delete Character
Generally, terminals handle insert/delete character operations in one of two ways. The most common
insert/delete character operations affect only the characters on the current line and shift characters to
the right and off the line. Other terminals make a distinctions between typed and untyped blanks on the
screen. When inserting a character, the displayed data is shifted and an untyped blank is eliminated.
Once all the untyped blanks are eliminated, the displayed data wraps to the next line if you continue to
insert characters. When deleting a character, an untyped blank is added to the line to compensate for the
deleted character.

Generally, terminals insert/delete characters in one-line mode or multiline mode. The two types of
terminals also handle untyped spaces differently. One-line mode is the most common mode. In one-line
mode, insert/delete character operations affect only the characters on the current line. Insertions shift
characters to the right and off the line.

Files Reference 731

Multiline mode terminals can affect more than one line. In this mode, the terminal makes a distinction
between typed and untyped blanks on the screen. Inserting a character on a multiline mode terminal
shifts the displayed data and eliminates untyped blanks. If all the untyped blanks are eliminated and
you continue to insert characters, the display wraps to the next line. When deleting a character, multiline
terminals add an untyped blank to the line to compensate for the deleted character.

Determining Your Terminal's Type

Clearing a screen and then typing text separated by cursor motions helps you determine the type of
insert/delete operations your terminal performs. Clear the screen, then proceed as follows:

1. Type abc def using local cursor movements, not spaces, between the abc and the def.
2. Position the cursor before the abc.
3. Place the terminal in insert mode.
4. Type a line of text. If your typing causes the abc def characters to shift right and exit the right side of

the display, the terminal does not distinguish between blanks and untyped positions.

If the abc moves to positions to the immediate left of the def and the characters move to the right on
the line, around the end, and to the next line, the terminal is the second type. This is described by the
in capability, which signifies insert null.

Although these two attributes (one-line versus multiline insert mode, and different treatment of untyped
spaces) are logically separate, there are no known terminals whose insert mode cannot be described with
a single attribute.

Insert or Delete Character Capabilities

The terminfo database describes terminals that have an insert mode as well as terminals that send a
simple sequence to open a blank position on the current line. The following are used to describe insert/
delete character capabilities:

Item Description

dch1 Deletes a single character. The dch capability with one parameter, n, deletes n characters.

ech Replaces the specified number of characters, starting at the cursor, with blanks. The cursor
position remains unchanged.

ich1 Opens a space in a line for a character to be inserted. This sequence precedes the actual
character insertion. Terminals with a true insert mode would not use this capability.

ip Indicates post-padding needed. This is given as a number of milliseconds. Any other sequence
that may need to be sent after inserting a single character can be given in this capability.

mir Allows cursor movement while in insert mode. It is sometimes necessary to move the cursor
while in insert mode to delete characters on the same line. Some terminals may not have this
capability due to their handling of insert mode.

rmdc Exits delete mode.

rmir Ends insert mode.

rmp Indicates that padding is necessary between characters typed while not in insert mode. This
capability is used in replace mode.

smdc Enters delete mode.

smir Begins insert mode.

If you are creating a terminfo description for a terminal that requires an insert mode and also needs a
special code to precede each inserted character, then define the smir/rmr, and ich1 capabilities. The ich
capability, with the one parameter n, opens up n spaces so that n characters can be inserted.

732 AIX Version 7.1: Files Reference

Highlighting, Underlining, and Visual Bells
If your terminal has one or more kinds of display attributes, such as highlighting, underlining, and visual
bells, you can present these in a number of ways. Highlighting, such as standout mode, presents a
high-contrast, easy-to-read format that adds emphasis to error messages and other important messages.
Underlining is another method to focus attention on a particular portion of the terminal. Visual bells
include methods such as flashing the screen. The following capabilities describe highlighting, underlining,
and visual bells:

blink
Indicates terminal has blink highlighting mode.

bold
Indicates terminal has extra bright highlighting mode.

civis
Makes the cursor invisible.

cnorm
Displays a normal cursor. This capability reverses the effects of the civis and cvvis capabilities.

cvvis
Makes the cursor more visible than normal when it is not on the bottom line.

dim
Indicates the terminal has half-bright highlighting modes.

eo
Indicates that blanks erase overstrikes.

enacs
Specifies a command string that enables alternate character set mode. Some terminals cannot enter
alternate character set mode without first receiving a specific command. The enacs capability defines
the command.

flash
Indicates the terminal has a way of making the screen flash (as a bell replacement) for errors, without
moving the cursor.

invis
Indicates the terminal has blanking or invisible-text highlighting modes.

msgr
Indicates it is safe to move the cursor in standout mode. Otherwise, programs using standout mode
should exit this mode before moving the cursor or sending a new-line. Some terminals automatically
leave standout mode when they move to a new line or when the cursor is addressed.

nrrmc
Indicates that the smcup sequence does not restore the screen after a rmcup sequence is output.
This means that you cannot restore the screen to the state prior to outputting rmcup.

os
Indicates the terminal can overstrike an existing character without erasing the original. Overstriking
creates a compound character.

prot
Indicates the terminal has protected text mode. This means the terminal protects the text from
overwriting or erasing. The method of protection is terminal dependent.

rev
Indicates the terminal has reverse-video mode.

rmacs
Exits the alternate character set mode.

rmso
Exits standout mode.

rmul
Ends underlining.

Files Reference 733

sgr
Provides a sequence to set arbitrary combinations of attributes. The sgr capability can set nine
attributes. In order, these attributes are the following:

• standout
• underline
• blink
• dim
• bold
• blank
• protect
• alternate character set

To turn a mode on, set it to a nonzero value. To turn a mode off, set it to 0. The sgr capability can only
support those modes for which separate capabilities already exist on the terminal.

sgr0
Turns of all the special modes, including the alternate character set.

smacs
Enters the alternate character set mode.

smcup and rmcup
Indicate the terminal must be in a special mode when running a program that uses any of the
highlighting, underlining, or visual bell capabilities. The smcup capability enters this mode, and the
rmcup capability exits this mode.

This need arises, for example, with terminals having more than one page of memory. If the terminal
has only memory-relative cursor addressing, and not screen-relative cursor addressing, a screen-
sized window must be fixed into the terminal for cursor addressing to work properly. This is also used
when the smcup capability sets the command character to be used by the terminfo database file.

smso
Enters standout mode.

smul
Begins underlining.

uc
Underlines the current character and moves the cursor one space to the right.

ul
Indicates the terminal correctly generates underlined characters (with no special codes needed), even
though it does not overstrike.

xmc
Indicates the number of blanks left if the capability to enter or exit standout mode leaves blank
spaces on the screen.

Highlighting, Overstriking, and Underlining

You should choose one display method as standout mode and use it to highlight error messages and
other kinds of text to which you want to draw attention. For example, you could choose reverse-video plus
half-bright or reverse-video alone. The sequences to enter and exit standout mode are given by the smso
and rmso capabilities. If the code to change into or out of standout mode leaves one or even two blank
spaces on the screen, then xmc should be given to tell how many spaces are left.

You should specify the ul boolean capability if your terminal generates underlined characters by using the
underline character with no special codes. You should specify this capability even if the terminal does
not otherwise overstrike characters. For terminals where a character overstriking another leaves both
characters on the screen, specify the os capability. If the terminal can erase overstrikes with a blank, then
indicate this by specifying the eo capability.

Example of Using the sgr Capability

734 AIX Version 7.1: Files Reference

The following example demonstrates how to use the sgr capability to turn on various modes. Assume that
you must define a terminal that requires the following escape sequences to turn on various modes:

Terminfo Parameter Mode Escape Sequence

none \E[0m

p1 standout \E[0;4;7m

p2 underline \E[0;3m

p3 reverse \E[0;4m

p4 blink \E[0;5m

p5 dim \E[0;7m

p6 bold \E[0;3:4m

p7 invis \E[0;8m

p8 protect not available

p9 altcharset ^O (off) ^N (on)

Note: Each escape sequence requires a 0 to turn off other modes before turning on its own mode.

You can simulate some modes by combining others. In this example, the standout attribute escape
sequence is a combination of the reverse and dim sequences. Also, in the example the bold sequence is
a combination of the reverse and underline sequences. To combine such modes as underline and blink,
the sequence to use would be \E[0;3;5m.

You cannot simulate certain modes by combining others. For example, you cannot simulate the protect
mode. In this example, the system ignores the p8 parameter. The altcharset mode is different in that it
is either ^O or ^N, depending on whether the alternate character mode set is on or off. If all modes were
turned on, the sequence would appear as \E[0;3;4;5;7;8m^N.

Some sequences are outputted for one or more modes. For example, the ;3 is outputted when either
the p2 parameter or p6 parameter is true. If you write out the above sequences along with their
dependencies, the result is the following;

Sequence When To Output terminfo Translation

\E[0 always \E[0

;3 if p2 or p6 %?%p2%p6%|%t;3%;

;4 if p1 or p3 or p6 %?%p1%p3%|%p6%|%t;4%;

;5 if p4 %?%p4%t;5%;

;7 if p1 or p5 %?%p1%p5%|%t;7%;

;8 if p7 %?%p1%t;8%;

m always m

^N or ^O if p9 ^N, else ^O %?%p9%t^N%e^O%;

The final result would produce a sgr sequence that appears as follows:

sgr=\E[0%?%p2%p6%|%t;3%;%?%p1%p3%|%p6%|%t;4%;%?%p4%t;5;%?%p1%p5%|
%t;7%;%?%p1%t;8%;m%?%p9%t^N%e^O%;,

Keypad
If the terminal has a keypad that transmits codes when the keys are pressed, you can define this in the
terminfo entry for the terminal. It is not possible to handle terminals where the keypad only works in

Files Reference 735

local mode. If the keypad can be set to transmit or not transmit, give these codes as smkx and rmkx.
Otherwise, the keypad is assumed to always transmit.

To define the codes sent by the left-arrow, right-arrow, up-arrow, down-arrow, and home keys, use the
kcub1, kcuf1, kcud1, and khome capabilities, respectively. If there are function keys such as F0, F1, ...,
F63, the codes they send can be given as the kf0, kf1, ..., kf63 capabilities. If the first eleven keys
have labels other than the default F0 through F10, you can specify the labels with the lf0, lf1, ..., lf10
capabilities. The codes transmitted by certain other special keys can be defined with:

Item Description

kbs Backspace key.

kclr Clear-screen or erase key.

kctab Clear the tab stop in this column.

kdch1 Delete-character key.

kdl1 Delete-line key.

ked Clear to end of screen.

kel Clear to end of line.

khts Set a tab stop in this column.

kich1 Insert character or enter insert mode.

kil1 Insert line.

kind Scroll forward or down, or both.

kll Home down key (home is the lower left corner of the display, in this instance).

krmir Exit insert mode.

knp Next page.

kpp Previous page.

ktbc Clear-all-tabs key.

ri Scroll backward or up, or both.

In addition, if the keypad has a three-by-three array of keys including the four arrow keys, specify the
other five keys as ka1, ka3, kb2 kc1, and kc3. These keys are useful when you need the effects of a
three-by-three directional pad.

Strings that program function keys can be given as the pfkey, pfloc, and pfx capabilities. A string to
program the soft screen labels can be given as pln. Each of these strings takes two parameters: the
function key number to program (from 0 to 10) and the string with which to program it. Function key
numbers out of this range can program undefined keys in a terminal-dependent manner. The capabilities
differ in that pfkey causes pressing a given key to be the same as the user typing the given string,
pfloc causes the string to be executed by the terminal in local mode, and pfx causes the string to be
transmitted to the computer. The capabilities nlab, lw, and lh define the number of soft labels and the
width and height. Use smln and rmln to specify the commands for turning on and off soft labels. smln is
normally output after one or more pln sequences to ensure the change becomes visible.

Tabs and Initialization
If the terminal has hardware tabs, you can use ht capability (usually Ctrl-I) to specify the command to
advance to the next tab stop. To specify the command to move left toward the previous tab stop, use the
cbt capability. By convention, if the terminal modes indicate that operating system is expanding the tabs
rather than sending them to the terminal, programs should not use the ht or cbt capabilities even if they
are present, since the user may not have the tab stops properly set.

736 AIX Version 7.1: Files Reference

If the terminal has hardware tabs that are initially set every n spaces when the terminal is powered up, its
terminfo description should define the numeric capability it to show the number of spaces the tabs are
set to. Normally, the tput init command uses the it parameter to determine whether to set the mode for
hardware tab expansion and whether to set the tab stops. If the terminal has tab stops that can be saved
in nonvolatile memory, the terminfo description can assume that they are properly set.

Other, similar capabilities include the is1, is2, and is3 initialization strings for the terminal; the iprog
capability that specifies the terminal's initialization program, and the if capability that identifies the name
of a file containing long initialization strings. These strings are expected to set the terminal into modes
consistent with the rest of the terminfo file description. They are normally sent to the terminal by the tput
init command each time the user logs in. When the user logs in, the system does the following:

• Runs the iprog program.
• Prints is1.
• Print is2.
• Sets the margins using the mgc, smgl, and smgr capabilities.
• Sets the tabs using tbc and hts capabilities.
• Prints the if file.
• Prints is3.

You can set up special terminal modes without duplicating strings by putting the common sequences in
the is2 capability and special cases in the is1 and is3 capabilities. To specify sequences that do a harder
reset from a totally unknown state, specify the rs1, rs2, rs3, and rf capabilities that are the same as is1,
is2, is3, and the if capabilities.

A few terminals use the if and rf files. However, the recommended method is to use the initialization
and reset strings. These strings are output by the tput reset command. This command is used when the
terminal starts behaving strangely or is not responding at all. Commands are normally placed in the rs1,
rs2, rs3 and rf capabilities only if they produce annoying effects on the screen and are not necessary
when logging in. For example, the command to set the terminal into 80-column mode would normally be
part of is2, but it causes an annoying screen behavior and is not necessary since most terminals initialize
in 80-column mode.

If there are commands to set and clear tab stops, specify them using the tbc (clear all tab stops) and the
hts (set a tab stop in the current column of every row) capabilities. If a more complex sequence is needed
to set the tabs, the place the sequence in the is2 or the if capability.

The mgc capability can clear any margin. For more information about how to set and clear margins, see
Margins.

Miscellaneous Strings

If the terminal requires a character other than a null character as a pad, then specify the pad string. Only
the first character of the pad string is used. If a terminal does not have a pad character, specify the npc
capability.

If the terminal can move up or down half a line, define the hu (half-line up) and hd (half-line down)
capabilities. These capabilities are primarily useful for superscripts and subscripts on hardcopy terminals.
If a hardcopy terminal can eject to the next page (form feed), specify the as ff (usually Ctrl-L) capability.

If there is a command to repeat a given character a given number of times (to save time transmitting a
large number of identical characters), this can be indicated with the rep parameterized string. The first
parameter is the character to be repeated, and the second is the number of times to repeat it. Thus
following:

tparm(repeat_char,'x',10)

Files Reference 737

is the same as

xxxxxxxxxx

If the terminal has a settable command character, such as the Tektronix 4025, indicate this with the
cmdch capability. A prototype command character is chosen that is used in all capabilities. This character
is given in the cmdch capability to identify it. On some UNIX systems, if the CC environment variable
exists, all occurrences of the prototype character are replaced with the character in the CC variable.

Terminal descriptions that do not represent a specific kind of known terminal such as switch, dialup,
patch, and network, should include the gn (generic) capability. This capability allows programs to return
errors if they cannot talk to the terminal. The gn capability does not apply to virtual terminal descriptions
for which the escape sequences are known. If a terminal is supported by the UNIX system virtual terminal
protocol, use the vt capability to define its terminal number.

If a terminal uses xon/xoff handshaking for the flow control, its description should include the xon
capability. You should still include padding information as well so that routines can make better decisions
about costs. However, actual pad characters are not transmitted. To specify sequences to turn on and off
xon/xoff handshaking, use the smxon and rmxon capabilities. If the characters used for handshaking are
not ^S and ^Q, use the xonc and xoffc capabilities to define them.

If a terminal has a meta key that acts as a shift key to set the eighth bit of any character transmitted,
identify the key with the km capability. Otherwise, software assumes that the eighth bit is parity, and it
will usually be cleared. If strings exist to turn this meta mode on and off, they can be given as the smm
and rmm capabilities.

If a terminal has more lines of memory than fit on the screen at once, use the lm capability to define the
number of lines of memory. A value of lm#0 indicates that the number of lines is not fixed, but that there
are still more lines of memory than fit on the screen.

Media copy strings that control an auxiliary printer connected to the terminal are identified with the
following capabilities:

Item Description

mc0 Prints the contents of the screen

mc4 Turns off the printer, and

mc5 Turns on the printer. When the printer is on, all text sent to the terminal is sent to the printer. It is
undefined whether the text is also displayed on the terminal screen when the printer is on.

mc5
p

Leaves the printer on for a specified number of characters and then turns the printer off. The
parameter passed to mc5p should not exceed 255.

If the terminal screen does not display the text when the printer is on, specify the mc5i capability to
signify a silent printer. All text, including the mc4, is transparently passed to the printer while an mc5p is
in effect.

Status Lines
You can use the terminfo entry to indicate that the terminal has an extra status line that is not normally
used by software,. If the status line is viewed as an extra line below the bottom line, into which the cursor
can be addressed normally, the hs capability should be given. Special strings to go to the beginning of the
status line and to return from the status line can be given as the tsl and fsl capabilities, respectively. (The
fsl must leave the cursor position in the same place it was before the tsl. If necessary, the sc string and
the rc string can be included in tsl and fsl to get this effect.) The tsl capability takes one parameter, which
is the column number of the status line to which the cursor is to be moved.

If escape sequences and other special commands, such as tab, work while in the status line, specify the
eslok capability. A string that turns off the status line (or otherwise erases its contents) should be given as
dsl. If the terminal has commands to save and restore the position of the cursor, give them as sc and rc
capabilities. The status line is normally assumed to be the same width as the rest of the screen, such as

738 AIX Version 7.1: Files Reference

cols. If the status line is a different width (possibly because the terminal does not allow an entire line to
be loaded), the width, in columns, can be indicated with the wsl numeric parameter.

Line Graphics
If the terminal has a line drawing alternate character set, specify the mapping of glyph to character in the
acsc capability. The definition of this string is based on the alternate character set used in the DEC VT100
terminal, extended slightly with some characters from the AT&T4410v1 terminal. Use the following to
define the string:

Glyph Name vt100+ Character

arrow pointing right +

arrow pointing left ,

arrow pointing down .

solid square block 0

lantern symbol I

arrow pointing up -

diamond '

check board (stipple) a

degree symbol f

plus or minus sign g

board of squares h

lower right corner j

upper right corner k

upper left corner l

lower left corner m

plus n

scan line 1 o

horizontal line q

scan line 9 s

left tee t

right tee u

bottom tee v

top tee w

vertical line x

bullet ~

The best way to describe a new terminal's line graphics set is to add a third column to the above table
with the characters for the new terminal that would produce the appropriate glyph when the terminal is in
alternate character set mode. For example:

glyph name vt100 tty
 character character

upper left corner l R

Files Reference 739

lower left corner m F

upper right corner k T

lower right corner j G

horizontal line q ,

vertical line x .

Then, you specify the acsc capability by specifying the characters from left to right as follows:

acsc=lRmFkTjGq\,x.

Color Manipulation
There are two methods of color manipulation, the HP method and the Tektronix method. Most existing
color terminals belong to one of these two classes. The Tektronix method uses a set of N predefined
colors (usually 8) from which a user can select current foreground and background colors. Thus, the
terminal can support up to N colors mixed into N*N color-pairs that are displayed on the screen at the
same time.

The HP method restricts the user from both defining the foreground independently of the background or
the background independently of the foreground. Instead, the user must define an entire color-pair at
once. Up to M color-pairs, made from 2*M different colors, can be defined this way.

The numeric variables colors and pairs define the number of colors and color-pairs that the terminal can
display on the screen at one time. If a terminal can change the definition of a color, you should specify the
ccc capability. To change the definition of a color using the Tektronix method, use the initc capability. This
capability requires four parameters: a color number ranging from 0 to colors-1 and three Red, Green, Blue
(RGB) values ranging from 0 to 1,000.

Tektronix 4100 series terminals use a type of color notation called HLS (Hue Lightness Saturation) instead
of RGB color notation. For such terminals, you should define the hls boolean capability. The last three
arguments to the initc capability would then be HLS values where H ranges from 0 to 360 and L and S
range from 0 to 100.

Note: If a terminal can change the definitions of colors but uses a color notation different from RGB or
HLS, you must develop a mapping to either RGB or HLS.

To set current foreground and background to a given color, use the setf and setb capabilities. These
capabilities require a single parameter that specifies the number of the color. To use the HP method to
initialize a color-pair, use the initp capability. This capability requires seven parameters:

• the number of the color-pair in the range of 0 to pairs -1
• three RGB values for the foreground
• three RGB values fro the background

When you use the initc or initp capabilities, be sure you specify the values in the order red, green,
blue or hue, lightness, saturation, respectively. To make a color-pair current, use the scp capability. This
capability takes one parameter, the number of the color-pair.

Some terminals erase areas of the screen with the current background color. In such cases, define the
bce capability. The op capability contains a sequence for setting the foreground and the background
colors to what they were at the terminal start-up time. Similarly, the oc capability contains a control
sequence for setting all colors or -pairs to the values they had at the terminal start-up time.

Some color terminals substitute color for video attributes. Such video attributes should not be combined
with colors. You should pack information about these video attributes into the ncv capability. There
is a one-to-one correspondence between the nine least significant bits of that variable and the video
attributes. The following table depicts this correspondence:

740 AIX Version 7.1: Files Reference

Attribute NCV Bit Number

A_STANDOUT 0

A_UNDERLINE 1

A_REVERSE 2

A_BLINK 3

A_DIM 4

A_BOLD 5

A_INVIS 6

A_PROTECT 7

A_ALTCHARSET 8

When a particular video attribute should not be used with colors, the corresponding ncv bit should be set
to 1. Otherwise, set the bit to 0. For example, if the terminal uses colors to simulate reverse video and
bold, bits 2 and 5 should be set to 1. The resulting values for ncv will be 22.

Special Cases
Some terminals require special support by the terminfo database. These terminals are not deficient.
These terminals have hardware that may be slightly different than what the terminfo database expects of
most terminals. Some of the special cases are discussed in this section. The programmer's manual for a
terminal should provided all the information you need to code a terminfo description for the terminal.

For terminals that do not allow the ~ (tilde) character, use the hz capability.

Descriptions of terminals that ignore a line-feed character immediately after an am wrap should include
the xenl capability. Those terminals whose cursor remains on the right-most column until another
character is received rather than wrapping immediately upon receiving the right-most character, should
also use the xenl capability.

If el capability is required to get rid of standout (instead of merely writing normal text on top of it), then
you should specify xhp capability.

Terminals for which tabs change all moved characters into blanks should indicate the xt capability
(destructive tabs). This capability is interpreted to mean that it is not possible to position the cursor on
top of the pads inserted for standout mode. Instead, it is necessary to erase standout mode using delete
and insert line.

A terminal that is unable to correctly transmit the ESC (escape) or Ctrl-C characters should specify the
xsb capability, indicating that the F1 key is used for ESC and the F2 key is used for Ctrl-C.

Other specific terminal problems can be corrected by adding more capabilities.

Similar Terminals
If two terminals are very similar, you can define one as being just like the other with the use string
capability. You can also use all of the definitions from an existing description and identify exceptions.
The capabilities given before the use capability override those in the terminal type called by the use
capability. To cancel a capability place xx@ to the left of the use capability definition, where xx is the
capability. For example, the entry:

term-nl | Terminal smkx@, rmkx@, use=term

defines a terminal that does not have either the smkx or the rmkx capability, and hence does not turn
on the function key labels when in visual mode. This is useful for different terminal modes or for different
user preferences. You can specify more than one use capability.

Files Reference 741

Printer Capabilities
The terminfo database allows you to define the capabilities of printers as well as terminals. To find out
what capabilities are available for printers as well as for terminals, see the two lists under Terminal
Capabilities that the list the capabilities by variable and by capability name.

Rounding Values

Because parameterized string capabilities work only with integer values, we recommend that terminfo
designers create strings that expect rounded numeric values. Programmers should always round values to
the nearest integer before using them with a parameterized string capability.

Printer Resolution

A printer's resolution is the smallest spacing of characters it can achieve. In general, printers have
independent resolution horizontally and vertically. To determine the vertical resolution of a printer,
measure the smallest achievable distance between consecutive printing baselines. To determine
the horizontal resolution, measure the smallest achievable distance between the left-most edges of
consecutive printed, identical, characters.

The terminfo database assumes all printers are capable of printing with a uniform horizontal and vertical
resolution. The terminfo database currently interacts with printers as if they print inside a uniform matrix.
All characters are printed at fixed positions relative to each cell in the matrix. Furthermore, each cell has
the same size given by the smallest horizontal and vertical step sizes dictated by the resolution.

Many printers are capable of proportional printing where the horizontal spacing depends on the size of
the last character printed. The terminfo database does not make use of this capability, although it does
provide enough capability definitions to allow an application to simulate proportional printing.

A printer must not only be able to print characters as close together as the horizontal and vertical
resolutions suggest, but also of moving to a position that is an integral multiple of the smallest distance
away from a previous position. Thus, printed characters can be spaced apart a distance that is an integral
multiple of the smallest distance, up to the length of width of a single page.

Some printers can have different resolutions depending on different modes. In normal mode, the existing
terminfo capabilities are assumed to work on columns and lines, just like a video terminal. For example,
the old lines capability specify the length of a page in lines, and the cols capability specifies the width of
a page in columns. In micro mode many terminfo capabilities work on increments of lines and columns.
With some printers, the micro mode may exist concurrently with normal mode, so that all the capabilities
work at the same time.

Specifying Printer Resolution

You can specify a printer's printing resolution with several different capabilities. Each capability specifies
distance in a different way. The following capabilities define print resolution:

Capability Defined as

orhi steps per inch horizontally

orvi steps per inch vertically

orc steps per column

orl steps per line

When printing in normal mode, each character printed causes the printer to move to the next column,
except in special cases described later. The distance moved is the same as the per-column resolution.
Some printers cause an automatic movement to the next line when a character is printed in the rightmost
position. The vertical distance moved is the same as the per-line resolution. When printing in micro
mode, these distances can be different, and may be zero for some printers. The following specify printer
resolution automatic motion after printing:

742 AIX Version 7.1: Files Reference

Capability Defined as

orc Steps moved horizontally in normal mode.

orl Steps moved vertically in normal mode.

mcs Steps moved horizontally in micro mode.

mls Steps moved vertically in micro mode.

Some printers can print wide characters. The distance moved when a wide character is printed in normal
mode may be different from when a regular width character is printed. The distance moved when a wide
character is printed in micro mode may also be different from when a regular character is printed in micro
mode, but the differences are assumed to be related.

If the distance moved for a regular character is the same in normal mode or micro mode (mcs=ocs),
then the distance moved for a wide character is also the same in both modes. This does not mean the
normal character distance is necessarily the same as the wide character distance, just that the distances
do not change with a change from normal to micro mode. Use the widcs capability to specify the printer
resolution when the automatic motion after printing a wide character is the same in both normal or micro
mode.

If the distance moved for a regular character is different in micro mode from the distance moved in
normal mode (mcs<orc), you can assume the micro mode distance is the same for a wide character
printed in micro mode. In this case, you use the mcs capability to specify the distance moved. The printer
uses the value you specify for both regular and wide characters

A printer may use control sequences to change the number of columns per inch (the character pitch) and
to change the number of lines per inch (the line pitch). If these are used, the resolution of the printer
changes but the type of change depends on the printer.

Capability Defined as

cpi Change character pitch.

cpix If set, cpi changes orhi, otherwise the cpi capability changes the orc value.

lpi Change line pitch

lpix If set, lpi changes the orvi value, otherwise the orl value is changed.

chr Changes steps per column.

cvr Changes steps per line.

The cpi and lpi string capabilities have a single argument, the pitch in columns (or characters) and lines
per inch, respectively. The chr capability and cvr string capabilities each have a single argument, the
number of steps per column and line, respectively.

Using any of the control sequences in these strings implies a change in some of the values of the orc,
orhi, orl, and orvi capabilities. Also, the distance moved when a wide character is printed, specified by
the widcs capability, changes in relation to the orc value. The distance moved when a character is printed
in micro mode, mcs, changes similarly, with one exception: if the distance is 0 or 1, then no change is
assumed.

Programs that use the cpi, lpi, chr, or cvr capability should recalculate the printer resolution and should
recalculate other values. For more information, see Effect of Changing Printing Resolution .

The following figure, "Specification of Printer Resolution Effects of Changing the Character/Line Pitches"
shows the effects on printer resolution before and after a change.

Files Reference 743

This illustration shows the effects of changing characterpitch and line pitch on printer resolution.

Vcpi, Vlpi, Vchr, and Vcvr are the arguments used with cpi, lpi, chr, and cvr respectively. The dagger
symbol indicates the old value.

Capabilities that Cause Movement

In the following descriptions, movement refers to the motion of the current position. With video terminals
this would be the cursor; with some printers this is the carriage position. Other printers have different
equivalents. In general, the current position is where a character would be displayed if printed.

The terminfo database has string capabilities for control sequences that cause movement a number of
full columns or lines. It also has equivalent string capabilities for control sequences that cause movement
a number of small steps. The following are the string capabilities for motion:

744 AIX Version 7.1: Files Reference

Capability Description

mcub1 Move 1 step left.

mcuf1 Move 1 step right.

mcuu1 Move 1 step up.

mcud1 Move 1 step down.

mcub Move N steps left.

mcuf Move N steps right.

mcuu Move N steps up.

mcud Move N steps down.

mhpa Move N steps from the left.

mvpa Move N steps from the top.

The last six strings are each used with a single N argument.

Sometimes the motion is limited to less than the width or length of a page. Also, some printers do not
accept absolute motion to the left of the current position. The following capabilities limit motion:

Capability Description

mjump Limits the use of mcub1, mcuf1, mcuu1, and mcud1 capabilities.

maddr Limits the use of the mhpa and mvpa capabilities.

xhpa If set, the hpa and mhpa capabilities are negated.

xvpa If set, the vpa and mvpa capabilities are negated.

If a printer needs to be in micro mode for the motion capabilities to work, you can define a string
capability to contain the control sequence to enter and exit micro mode. A boolean is available for
those printers where using a carriage return causes an automatic return to normal mode. The following
capabilities are related to micro mode behavior:

Capability Description

smicm Enter micro mode.

rmicm Exit micro mode.

crxm Using the key specified by the cr capability exits micro mode.

The movement made when a character is printed in the rightmost position varies among printers. Some
make no movement, some move to the beginning of the next line, others move to the beginning of the
same line. The terminfo database has boolean capabilities that description all three cases. The sam
capability specifies that the printer automatically moves to the beginning of the same line after the
character is printed in the rightmost margin.

Some printers can be put in a mode where the normal direction of motion is reversed. This mode is
especially useful when there exists no capabilities for leftward or upward motion, you can build these
capabilities from the motion reversal capability and the rightward or downward motion capabilities. It is
best to leave it up to an application to build the leftward or upward capabilities, though, and not enter
them into to the terminfo database. This allows several reverse motions to be strung together without
intervening wasted steps that leave and reenter reverse mode. The following capabilities control entering
and exiting reverse modes:

Capability Description

slm Reverse sense of horizontal motions.

Files Reference 745

Capability Description

rlm Restore sense of horizontal motions.

sum Reverse sense of vertical motions.

rum Restore sense of vertical motions.

The following capabilities affect the screen while the horizontal motions are reversed:

Capability Description

mcub1 Move 1 step right.

mcuf1 Move 1 step left.

mcub Move N steps right.

mcuf Move N steps left.

cub1 Move 1 column right.

cuf1 Move 1 column left.

cub Move N columns right.

cuf Move N columns left.

The following capabilities affect the screen while the vertical motions are reversed:

Capability Description

mcuu1 Move 1 step down.

mcud1 Move 1 step up.

mcuu Move N steps down.

mcud Move N steps up.

cuu1 Move 1 line down.

cud1 Move 1 line up

cuu Move N lines down.

cud Move N lines up.

The reverse motion mode should not affect the mvpa and mhpa absolute motion capabilities. The
reverse vertical motion mode should, however, also reverse the action of the line wrapping that occurs
when a character is printed in the right-most position. Thus printers that have the standard terminfo
capability am defined should move to the beginning of the previous line when a character is printed on the
right-most position and the printer is in reverse-vertical motion mode.

The action when any other motion capabilities are used in reverse motion modes is not defined. Thus,
programs must exit reverse motion modes before using other motion capabilities.

Two miscellaneous capabilities complete the list of new motion capabilities, the docr and the zerom
capability. The docr capability provides a list of control characters that cause a carriage return. This
capability is useful for printers that move the current position to the beginning of a line when certain
control characters, like line-feed or form-feed are used. The zerom capability prevents automatic motion
after printing a single character. This capability suspends the motion that normally occurs after printing a
character.

Margins

The terminfo database provides two strings for setting margins on terminals: one for the left and one for
the right margin. Printers, however, have two additional margins for the top and bottom margins of each
page. Furthermore, some printers do not require using motion strings to move the current position to a

746 AIX Version 7.1: Files Reference

margin and fixing the margin there, as with existing capabilities, but require the specification of where a
margin should be regardless of the current position. Therefore, the terminfo database offers six additional
strings for defining margins with printers. The following capabilities affect margins:

Capability Definition

smgl Set left margin at the current column.

smgr Set right margin at the current column.

smgb Set the soft bottom margin at the current line.

smgt Set the soft top margin at the current line.

smgbp Set the soft bottom margin at line N.

smglp Set the soft left margin at column N.

smgrp Set the soft right margin at column N.

smgtp Set soft top margin at line N.

The last four strings are used with a single N parameter. This parameter specifies a line or column
number, where 0 is the top line and column 0 is the left-most column.

Note: Not all printers use 0 for the top line or the left-most column.

All margins can be cleared with the mgc capability.

Shadows, Italics, Wide Characters, Superscripts, and Subscripts

Five new sets of strings are used to describe the capabilities that printers have of enhancing printed text.
The following define enhanced printing capabilities:

Capability Definition

sshm Enter shadow-printing mode.

rshm Exit shadow-printing mode.

sitm Enter italicizing mode.

ritm Exit italicizing mode.

swidm Enter wide-character mode.

rwidm Exit wide-character mode.

ssupm Enter superscript mode.

rsupm Exit superscript mode.

supcs List of characters available as superscripts.

ssubm Enter subscript mode.

rsubm Exit subscript mode.

subcs List of characters available as subscripts.

If a printer requires the sshm control sequence before every character to be shadow-printed, the rshm
string is left blank. Thus, programs that find a control sequence in sshm but none in shadow printing
mode should use the control sequence specified by the sshm capability before every character to be
shadow printed. Otherwise, the control sequence should be used once before the set of characters to be
shadow-printed, followed by exiting shadow-printing mode.

The terminfo database also has a capability for printing emboldened text, the bold capability. While
shadow printing and emboldened printing are similar in that they darken the text, many printers produce
these two types of print in slightly different ways. Generally emboldened printing is done by overstriking

Files Reference 747

the same character one or more times. Shadow printing likewise usually involves overstriking, but with a
slight movement up and/or to the side so that the character is fatter.

It is assumed that enhanced printing modes are independent modes, so that it would be possible, for
instance, to shadow print italicized subscripts.

As mentioned earlier, the amount of motion automatically made after printing a wide character should be
given in the widcs capability.

If only a subset of the printable ASCII characters can be printed as superscripts or subscripts, they should
be listed in the supcs or subcs capabilities, respectively. If the ssupm or ssubm strings contain control
sequences, but the corresponding supcs or subcs strings are empty, it is assumed that all printable ASCII
characters are available as superscripts or subscripts.

Automatic motion made after printing a superscript or subscript is assumed to be the same as for regular
characters. For example, printing any of the following result in equivalent motion:

Bi Bi Bi

The boolean capability msgr describes whether an application can use motion control sequences while in
standout mode. This capability is extended to cover the enhanced printing modes added here. The mgsr
capability should be set for those printers that accept any motion control sequences without affecting
shadow, italicized, widened, superscript, or subscript printing. Conversely, if the mgsr capability is not set,
a program should end these modes before attempting any motion.

Alternate Character Sets

In addition to allowing you to define line graphics, the terminfo database also lets you define alternate
character sets. The following capabilities cover printers and terminals with multiple selectable or
definable character sets:

Capability Definition

scs Select character set N. The N parameter specifies a number from 0 to 63 that
identifies a character set.

scsd Start definition of character set N, M characters. The N parameter specifies a number
from 0 to 63 that identifies a character set and the M parameter specifies the number
of characters in the set.

defc Defines a character A to be B dots wide with a descender D. The A parameter
is the ASCII code representation for the character. The B parameter specifies the
width of the character in dots. The D parameter specifies whether the character is
a descender or not. If the character is a descender, specify a 1 for the D parameter.
Otherwise, specify a 1. This string is followed by a string of image-data bytes that
describe how the character looks.

rcsd End definition of character set N. The N parameter specifies a number from 0 to 63
that identifies a character set.

csnm List of character set names.

daisy Indicates the printer has manually changed print-wheels.

Character set 0 is the default character set. This is the set that is present after the printer is initialized.
Not every printer supports 64 character sets. If you specify a set that a printer does not support, the
tparm subroutine returns a null result.

If your application must define a character before using it, use the scsd control sequence before defining
the character set, and the rcsd after. If you specify an invalid character set for either of these capabilities,
the tparm subroutine returns a null resolution. If your application must select a character set after it
is defined, the scs control sequence should follow the rcsd control sequence. By examining the results
of using each of the scs, scsd, and rcsd strings with a character set number in a call to the tparm
subroutine, a program can determine which of the three are needed.

748 AIX Version 7.1: Files Reference

Between use of the scsd and rcsd strings, the defc string should be used to define each character. To
print any character on printers defined in the terminfo database, the ASCII cod is sent to the printer. This
is true for characters in an alternate set as well as normal characters. Thus, the definition of a character
includes the ASCII code that represents it. In addition, the width of the character includes the ASCII
code that represents it. In addition, the width of the character in dots is given, along with tan indication
of whether the character is a descender. A descender is a character whose shape extends below the
baseline, for example the character g is a descender. The width of the character is dots also indicates the
number of image-data bytes that will follow the defc string. These image-data bytes indicate where in a
dot-matrix pattern ink should be applied to draw the character. The number of these bytes and their form
are defined below under Dot-Mapped Graphics.

It is easiest for the creator of terminfo entries to refer to each character set by number. However, these
numbers will be meaningless to the application developer. The csnm capability alleviates this problem by
providing names for each number.

When used with a character set number in a call to the tparm subroutine, the csnm capability produces
the equivalent name. Use these names as a references only. No naming convention is implied, although
anyone who creates a terminfo entry for a printer should use names consistent with the names found
in user documents for the printer. Application developers should allow a user to specify a character set
by number (leaving it up to the user to examine the csnm string to determine the correct number), or by
name, where the application examines the csnm capability to determine the corresponding character set
number.

The alternate character set capabilities are likely to be used only with dot-matrix printers. If they are
not available, do not define these strings. For printers that have manually changed print-wheels or font
cartridges, set the boolean daisy capability.

Dot-Matrix Graphics

Dot-matrix printers typically have the capability to reproduce raster-graphics images. Three new numeric
capabilities and three new string capabilities can help a program draw raster-graphic images independent
of the type of dot-matrix printer or the number of pins or dots the printer can handle at one time. The
dot-matrix capabilities are as follows:

Capability Definition

npins Number of pins N in the print-head. The N parameter specifies the number of pins.

spinv Spacing of pins vertically in pins per inch.

spinh Spacing of dots horizontally in dots per inch.

porder Matches software bits to print-head pins.

sbim Start printing bit image graphics, B bits wide. The B value specifies the width of the
image in dots.

rbim End printing bit image graphics.

The model of dot-matrix or raster-graphics that the terminfo database presents is similar to the
technique used for most dot-matrix printers. Each pass of the printer's print-head is assumed to produce
a dot-matrix that is N dots high and B dots wide. This is typically a wide, squat, rectangle of dots. The
height of this rectangle in dots varies from one printer to the next. This is given in the npins numeric
capability. The size of the rectangle in fractions of an inch will also vary. The size can be deduced from
the spinv and spinh numeric capabilities. With these three values an application can divide a complete
raster-graphics image into several horizontal strips, perhaps interpolating to account for different dot
spacing vertically and horizontally.

The sbim and rbim capabilities are used to start and end a dot-matrix image, respectively. The sbim
capability is used with a single argument that gives the width of the dot-matrix in dots. A sequence of
image-data bytes are sent to the printer after the sbim capability and before the rbim string. The number
of bytes is an integral multiple of the width of the dot-matrix. The multiple and the form of each byte is
determined by the porder capability is described below.

Files Reference 749

The porder capability is a comma-separated list of pin numbers. The position of each pin number in the
list corresponds to a bit in a data byte. The pins are numbered consecutively from 1 to npins, with 1 being
the top pin. The term pin is used loosely here. Ink-jet dot matrix printers don't have pins but they do have
an equivalent method of applying a single dot of ink to paper. The bit positions in porder are in groups of
8, with the first position in each group the most significant bit and the last position the least significant bit.

The image-data bytes are computed from the dot-matrix image, mapping vertical dot positions in each
print-head pass into eight-bit bytes, using a 1 bit where ink should be applied and 0 where no ink should
be applied. If a position is skipped in porder, a 0 bit is used. There must be a multiple of 8 bit positions
used or skipped in porder. If not, 0 bits are used to fill the last byte in the least significant bits.

Effect of Changing Printing Resolution

If the control sequences to change the character pitch or the line pitch are used, the pin or dot spacing
may change. The following capabilities change pitch on dot-matrix graphics:

Capabilities Definition

cpi Change the character pitch.

cpix If set, cpi changes spinh.

lpi Change line pitch.

lpix If set, lpi changes spinv.

Programs that use cpi or lpi should recalculate the dot spacing. The following figure "Dot-Matrix Graphics
Effects of Changing the Character/Line Pitches" shows graphics both before and after a change in pitch.

Figure 1. Dot-Matrix Graphics

The orhi' and orhi values are the values of the horizontal resolution in steps per inch, before using cpi
and after using cpi, respectively. Likewise, orvi' and orvi are the values of the vertical resolution in steps
per inch, before using lpi and after using lpi, respectively. Thus, the changes in the dots per inch for
dot-matrix graphics follow the changes in steps per inch for printer resolution.

750 AIX Version 7.1: Files Reference

Print Quality

Many dot-matrix printers can alter the dot spacing of printed text to produce near letter-quality printing
or draft-quality printing. Usually, it is important to be able to choose one or the other because the rate
of printing generally falls off as the quality improves. The capabilities that specify print quality are the
following:

Capability Definition

snlq Set near-letter quality print.

snrmq Set normal quality print.

sdrfq Set draft-quality print.

The capabilities are listed in decreasing levels of quality. If a printer does not have all three levels, one or
two of the strings should be left blank as appropriate.

Printing Rate and Buffer Size

Because there is no standard protocol that synchronizes a printer with a program, and because modern
printers can buffer data before printing it, a program generally cannot determine at any time what has
printed. Two new numeric capabilities can help a program estimate what has printed, the cps and bufsz
capabilities.

The cps capability specifies the nominal print rate in characters per second. The cps capability is the
nominal or average rate at which the printer prints characters. If this value is not given, estimate the rate
at one-tenth the prevailing baud rate.

The bufsz capability defines a terminal's buffer capacity in characters. The bufsz value is the maximum
number of subsequent characters buffered before the guaranteed printing of an earlier character,
assuming proper flow control was used. If this value is not given it is assumed that the printer does
not buffer characters, but prints them as they are received.

As an example, if a printer has a 1000-character buffer, then sending the letter "a" followed by 1000
additional characters is guaranteed to cause the letter "a" to print. If the same printer prints at the rate of
100 characters per second, then it should take 10 seconds to print all the characters in the buffer, less if
the buffer is not full. By keeping track of the characters sent to a printer, and knowing the print rate and
buffer size, a program can synchronize itself with the printer.

Most printer manufacturers advertise the maximum print rate, not the nominal print rate. A good way to
get a value to put in for cps is to generate a few pages of text, count the number of printable characters,
then see how long it takes to print the text.

Applications that use these values should recognize the variability in the print rate. Straight text, in short
lines, with no embedded control sequences will probably print at close to the advertised print rate and
probably faster than the rate in cps. Graphics data with a lot of control sequences, or very long lines of
text, will print at well below the advertised rate and below the rate in cps. If the application is using cps
to decide how long it should take a printer to print a block of text, the application should pad the estimate.
If the application is using cps to decide how much text has already been printed, it should shrink the
estimate. The application errs in favor of the user, who wants, above all, to see all the output in its correct
place.

Database File Names
Compiled terminfo file descriptions are placed in subdirectories under the /usr/share/lib/terminfo
directory to avoid performing linear searches through a single directory containing all of the terminfo
file description files. A given description file is stored in the /usr/share/lib/terminfo/c/name file, where
name is the name of the terminal, and c is the first letter of the terminal name. For example, the compiled
description for the terminal term4-nl can be found in the file /usr/share/lib/terminfo/t/term4-nl. You
can create synonyms for the same terminal by making multiple links to the same compiled file. (See the ln
command on how to create multiple links to a file.)

Files Reference 751

Example

The following terminfo entry describes a terminal:

hft|High Function Terminal,
 cr=^M, cud1=\E[B, ind=\E[S, bel=^G, il1=\E[L, am,
 cub1=^H, ed=\E[J, el=\E[K, clear=\E[H\E[J,
 cup=\E[%ip1%d;%p2%dH, cols#80, lines=#25,
 dch1=\E[P, dl1=\E[M, home=\E[H,
 ich=\E[%p1%d@, ich1=\E[@, smir=\E[6, rmir=\E6,
 bold=\E[1m, rev=\E[7m, blink=\E[5m, invis=\E[8m, sgr0=\E[0m,
 sgr=\E[%?%p1%t7;%;%?%p2%t4;%;%?%p3%t7;%;%?%p4%t5;%;%?%p6t1;%;m,
 kcuu1=\E[A, kcud1=\E[B, kcub1=\E[D,
 kcuf1=\E[C, khome=\E[H, kbs=^H,
 cuf1=\E[C, ht=^I, cuu1=\E[A, xon,
 rmul1=\E[m, smul=\E[4m, rmso=\E[m, smso=\E[7m,
 kpp=\E[150q, knp=\E[154q,
 kf1=\E[001q, kf2=\E[002q, kf3=\E[003q, kf4=\E[004q,
 kf5=\E[005q, kf6=\E[006q, kf7=\E[007q, kf8=\E[008q,
 kf9=\E[009q, kf10=\E[010q,
 bw, eo, it#8, ms,
 ch=\E%i%p1%dG, ech=\E[%p15dx,
 kdch1=\E[P, kind=\E[151q, kich1=\E[139q, kimr=\E[41,
 kn=^M, ko=^I, ktab=\E[Z, kri=\E[155q,
 cub=\E[%p1%dD, cuf=\E[%p1%dC, indn=\E[%p1dS, rin=\E[%p1%dT,
 ri=\E[T, cuu=\E[%p1%dA,
 box1=332\304\277\263\331\300\302\264\301\303\305,
 box2=311\315\273\272\274\310\313\271\312\314\316,
 batt2=md,
 colf0=\E[30m, colf1=\E[31m, colf2=\E[32m, colf3=\E[33m,
 colf4=\E[34m, colf5=\E[35m, colf6=\E[36m, colf7=\E[37m,
 colb0=\E[40m, colb1=\E[41m, colb2=\E[42m, colb3=\E[43m,
 colb4=\E[44m, colb5=\E[45m, colb6=\E[46m, colb7=\E[47m,

The following terminfo entry describes a terminal:

ibm3161|ibm3163|wy60-316X|wyse60-316X|IBM 3161/3163 display,
 am, mir, cr=^M, ind=^J,
 cols#80, it#8, lines#24,
kich1=\EP\040\010,
 ed=\EJ, el=\EI, cup=\EY%p1%' '%+%c%p2%'
'%+%c,
 clear=\EH\EJ, dch1=\EQ, dl1=\EO, cud1=\EB,
 cub1=\ED, blink=\E4D, bold=\E4H,
sgr0=\E4@\E<@,
 invis=\E4P, rev=\E4A, cuf1=\EC,
rmso=\E4@,
 smso=\E4A, rmul=\E4@, cuu1=\EA,
smul=\E4B,
 sgr=\E4%'@'%?%p1%t%'A'%|%;
 %?%p2%t%'B'%|%;
 %?%p3%t%'A'%|%;
 %?%p4%t%'D'%|%;
 %?%p5%t%'@'%|%;
 %?%p6%t%'H'%|%;
 %?%p7%t%'P'%|%;%c
 %?%p9%t\E>A%e\E<@%;,
 box1=\354\361\353\370\352\355\367\365\366\364\356,
 box2=\354\361\353\370\352\355\367\365\366\364\356,
batt2=md,
 ktbc=\E\0401, kil1=\EN, kbs=^H,
kclr=\EL^M,
 kcud1=\EB, kdch1=\EQ, kel=\EI,
khome=\EH,
 kcub1=\ED, kdl1=\EO, ktab=^I, kcbt=\E2,
 kcuf1=\EC, ked=\EJ, kctab=\E1, khts=\E0,
 kcuu1=\EA, knl=\r, kact=\E8\r,
 kf1=\Ea\r, kf2=\Eb\r, kf3=\Ec\r,
kf4=\Ed\r,
 kf5=\Ee\r, kf6=\Ef\r, kf7=\Eg\r,
kf8=\Eh\r,
 kf9=\Ei\r, kf10=\Ej\r, kf11=\Ek\r,
kf12=\El\r,
 kf13=\E!a\r, kf14=\E!b\r, kf15=\E!c\r,
kf16=\E!d\r,
 kf17=\E!e\r, kf18=\E!f\r, kf19=\E!g\r,
kf20=\E!h\r,

752 AIX Version 7.1: Files Reference

 kf21=\E!i\r, kf22=\E!j\r, kf23=\E!k\r,
kf24=\E!l\r,
 smcup=\E>A, rmcup=\E>A, msgr,
 home=\EH, bel=^G, mc5=^P^R, mc4=^P^T,

Files

Item Description

/usr/share/lib/terminfo/?/* Compiled terminal capability database.

Related reference
vgrindefs File Format
Related information
captoinfo command
infocmp command
tic command
printf, fprintf, or sprintf subroutine
Curses Overview for Programming

.tiprc File Format for tip

Purpose
Provides initial settings of variables for the tip command.

Description
The .tiprc file allows you to initialize variable settings for the tip command. When first invoked the tip
command searches the user's home directory (defined by the $HOME environment variable) for a .tiprc
file. If the file is present, the tip command sets the tip variables according to instructions in the .tiprc file.

The tip command uses several different types of variables: numeric, string, character, or Boolean. A
Boolean variable can be toggled by putting the variable name in the .tiprc file, or it can be reset by putting
an ! (exclamation point) in front of the variable name. Other types of variables are set by following the
variable name with an = (equal sign) and the new value of the variable.

You can use the -v flag of the tip command to see the variable settings as they are made. Also, you can
use the ~s escape signal to change variables while the tip command is running.

Examples
Following is a sample .tiprc file:

be
ba=9600
!echocheck

This file toggles the beautify (be) variable, sets the baudrate (ba) variable to 9600, and resets the
echocheck variable to the default setting.

Files

Item Description

$HOME/.tiprc Specifies the complete path name of the .tiprc file.

Files Reference 753

Related information
tip command
Communication with connected systems using the tip command

trcfmt File Format

Purpose
Stores trace templates.

Description
The trcrpt command, which formats trace reports, uses trace templates to determine how the data
contained in trace entries should be formatted. All trace templates are stored in the master template
file, /etc/trcfmt. Trace templates identify the trace hook ID, the version and release number, the
indentation level, the event label, and data description fields. The data description fields contain
formatting information for the trace entry data and can be repeated as many times as is necessary to
format all of the trace data in the trace entry.

Modifying this File

The trcfmt file should only be modified using the trcupdate command. Trace hooks with values less than
010 are for internal use by the trace facilities. If these hooks are changed, the performance of trace, in
particular trcrpt, is unpredictable.

Trace Entries
The data that is recorded for each traced event consists of the following elements in the following order:

• A hook word containing a trace hook identifier and the hook type or size.
• A variable number of words of trace data.
• A timestamp.

The organization of the hook word depends on whether the application that produces the hook word is a
32-bit application or a 64-bit application.

32-bit trace hook words:

Item Description

HookWord The first two bytes of a HookWord contain the HookID and HookType. The contents of the
second two bytes depends on the value of the HookType.

HookID The HookID is represented in the trace entry as 3 hexadecimal digits. For user programs,
the hook id may be a value ranging from 0x010 to 0x0FF. HookIDs are defined in
the /usr/include/sys/trchkid.h file.

754 AIX Version 7.1: Files Reference

Item Description

HookType The HookType is a 4-bit value that identifies the format of the remainder of the trace entry.
You specify the HookType when you record the trace entry.
Value

Trace Entry Format
1

The trace entry consists of only the HookWord. The third and fourth bytes of the
HookWord contain trace data. Trace entries of this type are recorded using the trchook
or utrchook subroutine.

2
The trace entry consists of the HookWord and one additional word of trace data. The
third and fourth bytes of the HookWord contain trace data. Trace entries of this type
are recorded using the trchook or utrchook subroutine.

6
The trace entry consists of the HookWord and up to five additional words of trace data.
The third and fourth bytes of the HookWord contain trace data. Trace entries of this
type are recorded using the trchook or utrchook subroutine.

8
The trace entry consists of the HookWord and a data word followed by a variable
number of bytes of trace data and a timestamp. The third and fourth bytes of the
HookWord contain the number of bytes of trace data which follows the trace word.
Trace entries of this type are recorded using the trcgent subroutine or the trcgenkt
kernel service.

9
The trace entry consists of the HookWord and a timestamp. The third and fourth bytes
of the HookWord contain trace data. Trace entries of this type are recorded using the
trchook or utrchook subroutine.

A
The trace entry consists of the HookWord, one additional word of trace data, and
a timestamp. The third and fourth bytes of the HookWord contain trace data. Trace
entries of this type are recorded using the trchook or utrchook subroutine.

E
The trace entry consists of the HookWord, up to five additional words of trace data,
and a timestamp. The third and fourth bytes of the HookWord contain trace data. Trace
entries of this type are recorded using the trchook or utrchook subroutine.

0
The trace entry consists of the HookWord and a data word followed by a variable
number of bytes of trace data. The third and fourth bytes of the HookWord contain the
number of bytes of trace data which follows the trace word. Trace entries of this type
are recorded using the trcgen subroutine or the trcgenk kernel service.

64-bit trace hook words:

Item Description

HookWord The first two bytes of a HookWord contain internal trace meta-data. The second two bytes
contain the size of the trace entry minus the hook word and any internal data (such as
timestamps or CPU ID). The third two bytes contain the hook ID that can use the full two
bytes. A 12-bit hook ID valid in a 32-bit application of the form 0xhhh is equivalent to the
16-bit hook ID 0xhhh0 in a 64-bit application. The last two bytes represent the sub-hook
ID.

Files Reference 755

Item Description

HookID The HookID is represented in the trace entry as three or four hexadecimal digits. Four-digit
hook IDs are valid only in AIX 6.1 and later releases. For releases earlier than AIX 6.1, the
hook ID can be a value ranging from 0x010 to 0xFFF. For user programs in AIX 6.1 and
later releases, the hook ID can be a value ranging from 0x0100 to 0xFFFF. However, if
the first hexadecimal digit is zero, the last digit must also be zero. For example, HookID
0AA0 is legal, but 0AAA is not. Many of the AIX system hook IDs are defined in the /usr/
include/sys/trchkid.h file.

Data Pointer

The DATA POINTER is a pointer to the current position in the trace entry. The DATA POINTER is changed
by the trcrpt as it interprets the template and formats the trace entry. The initial position of the DATA
POINTER is the third byte of the HookWord for HookTypes 1, 9, 2, A, 6, and E and the first byte
after the HookWord for HookTypes 0 and 8.

Trace Data Formatting
Indentation Level

The formatted trace data is aligned in columns corresponding to the source of the trace event. This is
identified in each template using the L=X descriptor. The possible values of the L=X command are as
follows:

Item Description

L=APPL Outputs the trace data in the APPL (application) column.

L=SVC Outputs the trace data in the SVC (system call) column.

L=KERN Outputs the trace data in the KERN (kernel) column.

L=INT Outputs the trace data in the INT (interrupt)column.

Continuation Character

A \ (backslash) at the end of a line must be used to continue a template on the next line.

Labels or Text Strings

Individual strings (or labels) can be separated by any number of spaces or tabs, but all excess spacing is
compressed to one blank on the trace report unless other format structures are put into effect. Labels are
enclosed in double quotes (" ").

Ite
m

Description

\n Outputs to a new line. Data on the new line is left-justified according to the value set in the
INDENTATION LEVEL.

\t Inserts a tab. Tabs are expanded to spaces, using a fixed tabstop separation of 8.

Format Codes
DATA POINTER Position Format Codes

Item Description

Gm.n Sets DATA POINTER to byte.bit location m.n.

Om.n Advances DATA POINTER by m.n byte.bits.

Rm Decrements DATA POINTER by m bytes.

756 AIX Version 7.1: Files Reference

Output Format Codes

Item Description

Bm.n Sends output in Binary format where m is the length of the data in bytes and n is the
length in bits. Unlike the other printing format codes, the DATA POINTER can be bit
aligned and is not rounded up to the next byte boundary.

D2, D4 , D8 Converts data to signed decimal format. The length of the data is two, four, or eight
bytes, and the DATA POINTER is advanced by the same number of bytes.

F4 Converts data to C type 'float' floating point format. The length of the data is 4 bytes,
and the DATA POINTER is advanced by 4 bytes.

F8 Converts data to C type 'double' floating point format. The length of the data is 8 bytes,
and the DATA POINTER is advanced by 8 bytes.

S1, S2, S4 Left-justifies ASCII strings. The length of the string is in the first byte (half-word, word)
of the data. The length of the string does not include this byte.

T4 Outputs the next 4 bytes as a date and time string.

U2, U4 , U8 Converts data to unsigned decimal format. The length of the data is two, four, or eight
bytes, and the DATA POINTER is advanced by the same number of bytes.

Xm Converts data to hexadecimal format. The DATA POINTER is advanced by m bytes.

Interpreter Format Codes

Item Description

E1, E2, E4 Outputs the next byte (half_word, word) as an 'errno' value, replacing the numeric code
with the corresponding #define name in the /usr/include/sys/errno.h file. The DATA
POINTER is advanced by 1, 2, or 4 bytes.

P4 Uses the next word as a process ID, and outputs the pathname of the executable with
that process ID. Process IDs and their pathnames are acquired by the trace command
at the start of a trace and by the trcrpt command via a special EXEC tracehook. The
DATA POINTER is advanced by 4 bytes.

Switch Statements
A SWITCH statement is a format code followed by a comma. Each CASE entry of the SWITCH statement
consists of:

1. A 'MatchValue' with a type (usually numeric) corresponding to the format code.
2. A simple 'String' or a new 'Descriptor' bounded by braces. A descriptor is a sequence of format codes,

strings, switches, and loops.
3. A comma delimiter.

The switch is terminated by a CASE entry without a comma delimiter. The CASE entry is selected as the
first entry whose MatchValue is equal to the expansion of the format code. The special matchvalue '*' is a
wildcard and matches anything.

The DATA POINTER is advanced by the format code.

LOOP Statements
Loops are used to output binary buffers of data; therefore, the descriptor for a LOOP is usually X0 or X1.
The syntax of a loop is LOOP format_code {descriptor}. The descriptor is executed N times, where N is the
numeric value of the format code.

The DATA POINTER is advanced by the format code and by the operations of the descriptor.

Files Reference 757

Macros
Macros are temporary variables that work like shell variables. They are assigned a value with the syntax:

{{ $xxx = EXPR }}

where EXPR is a combination of format codes, macros, and constants. The operators + (addition), -
(subtraction), / (division), and * (multiplication). are permissible within macros.

Predefined Macros

Macro Name Description

$BASEPOINTER Marks the starting offset into an event. The default is 0, but the actual offset is the
sum of the values of DATA POINTER and BASE_POINTER. It is used with template
subroutines when the parts of an event have same structure and can be printed by
same template but may have different starting points into an event.

$BREAK Ends the current trace event.

$D1 - $D5 Dataword 1 through dataword 5. The DATA POINTER is not moved.

$DATAPOINTER Activates the DATA POINTER. It can be set and manipulated like other user macros.

$DEFAULT Uses the DEFAULT template 008.

$ERROR Outputs an error message to the report and exit from the template after the current
descriptor is processed. The error message supplies the logfile, the logfile offset of
the start of that event, and the trace ID.

$EXECPATH Outputs the pathname of the executable for the current process.

$HB Number of bytes in trcgen subroutine variable length buffer. This is also equal to
the 16-bit hook data.

$HD Hook data (lower 16 bits).

$HT Allows for multiple, different trchook subroutine call with the same template. The
return values of the $HT macro are:
Value

Description
1

hook word
2

hook word and one additional word
6

hook word and up to five data words
9

hook word and a timestamp
A

hook word, one data word, and a timestamp
E

hook word, up to five data words, and a timestamp.

The DATA POINTER is not changed.

$L1-$L2 Long (64-bit) dataword 1, or 2. For example, $L1 is the concatination of $d1 and
$d2. The 64-bit values would most likely have been traced with the TRCHK64L1 or
TRCHK64L2 macros. No change to data pointer.

$LOGID0 Current logfile offset at the start of the event.

$LOGIDX Current logfile offset into this event.

758 AIX Version 7.1: Files Reference

Macro Name Description

$LOGFILE Returns the name of the logfile being processed.

$MCR0, $MCR1,
$MCRA

Machine MCR registers 0, 1, and A.

$PID Outputs the current process ID.

$PMC1 - $PMC8 Machine PMC registers 1 through 8.

$PURR Machine PURR register.

$RELLINENO Line number for this event. The first line starts at 1.

$SKIP Ends the current trace event without printing.

$STOP Immediately ends a trace report.

$SVC Outputs the name of the current system call.

$TID Outputs the current kernel thread ID.

$TRACEID Returns the trace ID of the current event.

Built-in Macros

The built-in macros are:

Item Description

buftofilename (bp) Looks up filename by buf struct.

fdinstall () Installs the file descriptor and the current v-node
from lookuppn as a file_descriptor/v-node pair for
this process ID.

fdtofilename () Looks up the filename for the given file descriptor for
this process ID. If the filename is not found, nothing
is output.

flih () Advances the Interrupt Depth.

lookuppninstall1 Installs the filename as the current file with the
trcrpt command.

lookuppninstall2 Install the v-node as the current v-node. It also
installs the current_v-node/current_file as a v-node/
filename par.

pfsrdwrinstall1 (vp) Sets the current v-node of this process to vp.

pfsrdwrinstall2 (VA.S, count) Creates a virtual address/v-node structure to be
filled in be VMM hooks if a page fault occurs.

resume () Decrements the Interrupt Depth.

setdelim () Inhibits spaces between characters.

slihlookup () Looks up the second level interrupt handler.

sidtofilename (sid) Looks up filename by segment ID.

vmbufinstall () Looks up the v-node of the file through the virtual
page/sid and install the v-node and buf as a v-
node/bp pair. This will be used by lvm on down.

v-nodetofilename (vp) Looks up filenames by v-node.

vpagetofilename (vpage, sid) Looks up filenames by vpage and segment ID.

Files Reference 759

Files

Item Description

/etc/trcfmt Stores trace templates.

/usr/include/sys/trchkid.h Defines hook identifiers.

/usr/include/sys/trcmacros.h Defines trace macros.

Related information
trcupdate command
trcgen subroutine
trchook subroutine
Trace Facility Overview

troff File Format

Purpose
Describes the output language from the troff command.

Description
The device-independent troff file format outputs a pure ASCII description of a typeset document. The
description specifies the typesetting device, the fonts, and the point sizes of characters to be used, as
well as the position of each character on the page.

A list of all the legal commands follows. Most numbers are denoted by the Number variable and are ASCII
strings. Strings inside [] (brackets) are optional. The troff command can produce them, but they are
not required for the specification of the language. The \n command character has the standard meaning
of new-line character. Between commands, white space has no meaning. White-space characters are
spaces and new lines.

The following are the legal commands:

Item Description

sNumber Specifies the point size of the characters to be generated.

fNumber Indicates the font is to be mounted in the position specified by the
Number variable value, which ranges from 0 (zero) to the highest font
currently mounted. The 0 (zero) value is a special position, called by
the troff command, but not directly accessible by the user. Fonts are
normally mounted starting at position 1 (one).

cCharacter Generates the specified character at the current location on the
page; the value specified by the Character variable is a single-byte
character.

CXYZ Generates the XYZ special character whose name is delimited by
white space. The name is one of the special characters legal for the
typesetting device as specified in the DESC file. This file resides in a
directory specific to the typesetting device. For instruction, see troff
Font File Format and the /usr/lib/font/devDevice directory.

HNumber Changes the horizontal position on the page to the number specified.
The number is in basic units of motions as specified by the DESC file.
This is an absolute goto statement.

hNumber Adds the number specified to the current horizontal position. This is
a relative goto statement.

760 AIX Version 7.1: Files Reference

Item Description

VNumber Changes the vertical position on the page to the number specified
(down is positive).

vNumber Adds the number specified to the current vertical position.

NumberCharacter This is a two-digit number followed by an single-byte character. The
meaning is a combination of the hNumber command followed by the
cCharacter command. The specified number is added to the current
horizontal position and then the single-byte character, specified by
the Character variable, is produced. This is the most common form of
character specification.

nB A Indicates that the end of a line has been reached. No action is
required, though by convention the horizontal position is set to 0
(zero). The troff command specifies a resetting of the x,y coordinates
on the page before printing more characters. The first number, B, is
the amount of space before the line and the second number, A, the
amount of space after the line. The second number is delimited by
white space.

w A w command appears between words of the input document. No
action is required. It is included so that one device can be emulated
more easily on another device.

pNumber Begins a new page. The new page number is included in this
command. The vertical position on the page should be set to 0 (zero).

#...\n Initiates a comment line with the # (pound sign).

Dl X Y Draws a line from the current position to that specified by the X,Y
variables.

Dc D\n Draws a circle of the diameter specified by the D variable with the
leftmost edge being at the current location (X,Y). The current location
after drawing the circle is X+D,Y, the rightmost edge of the circle.

DeDX DY\n Draws an ellipse with the specified axes. The DX variable is the axis
in the X direction and the DY variable is the axis in the Y direction.
The leftmost edge of the ellipse is at the current location. After
drawing the ellipse, the current location is X+DX,Y.

Da DH1 DV1 DH2 DV2\n Draws a counterclockwise arc from the current position to the
DH1I+DH2, DV1+DV2 variable that has a center of DH1, DV1 from
the current position. The current location after drawing the arc is at
its end.

D~ X Y X Y ...\n Draws a spline curve (wiggly line) between each of the X,Y coordinate
pairs starting at the current location. The final location is the final X,Y
pair of the list.

x P[aper] PaperSize W L\n Specifies the name of the paper size to be printed. Valid paper sizes
are Letter, Legal, A4, B5, Executive, and A5, where W and L are the
paper width and length in machine units.

x i[nit]\n Initializes the typesetting device. The actions required are dependent
on the device. An initializing command always occurs before any
output generation is attempted.

x T Device\n Specifies the name of the typesetter with the Device variable. This
is the same as the variable to the -T flag. Information about the
typesetter is found in the /usr/lib/font/devDevice directory.

Files Reference 761

Item Description

x r[es] N H V\n Specifies the resolution of the typesetting device in increments per
inch with the N variable. The H variable specifies units of basic
increments that horizontal motion will take place. The V variable
indicates the units of basic increments for vertical motion.

x p[ause]\n Pauses the process by causing the current page to finish but does not
relinquish the typesetter.

x s[top]\n Stops the process by causing the current page to finish and
then relinquishes the typesetter. Performs any shutdown and
bookkeeping procedures required.

x t[railer]\n Generates a trailer. On some devices, no operation is performed.

x f[ont] N Font\n Loads the specified font into position N.

x H[eight] N\n Sets the character height to N points. This causes the letters to be
elongated or shortened. It does not affect the width of a letter. Not
all typesetters can do this.

x S[lant] N\n Sets the slant to N degrees. Only some typesetters can do this and
not all angles are supported.

x c[codeset] CS\n Switch to codeset CS. For example:

x codeset ISO8859-1

The following commands are effective on multi-byte characters.

Item Description

QC1C2 Outputs the character specified by the 2 bytes specified by the C1 and C2 variables. The
high-order bits can be set in these bytes.

RC1C2C3 Outputs the character specified by the three bytes of the C1, C2, and C3 parameters. The
high-order bits can be set in these bytes.

SC1C2C3C4 Outputs the character specified by the four bytes of the C1, C2, C3, and C4 parameters.
The high-order bits can be set in these bytes.

Files

Item Description

/usr/lib/font/devDevice Contains the DESC file and phototypesetter-specific files.

Related reference
troff Font File Format
Related information
International character support in text formatting
troff command

troff Font File Format

Purpose
Specifies description files for the troff command.

762 AIX Version 7.1: Files Reference

Description
For each phototypesetter that the troff command supports and that is available on your system, there is a
directory that contains files describing the phototypesetter and its fonts. This directory is named /usr/lib/
font/devName, where the Name variable specifies the name of the phototypesetter.

The ASCII DESC file in the /usr/lib/font/devName directory within the troff command source directory
describes the characteristics of the phototypesetter specified by the Name variable. A binary version of
this file is found in the /usr/lib/font/devName/DESC.out file. Each line of this ASCII file starts with a
word that identifies a characteristic, followed by appropriate specifiers. Blank lines and lines beginning
with the # (pound sign) are ignored.

For many typesetters, downloaded fonts are supported in a general fashion. The bitmaps for these fonts
are stored in the /usr/lib/font/devName/bitmaps directory. Each font size pair is stored in a file with a
name of the form Fontname-Size.pk. For example:

B-24.pk

These bitmaps are stored in the PK packed-font format used by TeX and its post-processors. These
bitmaps are easily generated form readily available programs, such as METAFONT, or easily converted
from other forms.

In addition to the bitmap files, a troff font file, as described here, is required for each font typeface. In the
unitwidth field of this file, the width of each character bitmap in device units is given.

The legal lines for the DESC file are:

Item Description

res Number Resolution of device in basic increments per inch.

unitwidth Number Point size in which all width tables in the font description
files are given. The troff command automatically scales the
widths from the unitwidth size to the point size with which it
is working.

sizescale Number Scaling for fractional point sizes. The value of the Number
variable is 1. The sizescale line is not currently used.

paperwidth Number Width of paper in basic increments.

paperlength Number Length of paper in basic increments.

biggestfont Number Maximum number of characters in a font.

sizes Number1 Number2... List of point sizes available on typesetter, ended by 0.

fonts NumberName... Number of initial fonts, followed by the ASCII names of the
fonts. For example:

fonts 4 R I B S

Files Reference 763

Item Description

codeset codesetName Code set for the particular printer or typesetter, where
CodesetName is a valid code set name for use with the iconv
command. The specified code set is used to define character
entries in the charset section of font description files. For
example:

codeset ISO8859-1

The troff command uses the specified CodesetName and the
code set implied by the current locale to determine if code
set conversions are necessary for the input characters. The
iconv function is used to perform the code set conversion if
necessary.

charset Last keyword in the file is on a line by itself. Following it is
the list of special character names for this device. Names are
separated by a space or a new line. The list can be as long as
necessary. Names not in this list are not allowed in the font
description files.

hor Number Smallest unit of horizontal motion.

vert Number Smallest unit of vertical motion.

The hor and vert lines describe the relationships between
motions in the horizontal and vertical directions. For example,
if the device moves in single basic increments in both
directions, both the hor and vert lines have values of 1. If
vertical motion occurs only in multiples of two basic units and
horizontal motion occurs only in one basic unit, vert is 2 and
hor is 1.

For each font supported by the phototypesetter, there is also an ASCII file with the same name as the font
(for instance, R, I, CW) that describes it. The format for a font description file is as follows:

Item Description

name Name Name of the font, such as R or CW.

internalname Name Internal name of the font.

special Sets the flag indicating that the font is special.

ligatures Name...0 Sets the flag indicating that the font has ligatures. The list of ligatures
follows and is ended by a 0 (zero). Accepted ligatures are ff fi fl ffi ffl.

spacewidth Number Specifies width of space if something other than the default (1/3 of an
em space) is desired.

764 AIX Version 7.1: Files Reference

Item Description

charset The character set must come at the end. Each line following the charset
word describes one character in the font. Each line has one of two
formats:

Name Width Kerning Code

OR

Name "

where the value of the Name field is either a single-byte character or a
special character name from the list found in the DESC file. The Width
field is in basic increments. The Kerning field is 1 if the character
descends below the line, 2 if it rises above the letter `a', and 3 if
it both rises and descends. The Code field is the number sent to the
typesetter to produce the character. For an nls font, the Code field can
be a multi-byte sequence.

For fonts of extended-character output devices, the Code field can be a
multi-byte sequence that begins and ends with a double quotation mark.
In the sequence, control or nonprinting characters can be represented
by the following escape sequences:

\n Produces a new line.

\r Produces a return.

\t Produces a tab.

\b Produces a backspace.

\" Produces a double quote.

\xdd Produces a hexadecimal number, where dd is two hexadecimal digits.

\ooo Produces an octal number, where ooo is three octal digits.

The second format, Name ", is used to show that the character has
more than one name. The double quotation marks indicate that this
name has the same values as the preceding line. The Kerning and Code
fields are not used if the value of the Width field is a double quotation
mark. The total number of different characters in this list should not be
greater than the value of the biggestfont line in the DESC file.

The DESC.out and Font.out files were created as a result of executing the makedev program on the DESC
file.

Prototype characters are provided for the charset section of the font table for fonts in large-character
sets. Most characters in large-character sets, such as the Japanese, Chinese, and Korean character sets,
have the same width. These prototype characters specify the width of characters with varying byte
lengths. The kerning and code fields are not available for prototype character entries. These entries apply
to all characters not explicitly defined in the charset section. It is assumed that the printer or typesetter
code for characters handled through prototype characters is the same as the input code for the character
after conversion by the iconv function. The following are the prototype character definitions:

Item Description

X0 Width Width of all characters that return a value of 0 for csid().

X1 Width Width of all 1-byte characters not defined elsewhere.

Files Reference 765

Item Description

X1 Width Width of all characters that return a value of 1 for csid().

X2 Width Width of all 2-byte characters not defined elsewhere.

Xi Width Width of all characters that return a value of i for csid().

X3 Width Width of all 3-byte characters not defined elsewhere.

X4 Width Width of all 4-byte characters not defined elsewhere.

For example, the following prototype character definitions apply to the Japanese character sets (both
IBM-932 and IBM-eucJP):

X0 : alphanumeric characters
X1 : JIS level 1 and 2 Kanji characters in JISX0208.1990
X2 : Katakana characters
X3 : IBM selected characters

Files

Item Description

/usr/lib/font/devName/DESC.out file Contains the description file for
phototypesetter specified by the
Name variable.

/usr/lib/font/devName/bitmaps directory Contains bitmap files.

/usr/lib/font/devName/Font.out file Contains the font description file
for phototypesetter specified by
the Name variable.

Related reference
troff File Format
Related information
troff command
iconv subroutine

tunables File Format

Purpose
Centralizes tunable parameter values.

Description
Tunables files contain one or more sections, called "stanzas". A stanza is started by a line containing the
stanza name followed by a colon (:). There is no marking for the end of a stanza. It simply continues
until another stanza starts. Each stanza contains a set of parameter/value pairs; one pair per line. The
values are surrounded by double quotes ("), and an equal sign (=) separates the parameter name from
its value. A parameter/value pair must necessarily belong to a stanza. It has no meaning outside of a
stanza. Two parameters sharing the same name but belonging to different stanzas are considered to be
different parameters. If a parameter appears several times in a stanza, only its first occurrence is used.
Following occurrences are simply ignored. Similarly, if a stanza appears multiple times in the file, only the
first occurrence is used. Everything following a number sign (#) is considered a comment and ignored.
Heading and trailing blanks are also ignored.

A tunable file uses the following syntax:

766 AIX Version 7.1: Files Reference

first stanza
stanza1:
 param1 = "value1"
 param2 = "value2"
 param2 = "value3" # ignored, since already defined

another stanza
stanza2:
 param1 = "value4" # not the same parameter as param1 in stanza1

the first stanza again
stanza1: # ignored since already defined

Tunables files currently support seven different stanzas: one for each of the tunable commands (schedo,
vmo, ioo, raso, no and nfso), plus a special info stanza. The six stanzas, schedo, vmo, ioo, raso, no and
nfso contain tunable parameters managed by the corresponding command For the complete parameter
lists, see the display resulting from running the corresponding command lines specifying the -a or -L
option.

The value of the tunable can be either a numerical value or the following literal words:
DEFAULT

This tunable's default value.
STATIC

A Static variable that is never restored.
RESTRICTED

The value for restricted tunables that have been modified so that the value is not the default value.
It is possible that a stanza contains values for non-existent parameters (in the case a tunable file was
copied from a machine running an older version of AIX and one or more tunables do not exist anymore).
Both the tunrestore and the tuncheck commands will print warnings about such parameters.

The info stanza is used to store information about the purpose of the tunable file and the level of AIX on
which it was validated. Any parameter is acceptable in this stanza, however, some fields have a special
meaning:

Item Description

Description A character string describing the tunable file. SMIT displays this field in the file
selection box.

AIX_level AIX version. This field is automatically updated by tunsave and tuncheck (on
success only).

Kernel_type: MP64" this is a 64 bits multiprocessor kernel.This field is automatically updated by
tunsave and tuncheck (on success only).

Last_validation The date this file was validated for the last time, and the type of validation:
"current" the file has been validated against the current context. "reboot" the
file has been validated against the nextboot context. This field is automatically
updated by tunsave and tuncheck (on success only).

Logfile_checksum The checksum of the lastboot.log file matching this tunables file. This field is
present only in the lastboot file.

Other stanzas like info, schedo, vmo, ioo, raso, no and nfso may be present. These stanzas are simply
ignored by the tunrestore command, but flagged by the tuncheck command.

Three files under /etc/tunables have special names and meaning:

Item Description

nextboot This file is automatically applied at boot time. The bosboot command also get the
value of Bosboot types tunables from this file. It contains all tunable settings made
permanent.

Files Reference 767

Item Description

lastboot This file is automatically generated at boot time. It contains the full set of tunable
parameters, with their values after the last boot. Default values are marked with #
DEFAULT VALUE. Restricted tunables that have been modified are marked with #
RESTRICTED not at default value.

lastboot.log This should be the only file in /etc/tunables that is not in the stanza format
described here. It is automatically generated at boot time, and contains the logging
of the creation of the lastboot file, i.e. any parameter change made is logged.
Any change which could not be made (possible if the nextboot file was created
manually and not validated with tuncheck) is also logged.

Examples
The following is a sample tunables file:

info:
 Description = "Set of tunables for departmental server"
 AIX_level = "5.2.0.0"
 Kernel_type = "UP"
 Last_validation = "2002-06-16 12:11:11 CDT current"

schedo:
 timeslice = "2" # set timeslice to 30ms
 sched_D = "DEFAULT" # value was 123

vmo:
 minperm = "48538"
 memory_frames = "65536" # STATIC (never restored)

ioo:
 iotunable = "value"

no:
 ipforwarding = "1"
 ipsrcrouteforward = "1"
 thewall = "STATIC" # value was 131072 (never restored)

nfso:
 nfs_allow_all_signals = "0" # DEFAULT VALUE
 nfs_device_specific_bufs = "0"

raso:
 recovery_framework = "0" # RESTRICTED not at default value
 recovery_debugger = "0" # DEFAULT VALUE

Files
All the tunable files are located in the /etc/tunables directory.

Item Description

/etc/tunables/
nextboot

Contains the values to be applied at the next rebooting of the machine.

/etc/tunables/
lastboot

Contains the values for all tuning parameters after the last rebooting of the
machine.

/etc/tunables/
lastboot.log

Contains logging information about changes made and errors encountered
during the last rebooting of the machine.

Related information
schedo command
vmo command
ioo command

768 AIX Version 7.1: Files Reference

raso command
Kernel Tuning

uconvdef Source File Format

Purpose
Defines UCS-2 (Unicode) conversion mappings for input to the uconvdef command.

Description
Conversion mapping values are defined using UCS-2 symbolic character names followed by character
encoding (code point) values for the multibyte code set. For example,

<U0020> \x20

represents the mapping between the <U0020> UCS-2 symbolic character name for the space character
and the \x20 hexadecimal code point for the space character in ASCII.

In addition to the code set mappings, directives are interpreted by the uconvdef command to produce
the compiled table. These directives must precede the code set mapping section. They consist of the
following keywords surrounded by < > (angle brackets), starting in column 1, followed by white space and
the value to be assigned to the symbol:

Item Description

<code_set_name> The name of the coded character set, enclosed in quotation marks ("
"), for which the character set description file is defined.

<mb_cur_max> The maximum number of bytes in a multibyte character. The default
value is 1.

<mb_cur_min> An unsigned positive integer value that defines the minimum number
of bytes in a character for the encoded character set. The value is
less than or equal to <mb_cur_max>. If not specified, the minimum
number is equal to <mb_cur_max>.

<escape_char> The escape character used to indicate that the character following is
interpreted in a special way. This defaults to a backslash (\).

<comment_char> The character that, when placed in column 1 of a charmap line, is used
to indicate that the line is ignored. The default character is the number
sign (#).

<char_name_mask> A quoted string consisting of format specifiers for the UCS-2 symbolic
names. This must be a value of AXXXX, indicating an alphabetic
character followed by 4 hexadecimal digits. Also, the alphabetic
character must be a U, and the hexadecimal digits must represent
the UCS-2 code point for the character. An example of a symbolic
character name based on this mask is <U0020> Unicode space
character.

Files Reference 769

Item Description

<uconv_class> Specifies the type of the code set. It must be one of the following:
SBCS

Single-byte encoding
DBCS

Stateless double-byte, single-byte, or mixed encodings
EBCDIC_STATEFUL

Stateful double-byte, single-byte, or mixed encodings
MBCS

Stateless multibyte encoding

This type is used to direct uconvdef on what type of table to build. It is
also stored in the table to indicate the type of processing algorithm in
the UCS conversion methods.

<locale> Specifies the default locale name to be used if locale information is
needed.

<subchar> Specifies the encoding of the default substitute character in the
multibyte code set.

The mapping definition section consists of a sequence of mapping definition lines preceded by a
CHARMAP declaration and terminated by an END CHARMAP declaration. Empty lines and lines
containing <comment_char> in the first column are ignored.

Symbolic character names in mapping lines must follow the pattern specified in the <char_name_mask>,
except for the reserved symbolic name, <unassigned>, that indicates the associated code points are
unassigned.

Each noncomment line of the character set mapping definition must be in one of the following formats:

1. "%s %s %s/n", <symbolic-name>, <encoding>, <comments>

For example:

<U3004> \x81\x57

This format defines a single symbolic character name and a corresponding encoding.

The encoding part is expressed as one or more concatenated decimal, hexadecimal, or octal constants
in the following formats:

• "%cd%d", <escape_char>, <decimal byte value>
• "%cx%x", <escape_char> , <hexadecimal byte value>
• "%c%o", <escape_char>, <octal byte value>

Decimal constants are represented by two or more decimal digits preceded by the escape character
and the lowercase letter d, as in \d97 or \d143. Hexadecimal constants are represented by two or
more hexadecimal digits preceded by an escape character and the lowercase letter x, as in \x61 or
\x8f. Octal constants are represented by two or more octal digits preceded by an escape character.

Each constant represents a single-byte value. When constants are concatenated for multibyte
character values, the last value specifies the least significant octet and preceding constants specify
successively more significant octets.

2. "%s. . .%s %s %s/n", <symbolic-name>, <symbolic-name>, <encoding>,
<comments>

For example:

<U3003>...<U3006> \x81\x56

770 AIX Version 7.1: Files Reference

This format defines a range of symbolic character names and corresponding encodings. The range is
interpreted as a series of symbolic names formed from the alphabetic prefix and all the values in the
range defined by the numeric suffixes.

The listed encoding value is assigned to the first symbolic name, and subsequent symbolic names in
the range are assigned corresponding incremental values. For example, the line:

<U3003>...<U3006> \x81\x56

is interpreted as:

<U3003> \x81\x56
<U3004> \x81\x57
<U3005> \x81\x58
<U3006> \x81\x59

3. "<unassigned> %s. . .%s %s/n", <encoding>, <encoding>, <comments>

This format defines a range of one or more unassigned encodings. For example, the line:

<unassigned> \x9b...\x9c

is interpreted as:

<unassigned> \x9b
<unassigned> \x9c

Related information
uconvdef command
Code Set Overview
List of UCS-2 Interchange Converters

UIL File Format

Purpose
Contains information on the user interface for a widget-based application.

Description
User Interface Language (UIL) is used to describe the initial state of a user interface for a widget-based
application. UIL describes the widgets used in the interface, the resources of those widgets, and the
callbacks of those widgets. A UIL file is compiled into a user interface definition (UID) file using the
uil command or the Uil callable compiler function. The contents of the compiled UID file can then be
accessed by the various Motif Resource Manager (MRM) functions from within an application program.

The syntax for the UIL is as follows:

MODULE ModuleName [NAMES = CASE_INSENSITIVE | CASE_SENSITIVE] [CHARACTER_SET
= CharacterSet] [OBJECTS = { WidgetName = GADGET | WIDGET; [...] }] { [[ValueSection] |
[ProcedureSection] | [ListSection] | [ObjectSection] | [IdentifierSection] | [...]] } END MODULE;

File Format
UIL is a free-form language. This means that high-level constructs, such as object and value declarations,
do not need to begin in any particular column and can span any number of lines. Low-level constructs,
such as keywords and punctuation characters, can also begin in any column; however, except for string
literals and comments, they cannot span lines.

The UIL compiler accepts input lines up to 132 characters in length.

Files Reference 771

Item Description

MODULE ModuleName The name by which the UIL module is known in the
UID file. This name is stored in the UID file for later
use in the retrieval of resources by the MRM. This
module name is always uppercase.

NAMES = CASE_INSENSITIVE |
CASE_SENSITIVE

Indicates whether names should be treated as
case-sensitive or case-insensitive. The default is
case-sensitive. The case-sensitivity clause should
be the first clause in the module header and must
precede any statement that contains a name. If
names are case-sensitive in a UIL module, UIL
keywords in that module must be in lowercase.
Each name is stored in the UIL file in the same
case as it appears in the UIL module. If names are
case-insensitive, keywords can be in uppercase,
lowercase, or mixed case, and the uppercase
equivalent of each name is stored in the UID file.

CHARACTER_SET = CharacterSet Specifies the default character set for string
literals in the module that do not explicitly
set their character set. In the absence of this
clause, the default character set is the codeset
component of the LANG environment variable,
or the value of XmFALLBACK_CHARSET if LANG
is not set or has no codeset component. The
value of XmFALLBACK_CHARSET is defined by
the UIL supplier, but is usually ISO8859-1
(equivalent to ISO_LATIN1). Use of this clause
turns off all localized string literal processing
turned on by either the -s compiler flag or
the Uil_command_type data structure element
use_setlocale_flag.

OBJECTS = { WidgetName = GADGET | WIDGET;} Indicates whether the widget or gadget form of
the control specified by WidgetName variable is
used by default. The widget form is used by
default. The specified control should be one that
has both a widget and gadget version, for example:
XmCascadeButton, XmLabel, XmPushButton,
XmSeparator, and XmToggleButton. The form
of more than one control can be specified by
delimiting them with ; (semicolons). The gadget
or widget form of an instance of a control can be
specified with the GADGET and WIDGET keywords
in a particular object declaration.

ValueSection Provides a way to name a value expression or
literal. The value name can then be referred to
by declarations that occur elsewhere in the UIL
module in any context where a value can be used.
Values can be forward-referenced. See "Value
Sections" for more detail.

ProcedureSection Defines the callback functions used by a widget
and the creation functions for user-defined
widgets. These definitions are used for error
checking. See "Procedure Sections" for more detail.

772 AIX Version 7.1: Files Reference

Item Description

ListSection Provides a way to group together a set of
arguments, controls (children), callbacks, or
procedures for later use in the UIL module.
Lists can contain other lists so you can set up
a hierarchy to clearly show which arguments,
controls, callbacks, and procedures are common to
which widgets. See "List Sections" for more detail.

ObjectSection Defines the objects that make up the user interface
of the application. You can reference the object
names in declarations that occur elsewhere in
the UIL module in any context where an object
name can be used (for example, in a controls
list, as a symbolic reference to a widget ID, or as
the TagValue argument for a callback procedure).
Objects can be forward-referenced. See "Object
Sections" for more detail.

IdentifierSection Defines a run-time binding of data to names that
appear in the UIL module. See "Identifier Sections"
for more detail.

The UIL file can also contain comments and include directives. These, as well as the main elements of the
UIL file format, are described in the following sections.

Comments

Comments can take one of two forms, neither of which can be nested:

• The comment is introduced with the /* sequence followed by the text of the comment and terminated
with the */ sequence. This form of comment can span multiple source lines.

• The comment is introduced with an ! (exclamation point) followed by the text of the comment and
terminated by the end of the source line.

Value Sections

A value section consists of the VALUE keyword followed by a sequence of value declarations. It has the
following syntax:

VALUE ValueName : [EXPORTED | PRIVATE] ValueExpression | IMPORTED ValueType ;

ValueExpression is assigned to ValueName, or a ValueType is assigned to an imported value name. A value
declaration provides a way to name a value expression or literal. The value name can be referred to by
declarations that occur later in the UIL module in any context where a value can be used. Values can be
forward-referenced.

Item Description

EXPORTED A value that you define as exported is stored in the UID file as a named resource and can
be referenced by name in other UID files. When you define a value as exported, MRM looks
outside the module in which the exported value is declared to get its value at run time.

PRIVATE A private value is a value that is not imported or exported. A value that you define as
private is not stored as a distinct resource in the UID file. You can reference a private value
only in the UIL module containing the value declaration. The value or object is directly
incorporated into anything in the UIL module that references the declaration.

IMPORTED A value that you define as imported is one that is defined as a named resource in a
UID file. MRM resolves this declaration with the corresponding exported declaration at
application run time.

By default, values and objects are private. The following is a list of the supported value types in UIL:

Files Reference 773

• ANY
• ARGUMENT
• BOOLEAN
• COLOR
• COLOR_TABLE
• COMPOUND_STRING
• FLOAT
• FONT
• FONT_TABLE
• FONTSET
• ICON
• INTEGER
• INTEGER_TABLE
• KEYSYM
• REASON
• SINGLE_FLOAT
• STRING
• STRING_TABLE
• TRANSLATION_TABLE
• WIDE_CHARACTER
• WIDGET

Procedure Sections

A procedure section consists of the PROCEDURE keyword followed by a sequence of procedure
declarations. It has the following syntax:

PROCEDURE ProcedureName [([ValueType])] ;

Use a procedure declaration to declare the following:

• A function that can be used as a callback function for a widget
• The creation function for a user-defined widget.

You can reference a procedure name in declarations that occur later in the UIL module in any context
where a procedure can be used. Procedures can be forward-referenced. You cannot use a name that you
used in another context as a procedure name.

In a procedure declaration, you have the option of specifying that a parameter is passed to the
corresponding callback function at run time. This parameter is called the callback tag. You can specify
the data type of the callback tag by putting the data type in parentheses following the procedure name.
When you compile the module, the UIL compiler checks that the argument you specify in references to
the procedure is of this type. Note that the data type of the callback tag must be one of the valid UIL
data types. You can use a widget as a callback tag, as long as the widget is defined in the same widget
hierarchy as the callback; that is, they must have a common ancestor that is in the same UIL hierarchy.

The following list summarizes how the UIL compiler checks argument type and argument count,
depending on the procedure declaration:

Item Description

No parameters No argument type or argument count checking occurs. You can supply either 0 or
1 arguments in the procedure reference.

() Checks that the argument count is 0.

774 AIX Version 7.1: Files Reference

Item Description

(ANY) Checks that the argument count is 1. Does not check the argument type. Use the
ANY data type to prevent type checking on procedure tags.

(Type) Checks for one argument of the specified type.

(ClassName) Checks for one widget argument of the specified widget class.

While it is possible to use any UIL data type to specify the type of a tag in a procedure declaration,
you must be able to represent that data type in the programming language you are using. Some data
types (such as integer, Boolean, and string) are common data types recognized by most programming
languages. Other UIL data types (such as string tables) are more complicated and may require you to set
up an appropriate corresponding data structure in the application in order to pass a tag of that type to a
callback function.

You can also use a procedure declaration to specify the creation function for a user-defined widget. In
this case, you specify no formal parameters. The procedure is called with the standard three arguments
passed to all widget creation functions.

List Sections

A list section consists of the LIST keyword followed by a sequence of list declarations. It has the following
syntax:

LIST ListName : { ListItem; [...] } [...]

You can also use list sections to group together a set of arguments, controls (children), callbacks, or
procedures for later use in the UIL module. Lists can contain other lists so you can set up a hierarchy to
clearly show which arguments, controls, callbacks, and procedures are common to which widgets. You
cannot mix the different types of lists; a list of a particular type cannot contain entries of a different list
type or reference the name of a different list type. A list name is always private to the UIL module in which
you declare the list and cannot be stored as a named resource in a UID file.

The additional list types are described in the following sections.

Arguments List Structure

An arguments list defines which arguments are specified in the arguments-list parameter when the
creation function for a particular object is called at run time. An arguments list also specifies the values
for those arguments. Arguments lists have the following syntax:

LIST ListName : ARGUMENTS { ArgumentName = ValueExpression; [...] } [...]

The argument name (ArgumentName) must be either a built-in argument name or a user-defined
argument name that is specified with the ARGUMENTS function.

If you use a built-in argument name as an arguments list entry in an object definition, the UIL compiler
checks the argument name to be sure that it is supported by the type of object that you are defining. If the
same argument name is displayed more than once in a given arguments list, the last entry that uses that
argument name supersedes all previous entries with that name, and the compiler issues a message.

Some arguments, such as XmNitems and XmNitemCount, are coupled by the UIL compiler. When you
specify one of the coupled arguments, the compiler also sets the other one. The coupled argument is not
available to you.

AIXwindows and the X Toolkit (Intrinsics) support constraint arguments. A constraint argument is one that
is passed to children of an object, beyond those arguments normally available. For example, the Form
widget grants a set of constraint arguments to its children. These arguments control the position of the
children within the Form widget.

Unlike the arguments used to define the attributes of a particular widget, constraint arguments are used
exclusively to define additional attributes of the children of a particular widget. These attributes affect the
behavior of the children within their parent. To supply constraint arguments to the children, include the
arguments in the arguments list for the child.

Files Reference 775

Callbacks List Structure

Use a callbacks list to define which callback reasons are to be processed by a particular widget at run
time. Callback lists have the following syntax:

LIST ListName : CALLBACKS { ReasonName = PROCEDURE ProcedureName [([ValueExpression])]; |
ReasonName = ProcedureList ; [...] } [...]

For AIXwindows widgets, the reason name must be a built-in reason name. For a user-defined widget,
you can use a reason name that you previously specified using the REASON function. If you use a built-in
reason in an object definition, the UIL compiler ensures that reason is supported by the type of object you
are defining.

If the same reason is displayed more than once in a callbacks list, the last entry referring to that
name supersedes all previous entries using the same reason. The UIL compiler then issues a diagnostic
message.

If you specify a named value for the procedure argument (callback tag), the data type of the value must
match the type specified for the callback tag in the corresponding procedure declaration. When specifying
a widget name as a procedure value expression, you must also specify the type of the widget and a space
before the name of the widget.

Because the UIL compiler produces a UID file rather that an object module (.o), the binding of the UIL
name to the address of the entry point and then to the procedure is not done by the loader. Instead,
this binding is established at run time with the MrmRegisterNames MRM function. You call this function
before fetching any objects, giving it both the UIL names and the procedure addresses of each callback.
The name you register with MRM in the application program must match the name you specified for the
procedure in the UIL module.

Each callback procedure received three arguments. The first two arguments have the same form for each
callback. The form of the third argument varies from object to object.

The first argument is the address of the data structure maintained by the AIXwindows for this object
instance. This address is called the widget ID for this object.

The second argument is the address of the value you specified in the callbacks list for this procedure. If
you do not specify an argument, the address is null.

The third argument is the reason name you specified in the callbacks list.

Controls List Structure

A controls list defines which objects are children of, or controlled by, a particular object. Each entry in a
controls list has the following syntax:

LIST ListName : CONTROLS { [ChildName] [MANAGED | UNMANAGED] ObjectDefinition; [...] } [...]

If you specify the MANAGED keyword at run time, the object is created and managed; if you specify the
UNMANAGED keyword at run time, the object is only created. Objects are managed by default.

You can use the ChildName parameter to specify resources for the automatically created children of a
particular control. Names for automatically created children are formed by appending Xm_ to the name of
the child widget. This name is specified in the documentation for the parent widget.

Unlike the arguments list and the callbacks list, a controls list entry that is identical to a previous entry
does not supersede the previous entry. At run time, each controls list entry causes a child to be created
when the parent is created. If the same object definition is used for multiple children, multiple instances
of the child are created at run time.

Procedures List Structure

You can specify multiple procedures for a callback reason in UIL by defining a procedures list. Just as with
other list types, procedures lists can be defined in-line or in a list section and referenced by name.

If you define a reason more than once (for example, when the reason is defined both in a referenced
procedures list and in the callbacks list for the object), previous definitions are overridden by the latest
definition. The syntax for a procedures list is as follows:

776 AIX Version 7.1: Files Reference

LIST ListName : PROCEDURES { ProcedureName [([ValueExpression])]; [...] } [...]

When specifying a widget name as a procedure value expression, you must also specify the type of the
widget and a space before the name of the widget.

Object Sections

An object section consists of the OBJECT keyword followed by a sequence of object declarations. It has
the following syntax:

OBJECT ObjectName : [EXPORTED | PRIVATE | IMPORTED] ObjectType [PROCEDURE
CreationFunction] [ObjectName [WIDGET | GADGET] | { ListDefinitions }]

Use an object declaration to define the objects that are stored in the UID file. You can reference the object
name in declarations that occur elsewhere in the UIL module in any context where an object name can be
used (for example, in a controls list, as a symbolic reference to a widget ID, or as the TagValue argument
for a callback procedure). Objects can be forward-referenced, meaning that you can declare an object
name after you have referenced it. All references to an object name must be consistent with the type
of the object, as specified in the object declaration. You can specify an object as exported, imported, or
private.

The object definition can contain a sequence of lists that define the arguments, hierarchy, and callbacks
for the widget. You can only specify one list of each type for an object. When you declare a user-defined
widget, you must include a reference to the widget creation function for the user-defined widget.

Use the GADGET or WIDGET keyword to specify the object type or to override the default variant for
this object type. You can use the AIXwindows name of an object type that has a gadget variant (for
example, XmLabelGadget) as an attribute of an object declaration. The ObjectType can be any object
type, including gadgets. You need to specify the GADGET or WIDGET keyword only in the declaration of
an object, not when you reference the object. You cannot specify the GADGET or WIDGET keyword for a
user-defined object; user-defined objects are always widgets.

Identifier Sections

The identifier section allows you to define an identifier, a mechanism that achieves run-time binding of
data to names that appear in a UIL module. The identifier section consists of the reserved IDENTIFIER
keyword, followed by a list of names. Each name is followed by a semicolon (;). The syntax is as follows:

IDENTIFIER IdentifierName; [...;]

You can use these names later in the UIL module as either the value of an argument to a
widget or the tag value to a callback procedure. At run time, use the MrmRegisterNames and
MrmRegisterNamesInHierarchy MRM functions to bind the identifier name with the data (or, in the case
of callbacks, with the address of the data) associated with the identifier.

Each UIL module has a single name space; therefore, you cannot use the name you used for a value,
object, or procedure as an identifier name in the same module.

The UIL compiler does not do any type checking on the use of identifiers in a UIL module. Unlike a
UIL value, an identifier does not have a UIL type associated with it. Regardless of what particular type
a widget argument or callback procedure tag is defined to be, you can use an identifier in that context
instead of a value of the corresponding type.

To reference these identifier names in a UIL module, use the name of the identifier wherever you want its
value to be used.

Include Directives

The include directive incorporates the contents of a specified file into a UIL module. This mechanism
allows several UIL modules to share common definitions. The syntax for the include directive is as
follows:

INCLUDE FILE FileName ;

The UIL compiler replaces the include directive with the contents of the include file and processes it as if
these contents were displayed in the current UIL source file.

Files Reference 777

You can nest include files, meaning that an include file can contain include directives. The UIL compiler
can process up to 100 references (including the file containing the UIL module). Therefore, you can
include up to 99 files in a single UIL module, including nested files. Each time a file is opened counts as a
reference; therefore, including the same file twice counts as two references.

The character expression is a file specification that identifies the file to be included. The rules for finding
the specified file are similar to the rules for finding header, or .h, files using the include directive,
#include, with a quoted string in C language. The uil command uses the -I option for specifying a search
directory for include files. Search rules are as follows:

• If you supply a directory, the UIL compiler searches only that directory for the include file.
• If you do not supply a directory, the UIL compiler searches for the include file in the directory of the

main source file.
• If the include file is not found in the main source file directory, the compiler looks in the same directory

as the source file.

Language Syntax
This section contains information on the following:

• Names and Strings
• Data Types
• String Literals
• Integer Literals
• Boolean Literals
• Floating-Point Literals
• ANY Data Type
• Expressions
• Functions.

Names and Strings

Names can consist of any of the characters A to Z, a to z, 0 to 9, $ (dollar sign), and _ (underscore). Names
cannot begin with a digit (0 to 9). The maximum length of a name is 31 characters.

UIL gives you a choice of either case-sensitive or case-insensitive names through a clause in the MODULE
header. For example, if names are case-sensitive, the names "sample" and "Sample" are distinct from
each other. If names are case-insensitive, these names are treated as the same name and can be used
interchangeably. By default, UIL assumes names are case-sensitive.

In case-insensitive mode, the compiler outputs all names in the UID file in uppercase form. In case-
sensitive mode, names are displayed in the UIL file exactly as they are displayed in the source file.

The following lists the reserved keywords, which cannot be used for programmer-defined names:

Table 10. Reserved Keywords

Item Description Description

ARGUMENTS CALLBACKS CONTROLS

END EXPORTED FALSE

GADGET IDENTIFIER INCLUDE

LIST MODULE OFF

ON OBJECT PRIVATE

PROCEDURE PROCEDURES TRUE

VALUE WIDGET

778 AIX Version 7.1: Files Reference

The following lists UIL unreserved keywords. These keywords can be used as programmer-defined
names; however, if you use any of these keywords as names, you cannot use the UIL-supplied form
of that keyword.

Built-in argument names (for example, XmNx, XmNheight) Built-in reason names (for example,
XmNactivateCallback, XmNhelpCallback) Character set names (for example, ISO_LATIN1,
ISO_HEBREW_LR) Constant value names (for example, XmMENU_OPTION, XmBROWSE_SELECT)
Object types (for example, XmPushButton, XmBulletinBoard)

Table 11. Unreserved Keywords

Item Description Description

ANY FILE IMPORTED

ARGUMENT FLOAT REASON

ASCIZ_STRING_TABLE FONT RGB

ASCIZ_TABLE FONTSET SINGLE_FLOAT

BACKGROUND FONT_TABLE STRING

BOOLEAN FOREGROUND STRING_TABLE

CASE_INSENSITIVE ICON TRANSLATION_TABLE

CASE_SENSITIVE INTEGER UNMANAGED

CHARACTER_SET INTEGER_TABLE USER_DEFINED

COLOR KEYSYM VERSION

COLOR_TABLE MANAGED WIDE_CHARACTER

COMPOUND_STRING NAMES WIDGET

COMPOUND_STRING_TABLE OBJECTS XBITMAPFILE

RIGHT_TO_LEFT

String literals can be composed of uppercase and lowercase letters, digits, and punctuation characters.
Spaces, tabs, and comments are special elements in the language. They are a means of delimiting other
elements, such as two names. One or more of these elements can be displayed before or after any other
element in the language. However, spaces, tabs, and comments that are displayed in string literals are
treated as character sequences rather than delimiters.

Data Types

UIL provides literals for several of the value types it supports. Some of the value types are not supported
as literals (for example, pixmaps and string tables). You can specify values for these types by using
functions described in the "Functions" section. UIL directly supports the following literal types:

• String literal
• Integer literal
• Boolean literal
• Floating-point literal

UIL also includes the ANY data type, which is used to turn off compile-time checking of data types.

String Literals

A string literal is a sequence of 0 or more 8-bit or 16-bit characters or a combination delimited by ' (single
quotation marks) or " (double quotation marks). String literals can also contain multibyte characters
delimited with double quotation marks. String literals can be no more than 2,000 characters long.

Files Reference 779

A single-quoted string literal can span multiple source lines. To continue a single-quoted string literal, end
the continued line with a \ (backslash). The literal continues with the first character on the next line.

Double-quoted string literals cannot span multiple source lines. (Because double-quoted strings can
contain escape sequences and other special characters, you cannot use the backslash character to
designate the continuation of the string.) To build a string value that must span multiple source lines, use
the concatenation operation that is described later in this section.

The syntax of a string literal can be one of the following:

'[CharacterString]'
[#CharSet]"[CharacterString]"

Both string forms associate a character set with a string value. UIL uses the following rules to determine
the character set and storage format for string literals:

• A string declared as 'String' is equivalent to #CurCharSet"String", where CurCharSet is the codeset
portion of the value of the LANG environment variable. If the LANG environment variable is not
set or has no code set component, CurCharSet is the value of XmFALLBACK_CHARSET. By default,
XmFALLBACK_CHARSET is ISO8859-1 (equivalent to ISO_LATIN1), but vendors can define a different
default.

• A string declared as "String" is equivalent to #CharSet"String" if you specified CharSet as the default
character set for the module. If no default character set has been specified for the module and either
the -s option is provided to the uil command or the use_setlocale_flag value is set for the Uil function
callable compiler, the string is interpreted to be a string in the current locale. This means that the
string is parsed in the locale of the user by calling setlocale and its character set is set to a value
of XmFONTLIST_DEFAULT_TAG. If the string is converted to a compound string, it is stored as a locale-
encoded text segment. Otherwise, "String" is equivalent to #CurCharSet"String", where CurCharSet is
interpreted as described for single-quoted strings.

• A string of the form "String" or #CharSet"String" is stored as a null-terminated string.

The following lists the character sets supported by the UIL compiler for string literals. Note that several
UIL names map to the same character set. In some cases, the UIL name influences how string literals
are read. For example, strings identified by a UIL character set name ending in _LR are read left-to-right.
Names that end in a different number reflect different fonts (for example, ISO_LATIN1 or ISO_LATIN6).
All character sets in this list are represented by 8 bits.

UIL Name Description

ISO_LATIN1 GL: ASCII, GR: Latin-1 Supplement

ISO_LATIN2 GL: ASCII, GR: Latin-2 Supplement

ISO_ARABIC GL: ASCII, GR: Latin-Arabic Supplement

ISO_LATIN6 GL: ASCII, GR: Latin-Arabic Supplement

ISO_GREEK GL: ASCII, GR: Latin-Greek Supplement

ISO_LATIN7 GL: ASCII, GR: Latin-Greek Supplement

ISO_HEBREW GL: ASCII, GR: Latin-Hebrew Supplement

ISO_LATIN8 GL: ASCII, GR: Latin-Hebrew Supplement

ISO_HEBREW_LR GL: ASCII, GR: Latin-Hebrew Supplement

ISO_LATIN8_LR GL: ASCII, GR: Latin-Hebrew Supplement

JIS_KATAKANA GL: JIS Roman, GR: JIS Katakana

Following are the parsing rules for each of the character sets:

780 AIX Version 7.1: Files Reference

Character Set Parsing Rule

All character sets Character codes in the range 00 to 1F, 7F, and 80
to 9F are control characters including both bytes
of 16-bit characters. The compiler flags these as
illegal characters.

ISO_LATIN1, ISO_LATIN2, ISO_ARABIC,
ISO_LATIN6, ISO_GREEK, ISO_LATIN7

These sets are parsed from left to right. The
escape sequences for null-terminated strings are
also supported by these character sets.

ISO_HEBREW, ISO_LATIN8 These sets are parsed from right to left.
For example, the string #ISO_HEBREW"012345"
generates a primitive string "543210" with the
character set ISO_HEBREW. A DDIS descriptor
for such a string has this segment marked as
being right to left. The escape sequences for null-
terminated strings are also supported by these
character sets, and the characters that compose
the escape sequences are in left-to-right order. For
example, you type \n, not n\.

ISO_HEBREW_LR, ISO_LATIN8_LR These sets are parsed from left to right.
For example, the string #ISO_HEBREW"012345"
generates a primitive string "012345" with the
character set ISO_HEBREW. A DDIS descriptor for
such a string marks this segment as being left to
right. The escape sequences for null-terminated
strings are also supported by these character sets.

JIS_KATAKANA This set is parsed from left to right. The escape
sequences for null-terminated strings are also
supported by these character sets. Note that the
\ (backslash) can be displayed as a yen symbol.

In addition to designating parsing rules for strings, character set information remains an attribute of a
compound string. If the string is included in a string consisting of several concatenated segments, the
character set information is included with that string segment. This gives AIXwindows the information it
needs to decipher the compound string and choose a font to display the string.

For an application interface displayed only in English, UIL lets you ignore the distinctions between the two
uses of strings. The compiler recognizes by context when a string must be passed as a null-terminated
string or as a compound string.

The UIL compiler recognizes enough information about the various character sets to correctly parse string
literals. The compiler also issues errors if you use a compound string in a context that supports only
null-terminated strings.

Since the character set names are keywords, you must put them in lowercase if case-sensitive names are
in force. If names are case-insensitive, character set names can be uppercase, lowercase, or mixed case.

In addition to the built-in character sets recognized by UIL, you can define your own character sets with
the CHARACTER_SET function. You can use the CHARACTER_SET function anywhere a character set can
be specified.

String literals can contain characters with the eighth (high-order) bit set. You cannot type control
characters (00 to 1F, 7F, and 80 to 9F) directly in a single-quoted string literal. However, you can
represent these characters with escape sequences. The following list shows the escape sequences for
special characters:

Item Description

\b Backspace

Files Reference 781

Item Description

\f Form-feed

\n New-line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\' Single quotation mark

\" Double quotation mark

\\ Backslash

\Integer\ Character whose internal representation is given by Integer (in the range 0 to 255
decimal).

Note: Escape sequences are processed literally in strings that are parsed in the current locale (localized
strings).

The UIL compiler does not process new-line characters in compound strings. The effect of a new-line
character in a compound string depends only on the character set of the string. The result is not
guaranteed to be a multiline string.

Compound String Literals

A compound string consists of a string of 8-bit, 16-bit, or multibyte characters, a named character set,
and a writing direction. Its UIL data type is compound_string.

The writing direction of a compound string is implied by the character set specified for the string. You can
explicitly set the writing direction for a compound string by using the COMPOUND_STRING function.

A compound string can consist of a sequence of concatenated compound strings, null-terminated strings,
or a combination of both, each of which can have a different character set property and writing direction.
Use the & (ampersand) concatenation operator to create a sequence of compound strings.

Each string in the sequence is stored, including the character set and writing direction information.

Generally, a string literal is stored in the UID file as a compound string when the literal consists of
concatenated strings having different character sets or writing directions, or when you use the string to
specify a value for an argument that requires a compound string value. If you want to guarantee that a
string literal is stored as a compound string, you must use the COMPOUND_STRING function.

Data Storage Consumption for String Literals

The way a string literal is stored in the UID file depends on how you declare and use the string. The UIL
compiler automatically converts a null-terminated string to a compound string if you use the string to
specify the value of an argument that requires a compound string. However, this conversion is costly in
terms of storage consumption.

PRIVATE, EXPORTED, and IMPORTED string literals require storage for a single allocation when the
literal is declared; thereafter, storage is required for each reference to the literal. Literals declared in-line
require storage for both an allocation and a reference.

The following list summarizes data storage consumption for string literals. The storage requirement for an
allocation consists of a fixed portion and a variable portion. The fixed portion of an allocation is roughly
the same as the storage requirement for a reference (a few bytes). The storage consumed by the variable
portion depends on the size of the literal value (the length of the string). To conserve storage space, avoid
making string literal declarations that result in an allocation per use.

782 AIX Version 7.1: Files Reference

Declaration (and Data Type) Used As Storage Requirements Per Use

In-line (Null-terminated) Null-terminated An allocation and a reference (within the module)

Private (Null-terminated) Null-terminated A reference (within the module)

Exported (Null-terminated) Null-terminated A reference (within the UID hierarchy)

Imported (Null-terminated) Null-terminated A reference (within the UID hierarchy)

In-line (Null-terminated) Compound An allocation and a reference (within the module)

Private (Null-terminated) Compound An allocation and a reference (within the module)

Exported (Null-terminated) Compound A reference (within the UID hierarchy)

Imported (Null-terminated) Compound A reference (within the UID hierarchy

In-line (Compound) Compound An allocation and a reference (within the module)

Private (Compound) Compound A reference (within the module)

Exported (Compound) Compound A reference (within the UID hierarchy)

Imported (Compound) Compound A reference (within the UID hierarchy)

Integer Literals

An integer literal represents the value of a whole number. Integer literals have the form of an optional sign
followed by one or more decimal digits. An integer literal must not contain embedded spaces or commas.

Integer literals are stored in the UID file as long integers. Exported and imported integer literals require
a single allocation when the literal is declared; thereafter, a few bytes of storage are required for each
reference to the literal. Private integer literals and those declared in-line require allocation and reference
storage per use. To conserve storage space, avoid making integer literal declarations that result in an
allocation per use.

The following list shows data storage consumption for integer literals:

Declaration Storage Requirements Per Use

In-line An allocation and a reference (within the module).

Private An allocation and a reference (within the module).

Exported A reference (within the UID hierarchy).

Imported A reference (within the UID hierarchy).

Boolean Literals

A Boolean literal represents the True value (reserved keyword TRUE or On) or False value (reserved
keyword FALSE or Off). These keywords are subject to case-sensitivity rules.

In a UID file, TRUE is represented by the integer value 1 and FALSE is represented by the integer value 0.

Data storage consumption for Boolean literals is the same as that for integer literals.

Floating-Point Literals

A floating-point literal represents the value of a real (or float) number. Floating-point literals have the
following form:

[+|-][Integer].Integer[E|e[+|-]Exponent]

For maximum portability, a floating-point literal can represent values in the range 1.0E-37 to 1.0E+37
with at least six significant digits. On many machines, this range is wider, with more significant digits. A
floating-point literal must not contain embedded spaces or commas.

Files Reference 783

Floating-point literals are stored in the UID file as double-precision, floating-point numbers. The following
gives examples of valid and invalid floating-point notation for the UIL compiler:

Valid Floating-Point Literals Invalid Floating-Point Literals

1.0 1e1 (no decimal point)

.1 E-1 (no decimal point or digits)

3.1415E-2 (equals .031415) 2.87 e6 (embedded blanks)

-6.29e7 (equals -62900000) 2.0e100 (out of range)

Data storage consumption for floating-point literals is the same as that for integer literals.

ANY Data Type

The purpose of the ANY data type is to shut off the data-type checking feature of the UIL compiler. You
can use the ANY data type for either of the following:

• Specifying the type of a callback procedure tag.
• Specifying the type of a user-defined argument.

You can use the ANY data type when you need to use a type not supported by the UIL compiler or when
you want the data-type restrictions imposed by the compiler to be relaxed. For example, you might want
to define a widget having an argument that can accept different types of values, depending on run-time
circumstances.

If you specify that an argument takes an ANY value, the compiler does not check the type of the value
specified for that argument. Therefore, you need to take care when specifying a value for an argument of
the ANY data type. You may get unexpected results at run time if you pass a value having a data type that
the widget does not support for that argument.

Expressions

UIL includes compile-time value expressions. These expressions can contain references to other UIL
values, but cannot be forward-referenced.

The following lists the set of operators in UIL that allow you to create integer, real, and Boolean values
based on other values defined with the UIL module. In the list, a precedence of 1 is the highest.

Operator (And Its Meaning) Operand Types Precedence

~ (NOT) Boolean 1

(Ones complement) integer

- (Negate) float 1

(Negate) integer

+ (NOP) float 1

(NOP) integer

* (Multiply) float,float 2

(Multiply) integer,integer

/ (Divide) float,float 2

(Divide) integer,integer

+ (Add) float,float 3

(Add) integer,integer

- (Subtract) float,float 3

(Subtract) integer,integer

784 AIX Version 7.1: Files Reference

Operator (And Its Meaning) Operand Types Precedence

>> (Shift right) integer,integer 4

<< (Shift left) integer,integer 4

& (NOT) Boolean,Boolean 5

(Bitwise AND) integer,integer

(Concatenate) string,string

| (OR) Boolean,Boolean 6

(Bitwise OR) integer,integer

^ (XOR) Boolean,Boolean 6

(Bitwise XOR) integer,integer

A string can be either a single compound string or a sequence of compound strings. If the two
concatenated strings have different properties (such as writing direction or character set), the result
of the concatenation is a multisegment compound string.

The string resulting from the concatenation is a null-terminated string unless one or more of the following
conditions exists:

• One of the operands is a compound string.
• The operands have different character set properties.
• The operands have different writing directions.

If one or more of previous conditions are met, the resulting string is a compound string. You cannot use
imported or exported values as operands of the concatenation operator.

The result of each operator has the same type as its operands. You cannot mix types in an expression
without using conversion functions.

You can use parentheses to override the normal precedence of operators. In a sequence of unary
operators, the operations are performed in right-to-left order. For example, - + -A is equivalent to
-(+(-A)). In a sequence of binary operators of the same precedence, the operations are performed in
left-to-right order. For example, A*B/C*D is equivalent to ((A*B)/c)*D.

A value declaration gives a value a name. You cannot redefine the value of that name in a subsequent
value declaration. You can use a value containing operators and functions anywhere you can use a value
in a UIL module. You cannot use imported values as operands in expressions.

Several of the binary operators are defined for multiple data types. For example, the operator for
multiplication (*) is defined for both floating-point and integer operands.

For the UIL compiler to perform these binary operations, both operands must be of the same type. If you
supply operands of different data types, the UIL compiler automatically converts one of the operands to
the type of the other according to the following conversion rules:

• If the operands are an integer and a Boolean, the Boolean is converted to an integer.
• If the operands are an integer and a floating-point, the integer is converted to a floating-point.
• If the operands are a floating-point and a Boolean, the Boolean is converted to a floating-point.

You can also explicitly convert the data type of a value by using one of the INTEGER, FLOAT, or
SINGLE_FLOAT conversion functions.

Functions

UIL provides functions to generate the following types of values:

• Character sets
• Keysyms

Files Reference 785

• Colors
• Pixmaps
• Single-precision, floating-point numbers
• Double-precision, floating-point numbers
• Fonts
• Font sets
• Font tables
• Compound strings
• Compound string tables
• ASCIZ (null-terminated) string tables
• Wide character strings
• Widget class names
• Integer tables
• Arguments
• Reasons
• Translation tables.

All examples in the following sections assume case-insensitive mode. Keywords are shown in uppercase
letters to distinguish them from user-specified names, which are shown in mixed-case italics. This use of
uppercase letters is not required in case-insensitive mode. In case-sensitive mode, keywords must be in
lowercase letters.

CHARACTER_SET(StringExpression[,Property[, ...]])
You can define your own character sets with the CHARACTER_SET function. You can use the
CHARACTER_SET function anywhere a character set can be specified.

The result of the CHARACTER_SET function is a character set with the name StringExpression and the
properties you specify. StringExpression must be a null-terminated string. You can optionally include
one or both of the following clauses to specify properties for the resulting character set:

RIGHT_TO_LEFT = BooleanExpression SIXTEEN_BIT = BooleanExpression

The RIGHT_TO_LEFT clause sets the default writing direction of the string from right to left if
BooleanExpression is True, and left to right otherwise.

The SIXTEEN_BIT clause allows the strings associated with this character set to be interpreted as
16-bit characters if BooleanExpression is True, and 8-bit characters otherwise.

KEYSYM(StringLiteral)
The KEYSYM function is used to specify a keysym for a mnemonic resource. The StringLiteral must
contain exactly one character. If the -s compiler flag is used, StringLiteral which uses double quotes
must specify a character set.

COLOR(StringExpression[,FOREGROUND|BACKGROUND])
The COLOR function supports the definition of colors. Using the COLOR function, you can designate a
value to specify a color and use that value for arguments requiring a color value. The string expression
names the color you want to define. The optional FOREGROUND and BACKGROUND keywords
identify how the color is to be displayed on a monochrome device when the color is used in the
definition of a color table.

The UIL compiler does not have built-in color names. Colors are a server-dependent attribute of an
object. Colors are defined on each server and may have different red-green-blue (RGB) values on each
server. The string you specify as the color argument must be recognized by the server on which your
application runs.

In a UID file, UIL represents a color as a character string. MRM calls X translation functions that
convert a color string to the device-specific pixel value. If you are running on a monochrome server, all

786 AIX Version 7.1: Files Reference

colors translate to black or white. If you are on a color server, the color names translate to their proper
colors if the following conditions are met:

• The color is defined.
• The color map is not yet full.

If the color map is full, even valid colors translate to black or white (foreground or background).

Generally, interfaces do not specify colors for widgets. This enables the selection of colors to be
controlled by the user through the .Xdefaults file.

To write an application that runs on both monochrome and color devices, you need to specify which
colors in a color table (defined with the COLOR_TABLE function) map to the background and which
colors map to the foreground. UIL lets you use the COLOR function to map the color red to the
background color on a monochrome device as follows:

VALUE c: COLOR ('red',BACKGROUND);

Mapping is necessary only when the MRM is given a color and the application is to be displayed
on a monochrome device. In this case, each color is considered to be in one of the following three
categories:

• The color is mapped to the background color on the monochrome device.
• The color is mapped to the foreground color on the monochrome device.
• Monochrome mapping is undefined for this color.

If the color is mapped to the foreground or background color, MRM substitutes the foreground or
background color, respectively. If you do not specify the monochrome mapping for a color, MRM
passes the color string to AIXwindows for mapping to the foreground or background color.

RGB(RedInteger, GreenInteger, BlueInteger)
The three integers define the values for the red, green, and blue components of the color, in that order.
The values of these components can range from 0 to 65,535, inclusive.

In a UID file, UIL represents an RGB value as three integers. MRM calls X translation functions that
convert the integers to the device-specific pixel value. If you are running on a monochrome server, all
colors translate to black or white. If you are on a color server, RGB values translate to their proper
colors if the color map is not yet full. If the color map is full, values translate to black or white
(foreground or background).

COLOR_TABLE(ColorExpression='Character'[, ...])
The color expression is a previously defined color, a color defined in-line with the COLOR function,
or the phrase BACKGROUND COLOR or FOREGROUND COLOR. The character can be any valid UIL
character.

The COLOR_TABLE function provides a device-independent way to specify a set of colors. The
COLOR_TABLE function accepts either previously defined UIL color names or in-line color definitions
(using the COLOR function). A color table must be private because its contents must be known by the
UIL compiler to construct an icon. The colors within a color table, however, can be imported, exported,
or private.

The single letter associated with each color is the character you use to represent that color when
creating an icon. Each letter used to represent a color must be unique within the color table.

ICON([COLOR_TABLE=ColorTableName,] Row[, ...])
The color table name must refer to a previously defined color table. The row is a character expression
that gives one row of the icon.

The ICON function describes a rectangular icon that is x pixels wide and y pixels high. The strings
surrounded by single quotation marks describe the icon. Each string represents a row in the icon; each
character in the string represents a pixel.

The first row in an icon definition determines the width of the icon. All rows must have the same
number of characters as the first row. The height of the icon is dictated by the number of rows.

Files Reference 787

The first argument of the ICON function (the color table specification) is optional and identifies the
colors that are available in this icon. By using the single letter associated with each color, you can
specify the color of each pixel in the icon. The icon must be constructed of characters defined in the
specified color table.

A default color table is used if you omit the argument specifying the color table. To make use of the
default color table, the rows of your icon must contain only spaces and asterisks. The default color
table is defined as follows:

COLOR_TABLE(BACKGROUND COLOR = ' ', FOREGROUND COLOR = '*')

You can define other characters to represent the background color and foreground color by replacing
the space and asterisk in the BACKGROUND COLOR and FOREGROUND COLOR clauses shown
in the example statement. You can specify icons as private, imported, or exported. Use the
MrmFetchIconLiteral MRM function to retrieve an exported icon at run time.

XBITMAPFILE(StringExpression)
The XBITMAPFILE function is similar to the ICON function in that both describe a rectangular icon
that is x pixels wide and y pixels high. However, the XBITMAPFILE function allows you to specify
an external file containing the definition of an X bitmap, while all ICON function definitions must be
coded directly within UIL. X bitmap files can be generated by many different X applications. UIL reads
these files through the XBITMAPFILE function, but does not support creation of these files. The X
bitmap file specified as the argument to the XBITMAPFILE function is read by MRM at application run
time.

The XBITMAPFILE function returns a value of type pixmap and can be used anywhere a pixmap data
type is expected.

SINGLE_FLOAT(RealNumberLiteral)
The SINGLE_FLOAT function lets you store floating-point literals in UIL files as single-precision,
floating-point numbers. Single-precision, floating-point numbers can often be stored using less
memory than double-precision, floating-point numbers. The RealNumberLiteral can be either an
integer literal or a floating-point literal. A value defined using this function cannot be used in an
arithmetic expression.

FLOAT(RealNumberLiteral)
The FLOAT function lets you store floating-point literals in UIL files as double-precision, floating-point
numbers. The RealNumberLiteral can be either an integer literal or a floating-point literal.

FONT(StringExpression[,CHARACTER_SET=CharSet])
You define fonts with the FONT function. Using the FONT function, you designate a value to specify a
font and use that value for arguments that require a font value. The UIL compiler has no built-in fonts.

Each font makes sense only in the context of a character set. The FONT function has an additional
parameter to let you specify the character set for the font. This parameter is optional; if you omit it,
the default character set depends on the value of the LANG environment variable. If LANG is not set,
the default character set is set to XmFALLBACK_CHARSET.

The string expression specifies the name of the font and the clause CHARACTER_SET=CharSet
specifies the character set for the font. The string expression used in the FONT function cannot be a
compound string.

FONTSET(StringExpression[,...][,CHARACTER_SET=CharSet])
You define fontsets with the FONTSET function. Using the FONTSET function, you designate a set
of values to specify a font and use those values for arguments that require a fontset value. The UIL
compiler has no built-in fonts.

Each font makes sense only in the context of a character set. The FONTSET function has an additional
parameter to let you specify the character set for the font. This parameter is optional; if you omit it,
the default character set depends on the value of the LANG environment variable. If LANG is not set,
the default character set is set to XmFALLBACK_CHARSET.

788 AIX Version 7.1: Files Reference

The string expression specifies the name of the font and the clause CHARACTER_SET=CharSet
specifies the character set for the font. The string expression used in the FONTSET function cannot be
a compound string.

FONT_TABLE(FontExpression[,...])
A font table is a sequence of pairs of fonts and character sets. At run time when an object needs to
display a string, the object scans the font table for the character set that matches the character set of
the string to be displayed. UIL provides the FONT_TABLE function to let you supply such an argument.
The font expression is created with the FONT and FONTSET functions.

If you specify a single font value to specify an argument that requires a font table, the UIL compiler
automatically converts a font value to a font table.

COMPOUND_STRING(StringExpression[,Property[,...]])
Use the COMPOUND_STRING function to set properties of a null-terminated string and to convert
it into a compound string. The properties you can set are the character set, writing direction, and
separator.

The result of the COMPOUND_STRING function is a compound string with the string expression as
its value. You can optionally include one or more of the following clauses to specify properties for the
resulting compound string:

CHARACTER_SET=CharacterSet RIGHT_TO_LEFT=BooleanExpression
SEPARATE=BooleanExpression

The CHARACTER_SET clause specifies the character set for the string. If you omit the
CHARACTER_SET clause, the resulting string has the same character set as StringExpression.

The RIGHT_TO_LEFT clause sets the writing direction of the string from right to left if
BooleanExpression is True. Otherwise, writing direction is left to right. Specifying this argument does
not cause the value of the string expression to change. If you omit the RIGHT_TO_LEFT argument, the
resulting string has the same writing direction as StringExpression.

The SEPARATE clause appends a separator to the end of the compound string if BooleanExpression is
True. If you omit the SEPARATE clause, the resulting string does not have a separator.

You cannot use imported or exported values as the operands of the COMPOUND_STRING function.

COMPOUND_STRING_TABLE(StringExpression[,...])
A compound string table is an array of compound strings. Objects requiring a list of string values,
such as the XmNitems and XmNselectedItems arguments for the List widget, use string table values.
The COMPOUND_STRING_TABLE function builds the values for these two arguments of the List
widget. The COMPOUND_STRING_TABLE function generates a value of type string_table. The name
STRING_TABLE is a synonym for COMPOUND_STRING_TABLE.

The strings inside the string table can be simple strings, which the UIL compiler automatically
converts to compound strings.

ASCIZ_STRING_TABLE(StringExpression[,...])
An ASCIZ string table is an array of ASCIZ (null-terminated) string values separated by commas.
This function allows you to pass more than one ASCIZ string as a callback tag value. The
ASCIZ_STRING_TABLE function generates a value of type asciz_table. The name ASCIZ_TABLE is a
synonym for ASCIZ_STRING_TABLE.

WIDE_CHARACTER(StringExpression)
Use the WIDE_CHARACTER function to generate a wide character string from a null-terminated string
in the current locale.

CLASS_REC_NAME(StringExpression)
Use the CLASS_REC_NAME function to generate a widget class name. For a widget class defined
by the toolkit, the string argument is the name of the class. For a user-defined widget, the string
argument is the name of the creation function for the widget.

Files Reference 789

INTEGER_TABLE(IntegerExpression[,...])
An integer table is an array of integer values separated by commas. This function allows you to pass
more than one integer per callback tag value. The INTEGER_TABLE function generates a value of type
integer_table.

ARGUMENTS(StringExpression[,ArgumentType])
The ARGUMENTS function defines the arguments to a user-defined widget. Each of the objects that
can be described by UIL permits a set of arguments. For example, XmNheight is an argument to
most objects and has the integer data type. To specify height for a user-defined widget, you can
use the built-in argument name XmNheight and specify an integer value when you declare the
user-defined widget. Do not use the ARGUMENTS function to specify arguments that are built into the
UIL compiler.

The StringExpression name is the name the UIL compiler uses for the argument in the UID file. The
ArgumentType is the type of value that can be associated with the argument. If you omit the second
argument, the default type is ANY and no value type checking occurs. Use any of the following
keywords to specify the argument type:

• Any
• Asciz_Table
• Boolean
• Color
• Color_Table
• Compound_String
• Float
• Font
• Font_Table
• Fontset
• Icon
• Integer
• Integer_Table
• Reason
• Single_Float
• String
• String_Table
• Translation_Table
• Wide_Character
• WIdget

You can use the ARGUMENTS function to allow the UIL compiler to recognize extensions to
AIXwindows. For example, an existing widget can accept a new argument. Using the ARGUMENTS
function, you can make this new argument available to the UIL compiler before the updated version of
the compiler is released.

REASON(StringExpression)
The REASON function is useful for defining new reasons for user-defined widgets.

Each of the objects in AIXwindows defines a set of conditions under which it calls a user-defined
function. These conditions are known as callback reasons. The user-defined functions are called
callback procedures. In a UIL module, you use a callbacks list to specify which user-defined functions
are to be called for which reasons.

When you declare a user-defined widget, you can define callback reasons for that widget using the
REASON function. The string expression specifies the argument name stored in the UID file for the
reason. This reason name is supplied to the widget creation function at run time.

790 AIX Version 7.1: Files Reference

TRANSLATION_TABLE(StringExpression[,...])
Each of the AIXwindows widgets have a translation table that maps X events (for example, pressing
mouse button 1) to a sequence of actions. Through widget arguments, such as the common
translations argument, you can specify an alternate set of events or actions for a particular widget.
The TRANSLATION_TABLE function creates a translation table that can be used as the value of an
argument that is of the data type translation_table.

You can use one of the following translation table directives with the TRANSLATION_TABLE function:
#override, #augment, or #replace. The default is #replace. If you specify one of these directives, it
must be the first entry in the translation table.

The #override directive causes any duplicate translations to be ignored. For example, if a translation
for <Btn1Down> is already defined in the current translations for a PushButton, the translation
defined by NewTranslations overrides the current definition. If the #augment directive is specified,
the current definition takes precedence. The #replace directive replaces all current translations with
those specified in the XmNtranslations resource.

Files
• /usr/include/uil/Uil.h
• /usr/include/uil/UilDBDef.h
• /usr/include/uil/UilDef.h
• /usr/include/uil/UilSymDef.h
• /usr/include/uil/UilSymGl.h

Related reference
WML File Format
Related information
uil command

utmp, wtmp, failedlogin File Format

Purpose
Describes formats for user and accounting information.

Description
The utmp file, the wtmp file, and the failedlogin file contain records with user and accounting
information.

When a user attempts to logs in, the login program writes entries in two files:

• The /etc/utmp file, which contains a record of users logged into the system.
• The /var/adm/wtmp file (if it exists), which contains connect-time accounting records.

On an invalid login attempt, due to an incorrect login name or password, the login program makes an
entry in:

• The /etc/security/failedlogin file, which contains a record of unsuccessful login attempts.

The records in these files follow the utmp format, defined in the utmp.h header file.

Files

Item Description

/etc/utmp Contains a record of users logged into the system.

/var/adm/wtmp Contains connect accounting information.

Files Reference 791

Item Description

/etc/security/failedlogin Contains a record of invalid login attempts.

Related information
fwtmp command
init command
login command
who command
Accounting commands

vgrindefs File Format

Purpose
Contains the language definition database for the vgrind command.

Description
The vgrindefs file format contains all the language definitions for the vgrind command. The database is
very similar to the terminfo file format (file of terminal capabilities).

Fields

The following table contains the name and description of each field:

Name Type Description

ab str Alternate regular expression for the start of a comment.

ae str Alternate regular expression for the end of a comment.

pb str Regular expression for the start of a procedure.

bb str Regular expression for the start of a lexical block.

be str Regular expression for the end of a lexical block.

cb str Regular expression for the start of a comment.

ce str Regular expression for the end of a comment.

sb str Regular expression for the start of a string.

se str Regular expression for the end of a string.

lb str Regular expression for the start of a character constant.

le str Regular expression for the end of a character constant.

tl bool Presence means procedures are only defined at the top lexical level.

oc bool Presence means upper and lowercase are equivalent.

kw str List of keywords separated by spaces.

Examples

The following entry, which describes the C language, is typical of a language entry:

C|c: :pb=^\d?*?\d?\p\d??):bb={:be=}:cb=/*:ce=*/:sb=":se=\e":\
 :lb=':le=\e':tl:\
 :kw=asm auto break case char continue default do
 double else enum\
 extern float for fortran goto if int long register
 return short\

792 AIX Version 7.1: Files Reference

 sizeof static struct switch typedef union unsigned
 while #define\
 #else #endif #if #ifdef #ifndef #include #undef # define
 else endif\
 if ifdef ifndef include undef:

The first field is the language name or any variants of the name. Thus the C language can be specified to
the vgrind command in either lowercase or uppercase c.

Entries can continue onto multiple lines by giving a \ (backslash) as the last character of a line. The
vgrindefs file format has the following two capabilities:

• Boolean capabilities that indicate a particular feature of the language
• String capabilities that give a regular expression or keyword list.

In the Java™ language, where comments can be delimited either by a starting "/*" or an ending "*", or by a
starting "//" and "end" at the end of the line, the Java vgrindefs definition might be:

cb=/*:ce=*/:ab=//:ae=$

Regular Expressions

The vgrindefs file format uses regular expressions similar to those of the ex command and the lex
command. The characters ^ (caret), $ (dollar sign), : (colon), and \ (backslash) are reserved characters
and must be quoted with a preceding \ (backslash) if they are to be included as normal characters. The
metasymbols and their meanings follow:

Ite
m

Description

$ End of a line.

^ Beginning of a line.

\d Delimiter (space, tab, newline, start of line).

\a Matches any string of symbols, such as .* in the lex command.

\p Matches any alphanumeric name. In a procedure definition (pb), the string that matches this
symbol is used as the procedure name.

() Grouping.

| Alternation.

? Last item is optional.

\e Preceding any string, means that the string does not match an input string if the input string is
preceded by an escape character (\). Typically used for languages (such as C) that can include the
string delimiter in a string by escaping it.

Unlike other regular expressions in the system, these metasymbols match words and not characters.
Hence the pattern "(tramp|steamer)flies?" matches "tramp," "steamer," "trampflies," or "steamerflies."

Keyword List

The keyword list lists keywords in the language, separated by spaces. If the oc field is specified, indicating
that uppercase and lowercase are equivalent, then all the keywords should be specified in lowercase.

Files

Item Description

/usr/share/lib/vgrindefs Contains terminal descriptions.

Related reference
terminfo Directory

Files Reference 793

Related information
ex command
lex command
troff command
vgrind command

WML File Format

Purpose
Generates variable UIL compiler components.

Description
The widget meta-language facility (WML) is used to generate changeable components of the user
interface language (UIL) compiler, depending on the widget set. Using WML, you can add new widget
UIL support to the AIXwindows widget set or add support for a totally new widget set.

File Format
WML files are ASCII files and can be modified with any standard text editor. They are accessed by WML
in the tools/wml directory and have a .wml suffix. The Motif AIXwindows widget set is described in the
motif.wml file. This is also the default WML file when using the WML facility.

When creating a WML file to add new widgets or change widget characteristics, you can make a copy of
the motif.wml file and modify it. If you are creating a new widget set for use with UIL, create a completely
new file. In either case, the motif.wml file is a good example of WML syntax and can help familiarize you
with the language before attempting to write your own WML file.

WML files have a basic syntax that is similar in structure to UIL. WML syntax is made up of the following
elements:

• Comments
• Data Type Definitions
• Character Set Definitions
• Enumeration Set Definitions
• Control List Definitions
• Class Definitions
• Child Definitions
• Resource Definitions

You can use spaces, tabs, or new-line characters anywhere in syntax, as long as they do not split
keywords or strings. Comments end at a new-line character. The order of elements in syntax is not
important.

The widget meta-language syntax examples shown use the following additional conventions:

Ite
m

Description

[] Indicates optional elements.

... Indicates where an element of syntax can be repeated.

| Indicates a choice among multiple items.

Comments

You can include comments in the WML file. Comments have the following syntax:

794 AIX Version 7.1: Files Reference

[AnyElement]!AnyComment

Comments begin with an ! (exclamation point) and extend to the end of the line. A comment can begin
on a line by itself or follow any part of another element. A comment does not change the meaning of any
other element. For example:

!This is a comment
! that spans two lines.
DataType !This is a comment that follows code.

Data Type Definitions

Data type definitions register all the resource data types used in the file. You must register all the data
types used in your WML file. Data type definitions have the following syntax:

DataType AnyDatatype [{ InternalLiteral = InternalName | DocName = "String"; [...]}]; [...]

A data type definition begins with the DataType keyword. Following the DataType keyword is a list of data
types that can be modified with the following:

Item Description

InternalLiteral Forces the value of the internal symbol table literal definition of the data
type name. This modifier is used only to circumvent symbol table definitions
hard-coded into the UIL compiler and should be used sparingly.

DocName Gives an arbitrary string for use in the documentation. This string supplies a
different name for the data type or a single name for the data type if the data
type has aliases.

For example:

DataType OddNumber {DocName="OddNumber";};
 NewString;

Character Set Definitions

Character set definitions register the AIXwindows Toolkit name and other information for the character set
names used in UIL. Character set definitions have the following syntax:

CharacterSet AnyCharacterSet { [FontListElementTag | XmStringCharsetName] = "String"; [Alias =
"String" ... ; | Direction = [LeftToRight | RightToLeft] ; | ParseDirection = [LeftToRight | RightToLeft] ; |
CharacterSize = [OneByte | TwoByte] ;] [...] } ; [...]

A character set definition begins with the CharacterSet keyword. Following the CharacterSet keyword is
a list of character sets that can be modified with the following:

Item Description

FontListElementTag | XmStringCharsetName Specifies the name of the
character set. The set specified
becomes the character set
component of the compound
string segment that is created.
One of these character sets must
be specified.

Alias Specifies one or more aliases
for the character set name. Each
alias can be used within UIL to
refer to the same character set.

Files Reference 795

Item Description

Direction Specifies the direction of
a compound string segment
created using this character set.
The default is LeftToRight.

ParseDirection Specifies the direction in which
an input string is parsed when
a compound string segment is
created using this character set.
If this is not specified, the value
of Direction is the default.

CharacterSize Specifies the number of bytes in
each character of a compound
string segment created using this
character set. The default is
OneByte.

An example of the character set definition syntax is as follows:

CharacterSet
 iso_latin1
 { XmStringCharsetName = "ISO8859-1";
 Alias = "ISOLatin1"; } ;
 iso_hebrew_lr
 { XmStringCharsetName = "ISO8859-8";
 Alias = "iso_latin8_lr";
 Direction = RightToLeft;
 ParseDirection = LeftToRight; } ;
 ksc_korean
 { XmStringCharsetName = "KSC5601.1987-0";
 CharacterSize = TwoByte; };

Enumeration Set Definitions

Enumeration set definitions register the named constants used in the AIXwindows Toolkit to specify
certain resource values. Enumeration set definitions have the following syntax:

EnumerationSet ResourceName : ResourceType { EnumerationValueName ; [...] } ;

An enumeration set definition begins with the EnumerationSet keyword. For each enumeration set
defined, the name and type of the resource is listed. The resource name is the AIXwindows Toolkit
resource name, with the beginning XmN prefix removed and the initial letter capitalized. For example,
the name of the AIXwindows Toolkit resource XmNrowColumnType would be RowColumnType. The
resource type is the data type for the resource; for most resources, this is the integer data type. Following
the resource name and type is a list of enumeration value names that can be used as settings for the
resource. These names are the same as those in the AIXwindows Toolkit.

An example of the enumeration set definition syntax is as follows:

EnumerationSet
 RowColumnType: integer
 { XmWORK_AREA; XmMENU_BAR; XmMENU_POPUP;
 XmMENU_PULLDOWN; XmMENU_OPTION; };

Control List Definitions

Control list definitions assign a name to groups of controls. You can use these control lists later in class
definitions to simplify the structure of your WML file. Control list definitions have the following syntax:

ControlList AnyControlList [{ AnyControl; [...]}];

796 AIX Version 7.1: Files Reference

A control list definition starts with the ControlList keyword. Following the ControlList keyword are any
number of control list definitions. Control list definitions are made up of a control list name followed by
the set of controls it represents. For example:

ControlList
 Buttons {PushButton;
 RadioButton;
 CascadeButton;
 NewCascadebutton; } ;

Each control specified in the control list must be defined as a class in the file.

Class Definitions

Class definitions describe a particular widget class. Included in this description is its position in the class
hierarchy, toolkit convenience function, resources, and controls. There should be one class definition for
each widget or gadget in the widget set you want to support in UIL. Class definitions have the following
syntax:

Class ClassName : MetaClass | Widget | Gadget [{[SuperClass = ClassName; | ParentClass
= ParentClassName; | InternalLiteral = InternalName; | Alias = Alias; | ConvenienceFunction =
ConvenienceFunction; | WidgetClass = WidgetClass ; | DocName = "String"; | DialogClass = True | False;
| Resources { AnyResourceName [{ Default = NewDefaultValue; | Exclude = True | False; [...]}]; [...]};|
Controls { AnyControlName; [...]}; Children { AnyChildName; [...]}; [...]]}];

Class definitions start with the Class keyword. For each class defined, the name of the class and whether
the class is a metaclass, widget, or gadget is listed. Each class definition can be modified using the
following:

Item Description

SuperClass Indicates the name of the parent class. Only the root of the hierarchy
does not specify a super class.

ParentClass Indicates the name of the widget's automatically created parent
class, if one exists. This allows resources for the automatically
created parent class to be used in this class definition. For example,
XmBulletinBoardDialog creates both an XmBulletinBoard and an
XmDialogShell. To access the resources of the XmDialogShell parent
class, specify it here.

InternalLiteral Forces the value of the internal symbol table literal definition of the
class name. This modifier is used only to circumvent symbol table
definitions hard-coded into the UIL compiler and should be used
sparingly.

Alias Indicates alternate class names for use in a UIL specification.

ConvenienceFunction Indicates the name of the creation convenience function for this
class. All widget and gadget classes must have ConvenienceFunction
specified.

WidgetClass Indicates the associated widget class of gadget type classes. This
value is currently not recognized.

DocName Defines an arbitrary string for use in the documentation. This value is
currently not recognized.

DialogClass Indicates whether the class is a dialog class. This value is currently not
recognized.

Resources Lists the resources of the widget class. This keyword can be further
modified with the following:

Files Reference 797

Item Description

Default Specifies a new default value for this resource. Resource default values
are usually set in the resource definition. If an inherited resource's
default value is changed by the class, the new default value should be
noted here.

Exclude Specifies whether an inherited resource should be excluded from the
resource list of the class. The default value is False.

Children Lists the names of the automatically created children of this class. This
allows those children to be accessed in the UIL file.

Controls Lists the controls that the widget class allows. The controls can be
other classes or a control list from the control definition list.

An example of the usage of the preceding data type and control list definitions is shown:

Class
 TopLevelWidget : MetaClass
 {
 Resources
 {
 XtbNfirstResource;
 XtbNsecondResource;
 };
 };

 NewWidget : Widget
 {
 SuperClass = TopLevelWidget;
 ConvenienceFunction =
 XtbCreateNewWidget;
 Resources
 {
 XtbNnewResource;
 XtbNfirstResource
 {Default="XtbNEW_VALUE";};
 XtbNsecondResource
 {Exclude=True;};
 };
 Controls
 {
 NewWidget;
 Buttons;
 };
 };

Child Definitions

Child definitions register the classes of automatically created children. Automatically created children are
referenced elsewhere in a UIL file using the Children keyword within a class definition. Child definitions
have the following syntax:

Child ChildName : ClassName; [...]

ChildName is the name of the automatically created child and ClassName is the name of the class of that
child.

Resource Definitions

Resource definitions describe a particular resource. Included in this description is its type and default
value. Each new resource reference in a class definition should have a resource definition. Resource
definitions have the following syntax:

Resource ResourceName : Argument | Reason | Constraint | SubResource [{[Type = Type ; |
ResourceLiteral = ResourceLiteral ; | InternalLiteral = InternalName ; | Alias = Alias ; | Related =
Related ; | Default = Default ; | DocName = DocumentName ; | [...]}] [...]

798 AIX Version 7.1: Files Reference

Resource definitions start with the Resource keyword. For each resource definition, the name of the
resource and whether the resource is an argument, reason, constraint, or subresource is listed.

Item Description

Argument Indicates a standard resource.

Reason Indicates a callback resource.

Constraint Indicates a constraint resource.

SubResource This value is currently not recognized.

A resource definition can be modified with the following:

Item Description

Type Indicates the data type of the resource. The data type specified must be listed
in the data type definition.

ResourceLiteral Indicates the keyword used in the UIL file to reference the resource. In
AIXwindows, the resource name is the same as the resource literal name
(ResourceLiteral).

InternalLiteral Forces the value of the internal symbol table literal definition of the resource
name. This modifier is used only to circumvent symbol table definitions hard-
coded into the UIL compiler and should be used sparingly.

Alias Indicates alternate names for the resources used in a UIL specification.

Related Special purpose field that allows resources that act as a counter for the
current resources to be related to the resource. UIL automatically sets the
value of this related resource to the number of items in the compiled instance
of the ResourceName type.

Default Indicates the default value of the resource.

DocName Defines an arbitrary string for use in the documentation. This value is
currently not recognized.

An example of the usage of data type, control list, and class definitions is shown:

Resource
 XtbNfirstResource : Argument
 { Type = OddNumber;
 Default = "XtbOLD_VALUE";};
 XtbNsecondResource : Argument
 { Type = NewString;
 Default = "XtbNEW_STRING";};
 XtbNnewResource : Argument
 { Type = OddNumber;
 Default = "XtbODD_NUMBER";};

Related reference
UIL File Format

XCOFF Object File Format

Purpose
The extended common object file format (XCOFF) is the object file format for the operating system.
XCOFF combines the standard common object file format (COFF) with the TOC module format concept,
which provides for dynamic linking and replacement of units within an object file. A variation of XCOFF is
used for 64-bit object files and executable files.

Files Reference 799

XCOFF is the formal definition of machine-image object and executable files. These object files are
produced by language processors (assemblers and compilers) and the binder (or link editor), and are used
primarily by the binder and the system loader.

The default name for an XCOFF executable file is a.out.

Note: This information lists bits in big-endian order.

Read the following information to learn more about XCOFF object files:

• Composite File Header
• Sections and Section Headers
• Relocation Information for XCOFF File (reloc.h)
• Line Number Information for XCOFF File (linenum.h)
• Symbol Table Information
• dbx Stabstrings

Writing Applications that Use XCOFF Declarations
Programs can be written to understand 32-bit XCOFF files, 64-bit XCOFF files, or both. The programs
themselves may be compiled in 32-bit mode or 64-bit mode to create 32-bit or 64-bit programs. By
defining preprocessor macros, applications can select the proper structure definitions from the XCOFF
header files.

Note: This document uses "XCOFF32" and "XCOFF64" as shorthand for "32-bit XCOFF" and "64-bit
XCOFF", respectively.

Selecting XCOFF32 Declarations

To select the XCOFF32 definitions, an application merely needs to include the appropriate header files.
Only XCOFF32 structures, fields, and preprocessor defines will be included.

Selecting XCOFF64 Declarations

To select the XCOFF64 definitions, an application should define the preprocessor macro __XCOFF64__.
When XCOFF header files are included, the structures, fields, and preprocessor defines for XCOFF64 will
be included. Where possible, the structure names and field names are identical to the XCOFF32 names,
but field sizes and offsets may differ.

Selecting Both XCOFF32 and XCOFF64 Declarations

To select structure definitions for both XCOFF32 and XCOFF64, an application should define both the
preprocessor macros __XCOFF32__ and __XCOFF64__. This will define structures for both kinds of
XCOFF files. Structures and typedef names for XCOFF64 files will have the suffix "_64" added to them.
(Consult the header files for details.)

Selecting Hybrid XCOFF Declarations

An application may choose to select single structures that contain field definitions for both XCOFF32 and
XCOFF64 files. For fields that have the same size and offset in both XCOFF32 and XCOFF64 definitions,
the field names are retained. For fields whose size or offset differ between XCOFF32 and XCOFF64
definitions, the XCOFF32 fields have a "32" suffix, while the XCOFF64 fields have a "64" suffix. To select
hybrid structure definitions, an application should define the preprocessor macro __XCOFF_HYBRID__.
For example, the symbol table definition (in /usr/include/syms.h) will have the name n_offset32 used
for the n_offset field for XCOFF32, and the name n_offset64 used for the n_offset field for XCOFF64.

Understanding XCOFF
Assemblers and compilers produce XCOFF object files as output. The binder combines individual object
files into an XCOFF executable file. The system loader reads an XCOFF executable file to create an
executable memory image of a program. The symbolic debugger reads an XCOFF executable file to
provide symbolic access to functions and variables of an executable memory image.

800 AIX Version 7.1: Files Reference

An XCOFF file contains the following parts:

• A composite header consisting of:

– A file header
– An optional auxiliary header
– Section headers, one for each of the file's raw-data sections

• Raw-data sections, at most one per section header
• Optional relocation information for individual raw-data sections
• Optional line number information for individual raw-data sections
• An optional symbol table
• An optional string table, which is used for all symbol names in XCOFF64 and for symbol names longer

than 8 bytes in XCOFF32.

Not every XCOFF file contains every part. A minimal XCOFF file contains only the file header.

Object and Executable Files

XCOFF object files and executable files are similar in structure. An XCOFF executable file (or "module")
must contain an auxiliary header, a loader section header, and a loader section.

The loader raw-data section contains information needed to dynamically load a module into memory for
execution. Loading an XCOFF executable file into memory creates the following logical segments:

• A text segment (initialized from the .text section of the XCOFF file).
• A data segment, consisting of initialized data (initialized from the .data section of the XCOFF file)

followed by uninitialized data (initialized to 0). The length of uninitialized data is specified in the .bss
section header of the XCOFF file.

The XCOFF file Organization illustrates the structure of the XCOFF object file.

XCOFF Header Files

The xcoff.h file defines the structure of the XCOFF file. The xcoff.h file includes the following files:

Item Description

filehdr.h Defines the file header.

aouthdr.h Defines the auxiliary header.

scnhdr.h Defines the section headers.

loader.h Defines the format of raw data in the .loader section.

typchk.h Defines the format of raw data in the .typchk section.

exceptab.h Defines the format of raw data in the .except section.

dbug.h Defines the format of raw data in the .debug section.

reloc.h Defines the relocation information.

linenum.h Defines the line number information.

syms.h Defines the symbol table format.

storclass.h Defines ordinary storage classes.

dbxstclass.h Defines storage classes used by the symbolic debuggers.

The a.out.h file includes the xcoff.h file. All of the XCOFF include files include the xcoff32_64.h file.

For more information on sections of the XCOFF object file, see "Sections and Section Headers." For more
information on the symbol table, see "Symbol Table Information." For more information on the string
table, see "String Table." For more information on the Debug section, see "Debug Section."

Files Reference 801

Composite File Header
The following sections describe the XCOFF composite file header components:

• File Header (filehdr.h)
• Auxiliary Header (aouthdr.h)
• Section Headers (scnhdr.h)

File Header (filehdr.h)

The filehdr.h file defines the file header of an XCOFF file. The file header is 20 bytes long in XCOFF32 and
24 bytes long in XCOFF64. The structure contains the fields shown in the following table.

Table 12. File Header Structure (Defined in filehdr.h)

Field Name and Description XCOFF32 XCOFF64

f_magic
Target machine

• Offset: 0
• Length: 2

• Offset: 0
• Length: 2

f_nscns
Number of sections

• Offset: 2
• Length: 2

• Offset: 2
• Length: 2

f_timdat
Time and date of file creation

• Offset: 4
• Length: 4

• Offset: 4
• Length: 4

f_symptr+

Byte offset to symbol table
start

• Offset: 8
• Length: 4

• Offset: 8
• Length: 8

f_nsyms+

Number of entries in symbol
table

• Offset: 12
• Length: 4

• Offset: 20
• Length: 4

f_opthdr
Number of bytes in optional
header

• Offset: 16
• Length: 2

• Offset: 16
• Length: 2

f_flags
Flags (see "Field Definitions")

• Offset: 18
• Length: 2

• Offset: 18
• Length: 2

Note: + Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined.

Field Definitions
Item Description

f_magic Specifies an integer known as the magic number, which specifies the target machine and environment of the object file. For XCOFF32, the only
valid value is 0x01DF (0737 Octal). For XCOFF64 the only valid value is 0x01F7 (0767 Octal). Symbolic names for these values are found in the
file, /usr/include/filehdr.h.

f_nscns Specifies the number of section headers contained in the file. The first section header is section header number one; all references to a section are
one-based.

f_timdat Specifies when the file was created (number of elapsed seconds since 00:00:00 Universal Coordinated Time (UCT), January 1, 1970). This field
should specify either the actual time or be set to a value of 0.

f_symptr Specifies a file pointer (byte offset from the beginning of the file) to the start of the symbol table. If the value of the f_nsyms field is 0, then
f_nsyms is undefined.

f_nsyms Specifies the number of entries in the symbol table. Each symbol table entry is 18 bytes long.

f_opthdr Specifies the length, in bytes, of the auxiliary header. For an XCOFF file to be executable, the auxiliary header must exist and be _AOUTHSZ_EXEC
bytes long. (_AOUTHSZ_EXEC is defined in aouthdr.h.)

802 AIX Version 7.1: Files Reference

Item Description

f_flags Specifies a bit mask of flags that describe the type of the object file. The following information defines the flags:

Bit Mask
Flag

0x0001
F_RELFLG

Indicates that the relocation information for binding has been removed from the file. This flag must not be set by compilers, even if relocation
information was not required.

0x0002
F_EXEC

Indicates that the file is executable. No unresolved external references exist.

0x0004
F_LNNO

Indicates that line numbers have been stripped from the file by a utility program. This flag is not set by compilers, even if no line-number
information has been generated.

0x0008
Reserved.

0x0010
F_FDPR_PROF

Indicates that the file was profiled with the fdpr command.

0x0020
F_FDPR_OPTI

Indicates that the file was reordered with the fdpr command.

0x0040
F_DSA

Indicates that the file uses Very Large Program Support.

0x0080
Reserved.

0x0100

F_VARPG

Indicates that one of the members of the auxiliary header specifying the medium page sizes is non-zero. By default, the value of this bit is
always zero.

0x0200
Reserved.

0x0400
Reserved.

0x0800
Reserved.

0x1000
F_DYNLOAD

Indicates the file is dynamically loadable and executable. External references are resolved by way of imports, and the file might contain
exports and loader relocation.

0x2000
F_SHROBJ

Indicates the file is a shared object (shared library). The file is separately loadable. That is, it is not normally bound with other objects, and its
loader exports symbols are used as automatic import symbols for other object files.

0x4000
F_LOADONLY

If the object file is a member of an archive, it can be loaded by the system loader, but the member is ignored by the binder. If the object file is
not in an archive, this flag has no effect.

0x8000
Reserved.

Auxiliary Header (aouthdr.h)

The auxiliary header contains system-dependent and implementation-dependent information, which is
used for loading and executing a module. Information in the auxiliary header minimizes how much of the
file must be processed by the system loader at execution time.

The binder generates an auxiliary header for use by the system loader. Auxiliary headers are not required
for an object file that is not to be loaded. When auxiliary headers are generated by compilers and
assemblers, the headers are ignored by the binder.

The auxiliary header immediately follows the file header.

Note: If the value of the f_opthdr field in the file header is 0, the auxiliary header does not exist.

The C language structure for the auxiliary header is defined in the aouthdr.h file. The auxiliary header
contains the fields shown in the following table.

Files Reference 803

Table 13. Auxiliary Header Structure (Defined in aouthdr.h)

Field Name and Description XCOFF32 XCOFF64

o_mflag
Flags

• Offset: 0
• Length: 2

• Offset: 0
• Length: 2

o_vstamp
Version

• Offset: 2
• Length: 2

• Offset: 2
• Length: 2

o_tsize+

Text size in bytes
• Offset: 4
• Length: 4

• Offset: 56
• Length: 8

o_dsize+

Initialized data size in bytes
• Offset: 8
• Length: 4

• Offset: 64
• Length: 8

o_bsize+

Uninitialized data size in
bytes

• Offset: 12
• Length: 4

• Offset: 72
• Length: 8

o_entry+

Entry point descriptor (virtual
address)

• Offset: 16
• Length: 4

• Offset: 80
• Length: 8

o_text_start+

Base address of text (virtual
address)

• Offset: 20
• Length: 4

• Offset: 8
• Length: 8

o_data_start+

Base address of data (virtual
address)

• Offset: 24
• Length: 4

• Offset: 16
• Length: 8

o_toc+

Address of TOC anchor
• Offset: 28
• Length: 4

• Offset: 24
• Length: 8

o_snentry
Section number for entry
point

• Offset: 32
• Length: 2

• Offset: 32
• Length: 2

o_sntext
Section number for .text

• Offset: 34
• Length: 2

• Offset: 34
• Length: 2

o_sndata
Section number for .data

• Offset: 36
• Length: 2

• Offset: 36
• Length: 2

o_sntoc
Section number for TOC

• Offset: 38
• Length: 2

• Offset: 38
• Length: 2

o_snloader
Section number for loader
data

• Offset: 40
• Length: 2

• Offset: 40
• Length: 2

o_snbss
Section number for .bss

• Offset: 42
• Length: 2

• Offset: 42
• Length: 2

804 AIX Version 7.1: Files Reference

Table 13. Auxiliary Header Structure (Defined in aouthdr.h) (continued)

Field Name and Description XCOFF32 XCOFF64

o_algntext
Maximum alignment
for .text

• Offset: 44
• Length: 2

• Offset: 44
• Length: 2

o_algndata
Maximum alignment
for .data

• Offset: 46
• Length: 2

• Offset: 46
• Length: 2

o_modtype
Module type field

• Offset: 48
• Length: 2

• Offset: 48
• Length: 2

o_cpuflag
Bit flags - cpu types of objects

• Offset: 50
• Length: 1

• Offset: 50
• Length: 1

o_cputype
Reserved for CPU type

• Offset: 51
• Length: 1

• Offset: 51
• Length: 1

o_maxstack+

Maximum stack size allowed
(bytes)

• Offset: 52
• Length: 4

• Offset: 88
• Length: 8

o_maxdata+

Maximum data size allowed
(bytes)

• Offset: 56
• Length: 4

• Offset: 96
• Length: 8

o_debugger+

Reserved for debuggers.
• Offset: 60
• Length: 4

• Offset: 4
• Length: 4

o_textpsize+
Requested text page size.

• Offset: 64
• Length: 1

• Offset: 52
• Length: 1

o_datapsize+
Requested data page size.

• Offset: 65
• Length: 1

• Offset: 53
• Length: 1

o_stackpsize+
Requested stack page size.

• Offset: 66
• Length: 1

• Offset: 54
• Length: 1

o_flags
Flags and thread-local
storage alignment

• Offset: 67
• Length: 1

• Offset: 55
• Length: 1

o_sntdata
Section number for .tdata

• Offset: 68
• Length: 2

• Offset: 104
• Length: 2

o_sntbss
Section number for .tbss

• Offset: 70
• Length: 2

• Offset: 106
• Length: 2

o_x64flags
XCOFF64 flags

• Offset: N/A
• Length: N/A

• Offset: 108
• Length: 2

Note: + Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined.

Files Reference 805

Field Definitions

The following information defines the auxiliary header fields. For entries with two labels, the label in
parentheses is the alternate original COFF a.out file format name.

Item Description

o_mflags
(magic)

If the value of the o_vstamp field is greater than 1, the o_mflags field is
reserved for future use and it should contain 0. Otherwise, this field is not used.

o_vstamp
(vstamp)

Specifies the format version for this auxiliary header. The valid values are 1 and 2.
When the o_vstamp field is 2 in an XCOFF32 file, the new interpretation of the
n_type field in the symbol table entry is used.

o_tsize (tsize) Specifies the size (in bytes) of the raw data for the .text section. The .text
section typically contains the read-only part of the program. This is the same
value as contained in the s_size field of the section header for the .text
section.

o_dsize (dsize) Specifies the size (in bytes) of the raw data for the .data section. The .data
section contains the initialized data of the program and is writable. This is the
same value as contained in the s_size field of the section header for the .data
section.

o_bsize (bsize) Specifies the size (in bytes) of .bss area, which is used for uninitialized variables
during execution and is writable. No raw data exists in the file for the .bss
section. This is the same value as contained in the s_size field of the section
header for the .bss section.

o_entry (entry) Specifies the virtual address of the entry point. (See the definition of the
o_snentry field.) For application programs, this virtual address is the address
of the function descriptor. The function descriptor contains the addresses of both
the entry point itself and its TOC anchor. The offset of the entry point function
descriptor from the beginning of its containing section can be calculated as
follows:

Section_offset_value=o_entry-s_paddr[o_snentry - 1],

where s_paddr is the virtual address contained in the specified section header.

o_text_start
(text_start)

Specifies the virtual address of the .text section. This is the address assigned to
(that is, used for) the first byte of the .text raw-data section. This is the same
value as contained in the s_paddr field of the section header for the .text
section.

o_data_start
(data_start)

Specifies the virtual address of the .data section. This is the address assigned
to (that is, used for) the first byte of the .data raw-data section. This is the
same value as contained in the s_paddr field of the section header for the .data
section.

For addressing purposes, the .bss section is considered to follow the .data
section.

o_toc Specifies the virtual address of the TOC anchor (see the definition of the o_sntoc
field).

o_snentry Specifies the number of the file section containing the entry-point. (This field
contains a file section header sequence number.) The entry point must be in
the .text or .data section.

o_sntext Specifies the number of the file .text section. (This field contains a file section
header sequence number.)

806 AIX Version 7.1: Files Reference

Item Description

o_sndata Specifies the number of the file .data section. (This field contains a file section
header sequence number.)

o_sntoc Specifies the number of the file section containing the TOC. (This field contains a
file section header sequence number.)

o_snloader Specifies the number of the file section containing the system loader information.
(This field contains a file section header sequence number.)

o_snbss Specifies the number of the file .bss section. (This field contains a file section
header sequence number.)

o_algntext Specifies the log (base 2) of the maximum alignment needed for any csect in
the .text section.

o_algndata Specifies the log (base 2) of the maximum alignment needed for any csect in
the .data and .bss sections.

o_modtype Specifies a module type. The value is an ASCII character string. The following
module type is recognized by the system loader:
RO

Specifies a read-only module. If a shared object with this module type has no
BSS section and only depends on other read-only modules, the data section
of the module will be mapped read-only and shared by all processes using the
object.

o_cpuflag Bit flags - cputypes of objects.

o_cputype Reserved. This byte must be set to 0.

o_maxstack Specifies the maximum stack size (in bytes) allowed for this executable. If the
value is 0, the system default maximum stack size is used.

o_maxdata Specifies the maximum data size (in bytes) allowed for this executable. If the
value is 0, the system default maximum data size is used.

o_debugger This field should contain 0. When a loaded program is being debugged, the
memory image of this field may be modified by a debugger to insert a trap
instruction.

o_sntdata Specifies the number of the .tdata file section. (This field contains a file section
header sequence number.)

o_sntbss Specifies the number of the .tbss file section. (This field contains a file section
header sequence number.)

o_flags Consists of four 1-bit flags and a 4-bit .tdata alignment:
_AOUT_TLS_LE 0x80 (High-order bit of o_flags)

Program uses local-exec model for thread-local storage. Such a program
cannot be loaded dynamically.

_AOUT_RAS 0x40
Indicates that a kernel extension is key and recovery safe.

_AOUT_ALGNTDATA (Low-order 4 bits of o_flags)
This field specifies the desired alignment of the module's thread-local storage.
The value of this 4-bit number is interpreted as follows:

Bit 0-8 Log (base 2) of desired alignment
Bit 9-11 Reserved.
Bit 12 4KB page alignment
Bit 13 64KB page alignment
Bit 14-15 Reserved.

Files Reference 807

Item Description

o_textpsize Specifies the size of pages for the exec text. The default value is 0 (system-
selected page size).

o_datapsize Specifies the size of pages for the exec data. The default value is 0 (system-
selected page size). The value of o_datapsize overrides the large page data
request (by setting the F_LPDATA bit in the XCOFF file).

o_stackpsize Specifies the size of pages for the stack. The default value is 0 (system-selected
page size).

o_x64flags Consists of 16 flag bits. This field only exists in the XCOFF64 definition.
_AOUT_SHR_SYMTAB 0x8000

Requests the creation of shared symbol table be created for this program,
which is used by all instances of the program on the system. This flag is
ignored in a shared library.

_AOUT_FORK_POLICY 0x4000
If the _AOUT_FORK_POLICY flag is set, an explict forktree policy is
requested. The _AOUT_FORK_COR flag determines which policy is requested.
This flag is ignored in a shared library.

_AOUT_FORK_COR 0x2000
If the _AOUT_FORK_POLICY and _AOUT_FORK_COR flags are both set, the
copy-on-reference forktree policy is requested. If the A_OUT_FORK_POLICY
flag is set but the _AOUT_FORK_COR flag is not set, the copy-on-write
forktree policy is requested.

If the _AOUT_FORK_POLICY is not set, the _AOUT_FORK_COR flag is
reserved for future use and should be set to 0. This flag is ignored in a shared
library.

In general, an object file might contain multiple sections of a given type, but in a loadable module, there
must be exactly one .text, .data, .bss, and .loader section. A loadable object might also have
one .tdata section and one.tbss section.

Section Headers (scnhdr.h)

Each section of an XCOFF file has a corresponding section header, although some section headers may
not have a corresponding raw-data section. A section header provides identification and file-accessing
information for each section contained within an XCOFF file. Each section header in an XCOFF32 file is
40 bytes long, while XCOFF64 section headers are 72 bytes long. The C language structure for a section
header can be found in the scnhdr.h file. A section header contains the fields shown in the following table.

Table 14. Section Header Structure (Defined in scnhdr.h)

Field Name and Description XCOFF32 XCOFF64

s_name
Section name

• Offset: 0
• Length: 8

• Offset: 0
• Length: 8

s_paddr+

Physical address
• Offset: 8
• Length: 4

• Offset: 8
• Length: 8

s_vaddr+

Virtual address (same as
physical address)

• Offset: 12
• Length: 4

• Offset: 16
• Length: 8

s_size+

Section size
• Offset: 16
• Length: 4

• Offset: 24
• Length: 8

808 AIX Version 7.1: Files Reference

Table 14. Section Header Structure (Defined in scnhdr.h) (continued)

Field Name and Description XCOFF32 XCOFF64

s_scnptr+

Offset in file to raw data for
section

• Offset: 20
• Length: 4

• Offset: 32
• Length: 8

s_relptr+

Offset in file to relocation
entries for section

• Offset: 24
• Length: 4

• Offset: 40
• Length: 8

s_lnnoptr+

Offset in file to line number
entries for section

• Offset: 28
• Length: 4

• Offset: 48
• Length: 8

s_nreloc+

Number of relocation entries
• Offset: 32
• Length: 2

• Offset: 56
• Length: 4

s_nlnno+

Number of line number
entries

• Offset: 34
• Length: 2

• Offset: 60
• Length: 4

s_flags+

Flags to define the section
type

• Offset: 36
• Length: 2

• Offset: 64
• Length: 4

Note: + Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined.

Field Definitions

The following information defines the section header fields:

Item Description

s_name Specifies an 8-byte, null-padded section name. An 8-byte section name will not have a terminating null
character. Use the s_flags field instead of the s_name field to determine a section type. Two sections of the
same type may have different names, allowing certain applications to distinguish between them.

s_paddr Specifies the physical address of the section. This is the address assigned and used by the compilers and the
binder for the first byte of the section. This field should contain 0 for all sections except the .text , .data ,
and .bss sections.

s_vaddr Specifies the virtual address of the section. This field has the same value as the s_paddr field.

s_size Specifies the size (in bytes) of this section.

s_scnptr Specifies a file pointer (byte offset from the beginning of the file) to this section's raw data. If this field
contains 0, this section has no raw data. Otherwise, the size of the raw data must be contained in the s_size
field.

s_relptr Specifies a file pointer (byte offset from the beginning of the file) to the relocation entries for this section. If
this section has no relocation entries, this field must contain 0.

s_lnnoptr Specifies a file pointer (byte offset from the beginning of the file) to the line number entries for this section. If
this section has no line number entries, this field must contain 0.

s_nreloc Specifies the number of relocation entries for this section. In an XCOFF32 file, if more than 65,534 relocation
entries are required, the field value will be 65535, and an STYP_OVRFLO section header will contain the actual
count of relocation entries in the s_paddr field. Refer to the discussion of overflow headers in "Sections and
Section Headers" . If this field is set to 65535, the s_nlnno field must also be set to 65535.

s_nlnno Specifies the number of line number entries for this section. In an XCOFF32 file, if more than 65,534 line
number entries are required, the field value will be 65535, and an STYP_OVRFLO section header will contain
the actual number of line number entries in the s_vaddr field. Refer to the discussion of overflow headers in
"Sections and Section Headers" . If this field is set to 65535, the s_nreloc field must also be set to 65535.

Files Reference 809

Item Description

s_flags Specifies flags defining the section type. A section type identifies the contents of a section and specifies how
the section is to be processed by the binder of the system loader. The s_flags field consists of two 16-bit
fields. The low-order 16 bits specify the primary section type. Only a single bit should be set in the low-order
16 bits. The high-order 16-bits specify a section subtype. For a primary section type without subtypes, the
high-order 16 bits should be 0.

Note: The strip command logically deletes a section header by setting the s_flags field to -1.

Valid bit values are:

Value
Flag

0x0000
Reserved.

0x0001
Reserved.

0x0002
Reserved.

0x0004
Reserved.

0x0008
STYP_PAD

Specifies a pad section. A section of this type is used to provide alignment padding between sections
within an XCOFF executable object file. This section header type is obsolete since padding is allowed in an
XCOFF file without a corresponding pad section header.

0x0010
STYP_DWARF

Specifies a DWARF debugging section, which provide source file and symbol information for the symbolic
debugger.

There are multiple types of DWARF sections defined. The type of a DWARF section is specified with the
high-order 16 bits of the s_flags field. Valid subtypes are:

 Value | Macro | Description

 0x10000 | SSUBTYP_DWINFO | DWARF info section
 0x20000 | SSUBTYP_DWLINE | DWARF line-number section
 0x30000 | SSUBTYP_DWPBNMS | DWARF public names section
 0x40000 | SSUBTYP_DWPBTYP | DWARF public types section
 0x50000 | SSUBTYP_DWARNGE | DWARF aranges section
 0x60000 | SSUBTYP_DWABREV | DWARF abbreviation section
 0x70000 | SSUBTYP_DWSTR | DWARF strings section
 0x80000 | SSUBTYP_DWRNGES | DWARF ranges section
 0x90000 | SSUBTYPE_DWLOC | DWARF location lists section
 0xA0000 | SSUBTYPE_DWFRAME | DWARF frames section
 0xB0000 | SSUBTYPE_DWMAC | DWARF macros section

0x0020
STYP_TEXT

Specifies an executable text (code) section. A section of this type contains the executable instructions of
a program.

0x0040
STYP_DATA

Specifies an initialized data section. A section of this type contains the initialized data and the TOC of a
program.

0x0080
STYP_BSS

Specifies an uninitialized data section. A section header of this type defines the uninitialized data of a
program.

0x0100
STYP_EXCEPT

Specifies an exception section. A section of this type provides information to identify the reason that a
trap or exception occurred within an executable object program.

810 AIX Version 7.1: Files Reference

Item Description

0x0200
STYP_INFO

Specifies a comment section. A section of this type provides comments or data to
special processing utility programs.

0x0400
STYP_TDATA

Specifies an initialized thread-local data section.

0x0800
STYP_TBSS

Specifies an uninitialized thread-local data section.

s_flags
continued

Valid bit values are:

Value
Flag

0x1000
STYP_LOADER

Specifies a loader section. A section of this type contains object file information for
the system loader to load an XCOFF executable. The information includes imported
symbols, exported symbols, relocation data, type-check information, and shared
object names.

0x2000
STYP_DEBUG

Specifies a debug section. A section of this type contains stabstring information
used by the symbolic debugger.

0x4000
STYP_TYPCHK

Specifies a type-check section. A section of this type contains parameter/argument
type-check strings used by the binder.

0x8000
STYP_OVRFLO

Note: An XCOFF64 file may not contain an overflow section header.

Specifies a relocation or line-number field overflow section. A section header of this
type contains the count of relocation entries and line number entries for some other
section. This section header is required when either of the counts exceeds 65,534.
See the s_nreloc and s_nlnno fields in "Sections and Section Headers" for more
information on overflow headers.

Sections and Section Headers
Section headers are defined to provide a variety of information about the contents of an XCOFF file.
Programs that process XCOFF files will recognize only some of the valid sections.

See the following information to learn more about XCOFF file sections:

• Loader Section (loader.h)
• Debug Section
• Type-Check Section
• Exception Section

Files Reference 811

• Comment Section

Current applications do not use the s_name field to determine the section type. Nevertheless,
conventional names are used by system tools, as shown in the following table.

Table 15. Conventional Header Names

Description Multiple Allowed? s_flag (and its conventional name)

Text section Yes STYP_TEXT (.text)

Data section Yes STYP_DATA (.data)

BSS section Yes STYP_BSS (.bss)

Pad section Yes STYP_PAD (.pad)

Loader section No STYP_LOADER (.loader)

Debug section No STYP_DEBUG (.debug)

Type-check section Yes STYP_TYPCHK (.typchk)

Exception section No STYP_EXCEPT (.except)

Overflow section Yes (one per .text or .data
section)

STYP_OVRFLO (.ovrflo)

Comment section Yes STYP_INFO (.info)

Tdata section Yes STYP_TDATA (.tdata)

TBSS section Yes STYP_TBSS (.tbss)

DWARF section Yes STYP_DWARF

SSUBTYPE_DWINFO (.dwinfo)

SSUBTYPE_DWLINE (.dwline)

SSUBTYPE_DWPBNMS (.dwpbnms)

SSUBTYPE_DWBTYP (.dwpbtyp)

SSUBTYPE_DWARNGE (.dwarnge)

SSUBTYPE_DWABREV (.dwabrev)

SSUBTYPE_DWSTR (.dwstr)

SSUBTYPE_DWRNGES (.dwrnges)

SSUBTYPE_DWLOC (.dwloc)

SSUBTYPE_DWFRAME (.dwframe)

SSUBTYPE_DWMAC (.dwmac)

Some fields of a section header may not always be used, or may have special usage. This pertains to the
following fields:

Item Description

s_name On input, ignored by the binder and system loader. On output, the conventional
names (shown in the "Conventional Header Names" table) are used.

s_scnptr Ignored for .bss sections.

s_relptr Recognized for the .text , .data , .tdata, and STYP_DWARF sections only.

s_lnnoptr Recognized for the .text section only. Otherwise, it must be 0.

812 AIX Version 7.1: Files Reference

Item Description

s_nreloc ,
s_nlnno

Handles relocation or line-number field overflows in an XCOFF32 file. (XCOFF64
files may not have overflow section headers.) If a section has more than 65,534
relocation entries or line number entries, both of these fields are set to a value of
65535. In this case, an overflow section header with the s_flags field equal to
STYP_OVRFLO is used to contain the relocation and line-number count information.
The fields in the overflow section header are defined as follows:
s_nreloc

Specifies the file section number of the section header that overflowed; that is,
the section header containing a value of 65535 in its s_nreloc and s_nlnno
fields. This value provides a reference to the primary section header. This field
must have the same value as the s_nlnno field.

Note: There is no reference in the primary section header that identifies the
appropriate overflow section header. All the section headers must be searched
to locate an overflow section header that contains the correct primary section
header reference in this field.

s_nlnno
Specifies the file section number of the section header that overflowed. This field
must have the same value as the s_nreloc field.

s_paddr
Specifies the number of relocation entries actually required. This field is used
instead of the s_nreloc field of the section header that overflowed.

s_vaddr
Specifies the number of line-number entries actually required. This field is used
instead of the s_nlnno field of the section header that overflowed.

The s_size and s_scnptr fields have a value of 0 in an overflow section header.
The s_relptr and s_lnnoptr fields must have the same values as in the
corresponding primary section header.

An XCOFF file provides special meaning to the following sections:

• The .text, .data, and .bss sections, and the optional .tdata and .tbss sections, define the
memory image of the program. The relocation parts associated with the .text and .data sections
contain the full binder relocation information so it can be used for replacement link editing. Only
the .text section is associated with a line number part. The parts associated with the executable code
are produced by the compilers and assemblers.

• The .pad section is defined as a null-filled, raw-data section that is used to align a subsequent section
in the file on some defined boundary such as a file block boundary or a system page boundary. Padding
is allowed in an XCOFF file without a corresponding section header so that the binder does not generate
pad section headers.

• The .loader section is a raw-data section defined to contain the dynamic loader information. This
section is generated by the binder and has its own self-contained symbol table and relocation table.
There is no reference to this section from the XCOFF Symbol Table.

• The .debug section is a raw-data section defined to contain the stab (symbol table) or dictionary
information required by the symbolic debugger.

• The .dwinfo,.dwline,.dwpbnms,.dwpbtyp,.dwarnge, .dwabrev,.dwstr, and .dwrnges
sections are raw-data sections defined to contain symbol table and source file information for the
symbolic debugger.

• The .typchk section is a raw-data section defined to contain parameter and argument type-checking
strings.

• The .except section is a raw-data section defined to contain the exception tables used to identify the
reasons for an exception in program execution.

Files Reference 813

• The .info comment section is a raw-data section defined to contain comments or data that are of
significance to special processing utility programs.

• The .debug, .except, .info, and .typchk sections are produced by compilers and assemblers.
References to these sections or to items within these sections are made from the XCOFF Symbol Table.

For more information on XCOFF file sections, see "Loader Section (loader.h)," "Debug Section," "Type-
Check Section," "Exception Section," and "Comment Section."

Loader Section (loader.h)
The loader section contains information required by the system loader to load and relocate an executable
XCOFF object. The loader section is generated by the binder. The loader section has an s_flags section
type flag of STYP_LOADER in the XCOFF section header. By convention, .loader is the loader section
name. The data in this section is not referenced by entries in the XCOFF symbol table.

The loader section consists of the following parts:

• Header fields
• Symbol table
• Relocation table
• Import file ID strings
• Symbol name string table

The C language structure for the loader section can be found in the loader.h file.

Loader Header Field Definitions

The following table describes the loader section's header field definitions.

Table 16. Loader Section Header Structure (Defined in loader.h)

Field Name and Description XCOFF32 XCOFF64

l_version
Loader section version
number

• Offset: 0
• Length: 4

• Offset: 0
• Length: 4

l_nsyms
Number of symbol table
entries

• Offset: 4
• Length: 4

• Offset: 4
• Length: 4

l_nreloc
Number of relocation table
entries

• Offset: 8
• Length: 4

• Offset: 8
• Length: 4

l_istlen
Length of import file ID string
table

• Offset: 12
• Length: 4

• Offset: 12
• Length: 4

l_nimpid
Number of import file IDs

• Offset: 16
• Length: 4

• Offset: 16
• Length: 4

l_impoff+

Offset to start of import file
IDs

• Offset: 20
• Length: 4

• Offset: 24
• Length: 8

l_stlen+

Length of string table
• Offset: 24
• Length: 4

• Offset: 20
• Length: 4

814 AIX Version 7.1: Files Reference

Table 16. Loader Section Header Structure (Defined in loader.h) (continued)

Field Name and Description XCOFF32 XCOFF64

l_stoff+

Offset to start of string table
• Offset: 28
• Length: 4

• Offset: 32
• Length: 8

l_symoff
Offset to start of symbol table

• Offset: N/A
• Length: N/A

• Offset: 40
• Length: 8

l_rldoff
Offset to start of relocation
entries

• Offset: N/A
• Length: N/A

• Offset: 48
• Length: 8

Note: +Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined.

The following information defines the loader section's header fields:

Item Description

l_version Specifies the loader section version number. A value of 1 is supported for XCOFF32; and
a value of 1 or 2 is supported for XCOFF64.

l_nsyms Specifies the number of symbol table entries in the loader section. This value is the
actual count of symbol table entries contained in the loader section and does not
include the five implicit entries for the .text, .data, .bss, .tdata, and .tbss symbol
entries.

l_nreloc Specifies the number of relocation table entries in the loader section.

l_istlen Specifies the byte length of the import file ID string table in the loader section.

l_nimpid Specifies the number of import file IDs in the import file ID string table.

l_impoff Specifies the byte offset from beginning of the loader section to the first import file ID.

l_stlen Specifies the length of the loader section string table.

l_stoff Specifies the byte offset from beginning of the loader section to the first entry in the
string table.

l_symoff Specifies the byte offset from beginning of the loader section to the start of the loader
symbol table (in XCOFF64 only). In XCOFF32, the symbol table follows the loader
header.

l_rldoff Specifies the byte offset from beginning of the loader section to the start of the loader
section relocation entries (in XCOFF64 only). In XCOFF32, the relocation entries follow
immediately after the loader symbol table.

Loader Symbol Table Field Definitions

The loader section symbol table contains the symbol table entries that the system loader needs for its
import and export symbol processing and dynamic relocation processing.

The loader.h file defines the symbol table fields. Each entry is 24 bytes long.

There are five implicit external symbols, one each for the .text, .data, .bss, .tdata, and .tbss
sections. These symbols are referenced from the relocation table entries using symbol table index values
0, 1, 2, -1, and -2, respectively.

Files Reference 815

Table 17. Loader Section Symbol Table Entry Structure

Field Name and Description XCOFF32 XCOFF64

l_name+

Symbol name or byte offset
into string table

• Offset: 0
• Length: 8

• Offset: N/A
• Length: N/A

l_zeroes+

Zero indicates symbol name
is referenced from l_offset

• Offset: 0
• Length: 4

• Offset: N/A
• Length: N/A

l_offset+

Byte offset into string table of
symbol name

• Offset: 4
• Length: 4

• Offset: 8
• Length: 4

l_value+

Address field
• Offset: 8
• Length: 4

• Offset: 0
• Length: 8

l_scnum
Section number containing
symbol

• Offset: 12
• Length: 2

• Offset: 12
• Length: 2

l_smtype
Symbol type, export, import
flags

• Offset: 14
• Length: 1

• Offset: 14
• Length: 1

l_smclas
Symbol storage class

• Offset: 15
• Length: 1

• Offset: 15
• Length: 1

l_ifile
Import file ID; ordinal of
import file IDs

• Offset: 16
• Length: 4

• Offset: 16
• Length: 4

l_parm
Parameter type-check field

• Offset:20
• Length: 4

• Offset: 20
• Length: 4

Note: +Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined.

The symbol table fields are:

Item Description

l_name (XCOFF32 only) Specifies an 8-byte, null-padded symbol name if it is 8 bytes or less in
length. Otherwise, the field is treated as the following two 4-byte integers for accessing
the symbol name:
l_zeroes

(XCOFF32 only) A value of 0 indicates that the symbol name is in the loader section
string table. This field overlays the first word of the l_name field. An l_name field
having the first 4 bytes (first word) equal to 0 is used to indicate that the name string is
contained in the string table instead of the l_name field.

l_offset
(XCOFF32 only) This field overlays the second word of the l_name field. The value of
this field is the byte offset from the beginning of the loader section string table to the
first byte of the symbol name (not its length field).

l_offset (XCOFF64 only) This field has the same use as the l_offset field in XCOFF32.

l_value Specifies the virtual address of the symbol

816 AIX Version 7.1: Files Reference

Item Description

l_scnum Specifies the number of the XCOFF section that contains the symbol. If the symbol is
undefined or imported, the section number is 0. Otherwise, the section number refers to
the .text, .data, or .bss section. Section headers are numbered beginning with 1.

l_smtype Specifies the symbol type, import flag, export flag, and entry flag.

Bits 0-4 are flag bits defined as follows:

Bit 0 0x80 Reserved.
Bit 1 0x40 Specifies an imported symbol.
Bit 2 0x20 Specifies an entry point descriptor symbol.
Bit 3 0x10 Specifies an exported symbol.
Bit 4 0x08 Specifies a weak symbol.
Bits 5-7 0x07 Symbol type--see below.

Bits 5-7 constitute a 3-bit symbol type field with the following definitions:

0
XTY_ER

Specifies an external reference providing a symbol table entry for an external (global)
symbol contained in another XCOFF object file.

1
XTY_SD

Specifies the csect section definition, providing the definition of the smallest initialized
unit within an XCOFF object file.

2
XTY_LD

Specifies the label definition, providing the definition of the global entry points for
initialized csects. An uninitialized csect of type XTY_CM may not contain a label
definition.

3
XTY_CM

Specifies a common (BSS uninitialized data) csect definition, providing the definition of
the smallest uninitialized unit within an XCOFF object file.

4-7
Reserved.

l_smclas
Specifies the storage mapping class of the symbol, as defined in syms.h for the x_smclas
field of the csect auxiliary symbol table entry. Values have the symbolic form XMC_xx,
where xx is PR, RO, GL, XO, SV, SV64, SV3264, RW, TC, TD, DS, UA, BS, UC, TL, or UL.
See "csect Auxiliary Entry for the C_EXT, C WEAKEXT, and C_HIDEXT Symbols" for more
information.

l_ifile
Specifies the import file ID string. This integer is the ordinal value of the position of the
import file ID string in the import file ID name string table of the loader section. For an
imported symbol, the value of 0 in this field identifies the symbol as a deferred import to
the system loader. A deferred import is a symbol whose address can remain unresolved
following the processing of the loader. If the symbol was not imported, this field must have
a value of 0.

l_parm
Specifies the offset to the parameter type-check string. The byte offset is from the
beginning of the loader section string table. The byte offset points to the first byte of
the parameter type-check string (not to its length field). For more information on the
parameter type-check string, see "Type-Check Section" . A value of 0 in the l_parm field
indicates that the parameter type-checking string is not present for this symbol, and the
symbol will be treated as having a universal hash.

Files Reference 817

Loader Relocation Table Field Definitions

The Loader Section Relocation Table Structure contains all of the relocation information that the system
loader needs to properly relocate an executable XCOFF file when it is loaded. The loader.h file defines
the relocation table fields. Each entry in the loader section relocation table is 12 bytes long in XCOFF32,
and 16 bytes long in XCOFF64. The l_vaddr, l_symndx, andl_rtype fields have the same meaning as
the corresponding fields of the regular relocation entries, which are defined in the reloc.h file. For more
information about relocation entries, see Relocation Information for XCOFF File (reloc.h).

Table 18. Loader Section Relocation Table Entry Structure

Field Name and Description XCOFF32 XCOFF64

l_vaddr+

Address field
• Offset: 0
• Length: 4

• Offset: 0
• Length: 8

l_symndx+

Loader section symbol table
index of referenced item

• Offset: 4
• Length: 4

• Offset: 12
• Length: 4

l_rtype
Relocation type

• Offset: 4
• Length: 4

• Offset: 8
• Length: 4

l_value+

Address field
• Offset: 8
• Length: 2

• Offset: 8
• Length: 2

l_rsecnm
File section number being
relocated

• Offset: 10
• Length: 2

• Offset: 10
• Length: 2

Note: + Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined.

The loader.h file defines the following fields:

Name Description

l_vaddr Specifies the virtual address of the relocatable reference.

l_symndx Specifies the loader section symbol table index (n-th entry) of the symbol that is being
referenced. Values 0, 1, and 2 are implicit references to .text, .data, and .bss
sections, respectively. Symbol index 3 is the index for the first symbol actually contained
in the loader section symbol table.

Note: A reference to an exported symbol can be made using the symbol's section number
(symbol number 0, 1, or 2) or using the actual number of the exported symbol.

l_rtype Specifies the relocation size and type. (This field has the same interpretation as the
r_type field in the reloc.h file.) For more information about relocation entries, see
Relocation Information for XCOFF File (reloc.h).

l_rsecnm Specifies the section number of the sections being relocated. This is a one-based index
into the section headers.

Loader Import File ID Name Table Definition

The loader section import file ID name strings of a module provide a list of dependent modules that the
system loader must load in order for the module to load successfully. However, this list does not contain
the names of modules that the named modules depend on.

818 AIX Version 7.1: Files Reference

Table 19. Loader Section Import File IDs - Contains Variable Length Strings

Offset Length in Bytes Name and Description

0 n1 l_impidpath

Import file ID path string, null-delimited

n1 + 1 n2 l_impidbase

Import file ID base string, null-delimited

n1 + n2 +
2

n3 l_impidmem

Import file ID member string, null-delimited

Fields repeat for each string.

Each import file ID name consists of three null-delimited strings.

The first import file ID is a default LIBPATH value to be used by the system loader. The LIBPATH
information consists of file paths separated by colons. There is no base name or archive member name,
so the file path is followed by three null bytes.

Each entry in the import file ID name table consists of:

• Import file ID path name
• Null delimiter (ASCII null character)
• Import file ID base name
• Null delimiter
• Import file ID archive-file-member name
• Null delimiter

For example:

/usr/lib\0mylib.a\0shr.o\0

Loader String Table Definition

The loader section string table contains the parameter type-checking strings, all symbols names for an
XCOFF64 file, and the names of symbols longer than 8 bytes for an XCOFF32 file. Each string consists of a
2-byte length field followed by the string.

Table 20. Loader Section String Table

Offset Length in
Bytes

Description

0 2 Length of string.

2 n Symbol name string (null-delimited) or parameter type string (not null-
delimited).

Fields repeat for each string.

Symbol names are null-terminated. The value in the length-field includes the length of the string plus the
length of the null terminator but does not include the length of the length field itself.

The parameter type-checking strings contain binary values and are not null-terminated. The value in the
length field includes the length of the string only but does not include the length of the length field itself.

The symbol table entries of the loader section contain a byte offset value that points to the first byte of
the string instead of to the length field.

Loader Section Header Contents

Files Reference 819

The contents of the section header fields for the loader section are:

Name Contents

s_name .loader

s_paddr 0

s_vaddr 0

s_size The size (in bytes) of the loader section

s_scnptr Offset from the beginning of the XCOFF file to the first byte of the loader section data

s_relptr 0

s_lnnoptr 0

s_nreloc 0

s_nlnno 0

s_flags STYP_LOADER

For general information on the XCOFF file format, see "XCOFF Object File Format."

For more information on XCOFF file sections, see "Sections and Section Headers," "Debug Section,"
"Type-Check Section," "Exception Section," and "Comment Section."

Debug Section
The debug section contains the symbolic debugger stabstrings (symbol table strings). It is generated
by the compilers and assemblers. It provides symbol attribute information for use by the symbolic
debugger. The debug section has a section type flag of STYP_DEBUG in the XCOFF section header. By
convention, .debug is the debug section name. The data in this section is referenced from entries in
the XCOFF symbol table. A stabstring is a null-terminated character string. Each string is preceded by a
2-byte length field in XCOFF32 or a 4-byte length field in XCOFF64.

Field Definitions

The following two fields are repeated for each symbolic debugger stabstring:

• A 2-byte (XCOFF32) or 4-byte (XCOFF64) length field containing the length of the string. The value
contained in the length field includes the length of the terminating null character but does not include
the length of the length field itself.

• The symbolic debugger stabstring.

Refer to discussion of symbolic debugger stabstring grammar for the specific format of the stabstrings.

Debug Section Header Contents

The contents of the section header fields for the debug section are:

Name Contents

s_name .debug

s_paddr 0

s_vaddr 0

s_size The size (in bytes) of the debug section

s_scnptr Offset from the beginning of the XCOFF file to the first byte of the debug section data

s_relptr 0

s_lnnoptr 0

s_nreloc 0

820 AIX Version 7.1: Files Reference

Name Contents

s_nlnno 0

s_flags STYP_DEBUG

For general information on the XCOFF file format, see "XCOFF Object File Format."

For more information on XCOFF file sections, see "Sections and Section Headers," "Debug Section,"
"Type-Check Section,", "Exception Section," and "Comment Section."

DWARF Sections
The DWARF sections contain debugging information for the symbolic debugger. DWARF is an alternate
debugging format used instead of debugger stabstrings. The contents of the various DWARF sections is
described in the "DWARF Debugging Information Format" which can be obtained from www.dwarfstd.org.

All DWARF sections have a primary section type flag of STYP_DWARF in the XCOFF section header.
Conventional sections names are listed in "Conventional Header Names".

DWARF Section Header Contents

The contents of the section header fields for the debug section are:

Name Contents

s_name Depends on s_flags

s_paddr 0

s_vaddr 0

s_size The size (in bytes) of the section.

s_scnptr Offset from the beginning of the XCOFF file to the first byte of the section data.

s_relptr Offset from the beginning of the XCOFF file to the relocation entries for the section.

s_lnnoptr 0

s_nreloc Number of relocation entries.

s_nlnno 0

s_flags STYP_DWARF ored with a DWARF subtype value.

Type-Check Section
The type-check section contains the type-checking hash strings and is produced by compilers and
assemblers. It is used by the binder to detect variable mismatches and argument interface errors when
linking separately compiled object files. (The type-checking hash strings in the loader section are used
to detect these errors prior to running a program.) The type-check section has a section type flag of
STYP_TYPCHK in the XCOFF section header. By convention, .typchk is the type-check section name.
The strings in this section are referenced from entries in the XCOFF symbol table.

Field Definitions

The following two fields are repeated for each parameter type-checking string:

• A 2-byte length field containing the length of the type-checking string. The value contained in the length
field does not include the length of the length field itself.

• The parameter type-checking hash string.

Type Encoding and Checking Format for Data

The type-checking hash strings are used to detect errors prior to execution of a program. Information
about all external symbols (data and functions) is encoded by the compilers and then checked for

Files Reference 821

http://www.dwarfstd.org

consistency at bind time and load time. The type-checking strings are designed to enforce the maximum
checking required by the semantics of each particular language supported, as well as provide protection
to applications written in more than one language.

The type encoding and checking mechanism features 4-part hash encoding that provides some flexibility
in checking. The mechanism also uses a unique value, UNIVERSAL, that matches any code. The
UNIVERSAL hash can be used as an escape mechanism for assembly programs or for programs in which
type information or subroutine interfaces might not be known. The UNIVERSAL hash is four blank ASCII
characters (0x20202020) or four null characters (0x00000000).

The following fields are associated with the type encoding and checking mechanism:

Item Description

code length A 2-byte field containing the length of the hash. This field has a value of 10.

language identifier A 2-byte code representing each language. These codes are the same as
those defined for the e_lang field in the "Exception Section" information .

general hash A 4-byte field representing the most general form by which a data symbol
or function can be described. This form is the most common to languages
supported by . If the information is incomplete or unavailable, a universal
hash should be generated. The general hash is language-independent and
must match for the binding to succeed.

language hash A 4-byte field containing a more detailed, language-specific representation
of what is in the general hash. It allows for the strictest type-checking
required by a given language. This part is used in intra-language binding and
is not checked unless both symbols have the same language identifier.

Section Header Contents

The contents of the section header fields for the type-check section are:

Name Contents

s_name .typchk

s_paddr 0

s_vaddr 0

s_size The size (in bytes) of the type-check section

s_scnptr Offset from the beginning of the XCOFF file to the first byte of the type-check section
data

s_relptr 0

s_lnnoptr 0

s_nreloc 0

s_nlnno 0

s_flags STYP_TYPCHK.

For general information on the XCOFF file format, see "XCOFF Object File Format."

For more information on XCOFF file sections, see "Sections and Section Headers," "Debug Section,"
"Type-Check Section," "Exception Section," and "Comment Section."

Exception Section
The exception section contains addresses of trap instructions, source language identification codes, and
trap reason codes. This section is produced by compilers and assemblers, and used during or after run
time to identify the reason that a specific trap or exception occurred. The exception section has a section

822 AIX Version 7.1: Files Reference

type flag of STYP_EXCEPT in the XCOFF section header. By convention, .except is the exception section
name. Data in the exception section is referenced from entries in the XCOFF symbol table.

An exception table entry with a value of 0 in the e_reason field contains the symbol table index to a
function's C_EXT, C_WEAKEXT, or C_HIDEXT symbol table entry. Reference from the symbol table to an
entry in the exception table is via the function auxiliary symbol table entry. For more information on this
entry, see "csect Auxiliary Entry for C_EXT, C_WEAKEXT and C_HIDEXT Symbols."

The C language structure for the exception section entries can be found in the exceptab.h file.

The exception section entries contain the fields shown in the following tables.

Table 21. Initial Entry: Exception Section Structure

Field Name and Description XCOFF32 XCOFF64

e_addr.e_symndx+

Symbol table index for
function

• Offset: 0
• Length: 4

• Offset: 0
• Length: 4

e_lang+

Compiler language ID code
• Offset: 4
• Length: 1

• Offset: 8
• Length: 1

e_reason+

Value 0 (exception reason
code 0)

• Offset: 5
• Length: 1

• Offset: 9
• Length: 1

Note: +Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined. With e_addr.e_symndx, the suffix
is added to e_addr (i.e. e_addr32.e_symndx).

Table 22. Subsequent Entry: Exception Section Structure

Field Name and Description XCOFF32 XCOFF64

e_addr.e_paddr+

Address of the trap
instruction

• Offset: 0
• Length: 4

• Offset: 0
• Length: 8

e_lang+

Compiler language ID code
• Offset: 4
• Length: 1

• Offset: 8
• Length: 1

e_reason+

Trap exception reason code
• Offset: 5
• Length: 1

• Offset: 9
• Length: 1

Note: +Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined. With e_addr.e_paddr, the suffix
is added to e_addr (i.e. e_addr32.e_paddr).

Field Definitions

The following defines the fields listed of the exception section:

Item Description

e_symndx Contains an integer (overlays the e_paddr field). When the e_reason field is 0, this field
is the symbol table index of the function.

e_paddr Contains a virtual address (overlays the e_symndx field). When the e_reason field is
nonzero, this field is the virtual address of the trap instruction.

Files Reference 823

Item Description

e_lang Specifies the source language. The following list defines the possible values of the e_lang
field.
ID

Language
0x00

C
0x01

FORTRAN
0x02

Pascal
0x03

Ada
0x04

PL/I
0x05

BASIC
0x06

Lisp
0x07

COBOL
0x08

Modula2
0x09

C++
0x0A

RPG
0x0B

PL8, PLIX
0x0C

Assembly
0x0D-0xFF

Reserved

e_reason Specifies an 8-bit, compiler-dependent trap exception reason code. Zero is not a valid trap
exception reason code because it indicates the start of exception table entries for a new
function.

Section Header Contents

The following fields are the contents of the section header fields for the exception section.

Name Contents

s_name .except

s_paddr 0

s_vaddr 0

s_size The size (in bytes) of the exception section

s_scnptr Offset from the beginning of the XCOFF file to the first byte of the exception section data

s_relptr 0

824 AIX Version 7.1: Files Reference

Name Contents

s_lnnoptr 0

s_nreloc 0

s_nlnno 0

s_flags STYP_EXCEPT

For general information on the XCOFF file format, see "XCOFF Object File Format."

For more information on XCOFF file sections, see "Sections and Section Headers," "Debug Section,"
"Type-Check Section," "Exception Section," and "Comment Section."

Comment Section
The comment section contains information of special processing significance to an application. This
section can be produced by compilers and assemblers and used during or after run time to fulfill a special
processing need of an application. The comment section has a section type flag of STYP_INFO in the
XCOFF section header. By convention, .info is the comment section name. Data in the comment section
is referenced from C_INFO entries in the XCOFF symbol table.

The contents of a comment section consists of repeated instances of a 4-byte length field followed by
a string of bytes (containing any binary value). The length of each string is stored in its preceding 4-byte
length field. The string of bytes need not be terminated by a null character nor by any other special
character. The specified length does not include the length of the length field itself. A length of 0 is
allowed. The format of the string of bytes is not specified.

A comment section string is referenced from an entry in the XCOFF symbol table. The storage class of
the symbol making a reference is C_INFO. See "Symbol Table Field Contents by Storage Class" for more
information.

A C_INFO symbol is associated with the nearest C_FILE, C_EXT, C_WEAKEXT, or C_HIDEXT symbol
preceding it.

Section Header Contents

The following fields are the contents of the section header fields for the comment section.

Name Contents

s_name .info

s_paddr 0

s_vaddr 0

s_size The size (in bytes) of the comment section

s_scnptr Offset from the beginning of the XCOFF file to the first byte of the comment section data

s_relptr 0

s_lnnoptr 0

s_nreloc 0

s_nlnno 0

s_flags STYP_INFO

For general information on the XCOFF file format, see "XCOFF Object File Format."

For more information on XCOFF file sections, see "Sections and Section Headers," "Debug Section,"
"Type-Check Section," "Exception Section," and "Comment Section."

Files Reference 825

Relocation Information for XCOFF File (reloc.h)
Some sections have relocation information. The s_relptr field in the section header specifies the file
offset to the relocation entries for the section. The binder uses the relocation information to modify
address constants and other relocatable values when individual XCOFF object files are linked to create an
XCOFF executable file.

Compilers and assemblers generate the relocation entries for the information for sections. The binder
generates relocation information contained in the .loader section, as required by the system loader.

Each relocation entry is 10 bytes long (14 for XCOFF64). (A relocation entry in the .loader section is
12 bytes long (16 for XCOFF64) and is explained in the loader section description in this document. See
"Relocation Table Field Definitions" for more information.) You can find the C language structure for a
relocation entry in the reloc.h file. A relocation entry contains the fields shown in the following table.

Table 23. Relocation Entry Structure

Field Name and Description XCOFF32 XCOFF64

r_vaddr+

Virtual address (position) in
section to be relocated

• Offset: 0
• Length: 4

• Offset: 0
• Length: 8

r_symndx+

Symbol table index of item
that is referenced

• Offset: 4
• Length: 4

• Offset: 8
• Length: 4

r_rsize+

Relocation size and
information

• Offset: 8
• Length: 1

• Offset: 12
• Length: 1

r_rtype+

Relocation type
• Offset: 9
• Length: 1

• Offset: 13
• Length: 1

Note: +Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined.

The relocation entries for a section must be in ascending address order.

(The loader section contains a single set of relocation entries used by the system loader; so a section
number is required within each relocation entry to identify the section that needs to be modified.)

Field Definitions

The following defines the relocation-information fields:

Item Description

r_vaddr Specifies the virtual address of the value that requires modification by the binder. The byte offset value to the
data that requires modification from the beginning of the section that contains the data can be calculated as
follows:

offset_in_section = r_vaddr - s_paddr

r_symndx Specifies a zero-based index into the XCOFF symbol table for locating the referenced symbol. The symbol
table entry contains an address used to calculate a modification value to be applied at the r_vaddr
relocation address.

r_rsize Specifies the relocation size and sign. Its contents are detailed in the following list:

0x80 (1 bit)
Indicates whether the relocation reference is signed (1) or unsigned (0).

0x40 (1 bit)
If this field is one, it indicates that the binder replaced the original instruction with a modified
instruction.

0x3F(6 bits)
Specifies the bit length of the relocatable reference minus one. The current architecture allows for fields
of up to 32 bits (XCOFF32) or 64 bits (XCOFF64) to be relocated.

826 AIX Version 7.1: Files Reference

Item Description

r_rtype Specifies an 8-bit relocation type field that indicates to the binder which relocation algorithm to use for
calculating the modification value. This value is applied at the relocatable reference location specified by the
r_vaddr field. The following relocation types are defined:

0x00
R_POS

Specifies positive relocation. Provides the address of the symbol specified by the r_symndx field.

0x01
R_NEG

Specifies negative relocation. Provides the negative of the address of the symbol specified by the
r_symndx field.

0x02
R_REL

Specifies relative-to-self relocation. Provides a displacement value between the address of the symbol
specified by the r_symndx field and the address of the csect to be modified.

0x03
R_TOC

Specifies a relocation that is relative to TOC. Provides a displacement value that is the difference
between the address value in the symbol specified by the r_symndx field and the address of the TOC
anchor csect. The TOC anchor csect is a symbol with storage-mapping class defined as XMC_TC0 and
with a length of 0. At most, one TOC anchor csect is allowed per XCOFF section.

A link editor is allowed to transform the instruction referenced by the r_vaddr field. The symbol
specified by the r_symndxfield is a TOC symbol if its storage-mapping class is XMC_TC, and the TOC
symbol contains the address of another symbol that is within 32,768 bites of the TOC anchor or the
thread-local storage base. Therefore, if the referenced instruction is a load, and the symbol specified
by the r_symndx field is a TOC symbol, the load can be converted in to an add-immediate instruction.
This transformation eliminates a storage reference during execution. If the instruction is transformed,
the R_TOC relocation type is replaced by a R_TRLA relocation type when the output file is written. This
enables a reverse transformation if the object is re-linked.

0x12
R_TRL

Specifies a relocation that is relative to TOC. This relocation entry is treated the same as an R_TOC
relocation entry, except that link editors are not allowed to convert the instruction from a load to an
add-immediate instruction.

0x13
R_TRLA

Specifies a relocation that is either relative to TOC or relative to the thread-local storage base. The
instruction specified by the r_vaddr field is an add-immediate instruction, and the symbol specified
by the r_symndx field must be a TOC symbol, which means that its storage-mapping class is XMC_TC.
This instruction is previously transformed by a link editor from a load instruction into an add-immediate
instruction. The link editor transforms the instruction back into a load instruction, and changes the
relocation type from R_TRLA to R_TOC. The instruction can be transformed again as described for the
R_TOC relocation entry.

Compilers are not permitted to generate this relocation type.

Files Reference 827

Item Description

r_rtype
continued

0x05
R_GL

Specifies Global Linkage-External TOC address relocation. Provides the address of the TOC associated
with a defined external symbol. The external symbol with the required TOC address is specified by the
r_symndx field of the relocation entry. This relocation entry provides a method of accessing the address
of the TOC contained within the same executable where the r_symndx external symbol is defined.

0x06
R_TCL

Specifies local object TOC address relocation. Provides the address of the TOC associated with a
defined external symbol. The external symbol for which the TOC address is required is specified by
the r_symndx field of the relocation entry. The external symbol is defined locally within the resultant
executable. This relocation entry provides a method of accessing the address of the TOC contained
within the same executable where the r_symndx external symbol is defined.

0x0C
R_RL

Treated the same as the R_POS relocation type.

0x0D
R_RLA

Treated the same as the R_POS relocation type.

0x0F
R_REF

Specifies a nonrelocating reference to prevent garbage collection (by the binder) of a symbol. This
relocation type is intended to provide compilers and assemblers a method to specify that a given csect
has a dependency upon another csect without using any space in the actual csect. The reason for
making the dependency reference is to prevent the binder from garbage-collecting (eliminating) a csect
for which another csect has an implicit dependency.

0x08
R_BA

Treated the same as the R_RBA relocation type.

0x18
R_RBA

Specifies branch absolute relocation. Provides the address of the symbol specified by the r_symndx
field as the target address of a branch instruction. The instruction can be modified to a (relative) branch
instruction if the target address is relocatable.

0x0A
R_BR

Treated the same as the R_RBR relocation type.

0x1A
R_RBR

Specifies (relative) branch relocation. Provides a displacement value between the address of the symbol
specified by the r_symndx field and the address of the csect containing the branch instruction to be
modified. The instruction can be modified to an absolute branch instruction if the target address is not
relocatable.

The R_RBR relocation type is the standard branch relocation type used by compilers and assemblers for
the . This relocation type along with glink code allows an executable object file to have a text section
that is position-independent.

828 AIX Version 7.1: Files Reference

Item Description

r_rtype
continued

0x20
R_TLS

Specifies thread-local storage relocation, using the general-dynamic model. Provides an offset into the
thread-local storage for the module.

0x21
R_TLS_IE

Same as R_TLS, except that the initial-exec model is used. That is, the referenced symbol must be
exported by the main program or a module that is loaded at exec time.

0x22
R_TLS_LD

Same as R_TLS, except that the local-dynamic model is used. That is, the referenced symbol must be in
the referencing module.

0x23
R_TLS_LE

Same as R_TLS, except that local-exec model is used. That is, both the reference and the referenced
symbol must be in the main program.

0x24
R_TLSM

Specifies thread-local storage relocation. Provides a handle for the thread-local storage of the
referenced variable. The handle is used by the pthread runtime to locate the thread-local storage.

0x25
R_TLSML

Specifies thread-local storage relocation. Provides a handle for the module containing the reference. The
r_symndx field must specify the symbol table index of the csect symbol containing the reference.

0x30
R_TOCU

Specifies the high-order 16 bits of a TOC-relative relocation. Similar to the R_TOC relocation, a
displacement value is computed. The displacement value is the difference between the address value in
the symbol that the r_symndx field specifies and the address of the TOC anchor csect. The high-order
16 bits of the displacement are used to update the instruction. This relocation can overflow if the TOC
size is larger than 231 bytes.

0x31
R_TOCL

Specifies the low-order 16 bits of a TOC-relative relocation. Similar to the R_TOC relocation, a
displacement value is computed. The displacement value is the difference between the address value in
the symbol that the r_symndx field specifies and the address of the TOC anchor csect. The low-order 16
bits of the displacement are used to update the instruction.

Additional Relocation Features

Standard practice is to retain relocation information only for unresolved references or references between
distinct sections. Once a reference is resolved, the relocation information is discarded. This is sufficient
for an incremental bind and a fixed address space model. To provide the capability for rebinding and
handling a relocatable address space model, the relocation information is not discarded from an XCOFF
file.

For general information on the XCOFF file format, see "XCOFF Object File Format."

For more information on relocation field table definitions, see "Relocation Table Field Definitions" in the
loader section.

Line Number Information for XCOFF File (linenum.h)
Line number entries are used by the symbolic debugger to debug code at the source level. When
present, there is a single line number entry for every source line that can have a symbolic debugger
breakpoint. The line numbers are grouped by function. The beginning of each function is identified by the
l_lnno field containing a value of 0. The first field, l_symndx , is the symbol table index to the C_EXT,
C_WEAKEXT, or C_HIDEXT symbol table entry for the function.

Files Reference 829

Each line number entry is six bytes long. The C language structure for a line number entry can be found in
the linenum.h file. A line number entry contains the fields shown in the following tables.

Table 24. Initial Line Number Structure Entry for Function

Field Name and Description XCOFF32 XCOFF64

l_ addr.l_ symndx+

Symbol table index for
function

• Offset: 0
• Length: 4

• Offset: 0
• Length: 4

l_ lnno +

Value 0 (line number 0)
• Offset: 4
• Length: 2

• Offset: 8
• Length: 4

Note: +Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined. With l_addr.l_symndx, the suffix
is added to l_addr (i.e. l_addr32.l_symndx).

Table 25. Subsequent Line Number Entries for Function

Field Name and Description XCOFF32 XCOFF64

l_ paddr+

Address at which break point
can be inserted

• Offset: 0
• Length: 4

• Offset: 0
• Length: 8

l_ lnno +

Line number relative to start
of function

• Offset: 4
• Length: 2

• Offset: 8
• Length: 4

Note: +Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined. With l_addr.l_paddr, the suffix
is added to l_addr (i.e. l_addr32.l_paddr).

Field Definitions

The following list defines the line number entries:

Item Description

l_symndx Specifies the symbol table index to the function name (overlays the l_paddr field). When
the l_lnno field is 0, this interpretation of the field is used.

l_paddr Specifies the virtual address of the first instruction of the code associated with the line
number (overlays the l_symndx field). When the l_lnno field is not 0, this interpretation
of the field is used.

l_lnno Specifies either the line number relative to the start of a function or 0 to indicate the
beginning of a function.

Note: If part of a function other than the beginning comes from an include file, the line numbers are
absolute, rather than relative to the beginning of the function. (See the C_BINCL and C_EINCL symbol
types in "Storage Classes by Usage and Symbol Value Classification" for more information.)

For general information on the XCOFF file format, see "XCOFF Object File Format."

For information on debugging, see "Debug Section."

Symbol Table Information

One composite symbol table is defined for an XCOFF file. The symbol table contains information required
by both the binder (external symbols) and the symbolic debugger (function definitions and internal and
external symbols).

830 AIX Version 7.1: Files Reference

The symbol table consists of a list of 18-byte, fixed-length entries. Each symbol represented in the
symbol table consists of at least one fixed-length entry, and some are followed by auxiliary entries of the
same size.

See the following information to learn more about the symbol table:

• Symbol Table Auxiliary Information
• Symbol Table Field Contents by Storage Class
• String Table

For each external symbol, one or more auxiliary entries are required that provide additional information
concerning the external symbol. There are three major types of external symbols of interest to the binder,
performing the following functions:

• Define replaceable units or csects.
• Define the external names for functions or entry points within csects.
• Reference the names of external functions in another XCOFF object.

For symbols defining a replaceable unit (csect), a csect auxiliary entry defines the length and storage-
mapping class of the csect. For symbols defining external names for functions within a csect, the csect
auxiliary entry points to the containing csect, the parameter type-checking information, and the symbolic
debugger information for the function. For symbols referencing the name of an external function, a csect
auxiliary entry identifies the symbol as an external reference and points to parameter type-checking
information.

Symbol Table Contents

An XCOFF symbol table has the following general contents and ordering:

• The C_FILE symbol table entries used to bracket all the symbol table entries associated with a given
source file.

• The C_INFO comment section symbol table entries that are of source file scope. These follow the
C_FILE entry but before the first csect definition symbol table entry.

• The symbolic debugger symbol table entries that are of file scope. These follow the C_FILE entry but
before the first csect entry.

• The C_DWARF symbols for DWARF debugging information. These follow the C_FILE entry and no csect
symbols should appear between the C_FILE entry and its C_DWARF symbols.

• csect definition symbol table entries used to define and bracket all the symbols contained with a csect.
• C_INFO comment section symbol table entries that follow a csect definition symbol table entry are

associated with that csect.
• All symbolic debugger symbol table entries that follow a csect definition symbol table entry or label

symbol table entry are associated with that csect or label.

The ordering of the symbol table must be arranged by the compilers and assemblers both to
accommodate the symbolic debugger requirements and to permit effective management by the binder
of the different sections of the object file as a result of such binder actions as garbage collection,
incremental binding, and rebinding. This ordering is required by the binder so that if a csect is deleted
or replaced, all the symbol table information associated with the csect can also be deleted or replaced.
Likewise, if all the csects associated with a source file are deleted or replaced, all the symbol table and
related information associated with the file can also be deleted or replaced.

Symbol Table Layout

The following example shows the general ordering of the symbol table.

un_external Undefined global symbols

.file Prolog --defines stabstring compaction level

.file Source file 1
 .info Comment section reference symbol with file scope
 stab Global Debug symbols of a file
 dwarf DWARF Information of a file

Files Reference 831

 csect Replaceable unit definition (code)
 .info Comment section reference symbol with csect scope
 function Local/External function
 stab Debug and local symbols of function
 function Local/External function
 stab Debug and local symbols of function

 csect Replaceable unit definition (local statics)
 stab Debug and local statics of file

 csect Relocatable unit definition (global data)
 external Defined global symbol
 stab Debug info for global symbol

.file Source file 2
 stab Global Debug symbols of a file
 dwarf DWARF Information of a file
 csect Replaceable unit definition (code)
 function Local/External function
 stab Debug and local symbols of function

 csect Replaceable unit definition (local statics)
 stab Debug and Local statics of file

 csect Replaceable unit definition (global data)
 external Defined global symbol
 stab Debug info for global symbol
.file Source file

Symbol Table Entry (syms.h)

Each symbol, regardless of storage class and type, has a fixed-format entry in the symbol table. In
addition, some symbol types may have additional (auxiliary) symbol table entries immediately following
the fixed-format entry. Each entry in the symbol table is 18 bytes long. The C language structure for a
symbol table entry can be found in the syms.h file. The index for the first entry in the symbol table is 0.
The following table shows the structure of the fixed-format part of each symbol in the symbol table.

Table 26. Symbol Table Entry Format

Field Name and Description XCOFF32 XCOFF64

n_name
Symbol name (occupies the
same 8 bytes as n_zeroes
and n_offset)

• Offset: 0
• Length: 8

• Offset: N/A
• Length: N/A

n_zeroes
Zero, indicating name in
string table or .debug
section (overlays first 4
bytes of n_name)

• Offset: 0
• Length: 4

• Offset: N/A
• Length: N/A

n_offset+

Offset of the name in string
table or .debug section (In
XCOFF32: overlays last 4
bytes of n_name)

• Offset: 4
• Length: 4

• Offset: 8
• Length: 4

n_value+

Symbol value; storage class-
dependent

• Offset: 8
• Length: 4

• Offset: 0
• Length: 8

n_scnum
Section number of symbol

• Offset: 12
• Length: 2

• Offset: 12
• Length: 2

832 AIX Version 7.1: Files Reference

Table 26. Symbol Table Entry Format (continued)

Field Name and Description XCOFF32 XCOFF64

n_type
Basic and derived type
specification

• Offset: 14
• Length: 2

• Offset: 14
• Length: 2

n_lang
Source language ID (overlays
first byte of n_type)

• Offset: 14
• Length: 1

• Offset: 14
• Length: 1

n_cpu
CPU Type ID (overlays
second byte of n_type)

• Offset: 15
• Length: 1

• Offset: 15
• Length: 1

n_sclass
Storage class of symbol

• Offset: 16
• Length: 1

• Offset: 16
• Length: 1

n_numaux
Number of auxiliary entries

• Offset: 17
• Length: 1

• Offset: 17
• Length: 1

Note: +Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined.

Field Definitions

The following defines the symbol table entry fields:

Item Description

n_name Used by XCOFF32 only. Specifies an 8-byte, null-padded symbol name or symbolic
debugger stabstring. The storage class field is used to determine if the field is a symbol
name or symbolic debugger stabstring. By convention, a storage class value with the
high-order bit on indicates that this field is a symbolic debugger stabstring.

If the XCOFF32 symbol name is longer than 8 bytes, the field is interpreted as the
following two fields:

n_zeroes
A value of 0 indicates that the symbol name is in the string table or .debug section
(overlays first word of n_name).

n_offset
Specifies the byte offset to the symbol name in the string table or .debug section
(overlays last 4 bytes of n_name). The byte offset is relative to the start of the string
table or .debug section. A byte offset value of 0 is a null or zero-length symbol name.

n_offset For XCOFF64: Specifies the byte offset to the symbol name in the string table or .debug
section. The byte offset is relative to the start of the string table or .debug section. A
byte offset value of 0 is a null or zero-length symbol name. (For XCOFF32 only, used in
conjunction with n_zeroes. See entry immediately above.)

Files Reference 833

Item Description

n_value Specifies the symbol value. The contents of the symbol value field is storage class-
dependent, as shown in the following definitions:
Content

Storage Class
Relocatable address

C_EXT, C_WEAKEXT, C_HIDEXT, C_FCN, C_BLOCK, C_STAT
Zero

C_GSYM, C_BCOMM, C_DECL, C_ENTRY, C_ESTAT, C_ECOMM
Offset in csect

C_FUN, C_STSYM
Offset in file

C_BINCL, C_EINCL
Offset in comment section

C_INFO
Symbol table index

C_FILE, C_BSTAT
Offset relative to stack frame

C_LSYM, C_PSYM
Register number

C_RPSYM, C_RSYM
Offset within common block

C_ECOML
Offset within corresponding DWARF section

C_DWARF

n_scnum Specifies a section number associated with one of the following symbols:
-2

Specifies N_DEBUG, a special symbolic debugging symbol.
-1

Specifies N_ABS, an absolute symbol. The symbol has a value but is not relocatable.
0

Specifies N_UNDEF, an undefined external symbol.
Any other value

Specifies the section number where the symbol was defined.

834 AIX Version 7.1: Files Reference

Item Description

n_type The use of this field depends on the storage class of the symbol. For C_FILE symbols, see
"File Auxiliary Entry for the C_FILE Symbol" .

For the C_EXT, C_HIDEXT, and C_WEAKEXT symbols, the n_type field has two
interpretations in XCOFF32, and a single interpretation in XCOFF64. The old
interpretation is used in XCOFF32 if the value of the o_vstamp field in the auxiliary
header is 1.

In the old XCOFF32 interpretation, bit 10 (0x0020) can be set if the symbol is a function.
Otherwise, bit 10 should be 0. The remaining bits are defined in COFF file to represent
type information and are no longer used.

In XCOFF64 and the new XCOFF32 interpretation, the n_type field is used for the symbol
type and visibility as follows:

Bits 0-3
Symbol visibility. The SYM_V_MASK macro, with the value 0xF000, can be used to
mask off bits in the n_type field that do not specify visibility. The following visibilities
are defined:

0x1000 SYM_V_INTERNAL
0x2000 SYM_V_HIDDEN
0x3000 SYM_V_PROTECTED
0x4000 SYM_V_EXPORTED

Bit 10
Optionally set to 1 if the symbol is a function. Otherwise, it is set to 0.

Bits 4-9, 11-15
Reserved for future use.

Symbol visibility is described in the ld command.

Note: For all other storage classes, the n_type field is reserved for future use and should
contain 0.

n_sclass Specifies the storage class of the symbol. The storclass.h and dbxstclass.h files contain
the definitions of the storage classes. See "Symbol Table Field Contents by Storage Class"
for more information.

n_numaux Specifies the number of auxiliary entries for the symbol. In XCOFF64, auxiliary symbols
have an identifying type field, but in XCOFF32, there is no type field. Therefore, if more
than one auxiliary entry is required for a symbol, the order of the auxiliary entries is
determined by convention.

For general information on the XCOFF file format, see "XCOFF Object File Format."

Symbol Table Auxiliary Information
The symbol table contains auxiliary entries to provide supplemental information for a symbol. The
auxiliary entries for a symbol follow its symbol table entry. The length of each auxiliary entry is the same
as a symbol table entry (18 bytes). The format and quantity of auxiliary entries depend on the storage
class (n_sclass) and type (n_type) of the symbol table entry.

In XCOFF32, symbols having a storage class of C_EXT, C_WEAKEXT or C_HIDEXT and more than one
auxiliary entry must have the csect auxiliary entry as the last auxiliary entry. In XCOFF64, the x_auxtype
field of each auxiliary symbol table entry differentiates the symbols, but the convention is to generate the
csect auxiliary symbol table entry last.

File Auxiliary Entry for C_FILE Symbols

The file auxiliary symbol table entry is defined to contain the source file name and compiler-related
strings. A file auxiliary entry is optional and is used with a symbol table entry that has a storage-class

Files Reference 835

value of C_FILE. The C language structure for a file auxiliary entry can be found in the x_file structure in
the syms.h file.

The C_FILE symbol provides source file-name information, source-language ID and CPU-version ID
information, and, optionally, compiler-version and time-stamp information.

The n_type field of the symbol table entry identifies the source language of the source file and the CPU
version ID of the compiled object file. The field information is as follows:

Item Description

Source Language ID Overlays the high-order byte of the n_type field. This field contains the source-language
identifier. The values for this field are defined in the e_lang field in "Exception Section" .
This field can be used by the symbolic debuggers to determine the source language.

The optional values for this field are 248 (TB_OBJECT) for symbols from object files with
no C_FILE symbol table entry; or 249 (TB_FRONT) or 250 (TB_BACK) for generated entries
used to provide debugging information. If the source language is TB_FRONT or TB_BACK,
the 8-character name field begins with ' ' (blank) , '\0'(NULLl). If the source language
is TB_FRONT, the third byte is the stabstring compaction level for the object file, and the
n_offset field contains the symbol table index of the TB_BACK symbol table entry, if it
exists, or 0 otherwise.

836 AIX Version 7.1: Files Reference

Item Description

CPU Version ID Defined as the low-order byte of the n_type field. Decribes the kind of instructions
generated for the file. The following values are defined:

0
Reserved.

1
Specifies , 32-bit mode.

2
Reserved.

3
Specifies the common intersection of 32-bit and Processor.

4
Specifies Processor.

5
Specifies any mix of instructions between different architectures.

6
Specifies a mix of and instructions ().

7-223
Reserved.

224
Specifies instructions.

225-255
Reserved.

If both fields are 0, no information is provided about the source language.

File Name Auxiliary Entry Format
Offset

Length in Bytes
Name

Description
0

14
x_fname

Source file string
0

4
x_zeroes

Zero, indicating file string in string table (overlays first 4 bytes of x_fname)
4

4
x_offset

Offset of file string in string table (overlays 5th-8th bytes of x_fname)
14

1
x_ftype

File string type
15

2
Reserved. Must contain 0.

17
1

x_auxtype
Auxiliary symbol type(XCOFF64 only)

Field Definitions

The following defines the fields listed above:

Files Reference 837

Item Description

x_fname Specifies the source file name or compiler-related string.

If the file name or string is longer than 8 bytes, the field is interpreted as the following
two fields:

x_zeroes
A value of 0 indicates that the source file string is in the string table (overlays first 4
bytes of x_fname).

x_offset
Specifies the offset from the beginning of the string table to the first byte of the
source file string (overlays last 4 bytes of x_fname).

x_ftype Specifies the source-file string type.
0 XFT_FN

Specifies the source-file name
1 XFT_CT

Specifies the compiler time stamp
2 XFT_CV

Specifies the compiler version number
128 XFT_CD

Specifies compiler-defined information

(no name) Reserved. This field must contain 2 bytes of 0.

x_auxtype (XCOFF64 only) Specifies the type of auxiliary entry. Contains _AUX_FILE for this
auxiliary entry.

If the file auxiliary entry is not used, the symbol name is the name of the source file. If the file auxiliary
entry is used, then the symbol name should be .file, and the first file auxiliary entry (by convention)
contains the source file name. More than one file auxiliary entry is permitted for a given symbol table
entry. The n_numaux field contains the number of file auxiliary entries.

csect Auxiliary Entry for C_EXT, C_WEAKEXT, and C_HIDEXT Symbols

The csect auxiliary entry identifies csects (section definitions), entry points (label definitions), and
external references (label declarations). A csect auxiliary entry is required for each symbol table entry
that has a storage class value of C_EXT, C_WEAKEXT, or C_HIDEXT. See "Symbol Table Entry (syms.h)"
for more information. By convention, the csect auxiliary entry in an XCOFF32 file must be the last auxiliary
entry for any external symbol that has more than one auxiliary entry. The C language structure for a csect
auxiliary entry can be found in the x_csect structure in the syms.h file.

Table 27. csect Auxiliary Entry Format

Field Name and Description XCOFF32 XCOFF64

x_scnlen
(See field definition section)

• Offset: 0
• Length: 4

• Offset: N/A
• Length: N/A

x_scnlen_lo
(See field definition section)
Low 4 bytes of section length

• Offset: N/A
• Length: N/A

• Offset: 0
• Length: 4

x_parmhash
Offset of parameter type-
check hash in .typchk
section

• Offset: 4
• Length: 4

• Offset: 4
• Length: 4

838 AIX Version 7.1: Files Reference

Table 27. csect Auxiliary Entry Format (continued)

Field Name and Description XCOFF32 XCOFF64

x_snhash
.typchk section number

• Offset: 8
• Length: 2

• Offset: 8
• Length: 2

x_smtyp
Symbol alignment and type
3-bit symbol alignment (log
2) 3-bit symbol type

• Offset: 10
• Length: 1

• Offset: 10
• Length: 1

x_smclas
Storage mapping class

• Offset: 11
• Length: 1

• Offset: 11
• Length: 1

x_stab
Reserved

• Offset: 12
• Length: 4

• Offset: N/A
• Length: N/A

x_snstab
Reserved

• Offset: 16
• Length: 2

• Offset: N/A
• Length: N/A

x_scnlen_hi
(See field definition section)
High 4 bytes of section
length

• Offset: N/A
• Length: N/A

• Offset: 12
• Length: 4

(pad)
Reserved

• Offset: N/A
• Length: N/A

• Offset: 16
• Length: 1

x_auxtype
Contains _AUX_CSECT;
indicates type of auxiliary
entry

• Offset: N/A
• Length: N/A

• Offset: 17
• Length: 1

Field Definitions

The following defines the fields listed above:

Item Description

x_scnlen Specifies a meaning dependent on x_smtyp as follows:

If
Then

XTY_SD
x_scnlen contains the csect length.

XTY_LD
x_scnlen contains the symbol table index of the containing csect.

XTY_CM
x_scnlen contains the csect length.

XTY_ER
x_scnlen contains 0.

In the XCOFF64 format, the value of x_scnlen is divided into two fields: x_scnlen_hi, representing the
upper 4 bytes of the value, and x_scnlen_lo, representing the lower 4 bytes of the value.

x_parmhash Specifies the byte offset of the parameter type-check string in the .typchk section. The byte offset is
from the beginning of the .typchk section in an XCOFF file. The byte offset points to the first byte of the
parameter type-check string (not to its length field). See "Type-Check Section" for more information. A value
of 0 in the x_parmhash field indicates that the parameter type-checking string is not present for this symbol,
and the symbol will be treated as having a universal hash. The value should be 0 for C_HIDEXT symbols.

Files Reference 839

Item Description

x_snhash Specifies the .typchk section number. The XCOFF section number containing the parameter type-checking
strings. The section numbers are one-based. For compatibility with object files generated by some compilers,
if x_parmhash is not equal to 0 but x_snhash does equal 0, then the first .typchk section in the file is
used. The value should be 0 for C_HIDEXT symbols.

x_smtyp Specifies symbol alignment and type:

Bits 0-4
Contains a 5-bit csect address alignment value (log base 2). For example, a value of 3 in this field
indicates 23, or 8, meaning the csect is to be aligned on an 8-byte address value. The alignment value is
used only when the value of bits 5-7 of the x_smtyp field is either XTY_SD or XTY_CM.

Bits 5-7
Contains a 3-bit symbol type field. See the definitions for bits 5-7 of the l_smtype field in "Loader
Section" for more information.

x_smclas Specifies the csect storage-mapping class. This field permits the binder to arrange csects by their storage-
mapping class. The x_smclas field is used only when the value of bits 5-7 of the x_smtyp field is either
XTY_SD or XTY_CM.

The following storage-mapping classes are read-only and normally mapped to the .text section:

Value Class
Description

0 XMC_PR
Specifies program code. The csect contains the executable instructions of the program.

1 XMC_RO
Specifies a read-only constant. The csect contains data that is constant and will not change during
execution of the program.

2 XMC_DB
Specifies the debug dictionary table. The csect contains symbolic-debugging data or exception-
processing data. This storage mapping class was defined to permit compilers with special symbolic-
debugging or exception-processing requirements to place data in csects that are loaded at execution
time but that can be collected separately from the executable code of the program.

6 XMC_GL
Specifies global linkage. The csect provides the interface code necessary to handle csect relative calls
to a target symbol that can be out-of-module. This global linkage csect has the same name as the
target symbol and becomes the local target of the relative calls. As a result, the csect maintains position-
independent code within the .text section of the executable XCOFF object file.

7 XMC_XO
Specifies extended operation. A csect of this type has no dependency on (references through) the TOC.
It is intended to reside at a fixed address in memory such that it can be the target of a branch-absolute
instruction.

12 XMC_TI
Reserved.

13 XMC_TB
Reserved.

The following storage-mapping classes are read/write and normally mapped to the .data or .bss section:

Value Class
Description

5 XMC_RW
Specifies read/write data. A csect of this type contains initialized or uninitialized data that is permitted
to be modified during program execution. If the x_smtyp value is XTY_SD, the csect contains initialized
data and is mapped into the .data section. If the x_smtyp value is XTY_CM, the csect is uninitialized
and is mapped into the .bss section. Typically, all the initialized static data from a C source file is
contained in a single csect of this type. The csect would have a storage class value of C_HIDEXT. An
initialized definition for a global data scalar or structure from a C source file is contained in its own csect
of this type. The csect would have a storage class value of C_EXT. A csect of this type is accessible by
name references from other object files.

840 AIX Version 7.1: Files Reference

Item Description

x_smclas
continued

Value Class
Description

15 XMC_TC0
Specifies TOC anchor for TOC addressability. This is a zero-length csect whose n_value address
provides the base address for TOC relative addressability. Only one csect of type XMC_TC0 is permitted
per section of an XCOFF object file. In implementations that permit compilers and assemblers to
generate multiple .data sections, there must be a csect of type XMC_TC0 in each section that contains
data that is referenced (by way of a relocation entry) as a TOC-relative data item. Some hardware
architectures limit the value that a relative displacement field within a load instruction may contain. This
limit then becomes an inherent limit on the size of a TOC for an executable XCOFF object. For RS/6000®,
this limit is 65,536 bytes, or 16,384 4-byte TOC entries.

3 XMC_TC
22 XMC_TE

Specifies general TOC entries. Csects of this type are the same size as a pointer and contain the address
of other csects or global symbols. These csects provide addressability to other csects or symbols. The
symbols might be in either the local executable XCOFF object or another executable XCOFF object. The
binder uses special processing semantics to eliminate duplicate TOC entries as follows:

• Symbols that have a storage class value of C_EXT are global symbols and must have names (a
non-null n_name field). These symbols require no special TOC processing logic to combine duplicate
entries. Duplicate entries with the same n_name value are combined into a single entry.

• Symbols that have a storage class value of C_HIDEXT are not global symbols, and duplicate entries
are resolved by context. Any two such symbols are defined as duplicates and combined into a single
entry whenever the following conditions are met:

– The n_name fields are the same. That is, they have either a null name or the same name string.
– Each is the same size as a pointer.
– Each has a single RLD entry that references external symbols with the same name.

To minimize the number of duplicate TOC entries that the binder cannot combine, compilers and
assemblers should adhere to a common naming convention for TOC entries. By convention, compilers
and assemblers produce TOC entries that have a storage class value of C_HIDEXT and an n_name string
that is the same as the n_name value for the symbol that the TOC entry addresses.

Storage-mapping classes XMC_TC and XMC_TE are equivalent, except that the binder should map
XMC_TE symbols after XMC_TC and XMC_TD symbols.

Files Reference 841

Item Description

x_smclas
continued

Value Class
Description

16 XMC_TD
Specifies scalar data entry in the TOC. A csect that is a special form of an XMC_RW csect that is directly
accessed from the TOC by compiler generated code. This lets some frequently used globol symbols be
accessed directly from the TOC rather than indirectly through an address pointer csect contained in the
TOC. A csect of type XMC_TD has the following characteristics:

• The compiler generates code that is TOC relative to directly access the data contained in the csect of
type XMC_TD.

• It is 4-bytes long or less.
• It has initialized data that can be modified as the program runs.
• If a same named csect of type XMC_RW or XMC_UA exist, it is replaced by the XMC_TD csect.

For the cases where TOC scalar cannot reside in the TOC, the binder must be capable of transforming
the compiler generated TOC relative instruction into a conventional indirect addressing instruction
sequence. This transformation is necessary if the TOC scalar is contained in a shared object.

10 XMC_DS
Specifies a csect containing a function descriptor, which contains the following three values:

• The address of the executable code for a function.
• The address of the TOC anchor (TOC base address) of the module that contains the function.
• The environment pointer (used by languages such as Pascal and PL/I).

There is only one function descriptor csect for a function, and it must be contained within the same
executable as the function itself is contained. The function descriptor has a storage class value of C_EXT
and has an n_name value that is the same as the name of the function in the source file. The addresses
of function descriptors are imported to and exported from an executable XCOFF file.

8 XMC_SV
Specifies 32-bit supervisor call descriptor csect. The supervisor call descriptors are contained within
the operating system kernel. To an application program, the reference to a supervisor call descriptor
is treated the same as a reference to a regular function descriptor. It is through the import/export
mechanism that a function descriptor is treated as a supervisor call descriptor. These symbols are only
available to 32-bit programs.

17 XMC_SV64
Specifies 64-bit supervisor call descriptor csect. See XMV_SV for supervisor call information. These
symbols are only available to 64-bit programs.

18 XMC_SV3264
Specifies supervisor call descriptor csect for both 32-bit and 64-bit. See XMV_SV for supervisor call
information. These symbols are available to both 32-bit and 64-bit programs.

4 XMC_UA
Unclassified. This csect is treated as read/write. This csect is frequently produced by an assembler or
object file translator program that cannot determine the true classification of the resultant csect.

9 XMC_BS
Specifies BSS class (uninitialized static internal). A csect of this type is uninitialized, and is intended to
be mapped into the .bss section. This type of csect must have a x_smtyp value of XTY_CM.

x_smclas
continued

Value Class
Description

11 XMC_UC
Specifies unnamed FORTRAN common. A csect of this type is intended for an unnamed and uninitialized
FORTRAN common. It is intended to be mapped into the .bss section. This type of csect must have a
x_smtyp value of XTY_CM.

The following storage mapping class is read-write and is mapped to the .tdata section:

20 XMC_TL
Specifies read/write thread-local data. A csect of this type contains initialized data that is local to every
thread in a process. When a new thread is created, a csect with type XMC_TL is used to initialize the
thread-local data for the thread.

The following storage mapping class is read-write and is mapped to the .tbss section:

21 XMC_UL
Specifies read/write thread-local data. A csect of this type contains uninitialized data that is local to
every thread in a process. When a new thread is created, the thread-local storage for a csect of this type
is initialized to zero.

842 AIX Version 7.1: Files Reference

Item Description

x_stab Reserved (Unused for 64-bit).

x_snstab Reserved (Unused for 64-bit).

Auxiliary Entries for the C_EXT, C_WEAKEXT, and C_HIDEXT Symbols

Auxiliary symbol table entries are defined in XCOFF to contain reference and size information associated
with a defined function. These auxiliary entries are produced by compilers and assembler for use by
the symbolic debuggers. In XCOFF32, a function auxiliary symbol table entry contains the required
information. In XCOFF64, both a function auxiliary entry and an exeption auxiliary entry may be needed.
When both auxiliary entries are generated for a single C_EXT, C_WEAKEXT, or C_HIDEXT symbol, the
x_size and x_endndx fields must have the same values.

The function auxiliary symbol table entry is defined in the following table.

Table 28. Function Auxiliary Entry Format

Field Name and Description XCOFF32 XCOFF64

x_exptr
File offset to exception table
entry

• Offset: 0
• Length: 4

• Offset: N/A
• Length: N/A

x_fsize
Size of function in bytes

• Offset: 4
• Length: 4

• Offset: 8
• Length: 4

x_lnnoptr
File pointer to line number

• Offset: 8
• Length: 4

• Offset: 0
• Length: 8

x_endndx
Symbol table index of next
entry beyond this function

• Offset: 12
• Length: 4

• Offset: 12
• Length: 4

(pad)
Unused

• Offset: 16
• Length: 2

• Offset: 16
• Length: 1

x_auxtype
Contains _AUX_FCN; Type of
auxiliary entry

• Offset: N/A
• Length: N/A

• Offset: 17
• Length: 1

Field Definitions

The following defines the fields listed in the Function Auxiliary Entry Format table:

Item Description

x_exptr (XCOFF32 only) This field is a file pointer to an exception table entry. The value is the
byte offset from the beginning of the XCOFF object file. In an XCOFF64 file, the exception
table offsets are in an exception auxiliary symbol table entry.

x_fsize Specifies the size of the function in bytes.

x_lnnoptr Specifies a file pointer to the line number. The value is the byte offset from the beginning
of the XCOFF object file.

x_endndx Specifies the symbol table index of the next entry beyond this function.

The exception auxiliary symbol table entry, defined in XCOFF64 only, is shown in the following table.

Files Reference 843

Table 29. Exception Auxiliary Entry Format (XCOFF64 only)

Offset Length Name and Description

0 8 x_exptr
File offset to exception table entry.

8 4 x_fsize
Size of function in bytes

12 4 x_endndx
Symbol table index of next entry beyond this function

16 1 (pad)
Unused

17 1 x_auxtype
Contains _AUX_EXCEPT; Type of auxiliary entry

Field Definitions

The following defines the fields listed in the Exception Auxiliary Entry Format table:

Item Description

x_exptr This field is a file pointer to an exception table entry. The value is the byte offset from the
beginning of the XCOFF object file.

x_fsize Specifies the size of the function in bytes.

x_endndx Specifies the symbol table index of the next entry beyond this function.

Block Auxiliary Entry for the C_BLOCK and C_FCN Symbols

The symbol auxiliary symbol table entry is defined in XCOFF to provide information associated with the
begin and end blocks of functions. The symbol auxiliary symbol table entry is produced by compilers for
use by the symbolic debuggers.

Table 30. Table Entry Format

Field Name and Description XCOFF32 XCOFF64

(no name)
Reserved

• Offset: 0
• Length: 2

• Offset: N/A
• Length: N/A

x_lnnohi
High-order 2 bytes of the
source line number

• Offset: 2
• Length: 2

• Offset: N/A
• Length: N/A

x_lnno
Low-order 2 bytes of the
source line number

• Offset: 4
• Length: 2

• Offset: N/A
• Length: N/A

x_lnno
Source line number

• Offset: N/A
• Length: N/A

• Offset: 0
• Length: 4

(no name)
Reserved

• Offset: 6
• Length: 12

• Offset: 4
• Length: 13

844 AIX Version 7.1: Files Reference

Table 30. Table Entry Format (continued)

Field Name and Description XCOFF32 XCOFF64

x_auxtype
Contains _AUX_SYM; Type of
auxiliary entry

• Offset: N/A
• Length: N/A

• Offset: 17
• Length: 1

Field Definitions

The following defines the fields above:

Item Description

(no name) Reserved.

x_lnnohi For XCOFF32, specifies the high-order 16 bits of a source file line number.

x_lnno Specifies the line number of a source file. The maximum value of this field is 65535 for
XCOFF64 and 232 for XCOFF64.

Section Auxiliary Entry for the C_STAT Symbol

The section auxiliary symbol table entry ID is defined in XCOFF32 to provide information in the symbol
table concerning the size of sections produced by a compiler or assembler. The generation of this
information by a compiler is optional, and is ignored and removed by the binder.

Note: The + after x_scnlen and x_nreloc should be a superscript. You can find other instances of this
superscript in the existing documentation.

Table 31. Section Auxiliary Entry Format (XCOFF32 Only)

Offset Length in Bytes Name and Description

0 4 x_scnlen
Section length

4 2 x_nreloc
Number of relocation entries

6 2 x_nlinno
Number of line numbers

8 10 (no name)
Reserved

Field Definitions

The following list defines the fields:

Item Description

x_scnlen Specifies section length in bytes.

x_nreloc Specifies the number of relocation entries. The maximum value of this field is 65535.

x_nlinno Specifies the number of line numbers. The maximum value of this field is 65535.

(no name) Reserved.

For general information on the XCOFF file format, see "XCOFF Object File Format." For more information
on the symbol table, see "Symbol Table Information."

For information on debugging, see "Debug Section."

Files Reference 845

SECT Auxiliary Entry for the C_DWARF Symbol
The SECT auxiliary symbol table entry is defined to provide information in the symbol table concerning the
size of the portion of the section represented by the C_DWARF symbol.

Table 32. Section Auxiliary Entry Format for C_DWARF symbols

Field Name and Description XCOFF32 XCOFF64

x_scnlen+
Length of portion of section
represented by symbol.

• Offset: 0
• Length: 4

• Offset: 0
• Length: 8

(no name)
Reserved

• Offset: 4
• Length: 4

• Offset: N/A
• Length: N/A

x_nreloc +
Number of relocation entries
in section

• Offset: 8
• Length: 4

• Offset: 8
• Length: 8

(no name)
Reserved

• Offset: 12
• Length: 4

• Offset: N/A
• Length: N/A

(no name)
Reserved

• Offset: 16
• Length: 2

• Offset: 16
• Length: 1

x_auxtype
Contains _AUX_SECT; Type of
Auxillary entry

• Offset: N/A
• Length: N/A

• Offset: 17
• Length: 1

Note: + Use "32" or "64" suffix when __XCOFF_HYBRID__ is defined.

Field Definitions

The following list defines the fields:

Item Description

(no name) Reserved

x_scnlen Size of portion of section represented by this symbol.

x_nreloc Number of relocation entries for this symbol. The binder sets this field to 0.

Symbol Table Field Contents by Storage Class
This section defines the symbol table field contents for each of the defined storage classes (n_sclass)
that are used in XCOFF. The following table lists storage class entries in alphabetic order. See "Symbol
Table Entry (syms.h)" for more information.

846 AIX Version 7.1: Files Reference

Table 33. Symbol Table by Storage Class

Class Definition Field Contents

C_BCOMM 135 Beginning of common
block

n_name
Name of the common block*

n_value
0, undefined

n_scnum
N_DEBUG

Aux. Entry

C_BINCL 108 Beginning of include file n_name
Source name of the include file**

n_value
File pointer

n_scnum
N_DEBUG

Aux. Entry

C_BLOCK 100 Beginning or end of inner
block

n_name
.bb or .eb

n_value
Relocatable address

n_scnum
N_SCNUM

Aux. Entry
BLOCK

C_BSTAT 143 Beginning of static block n_name
.bs

n_value
Symbol table index

n_scnum
N_DEBUG

Aux. Entry

C_DECL 140 Declaration of object
(type)

n_name
Debugger stabstring*

n_value
0, undefined

n_scnum
N_SCNUM

Aux. Entry

Files Reference 847

Table 33. Symbol Table by Storage Class (continued)

Class Definition Field Contents

C_DWARF 112 DWARF symbol n_name
Same as name of corresponding DWARF section

n_value
Relocatable offset into corresponding DWARF section

n_scnum
Section number of a DWARF section

Aux. Entry
SECT

C_ECOML 136 Local member of
common block

n_name
Debugger stabstring*

n_value
Offset within common block

n_scnum
N_ABS

Aux. Entry

C_ECOMM 137 End of common block n_name
Debugger stabstring*

n_value
0, undefined

n_scnum
N_DEBUG

Aux. Entry

C_EINCL 109 End of include file n_name
Source name of the include file**

n_value
File pointer

n_scnum
N_DEBUG

Aux. Entry

C_ENTRY 141 Alternate entry n_name
*

n_value
0, undefined

n_scnum
N_DEBUG

Aux. Entry

C_ESTAT 144 End of static block n_name
.es

n_value
0, undefined

n_scnum
N_DEBUG

Aux. Entry

848 AIX Version 7.1: Files Reference

Table 33. Symbol Table by Storage Class (continued)

Class Definition Field Contents

C_EXT 2 External symbol (defining
external symbols for binder processing)

n_name
Symbol Name**

n_value
Relocatable address

n_scnum
N_SCNUM or N_UNDEF

Aux. Entry
FUNCTION CSECT

C_FCN 101 Beginning or end of function n_name
.bf or .ef

n_value
Relocatable address

n_scnum
N_SCNUM

Aux. Entry
BLOCK

C_FILE 103 Source file name and
compiler information

n_name
.file or source file name (if no auxiliary entries)**

n_value
Symbol table index

n_scnum
N_DEBUG

Aux. Entry
FILE

C_FUN 142 Function or procedure n_name
Debugger stabstring*

n_value
Offset within containing csect

n_scnum
N_ABS

Aux. Entry

C_GSYM 128 Global variable n_name
Debugger stabstring*

n_value
0, undefined

n_scnum
N_DEBUG

Aux. Entry

Files Reference 849

Table 33. Symbol Table by Storage Class (continued)

Class Definition Field Contents

C_GTLS 145 Global thread-local
variable

n_name
Debugger stabstring*

n_value
0, undefined

n_scnum
N_DEBUG

Aux. Entry

C_HIDEXT 107 Unnamed external
symbol

n_name
Symbol Name or null**

n_value
Relocatable address

n_scnum
N_SCNUM

Aux. Entry
FUNCTION CSECT

C_INFO 100 Comment section
reference

n_name
Info Name Identifier or null**

n_value
Offset within comment section

n_scnum
N_SCNUM

Aux. Entry

C_LSYM 129 Automatic variable
allocated on stack

n_name
Debugger stabstring*

n_value
Offset relative to stack frame

n_scnum
N_ABS

Aux. Entry

C_NULL 0 Symbol table entry marked
for deletion.

n_name
n_value

0x00DE1E00
n_scnum
Aux. Entry

Any

C_PSYM 130 Argument to subroutine
allocated on stack

n_name
Debugger stabstring*

n_value
Offset relative to stack frame

n_scnum
N_ABS

Aux. Entry

850 AIX Version 7.1: Files Reference

Table 33. Symbol Table by Storage Class (continued)

Class Definition Field Contents

C_RPSYM 132 Argument to function or
procedure stored in register

n_name
Debugger stabstring*

n_value
Register number

n_scnum
N_ABS

Aux. Entry

C_RSYM 131 Register variable n_name
Debugger stabstring*

n_value
Register number

n_scnum
N_ABS

Aux. Entry

C_STAT 3 Static symbol (Unknown.
Some compilers generate these
symbols in the symbol table to identify
size of the .text , .data , and .bss
sections. Not used or preserved by
binder.)

n_name
Symbol Name**

n_value
Relocatable address

n_scnum
N_SCNUM

Aux. Entry
SECTION

C_STSYM 133 Statically allocated
symbol

n_name
Debugger stabstring*

n_value
Offset within csect

n_scnum
N_DEBUG

Aux. Entry

C_STTLS 146 Static thread-local
variable

n_name
Debugger stabstring*

n_value
0, undefined

n_scnum
N_DEBUG

Aux. Entry

C_TCSYM 134 Reserved n_name
Debugger stabstring*

n_value
n_scnum
Aux. Entry

Files Reference 851

Table 33. Symbol Table by Storage Class (continued)

Class Definition Field Contents

C_WEAKEXT 111 Weak external
symbol (defining weak external symbols
for binder processing)

n_name
Symbol Name**

n_value
Relocatable address

n_scnum
N_SCNUM or N_UNDEF

Aux. Entry
FUNCTION CSECT

Note:

1. *For long name, the n_offset value is an offset into the .debug section.
2. **For long name, the n_offset value is an offset into the string table.

Storage Classes by Usage and Symbol Value Classification

Following are the storage classes used and relocated by the binder. The symbol values (n_value) are
addresses.

Class Description

C_EXT Specifies an external or global symbol

C_WEAKEXT Specifies an external or global symbol with weak binding

C_HIDEXT Specifies an internal symbol

C_BLOCK Specifies the beginning or end of an inner block (.bb or .eb)

C_FCN Specifies the beginning or end of a function (.bf or .ef only)

C_STAT Specifies a static symbol (contained in statics csect)

Following are storage classes used by the binder and symbolic debugger or by other utilities for file
scoping and accessing purposes:

Class Description

C_FILE Specifies the source file name. The n_value field holds the symbol index of the next file
entry. The n_name field is the name of the file.

C_BINCL Specifies the beginning of include header file. The n_value field is the line number byte
offset in the object file to the first line number from the include file.

C_EINCL Specifies the end of include header file. The n_value field is the line number byte offset
in the object file to last line number from the include file.

C_INFO Specifies the location of a string in the comment section. The n_value field is the offset
to a string of bytes in the specified STYP_INFO section. The string is preceded by a 4-byte
length field. The n_name field is preserved by the binder. An application-defined unique
name in this field can be used to filter access to only those comment section strings
intended for the application.

C_DWARF Specifies the portion of the DWARF section that applies to the current C_FILE symbol.
The n_value field contains the offset with the section to the portion of the section
represented by this symbol. The n_scnlen field in the SECT auxiliary entry contains the
length of the portion of the section represented by this symbol.

Following are the storage classes that exist only for symbolic debugging purposes:

852 AIX Version 7.1: Files Reference

Class Description

C_BCOMM Specifies the beginning of a common block. The n_value field is meaningless; the name is
the name of the common block.

C_ECOML Specifies a local member of a common block. The n_value field is byte-offset within the
common block.

C_ECOMM Specifies the end of a common block. The n_value field is meaningless.

C_BSTAT Specifies the beginning of a static block. The n_value field is the symbol table index of the
csect containing static symbols; the name is .bs.

C_ESTAT Specifies the end of a static block. The n_value field is meaningless; the name is .es.

C_DECL Specifies a declaration of object (type declarations). The n_value field is undefined.

C_ENTRY Specifies an alternate entry (FORTRAN) and has a corresponding C_EXT or C_WEAKEXT
symbol. The n_value field is undefined.

C_FUN Specifies a function or procedure. May have a corresponding C_EXT or C_WEAKEXT
symbol. The n_value field is byte-offset within the containing csect.

C_GSYM Specifies a global variable and has a corresponding C_EXT or C_WEAKEXT symbol. The
n_value field is undefined.

C_LSYM Specifies an automatic variable allocated on the stack. The n_value field is byte offset
relative to the stack frame (platform dependent).

C_PSYM Specifies an argument to a subroutine allocated on the stack. The n_value field is byte-
offset relative to the stack frame (platform dependent).

C_RSYM Specifies a register variable. The n_value field is the register number.

C_RPSYM Specifies an argument to a function or procedure stored in a register. The n_value field is
the register number where argument is stored.

C_STSYM Specifies a statically allocated symbol. The n_value field is byte-offset within csect
pointed to by containing C_BSTAT entry.

C_GTLS Specifies a global thread-local variable and follows a C_EXT or C_WEAKEXT symbol with
the same name. The n_value field is undefined.

C_STTLS Specifies a static thread-local variable and follows a C_HIDEXT symbol with the same
name. The n_value field is undefined.

For general information on the XCOFF file format, see "XCOFF Object File Format." For more information
on the symbol table, see "Symbol Table Information."

For information on debugging, see "Debug Section."

String Table
IN XCOFF32, the string table contains the names of symbols that are longer than 8 bytes. In XCOFF64,
the string table contains the names of all symbols. If the string table is present, the first 4 bytes contain
the length (in bytes) of the string table, including the length of this length field. The remainder of the table
is a sequence of null-terminated ASCII strings. If the n_zeroes field in the symbol table entry is 0, then
the n_offset field gives the byte offset into the string table of the name of the symbol.

If a string table is not used, it may be omitted entirely, or a string table consisting of only the length field
(containing a value of 0 or 4) may be used. A value of 4 is preferable. The following table shows string
table organization.

Files Reference 853

Table 34. String Table Organization

Offset Length in Bytes Description

0 4 Length of string table.

4 n Symbol name string, null-terminated.

Field repeats for each symbol name.

For general information on the XCOFF file format, see "XCOFF Object File Format."

dbx Stabstrings
The debug section contains the symbolic debugger stabstrings (symbol table strings). It is generated by
the compilers and assemblers. It provides symbol attribute information for use by the symbolic debugger.

See "Debug Section" for a general discussion.

Stabstring Terminal Symbols

In the stabstring grammar, there are five types of terminal symbols, which are written in all capital letters.
These symbols are described by the regular expressions in the following list:

Note: The [] (brackets) denote one instance, []* (brackets asterisk) denote zero or more instances, []+
(brackets plus sign) denote one or more instances, () (parentheses) denote zero or one instance, .* (dot
asterisk) denotes a sequence of zero or more bytes, and | (pipe) denotes alternatives.

Symbol Regular Expression

NAME [^ ; : ' "] (A name consists of any non-empty set of characters, excluding ; : ' or ".)

STRING '.*' | ".*", where \", \', or \\ can be used inside the string

Within a string, the \ (backslash character) may have a special meaning. If the
character following the \ is another \, one of the backslashes is ignored. If the next
character is the quote character used for the current string, the string is interpreted as
containing an embedded quote. Otherwise, the \ is interpreted literally. However, if the
closing quote is the last character in the stabstring, and a \ occurs immediately before
the quote, the \ is interpreted literally. This use is not recommended.

The \ must be quoted only in the following instances:

• The \ is the last character in the string (to avoid having the closing quote escaped).
• The \ is followed by the current quote character.
• The \ is followed by another \.

An escaped quote is required only when a single string contains both a single quote
and a double quote. Otherwise, the string should be quoted with the quote character
not contained in the strings.

A string can contain embedded null characters, so utilities that process stabstrings
must use the length field to determine the length of a stabstring.

INTEGER (-)[0-9]+

HEXINTEGER [0-9A-F]+

The hexadecimal digits A-F must be uppercase.

REAL [H|D|DD]([+-][0-9]+(.)[0-9]*([eEqQ](+-)[0-9]+) | (+-)INF | QNAN | SNAN)

Stabstring Grammar

REALs may be preceded by white space, and STRINGs may contain any characters, including null and
blank characters. Otherwise, there are no null or blank characters in a stabstring.

854 AIX Version 7.1: Files Reference

Long stabstrings can be split across multiple symbol table entries for easier handling. In the stabstring
grammar, a # (pound sign) indicates a point at which a stabstring may be continued. A continuation is
indicated by using either the ? (question mark) or \ as the last character in the string. The next part of the
stabstring is in the name of the next symbol table entry. If an alternative for a production is empty, the
grammar shows the keyword /*EMPTY*/.

The following list contains the stabstring grammar:

Stabstring:
Basic structure of stabstring:
NAME : Class

Name of object followed by object classification
:Class

Unnamed object classification.
Class:

Object classifications:
c = Constant ;

Constant object
NamedType

User-defined types and tags
Parameter

Argument to subprogram
Procedure

Subprogram declaration
Variable

Variable in program
Label

Label object.
Constant:

Constant declarations:
b OrdValue

Boolean constant
c OrdValue

Character constant
e TypeID , OrdValue

Enumeration constant
i INTEGER

Integer constant
r REAL

Decimal or binary floating point constant
s STRING

String constant
C REAL, REAL

Complex constant
S TypeID , NumElements , NumBits , BitPattern

Set constant.
OrdValue:

Associated numeric value: INTEGER
NumElements:

Number of elements in the set: INTEGER

Files Reference 855

NumBits:
Number of bits in item: INTEGER

NumBytes:
Number of bytes in item: INTEGER

BitPattern:
Hexadecimal representation, up to 32 bytes: HEXINTEGER

NamedType:
User-defined types and tags:
t TypeID

User-defined type (TYPE or typedef), excluding those that are valid for T TypeID
T TypeID

Struct, union, class, or enumeration tag
Parameter:

Argument to procedure or function:
a TypeID

Passed by reference in general register
p TypeID

Passed by value on stack
v TypeID

Passed by reference on stack
C TypeID

Constant passed by value on stack
D TypeID

Passed by value in floating point register
R TypeID

Passed by value in general register
X TypeID

Passed by value in vector register
Procedure:

Procedure or function declaration:
Proc

Procedure at current scoping level
Proc , NAME : NAME

Procedure named 1st NAME, local to 2nd NAME, where 2nd NAME is different from the current
scope.

Variable:
Variable in program:
TypeID

Local (automatic) variable of type TypeID
d TypeID

Floating register variable of type TypeID
hTypeID

Static thread-local variable of type TypeID
r TypeID

Register variable of type TypeID
x TypeID

Vector register variable of type TypeID
G TypeID

Global (external) variable of type TypeID

856 AIX Version 7.1: Files Reference

H TypeID
Global (external) thread-local variable of type TypeID

S TypeID
Module variable of type TypeID (C static global)

V TypeID
Own variable of type TypeID (C static local)

Y
FORTRAN pointer variable

Z TypeID NAME
FORTRAN pointee variable

Label:
Label:
L

Label name.
Proc:

Different types of functions and procedures:
f TypeID

Private function of type TypeID
g TypeID

Generic function (FORTRAN)
m TypeID

Module (Modula-2, ext. Pascal)
J TypeID

Internal function of type TypeID
F TypeID

External function of type TypeID
I

(capital i) Internal procedure
P

External procedure
Q

Private procedure
TypeID:

Type declarations and identifiers:
INTEGER

Type number of previously defined type
INTEGER = TypeDef

New type number described by TypeDef
INTEGER = TypeAttrs TypeDef

New type with special type attributes
TypeAttrs:

@ TypeAttrList ;

Note: Type attributes (TypeAttrs) are extra information associated with a type, such as alignment
constraints or pointer-checking semantics. The dbx program recognizes only the size attribute and
the packed attribute. The size attribute denotes the total size of a padded element within an array.
The packed attribute indicates that a type is a packed type. Any other attributes are ignored by dbx.

TypeAttrList:
List of special type attributes:

Files Reference 857

TypeAttrList ;
@ TypeAttr TypeAttr

TypeAttr:
Special type attributes:
a INTEGER

Align boundary
s INTEGER

Size in bits
p INTEGER

Pointer class (for checking)
P

Packed type
Other

Anything not covered is skipped entirely
TypeDef:

Basic descriptions of objects:
INTEGER

Type number of a previously defined type
b TypeID ; # NumBytes

Pascal space type
c TypeID ; # NumBits

Complex type TypeID
d TypeID

File of type TypeID
e EnumSpec ;

Enumerated type (default size, 32 bits)
g TypeID ; # NumBits

Floating-point type of size NumBits
D TypeID ; # NumBits

Decimal floating-point type of size NumBits

For i types, ModuleName refers to the Modula-2 module from which it is imported.

i NAME : NAME ;
Imported type ModuleName:Name

i NAME : NAME , TypeID ;
Imported type ModuleName:Name of type TypeID

k TypeID
C++ constant type

l ; #
Usage-is-index; specific to COBOL

m OptVBaseSpec OptMultiBaseSpec TypeID : TypeID : TypeID ;
C++ pointer to member type; the first TypeID is the member type; the second is the type of the
class

n TypeID ; # NumBytes
String type, with maximum string length indicated by NumBytes

o NAME ;
Opaque type

o NAME , TypeID
Opaque type with definition of TypeID

858 AIX Version 7.1: Files Reference

w TypeID
Wide character

z TypeID ; # NumBytes
Pascal gstring type

C Usage
COBOL Picture

I NumBytes ; # PicSize
(uppercase i) Index is type; specific to COBOL

K CobolFileDesc;
COBOL File Descriptor

M TypeID ; # Bound
Multiple instance type of TypeID with length indicated by Bound

N
Pascal Stringptr

S TypeID
Set of type TypeID

* TypeID
Pointer of type TypeID

& TypeID
C++ reference type

V TypeID
C++ volatile type

Z
C++ ellipses parameter type

Array Subrange ProcedureType
For function types rather than declarations
Record

Record, structure, union, or group types
EnumSpec:

List of enumerated scalars:
EnumList

Enumerated type (C and other languages)
TypeID : EnumList

C++ enumerated type with repeating integer type
EnumList: Enum

EnumList Enum
Enum:

Enumerated scalar description: NAME : OrdValue , #
Array:

Array descriptions:
a TypeID ; # TypeID

Array; FirstTypeID is the index type
A TypeID

Open array of TypeID
D INTEGER ,TypeID

N-dimensional dynamic array of TypeID
E INTEGER , TypeID

N-dimensional dynamic subarray of TypeID

Files Reference 859

O INTEGER , TypeID
New open array

P TypeID ; # TypeID
Packed array

Subrange:
Subrange descriptions:
r TypeID ; # Bound ; # Bound

Subrange type (for example, char, int,\,), lower and upper bounds
Bound:

Upper and lower bound descriptions:
INTEGER

Constant bound
Boundtype INTEGER

Variable or dynamic bound; value is address of or offset to bound
J

Bound is indeterminable (no bounds)
Boundtype:

Adjustable subrange descriptions:
A

Bound passed by reference on stack
S

Bound passed by value in static storage
T

Bound passed by value on stack
a

Bound passed by reference in register
t

Bound passed by value in register
ProcedureType:

Function variables (1st type C only; others Modula-2 & Pascal)
f TypeID ;

Function returning type TypeID
f TypeID , NumParams ; TParamList ;

Function of N parameters returning type TypeID
p NumParams ; TParamList ;

Procedure of N parameters
R NumParams ; NamedTParamList

Pascal subroutine parameter
F TypeID, NumParams ; NamedTParamList ;

Pascal function parameter
NumParams:

Number of parameters in routine:

INTEGER.

TParamList:
Types of parameters in Modula-2 function variable:
TParam

Type of parameter and passing method

860 AIX Version 7.1: Files Reference

TParam:
Type and passing method

TypeID , PassBy ; #

NamedTParamList:
Types of parameters in Pascal-routine variable: /*EMPTY*/ NamedTPList

NamedTPList:
NamedTParam NamedTPList NamedTParam

NamedTParam:
Named type and passing method: Name : TypeID , PassBy InitBody ; # : TypeID , PassBy InitBody ; #
Unnamed parameter

Record:
Types of structure declarations:

• s NumBytes # FieldList ;
• Structure or record definition
• u NumBytes # FieldList ;
• Union
• v NumBytes # FieldList VariantPart ;
• Variant Record
• Y NumBytes ClassKey OptPBV OptBaseSpecList (ExtendedFieldListOptNameResolutionList ;
• C++ class
• G Redefinition , n NumBits # FieldList ;
• COBOL group without conditionals

Gn NumBits FieldList ;

• G Redefinition , c NumBits # CondFieldList ;
• COBOL group with conditionals

Gc NumBits CondFieldList ;

OptVBaseSpec:
v

ptr-to-mem class has virtual bases.
/*EMPTY*/

Class has no virtual bases.
OptMultiBaseSpec:

m
Class is multi-based.

/*EMPTY*/
Class is not multi-based.

OptPBV:
V

Class is always passed by value.
/*EMPTY*/

Class is never passed by value.
ClassKey:

s
struct

Files Reference 861

u
union

c
class

OptBaseSpecList:
/*EMPTY*/ BaseSpecList

BaseSpecList:
BaseSpec BaseSpecList , BaseSpec

BaseSpec:
VirtualAccessSpec BaseClassOffset : ClassTypeID

BaseClassOffset:
INTEGER

Base record offset in bytes
ClassTypeID:

TypeID
Base class type identifier

VirtualAccessSpec:
v AccessSpec

Virtual
v

Virtual

AccessSpec

/*EMPTY*/

GenSpec:
c

Compiler-generated

/*EMPTY*/

AccessSpec:
i #

Private
o #

Protected
u #

Public
AnonSpec:

a
Anonymous union member

/*EMPTY*/

VirtualSpec:
v p

Pure virtual
v

Virtual
/*EMPTY*/

ExtendedFieldList:
ExtendedFieldList ExtendedField /*EMPTY*/

862 AIX Version 7.1: Files Reference

ExtendedField:
GenSpec AccessSpec AnonSpec DataMember GenSpec VirtualSpec AccessSpec OptVirtualFuncIndex
MemberFunction AccessSpec AnonSpec NestedClass AnonSpec FriendClass AnonSpec FriendFunction

DataMember:
MemberAttrs : Field ;

MemberAttrs:
IsStatic IsVtblPtr IsVBasePtr
IsStatic:

/*EMPTY*/
s

Member is static.
IsVtblPtr:

/*EMPTY*/
p INTEGER NAME

Member is vtbl pointer; NAME is the external name of v-table.
IsVBasePtr:

/*EMPTY*/
b

Member is vbase pointer.
r

Member is vbase self-pointer.
Member Function:

[FuncType MemberFuncAttrs : NAME : TypeID ; #
MemberFuncAttrs:

IsStatic IsInline IsConst IsVolatile
IsInline:

/*EMPTY*/
i

Inline function
IsConst:

/*EMPTY*/
k

const member function
IsVolatile:

/*EMPTY*/
V

Volatile member function
NestedClass:

N TypeID ; #
FriendClass:

(TypeID ; #
FriendFunction:

] NAME : TypeID ; #
OptVirtualFuncIndex:

/*EMPTY*/ INTEGER
FuncType:

f
Member function

Files Reference 863

c
Constructor

d
Destructor

InitBody:
STRING /*EMPTY*/

OptNameResolutionList:
/*EMPTY*/) NameResolutionList

NameResolutionList: NameResolution
NameResolution , NameResolutionList

NameResolution: MemberName : ClassTypeID
Name is resolved by compiler.
MemberName:

Name is ambiguous.
MemberName:

NAME
FieldList:

Structure content descriptions:
Field

/*EMPTY*/
FieldList Field

Member of record or union.
Field:

Structure-member type description:

NAME : TypeID , BitOffset , NumBits ; #

VariantPart:
Variant portion of variant record:
[Vtag VFieldList]

Variant description
VTag:

Variant record tag:
(Field

Member of variant record
(NAME : ; #

Variant key name
VFieldList:

Variant record content descriptions:
VList VFieldList VList

Member of variant record
VList:

Variant record fields:
VField VField VariantPart

Member of variant record
VField:

Variant record member type description:
(VRangeList : FieldList

Variant with field list

864 AIX Version 7.1: Files Reference

VRangeList:
List of variant field labels:
VRange VRangeList , VRange

Member of variant record
VRange:

Variant field descriptions:
b OrdValue

Boolean variant
c OrdValue

Character variant
e TypeID , OrdValue

Enumeration variant
i INTEGER

Integer variant
r TypeID ; Bound ; Bound

Subrange variant
CondFieldList:

Conditions,#FieldList FieldList# ;
Conditions:

/*Empty*/ Conditions condition
BitOffset:

Offset in bits from beginning of structure: INTEGER
Usage:

Cobol usage description: PICStorageType NumBits , EditDescription , PicSize ; Redefinition ,
PICStorageType NumBits , EditDescription , PicSize ; PICStorageType NumBits , EditDescription ,
PicSize , # Condition ; Redefinition , PICStorageType NumBits , EditDescription , PicSize , # Condition ;

Redefinition:
Cobol redefinition: r NAME

PICStorageType:
Cobol PICTURE types:
a

Alphabetic
b

Alphabetic, edited
c

Alphanumeric
d

Alphanumeric, edited
e

Numeric, signed, trailing, included
f

Numeric, signed, trailing, separate
g

Numeric, signed, leading, included
h

Numeric, signed, leading, separate
i

Numeric, signed, default, comp

Files Reference 865

j
Numeric, unsigned, default, comp

k
Numeric, packed, decimal, signed

l
Numeric, packed, decimal, unsigned

m
Numeric, unsigned, comp-x

n
Numeric, unsigned, comp-5

o
Numeric, signed, comp-5

p
Numeric, edited

q
Numeric, unsigned

s
Indexed item

t
Pointer

EditDescription:
Cobol edit description:
STRING

Edit characters in an alpha PIC
INTEGER

Decimal point position in a numeric PIC
PicSize:

Cobol description length:
INTEGER

Number of repeated '9's in numeric clause, or length of edit format for edited numeric
Condition:

Conditional variable descriptions:

NAME : INTEGER = q ConditionType , ValueList ; #

ConditionType:
Condition descriptions:

ConditionPrimitive , KanjiChar

ConditionPrimitive:
Primitive type of Condition:
n Sign DecimalSite

Numeric conditional
a

Alphanumeric conditional
f

Figurative conditional
Sign:

For types with explicit sign:
+

Positive

866 AIX Version 7.1: Files Reference

-
Negative

[^+-]
Not specified

DecimalSite:
Number of places from left for implied decimal point:

INTEGER

KanjiChar:
0 only if Kanji character in value: INTEGER
ValueList

Values associated with condition names
Value ValueList Value
Value

Values associated with condition names:
INTEGER : ArbitraryCharacters #

Integer indicates length of string
CobolFileDesc:

COBOL file description: Organization AccessMethod NumBytes
Organization:

COBOL file-description organization:
i

Indexed
l

Line Sequential
r

Relative
s

Sequential
AccessMethod:

COBOL file description access method:
d

Dynamic
o

Sort
r

Random
s

Sequential
PassBy:

Parameter passing method:
INTEGER

0 = passed-by reference; 1 = passed-by value
Related reference
ar File Format (Big)
ar File Format (Small)
Related information
as command
dump command

Files Reference 867

ld command
size command
what command

Special Files
A special file is associated with a particular hardware device or other resource of the computer system.
The operating system uses special files, sometimes called device files, to provide file I/O access to
specific character and block device drivers.

Special files, at first glance, appear to be just like ordinary files, in that they:

• Have path names that appear in a directory.
• Have the same access protection as ordinary files.
• Can be used in almost every way that ordinary files can be used.

However, there is an important difference between the two. An ordinary file is a logical grouping of data
recorded on disk. A special file, on the other hand, corresponds to a device entity. Examples are:

• An actual device, such as a line printer.
• A logical subdevice, such as a large section of the disk drive.
• A pseudo device, such as the physical memory of the computer (/dev/mem) or the null file (/dev/null).

Special files are distinguished from other files by having a file type (c or b, for character or block) stored in
the i-nodes to indicate the type of device access provided. The i-node for the special file also contains the
device major and minor numbers assigned to the device at device configuration time.

Note: Data corruption, loss of data, or loss of system integrity (a system crash) will occur if devices
supporting paging, logical volumes, or mounted file systems are accessed using block special files. Block
special files are provided for logical volumes and disk devices on the operating system and are solely for
system use in managing file systems, paging devices, and logical volumes. These files should not be used
for other purposes.

Several special files are provided with the operating system. By convention, special files are located in
the /dev directory.

More information is provided about the following special files:

Item Description

3270cn Provides access to 3270 connection adapters by way of the 3270 connection adapter
device driver.

bus Provides access to the hardware bus by way of the machine I/O device driver.

cd Provides access to the cdrom device driver.

console Provides access to the system console.

dials Provides access to the dials.

dump Supports system dump.

entn Provides access to the 3COM Ethernet adapters by way of the Ethernet device handler for
this platform.

error Supports error logging.

fd Provides access to the diskette device driver.

fddin Provides access to the FDDI device driver by way of the FDDI device handler.

GIO Provides access to the graphics I/O (GIO) adapter.

ide Provides access to the Integrated Device Electronics (IDE) adapter device driver.

868 AIX Version 7.1: Files Reference

Item Description

kbd Provides access to the natively attached keyboard.

kmem and
mem

Provides privileged read and write access to virtual memory.

lft Implements a low-function terminal (LFT) device.

lp Provides access to the line printer device driver.

lpfk Provides access to the lighted program function key (LPFK) array.

lvdd Provides access to the logical volume device driver.

mouse Provides access to the natively attached mouse.

mpqi Provides access to the Multiport Model 2 Adapter (MM2) SDLC device driver.

mpqn Provides access to multiprotocol adapters by way of the Multiprotocol Quad Port (MPQP)
device handler.

null Provides access to the null device.

nvram Provides access to platform-specific nonvolatile RAM used for system boot, configuration,
and fatal error information.

omd Provides access to the read/write optical device driver.

opn Provides diagnostic interface to the Serial Optical Link device driver.

ops0 Provides access to the Serial Optical Link device driver

pty Provides the pseudo-terminal (pty) device driver.

random Source of secure random output.

rcm Provides application interface to obtain and relinquish status of a graphics process
through the Rendering Context Manager (RCM) device driver.

rhdisk Provides raw access to the physical volume (fixed-disk) device driver.

rmt Provides access to the sequential-access bulk-storage medium device driver.

scsi Provides access to the SCSI adapter device driver.

tablet Provides access to the tablet.

tmscsi Provides access to the SCSI Target-mode interface by way of the SCSI tmscsi device
driver.

tokn Provides access to the token-ring adapters by way of the token-ring device handler.

trace Supports event tracing.

tty Supports the controlling terminal interface.

urandom Source of secure random output.

vty_server Creates a tty-style connection from the partition on which a virtual terminal server is
running to a virtual terminal (not a virtual terminal server) on another partition.

3270cn Special File

Purpose
Provides access to 3270 connection adapters by way of the 3270 connection adapter device handler.

Files Reference 869

Description
The 3270cn character special file provides access to the 3270 connection adapter device handler for
the purpose of emulating 3270 display stations and printers. The device handler is a multiplexed device
handler that supports an independent logical 3270 session on each of its channels.

The device handler supports two modes of operation:

Item Description

Distributed Function Terminal (DFT) mode In DFT mode, the adapter can appear
as multiple SNA or non-SNA display
sessions, non-SNA printer sessions, or
both, and is an intelligent device to
the control unit. In this mode, the
device handler provides the capability
of emulating several 3278/79 display
stations. If the attached control
unit does not support Extended
Asynchronous Event Device Status,
either the control unit port or the
device handler must be configured for
one session only.

3278/79 emulation Control Unit Terminal (CUT) mode In CUT mode, the adapter appears as
a single-session, unintelligent device
to the control unit. In this mode, the
device handler provides the capability
of emulating a single 3278/79 display
station.

The device handler supports up to four 3270 connection adapters, each of which may have up to five DFT
sessions or one CUT session.

The /usr/include/sys/io3270.h file contains the definitions of the structures used by the device handler.

Usage Considerations

When accessing the 3270 connection device handler, the following should be taken into account:

Item Description

Driver initialization and termination The device handler may be loaded and
unloaded. The device handler supports
the configuration calls to initialize and
terminate itself, but does not support
the configuration call to query vital
product data (VPD).

Special file support Subroutines other than open and close
are discussed in regard to the mode in
which the device handler is operating.

Subroutine Support

The 3270 device handler provides 3270-specific support for the following subroutines:

• open
• close
• read
• readx (non-SNA DFT mode only)
• write

870 AIX Version 7.1: Files Reference

• writex (non-SNA DFT mode only)
• ioctl

open and close Subroutines

The device handler supports the 3270cn special file as a character-multiplex special file. The special file
must be opened for both reading and writing (O_RDWR).

A special consideration exists for closing the 3270cn special file. If the file was opened in both CUT mode
and CUT-File Transfer mode, the close operation for CUT-File Transfer mode must precede the close
operation for CUT mode.

The special file name used in an open call takes on several different forms, depending on how the device
is to be opened. Types of special file names are:

Item Description

dev/3270cn/C Starts the device handler in CUT mode for the selected port, where the value of n
is 0 <= n <= 7.

/dev/3270cn/F Starts the device handler in CUT File-Transfer mode for the selected port, where
the value of n is 0 <= n <= 7. The file must be currently open in CUT mode before
it can be opened in CUT File-Transfer mode.

/dev/3270cn/* Starts the device handler in DFT mode for the selected port, where the value of n
is 0 <= n <= 7 and the * (asterisk) is defined by P/a, as follows:
P/00, P/01, P/02,...P/1F

The printer session specified by the P variable is equal to the control unit
session address, and the value of a is less than or equal to 0x1F.

01 through 05
Terminal session number.

/dev/3270cn Starts the device handler in DFT mode for the selected port, where the value of n
is 0 <= n <= 7.

read Subroutine in Non-SNA DFT Mode

Data received by the communication adapter from the host is placed in the buffer until the message is
completed or the buffer is full. When either condition occurs, the driver returns program control back to
the application. The application can determine the status of a read subroutine call by issuing a WDC_INQ
ioctl operation.

If the WDC_INQ operation returns a status indicating that more data is available, the application should
immediately issue another read call. Available data must be read as soon as possible to avoid degrading
link or host performance.

If a read call is made and no data is available, the calling process is blocked until data becomes available.
To avoid blocking, use the poll subroutine to determine if data is available.

The host sends data as an outbound 3270 data stream. The device handler translates the command
codes in the outbound 3270 data stream. The command codes and translations are as follows:

Command Code Into Driver Out of Driver

Erase All Unprotected 0x6F 0x0F

Erase/Write 0xF5 0x03

Erase/Write Alternate 0x7E 0x0D

Read Buffer 0xF2 0x02

Read Modified 0xF6 0x06

Write 0xF1 0x01

Files Reference 871

Command Code Into Driver Out of Driver

Write Structured Field 0xF3 0x11

read Subroutine in SNA DFT Mode

The communication adapter receives data from the control unit in individual SNA data segments. The
device driver notifies the application that data is available. During the read subroutine call, the data is
transferred to the application's user space from the device driver's kernel space (without the TCA header
from the control unit), and control is passed back to the application. The device driver acknowledges each
SNA data segment received, making it unnecessary for the application to inquire about the link status
after the read call.

Note: The STAT_ACK ioctl operation is not valid in SNA DFT mode.

Unlike non-SNA DFT mode, neither chaining nor command interpretation is performed by the device
driver in SNA DFT mode. The application must both accumulate SNA data segments to form an response
unit (RU) and interpret any 3270 data contained within.

readx Subroutine in Non-SNA DFT Mode

Data received by the communication adapter from the host is placed in the buffer until either the message
completes or the buffer is full. Upon completion of the read call, the io3270 structure pointed to by the
read extension contains the status. One of the following status codes is set in the io_flags field of the
io3270 structure:

Item Description

WDI_DAVAIL Additional data is available for this link address.

WDI_COMM A communication error occurred. The io_status field contains the corresponding
message code.

WDI_PROG A program error occurred. The io_status field contains the corresponding message
code.

WDI_MACH A hardware error occurred. The io_status field contains the corresponding message
code.

WDI_FATAL An error occurred that prevents further communication with the host. This flag is
optionally set in addition to the WDI_COMM, WDI_PROG, or WDI_MACH flag. It is
also set when a coax failure occurs. In this case, the io_status field contains a value
of WEB_610, but the WDI_COMM, WDI_PROG, or WDI_MACH flag is not set.

When reset, the WDI_DAVAIL flag indicates that the data just read marks the completion of an outbound
3270 data stream.

If the WDI_DAVAIL flag indicates more data is available, another readx subroutine should be issued
immediately. Available data must be read as soon as possible to avoid degrading link or host performance.

If a readx subroutine call is made and no data is available, the calling process is blocked until data
becomes available. To avoid blocking, use the poll subroutine to determine if data is available.

Data received from the host is in the form of an outbound 3270 data stream. The device driver translates
the command codes in the outbound 3270 data stream.

Note: The 3270 write commands require the application to send a status to the host. Status is sent using
the WDC_SSTAT ioctl operation.

write Subroutine in Non-SNA DFT Mode

In non-SNA DFT mode, the write subroutine sends an inbound 3270 data stream to the host. The buffer
specified on a write subroutine call must contain a complete inbound 3270 data stream. The write call is
complete when it has successfully transferred from the buffer specified on the subroutine call.

write Subroutine in SNA DFT Mode

872 AIX Version 7.1: Files Reference

In SNA DFT mode, the write subroutine transmits SNA data to the host system. This data can be either a
3270 data stream with SNA headers or an SNA response.

The application sends data to the device driver, one RU at a time. The device driver is then responsible
for segmenting the inbound SNA data. If a second write call is made before the first call is processed,
the second call does not proceed until the device driver is ready. After the data is transferred from the
application's user space to the device driver's kernel space, the write subroutine completes and control is
returned to the application.

If the device driver detects a coax disconnect between two write calls, the second write call will return to
the application, with the errno global variable set to EFAULT.

writex Subroutine in Non-SNA DFT Mode

The writex subroutine sends an inbound 3270 data stream to the host. The buffer specified on a writex
subroutine call must contain a complete inbound 3270 data stream.

The write subroutine is complete when it has successfully transferred the data from the specified buffer.
Upon completion of the write subroutine call, the io3270 structure pointed to by the write extension
contains the status. One of the following status codes is set in the io_flags field of the io3270
structure:

Item Description

WDI_DAVAIL Indicates that data is available for this link address; the data must be read before any
write can occur.

WDI_COMM Indicates a communication error. The io_status field contains the corresponding
message code.

WDI_PROG Indicates a program error. The io_status field contains the corresponding message
code.

WDI_MACH Indicates a hardware error. The io_status field contains the corresponding message
code.

ioctl Subroutine in DFT Mode

The ioctl subroutine may be issued to the device handler when it is in DFT mode. The following are the
available ioctl operations:

Item Description

IOCINFO Returns the logical terminal number. This number is the EBCDIC representation of the
controller type and the controller attachment protocol in the iocinfo structure.

WDC_AUTO Valid only for non-SNA DFT mode. Provides the handler with the option to automatically
acknowledge the receipt of a valid 3270 data stream. An acknowledgment is sent only if
the beginning of the 3270 data stream consists of 0xF3 00 06 40 00 F1 C2 xx xx
10 14, where the xx fields are not examined. This command also allows the driver not
to indicate acknowledgment upon receipt of data.

Files Reference 873

Item Description

WDC_INQ Queries the status of the last non-SNA read or write call issued by the application. Also,
the WDC_INQ operation determines if data is available for reading. The status is placed
in the io_flags field of the io3270 structure. This field accepts the following values:
WDI_DAVAIL

Data is available for reading. The data is buffered either in the driver or in the
communication adapter. The data should be read immediately to avoid its having an
impact on performance.

In non-SNA DFT mode, a write or writex subroutine call cannot complete until the
data has been read. In SNA DFT mode, the WDI_DAVAIL flag is used only to indicate
that data is available when the device driver wakes up the application (if waiting on a
poll or select call) after receiving data from the control unit.

WDI_COMM, WDI_PROG, or WDI_MACH
Indicates a communication check, program check, or machine check, respectively.
In each of these cases, the io_status field contains a message code that specifies
the type of check.

WDI_FATAL
Indicates that an error has occurred that prevents further communication between
the application and the device driver, typically a coax disconnect or adapter
failure. This flag may be set in conjunction with the WDI_COMM, WDI_PROG, or
WDI_MACH flag. If the communications failure was caused by a coax disconnect,
the io_status field contains a value of WEB_610.

WDI_WCUS_30
A communications check reminder that occurs when there is a network failure
and the control unit is still communicating with the communication adapter. The
specific type of error is contained in the io_status field as a 5XX error code. The
communications check reminder is cleared automatically after the network condition
is corrected.

WDI_WCUS_31
Indicates that the communications check reminder has been cleared.

WDI_CU
Valid only for SNA DFT mode. Indicates that an ACTLU or DACTLU request was
received by the device driver. The accompanying data is contained in the io_extra
field of the io3270 structure.

WDC_POR The link address is first disabled and then re-enabled to emulate a 3270 terminal
power-on reset function.

874 AIX Version 7.1: Files Reference

Item Description

WDC_SSTAT Valid only for non-SNA DFT mode. Sends status to the host. The argument field contains
one of the following values:
STAT_ACK

The previously received 3270 data stream is valid, and the proper response is made
to the host.

STAT_RESET
Sends a RESET Key to the DFT device handler.

STAT_PRTCMP
The printer session has completed printing the data.

STAT_BERR
Received a bad buffer order or an invalid buffer address.

STAT_UNSUP
Received an unsupported 3270 command.

The /usr/include/sys/io3270.h file contains the definitions of the structures used
by the device handler.

Error Conditions in DFT Mode

The following error conditions may be returned when accessing the device handler through the 3270cn
special file:

Item Description

EBUSY An open was requested for a channel that is already open.

EFAULT A buffer specified by the caller was not valid.

EINTR A subroutine call was interrupted.

EINVAL An invalid argument was received.

EIO An unrecoverable I/O error occurred on the requested data transfer.

ENODEV An open was requested for an invalid channel.

ENOME
M

The driver could not allocate memory for use in the data transfer.

ENXIO An operation was requested for an invalid minor device number.

read Subroutine in CUT Mode

The read subroutine places data received by the communication adapter in a buffer.

Note: To set the offset into the communication adapter's buffer from which to read, use the EMSEEK ioctl
operation.

Two ioctl operations control the way the read subroutine operates: the EMNWAIT and EMWAIT
operations. The EMNWAIT operation indicates that subsequent read calls should be satisfied
immediately. The EMWAIT ioctl operation (the default) indicates that read calls should be satisfied only
after an interrupt from the control unit indicates that something has changed on the display. The following
are control unit interrupts:

Item Description

Buffer Modification Complete The read subroutine returns the number of
bytes requested.

Load I/O Address Command Decoded The read subroutine returns 0 for the number of
bytes read.

Files Reference 875

write Subroutine in CUT Mode

The write subroutine sends an inbound 3270 data stream to the host. The buffer specified on a write
subroutine must contain a complete inbound 3270 data stream. To set the offset into the communication
adapter buffer to begin to write, use the EMSEEK ioctl operation.

ioctl Subroutine in CUT Mode

The ioctl subroutine may be issued to the device handler in CUT mode. The following are acceptable ioctl
operations:

Item Description

EMKEY Sends a scancode to the emulation adapter. The scan code is logically ORed with the
EMKEY operation, and the result is used as the command field on the ioctl subroutine call.

EMCPOS Returns the position of the cursor relative to the start of the communication adapter buffer.

EMXPOR Disables the link address and then re-enables it to emulate a 3270 terminal power-on reset
function.

EMNWAIT Specifies that read subroutine calls should be satisfied immediately.

EMWAIT Specifies that read subroutine calls should be satisfied only after a change to the emulation
buffer or the cursor position (this is the default setting).

EMVISND Returns the current contents of the emulation Visual/Sound register in the integer field.
The address of this field is specified as the argument to the EMVISND operation.

EMIMASK Provides a mask to specify which interrupts appear. The argument field specifies the
address of the mask. The low-order bits of the mask (0 through 7) correspond to bits 0
through 7 of the Interrupt Status register. Bits 8 through 15 of the mask correspond to bits 0
through 7 of the Visual/Sound register.

This operation allows the driver to ignore visual or sound interrupts except for those bits
specifically masked ON. When a bit is on, the interrupt that corresponds to that bit position
appears. Interrupts that correspond to off (0) bit positions in the mask are discarded by
the device handler. The previous mask setting is returned to the caller in the mask field.
The interrupt status bits and the visual or sound bits are documented in the IBM 3270
Connection Technical Reference.

IOCINFO Returns a structure of device information, as defined in the /usr/include/sys/devinfo.h file,
to the user-specified area. The devtype field has a value of DD_EM78, which is defined in
the devinfo.h file, and the flag field value has a value of 0.

EMSEEK Sets the offset into the communication adapter buffer to begin a read or write subroutine
call.

Error Conditions in CUT Mode

The following error conditions may be returned when accessing the device handler through the dev/
3270cn special file:

Item Description

EBUSY An open was requested for a channel that is already open. The keystroke buffer is full.

EFAULT A buffer specified by the caller is not valid.

EINTR A subroutine call was interrupted.

EINVAL An invalid argument was specified on an ioctl call.

EL3RST A reset command was received by the communications adapter.

ENOCONNECT The connection to the control unit stopped while a read operation, for which the
EMWAIT ioctl operation had been specified, was waiting.

876 AIX Version 7.1: Files Reference

Item Description

EIO An unrecoverable I/O error occurred on the requested data transfer.

ENXIO An operation was requested for a minor device number that is not valid.

This special file requires the IBM 3270 Connection Adapter.

Related information
close subroutine
read subroutine
write subroutine
ioctl subroutine

bus Special File

Purpose
Provides access to each of the hardware buses by way of the machine I/O device driver.

Description
The bus special files consist of a pseudo-driver in the kernel that allows a privileged user to access each
hardware I/O bus. This is done indirectly by using the ioctl subroutine. The calling process, however, must
have the appropriate system privilege to open the bus special files.

For additional information on bus special files, see device configuration documentation in Kernel
Extensions and Device Support Programming Concepts and machine device driver documentation in
Technical Reference: Kernel and Subsystems, Volume 1.

This capability should be used only by device initialization and configuration programs. Programs that
depend upon the bus device interface may not be portable to machines with different hardware.

There is at least one bus special file, usually the /dev/pci0 or the /dev/bus0 special file. This file
accesses the primary hardware bus. One bus special file exists for each hardware bus on the machine.
Each bus special file gains access to the corresponding hardware bus, and exists only if the hardware bus
is present or was present at one time. Run the following command to generate a list of all the defined bus
special files for a machine:

lsdev -C -c bus -F name | xargs -i echo
/dev/{}

Related information
ioctl subroutine
Device Configuration Subsystem Programming Introduction
Machine Device Driver

cd Special File

Purpose
Provides access to the CD-ROM device driver.

Description
The CD-ROM special file provides block and character (raw) access to disks in the CD-ROM drives.

The r prefix on a special file name means the drive is accessed as a raw device rather than a block device.
Performing raw I/O with a compact disk requires the performance of all data transfers in multiples of

Files Reference 877

the compact-disk logical block length. Also, all lseek subroutines made to the raw CD-ROM device driver
must set the file offset pointer to a value that is a multiple of the specified logical block size.

CD-ROM Device Drivers

Compact disks, used in CD-ROM device drivers, are read-only media that provide storage for large
amounts of data. The special files /dev/cd0, /dev/cd1,... provide block access to compact disks. The
special files /dev/rcd0, /dev/rc1,... provide character access.

When a CD-ROM disc is ejected from the drive for a mounted CD-ROM file system, the files on the
compact disc can no longer be accessed. Before these files can be accessed again, the file systems
mounted from the CD-ROM must be unmounted. Processes having files open on these file systems should
be exited. Processes having current directories on these file systems should be moved. If these actions do
not work, perform a forced unmount.

Another problem that results from ejecting the CD-ROM disc for a mounted CD-ROM file system is that
the man command can become unresponsive. Reinserting the CD-ROM disc will not fix the problem. All
processes (graphical and ASCII) should be exited and the file system should be forced unmounted and
mounted again. Afterwards, any man commands can be started again.

Device-Dependent Subroutines

Most CD-ROM operations are implemented using the open, read, and close subroutines. However, for
some purposes, use of the openx (extended) subroutine is required.

Item Description

openx Subroutine The openx subroutine is supported to provide additional functions to the
open sequence. The openx subroutine requires appropriate authority to
start. Attempting to execute this subroutine without the proper authority
results in a return value of -1, with the errno global variable set to EPERM.

ioctl Subroutine The IOCINFO ioctl operation is defined for all device drivers that use the
ioctl subroutine. The remaining ioctl operations are all physical volume
device-specific operations. Diagnostic mode is not required for the following
operation. The IOCINFO operation returns a devinfo structure, which is
defined in the devinfo.h file.

Error Codes

In addition to the error codes listed for the ioctl, open, read, and write subroutines, the following error
codes are also possible:

Item Description

EACCES A subroutine other than ioctl or close was attempted while in Diagnostic mode.

EACCES A normal read call was attempted while in Diagnostic mode.

EFAULT Illegal user address.

EBUSY The target device is reserved by another initiator.

EINVAL The device was opened with a mode other than read-only.

EINVAL An nbyte parameter to a read subroutine is not an even multiple of the block size.

EINVAL A sense-data buffer length greater than 255 is not valid for a CDIOCMD ioctl operation.

EINVAL A data buffer length greater than that allowed by the drive is not valid for a CDIOCMD
ioctl operation.

EINVAL An attempt was made to configure a device that is still open.

EINVAL An illegal configuration command has been given.

EMFILE An open call has been attempted for a SCSI adapter that already has the maximum
permissible number of open devices.

878 AIX Version 7.1: Files Reference

Item Description

ENOTREADY There is no compact disk in the drive.

ENODEV An attempt was made to access a device that is not defined.

ENODEV An attempt was made to close a device that has not been defined.

EMEDIA The media was changed.

EIO Hardware error or aborted command or illegal request.

EIO An attempt has been made to read beyond the end of media.

EPERM This subroutine requires appropriate authority.

ESTALE A CD-ROM disk was ejected (without first being closed by the user) and then either
re-inserted or replaced with a second disk.

ETIMEDOUT An I/O operation has exceeded the given timer value.

Related information
close subroutine
read subroutine
scdisk subroutine
SCSI Subsystem Overview

console Special File

Purpose
Provides access to the system console.

Description
The /dev/console special file provides access to the device or file designated as the system console. This
file can be designated as the console device by the person administering the system or a user with the
appropriate permissions. The console character special file provides access to the console device driver.
The console device driver in turn directs input and output to the device or file selected as the system
console.

The system console is typically a terminal or display located near the system unit. It has two functions in
the operating system. First, it provides access to the system when it is operating in a non-multiuser mode.
(This would be the case during maintenance and diagnostic sessions.) A console login is also normally
provided on this device for all operating system run levels.

Second, the system console displays messages for system errors and other problems requiring
intervention. These messages are generated by the operating system and its various subsystems when
starting or operating. The system console can also be redirected to a file or to the /dev/null special file for
systems operating without a console device.

Console Driver Configuration Support

Console driver configuration support allows the system console to be assigned or reassigned to a
specified device or file. Such support also provides query functions to determine the current and
configured path names for the device or file designated as the console. This configuration support is
used by the swcons, chcons, and lscons high-level system management commands. It is also used by the
console configuration method at system startup.

The swcons (switch console) command can be used during system operation to switch the system
console output to a different target temporarily. This command switches only system information, error,
and intervention-required messages to the specified destination. The swcons command does not affect
the operation of the system console device that provides a login through the getty command. The device

Files Reference 879

or file specified when using the swcons command remains the target for console output until one of the
following happens:

• Another swcons command is issued.
• The system is started again.
• The console driver detects an error when accessing the designated device or file.

If an open or write error is detected on the device or file specified by the swcons command, the console
device driver switches all output back to the device or file providing console support when the system
started.

The chcons (change console) command can be used to switch the system console output to a different
device or file for the next startup. This command does not affect the current console selection, but
becomes effective when the system is started again.

When requested to activate a login on the console device, the getty program (which provides login
support) uses the console configuration support to determine the path name of the targeted console
device used at startup. This action ensures that the swcons command does not effect the console device
being used for login.

Usage Considerations

The open, close,read, write, ioctl, select, and poll subroutines are supported by the console device
driver and may be used with the /dev/console special file. These subroutines are redirected to the device
or file serving as the current system console device by the console device driver.

open and close Subroutines

When an open subroutine call is issued to the console device driver, it is redirected to the device or file
currently chosen as the console device. If the system console choice is a file, the file is opened with the
append and create options when the first open of the dev/console file is received. Subsequent opens
have no effect when the console selection is a file. However, the opens are then passed to the device
driver supporting the device chosen as the console.

If the console selection has been temporarily switched using the swcons command and the first open of
the new underlying device fails, the console device driver switches back to the console device or file with
which the system was booted. This prevents important system messages from being lost.

An ext parameter passed using the openx subroutine is passed to the device driver supporting the
console target or else ignored. (The latter is true if the console selection is a file.)

The close subroutine support is standard.

select, poll, and ioctl Subroutines

The select, poll, and ioctl subroutines are redirected to the current system console device when the
console selection is not a file. If the selected console device is a file, the console device driver returns an
error indicating that the subroutine is not supported.

An ext parameter passed to the ioctlx subroutine is then passed to the device driver supporting the
console target, or else ignored. (The latter is true if the console selection is a file.)

read and write Subroutines

The write subroutine calls are redirected to the current console device or file. If the console selection
has been temporarily switched using the swcons command, and the write to the targeted device or file
is unsuccessful, the console device driver switches back to the console device or file from which the
system was started and tries the write again. This prevents important system messages from being lost in
case the temporary console target is unavailable or unsuccessful. The console device driver should stay
connected to the original system device until another swcons command is issued.

If the current console selection is a device, it redirects the read subroutine call. If the current console
selection is a file, the read call is rejected with an error (EACCES).

An ext parameter passed to the readx or writex subroutine is passed to the device driver supporting the
console target, or else ignored. (The latter is true if the console selection is a file.)

880 AIX Version 7.1: Files Reference

Note: The EIO errors resulting from the console write function are restricted. Because when a tty
attached to a modem gets disconnected, the streams file is marked. The console redirects any writes
to the console to where the console points to. Then, any writes to the file descriptor are returned with EIO
errors. These EIO errors continue until some process reopens the console. Therefore, the EIO errors are
restricted in certain situation when the connection to the console is lost.

Console Output Logging
All output sent to the console is logged to a system log file. Only output sent to the console is logged.
Any output sent to a device acting as the console is not logged. This means that system informational,
error, and intervention-required messages are captured (logged), while other types of output seen at the
console are not; e.g., getty output, smitty output, user interaction at the console device, etc.

The log file is based on the alog format; this format allows the file to wrap after it attains a predetermined
maximum size. The alog command is typically used to view the console log file. The console log file
deviates from the normal alog format in that each record of the file contains, in addition to the logged text,
the user id who wrote to the console and the epoch time when it was written. The epoch time is formatted
and displayed in the user's locale date and time when the file is output by the alog command.

When the console device is configured or when any modification is made to the console log file, ownership
of the file is set to root and permissions are set to 620. The root user can modify the ownership or
permissions, but they will not persist across boots.

The swcons command is used to make changes to console logging parameters during system operation;
these changes are rescinded at the next console device configuration (typically reboot), and the original
console logging parameters are reinstated.

The chcons command is used to make changes to the console logging parameters for the next console
device configuration (typically reboot). These changes do not apply to the current running system.

The console logging facility can also be configured using the alog command. When the alog -C flag is
used, changes are effective in the current running system and are persistent across boots. When the -s
flag is used (without) the -C) to change the file size, the file is changed immediately but this change is not
saved in the ODM and is not persistent across boots.

The parameters that control the console logging facility are the pathname of the log file, the maximum
size of the log file, and the verbosity index for logging. Restrictions on these parameters are:

• the log file path must be absolute
• the maximum file size must not exceed the current free space of the file system on which it is stored

(and the user entered value is rounded up to the nearest 4K boundary)
• verbosity values are 0-9 with any value greater than 0 indicating that all console output is to be

recorded.

Console Output Tagging
A facility is provided to prefix each console output message with the effective user ID of the user that
sent the message to the console. Only output sent to the console is tagged, any output sent to the device
acting as the console is not.

Both the swcons command and the chcons commands can be used to enable and disable console
output tagging with the same caveats about the persistence of the values applying as mentioned above in
Console Output Logging.

The console output tagging verbosity value is limited to the range 0-9. Any value greater than 0 causes all
console output to be tagged.

Console Special File Limitation
The Error Input/Output (EIO) errors are restricted in some cases when the connection to the console is
lost. The EIO errors that result from the console write function are restricted because the streams file

Files Reference 881

is marked when a tty device that is connected to a modem is disconnected. All write operations to the
console are redirected to where the console points and writes operation to the file descriptor are returned
with EIO errors. These EIO errors continue until a process reopens the console.

Files

Item Description

/dev/null Provides access to the null device.

Related reference
consdef File
Related information
chcons command
getty command
lscons command
close subroutine

dials Special File

Purpose
Provides access to the dials.

Description
The dials special file is the application interface to the dials. It allows the applications to receive operator
input from the dials and to set the granularity of the dials.

Configuration

Standard configuration methods are provided for the dials special file. The user cannot enter configurable
attributes by way of the command line.

Usage Considerations

open

An open subroutine call specifying the dials special file is processed normally except that the Oflag and
Mode parameters are ignored. An open request is rejected if the special file is already opened or if a
kernel extension attempts to open the dials special file. All dials inputs are flushed following an open call
until an input ring is established.

read and write

The dials special file does not support read or write subroutine calls. Input data is obtained from the dials
via the input ring. The read and write subroutine calls behave the same as read or write to /dev/null. See
"LFT Input Ring" in Kernel Extensions and Device Support Programming Concepts for how to use the input
ring.

ioctl

The dials special file supports the following ioctl operations:

Item Description

IOCINFO Returns the devinfo structure.

DIALREGRING Registers input ring.

DIALRFLUSH Flushes input ring.

DIALSETGRAND Sets dial granularity.

882 AIX Version 7.1: Files Reference

Error Codes
The error codes can be found in the /usr/include/sys/errno.h file.

Item Description

EFAULT Indicates insufficient authority to access address or invalid address.

EIO Indicates I/O error.

ENOME
M

Indicates insufficient memory for required paging operation.

ENOSPC Indicates insufficient file system or paging space.

EINVAL Indicates invalid argument specified.

EINTR Indicates request interrupted by signal.

EPERM Indicates a permanent error occurred.

EBUSY Indicates device busy.

ENXIO Indicates unsupported device number.

ENODEV Indicates unsupported device or device type mismatch.

Files

Item Description

/usr/include/sys/inputdd.h Contains declarations for ioctl commands and input ring
report format.

Related reference
GIO Special File
kbd Special File
lpfk Special File
tablet Special File
Related information
close subroutine
read subroutine

dump Special File

Purpose
Supports system dump.

Syntax
#include <sys/dump.h>

Description
The /dev/sysdump and /dev/sysdumpctl special files support system dumping. Minor device 0 of the
sysdump driver provides the interfaces for the system dump routine to write data to the dump device. The
sysdump driver also provides interfaces for querying or assigning the dump devices and initiating a dump.

Related information
dmp_ctl subroutine
RAS Kernel Services

Files Reference 883

System Dump Facility

entn Special File

Purpose
Provides access to Ethernet high-performance LAN adapters by way of the Ethernet device handler.

Description
The /dev/entn character special file provides access to the Ethernet device handler for the purpose of
providing access to an Ethernet LAN. The device handler supports up to four adapters, each of which may
be running either or both of the standard Ethernet and IEEE 802.3 protocols.

Usage Considerations

When accessing the Ethernet device handler, the following should be taken into account:

Driver Initialization and Termination

The device handler can be loaded and unloaded. The handler supports the configuration calls to initialize
and terminate itself.

Special File Support

Calls other than the open and close subroutines are discussed based on the mode in which the device
handler is operating.

Subroutine Support

The Ethernet device handler supports the open and close, read, and write subroutines in the following
manner:

open and close Subroutines

The device handler supports the /dev/entn special file as a character-multiplex special file. The
special file must be opened for both reading and writing (O_RDWR). However, there are no particular
considerations for closing the special file. The special file name used in an open call depends upon how
the device is to be opened. Types of special file names are:

Item Description

/dev/entn An open call to this device is used to start the device handler for the selected port,
where the value of n is 0 <= n <= 7.

/dev/entn/D An open call to this device is used to start the device handler for the selected port in
diagnostic mode, where the value of n is 0 <= n <= 7.

read Subroutine

Can take the form of a read, readx, readv, or readvx subroutine. For this call, the device handler copies
the data into the buffer specified by the caller.

write Subroutine

Can take the form of a write, writex, writev, or writevx subroutine. For this call, the device handler
copies the user data into a buffer and transmits the data on the LAN.

Error Codes
The following error codes may be returned when accessing the device handler through the dev/entn
special file:

884 AIX Version 7.1: Files Reference

Item Description

EACCES Permission to access the port is denied for one of the following reasons:

• The device has not been initialized.
• The request to open the device in Diagnostic mode is denied.
• The call is from a kernel mode process.

EAFNOSUPPORT The address family is not supported by the protocol, or the multicast bit in the
address is not set.

EAGAIN The transmit queue is full.

EBUSY The request is denied because the device is already opened in Diagnostic mode,
or the maximum number of opens was reached.

EEXIST The define device structure (DDS) already exists.

EFAULT An address or parameter was specified that is not valid.

EINTR A subroutine call was interrupted.

EINVAL A range or operation code that is not valid was specified, or the device is not in
Diagnostic mode.

EIO An I/O error occurred.

ENOBUFS No buffers are available.

ENOCONNECT A connection was not established.

ENODEV The device does not exist.

ENOENT There is no DDS to delete.

ENOMEM The device does not have enough memory.

ENOMSG No message of desired type was available.

ENOSPC No space is left on the device (the multicast table is full).

ENOTREADY The device is not ready, a CIO_START operation was not issued, or the operation
was issued but did not complete.

ENXIO The device does not exist, or the maximum number of adapters was exceeded.

EUNATCH The protocol driver is not attached.

Related information
close subroutine
ioctl subroutine
open subroutine
read subroutine

Error Logging Special Files

Purpose
Support error logging.

Description
The error and errorctl special files support the logging of error events. Minor device 0 (zero) of the error
special file is the interface between processes that log error events and the errdemon (error daemon).

Files Reference 885

Error records are written to the error special file by the errlog library routine and the errsave and errlast
kernel services. The error special file timestamps each error record entry.

The error daemon opens error file for reading. Each read retrieves an entire error record. The format of
error records is described in the erec.h header file.

Each time an error is logged, the error ID, the resource name, and the time stamp are recorded in
nonvolatile random access memory (NVRAM). Therefore, in the event of a system crash, the last logged
error is not lost. When the error file is restarted, the last error entry is retrieved from NVRAM.

The standard device driver interfaces (open, close, read, and write) are provided for the error file. The
error file has no ioctl functions.

The ioctl function interface for the error special file is provided by the errorctl special file. This interface
supports stopping the error logging system, synchronizing the error logging system, and querying the
status of the error special file.

Related information
errclear command
errlog subroutine
errsave and errlast subroutine
RAS Kernel Services
Error Logging Overview

fd Special File

Purpose
Provides access to the diskette device driver.

Description
The fd special file provides block and character (raw) access to diskettes in the diskette drives. The
special file name usually specifies both the drive number and the format of the diskette. The exceptions
are /dev/fd0 and /dev/fd1, which specify diskette drives 0 and 1, respectively, without specifying their
formats.

The generic special files /dev/fd0 and /dev/fd1 determine the diskette type automatically for both drive
0 and drive 1. First, the device-driver attempts to read the diskette using the characteristics of the default
diskette for the drive type. If this fails, the device-driver changes its characteristics and attempts to read
until it has read the diskette successfully or until it has tried all the possibilities supported for the drive
type by the device driver.

An r prefix on a special file name means that the drive is accessed as a raw device rather than a block
device. Performing raw I/O with a diskette requires that all data transfers be in multiples of the diskette
sector length. Also, all lseek subroutine calls made to the raw diskette device driver must result in a file
offset value that is a multiple of the sector size. For the diskette types supported, the sector length is
always 512 bytes.

Note: The diskette device driver does not perform read verification of data that is written to a diskette.

Types of Diskettes Supported

The fd special file supports three diskette drives: the 1.2MB, 5.25-inch diskette drive, and the 1.44MB
and 2.88MB, 3.5-inch diskette drives. All fd special file names (except the generic special files /dev/
fd0, /dev/fd1, /dev/rfd0, and /dev/rfd1) contain suffixes that dictate how a diskette is to be treated.
These special file names have a format of PrefixXY, where the Prefix, X, and Y variables have the following
meanings:

886 AIX Version 7.1: Files Reference

Item Description

Prefix Special file type. Possible values are fd and rfd, where the r indicates raw access to the
special file.

X Drive number indicator. Possible values of 0 and 1 indicate drives 0 and 1, respectively.

Y Diskette format indicator. Possible values depend on the type of diskette being used. Either a
single character or a decimal point followed by numeric characters is allowed. Possible values
are:
h

Highest density supported by the drive type
l

Lowest density supported by the drive type
.9

9 sectors per track (all three drive types)
.15

15 sectors per track (1.2MB, 5.25-inch drive only)
.18

18 sectors per track (both 3.5-inch drive types)
.36

36 sectors per track (2.88MB, 3.5-inch drive only)

1.44MB, 3.5-inch Diskette Special Files

Ten different special files are available for use with the 1.44MB, 3.5-inch diskette drive. The default
diskette type assumed for this drive type is a double-sided, 80-cylinder, 18 sectors-per-track diskette.

An h or .18 as the suffix of the special file name (for example, /dev/rfd0h or /dev/fd0.18) forces a
diskette to be treated as a double-sided, 80-cylinder, 18 sectors-per-track diskette. An l or .9 as the suffix
of the special file name (for example, /dev/fd1l or /dev/rfd0.9) forces a diskette to be treated as a
double-sided, 80-cylinder, 9 sectors-per-track diskette.

2.88MB, 3.5-inch Diskette Special Files

Twelve different special files are available for use with the 2.88MB, 3.5-inch diskette drive. The default
diskette type assumed for this drive type is a double-sided, 80-cylinder, 36 sectors-per-track diskette.

An h or .36 as the suffix of the special file name (for example, /dev/fd1h or /dev/fd0.36) forces a
diskette to be treated as a double-sided, 80-cylinder, 36 sectors-per-track diskette. An l or .9 as the suffix
of the special file name (for example, /dev/rfd0l or /dev/fd1.9) forces a diskette to be treated as
a double-sided, 80-cylinder, 9 sectors-per-track diskette. A suffix of .18 (for example, /dev/fd1.18)
forces a diskette to be treated as a double-sided, 80-cylinder, 18-sectors-per-track diskette.

1.2MB, 5.25-inch Diskette Special Files

Ten different special files are available for use with the 1.2MB, 5.25-inch diskette drive. The default
diskette type assumed for this drive type is a double-sided, 80-cylinder, 15 sectors-per-track diskette.

An h or .15 as the suffix of the special file name (for example, /dev/rfd1h or /dev/fd0.15) forces a
diskette to be treated as a double-sided, 80-cylinder, 15 sectors-per-track diskette. An l or .9 as the suffix
of the special file name (for example, /dev/fd0l or /dev/rfd1.9) forces a diskette to be treated as a
double-sided, 80-cylinder, 9 sectors-per-track diskette.

Note: Regardless of the diskette drive type, an h as the suffix of the special file name forces a diskette to
be treated as the highest capacity diskette supported by the drive type. When an l is used as the suffix of
the special file name, the diskette is treated as the lowest capacity diskette supported by the drive type.

Usage Considerations

When using subroutines with the fd special file, consider the following items:

Files Reference 887

Item Description

open and close subroutines Only one process at a time can issue an open subroutine
to gain access to a particular drive. However, all child
processes created by a parent process that successfully
opens a diskette drive inherit the open diskette drive.

read and write subroutines No special considerations.

ioctl subroutines The possible ioctl operations and their descriptions are:
IOCINFO

Returns a devinfo structure (defined in the /usr/
include/sys/devinfo.h file) that describes the device.

FDIOCSINFO
Sets the characteristics of the device driver diskette to
the values passed in the fdinfo structure, as defined in
the /usr/include/sys/fd.h file.

FDIOCGINFO
Gets the device-driver diskette characteristics and
returns the values in the fdinfo structure, as defined
in the /usr/include/sys/fd.h file.

FDIOCFORMAT
Formats a diskette track. The diskette is formatted
using data passed in an array of bytes. The length of
this array is four times the number of sectors per track
on the diskette. The reason for this is that 4 bytes
of data must be passed in for every sector on the
track. The 4 bytes contain, in this order, the cylinder
number, the side number (0 or 1), the sector number,
and the number of bytes per sector. This pattern must
be repeated for every sector on the track.

The diskette characteristics used during formatting are
whatever values are in the device driver when it receives
the format command. These characteristics need to be
set to the desired values prior to issuing the format
command. There are three ways to do this:

• Open the diskette driver using one of the format-specific
special files. As a result, the diskette characteristics for
the driver will be those of the diskette indicated by the
special file.

• Open the diskette driver using one of the generic special
files. In this case, the diskette characteristics will be the
default characteristics for that driver.

• Set the characteristics explicitly using the FDIOCSINFO
ioctl operation.

For formatting, the diskette driver should be opened only
when the O_NDELAY flag is set. Otherwise, the driver will
attempt to determine the type of diskette in the drive,
causing the open to fail.

Related information
close subroutine
read subroutine
lseek subroutine

888 AIX Version 7.1: Files Reference

fddin Special File

Purpose
Provides access to the FDDI device driver by way of the FDDI device handler.

Description
The fddin special file provides access to the FDDI device handler that provides access to a FDDI local
area network.

When accessing the FDDI device driver, the following information should be taken into account.

Driver Initialization and Termination

The device driver can be loaded and unloaded. The device driver supports the configuration calls to
initialize and terminate itself.

Special File Support

Subroutine calls other than those made with the open and close subroutines are discussed based on the
mode in which the device driver is operating.

Subroutine Support

The FDDI device driver provides specific support for the open, close, read, write, ioctl, select, and poll
subroutines.

The device driver supports the /dev/fddin special file as a character-multiplex special file. The special
file must be opened for both reading and writing. There are no particular considerations for closing the
special file. The special file name used in an open call differs depending upon how the device is to be
opened. Types of special file names are:

Item Description

/dev/fddin Starts the device driver for the selected port.

/dev/fddin/D Starts the device driver for the selected port in Diagnostic mode.

/dev/fddin/C Starts the device driver for the selected port in Diagnostic Configuration mode.

Error Codes
The following error conditions may be encountered when accessing the FDDI device driver through
the /dev/fddin special file. The error codes can be found in the /usr/include/sys/errno.h file.

Item Description

ENODEV Indicates that an invalid minor number was specified.

EINVAL Indicates that an invalid parameter was specified.

ENOMEM Indicates that the device driver was unable to allocate the required memory.

EINTR Indicates that a system call was interrupted.

EPERM Indicates that the Diagnostic mode open request was denied because the device was
already open.

EACCES Indicates one of the following:

• A non-privileged user tried to open the device in Diagnostic mode.
• An illegal call from a kernel-mode user.
• An illegal call from a user-mode user.

Files Reference 889

Item Description

ENETDOWN Indicates one of the following:

• The network is down. The device is unable to process the requested operation.
• An unrecoverable hardware error.

ENETUNREACH Indicates that the device is in Network Recovery mode and is unable to process the
requested operation.

ENOCONNECT Indicates that the device has not been started.

EAGAIN Indicates that the transmit queue is full.

EFAULT Indicates that an invalid address was supplied.

EIO Indicates an error. See the status field for detailed information.

EMSGSIZE Indicates that the data was too large to fit into the receive buffer and that no ext
parameter was supplied to provide an alternate means of reporting this error with a
status of CIO_BUF_OVFLW.

Related information
close subroutine
poll subroutine
select subroutine

GIO Special File

Purpose
Provides access to the graphics I/O (GIO) adapter.

Description
The GIO special file is the application interface to the GIO adapter. The GIO special file provides
applications with the ability to determine what I/O devices are attached to the GIO adapter.

Configuration
Standard configuration methods are provided for the GIO special file. User configurable attributes for the
GIO special file do not exist.

Usage Considerations
The open subroutine call specifying the GIO special file is processed normally except that the Oflag and
Mode parameters are ignored. An open request is rejected if the special file is already opened or if a
kernel extension attempts to open the GIO special file.

Calls to the read and write routines behave as if the call was made to the /dev/null file.

The GIO special file supports the following functions with ioctls:

Item Description

IOCINFO Returns the devinfo structure.

GIOQUERYID Returns the identifier of device connected to the GIO adapter.

Error Codes
The following error codes can be found in the /usr/include/sys/errno.h file:

890 AIX Version 7.1: Files Reference

Item Description

EFAULT Indicates insufficient authority to access address or invalid address.

EIO Indicates an I/O error.

ENOME
M

Indicates insufficient memory for required paging operation.

ENOSPC Indicates insufficient file system or paging space.

EINVAL Indicates that an invalid argument was specified.

EINTR Indicates a request interrupted by signal.

EPERM Indicates a permanent error occurred.

EBUSY Indicates the device is busy.

ENXIO Indicates an unsupported device number.

ENODEV Indicates an unsupported device or device type mismatch occurred.

Files

Item Description

/usr/include/sys/inputdd.h Contains the ioctl commands.

Related reference
dials Special File
lpfk Special File
tablet Special File
Related information
close subroutine
write subroutine

ide Special File

Purpose
Provides access to the Integrated Device Electronics (IDE) adapter driver.

Description
The ide special file provides an interface to an attached IDE Bus. This special file should not be opened
directly by application programs. The /dev/ide0, /dev/ide1, ... /dev/iden files are the ide special files.

kbd Special File

Purpose
Provides access to the natively attached keyboard.

Description
The kbd special file is the interface to the native keyboard. It provides an interface through which
applications can receive operator input from the keyboard, control the keyboard LED's, and changing
various keyboard parameters. The special file also allows an application to send an audible signal to the
operator via the speaker located within the keyboard.

Files Reference 891

Configuration
The sound volume, click volume, typematic rate and typematic delay are configurable by the application
through the ioctl subroutine. These changes are not reflected in the ODM database. To change these
attributes in the ODM database, use the chhwkbd command.

Usage Considerations
open

This subroutine call creates a channel between the application and the natively attached keyboard. Two
channels are supported. The open subroutine call is processed normally except that the MODE and Oflag
parameters are ignored. All keyboard input is flushed until an input ring is established. Only the input ring
associated with the most recent open receives input reports.

close

When the kbd device has been opened twice, input is reported through the input ring registered previous
to the first open, after the close subroutine call.

read and write

The keyboard device driver does not return nor accept data via read and write. These calls behave as if
the call was made to /dev/null. Input data is received from the input drivers via the input ring.

ioctl

The keyboard device driver supports the following ioctl commands:

Item Description

IOCINFO Return devinfo structure.

KSALARM Sound alarm.

KSCFGCLICK Control keyboard click.

KSDIAGMODE Enable/disable diagnostics mode (user mode only).

KSLED Set/reset keyboard LED's.

KSKAP Enable/disable keep alive poll (user mode only).

KSKAPACK Acknowledge keep alive poll (user mode only).

KSQUERYID Query keyboard device identifier.

KSQUERYSV Query keyboard service vector (kernel mode only).

KSREGRING Register input ring.

KSRFLUSH Flush input ring.

KSTDELAY Set typamatic delay.

KSTRATE Set typamatic rate.

KSVOLUME Set alarm volume

Error Codes
The error codes can be found in the /usr/include/sys/errno.h file.

Item Description

EFAULT indicates insufficient authority to access address or invalid address.

EIO indicates that an I/O error occurred.

892 AIX Version 7.1: Files Reference

Item Description

ENOME
M

indicates there was insufficient memory for required paging operation.

ENOSPC indicates there was insufficient file system or paging space.

EINVAL indicates that an invalid argument was specified.

EINTR indicates the request was interrupted by signal.

EPERM indicates that a permanent error occurred.

EBUSY indicates the device is busy.

ENXIO indicates unsupported device number was specified.

ENODEV indicates an unsupported device or device type mismatch.

Files

Item Description

/usr/include/sys/inputdd.h Contains declarations for ioctl commands and input ring
report format.

Related reference
dials Special File
lft Special File
lpfk Special File
Related information
close subroutine
read subroutine
write subroutine

lft Special File

Purpose
Provides character-based terminal support for the local graphics display and keyboard.

Description
The lft file is the application interface to the "Low Function Terminal (LFT) Subsystem". It provides
support for a VT100-like terminal which is associated with the local graphics display and keyboard.
It provides only character operations and is designed to be used during system installation, startup,
shutdown, and stand-alone diagnostics.

The terminal supports a single logical screen size of 80 characters and 25 lines and a single color.
Dynamic Logical Partitioning is not supported, configuration changes take effect at the next system
startup. In the cases when multiple fonts may be used to achieve the 80x25 screen size, the user may
set which font is used with the next system restart. See "LFT User Commands" for details of the available
commands.

When multiple displays are available, the LFT Subsystem initially uses the default display. The user may
change to another display and set the default display. See "LFT User Commands" for details of the
available commands.

Files Reference 893

Usage Considerations
The LFT device driver supports the lft special file. The device driver is a streams based driver. It handles
only the system attached keyboard and graphics displays.

Sharing Displays with Graphic Subsystem

Certain LFT ioctl commands allow graphics subsystems to obtain exclusive use of the displays, a right
initially held by the LFT. However, this is done by the Rendering Context Manager (RCM) on behalf of
the graphics subsystem. See "Rendering Context Manager" for details of the procedure for becoming a
graphics process.

Subroutine Support

The lft special file supports the open, close, read, write, and ioctl subroutines.

ioctl system call

The functions performed by the ioctl commands fall into three categories:

• Sharing devices between the lft and a graphic subsystem
• Query information about configured displays and keyboard devices
• Compatibility with the common tty ioctl commands

Sharing devices

Item Description

IOCINFO The IOCINFO ioctl operation is defined for all device drivers that use
the ioctl subroutine. The IOCINFO operation returns a devinfo structure,
which is defined in the devinfo.h file.

LFT_SET_DEFLT_DISP Sets the default display.

LFT_ACQ_DISP Acquire display for exclusive use.

LFT_REL_DISP Release display.

LFT_DIAG_OWNER Acquire display for diagnostics.

Query information about configured displays and keyboard devices

Item Description

LFT_QUERY_LFT Query common LFT information.

LFT_QUERY_DISP Query display information.

Compatibility with the common tty ioctl commands

TCSAK

TCGETA

TCSETAW

TCSETAF

TCSETA

TIOCGWINSZ

TIOCSWINSZ

TXTTYNAME

TSCBRK

Related reference
rcm Special File

894 AIX Version 7.1: Files Reference

kbd Special File
Related information
Low Function Terminal (LFT) Subsystem Overview

lp Special File

Purpose
Provides access to the line printer device driver.

Description
The lp driver provides an interface to the port used by a printer.

Printer Modes

The lp driver interprets carriage returns, backspaces, line feeds, tabs, and form feeds in accordance with
the modes that are set in the driver (through the splp command or configuration). The number of lines
per page, columns per line, and the indentation at the beginning of each line can also be selected. The
default for these modes can be found using the lsattr command. The following modes can be set with the
LPRMODS ioctl operation:

Item Description

PLOT Determines if the data stream is interpreted by the device driver when formatting the text.
If the PLOT mode is off, the text is formatted using the current values set with the LPRSET
ioctl operation.

If the PLOT mode is set, no interpretation of the data stream is performed and the
bytes are sent to the printer without modification. Setting the PLOT mode causes other
formatting modes, such as NOFF and NOFL, to be ignored. The default printer backend,
piobe, sends all output in PLOT mode.

When in PLOT mode, the application must send a final form-feed character. If the last
write operation was performed while not in PLOT mode, the final form-feed character will
be sent by the device driver.

NOFF If this mode is on, each form-feed character is replaced with a line-feed character, based
on the current line value set with the LPRSET ioctl operation. This mode is ignored if the
PLOT mode is active.

NONL If this mode is on, each line-feed character is replaced with a carriage return. This mode is
ignored if the PLOT mode is active.

NOCL If this mode is off, a carriage return is inserted after each line-feed character. If the mode
is on, no carriage return is inserted after the line-feed character. This mode is ignored if
the PLOT mode is active.

NOTAB If this mode off, 8 position tabs are simulated using spaces. If the NOTAB mode is on, the
tab character is replaced with a space. This mode is ignored if the PLOT mode is active.

NOBS If this mode off, backspaces are sent to the printers. If the NOBS mode is on, the
backspace is simulated by sending a carriage return followed by spaces to the proper
print position. This mode is ignored if the PLOT mode is active.

NOCR If this mode on, each carriage return is replaced with a line-feed character. This mode is
ignored if the PLOT mode is active.

CAPS If this mode on, lowercase characters are converted to uppercase. This mode is ignored if
the PLOT mode is active.

Files Reference 895

Item Description

WRAP If this mode off, the line is truncated at the right margin and any characters received past
the right margin are discarded. If the WRAP mode is on, the characters received after the
right margin are printed on the next line preceded by ... (ellipsis). This mode is ignored if
the PLOT mode is active.

FONTINIT The FONTINIT mode is initially off. It is turned on by an application when a printer font has
been initialized. It can be turned off in the following two cases:

• An application needs fonts to be reinitialized.
• A fatal printer error occurs. In this case, the lp device driver turns the FONTINIT mode

off.

RPTERR If the RPTERR mode is off and an error occurs, the device driver does not return until the
error has been cleared or a cancel signal is received. If the RPTERR mode is on, the device
driver waits the amount of time specified by a previous LPRSTOV ioctl operation and then
returns with an error.

IGNOREPE If IGNOREPE mode is on, the device driver allows writes to the device regardless of the
state of the PE (paper-end) line on the parallel interface. An application can make use of
this mode, for example, to change the paper tray of a printer under software control when
detecting that the printer is out of paper.

Error Handling When the RPTERR Mode Is Off

If the RPTERR mode is off, no error reporting is performed. The device driver waits for the error to be
cleared or a cancel signal to be received before returning to the application. RPTERR is the default mode
and is intended for existing applications that do not perform error recovery.

If a signal is received by the device driver, the current operation is returned incomplete with an EINTR
error code.

If printing is canceled and the printer is in PLOT mode, it is the application must send the final form-feed
character to eject the partial page. If the printer is not in PLOT mode, the final form-feed character after
cancelation will be sent by the device driver.

Error Handling When the RPTERR Mode Is On

If the RPTERR mode is on, the device driver will wait for the time specified in the v_timeout configuration
parameter and then return the uncompleted operation with an error code. This return allows the
application to get the printer status and possibly display an error message.

Note: When a device driver returns an incomplete operation with an error code (as previously described),
the application must resend any data not printed.

Usage Considerations

Device-Dependent Subroutines

Most printer operations are implemented using the open, read, write, and close subroutines. However,
these subroutines provide little or no information to the calling program about the configuration and state
of the printer. The ioctl subroutine provides a more device-specific interface to the printer device driver.

Most of these subroutines pass data contained in structures. In all cases, a structure of the type indicated
should be allocated in the calling routine. A pointer to this structure should then be passed to the device
driver.

open and close Subroutines

If an adapter for a printer is not installed, an attempt to open fails. If the printer adapter is busy, the open
subroutine returns an error. However, all child processes created by a parent process that successfully
opens the lp special file inherit the open printer.

896 AIX Version 7.1: Files Reference

The driver allows multiple open subroutines to occur if they all have a mode parameter value of read-only.
Thus, the splp command can perform inquiries when the printer adapter is currently in use. The lp driver
allows only one process to write to a printer adapter at a time.

The close subroutine waits until all output completes before returning to the user.

read and write Subroutines

The read subroutine is not implemented for the native I/O parallel port.

When printing to a parallel printer that is offline, the write subroutine may return one fewer than the
actual number of bytes that are buffered and ready to be written when the printer is put back online.
This is used as a mechanism to indicate to the calling application that there is a problem with the printer
requiring user intervention, possibly allowing the user to put the printer online and continue with printing.
In this situation, no error is returned by the write subroutine.

ioctl Subroutine

The possible ioctl operations and their descriptions are:

Item Description

IOCINFO Returns a structure defined in the /usr/include/sys/devinfo.h file, which describes the
device.

LPQUERY Provides access to the printer status. Refer to the /usr/include/sys/lpio.h file for value
definitions. The types of errors are the following:

• The printer is out of paper.
• No select bit: the printer may be turned off or not installed.
• The printer is busy.
• The printer is unknown.

LPRGET Returns the page length, width and indentation values. These values are used by the device
driver when PLOT mode is not set. The default printer backend, piobe, sends all print jobs
with PLOT mode set. The LPRGET operation uses the lprio structure, as defined in the /usr/
include/sys/lpio.h file.

LPRGETA Gets the RS232 parameters. These are the values for baud rate, character rate, character
size, stop bits and parity. Refer to the LPR232 structure and to the termio structure, as
defined in the termios.h file.

Note: This operation is supported for compatibility reasons. The use of the tcgetattr
subroutine is recommended.

LPRGTOV Gets the current time-out value and stores it in the lptimer structure defined in the /usr/
include/sys/lpio.h file. The time-out value is measured in seconds.

LPRMODG Gets the printer modes. These printer modes support the various formatting options and
error reporting. This ioctl operation uses the LPRMOD structure, as defined in the /usr/
include/sys/lpio.h file.

LPRMODS Sets the printer modes. These printer modes support the various formatting options and
error reporting. This ioctl operation uses the LPRMOD structure, as defined in the /usr/
include/sys/lpio.h file.

LPRSET Sets the page length, width and indent values. These values are used by the device driver
when PLOT mode is not set. The default printer backend, piobe, sends all print jobs with
PLOT mode set. The LPRSET operation uses the lprio structure, as defined in the /usr/
include/sys/lpio.h file.

Files Reference 897

Item Description

LPRSETA Sets the RS232 parameters. These are the values for baud rate, character rate, character
size, stop bits and parity. Refer to the LPR232 structure and to the termio structure, as
defined in the termios.h header file.

Note: This operation is supported for compatibility reasons. The use of the tcsetattr
subroutine is recommended.

LPRSTOV Sets the time-out value. The arg parameter to this ioctl operation points to a lptimer
structure defined in the /usr/include/sys/lpio.h file. The time-out value must be given in
seconds.

Related information
lsattr command
piobe command
splp command
close subroutine
read subroutine

lpfk Special File

Purpose
Provides access to the lighted program function key (LPFK) array.

Description
The lpfk special file is the application interface to the lighted program function keys. It allows the
application to receive operator input from the LPFKs and to illuminate and darken each key in the array.

Configuration

Standard configuration methods are provided for the lpfk special file. The user cannot enter configurable
attributes by way of the command line.

Usage Considerations

open

An open subroutine call specifying the lpfk special file is processed normally except that the Oflag and
Mode parameters are ignored. An open request is rejected if the special file is already opened or if a
kernel extension attempts to open the lpfk special file. All LPFK inputs are flushed following an open call
until an input ring is established.

read and write

The lpfk special file does not support read or write subroutine calls. Instead, input data is obtained from
the LPFKs through the input ring. The read and write subroutine calls behave the same as read and write
functions of the /dev/null file. See "LFT Input Ring" in Kernel Extensions and Device Support Programming
Concepts for how to use the input ring.

ioctl

The lpfk special file supports the following ioctl operations:

Item Description

IOCINFO Returns the devinfo structure.

LPFKREGRING Registers input ring.

LPFKRFLUSH Flushes input ring.

898 AIX Version 7.1: Files Reference

Item Description

LPFKLIGHT Sets key lights.

Error Codes
The error codes can be found in the /usr/include/sys/errno.h file.

Item Description

EFAULT Indicates insufficient authority to access address, or invalid address.

EIO Indicates I/O error.

ENOME
M

Indicates insufficient memory for required paging operation.

ENOSPC Indicates insufficient file system or paging space.

EINVAL Indicates invalid argument specified.

EINTR Indicates request interrupted by signal.

EPERM Indicates a permanent error occurred.

EBUSY Indicates device busy.

ENXIO Indicates unsupported device number.

ENODEV Indicates unsupported device, or device type mismatch.

Files

Item Description

/usr/include/sys/inputdd.h Contains declarations for ioctl commands and input ring
report format

Related reference
GIO Special File
dials Special File
kbd Special File
mouse Special File
tablet Special File
Related information
close subroutine
ioctl subroutine
read subroutine
write subroutine

lvdd Special File

Purpose
Provides access to the logical volume device driver.

Description
The logical volume device driver provides character (raw) access to logical volumes. The Logical Volume
Manager associates a major number with each volume group (VG) and a minor number with each logical
volume in a volume group.

Files Reference 899

Logical volume special file names can be assigned by the administrator of the system. However, /dev/
lv1, /dev/lv2 and /dev/rlv1, /dev/rlv2 are the names conventionally chosen.

When performing character I/O, each request must start on a logical block boundary of the logical volume.
The logical block size of the logical volume is the block size of the physical volume within the volume
group. This means that for character I/O to a logical volume device, the offset supplied to the lseek
subroutine must specify a multiple of logical block size. In addition, the number of bytes to be read or
written, supplied to the read or write subroutine, must be a multiple of the logical block size.

Usage Considerations

Note: Data corruption, loss of data, or loss of system integrity (system crashes) will occur if devices
supporting paging, logical volumes, or mounted file systems are accessed using block special files.
Block special files are provided for logical volumes and disk devices on the operating system and are
solely for system use in managing file systems, paging devices and logical volumes. They should not be
used for other purposes. Additional information concerning the use of special files may be obtained in
"Understanding I/O Access through Special Files" in Kernel Extensions and Device Support Programming
Concepts.

open and close Subroutines

No special considerations.

Extension Word Specification for the readx and writex Subroutines

The ext parameter for the readx and writex extended I/O subroutines indicates specific physical or
logical operations, or both. The upper 4 bits of the ext parameter are reserved for internal LVDD use.
The value of the ext parameter is defined by logically ORing values from the following list, as defined in
the /usr/include/sys/lvdd.h file:

Item Description

WRITEV Perform physical write verification on this request. This
operation can be used only with the writex subroutine.

RORELOC For this request, perform relocation on existing
relocated defects only. Newly detected defects should
not be relocated.

MWC_RCV_OP Mirror-write-consistency recovery operation. This
option is used by the recovery software to make
consistent all mirrors with writes outstanding at the
time of the crash.

NOMWC Inhibit mirror-write-consistency recovery for this
request only. This operation can only be used with the
writex subroutine.

AVOID_C1, AVOID_C2, AVOID_C3 For this request, avoid the specified mirror. This
operation can only be used with the readx subroutine.

RESYNC_OP For this request, synchronize the specified logical track
group (LTG). This operation can only be used with
the readx subroutine and must be the only operation.
When synchronizing a striped logical volume, the data
returned is not usable by the application because the
logical track group is not read on a striped basis.

LV_READ_BACKUP Read only the mirror copy that is designated as the
backup mirror copy.

LV_WRITE_BACKUP Write only the mirror copy that is designated as the
backup mirror copy.

LV_READ_ONLY_C1 Read only copy one of the data.

900 AIX Version 7.1: Files Reference

Item Description

LV_READ_ONLY_C2 Read only copy two of the data.

LV_READ_ONLY_C3 Read only copy three of the data.

LV_READ_STALE_C1 Read only copy one of the data even if it is stale.

LV_READ_STALE_C2 Read only copy two of the data even if it is stale.

LV_READ_STALE_C3 Read only copy three of the data even if it is stale.

There are some restrictions when using this operation. To synchronize a whole logical partition (LP), a
series of readx subroutines using the RESYNC_OP operation must be done. The series must start with the
first logical track group (LTG) in the partition and proceed sequentially to the last LTG. Any deviation from
this will result in an error. The length provided to each readx operation must be exactly 128KB (the LTG
size).

Normal I/O can be done concurrently anywhere in the logical partition while the RESYNC_OP is in
progress. If an error is returned, the series must be restarted from the first LTG. An error is returned only
if resynchronization fails for every stale physical partition copy of any logical partition. Therefore, stale
physical partitions are still possible at the end of synchronizing an LP.

Normal I/O operations do not need to supply the ext parameter and can use the read and write
subroutines.

IOCINFO ioctl Operation

IOCINFO ioctl operation returns the devinfo structure, which is defined in the /usr/include/sys/
devinfo.h file. The logical block size of the logical volume is the block size of the physical volume within
the volume group. The values returned in this structure are defined as follows for requests to the logical
volume device driver:

Item Description

devtype Equal to DD_DISK (as defined in the devinfo.h file)

flags Equal to DF_RAND

devsubtype Equal to DS_LV or DS_LVZ. The DS_LVZ devsubtype indicates that the logical
volume control block will not occupy the first block of the logical volume, therefore,
the space is available for application data. For oldvg format volume groups, the
devsubtype of a logical volume is always DS_LV. For bigvg format volume groups,
the devsubtype of a logical volume will be DS_LVZ if mklv -T 0 was used to create
the logical volume. For scalable format volume groups, the devsubtype of a logical
volume is always DS_LVZ (regardless of whether or not the mklv -T 0 flag was used
to create the logical volume).

bytpsec Bytes per block for the logical volume

secptrk Number of blocks per logical track group

trkpcyl Number of logical track groups per partition

numblks Number of logical blocks in the logical volume

XLATE ioctl Operation

The XLATE ioctl operation translates a logical address (logical block number and mirror number) to
a physical address (physical device and physical block number on that device). The caller supplies
the logical block number and mirror number in the xlate_arg structure, which is defined in the /usr/
include/sys/lvdd.h file. The logical block size of the logical volume is the block size of the physical
volume within the volume group. This structure contains the following fields:

Files Reference 901

Item Description

lbn Logical block number to translate

mirror The number of the copy for which to return a pbn (physical block number on disk). Possible
values are:

1 Copy 1 (primary)

2 Copy 2 (secondary)

3 Copy 3 (tertiary)

p_devt Physical dev_t (major/minor number of the disk)

pbn Physical block number on disk

XLATE64 ioctl Operation

The XLATE64 ioctl operation functions the same as the XLATE operation except that it uses the
xlate_arg64 structure, in which the logical and physical block numbers and the device (major/minor)
number fields are 64-bit wide.

PBUFCNT ioctl Operation

The PBUFCNT ioctl operation increases the size of the physical buffer header, pbuf, pool that is used by
LVM for logical-to-physical request translation. The size of this pool is determined by the number of active
disks in the system, although the pool is shared for request to all disks.

The PBUFCNT ioctl operation can be issued to any active volume group special file, for example /dev/
VolGrpName. The parameter passed to this ioctl is a pointer to an unsigned integer that contains the
pbufs-per-disk value. The valid range is 16 - 128. The default value is 16. This value can only be increased
and is reset to the default at IPL. The size of the pbuf pool is not reduced when the number of active disks
in the system is decreased.

The PBUFCNT ioctl operation returns the following:

Item Description

EINVAL Indicates an invalid parameter value. The value is larger than the maximum
allowed, or smaller than or equal to the current value.

EFAULT Indicates that the copy in of the parameter failed.

LVDD_ERROR An error occurred in allocating space for additional buffer headers.

LVDD_SUCCESS Indicates a successful ioctl operation.

LV_INFO ioctl Operation

The LV_INFO ioctl operation returns information about the logical volume.

The caller supplies the logical volume special file in the system open call and the information is returned
via the lv_info structure, as defined in the /usr/include/sys/lvdd.h file. This structure contains the
following fields:

Item Description

vg_id Volume group ID of which the logical volume is a member

major_num Major number of logical volume

minor_num Minor number of the logical volume

max_lps Maximum number of logical partitions allowed for this logical volume

current_lps Current size of the lofical volume in terms of logical partitions

902 AIX Version 7.1: Files Reference

Item Description

mirror_policy Specifies the type of mirroring, if the logical volume is mirrored. Valid values are
parallel, sequential, striped, and striped_parallel.

permissions Specifies whether the logical volume is read only or read-write

bb_relocation Specifies whether bad block relocation is activated for the logical volume

write_verify Specifies whether the write verify command for writes to the logical volume is
enforced

num_blocks Number of logical blocks that form the logical volume. The logical block size of
the logical volume is the block size of the physical volume within the volume
group. This value does not include mirrored logical volumes.

mwcc Specifies which mirrored write consistency check algorithm is set, if it is active.
MWCC_NON_ACTIVE

mwcc disabled for this logical volume
MWCC_ACTIVE_MODE

ACTIVE mwcc algorithm set for this logical volume
MWCC_PASSIVE_MODE

PASSIVE mwcc algorithm set for this logical volume
MWCC_PASSIVE_RECOVERY

logical mirrors undergoing PASSIVE mwcc recovery after system
interruption

mirr_able Specifies whether the logical volume is capable of being mirrored

num_mirrors Number of mirror copies for this logical volume

striping_width Number of drives across which this logical volume is striped

stripe_exp Stripe block exponent value

backup_mirror Backup mirror mask will be zero indicating there is not a backup copy active.
AVOID_C1

For the first copy
AVOID_C2

For the second copy
AVOID_C3

For the third copy.

The LV_INFO ioctl operation returns the following:

Item Description

EFAULT Indicates that the copy of the parameter failed.

LVM ioctl Operations Used to Modify Single Logical Volumes

Item Description

LV_QRYBKPCOPY Query for designated backup mirror copy.

LV_SETBKPCOPY Designate backup mirror copy.

LV_FSETBKPCOPY Force new designation for backup mirror copy. Used when there are stale
partitions on either the active mirror or backup mirror.

SET_SYNC_ON_RD Causes the logical volume to go into MWCC_PASSIVE_RECOVERY mode. All
reads from one mirror copy will cause non-read mirror copies to undergo a
sync write.

Files Reference 903

Item Description

CLR_SYNC_ON_RD Clears the MWCC_PASSIVE_RECOVERY mode of the logical volume, if it
exists. This clear should not be exercised if mirror consistency is not
guaranteed.

LV_INFO64 ioctl Operation

The LV_INFO64 ioctl operation functions the same as the LV_INFO operation except that it uses the
lv_info64 structure, in which the major_num and minor_num fields are 32-bit wide each and the
num_blocks field is 64-bit wide.

LVM_CFG_ASSIST ioctl Operation

The LVM_CFG_ASSIST ioctl operation returns the performance statistics of a logical volume. It returns
the cfg_assist structure, which is defined in the /usr/include/sys/lvdd.h file. This structure contains the
following fields:

Item Description

throughput Average throughput of the disks in the logical volume in KB/sec. For supported
storage devices, throughput is obtained from the device; otherwise, runtime
throughput of the logical volume is returned.

latency Average latency of the disks in the logical volume in milliseconds. For supported
storage devices, throughput is obtained from the device; otherwise, runtime latency
of the logical volume is returned.

flags Flags to be used. For a list of valid flags, see the /usr/include/sys/lvdd.h file.

vg_max_transfer The maximum transfer size of the volume group (VG), in KB. The vg_max_transfer
field value is the maximum amount of data that can be transferred in one I/O
request to the disks of the volume group.

write_atomicity Write atomicity in Bytes. The write_atomicity field value is the largest number of
bytes that are not broken up when they are written on aligned boundaries.

The LVM_CFG_ASSIST ioctl operation returns the following parameters only for supported storage
devices; otherwise, it returns a null value.

Item Description

atomicWriteAlignment Required alignment for write atomicity in KB.

ideal_sequential_read_size Ideal, sequential, read size of the disks under the file system in KB.

ideal_sequential_write_siz
e

Ideal, sequential, write size of the disks under the file system in KB.

ideal_random_read_size Ideal, random, read size of the disks under the file system in KB.

ideal_random_write_size Ideal, random, write size of the disks under the file system in KB.

stripsize Strip size of the disks under the file system in KB. This is the amount of
data that is contiguous on a single spindle in the raid array.

stripesize Stripesize is in KB. (Stripesize = stripsize x num spindles in raid array –
parity.)

parallelism Number of spindles that comprise the RAID device that can be
concurrently read from, and written to, in parallel.

Return Values

When you complete this operation, a value of 0 is returned. If the operation fails, a value of -1 is returned
and the errno global variable is set to one of the following values:

904 AIX Version 7.1: Files Reference

Item Description

EFAULT Indicates that the copy of the parameter failed.

ENOMEM Indicates that the allocation of the memory failed.

EAGAIN Indicates that the runtime statistics are unavailable for any of the physical volumes
in the logical volume. Try again after more I/O has been issued to the logical volume.

FORCEOFF_VG ioctl Operation

You can force a volume group offline by the FORCEOFF_VG ioctl operation. You can issue this operation
to any active volume group special file, for example the /dev/VolGrpName file. The parameter passed
to this ioctl is a pointer to an integer that contains the value FORCE_VG_OFF as defined in the /usr/
include/sys/lvdd.h file.

When you force the volume group offline, subsequent logical volume opens, and I/O requests and
changes for volume group configuration fail. You must vary off the volume group and vary it on again
to clear the forced offline condition.

If this operation is completed, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to one of the following values:

Item Description

EFAULT Indicates that the copy-in of the parameter fails.

EINVAL Indicates the parameter value is not valid.

Error Codes
In addition to the possible general errors returned by the ioctl subroutine, the following errors can also be
returned from specific ioctl operation types.

Item Description

ENXIO The logical volume does not exist. (This error type is relevant to the IOCINFO, XLATE ioctl, and
XLATE64 operations.)

ENXIO The logical block number is larger than the logical volume size. (This error type is relevant only
to the XLATE ioctl and XLATE64 ioctl operations.)

ENXIO The copy (mirror) number is less than 1 or greater than the number of actual copies. (This error
type is relevant only to the XLATE ioctl and XLATE64 ioctl operations.)

ENXIO No physical partition has been allocated to this copy (mirror). (This error type is relevant only to
the XLATE ioctl and XLATE64 ioctl operations.)

Related information
close subroutine
read subroutine
lseek subroutine
Logical volume storage

mem or kmem Special File

Purpose
Provides privileged virtual memory read and write access.

Files Reference 905

Description
Note: When incorrect access to virtual memory is made through these files, process termination, a system
crash, or loss of system data integrity can result.

The /dev/mem and /dev/kmem character special files provide access to a pseudo device driver that
allows read and write access to system memory or I/O address space. Typically, these special files are
used by operating system utilities and commands (such as sar, iostat, and vmstat) to obtain status and
statistical information about the system.

Note: Programs accessing these special files must have appropriate privilege. Commercial application
programs should avoid using the /dev/mem and /dev/kmem files, since the virtual memory image is
quite specific to the operating system level and machine platform. Use of these special files thus seriously
affects the portability of the application program to other systems.

Usage Considerations

kmem Special File Access

The kmem special file provides access to the virtual memory address space for the current process, as it
is seen by the kernel. The seek offset, set by the lseek subroutine, is used to specify the virtual address
targeted for the read or write. The kmem pseudo-device driver only supports the open, close, read,
readx, writex, and write subroutines.

The knlist system subroutine is typically used to obtain the addresses of kernel symbols to read or write
through access provided by the kmem special file.

Before issuing a read or write operation, the lseek subroutine must be used to designate the relevant
starting address in virtual memory. If this address is within the first two gigabytes of address space, then
the read or write subroutine calls can be used. However, if the upper two gigabytes of address space
are to be accessed, the readx and writex form of the subroutine calls must be used. In this case, the
ext (extension) parameter must be set to a value of True. This causes the lseek offset to be interpreted
relative to the upper 2 gigabytes of address space.

Note: The process address space is defined as shown in the Implementation of mem Special File Access
section. This address space layout can vary on other machine platforms and versions of the operating
system.

mem Special File Access

Note: Use of this special file by application programs should be strictly avoided, as it is provided for
diagnostic and problem determination procedures only.

The mem special file access is specific to the system on which the operating system is running.

Please refer to the Implementation of mem Special File Access section for details on the function
provided by this special file.

Process Address Space Regions for the /dev/kmem Special File
The "Process Address Space Map" illustrates the layout of process address space regions as accessed
through the /dev/kmem special file on this system.

Item Description

Lower 2 gigabytes of address space: Use read or
write subrourines

Upper 4 bits of lseek offset
Process Address Space Regions

0
Primary Kernel Region

1
User Text Region

906 AIX Version 7.1: Files Reference

Item Description

2
Process Private Region

3
Attached Data Mapped Files Region

4
Attached Data Mapped Files Region

5
Attached Data Mapped Files Region

6
Attached Data Mapped Files Region

7
Attached Data Mapped Files Region

Upper 2 gigabytes of address space: Use readx or
writex subroutines with ext parameter = TRUE.

0
Attached Data Mapped Files Region

1
Attached Data Mapped Files Region

2
Attached Data Mapped Files Region

3
Attached Data Mapped Files Region

4
Attached Data Mapped Files Region

5
Shared Library Text Region

6
Secondary Kernel Region

7
Shared Data Region

Implementation of mem Special File Access
The mem special file has traditionally provided direct access to physical memory. This capability and its
interface requirements are machine-specific. However, for this operating system this function is indirectly
provided by using the ext (extension) parameter on the readx and writex subroutine calls. When a
readx or writex subroutine call associated with the /dev/mem special file is issued, the ext parameter
must contain a valid segment register value as defined in the POWERstation and POWERserver Hardware
Technical Reference - General Information documentation for the platform types(s) on which the program
will be run. This allows the program to access all physical memory mapped by the page table as well as
the platform-specific I/O (T=1) segments.

The seek offset set by the lseek subroutine call is used to specify the address offset within the segment
described by the ext parameter. The upper four bits of the offset are not used. The pseudo-device driver
only supports the open, close, read, readx, write, and writex subroutine calls. The lseek subroutine call
must also be used before the readx or writex subroutine calls are issued, in order to specify the address
offset.

Files Reference 907

If a read or write subroutine call is used with this special file, the access to memory is identical to that
provided by the /dev/kmem special file.

The mem special file is part of Base Operating System (BOS) Runtime.

Files

Item Description

/dev/mem Provides privileged virtual memory read and write access.

/dev/kmem Provides privileged virtual memory read and write access.

Related information
iostat command
sar command
vmstat command
close subroutine
read subroutine

mouse Special File

Purpose
Provides access to the natively attached mouse.

Description
The mouse special file serves as an interface between the application interface and the system mouse.
This special file provides the application with the ability to receive input from the mouse and allows the
application to change mouse configuration parameters, such as mouse sampling rates and resolution.

Configuration
Standard configuration methods work with the mouse special file. No user configurable attribute
commands exist for this special file. Applications that open the special file can modify device
attribute dynamically using the appropriate ioctl interface; however, modifications are not saved in the
configuration database.

Usage Considerations
The open subroutine call specifying the mouse special file is processed normally except that the Oflag
and Mode parameters are ignored. The open request is rejected when the special file is already opened or
when a kernel extension attempts to open the special file. All mouse inputs are flushed following an open
subroutine call until an input ring is established. The mouse device is reset to the default configuration
when an open request is made.

The mouse special file does not support the read or write subroutine calls. Instead, input data is
obtained from the mouse via the input ring. The read and write subroutine calls behave the same as read
or write to the /dev/null file.

The mouse special file supports the following functions with ioctls:

Item Description

IOCINFO Returns a devinfo structure.

MQUERYID Returns the query mouse device identifier.

908 AIX Version 7.1: Files Reference

Item Description

MREGRING Specifies the address of the input ring and the value to be used as the source
identifier when enqueueing reports on the ring.

MRFLUSH Flushes the input ring.

MTHRESHOLD Sets the mouse reporting threshold.

MRESOLUTION Sets the mouse resolution.

MSCALE Sets the mouse scale factor.

MSAMPLERATE Sets the mouse sample rate.

Error Codes
The following error codes can be found in the /usr/include/sys/errno.h file:

Item Description

EFAULT Indicates insufficient authority to access an address or invalid address.

EIO Indicates and I/O error.

ENOME
M

Indicates insufficient memory for required paging operation.

ENOSPC Indicates insufficient file system or paging space.

EINVAL Indicates invalid argument specified.

EINTR Indicates that the request has been interrupted by a signal.

EPERM Specifies a permanent error occurred.

EBUSY Indicates a device is busy.

ENXIO Indicates an unsupported device number.

ENODEV Indicates an unsupported device or device type mismatch.

EACCES Indicates that an open is not allowed.

Files

Item Description

/usr/include/sys/inputdd.h Contains the ioctl commands.

Related reference
lpfk Special File
Related information
close subroutine
open subroutine
read subroutine
write subroutine

mpcn Special File

Purpose
Provides access to the HDLC network device driver by way of the SDLC COMIO device driver emulator.

Files Reference 909

Description
The /dev/mpcn character special file provides access to the HDLC network device driver via the SDLC
COMIO device driver emulator in order to provide access to a synchronous network. The SDLC COMIO
emulator device handler supports multiple HDLC network devices.

Usage Considerations
When accessing the SDLC COMIO emulator device handler, consider the following information.

Driver Initialization and Termination

The device handler can be loaded and unloaded. The handler supports the configuration calls to initialize
and terminate itself.

Special File Support

The SDLC COMIO emulator device handler uses the t_start_dev and t_chg_parms structures defined
in the /usr/include/sys/mpqp.h file to preserve compatibility with the existing GDLC, MPQP API, and
SNA Services interface. However, only a subset of the #define values are supported for the following
t_start_dev structure fields:

Item Description

phys_link Indicates the physical link protocol. Only one type of physical link is valid at a time.
The SDLC COMIO emulator device handler supports PL_232D (EIA-232D), PL_422A
(EIA-422A/v.36), PL_V35 (V.35), PL_X21 (X.21 leased only), and PL_V25 (V.25bis
EIA-422A autodial).

data_proto Identifies the data protocol. The SDLC COMIO emulator device handler supports
only the SDLC DATA_PRO_SDLC_HDX (half duplex) and the DATA_PRO_SDLC_FDX (full
duplex) values.

baud_rate Specifies the baud rate for transmit and receive clocks. The SDLC COMIO emulator
device handler supports only external clocking where the DCE supplies the clock, and
this field should be set to zero.

Subroutine Support

The SDLC COMIO emulator device handler supports the open, close, read, write, and ioctl subroutines in
the following manner:

open and close Subroutines

The device handler supports the /dev/mpcn special file as a character-multiplex special file. The special
file must be opened for both reading and writing (O_RDWR). No special considerations exist for closing
the special file.

read Subroutine

Can take the form of a read, readx, readv, or readvx subroutine call. For this call, the device handler
copies the user data in to the buffer specified by the caller.

write Subroutine

Can take the form of a write, writex, writev, or writevx subroutine call. For this call, the device handler
copies the user data into a buffer and transmits the data on the wide area network using the HDLC
network device driver.

ioctl Subroutine

The ioctl subroutine supports the following flags:

Item Description

CIO_START Starts a session and registers a network ID.

910 AIX Version 7.1: Files Reference

Item Description

CIO_HALT Halts a session and removes a network ID.

CIO_QUERY Returns the current reliability, availability, and serviceability (RAS) counter values.
These values are defined in the /usr/include/sys/comio.h file.

MP_CHG_PARMS Permits the data link control (DLC) to change certain profile parameters after the
SDLC COMIO device driver emulator is started.

Error Codes
The following error codes can be returned when gaining access to the device handler through the /dev/
mpcn special file:

Item Description

ECHRNG Indicates that the channel number is out of range.

EAGAIN Indicates that the device handler cannot transmit data because of a lack of system
resources, or, because an error returned from the HDLC network device driver's transmit
routine.

EBUSY Indicates that the device handler is already in use (opened/started) by another user.

EIO Indicates that the handler cannot queue the request to the adapter.

EFAULT Indicates that the cross-memory copy service failed.

EINTR Indicates that a signal has interrupted the sleep.

EINVAL Indicates one of the following:

• The port is not set up properly.
• The handler cannot set up structures for write.
• The port is not valid.
• A kernel process called a select operation.
• The specified physical-link parameter is not valid for that port.
• A kernel process called a read operation.

ENOMEM Indicates one of the following:

• No mbuf or mbuf clusters are available.
• The total data length is more than one page.
• There is no memory for internal structures.

ENOMSG Indicates that the status-queue pointer is null, and there are no entries.

ENOTREADY Indicates that the port state in the define device structure (DDS) is not in Data Transfer
mode or that the implicit halt of port failed.

ENXIO Indicates one of the following:

• The port was not started successfully.
• The channel number is illegal.
• The driver control block pointer is null or does not exist.

This file functions with the SDLC COMIO emulator device handler over the HDLC network device driver. It
emulates the SDLC API (full and half duplex) of the Multiprotocol Quad Port (MPQP) device handler.

Related information
close subroutine

Files Reference 911

write subroutine
2-Port Multiprotocol HDLC network device driver
MPQP Device Handler Interface Overview

mpqi Special File

Purpose
Provides access to the Multiport Model 2 Adapter (MM2) device driver via SNA Services, GDLC, or user-
written applications compatible with current MPQP Applications Programming Interface (API).

Description
The Multiport Model 2 devic e driver provides access to the mpqi special file through SNA Services,
Generic Data Link Control, or through user-written applications.

Usage Considerations

When accessing the Multiport Model 2 device driver via these methods, consider the following
information:

Driver Initialization and Termination

The device driver can be loaded and unloaded in the kernel in the same way as other communications
device drivers. The device driver supports the configuration calls to initialize and terminate itself.
Therefore, you must ensure that the device driver is initialized before using it. A listing of the device driver,
either via SMIT or by using the lsdev command, should indicate the device driver state as Available.

Special File Support

The Multiport Model 2 device driver is a character I/O device and provides a special file entry in
the /dev directory for file system access. The Multiport Model 2 device driver uses the t_start_dev and
t_chg_parms structures defined in the /usr/include/sys/mpqp.h file to preserve compatibility with the
existing GDLC, MPQP API and SNA Services interface. However, only a subset of the #define values is
supported for the following t_start_dev structure fields:

Item Description

data_proto Identifies the data protocol. The Multiport Model 2 device driver supports the
SDLC DATA_PRO_SDLC_HDX value (indicating half duplex only) and the bisync
DATA_PRO_BSC value.

baud_rate Specifies the baud rate for transmit and receive clock. The Multiport Model 2 device
driver only supports external clocking where the modem supplies the clock, and this
field should be set to zero. However, when using SNA Services, this field is ignored
when external clocking is specified in the physical link profile and does not need to be
zero.

Related information
MPQP Device Handler Interface Overview
Data Link Control

mpqn Special File

Purpose
Provides access to multiprotocol adapters by way of the Multiprotocol Quad Port (MPQP) device handler.

912 AIX Version 7.1: Files Reference

Description
The /dev/mpqn character special file provides access to the MPQP device handler for the purpose of
providing access to a synchronous network. The MPQP device handler supports multiple adapters.

Usage Considerations

When accessing the MPQP device handler, the following should be taken into account:

Driver initialization and termination

The device handler may be loaded and unloaded. The handler supports the configuration calls to initialize
and terminate itself.

Special file support

Calls other than the open and close subroutine calls are discussed in relation to the mode in which the
device handler is operating.

Subroutine Support

The MPQP device handler supports the open, close, read, write, and ioctl subroutines in the following
manner:

• The open and close subroutines

The device handler supports the /dev/mpqn special file as a character-multiplex special file. The
special file must be opened for both reading and writing (O_RDWR). There are no particular
considerations for closing the special file. Which special file name is used in an open call depends
on how the device is to be opened. Types of special file names are:

Item Description

/dev/mpqn Starts the device handler for the selected port.

/dev/mpqn/D Starts the device handler in Diagnostic mode for the selected port.

• The read subroutine

Can take the form of a read, readx, readv, or readvx subroutine call. For this call, the device handler
copies the data into the buffer specified by the caller.

• The write subroutine

Can take the form of a write, writex, writev, or writevx subroutine call. For this call, the device handler
copies the user data into a buffer and transmits the data on the LAN.

• The ioctl subroutine

Item Description

CIO_START Starts a session and registers a network ID.

CIO_HALT Halts a session and removes a network ID.

CIO_QUERY Returns the current RAS counter values. These values are defined in the /usr/
include/sys/comio.h file.

CIO_GET_STAT Returns the current adapter and device handler status.

MP_START_AR Puts the MPQP port into Autoresponse mode.

MP_STOP_AR Permits the MPQP port to exit Autoresponse mode.

MP_CHG_PARMS Permits the data link control (DLC) to change certain profile parameters after the
MPQP device has been started.

MP_SET_DELAY Sets the value of NDELAY.

Files Reference 913

Error Codes
The following error codes may be returned when accessing the device handler through the /dev/mpqn
special file:

Item Description

ECHRNG Indicates that the channel number is out of range.

EAGAIN Indicates that the maximum number of direct memory accesses (DMAs) was reached, so
that the handler cannot get memory for internal control structures.

EBUSY Indicates one of the following:

• The port is not in correct state.
• The port should be configured, but is not opened or started.
• The port state is not opened for start of an ioctl operation.
• The port is not started or is not in data-transfer state.

EIO Indicates that the handler could not queue the request to the adapter.

EFAULT Indicates that the cross-memory copy service failed.

EINTR Indicates that the sleep was interrupted by a signal.

EINVAL Indicates one of the following:

• The port not set up properly.
• The handler could not set up structures for write.
• The port is not valid.
• A select operation was called by a kernel process.
• The specified physical-link parameter is not valid for that port.
• The read was called by a kernel process.

ENOMEM Indicates one of the following:

• No mbuf or mbuf clusters are available.
• The total data length is more than a page.
• There is no memory for internal structures.

ENOMSG Indicates that the status-queue pointer is null, and there are no entries.

ENOTREADY Indicates that the port state in define device structure (DDS) is not in Data Transfer
mode or that the implicit halt of port failed.

ENXIO Indicates one of the following:

• The port has not been started successfully.
• An invalid adapter number was specified.
• The channel number is illegal.
• The adapter is already open in Diagnostic mode.
• The adapter control block (ACB) pointer is null or does not exist.
• The registration of the interrupt handler failed.
• The port does not exist or is not in proper state.
• The adapter number is out of range.

The communication device handler topic defines specific errors returned on each subroutine call.

914 AIX Version 7.1: Files Reference

Related information
close subroutine
read subroutine
write subroutine
MPQP Device Handler Interface Overview

mstor Special File

Purpose
Provides access to the virtual removable disk device.

Description
The mstor special file provides block and character (raw) access to the virtual removable disk devices,
which are backed by the Universal Serial Bus (USB) mass storage devices (such as RDX, flash drives, and
storage devices) on the Virtual I/O Server (VIOS). The capability of the AIX operating system to read from
and write to the virtual removable disk drives is validated against the IBM RDX and a sample of industry
standard original equipment manufacturer (OEM) USB flash drives is used as backing store on VIOS.

Note: The AIX Small Computer System Interface (SCSI) disk driver supports virtual removable disks on
the AIX Version 6.1 with Technology Level 6100-09, and later, and on the AIX Version 7.1 with Technology
Level 7100-03, and later.

The backing USB mass storage devices can be exported to only one client at a time. If the user wants to
export the backing device to another client, the virtual removable disk device must be removed from the
old client by using the rmdev command and then, the backing device must be remapped to the new client
on the VIOS.

The virtual removable disk drivers are configured by using the logical names, such as mstor0 and mstor1 .
The driver presents both raw and blocks special files. For example, the raw special file for the mstor0
file is /dev/rmstor0 file, and the block special file is /dev/mstor0. To install raw I/O on a virtual
removable disk, all data transfers in multiples of block length (512 bytes) the virtual removable disk
device is required. Also, all the lseek subroutines made to the virtual removable disk device driver must
set the file offset pointer to a value that is a multiple of the specified logical block size.

A virtual removable disk device cannot be used with the AIX Logical Volume Manager (LVM) or the AIX
Journaled File System (JFS) or JFS2 file systems. A virtual removable disk device can be used with
the User-defined file system (UDFS) file system, with backup commands, such as tar and the savevg
commands, and with media access commands, such as the dd command. The user can also create a
mksysb image on the device and can start and install from the device. It can be used as a memory dump
device on the AIX operating system.

The virtual removable disk device is dependent on the device or media that is connected and available
on the VIOS. When the backing USB disk device is disconnected from the VIOS while the device is still in
use on the AIX client, the device becomes unavailable on the client. On reconnecting the USB device to
VIOS, the device must be remapped by removing the older mapping and then creating a new mapping,
running the cfgmgr command on the AIX client to make the device available again on client. This task can
be accomplished by running the following commands:

On Virtual I/O Server

1. To get the current mapping, run the following command:

lsmap -all

2. To remove the current mapping, run the following command:

rmvdev -vtd VTD of the device from lsmap

3. To create the new mapping, run the following command:

Files Reference 915

mkvdev -vdev usb device -vadapter virtual adapter name

On an AIX client

cfgmgr

The removable disk devices defines a prevent_eject attribute, which has a default value of yes and can
be changed by using the System Management Interface Tool (SMIT) interface or the chdev command.
If a user sets the value of the prevent_eject attribute as yes, it causes a Media Eject Prevent and Media
Eject Allow action while opening and closing of the device. This operation is only applicable if the backing
device has ejectable media and this operation is not supported for flash drives.

If the backing device has ejectable media and the prevent_eject attribute is set to no, and the media
is ejected from the drive for an exported UDFS file system, the files on the disk cartridge cannot be
accessed. To access these files again, the file systems that are mounted from the virtual removable disk
drive must be unmounted. The processes that have files in an open state on these file systems must be
exited. The processes that have current directories on these file systems must be moved. If these actions
fail, perform a forced unmount operation.

Device-Dependent Subroutines
Most virtual disk device operations are implemented by using the open, read, and close subroutines.
However, for some purposes, the openx (extended) subroutine must be used..

Subroutines Description

ioctl Subroutine The virtual removable disk device uses SCSI disk device
driver for its operation. It supports ioctls operations
which are supported by the SCSI disk driver, such as the
IOCINFO, DKIOLCMD, DK_PASSTHRU, DKPMR, DKAMR,
and DKEJECT operations.

openx Subroutine The openx subroutine is supported to provide more
functions to the open sequence. The openx subroutine
requires appropriate authority to start. If you attempt to
run this subroutine without the access right might results
in a return value of -1, with the errno global variable is set
to EPERM.

Error Codes
In addition to the error codes listed for the ioctl, open, read, and write subroutines. The following error
codes are also supported:

Error code Description

EACCES A subroutine other than ioctl or close was attempted while in diagnostic mode.

EACCES A normal read call was attempted while in diagnostic mode.

EFAULT An incorrect user address.

EBUSY The target device is reserved by another initiator.

EINVAL A nbyte parameter of a read subroutine is not an even multiple of the block size.

EINVAL An attempt was made to configure a device that is still open.

EINVAL An incorrect configuration command is entered.

EMFILE An open call is attempted for a SCSI adapter that already has the maximum permissible
number of open devices.

916 AIX Version 7.1: Files Reference

Error code Description

ENOTREAD
Y

There is no cartridge in the drive that is attached to VIOS.

ENODEV An attempt was made to access a device that is not defined.

ENODEV An attempt was made to close a device that is not defined.

EMEDIA The media was changed.

EIO A hardware error, an aborted command, invalid request.

EIO An attempt is made to read beyond the end of media.

EPERM The subroutine requires appropriate authority.

ESTALE The media was ejected (without first being closed by the user) and then either reinserted
or replaced with a second disk.

ETIMEDOU
T

An I/O operation exceeded the specified timer value.

null Special File

Purpose
Provides access to the null device, typically for writing to the bit bucket.

Description
The /dev/null special file provides character access to the null device driver. This device driver is normally
accessed to write data to the bit bucket (when the data is to be discarded).

Usage Considerations
When using subroutines with the null device file, consider the following items:

Item Description

open and close subroutines The null device can be opened by using the open
subroutine with the /dev/null special file name. The close
subroutine should be used when access to the null device
is no longer required.

read and write subroutines Data written to this file is discarded. Reading from this file
always returns 0 bytes.

ioctl subroutine There are no ioctl operations available for use with the
null special file. Any ioctl operation issued returns with the
ENODEV error type.

Related information
close subroutine
ioctl subroutine
open subroutine

Files Reference 917

nvram Special File

Purpose
Provides access to platform-specific nonvolatile RAM used for system boot, configuration, and fatal error
information. This access is achieved through the machine I/O device driver.

Description
The /dev/nvram character special file provides access to the machine device driver for accessing or
modifying machine-specific nonvolatile RAM. The appropriate privilege is required to open the nvram
special file. The nvram special file is used by machine-specific configuration programs to store or retrieve
configuration and boot information using the nonvolatile RAM or ROM provided on the machine. The
nvram special file supports open, close, read, and ioctl operations.

Note: Application programs should not access the nonvolatile RAM. Since nonvolatile RAM is platform-
specific, any reliance on its presence and implementation places portability constraints upon the
using application. In addition, accessing the nonvolatile RAM may cause loss of system startup and
configuration information. Such a loss could require system administrative or maintenance task work to
rebuild or recover.

For additional information concerning the use of this special file to access machine-specific nonvolatile
RAM, see the "Machine Device Driver" in Technical Reference: Kernel and Subsystems, Volume 1.

Usage Considerations

When using subroutines with the nvram special file, consider the following items.

open and close Subroutines

The machine device driver supports the nvram special file as a multiplexed character special file.

A special channel name of base can be used to read the base customize information stored as part of the
boot record. The nvram special file must be opened with a channel name of base, as follows:

/dev/nvram/base

The special file /dev/nvram/base can only be opened once. When it is closed for the first time after a
boot, the buffer containing the base customize information is free. Subsequent opens return a ENOENT
error code.

read, write, and lseek Subroutines

The read subroutine is supported after a successful open of the nvram special file with a channel name of
base. The read operation starts transferring data at the location associated with the base customization
information and with an offset specified by the offset value associated with the file pointer being used on
the subroutine.

On a read subroutine, if the end of the data area is reached before the transfer count is reached, the
number of bytes read before the end of the data area was reached is returned. If the read starts after the
end of the data area, an error of ENXIO is returned by the driver.

The lseek subroutine can be used to change the starting read offset within the data area associated with
the base customization information. The write subroutine is not supported on this channel and results in
an error return of ENODEV.

ioctl Subroutine

ioctl commands can be issued to the machine device driver after the /dev/nvram special file has been
successfully opened. The IOCINFO parameter returns machine device driver information in the caller's
devinfo structure, as pointed to by the arg parameter to the ioctl subroutine. This structure is defined in
the /usr/include/sys/devinfo.h file. The device type for this device driver is DD_PSEU.

Error Codes

918 AIX Version 7.1: Files Reference

The following error conditions can be returned when accessing the machine device driver using the nvram
special file name:

Item Description

EFAULT A buffer specified by the caller was invalid on a read, write, or ioctl subroutine call.

ENXIO A read operation was attempted past the end of the data area specified by the channel.

ENODEV A write operation was attempted.

ENOME
M

A request was made with a user-supplied buffer that is too small for the requested data.

Security
Programs attempting to open the nvram special file require the appropriate privilege.

Files

Item Description

/dev/nvram/base Allows read access to the base customize information stored as part of the
boot record.

Related information
Device Configuration Subsystem Programming Introduction
close subroutine
read subroutine
write subroutine

random and urandom Devices

Purpose
Source of secure random output.

Description
The /dev/random and /dev/urandom character devices provide cryptographically secure random output
generated from interrupt timings or input written to the devices.

The /dev/random device is intended to provide high quality, cryptographically secure random output
and will only return output for which sufficient (an equal or greater amount) random input is available
to generate the output. If insufficient random input is available, reads from the /dev/random device will
block until the request can be fulfilled unless the O_NONBLOCK flag was specified when the device was
opened, in which case as much high quality output as could be generated is returned with the error code
EAGAIN.

The /dev/urandom device provides a reliable source of random output, however the output will not
be generated from an equal amount of random input if insufficient input is available. Reads from
the /dev/urandom device always return the quantity of output requested without blocking. If insufficient
random input is available, alternate input will be processed by the random number generator to provide
cryptographically secure output, the strength of which will reflect the strength of the algorithms used by
the random number generator. Output generated without random input is theoretically less secure than
output generated from random input, so /dev/random should be used for applications for which a high
level of confidence in the security of the output is required.

Data written to either device is added to the pool of stored random input and may be used for generating
output. Writes behave identically for both devices and will not block.

Files Reference 919

Implementation Specifics
The /dev/random and /dev/urandom devices are created from major and minor numbers assigned by
the device configuration subsystem when the random number generator is loaded, so the device names
should always be used when attempting to locate or open the devices. The devices are deleted when the
random number generator is unloaded. When the system is shut down using the shutdown command,
output is taken from the /dev/urandom device and is written back to the /dev/random device when
the random number generator is loaded on the next boot to provide starting entropy to the generator,
enhancing the quality of the stored random input after boot.

Input is gathered from interrupt timings when the pool of stored random input falls below half full and
continues to be gathered until the pool is again full. This process causes a minor performance impact to
all external interrupts while timings are being gathered, which ceases when timings cease to be gathered.
Data written to either of the random devices will also contribute to the pool of stored random input and
can influence the output, thus writing to these devices should be a privileged operation. This is enforced
by the permissions of the devices, so it can be changed by the administrator to be completely disallowed
if desired.

omd Special File

Purpose
Provides access to the read/write optical device driver.

Description
The omd special file provides block and character (raw) access to disks in the read/write optical drive.

The r prefix on a special file name means that the drive is accessed as a raw device rather than a block
device. Performing raw I/O with an optical disk requires that all data transfers be in multiples of the
optical-disk logical block length. Also, all lseek subroutines that are made to the raw read/write optical
device driver must set the file offset pointer to a value that is a multiple of the specified logical block size.

The scdisk SCSI Device Driver provides more information about implementation specifics.

Read/Write Optical Device Driver

Read/write optical disks, used in read/write optical drives, are media that provide storage for large
amounts of data. Block access to optical disks is achieved through the special files /dev/omd0, /dev/
omd1, ... /dev/omdn. Character access is provided through the special files /dev/romd0, /dev/
romd1, ... /dev/romdn.

When a read/write optical disk is ejected from the drive for a mounted read/write optical file system, the
files on the optical disk can no longer be accessed. Before attempting to access these files again, perform
the following steps for a file system mounted from the read/write optical disk:

1. Stop processes that have files open on the file system.
2. Move processes that have current directories on the file system.
3. Unmount the file system.
4. Remount the file system after reinserting the media.

If these actions do not work, perform a forced unmount of the file system; then, remount the file system.

Note: Reinserting the read/write optical disk will not fix the problem. Stop all processes (graphical and
ASCII), and then forcibly unmount the file system. Then remount the file system. After performing this
procedure, you can restart any man commands.

Device-Dependent Subroutines
Most read/write optical operations are implemented using the open, read, write, and close subroutines.
However, for some purposes, use of the openx (extended) subroutine is required.

920 AIX Version 7.1: Files Reference

The openx Subroutine

The openx subroutine is supported to provide additional functions to the open sequence. Appropriate
authority is required for execution. If an attempt is made to run the openx subroutine without the proper
authority, the subroutine returns a value of -1 and sets the errno global variable to a value of EPERM.

The ioctl Subroutine

The ioctl subroutine IOCINFO operation returns the devinfo structure defined in the /usr/include/sys/
devinfo.h file. The IOCINFO operation is the only operation defined for all device drivers that use the
ioctl subroutine. Other ioctl operations are specific for the type of device driver. Diagnostic mode is not
required for the IOCINFO operation.

Error Conditions
Possible errno values for ioctl, open, read, and write subroutines when using the omd special file
include:

Item Description

EACCES Indicates one of the following circumstances:

• An attempt was made to open a device currently open in Diagnostic or Exclusive
Access mode.

• An attempt was made to open a Diagnostic mode session on a device already open.
• The user attempted a subroutine other than an ioctl or close subroutine while in

Diagnostic mode.
• A DKIOCMD operation was attempted on a device not in Diagnostic mode.
• A DKFORMAT operation was attempted on a device not in Exclusive Access mode.

EBUSY Indicates one of the following circumstances:

• The target device is reserved by another initiator.
• An attempt was made to open a session in Exclusive Access mode on a device

already opened.

EFAULT Indicates an illegal user address.

EFORMAT Indicates the target device has unformatted media or media in an incompatible format.

EINVAL Indicates one of the following circumstances:

• The read or write subroutine supplied an nbyte parameter that is not an even
multiple of the block size.

• A sense data buffer length of greater than 255 bytes is not valid for a DKIOWRSE or
DKIORDSE ioctl subroutine operation.

• The data buffer length exceeded the maximum defined in the devinfo structure for a
DKIORDSE, DKIOWRSE, or DKIOCMD ioctl subroutine operation.

• An unsupported ioctl subroutine operation was attempted.
• An attempt was made to configure a device that is still open.
• An illegal configuration command has been given.
• A DKPMR (Prevent Media Removal), DKAMR (Allow Media Removal), or DKEJECT

(Eject Media) command was sent to a device that does not support removable media.
• A DKEJECT (Eject Media) command was sent to a device that currently has its media

locked in the drive.

Files Reference 921

Item Description

EIO Indicates one of the following circumstances:

• The target device cannot be located or is not responding.
• The target device has indicated an unrecovered hardware error.

EMEDIA Indicates one of the following circumstances:

• The target device has indicated an unrecovered media error.
• The media was changed.

EMFILE Indicates an open operation was attempted for an adapter that already has the
maximum permissible number of opened devices.

ENODEV Indicates one of the following circumstances:

• An attempt was made to access an undefined device.
• An attempt was made to close an undefined device.

ENOTREADY Indicates no read/write optical disk is in the drive.

ENXIO Indicates one of the following circumstances:

• The ioctl subroutine supplied an invalid parameter.
• A read or write operation was attempted beyond the end of the physical volume.

EPERM Indicates the attempted subroutine requires appropriate authority.

ESTALE Indicates a read-only optical disk was ejected (without first being closed by the user)
and then either reinserted or replaced with a second disk.

ETIMEDOUT Indicates an I/O operation has exceeded the given timer value.

EWRPROTECT Indicates one of the following circumstances:

• An open operation requesting read/write mode was attempted on read-only media.
• A write operation was attempted to read-only media.

Files

Item Description

/dev/romd0, /dev/romd1,..., /dev/romdn Provides character access to the
read/write optical device driver.

/dev/omd0, /dev/omd1,..., /dev/omdn Provides block access to the read/
write optical device driver.

Related information
scdisk SCSI Device Driver.
lseek subroutine
read subroutine

opn Special File

Purpose
Provides a diagnostic interface to the serial optical ports by way of the Serial Optical Link device driver.

922 AIX Version 7.1: Files Reference

Description
The opn character special file provides strictly diagnostic access to a specific serial optical port. The
normal interface to the serial optical link is through the ops0 special file.

Related information
Serial Optical Link Device Handler Overview

ops0 Special File

Purpose
Provides access to the serial optical link by way of the Serial Optical Link Device Handler Overview.

Description
The Serial Optical Link device driver is a component of the Communication I/O subsystem. The device
driver can support from one to four serial optical ports. An optical port consists of two separate pieces.
The Serial Link Adapter is on the system planar, and is packaged with two to four adapters in a single chip.
The Serial Optical Channel Converter plugs into a slot on the system planar and provides two separate
optical ports.

The ops0 special file provides access to the optical port subsystem. An application that opens this special
file has access to all the ports, but does not need to be aware of the number of ports available. Each write
operation will include a destination processor ID, and the device driver will route the data through the
correct port to reach that processor. If there is more than one path to the destination, the device driver
will use any link that is available, in case of a link failure.

Usage Considerations

When accessing the Serial Optical Link device driver, the following should be taken into account:

Item Description

driver initialization and termination The device driver may be loaded and
unloaded. The device driver supports
the configuration calls to initialize and
terminate itself.

special file support Calls other than the open and close
subroutines are discussed based on
the mode in which the device driver is
operating.

Subroutine Support

The Serial Optical Link device driver provides specific support for the open, close, read, and write
subroutines.

open and close Subroutines

The device driver supports the /dev/ops0 special file as a character-multiplex special file. The special file
must be opened for both reading and writing (O_RDWR). There are no particular considerations for closing
the special file. The special file name is used in an open call depending on how the device is to be opened.
The two types of special file names are:

Item Description

/dev/ops0 Starts the device driver in normal mode.

/dev/ops0/S Starts the device driver in serialized mode. As a result, the device driver transmits
data in the same order in which it receives the data.

Files Reference 923

read Subroutine

Can take the form of a read, readx, readv, or readvx subroutine. For this call, the device driver copies the
data into the buffer specified by the caller.

write Subroutine

Can take the form of a write, writex, writev, or writevx subroutine. For this call, the device driver copies
the user data into a kernel buffer and transmits the data.

Error Codes

The following error codes may be returned when accessing the device driver through the /dev/ops0
special file:

Item Description

EACCES Indicates access to the device is denied for one of the following reasons:

• A non-privileged user tried to open the device in Diagnostic mode.
• A kernel-mode user attempted a user-mode call.
• A user-mode user attempted a kernel-mode call.

EADDRINUSE Indicates the network ID is in use.

EAGAIN Indicates that the transmit queue is full.

EBUSY Indicates one of the following:

• The device was already initialized.
• There are outstanding opens; unable to terminate.
• The device is already open in Diagnostic mode.
• The maximum number of opens has been exceeded.

EFAULT Indicates that the specified address is not valid.

EINTR Indicates that a system call was interrupted.

EINVAL Indicates that the specified parameter is not valid.

EIO Indicates a general error. If an extension was provided in the call, additional data
identifying the cause of the error can be found in the status field.

EMSGSIZE Indicates that the data was too large to fit into the receive buffer and that no arg
parameter was supplied to provide an alternate means of reporting this error with a
status of CIO_BUF_OVFLW.

ENETDOWN Indicates that the network is down. The device is unable to process the write.

ENOCONNECT Indicates one of the following:

• The device is not started.
• The processor ID is not connected to the Serial Optical Link subsystem.

ENODEV Indicates that the specified minor number is not valid.

ENOMEM Indicates that the device driver was unable to allocate the required memory.

ENOSPC Indicates the network ID table is full.

EPERM Indicates that the device is open in a mode that does not allow a Diagnostic-mode
open request.

Related information
close subroutine
read subroutine

924 AIX Version 7.1: Files Reference

write subroutine
Serial Optical Link Device Handler Overview

pty Special File

Purpose
Provides the pseudo-terminal (pty) device driver.

Description
The pty device driver provides support for a pseudo-terminal. A pseudo-terminal includes a pair of control
and slave character devices. The slave device provides processes with essentially the same interface as
that provided by the tty device driver. However, instead of providing support for a hardware device, the
slave device is manipulated by another process through the control half of the pseudo-terminal. That is,
anything written on the control device is given to the slave device as input and anything written on the
slave device is presented as input on the control device.

In AIX Version 4, the pty subsystem uses naming conventions similar to those from UNIX System V.
There is one node for the control driver, /dev/ptc, and a maximum number of N nodes for the slave
drivers, /dev/pts/n. N is configurable at pty configuration and may be changed dynamically by pty
reconfiguration, without closing the opened devices.

The control device is set up as a clone device whose major device number is the clone device's major
number and whose minor device number is the control driver's major number. There is no node in the
filesystem for control devices. A control device can be opened only once, but slave devices can be opened
several times.

By opening the control device with the /dev/ptc special file, an application can quickly open the control
and slave sides of an unused pseudo-terminal. The name of the corresponding slave side can be retrieved
using the ttyname subroutine, which always returns the name of the slave side.

With Berkeley pty subsystems, commands have to search for an unused pseudo-terminal by opening each
control side sequentially. The control side could not be opened if it was already in use. Thus, the opens
would fail, setting the errno variable to EIO, until an unused pseudo-terminal was found. It is possible to
configure the pty subsystem in order to use special files with the BSD pty naming convention:

Item Description

Control devices /dev/pty[p-zA-Z][0-f]

Slave devices /dev/tty[p-zA-Z][0-f]

These special files are not symbolic links to the operating system special files. They are completely
separate. The number of control and slave pair devices using the BSD naming convention is configurable.

The following ioctl commands apply to pseudo-terminals:

Item Description

TIOCSTOP Stops output to a terminal. This is the same as using the Ctrl-S key sequence. No
parameters are allowed for this command.

TIOCSTART Restarts output that was stopped by a TIOCSTOP command or by the Ctrl-S key
sequence. This is the same as typing the Ctrl-Q key sequence. No parameters are
allowed for this command.

Files Reference 925

Item Description

TIOCPKT Enables and disables the packet mode. Packet mode is enabled by specifying (by
reference) a nonzero parameter. It is disabled by specifying (by reference) a zero
parameter. When applied to the control side of a pseudo-terminal, each subsequent
read from the terminal returns data written on the slave part of the pseudo terminal.
The data is preceded either by a zero byte (symbolically defined as TIOCPKT_DATA) or
by a single byte that reflects control-status information. In the latter case, the byte is
an inclusive OR of zero or more of the following bits:
TIOCPKT_FLUSHREAD

The read queue for the terminal is flushed.
TIOCPKT_FLUSHWRITE

The write queue for the terminal is flushed.
TIOCPKT_STOP

Output to the terminal is stopped with Ctrl-S.
TIOCPKT_START

Output to the terminal is restarted.
TIOCPKT_DOSTOP

The stop character defined by the current tty line discipline is Ctrl-S; the start
character defined by the line discipline is Ctrl-Q.

TIOCPKT_NOSTOP
The start and stop characters are not Ctrl-S and Ctrl-Q.

While this mode is in use, the presence of control-status information to be read from
the control side can be detected by a select for exceptional conditions.

This mode is used by the rlogin and rlogind commands to log in to a remote host
and implement remote echoing and local Ctrl-S and Ctrl-Q flow control with proper
back-flushing of output.

TIOCUCNTL Enables and disables a mode that allows a small number of simple user ioctl
commands to be passed through the pseudo-terminal, using a protocol similar to that
of the TIOCPKT mode. The TIOCUCNTL and TIOCPKT modes are mutually exclusive.

This mode is enabled from the control side of a pseudo-terminal by specifying (by
reference) a nonzero parameter. It is disabled by specifying (by reference) a zero
parameter. Each subsequent read from the control side will return data written on the
slave part of the pseudo-terminal, preceded either by a zero byte or by a single byte
that reflects a user control operation on the slave side.

A user-control command consists of a special ioctl operation with no data. That
command is issued as UIOCCMD(Value), where the Value parameter specifies a
number in the range 1 through 255. The operation value is received as a single byte on
the next read from the control side.

A value of 0 can be used with the UIOCCMD ioctl operation to probe for the existence
of this facility. The zero is not made available for reading by the control side. Command
operations can be detected with a select for exceptional conditions.

TIOCREMOTE A mode for the control half of a pseudo-terminal, independent of TIOCPKT. This mode
implements flow control, rather than input editing, for input to the pseudo-terminal,
regardless of the terminal mode. Each write to the control terminal produces a record
boundary for the process reading the terminal. In normal usage, a write of data is like
the data typed as a line on the terminal, while a write of zero bytes is like typing an
end-of-file character. This mode is used for remote line editing in a window-manager
and flow-controlled input.

926 AIX Version 7.1: Files Reference

Related information
rlogin command
ioctl subroutine
tty Subsystem Overview
Understanding TTY Drivers

rcm Special File

Purpose
Provides the application interface to obtain and relinquish the status of a graphics process through the
Rendering Context Manager (RCM) device driver.

Description
The rcm is used by graphics systems to obtain a gsc_handle. This handle is required in the call to aixgsc
which is part of the procedure of becoming a graphics process.

Usage Considerations
The RCM device driver supports open, close, and ioctl subroutines.

A application uses the GSC_HANDLE ioctl command to get a gsc_handle as part of becoming a graphics
process. When it closes rcm, either normally, or by abnormal termination, the RCM releases any displays
which it owns. This is implemented as a LFT_REL_DISP ioctl command to the LFT device driver.

Item Description

IOCINFO Returns devinfo structure.

GSC_HANDLE Returns a gsc_handle.

RCM_SET_DIAG_OWNER Obtain exclusive use of the display adapter for diagnostics.

Related reference
lft Special File

rhdisk Special File

Purpose
Provides raw I/O access to the physical volumes (fixed-disk) device driver.

Description
The rhdisk special file provides raw I/O access and control functions to physical-disk device drivers for
physical disks. Raw I/O access is provided through the /dev/rhdisk0, /dev/rhdisk1, ..., character special
files.

Direct access to physical disks through block special files should be avoided. Such access can impair
performance and also cause data consistency problems between data in the block I/O buffer cache and
data in system pages. The /dev/hdisk block special files are reserved for system use in managing file
systems, paging devices and logical volumes.

The r prefix on the special file name indicates that the drive is to be accessed as a raw device rather than
a block device. Performing raw I/O with a fixed disk requires that all data transfers be in multiples of the
disk block size. Also, all lseek subroutines that are made to the raw disk device driver must result in a
file-pointer value that is a multiple of the disk-block size.

Usage Considerations

Files Reference 927

Note: Data corruption, loss of data, or loss of system integrity (system crashes) will occur if devices
supporting paging, logical volumes, or mounted file systems are accessed using block special files. Block
special files are provided for logical volumes and disk devices on the operating system and are solely for
system use in managing file systems, paging devices, and logical volumes. They should not be used for
other purposes.

open and close Subroutines

The openx subroutine provides additional functions to the open sequence. This subroutine requires
appropriate permission to execute. Attempting to do so without the proper permission results in a return
value of -1, with the errno global variable set to EPERM.

read and write Subroutines

The readx and writex subroutines provide for additional parameters affecting the raw data transfer. The
ext parameter specifies certain options that apply to the request being made. The options are constructed
by logically ORing zero or more of the following values.

Note: The following operations can be used only with the writex subroutine.

Item Description

WRITEV Perform physical write verification on this request.

HWRELOC Perform hardware relocation of the specified block before the block is written. This is
done only if the drive supports safe relocation. Safe relocation ensures that once the
relocation is started, it will complete safely regardless of power outages.

UNSAFEREL Perform hardware relocation of the specified block before the block is written. This is
done if the drive supports any kind of relocation (safe or unsafe).

ioctl Subroutine

Only one ioctl operation, IOCINFO, is defined for all device drivers that use the ioctl subroutine. The
remaining ioctl operations are all specific to physical-disk devices. Diagnostic mode is not required for the
IOCINFO operation.

The IOCINFO ioctl operation returns a structure for a device type of DD_DISK. This structure is defined in
the /usr/include/sys/devinfo.h file.

Error Codes
In addition to the errors listed for the ioctl, open, read, and write subroutines, the following other error
codes are also possible:

Item Description

EACCES An open subroutine call has been made to a device in Diagnostic mode.

EACCES A diagnostic openx subroutine call has been made to a device already opened.

EACCES A diagnostic ioctl operation has been attempted when not in Diagnostic mode.

EINVAL An nbyte parameter to a read or write subroutine is not a multiple of the disk block size.

EINVAL An unsupported ioctl operation has been attempted.

EINVAL An unsupported readx or writex subroutine has been attempted.

EMEDIA The target device has indicated an unrecovered media error.

ENXIO A parameter to the ioctl subroutine is invalid.

ENXIO A read or write subroutine has been attempted beyond the end of the disk.

EIO The target device cannot be located or is not responding.

EIO The target device has indicated an unrecovered hardware error.

928 AIX Version 7.1: Files Reference

Item Description

EMFILE An open subroutine has been attempted for an adapter that already has the maximum
permissible number of opened devices.

EPERM The caller lacks the appropriate privilege.

Files

Item Description

/dev/hdisk0, /dev/hdisk1, ... /dev/hdiskn Provide block I/O access to the physical volumes
(fixed-disk) device driver.

Related information
read subroutine
lseek subroutine
scdisk SCSI Device Driver

rmt Special File

Purpose
Provides access to the sequential-access bulk storage medium device driver.

Description
Magnetic tapes are used primarily for backup, file archives, and other off-line storage. Tapes are accessed
through the /dev/rmt0, ... , /dev/rmt255 special files. The r in the special file name indicates raw access
through the character special file interface. A tape device does not lend itself well to the category of a
block device. Thus, only character interface special files are provided.

Special files associated with each tape device determine which action is taken during open or close
operations. These files also dictate, for applicable devices, at what density data is to be written to tape.
The following table shows the names of these special files and their corresponding characteristics:

Table 35. Tape Drive Special File Characteristics

Special File Name Characteristics

/dev/rmt* Rewind-on-Close
Yes

Retension-on-Open
No

Bytes per Inch
Density setting #1

/dev/rmt*.1 Rewind-on-Close
No

Retension-on-Open
No

Bytes per Inch
Density setting #1

Files Reference 929

Table 35. Tape Drive Special File Characteristics (continued)

Special File Name Characteristics

/dev/rmt*.2 Rewind-on-Close
Yes

Retension-on-Open
Yes

Bytes per Inch
Density setting #1

/dev/rmt*.3 Rewind-on-Close
No

Retension-on-Open
Yes

Bytes per Inch
Density setting #1

/dev/rmt*.4 Rewind-on-Close
Yes

Retension-on-Open
No

Bytes per Inch
Density setting #2

/dev/rmt*.5 Rewind-on-Close
No

Retension-on-Open
No

Bytes per Inch
Density setting #2

/dev/rmt*.6 Rewind-on-Close
Yes

Retension-on-Open
Yes

Bytes per Inch
Density setting #2

/dev/rmt*.7 Rewind-on-Close
No

Retension-on-Open
Yes

Bytes per Inch
Density setting #2

1. The values of density setting #1 and density setting #2 come from tape drive attributes that can be set
using SMIT. Typically density setting #1 is set to the highest possible density for the tape drive while
density setting #2 is set to a lower density. However, density settings are not required to follow this
pattern.

2. The density value (bytes per inch) is ignored when using a magnetic tape device that does not support
multiple densities. For tape drives that do support multiple densities, the density value only applies
when writing to the tape. When reading, the drive defaults to the density at which the tape is written.

930 AIX Version 7.1: Files Reference

3. Most tape drives use 512-byte block size. The 8mm tape drive uses a minimum block size of 1024
bytes. Using SMIT to lower the block size, will waste space.

Usage Considerations

Most tape operations are implemented using the open, read, write, and close subroutines. However, for
diagnostic purposes, the openx subroutine is required.

open and close Subroutines

Care should be taken when closing a file after writing. If the application reverses over the data just
written, no file marks will be written. However, for tape devices that allow for block update, unless the
application spaces in the reverse direction or returns the tape position to the beginning of tape (BOT),
one or two file marks will be written upon closing the device. (The number of file marks depends on the
special file type.)

For multitape jobs, the special file must be opened and closed for each tape. The user is not allowed to
continue if the special file is opened and the tape has been changed.

The openx subroutine is intended primarily for use by the diagnostic commands and utilities. Appropriate
authority is required for execution. Executing this subroutine without the proper authority results in a
return value of -1, with the errno global variable set to EPERM.

read and write Subroutines

When opened for reading or writing, the tape is assumed to be positioned as desired. When the tape
is opened as no-rewind-on-close (/dev/rmt*.1) and a file is written, a single file mark is written upon
closing the tape. When the tape is opened as rewind-on-close (/dev/rmt*) and a file is written, a double
file mark is written upon closing the tape. When the tape is opened as no-rewind-on-close and reads from
a file, the tape is positioned upon closing after the end-of-file (EOF) mark following the data just read.

By specifically choosing the rmt file, it is possible to create multiple file tapes.

Although tapes are accessed through character interface special files, the number of bytes required by
either a read or write operation must be a multiple of the block size defined for the magnetic tape device.
When the tape drive is in variable block mode, read requests for less than the tape's block size return
the number of bytes requested and set the errno global variable to a value of 0. In this case, the readx
subroutine's Extension parameter must be set to TAPE_SHORT_READ.

During a read, the record size is returned as the number of bytes read, up to the buffer size specified. If an
EOF condition is encountered, then a zero-length read is returned, with the tape positioned after the EOF.

An end-of-media (EOM) condition encountered during a read or write operation results in the return of the
number of bytes successfully ready or written. When a write is attempted after the device has reached
the EOM, a value of -1 is returned with the errno global variable set to the ENXIO value. When a read
is attempted after the device has reached the EOM, a zero-length read is returned. Successive reads
continue to return a zero-length read.

Data Buffering With a Tape Device: Some tape devices contain a data buffer to maximize data
transfer speed when writing to tape. A write operation sent to tape is returned as complete when
the data is transferred to the data buffer of the tape device. The data in the buffer is then written to
tape asynchronously. As a result, data-transfer speed increases since the host need not wait for I/O
completion.

Two modes are provided by the tape device driver to facilitate use of these data buffers. The non-buffered
mode causes writes to tape to bypass the data buffer and go directly to tape. In buffered mode, all write
subroutines are returned as complete when the transfer data has been successfully written to the tape
device buffer. The device driver does not flush the data buffer until the special file is closed or an EOM
condition is encountered.

If an EOM condition is encountered while running in buffered mode, the device attempts to flush the
device data buffer. The residual count can exceed the write transfer length in buffered mode. In some
cases, the flushing of residual data may actually run the tape off the reel. Either case is considered a
failure and results in a return value of -1, with the errno global variable set to EIO. These errors can
require the user to run in non-buffered mode.

Files Reference 931

rmt Special File Considerations: Failures that result in a device reset while reading or writing to tape
require the special file to be closed and the job restarted. Any commands issued after this condition
occurs and until the special file is closed result in a return value of -1, with the errno global variable set
to EIO. Non-reset type errors (that is, media or hardware errors) result in the tape being left positioned
where the error occurred.

For multi-tape jobs, the special file must be opened and closed for each tape. The user is not allowed to
continue if the special file is opened and the tape has been changed.

A signal received by the tape device driver will cause the current command to abort. As a result, the
application halts time-consuming commands (for instance, an erase operation) without recycling the drive
power or waiting for a timeout to occur.

Use of zero (0) as a block-size parameter indicates the blocksize is of variable length.

ioctl Subroutine

A single ioctl operation, IOCINFO, is defined for all device drivers that use the ioctl subroutine. For the
rmt special file, the STIOCTOP operation has also been defined.

The IOCINFO ioctl operation: The IOCINFO ioctl operation returns a structure defined in the /usr/
include/sys/devinfo.h file.

The STIOCTOP ioctl operation: The STIOCTOP ioctl operation provides for command execution
operations, such as erase and retension. The parameter to the ioctl subroutine using the STIOCTOP
operation specifies the address of a stop structure, as defined in the /usr/include/sys/tape.h file.

The operation found in the st_op field in the stop structure is performed st_count times, except for
rewind, erase, and retension operations. The available operations are:

Item Description

STREW Rewind.

STOFFL Rewind and unload the tape. A tape must be inserted before the device can be used again.

STERASE Erase tape; leave at load point.

STRETEN Retension tape; leave at load point.

STWEOF Write and end-of-file mark.

STFSF Forward space file.

STFSR Forward space record.

STRSF Reverse space file.

STRSR Reverse space record.

STDEOF Disable end-of-file check.

Note: Use of the STDEOF command enables an application to write beyond the end of
the tape. When disabling end-of-file checking by issuing the STDEOF command, it is the
responsibility of the application to guard against error conditions that can arise from the use
of this command.

Note: Execution of the preceding commands depends on the particular tape device and which commands
are supported. If the command is not supported on a particular device, a value of -1 is returned, with the
errno global variable set to EINVAL.

Error Codes

In addition to general error codes listed for ioctl, open, read, and write subroutines, the following specific
error codes may also occur:

932 AIX Version 7.1: Files Reference

Item Description

EAGAIN An open operation was attempted to a device that is already open.

EBUSY The target device is reserved by another initiator.

EINVAL O_APPEND is supplied as a mode in which to open.

EINVAL An nbyte parameter to a read or write subroutine is not an even multiple of the
blocksize.

EINVAL A parameter to the ioctl subroutine is invalid.

EINVAL The requested ioctl operation is not supported on the current device.

EIO Could not space forward or reverse st_count records before encountering an EOM
condition or a file mark.

EIO Could not space forward or reverse st_count file marks before encountering an EOM
condition.

EMEDIA The tape device has encountered an unrecoverable media error.

ENOMEM The number of bytes requested for a read of a variable-length record on tape is less
than the actual size (in bytes) of the variable-length record.

ENOTREADY There is no tape in the drive or the drive is not ready.

ENXIO A write operation was attempted while the tape was at the EOM.

EPERM The requested subroutine requires appropriate authority.

ETIMEDOUT A command has timed out.

EWRPROTECT An open operation for read/write was attempted on a read-only tape.

EWRPROTECT An ioctl operation that effects media was attempted on a read-only tape.

Related information
rmt SCSI Device Driver
close subroutine
read subroutine

scsi Special File

Purpose
Provides access to the SCSI adapter driver.

Description
The scsi special file provides an interface to an attached SCSI adapter. This special file should not
be opened directly by application programs (with the exception of diagnostics applications). The /dev/
scsi0, /dev/scsi1, ... /dev/scsin files are the scsi special files.

The description of the SCSI Adapter device driver in Technical Reference: Kernel and Subsystems, Volume
1 provides the implementation specifics for the SCSI adapter.

Related information
SCSI Subsystem Overview
scdisk subroutine

Files Reference 933

secvars.cfg File

Purpose
Consists of configuration values for various system security properties.

Description
The /etc/secvars.cfg file is a stanza file, where each stanza name represents a security property. The
lssec and the chsec commands can be used to view and modify the files. The stanza contains the
following stanza names:

groups
Defines the behavior of groups on the system. This stanza has the following attributes:

domainlessgroups

Controls the system configuration for merging the user's group attributes from Lightweight Directory
Access Protocol (LDAP) and files domains. Only the files and the LDAP modules are supported. The
domainlessgroups feature recognizes whether users or groups belong to the supported domains based
on the registry values of the users or groups. Hence, the registry value specified for the users or groups
must be either files or LDAP. The registry value cannot be a compound module or a compat registry
even though the specified compound modules or compat registries might contain files domain, LDAP
domain or both. The domainlessgroups feature is not applicable to values such as netgroups that
are specified for the options parameter for LDAP module. The LDAP module is defined in the /etc/
methods.cfg file.

Following values are valid for the domainlessgroups attribute.
True

When this attribute is set to true, a user can be assigned groups from both the LDAP and files
domains simultaneously irrespective of user 's domain. The user must belong to either the LDAP or file
domains.

For example, the users that are defined on the LDAP can be assigned the local groups and vice versa.

False
When this attribute is set to false, the users can be assigned groups only from the domain where the
user definition exists. The default value is false.

Notes:

1. If the LDAP server is down or not reachable, and this variable is set to true, some operations on
groups and users fail. If this variable is set to true, it mandates a properly functioning LDAP server.
For example, when the LDAP server is not reachable, the rmgroup for local groups fails because
these groups can be a primary group to an LDAP user. Also, if the LDAP server is not reachable, a local
user with an LDAP group, as primary group fails to login.

2. You must not to have same names or IDs for the users or groups across LDAP and local (files)
domains when this variable is set to true, because the behavior of some commands is unpredictable.
To avoid creation of same ID, set the dist_uniqid system attribute.

3. When the LDAP server is not reachable, the lsuser and lsgroup commands displays information from
the local systems.

4. Adding a local user to an LDAP group effectively makes that user belong to the LDAP group not only
on the current host, but also on any other host where the user with the same name exists locally. In
other words, if a user with the same name exists locally on two or more hosts, adding that user to an
LDAP group from one host makes it effective on the other host.

5. When local user is removed from the system, it is automatically removed from an LDAP group. This
means that, when a local user that has the same name across two or more hosts is removed from an

934 AIX Version 7.1: Files Reference

LDAP group from one host, all the local users with the same name across all the other hosts lose their
membership from that LDAP group.

6. When a user is assigned to a group, a user with same name exists in the other domain, the user that
gets assigned to the group is the one from the same domain as the group.

Example: specifying similar names to users or groups, across domains

User "user1" is pesent in the LDAP domain.
 mkuser -R LDAP id=10001 user1

Another user also named "user1" is present in the local domain.
 mkuser -R files id=1000 user1

Ldgrp1's user user1 belongs to the LDAP domain.
 mkgroup -R LDAP id=20001 users=user1 Ldgrp1

7. When an LDAP group is assigned as a primary group to a local user on one client or host, the group
can be removed from another host. This is possible because the second host does not have any
knowledge about the local users on the first client.

8. If this feature is turned on, user validation is skipped while creating or modifying groups. For
example:

chgroup users=user1,user2,user3 group_name

users user1, user2, and user3 are not checked for their existence.

Also, a group existing locally on one LDAP client cannot be assigned to users from another LDAP
client.

9. The root user cannot be assigned LDAP groups irrespective of the value of the domainlessgroups
attribute.

10. For the domainlessgroups feature to work properly, the user map files under /etc/security/
ldap directory must contain the mapping for the pgid attribute.

11. You must ensure that LDAP client daemon and LDAP server are up and running before you delete a
local user or a local group. Otherwise the entry of such a local user or a local group continues to exist
in the LDAP.

rbac
Defines the behavior of the syslog messages that are logged whenever the privileged commands are
run. Privileged commands appear in the /etc/security/privcmds database. This stanza contains
following attributes:
loglevel

Defines the syslog level for privileged commands. The loglevel attribute can have one of the
following values:
all

Indicates that when the privileged commands are run, the results are logged in to the syslog file.
The default value for loglevel is all.

crit
Indicates that the syslog messages are logged when privileged commands are run without the
ALLOW_ALL, ALLOW_OWNER, or ALLOW_GROUP authorization in the /etc/security/privcmds
file.

none
Indicates that the syslog messages are not logged when privileged commands are run.

Stanza-Variable association table
This stanza contains the following attributes:

Files Reference 935

Stanza Attribute

groups domainlessgroups

rbac loglevel

Security
Access Control

These files grants read and write access to the root user. Access for other users and groups depends on
the security policy for the system.

Files

Item Description

/etc/secvars.cfg Specifies the path to the file.

/etc/group Contains the basic attributes of groups.

/etc/security/group Contains the extended attributes of groups.

Examples
An example of the group stanza is follows:

groups:
 domainlessgroups=true

tablet Special File

Purpose
Provides access to the tablet.

Description
The tablet special file is the application interface to the tablet. It provides the applications with the
capability of receiving input from the tablet and it allows the application to change the sampling rate,
dead zones, origin, resolution, and conversion mode.

Configuration
There are no user commands to change the configuration of the tablet device. Applications may use ioctl
commands to modify the configuration but these modifications are effective only until the tablet is closed.

Usage Considerations
The open subroutine call specifying the tablet special file is processed normally except that the Oflag
and Mode parameters are ignored. The open request is rejected if the special file is already opened or
if a kernel extension attempts to open the special file. All tablet inputs are flushed following an open
subroutine call until an input ring is established. The tablet device is reset to the default configuration
when an open request is made.

The tablet special file does not support the read or write subroutine calls. Instead, input data is obtained
from the tablet through the input ring. The read and write subroutine calls behave the same as read or
write subroutine calls to the /dev/null file.

The tablet special file supports the following functions with ioctl subroutines:

936 AIX Version 7.1: Files Reference

Item Description

IOCINFO Returns devinfo structure.

TABCONVERSION Sets tablet conversion mode.

TABDEADZONE Sets tablet dead zones.

TABFLUSH Flushes input ring.

TABORIGIN Sets tablet origin.

TABQUERYID Queries tablet device identifier.

TABREGRING Registers input ring.

TABRESOLUTION Sets resolution.

TABSAMPELRATE Sets sample rate.

Error Codes
The error codes can be found in the /usr/include/sys/errno.h file.

Item Description

EFAULT Indicates insufficient authority to access address or invalid address.

EIO Indicates an I/O error.

ENOME
M

Indicates insufficient memory for required paging operation.

ENOSPC Indicates insufficient file system or paging space.

EINVAL Indicates an invalid argument.

EINTR Indicates the request was interrupted by signal.

EPERM Indicates a permanent error occurred.

EBUSY Indicates the device is busy.

ENXIO Indicates an unsupported device number was specified.

ENODEV Indicates an unsupported device or device type mismatch.

EACCES Indicates open is not allowed.

Files

Item Description

/usr/include/sys/inputdd.h Contains declarations for ioctl commands and input ring
report format.

Related reference
lpfk Special File
dials Special File
GIO Special File
Related information
close subroutine
read subroutine

Files Reference 937

tap Special File

Purpose
Provides software network interface which is Ethernet tunnel.

Description
The tap interface is a software loopback mechanism. It is a network interface analog of the
pseudoterminal (pty).

The tap driver, like the pty driver, provides two interfaces: a simulating interface (an Ethernet interface for
tap or a terminal for pty) and a character-special device, the control interface.

The network interfaces are named as tap0, tap1, and so on, one for each open control device that has
been opened. These Ethernet network interfaces persist until the if_tap.ko module is unloaded or until
removed with the ifconfig destroy command.

The tap devices are created by using interface cloning with the ifconfig tapN create command. This is the
preferred method for creating the tap devices. You can remove of interfaces by using the ifconfig tapN
destroy command.

Each interface supports the usual Ethernet network interface ioctl, such as SIOCSIFADDR and
SIOCSIFNETMASK, and thus can be used with the ifconfig command like any other Ethernet interface.
When the system chooses to transmit an Ethernet frame on the network interface, the frame can be
read from the control device. It appears as input there. The process of writing an Ethernet frame to the
control device generates an input frame on the network interface, as if the (nonexistent) hardware had
just received it.

The Ethernet tunnel device, normally /dev/tapN, is exclusive-open (it cannot be opened if it is already
open), and is restricted to the super-user or users with the PV_NET_CNTL privilege. The tunnel device
is not marked up when the control device is opened. A read() call returns an error (EHOSTDOWN) if
the interface is not ready. After the interface is ready, the read() call returns an Ethernet frame, if any
frame is available. In case the frame is not avilable, it either blocks until one frame is available or returns
an EWOULDBLOCK error, depending on whether the nonblocking I/O has been enabled. If the frame is
longer than is allowed in the buffer passed to the read() call, the extra data is dropped.

A write(2) call passes an Ethernet frame to be received on the pseudointerface. Each write() call supplies
exactly one frame. The frame length is taken from the amount of data provided to the write() call. If the
frame cannot be accepted for a transient reason (for example, no buffer space is available), the write()
call is not block, but is dropped. However, if the reason is not transient (for example, the frame is too
large), an error is returned.

The following ioctl calls are supported and are defined in the <net/if_tap.h> file:

Item Description

TAPSIFINFO Sets the network interface information (line speed, MTU, and type). The argument
should be a pointer to the struct tapinfo parameter.

TAPGIFINFO Retrieves the network interface information, such as line speed, MTU, and type. The
argument should be a pointer to a struct tapinfo parameter

TAPSDEBUG Sets the internal debugging variable to that value. The argument should be a pointer to
an intvariable.

TAPGDEBUG Stores the internal debugging variable's value into it. The argument should be a pointer
to an int variable.

TAPGIFNAME Retrieves the network interface name. The argument should be a pointer to the struct
ifreq parameter. The interface name is returned in the ifr_name field.

FIONBIO Turns nonblocking I/O for read operation off or on, depending on whether the value of
the int argument is zero. Write operation are always nonblocking.

938 AIX Version 7.1: Files Reference

Item Description

FIOASYNC Turns asynchronous I/O for read operation (that is generation of the SIGIO signal
when data is available to be read) off or on, depending on whether the value of the
intargument is zero.

FIONREAD Stores the size of the first one into theint argument if any frames are queued to be
read; otherwise, stores zero..

TIOCSPGRP Sets the process group to receive the SIGIO signals, when asynchronous I/O is
enabled, to the int argument value.

TIOCGPGRP Retrieves the process group value for the SIGIO signals into the argument int value.

The control device also supports the select() call for a read operation. Although the write() call is
supported, it is rarely chosen. The write() call always succeeds because write operations are nonblocking.
On the last close operation of the data device, the interface is brought down (as if with theifconfig tapN
down). All the queued frames are thrown away. If the interface is up when the data device is not open,
output frames are thrown away to avoid piling up.

Related information
ioctl subroutine
tty Subsystem Overview
Understanding TTY Drivers

tmscsi Special File

Purpose
Provides access to the SCSI tmscsi device driver.

Description
The tmscsi special file provides an interface to allow processor-to-processor data transfer using the SCSI
send command. This single device driver handles both SCSI initiator and SCSI target mode roles.

The user accesses the data transfer functions through the special files /dev/tmscsi0.xx, /dev/
tmscsi1.xx, These are all character special files. The xx variable can be either im, initiator-mode
interface, or tm, target-mode interface. The initiator-mode interface transmits data, and the target-mode
interface receives data.

The least significant bit of the minor device number indicates to the device driver which mode interface
is selected by the caller. When the least significant bit of the minor device number is set to 1, the
target-mode interface is selected. When the least significant bit is set to 0, the initiator-mode interface is
selected.

When the caller opens the initiator-mode special file, a logical path is established allowing data to be
transmitted. The write, writex, writev, or writevx subroutine initiates data transmission for a user-mode
caller, and the fp_write or fp_rwuio kernel services initiate data transmission for a kernel-mode caller.
The SCSI target-mode device driver then builds a SCSI send command to describe the transfer, and the
data is sent to the device. Once the write entry point returns, the calling program can access the transmit
buffer.

When the caller opens the target-mode special file, a logical path is established allowing data to be
received. The read, readx, readv, or readvx subroutine initiates data reception for a user-mode caller,
and the fp_read or fp_rwuio kernel service initiates data reception for a kernel-mode caller. The SCSI
target-mode device driver then returns data received for the application.

Note: This operation is not supported by all SCSI I/O controllers.

Related information
tmscsi subroutine

Files Reference 939

close subroutine
read subroutine
SCSI Target-Mode Overview

tokn Special File

Purpose
Provides access to the token-ring adapters by way of the token-ring device handler.

Description
The tokn character special file provides access to the token-ring device handler that provides access to a
token-ring local area network. The device handler supports up to four token-ring adapters.

Usage Considerations

When accessing the token-ring device handler, the following should be taken into account:

Driver initialization and termination

The device handler may be loaded and unloaded. The device handler supports the configuration calls to
initialize and terminate itself.

Special file support

Calls other than the open and close subroutines are discussed based on the mode in which the device
handler is operating.

Subroutine Support

The token-ring device handler provides specific support for the open, close, read, and write subroutines.

open and close Subroutines

The device handler supports the /dev/tokn special file as a character-multiplex special file. The special
file must be opened for both reading and writing (O_RDWR). There are no particular considerations for
closing the special file. The special file name used in an open call depends upon how the device is to be
opened. The three types of special file names are:

Item Description

/dev/tokn Starts the device handler for the selected port, where the value of n is 0 <= n <= 7.

/dev/tokn/D Starts the device handler for the selected port in Diagnostic mode, where the value of
n is 0 <= n <= 7.

/dev/tokn/W Starts the device handler for the selected port in Diagnostic Wrap mode, where the
value of n is 0 <= n <= 7.

read Subroutine

Can take the form of a read, readx, readv, or readvx subroutine. For this call, the device handler copies
the data into the buffer specified by the caller.

write Subroutine

Can take the form of a write, writex, writev, or writevx subroutine. For this call, the device handler
copies the user data into a kernel buffer and transmits the data on the LAN.

Error Conditions

The following error conditions may be returned when accessing the device handler through the dev/tokn
special file:

940 AIX Version 7.1: Files Reference

Item Description

EACCES Indicates that permission to access the adapter is denied for one of the following
reasons:

• Device has not been configured.
• Diagnostic mode open request denied.
• The call is from a kernel-mode process.

EAGAIN Indicates that the transmit queue is full.

EBUSY Indicates one of the following:

• The device is already opened in Diagnostic mode.
• The maximum number of opens has already been reached.
• The request is denied.
• The device is in use.
• The device handler cannot terminate.

EEXIST Indicates that the device is already configured or the device handler is unable to
remove the device from switch table.

EFAULT Indicates that the an invalid address or parameter was specified.

EINTR Indicates that the subroutine was interrupted.

EINVAL Indicates one of the following:

• The parameters specified were invalid.
• The define device structure (DDS) is invalid.
• The device handler is not in Diagnostic mode.

ENOCONNECT Indicates that the device has not been started.

ENETDOWN Indicates that the network is down and the device handler is unable to process the
command.

ENOENT Indicates that there was no DDS available.

ENOMEM Indicates that the device handler was unable to allocate required memory.

ENOMSG Indicates that there was no message of desired type.

ENOSPC Indicates that the network ID table is full or the maximum number of opens was
exceeded.

EADDRINUSE Indicates that the specified network ID is in use.

ENXIO Indicates that the specified minor number was not valid.

ENETUNREACH Indicates that the device handler is in Network Recovery mode and is unable to
process the write operation.

EMSGSIZE Indicates that the data is too large for the supplied buffer.

Related information
close subroutine
open subroutine
read subroutine
write subroutine

Files Reference 941

trace Special File

Purpose
Supports event tracing.

Description
The /dev/systrace and /dev/systrcctl special files support the monitoring and recording of selected
system events. Minor device 0 of the trace drivers is the interface between processes that record trace
events and the trace daemon. Write trace events to the /dev/systrace file by the trchk and trcgen
subroutines and the trcgenk kernel service. Minor devices 1 through 7 of the trace drivers support
generic trace channels for tracing system activities such as communications link activities.

The trace special file is part of Software Trace Service Aids package.

Related information
trcgenk subroutine
RAS Kernel Services

tty Special File

Purpose
Supports the controlling terminal interface.

Description
For each process, the /dev/tty special file is a synonym for the controlling terminal associated with that
process. By directing messages to the tty file, application programs and shell sequences can ensure that
the messages are written to the terminal even if output is redirected. Programs can also direct their
display output to this file so that it is not necessary to identify the active terminal.

A terminal can belong to a process as its controlling terminal. Each process of a session that has a
controlling terminal has the same controlling terminal. A terminal can be the controlling terminal for one
session at most. If a session leader has no controlling terminal and opens a terminal device file that is
not already associated with a session (without using the O_NOCTTY option of the open subroutine), the
terminal becomes the controlling terminal of the session leader. If a process that is not a session leader
opens a terminal file or if the O_NOCTTY option is used, that terminal does not become the controlling
terminal of the calling process. When a controlling terminal becomes associated with a session, its
foreground process group is set to the process group of the session leader.

The controlling terminal is inherited by a child process during a fork subroutine. A process cannot end the
association with its controlling terminal by closing all of its file descriptors associated with the controlling
terminal if other processes continue to have the terminal file open. A process that is not already the
session leader or a group leader can break its association with its controlling terminal by using the setsid
subroutine. Other processes remaining in the old session retain their association with the controlling
terminal.

When the last file descriptor associated with a controlling terminal is closed (including file descriptors
held by processes that are not in the controlling terminal's session), the controlling terminal is
disassociated from its current session. The disassociated controlling terminal can then be acquired by
a new session leader.

A process can also remove the association it has with its controlling terminal by opening the tty file and
issuing the following ioctl command:

ioctl (FileDescriptor, TIOCNOTTY, 0):

942 AIX Version 7.1: Files Reference

It is often useful to disassociate server processes from their controlling terminal so they cannot receive
input from or be stopped by the terminal.

This device driver also supports the POSIX and Berkeley line disciplines.

Related information
fork subroutine
setsid subroutine
tty Subsystem Overview

urandom and random Devices

Purpose
Source of secure random output.

Description
The /dev/random and /dev/urandom character devices provide cryptographically secure random output
generated from interrupt timings or input written to the devices.

The /dev/random device is intended to provide high quality, cryptographically secure random output
and will only return output for which sufficient (an equal or greater amount) random input is available
to generate the output. If insufficient random input is available, reads from the /dev/random device will
block until the request can be fulfilled unless the O_NONBLOCK flag was specified when the device was
opened, in which case as much high quality output as could be generated is returned with the error code
EAGAIN.

The /dev/urandom device provides a reliable source of random output, however the output will not
be generated from an equal amount of random input if insufficient input is available. Reads from
the /dev/urandom device always return the quantity of output requested without blocking. If insufficient
random input is available, alternate input will be processed by the random number generator to provide
cryptographically secure output, the strength of which will reflect the strength of the algorithms used by
the random number generator. Output generated without random input is theoretically less secure than
output generated from random input, so /dev/random should be used for applications for which a high
level of confidence in the security of the output is required.

Data written to either device is added to the pool of stored random input and may be used for generating
output. Writes behave identically for both devices and will not block.

Implementation Specifics
The /dev/random and /dev/urandom devices are created from major and minor numbers assigned by
the device configuration subsystem when the random number generator is loaded, so the device names
should always be used when attempting to locate or open the devices. The devices are deleted when the
random number generator is unloaded. When the system is shut down using the shutdown command,
output is taken from the /dev/urandom device and is written back to the /dev/random device when
the random number generator is loaded on the next boot to provide starting entropy to the generator,
enhancing the quality of the stored random input after boot.

Input is gathered from interrupt timings when the pool of stored random input falls below half full and
continues to be gathered until the pool is again full. This process causes a minor performance impact to
all external interrupts while timings are being gathered, which ceases when timings cease to be gathered.
Data written to either of the random devices will also contribute to the pool of stored random input and
can influence the output, thus writing to these devices should be a privileged operation. This is enforced
by the permissions of the devices, so it can be changed by the administrator to be completely disallowed
if desired.

Files Reference 943

usb0 Special File

Purpose
Provides access to the Universal Serial Bus (USB) protocol driver.

Syntax
#include <sys/dump.h>

Description
The usb0 special file provides an interface to a USB protocol pseudo device. This special file must not
be opened directly by application programs (with the exception of diagnostics applications). The usb0
special file is only special file created as USB protocol pseudo device irrespective of the type of the host
controllers.

The description of the USBD Protocol Device Driver in the AIX® Version 7.1 Technical Reference: Kernel and
Subsystems, Volume 1 provides the implementation specification for the USB Protocol driver.

usbhc Special File

Purpose
Provides access to the Universal Serial Bus (USB) adapter device driver. This host controller adapter
device can be: a Enhanced Host Controller Interface (EHCI) or Extensible Host Controller Interface (xHCI)
or Open Host Controller Interface (OHCI).

Description
The usbhc special file provides an interface to an USB adapter device. This special file must not be
opened directly by the application programs (with the exception of diagnostics applications). The /dev/
usbhc0.. and /dev/usbhc1.. are the special files.

For each physical EHCI capable adapter, three special files will be created out of which two provide
interface to the OHCI (companion controllers) and the other provides interface to the EHCI controller. For
each physical OHCI and XHCI capable adapters, one special file will be created.

usblibdev Special File

Purpose
Provides access to the libusb devices.

Description
The usblibdev special file provides access to the libusb devices. The libusb devices can belong to
any of the USB class, USB subclass, or USB protocol. The libusb devices are discovered only when the
usblibconfig attribute of the USB protocol device (usb0) is set to available.

To enable the libusb devices, enter:

#chdev –a usblibconfig=”available” –l usb0

To disable the libusb devices, enter:

#chdev –a usblibconfig=”defined” –l usb0

944 AIX Version 7.1: Files Reference

Note: The usblibconfig attribute can also be set by using the smitty usb command. The usb0 USB
protocol device must be in the state defined to successfully change the usblibconfig attribute. The
usblibdev special file might not be opened by the applications directly. You can open the devices only
by using the libusb APIs.

Related information
USBLIBDD Passthrough Driver
smitty command

usbms Special File

Purpose
Provides access to the Universal Serial Bus (USB) Mass Storage Client device driver.

Description
The usbms special file provides block and character (raw) access to USB Bulk Mass Storage devices
similar to Removable Disk EXchange (RDX), flash drives, and disk devices.

The r prefix on a special file name means that the drive is accessed as a raw device rather than a
block device. The performance of all data transfers in multiples of the logical block length of the disk is
required for performing raw I/O operation on a RDX, flash drive, and disk drive devices. Also, all the lseek
subroutines made to the raw USB Mass storage device must set the file offset pointer to a value that is a
multiple of the specified logical block size.

USB Mass Storage Bulk Flash or RDX Devices
The special files /dev/usbms0 and /dev/usbms1,... provide block access to USB Mass Storage Bulk
Flash or RDX devices. The special file /dev/rusbms0, /dev/rusbms1,... provide character access.

When a RDX cartridge is ejected from the drive for a mounted CD-ROM or UDFS file system, the files on
the cartridge cannot be accessed. Before these files can be accessed again, the file systems mounted
from the cartridge must be unmounted. Processes that have open files on these file systems must be
exited. Processes that have current directories on these file systems must be moved. If these actions do
not work, perform a force unmount.

The man command can become unresponsive if you eject the RDX cartridge from a mounted CD-ROM
or UDFS file system. Reinserting the cartridge disc does not fix the problem. All processes (graphical
and ASCII) must be exited and the file system must be force unmounted and mounted again. The man
commands can then be started again.

The description of the USB mass storage client device driver in the AIX® Version 7.1 Technical Reference:
Kernel and Subsystems, Volume 1 provides the implementation specifications for the USB Mass Storage
Client Device Driver.

vty_server Special File

Purpose
The virtual terminal server (vty_server or vts) is an AIX device driver used to create a tty-style connection
from the partition on which the virtual terminal server is running to a virtual terminal (not a virtual
terminal server) on another partition.

Description
The vty has a master side (vty server) and a slave side (vty). The vty server is opened and used by
special programs such as mkvterm. The vty is opened and used by shells such as ksh. The data path is
bidirectional.

Files Reference 945

vts_ioctl

The vts_ioctl command is called via the device switch table when an application calls ioctl with a file
descriptor that was returned from a successful open of a vts port. vts_ioctl performs specialized control
operations on the port.

Syntax

struct vts_ioctl {
 void *vi_buffer; /* pointer to user's buffer */
 int vi_bufsize; /* size of user's buffer */
 int vi_offset; /* offset into data */
 int vi_result; /* bytes transferred */
};

The vi_buffer parameter is a pointer to a buffer in user space. The vi_bufsize parameter specifies the
size of the buffer. For VTS_READ_CLCS and VTS_READ_PARTNER, data is moved from the vts driver into
the buffer specified by vi_buffer. For VTS_WRITE_PARTNER, data is pulled from the buffer specified by
vi_buffer and moved into the vts driver.

The vi_offset parameter is used only for VTS_READ_CLCS. An application can make multiple
VTS_READ_CLCS ioctl calls; the driver may have more data to transfer to the application than will fit
in the buffer that is specified by the vi_buffer parameter.

The vi_offset is set to 0 for the first FTS_READ_CLCS. This causes the driver to query PHYP for the
current list of possible CLCs. The first sequence of the CLCs is moved into user space. Each CLC is
separated by a new line and the last CLC is terminated by a null. A count of the number of bytes moved
into user space (excluding the terminating null) is stored in vi_result.

The application determines how the data is processed (for example, the application may save the data in
a linked list). vi_result is then added to vi_offset and another VTS_READ_CLCS is performed. This
causes the driver to move the next set of CLCs into the application's buffer. This sequence of operations
continues until zero is returned in vi_result.

A sequence of VTS_READ_CLCS calls results in a sequence of CLCs separated by new lines and terminated
by a null. The following are the possible error conditions:

EIO
A driver call to PHYP returned with an error.

ENOMEM
No memory is available to hold the CLC list.

EPERM
The copyin or copyout failed.

A VTS_READ_PARTNER call returns the value that was passed on the last successful
VTS_WRITE_PARTNER call. If the vts is not currently connected, a null string is returned. The only
possible errors are errors that are returned by copyin or copyout routines.

The VTS_WRITE_PARTNER call creates and ends connections. The following are possible errors when
ending a connection:

ENXIO
The vts is not currently connected.

EIO
The H_FREE_VTERM call to PHYP returned H_HARDWARE. This usually indicates that there is a
problem with PHYP or that the partition connection failed.

EINVAL
The H_FREE_VTERM call to PHYP returned H_PARAMETER. This usually indicates a driver problem.

To create a connection, the buffer must contain a CLC that was passed from VTS_READ_CLCS. The CLC
can contain the ending new line, which is removed. The following are possible errors:

946 AIX Version 7.1: Files Reference

EBUSY
The vts is already connected. Use VTS_READ_PARTNER to determine where the vts is connected, or
use VTS_WRITE_PARTNER with a null name to end the connection.

EINVAL
The CLC that was passed is not in the list of valid connections for this vts. EINVAL is also returned if
the H_REGISTER_VTERM call to PHYP returns H_PARAMETER.

Note: If a reconfiguration has occurred, the list of valid CLCs may have changed.

EIO
The H_REGISTER_VTERM call to PHYP returned H_PARAMETER. This may be due to a failed PHYP.

Related information
ioctl subroutine
ttyname subroutine
tty Subsystem

Header Files
Information that is needed by several different files or functions is collected into a header file. A header
file contains C-language definitions and structures. Centralizing information into a header file facilitates
the creation and update of programs. Because #include statements are used to insert header files into a
C-language program, header files are often referred to as include files.

Header files define the following functions:

• Structures of certain files and subroutines
• Type definition (typedef) synonyms for data types
• System parameters or implementation characteristics
• Constants and macros that are substituted during the C language preprocessing phase

By convention, the names of header files end with .h (dot h). The .h suffix is used by header files that are
provided with the operating system; however, the suffix is not required for user-generated header files.

Note: Several of the header files provided with the operating system end with .inc (include file).

Additional header files are provided with the operating system. Most of these can be found in either
the /usr/include directory or the /usr/include/sys directory. Use the pg command to view the contents
of a header file.

More information about the following header files is provided in this documentation:

Item Description

a.out.h Defines the structure of the standard a.out file.

acct.h Describes the format of the records in the system accounting files.

ar.h Describes the format of an archive file.

audit.h Defines values used by the auditing system as well as the structure of a bin.

core.h Describes the structures created as a result of a core dump.

ct_ffdc.h Provides data types, definitions, and interface prototypes for the First Failure Data
Capture (FFDC) C language library interfaces.

dirent.h Describes the format of a file system-independent directory entry.

eucioctl.h Defines ioctl operations and data types for handling EUC code sets.

fcntl.h Defines values for the fcntl and open subroutines.

filsys.h Contains the format of a file system logical volume.

flock.h Defines the file control options.

Files Reference 947

Item Description

fullstat.h Describes the data structure returned by the fullstat and ffullstat subroutines.

iconv.h Defines types, macros, and subroutines for character code set conversion.

ipc.h Defines structures used by the subroutines that perform interprocess communications
operations.

ldr.h Describes the ld_info data type and loader entry points.

libperfstst.h Describes the structures and constants used by the libperfstat.h API subroutines.

limits.h Defines implementation limits identified by the IEEE POSIX 1003 standard.

math.h Defines math subroutines and constants

mode.h Defines the interpretation of a file mode.

msg.h Defines structures used by the subroutines that perform message queueing operations.

mtio.h Defines the magnetic tape user include file.

param.h Defines certain hardware-dependent parameters.

poll.h Defines the pollfd structure used by the poll subroutine.

sem.h Defines the structures that are used by subroutines that perform semaphore operations.

sgtty.h Defines structures used by the Berkeley terminal interface.

shm.h Defines structures used by the subroutines that perform shared memory operations.

spc.h Defines external interfaces provided by the System Resource Controller (SRC)
subroutines.

srcobj.h Defines structures used by the System Resource Controller (SRC) subsystem.

stat.h Describes the data structure returned by the status subroutines.

statfs.h Describes the structure of the statistics returned by the status subroutines.

statvfs.h Describes the structure of the statistics that are returned by the statvfs subroutines and
fsatvfs subroutines.

systemcfg.h Defines the _system_configuration structure.

tar.h Defines flags used in the tar archive header.

termio.h Defines structures used by the terminal interface for compatibility of Version 2 of the
operating system.

termios.h Defines structures used by the POSIX terminal interface.

termiox.h Defines the structure of the termiox file, which provides the extended terminal interface.

trace.h Defines implementation trace identified by IEEE POSIX 1003.

types.h Defines primitive system data types.

unistd.h Defines POSIX implementation characteristics.

utmp.h Defines the format of certain user and accounting information files.

values.h Defines hardware-dependent values.

vmount.h Describes the structure of a mounted file system.

Related information
pg Command

948 AIX Version 7.1: Files Reference

List of Major Control Block Header Files
The Base Operating System constants and control block structure definitions are contained in header files
in the /usr/include and /usr/include/sys directories. The following are the major constants and control
blocks and their corresponding header files:

Item Description

/usr/include/a.out.h Common Object File Format (COFF) structures

/usr/include/core.h An include file for the /usr/include/sys/core.h header file

/usr/include/errno.h An include file for the /usr/include/sys/errno.h header file

/usr/include/lvmrec.h LVM record structure

/usr/include/sgtty.h Line discipline structures and constants for Berkeley compatibility

/usr/include/signal.h An include file for the /usr/include/sys/signal.h header file

/usr/include/termio.h An include file for the /usr/include/sys/termio.h header file

/usr/include/termios.h POSIX line-discipline structures and constants

/usr/include/xcoff.h Extended Common Object File Format structures

/usr/include/sys/acct.h Accounting structures

/usr/include/sys/badisk.h Bus-attached-disk structures

/usr/include/sys/bbdir.h Bad-block directory structure

/usr/include/sys/bootrecord.h Boot record structure

/usr/include/sys/buf.h Buffer header structures

/usr/include/sys/cdrom.h CD-ROM structures

/usr/include/sys/cfgodm.h Configuration object class structures

/usr/include/sys/configrec.h Disk configuration record structure

/usr/include/sys/core.h Core dump structure

/usr/include/sys/debug.h Traceback table or procedure-end table

/usr/include/sys/device.h Device switch table

/usr/include/sys/deviceq.h Device queue-management structures

/usr/include/sys/devinfo.h Device information structures

/usr/include/sys/dir.h Directory entry structures

/usr/include/sys/display.h Virtual display driver structures

/usr/include/sys/dump.h Component dump table structure

/usr/include/sys/entuser.h Ethernet device driver structures

/usr/include/sys/errids.h Error-log record identifiers

/usr/include/sys/errno.h Error codes

/usr/include/sys/fd.h Diskette device driver structures

/usr/include/sys/file.h File structure

/usr/include/sys/fstypes.h File-system parameter table

/usr/include/sys/hd_psn.h Layout of reserved space on the disk

/usr/include/sys/ide.h IDE device driver structures

/usr/include/sys/inode.h I-node structures

Files Reference 949

Item Description

/usr/include/sys/intr.h Interrupt handler structures

/usr/include/sys/ipc.h Interprocess Communications (IPC) structures

Item Description

/usr/include/sys/iplcb.h Initial Program Load (IPL) control block structure

/usr/include/sys/ldr.h Loader structures and constants

/usr/include/sys/low.h Kernel Page 0 definition

/usr/include/sys/machine.h Machine dependent control registers

/usr/include/sys/mbuf.h Memory buffer structures

/usr/include/sys/mdio.h Machine device driver structures

/usr/include/sys/mount.h Mount structures

/usr/include/sys/mpqp.h Multiprotocol Quad Port (MPQP) device-driver structures

/usr/include/sys/msg.h Message queue structures

/usr/include/sys/mstsave.h Machine State Save Area structures

/usr/include/sys/param.h Process management constants

/usr/include/sys/pri.h Constants for process priorities

/usr/include/sys/proc.h Process table structure

/usr/include/sys/pseg.h Process private segment layout

/usr/include/sys/reg.h Machine-dependent registers

/usr/include/sys/scdisk.h SCSI-disk device driver structures

/usr/include/sys/scsi.h SCSI device driver structures

/usr/include/sys/seg.h Memory management constants

/usr/include/sys/sem.h Semaphore structures

/usr/include/sys/shm.h Shared-memory facility structures

/usr/include/sys/signal.h Signal structures and constants

/usr/include/sys/socketvar.h Sockets structures

/usr/include/sys/stat.h File status structure

/usr/include/sys/systm.h System global declarations

/usr/include/sys/termio.h Line discipline structures and constants for compatibility of Version 2
of the operating system

/usr/include/sys/timer.h Timer structures

/usr/include/sys/tokuser.h Token-ring device handler structures

/usr/include/sys/trchkid.h Trace hook IDs

/usr/include/sys/user.h User structure or user area (ublock)

/usr/include/sys/utsname.h UTSNAME structure (system name, node ID, machine ID)

/usr/include/sys/var.h Runtime system parameter structure

/usr/include/sys/vfs.h Virtual file system structures

/usr/include/sys/vnode.h Virtual i-node (v-node) structures

950 AIX Version 7.1: Files Reference

Item Description

/usr/include/sys/xcoff.h Extended Common Object File Format structures

/usr/include/sys/xmalloc.h Heap structure

/usr/include/sys/xmem.h Cross memory service structures

ct_ffdc.h File

Purpose
Provides data types, definitions, and interface prototypes for the First Failure Data Capture (FFDC) C
language library interfaces.

Description
This header file must be included by any C and C++ language source code files that make use of the
First Failure Data Capture C language interfaces. This file contains the C language prototypes for the First
Failure Data Capture interfaces, the symbolic constants used as return codes from these interfaces, and
data type definitions needed by First Failure Data Capture C and C++ language clients.

C Language Interface Selection Control

This file provides the compiler definition FC_VERSION. This definition controls which version of the First
Failure Data Capture interfaces should be used during compilation of the source code. Currently, only one
version of the First Failure Data Capture interfaces are available, and the value of FC_VERSION is set
to a default value of 1. Future versions of the First Failure Data Capture interfaces can be used during
compilation—when they become available—by setting the value for FC_VERSION on the compilation
command line. If this variable is not set during compilation, the value for FC_VERSION reverts to the
default value of 1, and the initial version of the FFDC interfaces is used.

Data Types

The fc_eid_t data type defined by this module is used to store a First Failure Data Capture Failure
Identifier. This identifier is created by the fc_push_stack and fc_log_error interfaces whenever these
interfaces are successful in recording failure information. This identifier contains information in an
encoded form to indicate the system on which the record was made, the time when the record was
made, and the location of the record. First Failure Data Capture commands such as fcreport and fcstkrpt
can be used at a later time to obtain the exact failure report for problem determination efforts.

FFDC Environment Establishment Codes

A First Failure Data Capture client application uses the fc_init interface to specify how the FFDC
Environment should be established. The following selections are supported:

FC_LOG

A basic FFDC Environment is established, which permits the application to record failure information
to the AIX Error Log and the BSD System Log. An FFDC Error Stack is not established for use by
the application in this case, unless this value is combined with either the FC_STACK_CREAT or the
FC_STACK_INHERIT options described below. This selection would be used by applications making
use of the fc_log_error interface only.

FC_STACK_CREAT

Creates an FFDC Error Stack Environment if one was not previously created by an ancestor of this
process, or inherits the FFDC Error Stack Environment if an ancestor previously established one. The
FFDC Error Stack Environment permits the application to record information to the AIX Error Log, the
BSD System Log, and the FFDC Error Stack. This selection is used by applications that wish to use the
fc_push_stack interface as well as the fc_log_error interface. This selection is not to be combined
with the FC_STACK_INHERIT option described next.

Files Reference 951

FC_STACK_INHERIT

Inherit an FFDC Error Stack Environment only if an ancestor process previously established an FFDC
Error Stack Environment. If an ancestor did not establish such an environment, the application does
not make use of an FFDC Error Stack, but may still make use of the AIX Error Log and the BSD System
Log. Do not combine this selection with the FC_STACK_CREAT option specified previously.

Record Type Definitions

Seven FFDC Event Types are specified in this file. These event types are used to instruct the fc_log_error
interface as to the severity of the condition being logged:

FFDC_EMERG

A severe failure has occurred, and the system is in danger of coming offline. This information is
required by the system administrator to bring the system back online. The AIX Error Log type
equivalent is PEND. The BSD System Log priority equivalent is LOG_EMERG.

FFDC_ERROR

A permanent failure has occurred, and the condition will persist until it is repaired. The system is not
in danger of coming offline. The AIX Error Log type equivalent is PERM. The BSD System Log priority
equivalent is LOG_ERR.

FFDC_STATE

An event of some significance has occurred, but the event does not constitute a failure condition. The
AIX Error Log type equivalent is INFO. The BSD System Log priority equivalent is LOG_NOTICE.

FFDC_PERF

A condition has been noticed which can or will degrade the system's performance below acceptable
levels. The system is not in danger of coming offline, but performance may be unacceptably slow,
which can result in random failures in system applications, such as timeout conditions. The AIX Error
Log type equivalent is PERF. The BSD System Log priority equivalent is LOG_WARNING.

FFDC_TRACE

This entry identifies the name and location of a trace file generated by an application or system
component. Such an entry would be made when a trace has been enabled in an application or a
component, to indicate where the trace file resides. The AIX Error Log type equivalent is UNKN. The
BSD System Log priority equivalent is LOG_INFO.

FFDC_RECOV

A recovery action has been successfully completed by the system in response to an FFDC_EMERG,
FFDC_ERROR, or FFDC_PERF condition. Such an entry would be created only after an FFDC_EMERG,
FFDC_ERROR, or FFDC_PERF condition was detected, and a recovery action started in response to
that condition completed successfully. The AIX Error Log type equivalent is TEMP. The BSD System
Log priority equivalent is LOG_DEBUG.

FFDC_DEBUG

A failure condition was detected. Unlike the FFDC_ERROR case, the failure is not a permanent
condition, or the system can continue successfully with the condition present. The AIX Error Log
type equivalent is UNKN. The BSD System Log priority equivalent is LOG_DEBUG.

Examples
To use this file in a C or C++ language program, add the following line near the beginning of the source
code module:

#include <rsct/ct_ffcd.h>

952 AIX Version 7.1: Files Reference

Location
/opt/rsct/include/ct_ffdc.h

/usr/include/rsct/ct_ffdc.h

dirent.h File
The _DNAME_MAX and PATH_MAX constants specify maximum file names and path names, respectively,
across all types of file systems. The constants defined by a particular file system are applicable only to
that file system. Using file system-specific constants and directory structures makes it very difficult to
port code across different types of file systems.

Purpose
Describes the format of a file system-independent directory entry.

Description
The /usr/include/dirent.h file describes the format of a directory entry without reference to the type of
underlying system.

The dirent structure, defined in the dirent.h file, is used for directory access operations. Using these
access operations and the dirent structure, along with its associated constants and macros, shields you
from the details of implementing a directory and provides a consistent interface to directories across all
types of file systems.

The dirent structure contains the following fields for each directory entry:

ulong_t d_offset; /* actual offset of this entry */
ino_t d_ino; /* inode number of entry */
ushort_t d_reclen; /* length of this entry */
ushort_t d_namlen; /* length of string in d_name */
char d_name[_D_NAME_MAX+1]; /* name of entry (filename) */

_D_NAME_MAX is a constant that indicates the maximum number of bytes in a file name for all file
systems. (Related to this constant is the PATH_MAX constant, which specifies the maximum number of
bytes in the full path name of a file, not including the terminating null byte.)

The value of the _D_NAME_MAX constant is specific to each type of filesystem type. It can be determined
by using the pathconf or fpathconf subroutine.

The size of a dirent structure depends on the number of bytes in the file name.

Related reference
dir File
types.h File
Related information
pathconf or fpathconf subroutine

dlfcn.h File

Purpose
Describes dynamic linking.

Syntax
#include <dlfcn.h>

Files Reference 953

Description
The <dlfcn.h> header defines at least the following macros for use in the construction of a dlopen mode
argument:

Item Description

RTLD_LAZY Relocations are performed at an implementation-dependent time.

RTLD_NOW Relocations are performed when the object is loaded.

RTLD_GLOBAL All symbols are available for relocation processing of other modules

RTLD_LOCAL All symbols are not made available for relocation processing by other modules.

The header <dlfcn.h> declares the following functions, which may also be defined as macros:

void *dlopen(const char *, int);
void *dlsym(void *, const char *);
int dlclose(void *);
char *dlerror(void);

eucioctl.h File

Purpose
Defines ioctl operations and data types for handling EUC code sets.

Description
The eucioctl.h file contains information used for handling Extended UNIX Code (EUC) multibyte code
sets. It consists of ioctl operations and the related data structure.

The eucioc structure contains the following fields:

Item Description

eucw[4] Specifies the memory width of the code set. It indicates the number of bytes used to store
the multibyte characters of each of the four classes.

scrw[4] Specifies the screen width of the code set. It indicates the number of columns used to
display the multibyte characters of each of the four classes.

This structure is used in the following ioctl operations:

Item Description

EUC_WGET Returns the EUC character widths. The eucioc structure is filled with the memory and
screen widths of the current EUC code set.

EUC_WSET Sets the EUC character widths. The eucioc structure is used to set the memory and screen
widths of the current EUC code set.

Related reference
setmaps File Format
Related information
ioctl subroutine
tty Subsystem Overview

954 AIX Version 7.1: Files Reference

fcntl.h File

Purpose
Defines file control options.

Description
The /usr/include/fcntl.h file defines the values that can be specified for the Command and Argument
parameters of the fcntl subroutine and for the Oflag parameter of the open subroutine. The file-status
flags of an open file are described in the following information.

Flag Values for open Subroutine

The following flag values are accessible only to the open subroutine:

Item Description

O_RDONLY Read-only

O_WRONLY Write-only

O_RDWR Read and write

O_CREAT Open with file create (uses the third open argument)

O_TRUNC Open with truncation

O_DIRECT Open for Direct I/O

O_EXCL Exclusive open

Note: The O_EXCL flag is not fully supported for Network File Systems (NFS). The NFS
protocol does not guarantee the designed function of the O_EXCL flag.

O_NOCTTY Do not assign a controlling terminal

O_RSHARE Read shared open

O_NSHARE Read shared open

File Access Mode Mask

The O_ACCMODE mask is used to determine the file access mode.

File Status Flags for open and fcntl Subroutines

The following file status flags are accessible to both the open and fcntl subroutines:

Item Description

O_NONBLOCK POSIX nonblocking I/O

FNONBLOCK POSIX nonblocking I/O

O_APPEND An append with writes guaranteed at the end

FAPPEND An append with writes guaranteed at the end

O_SYNC Synchronous write option

FSYNC Synchronous write option

O_DSYNC Synchronous write option (file data only).

FDATASYNC Synchronous write option (file data only).

O_RSYNC Synchronous file attributes on read.

FREADSYNC Synchronous file attributes on read.

Files Reference 955

Item Description

FASYNC Asynchronous I/O

O_NDELAY Nonblocking I/O

FNDELAY Nonblocking I/O

O_LARGEFILE Access to large files enabled .

File Status Flags for open Subroutine

The following file status flags are accessible to the open subroutine:

Item Description

O_DEFER Deferred update

O_DELAY Open with delay

O_DIRECT Open for Direct I/O

File Descriptor Flags for fcntl Subroutine

The following file descriptor flag is accessible to the fcntl subroutine:

Item Description

FD_CLOEXEC Close this file during an exec.

File flag values corresponding to file access modes are as follows:

Item Description

FREAD File is open for read.

FWRITE File is open for write.

Note:

1. The FREAD and FWRITE flags cannot be used unless the _KERNEL flag has been defined.
2. The ldfcn.h file also assigns values to the FREAD and FWRITE options. If you use the ldfcn.h and

fcntl.h files together, directly or indirectly, you should use the #undef statement on the FREAD and
FWRITE options of one of the header files. If you do not, the compiler will return a warning about using
duplicate definitions.

Command Values for fcntl Subroutine

The Command values for the fcntl subroutine (that is, for fcntl subroutine requests) are:

Item Description

F_DUPFD Duplicate the file description.

F_GETFD Get the file description flags.

F_SETFD Set the file description flags.

F_GETFL Get the file status flags and file access modes.

F_SETFL Set the file flags.

F_GETLK Return information about an existing file lock.

F_GETLK64 Return information about an existing file lock.

F_SETLK Set or clear a file lock.

F_SETLK64 Set or clear a file lock.

956 AIX Version 7.1: Files Reference

Item Description

F_SETLKW Set or clear a file lock and wait if blocked.

F_SETLKW64 Set or clear a file lock and wait if blocked.

F_GETOWN Get the descriptor owner.

F_SETOWN Set the descriptor owner.

Socket Restrictions

The following Command values return EINVAL for sockets:

• F_SETLK
• F_SETLKW
• F_SETLK64
• F_SETLKW64
• F_GETLK
• F_GETLK64

Related reference
types.h File
unistd.h File
Related information
fcntl subroutine
open, openx, or creat subroutine

filsys.h File

Purpose
Contains the format of a Journaled File System (JFS) logical volume.

Syntax
#include <sys/filsys.h>

Description
The filsys.h file contains the format of a JFS file system. A JFS file system has a common format for vital
information and is divided into a number of fixed-sized units, or fragments. Fragments serve as the basic
unit of file system disk space allocation and can be smaller than the file system logical block size, which
is 4096 bytes. The file system superblock records the logical block size and fragment size, as well as the
size of the entire file system.

A unique feature of the JFS is the implementation of file system metadata as unnamed files that reside in
that file system. For example, the disk i-nodes for any file system are contained in the blocks fragments
allocated to the file described by the INODES_I i-node. The i-node number for the boot file is 0. Each of
the following reserved i-nodes corresponds to a file system metadata file:

Item Description

SUPER_I Superblock file

INODES_I Disk i-nodes

INDIR_I Indirect file blocks, double and single

INOMAP_I i-node allocation bit map

Files Reference 957

Item Description

ROOTDIR_I Root directory i-node

DISKMAP_I Block Fragment allocation bit map

INODEX_I i-node extensions

INODEXMAP_I Allocation map for i-node extensions

The first 4096 bytes of the file system are unused and available to contain a bootstrap program or other
information. The second 4096 bytes of the file system are used to hold the file system superblock. The
structure of a JFS superblock follows:

/* The following disk-blocks are formatted or reserved:
 *
 * ipl block 0 - not changed by filesystem.
 *
 * superblocks at 1 x 4096 (primary superblock) and 31 x
 * 4096 (secondary superblock). the secondary super-block
 * location is likely to be on a different disk-surface than
 * the primary super-block. both structures are allocated as
 * fragments in ".superblock".
 *
 * fragments for .inodes according to BSD layout. each
 * allocation group contains a fixed number of disk inodes.
 * for fsv3 file systems, each allocation group contains one
 * inode per 4096 byte fragment of the allocation group,
 * with the number of fragments within each group described
 * by the s_agsize field of the superblock. for fsv3p file
 * systems, the number of inodes per group is described by
 * the s_iagsize field of the superblock and may be less
 * than or greater than the number of fragments per group.
 * for these file systems, s_agsize describes the number of
 * s_fragsize fragments contained within each allocation
 * group.
 *
 * the first allocation group inodes starts at 32 x
 * 4096 bytes and consumes consecutive fragments sufficient
 * to hold the group's inodes. the inode fragments for all
 * other allocation groups start in the first fragments of
 * the allocation group and continue in consecutive
 * fragments sufficient to hold the group's inodes.
 *
 * other fragments are allocated for .indirect, .diskmap,
 * .inodemap, and their indirect blocks starting in the
 * first allocation-group.
 *
 * The special fs inodes formatted and their usage is as follows:
 *
 * inode 0 - never allocated - reserved by setting
 * n_link = 1
 * inode 1 - inode for .superblock
 * inode 2 - inode for root directory
 * inode 3 - inode for .inodes
 * inode 4 - inode for .indirect
 * inode 5 - inode for .inodemap - allocation map for
 * .inodes
 * inode 6 - inode for .diskmap - disk allocation map
 * inode 7 - inode for .inodex - inode extensions
 * inode 8 - inode for .inodexmap - allocation map for
 * .inodex
 * inode 9 - 16 - reserved for future extensions
 *
 * except for the root directory, the special inodes are not in
 * any directory.
 *
 */

#define
IPL_B 0
#define SUPER_B 1
#define SUPER_B1 31
#define INODES_B 32
#define NON_B 0
#define SUPER_I 1
#define ROOTDIR_I 2

958 AIX Version 7.1: Files Reference

#define INODES_I 3
#define INDIR_I 4
#define INOMAP_I 5
#define DISKMAP_I 6
#define INODEX_I 7
#define INDOESMAP_I 8

/*
 * super block format. primary superblock is located in the
 * second 4096 bytes of the file system.
 * the secondary super-block is not used except for disaster
 * recovery.
*/
 struct superblock
 {
 char s_magic[4]; /* magic number */
 char s_flag[4]; /* flag word (see below) */
 int s_agsize; /* fragments per allocation group */
 int s_logserial; /* serial number of log when fs mounted */
 daddr_t s_fsize; /* size (in 512 bytes) of entire fs */
 short s_bsize; /* block size (in bytes) for this

 system */
 short s_spare; /* unused. */
 char s_fname[6]; /* name of this file system */
 char s_fpack[6]; /* name of this volume */
 dev_t s_logdev; /* device address of log */

 /* current file system state information, values change over
time */
 char s_fmod; /* flag: set when file system is mounted */
 char s_ronly; /*flag: file system is read only */
 time_t s_time; /* time of last superblock update */

 /* more persistent
information &
nbsp; &
nbsp;*/
 int s_version; /* version
number
 */
 int s_fragsize; /* fragment size in bytes (fsv3p only) */
 int s_iagsize; /* disk inodes per alloc grp (fsv3p only) */
 int s_compress; /* > 0 if data compression */

};

 /* Version 4 fs magic number */
 #define fsv4magic "\102\041\207\145"
 /* Version 4p fs magic number */
 #define fsv4pmagic "\145\207\041\102"
 /* Version 4p version number */
 #define fsv4pvers 1

The path name of this file is /usr/include/jfs/filsys.h. But, if the /usr/include/sys/filsys.h file is
included, the /usr/include/jfs/filsys.h file is included by default.

The fields of the superblock structure have the following functions:

Item Description

s_fname Specifies the name of the file system.

s_fpack Specifies the name of the volume on which the file system resides.

s_fsize Specifies the entire file system size in 512-byte units.

s_bsize Specifies the file-system logical block size in bytes.

s_fragsize Specifies the file system fragment size and is only valid for fsv3p file systems. For
fsv3 file systems, the file-system fragment size is logically defined as the file-system
logical block size.

s_agsize Specifies the number of fragments per file system allocation group. For fsv3 file
systems, this field also specifies the number of disk i-nodes per file system allocation
group.

Files Reference 959

Item Description

s_iagsize Specifies the number of disk i-nodes per file system allocation group for fsv3p file
systems. The s_iagsize field is only valid for fsv3p file systems.

s_magic Specifies the file-system magic number and is used to validate file systems. The
magic number is encoded as a 4-byte character string to make it possible to validate
the superblock without knowing the byte order of the remaining fields. To check for a
valid fsv3 superblock, use a condition similar to:

if (strncmp(sp->s_magic,fsv3magic,4) == 0)

For fsv3p file systems, superblock validation is made by checking both the s_magic
and s_version fields.

s_version Specifies the file-system version number and is only valid for fsv3p file systems. To
check for a valid fsv3p superblock, use a condition similar to:

if (strncmp(sp->s_magic,fsv3pmagic,4) == 0 &&
 sp->s_version == fsv3pvers)

s_logdev Specifies the device ID of the file system log device.

s_logserial Records the serial number of the log device at the time the file system was last
mounted as modifiable.

s_fmod Contains a flag to indicate the cleanliness of the file system. Whenever a file system
is mounted, this flag is checked and a warning message is printed if the s_fmod field
is equal to nonzero. A file system whose s_fmod field is equal to 0 is very likely to be
clean, and a file system whose s_fmod field is equal to 2 is likely to have problems.
The s_fmod field is intended to be a three-state flag with the third state being a
sticky state. The three states are:

• 0 = File system is clean and unmounted.
• 1 = File system is clean and mounted.
• 2 = File system was mounted dirty.

If you only mount and unmount the file system, the flag toggles back and forth
between states 0 and 1. If you mount the file system while the flag is in state 1, the
flag goes to state 2 and stays there until you run the fsck command. The only way to
clean up a corrupted file system (change the flag from state 2 back to state 0) is to
run the fsck command.

s_ronly Contains a flag indicating that the file system is mounted read-only. This flag is
maintained in memory only; its value on disk is not valid.

s_time Specifies the last time the superblock of the file system was changed (in seconds
since 00:00 Jan. 1, 1970 (GMT)).

Related reference
param.h File
Related information
fsck command
mkfs command
File systems

960 AIX Version 7.1: Files Reference

flock.h File

Purpose
Defines file control options.

Description
The flock structure in the /usr/include/sys/flock.h file, which describes a lock, contains the following
fields:

Item Description

l_type Describes the type of lock. If the value of the Command parameter to the fcntl subroutine
is F_SETLK or F_SETLKW, the l_type field indicates the type of lock to be created.
Possible values are:
F_RDLCK

A read lock is requested.
F_WRLCK

A write lock is requested.
F_UNLCK

Unlock. An existing lock is to be removed.

If the value of the Command parameter to the fcntl subroutine is F_GETLK, the l_type
field describes an existing lock. Possible values are:

F_RDLCK
A conflicting read lock exists.

F_WRLCK
A conflicting write lock exists.

F_UNLCK
No conflicting lock exists.

l_whence Defines the starting offset. The value of this field indicates the point from which the
relative offset, the l_start field, is measured. Possible values are:
SEEK_SET

The relative offset is measured from the start of the file.
SEEK_CUR

The relative offset is measured from the current position.
SEEK_END

The relative offset is measured from the end of the file.

These values are defined in the unistd.h file.

l_start Defines the relative offset in bytes, measured from the starting point in the l_whence
field.

l_len Specifies the number of consecutive bytes to be locked.

l_sysid Contains the ID of the node that already has a lock placed on the area defined by the
fcntl subroutine. This field is returned only when the value of the Command parameter is
F_GETLK.

l_pid Contains the ID of a process that already has a lock placed on the area defined by the
fcntl subroutine. This field is returned only when the value of the Command parameter is
F_GETLK.

l_vfs Specifies the file system type of the node identified in the l_sysid field.

Files Reference 961

Although the flock structure is used by application programs to make file lock requests, the extended
flock structure, struct eflock, is used internally by the kernel. The eflock structure is identical to the flock
structure in that it has the same fields. The differences are that the l_len and l_start fields are 64 bit
integers.

The flock64 structure in the /usr/include/sys/flock.h file, which describes a lock, contains the following
fields:

Item Description

l_type Describes the type of lock. If the value of the Command parameter to the fcntl subroutine
is F_SETLK or F_SETLKW, the l_type field indicates the type of lock to be created.
Possible values are:
F_RDLCK

A read lock is requested.
F_WRLCK

A write lock is requested.
F_UNLCK

Unlock. An existing lock is to be removed.

If the value of the Command parameter to the fcntl subroutine is F_GETLK, the l_type
field describes an existing lock. Possible values are:

F_RDLCK
A conflicting read lock exists.

F_WRLCK
A conflicting write lock exists.

F_UNLCK
No conflicting lock exists.

l_whence Defines the starting offset. The value of this field indicates the point from which the
relative offset, the l_start field, is measured. Possible values are:
SEEK_SET

The relative offset is measured from the start of the file.
SEEK_CUR

The relative offset is measured from the current position.
SEEK_END

The relative offset is measured from the end of the file.

These values are defined in the unistd.h file.

l_start Defines the relative offset in bytes, measured from the starting point in the l_whence
field. This field is of the type off64_t.

l_len Specifies the number of consecutive bytes to be locked. This field is of the type off64_t.

l_sysid Contains the ID of the node that already has a lock placed on the area defined by the
fcntl subroutine. This field is returned only when the value of the Command parameter is
F_GETLK.

l_pid Contains the ID of a process that already has a lock placed on the area defined by the
fcntl subroutine. This field is returned only when the value of the Command parameter is
F_GETLK.

l_vfs Specifies the file system type of the node identified in the l_sysid field.

Related reference
unistd.h File

962 AIX Version 7.1: Files Reference

Related information
fcntl subroutine
lockfx, lock, or flock subroutine

fullstat.h File

Purpose
Defines the data structure returned by the fullstat subroutine.

Description
The /usr/include/sys/fullstat.h file defines the data structure returned by the fullstat and ffullstat
subroutines. This file also defines the Command parameters used by the fullstat and ffullstat
subroutines. The fullstat structure contains the following fields:

Note: Time is measured in seconds since 00:00:00 GMT, January 1, 1970.

Item Description

st_dev ID of device containing a directory entry for this file. The file serial number
and the device ID uniquely identify the file within the system.

st_ino File serial number.

st_mode The mode of the file, as defined in the /usr/include/sys/mode.h file.

st_nlink Number of links to file.

st_uid User ID of the owner of the file.

st_gid Group ID of the file owner group.

st_rdev ID of this device. This field is defined only for character or block special files.

st_size File size in bytes.

st_atime Time of last access.

st_mtime Time of last data modification.

st_ctime Time of last file status change.

st_blksize Optimal block size for the file system.

st_blocks Number of blocks actually allocated to the file.

st_vfstype File-system type as defined in the vmount.h file.

fst_type Type of v-node.

fst_vfs Virtual file system ID.

fst_flag Indicates whether directory or file is a virtual mount point.

fst_i_gen Generation number of the i-node.

fst_reserved[8] Reserved.

The following fields are maintained for source-level compatibility with previous versions of the operating
system:

fst_uid_rev_tag
fst_gid_rev_tag
fst_nid

Related reference
mode.h File

Files Reference 963

stat.h File
Related information
statx, stat, lstat, fstax, fstat, fullstat, or ffullstat subroutine

grp.h File

Purpose
Describes group structure.

Syntax
#include <grp.h>

Description
The grp.h header declares the structure group that includes the following members:

char *gr_name the name of the group
gid_t gr_gid numerical group ID
char **gr_mem pointer to a null-terminated array of character pointers to member names

The gid_t type is defined as described in the sys/types.h header file.

The following are declared as functions and may also be defined as macros. Function prototypes must be
provided for use with an ISO C compiler.

struct group *getgrgid(gid_t);
struct group *getgrnam(const char *);
int getgrgid_r(gid_t, struct group *, char *, size_t, struct group **);
int getgrnam_r(const char *, struct group *, char *, size_t, struct group **);
struct group *getgrent(void);
void endgrent(void);
void setgrent(void);

Related reference
types.h File
Related information
getgrent, endgrent, getgrnam, getgrgid subroutine
getgrgid_r subroutine

iconv.h File

Purpose
Defines types, macros, and subroutines for character code set conversion.

Description
The /usr/include/iconv.h file defines types, subroutines, and macros used in character code-set
conversion by the iconv family of subroutines and commands. The iconv.h file defines the iconv_t data
type.

Related information
genxlt command
iconv command
iconv subroutine
National Language Support Overview for Programming

964 AIX Version 7.1: Files Reference

inode.h File

Purpose
Describes a file system file or directory entry as it is listed on a disk.

Syntax

#include <sys/types.h>
#include <sys/ino.h>

Description
The inode file for an ordinary file or directory in a file system has the following structure defined by the
sys/ino.h file format:

struct dinode
 {
 /* generation number */
 ulong di_gen;
 /* mode_t returned by stat () */
 /* format,attributes and permission bits */
mode_t di_mode;

/* number of links to file(if 0,inode is available) */
ushort di_nlink;

/* accounting ID */
ushort di_acct;

/* user id of owner */
uid_t di_uid;

/* group id of owner */
gid_t di_gid;

/* size of file */
off_t di_size;

/* number of blocks actually used by file */
ulong di_nblocks;

/* time last modified */
struct timestruc_t di_mtime_ts;

/* time last accessed */
struct timestruc_t di_atime_ts;

/* time last changed inode */
struct timestruc_t di_ctime_ts;

/*defines for old time_t names */
#define di_mtime di_mtime_ts.tv_sec
#define di_atime di_atime_ts.tv_sec
#define di_ctime di_ctime_ts.tv_sec

/* extended access control information */
long di_acl; /* acl pointer */
#define ACL_INCORE (1<<31)
ulong di_sec; /* reserved */

/* spares */
ulong di_rsrvd[5];

/***** file type-dependent information ****/
/* size of private data in disk inode is D_PRIVATE.
* location and size of fields depend on object type.
*/
define D_PRIVATE 48

 union di_info
{
 /* all types must fit within d_private */
 char d_private[D_PRIVATE];

Files Reference 965

 /* jfs regular file or directory. */
 struct regdir
 {
 /*privilege vector-only for non-directory */
 struct
 {
 ulong_di_offset;
 ulong_di_flags;
 define;PCL_ENABLED(1<<31)
 define PCL_EXTENDED(1<<30)
 define PCL_FLAGS\
 (PCL_ENABLED|PCL_EXTENDED)
 }_di_privingo;
 priv_t_di_priv;
 /* ACL templates - only for directory */
 struct
 {
 ulong_di_aclf;
 ulong_di_acld;
 {_di_aclingo;
 } _di_sec;
} _di_file;

/* offsets of regular file or directory private data. */
define di_rdaddr _di_info._di_file._di_rdaddr
 define di_vindirect _di_info._di_file._di_vinderect
 define di_rinderect _di_info._di_file._di_rinderect
 define di_privinfo _di_info._di_file._di_sec._di_privinfo
 define di_privoffset _di_privinfo._di_privoffset
 define di_privflags _di_privinfo._di_privflags
 define di_priv _di_info._di_file._di_sec._di_priv
 define di_aclf _di_info._di_file._di_sec._di_aclinfo._di_aclf
 define di_acld _di_info._di_file._di_sec._di_aclinfo._di_acld
 /*special file (device) /*
 struct
 }
 dev_t_di_rdev;
 }_di_dev;

/* offsets of special file private data. */
define di_rdev _di_infor._di_dev._di_rdev
define di_bnlastr _di_info._di_dev._di_bnlastr
define di_dgp _di_info._di_dev._di_dgp
define di_pino _di_info._di_dev._di_pino

 /*
 * symbolic link.link is stored inode if its
 * length is less than D_PRIVATE. Otherwise like
 * regular file.
 */
 union
{
 char _s_private[D_PRIVATE];
 struct regdir_s_symfile;
 }_di_sym;

/* offset of symbolic link private data */
define di_symlink _di_info._di_sym._s_private

 /*
 *data for mounted filesystem. kept in inode = 0
 *and dev = devt of mounted filesystem in inode table.
 */
 struct mountnode
 {
 struct inode *_iplog; /*itab of log*/
 struct inode *_ipinode; /*itab of .inodes*/
 struct inode *_ipind; /*itab of .indirect*/
 struct inode *_ipinomap; /*itab of inode map*/
 struct inode *_ipdmap; /*itab of disk map*/
 struct inode *_ipsuper; /*itab of super blk*/
 struct inode *_ipinodex; /*itab of .inodex*/
 struct jfsmount *_jfsmnt; /* ptr to mount data*/
 ushort _fperpage; /* frag per block */
 ushort _agsize; /* frags per ag */
 ushort _iagsize; /* inodes per ag */
 }_mt_info;

 /*
 * data for mounted filesystem. kept in inode = 0
 * and dev = devt of mounted filesystem in inode table.

966 AIX Version 7.1: Files Reference

 */
 struct mountnode
 {
 struct inode *_iplog; /*itab of log*/
 struct inode *_ipinode; /*itab of .inodes*/
 struct inode *_ipind; /*itab of .indirect*/
 struct inode *_ipinomap; /*itab of inode map*/
 struct inode *_ipdmap; /*itab of disk map*/
 struct inode *_ipsuper; /*itab of super blk*/
 struct inode *_ipinodex; /*itab of .inodex*/
 struct jfsmount *_jfsmnt; /* ptr to mount data*/
 ushort _fperpage; /* frag per block */
 ushort _agsize; /* frags per ag */
 ushort _iagsize; /* inodes per ag */
 ushort _compress /* > 0 if data comp */
 }_mt_info;

/* offsets of MOUNT data */
define di_iplog _di_info._mt_info._iplog
define di_ipinode _di_info._mt_info._ipinode
define di_ipind _di_info._mt_info._ipind
define di_ipinomap _di_info._mt_info._ipinomap
define di_ipdmap _di_info._mt_info._ipdmap
define di_ipsuper _di_info._mt_info._ipsuper
define di_ipinodex _di_info._mt_info._ipinodex
define di_jfsmnt _di_info._mt_info._jfsmnt
define di_fperpage _di_info._mt_info._fperpage
define di_agsize _di_info._mt_info._agsize
define di_iagsize _di_info._mt_info._iagsize

 /*
 * log info. kept in inode = 0 and dev = devt of
 * log device filesystem in inode table.
 */
 struct lognode
 {
 int _logptr /* page number end of log */
 int _logsize /* log size in pages */
 int _logend /* eor in page _logptr */
 int _logsync /* addr in last syncpt record */
 int _nextsync /* bytes to next logsyncpt */
 struct gnode * _logdgp; /* pointer to device gnode */
 }_di_log;

/* offsets of MOUNT data */
define di_iplog _di_info._mt_info._iplog
define di_ipinode _di_info._mt_info._ipinode
define di_ipind _di_info._mt_info._ipind
define di_ipinomap _di_info._mt_info._ipinomap
define di_ipdmap _di_info._mt_info._ipdmap
define di_ipsuper _di_info._mt_info._ipsuper
define di_ipinodex _di_info._mt_info._ipinodex
define di_jfsmnt _di_info._mt_info._jfsmnt
define di_fperpage _di_info._mt_info._fperpage
define di_agsize _di_info._mt_info._agsize
define di_iagsize _di_info._mt_info._iagsize
define di_compress _di_info._mt_info._compress

 /*
 * log info. kept in inode = 0 and dev = devt of
 * log device filesystem in inode table.
 */
 struct lognode
 {
 int _logptr /* page number end of log */
 int _logsize /* log size in pages */
 int _logend /* eor in page _logptr */
 int _logsync /* addr in last syncpt record */
 int _nextsync /* bytes to next logsyncpt */
 struct gnode * _logdgp; /* pointer to device gnode */
 }_di_log;

/* offsets of LOG data */
define di_logptr _di_info._di_log._logptr
define di_logsize _di_info._di_log._logsize
define di_logend _di_info._di_log._logend
define di_logsync _di_info._di_log._logsync
define di_nextsync _di_info._di_log._nextsync
define di_logdgp _di_info._di_log._logdgp
 }_di_info;
};

Files Reference 967

Related reference
filsys.h File
stat.h File
types.h File
Related information
Files

inttypes.h File

Purpose
Contains fixed size integral types.

Syntax
#include <inttypes.h>

Description
The inttypes.h header includes definitions of, at least, the following types:

Item Description

int8_t 8-bit signed integral type.

int16_t 16-bit signed integral type.

int32_t 32-bit signed integral type.

int64_t 64-bit signed integral type.

uint8_t 8-bit unsigned integral type.

uint16_t 16-bit unsigned integral type.

uint32_t 32-bit unsigned integral type.

uint64_t 64-bit unsigned integral type.

intptr_t Signed integral type large enough to hold any pointer.

uintptr_t Unsigned integral type large enough to hold any pointer.

ipc.h File

Purpose
Describes the structures that are used by the subroutines that perform interprocess communications
operations.

Syntax
#include <sys/ipc.h>

Description
The ipc.h file defines the following symbolic constants, types, and structures:

968 AIX Version 7.1: Files Reference

Symbolic Constants:

IPC_CREAT create entry if key doesn't exist
IPC_EXCL fail if key exists
IPC_NOWAIT error if request must wait
IPC_PRIVATE private key
IPC_RMID remove identifier
IPC_SET set options
IPC_STAT get options
IPC_ALLO Centry currently allocated
IPC_R read or receive permission
IPC_W write or send permission
IPC_NOERROR truncates a message if too long
SHM_SIZE change segment size (shared mem only)

The structure ipc_perm contains the following members:

uid_t uid owner's user id
gid_t gid owner's group id
uid_t cuid creator's user id
gid_t cgid creator's group id
mode_t mode access modes
unsigned short seq slot usage sequence number
key_t key key

The types uid_t, gid_t, mode_t, and key_t are as defined in <sys/types.h>.

The following is declared as a function:

key_t ftok(const char *, int);

Related reference
types.h File
Related information
ftok subroutine

iso646.h File

Purpose
Provides alternate spellings.

Syntax
#include <iso646.h>

Description
The iso646.h header file defines the following eleven macros (on the left) that expand to the
corresponding tokens (on the right):

and &&
and_eq &=
bitand &
bitor |
compl ~
not !
not_eq !=
or ||
or_eq |=
xor ^
xor_eq ^=

Files Reference 969

ldr.h File

Purpose
Describes the ld_info and ld_xinfo data types, along with associated loader entry points.

Syntax
#include <sys/ldr.h>

Description
The /usr/include/sys/ldr.h header file contains declarations of the ld_info and ld_xinfo data structures
and the system loader entry points available to processes and kernel extensions.

The ld_info structure describes a loadable module in the context of either tracing a process (with
the ptrace system call) or examining a core file. The ldr.h file can define 2 variants of the ld_info
structure, one for describing 32-bit processes (__ld_info32) and one for describing 64-bit processes
(__ld_info64). If the __LDINFO_PTRACE32__ symbol is defined, so is the struct __ld_info32 type. If
the __LDINFO_PTRACE64__ symbol is defined, so is the struct __ld_info64 type. If the compilation
mode is 32-bit and the __LDINFO_PTRACE32__ symbol is defined, the struct __ld_info32 and struct
ld_info types are equivalent. If the compilation mode is 64-bit and the __LDINFO_PTRACE64__ symbol is
defined, the struct __ld_info64 and struct ld_info types are equivalent.

When using ptrace in a 32-bit program to debug a 64-bit process, define __LDINFO_PTRACE64__. When
using ptrace in a 64-bit program to debug a 32-bit process, define __LDINFO_PTRACE32__.

The types and sizes of these structures' fields depend on whether the compilation mode is 32-bit or
64-bit. The same field names are generated in both structure modes, with the exception that the 64-bit
structure has an ldinfo_flags field.

The __ld_info32 and __ld_info64 structures contain the following fields of the indicated sizes and types;
when two types are listed, the first is used when the compilation mode is 32-bit and the second is used
when the mode is 64-bit:

Field and Description __ld_info32 __ld_info64

ldinfo_next
Offset from current entry of
next entry, or zero if last
entry.

• Size: 4
• Type: uint

• Size: 4
• Type: uint

ldinfo_flags
Flags.

• Size: N/A
• Type: N/A

• Size: 4
• Type: uint

ldinfo_fd
File descriptor returned by
ptrace to debugger.

• Size: 4
• Type: int

• Size: 4
• Type: int

ldinfo_core
Offset into core file of object.
(Overlays the ldinfo_fd field.)

• Size: 4
• Type: int

• Size: 8
• Type: long long, long

ldinfo_textorg
Effective address of the
loaded program image,
including the XCOFF headers.

• Size: 4
• Type: void *, uint

• Size: 8
• Type: unsigned long long, void

*

970 AIX Version 7.1: Files Reference

Field and Description __ld_info32 __ld_info64

ldinfo_textsize
Length of loaded program
image.

• Size: 4
• Type: int

• Size: 8
• Type: long long, long

ldinfo_dataorg
Effective address of the start
of data.

• Size: 4
• Type: void *, uint

• Size: 8
• Type: unsigned long long, void

*

ldinfo_datasize
Size of data, including
the .bss section.

• Size: 4
• Type: int

• Size: 8
• Type: long long, long

ldinfo_filename
Nul-terminated path name
followed by nul-terminated
member name; member
name is empty if not an
archive.

• Size: variable
• Type: char[2]

• Size: variable
• Type: char[2]

The ld_xinfo structure is similar to the ld_info structure, but the ld_xinfo structure has additional fields
for modules defining thread-local storage. Furthermore, all fields are large enough to describe regions of a
64-bit process, so only a single variant of the ld_xinfo structure exists.

The additional fields in the ld_xinfo structure are the following:

Field Description

ldinfo_tdatasize Size of the .tdata section.

ldinfo_tbsssize Size of the .tbss section.

ldinfo_tdataorg Effective address of the initialization template
for .tdata.

ldinfo_tdataoff Offset of the module's thread-local storage in its
region.

ldinfo_tls_rnum Thread-local storage region number.

In addition, the ldinfo_filename field has a different interpretation in the ld_xinfo structure. The value
of this field in the ld_xinfo structure is an offset from the beginning of the structure to a null-terminated
path name followed by null-terminated member name.

The ldr.h header declares the following functions:

int kmod_load(caddr_t path, uint flags, caddr_t libpath, mid_t *kmid);
int kmod_unload(mid_t kmid, uint flags);
void (*(kmod_entrypt(mid_t kmid, uint flags)))();
int ld_info(int __flags, pid_t __pid, void *__buffer, unsigned int __length);
__LOAD_T *load(char *__filenameparm, uint __flags, char *__libpathparm);
int loadbind(int __lflags, void *__exporter, void *__importer);
int unload(void *__function);
int loadquery(int __lflags, void *__buffer, unsigned int __length);
__handler_t *__lazySetErrorHandler(__handler_t *fp);

Related information
load subroutine
unload subroutine

Files Reference 971

limits.h File

Purpose
Defines implementation limits identified by IEEE POSIX 1003.

Description
The limits.h file contains definitions required by the ANSI X3.159-198x Programming Language C
Standard and the Institute of Electrical and Electronics Engineers (IEEE) P1003.1 Portable Operating
System Interface for Computer Environments (POSIX) standard.

The constants required by the ANSI C Standard describe the sizes of basic data types, as follows:

Symbol Value Explanation

CHAR_BIT 8 Number of bits in a variable of type char

CHAR_MAX 255 Maximum value of a variable of type char

CHAR_MIN 0 Minimum value of a variable of type char

INT_MAX 2,147,483,647 Maximum value of a variable of type int

INT_MIN -2,147,483,648 Minimum value of a variable of type int

LONG_MAX 2,147,483,647 Maximum value of a variable of type long

LONG_MIN -2,147,483,648 Maximum value of a variable of type long

SCHAR_MAX 127 Maximum value of a variable of type signed char

SCHAR_MIN -128 Minimum value of a variable of type signed char

SHRT_MAX 32,767 Maximum value of a variable of type short

SHRT_MIN -32,768 Maximum value of a variable of type short

UCHAR_MAX 255 Maximum value of a variable of type unsigned char

UINT_MAX 4,294,967,295 Maximum value of a variable of type unsigned int

ULONG_MAX 4,294,967,295 Maximum value of a variable of type unsigned long

USHRT_MAX 65,535 Maximum value of a variable of type unsigned short

Run-Time Invariant Values

The first set of values required by POSIX, run-time invariant values, are simple constants determined by
basic operating system data-structure sizes.

Symbol Value Explanation

MAX_INPUT 512 No fewer than the number
of bytes specified by the
MAX_INPUT symbol are allowed
in a terminal input queue.

NGROUPS_MAX 2048 Maximum size of the concurrent
group list.

PASS_MAX 255 Maximum number of bytes in a
password (not including the null
terminator).

PID_MAX INT_MAX Maximum value for a processID.

972 AIX Version 7.1: Files Reference

Symbol Value Explanation

UID_MAX ULONG_MAX Maximum value for a user or
group ID.

Run-Time Invariant Values (Possibly Indeterminate)

The second set of run-time invariant values required by POSIX specify values that might vary, especially
due to system load, but that can be attained on a lightly loaded system.

Symbol Value Explanation

ARG_MAX 1048576 Maximum length (in bytes)
of arguments for the exec
subroutine, including the
environment. This is a default
value that can be configured to a
different size.

Note: The argument list and environment are allowed to consume all of the user data segment.

Symbol Value Explanation

CHILD_MAX 40 Maximum number of
simultaneous processes per user
ID

MAX_CANON 256 Maximum number of bytes in a
canonical input line

OPEN_MAX 65534 Maximum number of files that
one process can have open at any
given time

CHRS_OPEN_MAX 65000 The maximum number of
file descriptors to fit in the
checkpoint/restart segment.

Path-Name Variable Values

The third set of values required by POSIX, path-name variable values, represent constraints imposed
by the file system on file path names. Further constraints on these values might be imposed by the
underlying file-system implementation. Use the pathconf or fpathconf subroutine to determine any
file-implementation characteristics specific to the underlying file system.

Symbol Value Explanation

NAME_MAX Undefined Maximum number of bytes in
a file component name (not
including the null terminator)

PATH_MAX 512 Maximum number of bytes in a
path name (not including the null
terminator)

Run-Time Increasable Values

The fourth set of values required by POSIX specify values that might be increased at run time. Use the
pathconf or fpathconf subroutine to determine any file-implementation characteristics specific to the
underlying file system.

Files Reference 973

Item Description

Symbol Value Explanation

LINK_MAX 32,767 Maximum value of a file's link
count (SHRT_MAX).

PIPE_BUF 32,768 Maximum number of bytes
guaranteed to be written
automatically to a pipe.

Related reference
values.h File
unistd.h File
Related information
exec subroutine
pathconf or fpathconf subroutine

libperfstat.h File

Purpose
Describes the structures and constants used by the libperfstat API subroutines.

Syntax

#include <libperfstat.h>

Description
The libperfstat.h file defines the following symbolic constants, types, and structures:

Item Description

IDENTIFIER_LENGTH Length of strings included in the structures.

FIRST_LOGICALVOLUME Pseudo-name for the first logical volume.

FIRST_VOLUMEGROUP Pseudo-name for the first volume group.

FIRST_CPU Pseudo-name for the first logical processor.

FIRST_DISK Pseudo-name for the first disk.

FIRST_DISKADAPTER Pseudo-name for the first disk adapter.

FIRST_FCADAPTER Pseudo-name for the first fiber channel adapter.

FIRST_DISKPATH Pseudo-name for the first disk path.

FIRST_NETINTERFACE Pseudo-name for the first network interface.

FIRST_PAGINGSPACE Pseudo-name for the first paging space.

FIRST_PROTOCOL Pseudo-name for the first protocol.

FIRST_NETADAPTER pseudo-name for the first network adapter.

FIRST_NETBUFFER Pseudo-name for the first network buffer size.

FIRST_PSIZE Pseudo-name for the first paging size.

FIRST_TAPE Pseudo-name for the first tape.

FIRST_WPARNAME Pseudo-name for the first.WPAR

974 AIX Version 7.1: Files Reference

Item Description

FIRST_WPARIDH Pseudo-id for the first.WPAR

FIRST_CLUSTERNAME Pseudo-name for the first cluster.

FIRST_NODENAME Pseudo-name for the first node in the cluster.

FIRST_HFI Pseudo-name for the first host fabric interface (HFI).

FIRST_WINDOW Pseudo-id for the first HFI window.

PAGE_4K Pseudo-name for 4 kilobyte page size.

PAGE_64K Pseudo name for 64 kilobyte page size.

PAGE_16M Pseudo-name for 16 megabyte page size.

PAGE_16G Pseudo-name for 16 gigabyte page size.

PERFSTAT_ENABLE Mask for perfstat_config to start the statistics collection.

PERFSTAT_DISABLE Mask for perfstat_config to disable statistics collection.

PERFSTAT_LV Mask for perfstat_config to indicate logical volume
component.

PERFSTAT_CLUSTER_STATS Mask for perfstat_config to indicate cluster statistics.

PERFSTAT_HFISTATS Mask for perfstat_config to indicate HFI statistics.

PERFSTAT_SIZE Size of the adapter name.

FLUSH_CPUTOTAL Mask for perfstat_partial_reset to flush cached fields
for perfstat_cpu_total_t.

FLUSH_DISK Mask for perfstat_partial_reset to flush cached fields
for perfstat_disk_t.

RESET_DISK_MIN_MAX Mask for perfstat_partial_reset to reset minimum
and maximum service and wait time statistics of the disk.

FLUSH_DISKADAPTER Mask for perfstat_partial_reset to flush cached fields
for perfstat_diskadapter_t.

FLUSH_DISKPATH Mask for perfstat_partial_reset to flush cached fields
for perfstat_diskpath_t.

FLUSH_PAGINGSPACE Mask for perfstat_partial_reset to flush cached fields
for perfstat_pagingspace_t.

FLUSH_NETINTERFACE Mask for perfstat_partial_reset to flush cached fields
for perfstat_netinterface_t.

FLUSH_LOGICALVOLUME Mask for perfstat_partial_reset to flush cached fields for
perfstat_logicalvolume_t.

FLUSH_VOLUMEGROUP Mask for perfstat_partial_reset to flush cached fields for
perfstat_volumegroup_t.

The perfstat_id_t structure contains the following members:

Item Description

char name [IDENTIFIER_LENGTH] Name of the identifier.

The perfstat_id_wpar_t structure contains the following members:

Files Reference 975

Item Description

wparid_specifier spec Specifies the input type. It can be WPARNAME, WPARID,
or RSETHANDLE.

union u Specifies the WPAR identifier. The union u variable
contains the following members:

• cid_t wpar_id: WPAR ID
• rsethandle_t rset: resource set handle
• char wparname[MAXCORRALNAMELEN+1]: name of

the WPAR

char name [IDENTIFIER_LENGTH] Specifies the component identifier.

The perfstat_id_node_t structure contains the following members:

Item Description

nodeid_specifier spec Specifies the input type. It must be NODENAME
for perfstat_subsystem_node() interfaces. It must
be CLUSTERNAME for perfstat_cluster_total() and
perfstat_node_list() interfaces.

union u Specifies the WPAR identifier. The union u variable
contains the following members:

• char nodename [MAXHOSTNAMELEN]: name of the
node/cluster.

char name [IDENTIFIER_LENGTH] Specifies the component identifier.

The perfstat_id_window_t structure contains the following members:

Item Description

char name[IDENTIFIER_LENGTH] Specifies the HFI identifier (FIRST_HFI, hfi0 or, hfi1, and
so on).

u_longlong_t windowid Specifies the HFI window ID (0,1, 2, 3, and so on).

The perfstat_psize_t structure contains the following members:

Item Description

psize_t psize Specifies the page size.

Some members of the following structures are retrieved only once and stored in a memory cache by the
library. A call to the perfstat_reset structure or the perfstat_partial_reset structure will flush
those members. When possible, it is preferable to use the perfstat_partial_reset structure instead
of the perfstat_reset structure.

The perfstat_cpu_t structure contains the following members:

Item Description

char name [IDENTIFIER_LENGTH] Logical processor name (processor0, processor1,.).

State Specifies whether the CPU is offline or online.

u_longlong_t user Raw number of clock ticks spent in user mode.

u_longlong_t sys Raw number of clock ticks spent in system mode.

u_longlong_t idle Raw number of clock ticks spent idle.

976 AIX Version 7.1: Files Reference

Item Description

u_longlong_t wait Raw number of clock ticks spent waiting for I/O.

_longlong_t pswitch Number of context switches (changes of currently running
process).

u_longlong_t syscall Number of system calls executed.

u_longlong_t sysread Number of read system calls executed.

u_longlong_t syswrite Number of write system calls executed.

u_longlong_t sysfork Number of fork system call executed.

u_longlong_t sysexec Number of exec system call executed.

u_longlong_t readch Number of characters transferred with read system call.

u_longlong_t writech Number of characters transferred with write system call.

u_longlong_t bread Number of block reads.

u_longlong_t bwrite Number of block writes.

u_longlong_t lread Number of logical read requests.

u_longlong_t lwrite Number of logical write requests.

u_longlong_t phread Number of physical reads (reads on raw device).

u_longlong_t phwrite Number of physical writes (writes on raw device).

u_longlong_t iget Number of inode lookups.

u_longlong_t namei Number of vnode lookup from a path name.

u_longlong_t dirblk Number of 512-byte blocks reads by the directory search
routine to locate an entry for a file.

u_longlong_t msg Number of interprocess communication (IPC) message
operations.

u_longlong_t sema Number of IPC semaphore operations.

u_longlong_t minfaults Number of page faults with no I/O.

u_longlong_t majfaults Number of page faults with disk I/O.

u_longlong_t puser Raw number of physical processor ticks in user mode.

u_longlong_t psys Raw number of physical processor ticks in system mode.

u_longlong_t pidle Raw number of physical processor ticks idle.

u_longlong_t pwait Raw number of physical processor ticks waiting for I/O.

u_longlong_t redisp_sd0 Number of thread redispatches within the scheduler affinity
domain 0.

u_longlong_t redisp_sd1 Number of thread redispatches within the scheduler affinity
domain 1.

u_longlong_t redisp_sd2 Number of thread redispatches within the scheduler affinity
domain 2.

u_longlong_t redisp_sd3 Number of thread redispatches within the scheduler affinity
domain 3.

u_longlong_t redisp_sd4 Number of thread redispatches within the scheduler affinity
domain 4.

Files Reference 977

Item Description

u_longlong_t redisp_sd5 Number of thread redispatches within the scheduler affinity
domain 5.

u_longlong_t migration_push Number of thread migrations from the local runque to another
queue due to starvation load balancing.

u_longlong_t migration_S3grq Number of thread migrations from the global runque to the
local runque resulting in a move across scheduling domain 3.

u_longlong_t migration_S3pull Number of thread migrations from another processor's
runque resulting in a move across scheduling domain 3.

u_longlong_t invol_cswitch Number of involuntary thread context switches.

u_longlong_t vol_cswitch Number of voluntary thread context switches.

u_longlong_t runque Number of threads on the runque.

u_longlong_t bound Number of bound threads.

u_longlong_t decrintrs Number of decrementer interrupts.

u_longlong_t mpcrintrs Number of received interrupts for MPC.

u_longlong_t mpcsintrs Number of sent interrupts for MPC.

u_longlong_t devintrs Number of device interrupts.

u_longlong_t softintrs Number of offlevel handlers called.

u_longlong_t phantintrs Number of phantom interrupts.

u_longlong_t idle_donated_purr Number of idle cycles donated by a dedicated partition
enabled for donation.

u_longlong_t
idle_donated_spurr

Number of idle spurr cycles donated by a dedicated partition
enabled for donation.

u_longlong_t busy_donated_purr Number of busy cycles donated by a dedicated partition
enabled for donation.

u_longlong_t
busy_donated_spurr

Number of busy spurr cycles donated by a dedicated partition
enabled for donation.

u_longlong_t idle_stolen_purr Number of idle cycles stolen by the hypervisor from a
dedicated partition.

u_longlong_t idle_stolen_spurr Number of idle spurr cycles stolen by the hypervisor from a
dedicated partition.

u_longlong_t busy_stolen_purr Number of busy cycles stolen by the hypervisor from a
dedicated partition.

u_longlong_t busy_stolen_spurr Number of busy spurr cycles stolen by the hypervisor from a
dedicated partition.

u_longlong_t shcpus_in_sys Number of physical processors allocated for shared processor
use, across all shared processors pools.

u_longlong_t
entitled_pool_capacity

Entitled processor capacity of partition’s pool

u_longlong_t pool_max_time Summation of maximum time that can be consumed by the
pool (nanoseconds)

u_longlong_t pool_busy_time Summation of busy (nonidle) time accumulated across all
partitions in the pool (nanoseconds)

978 AIX Version 7.1: Files Reference

Item Description

u_longlong_t
pool_scaled_busy_time

Scaled summation of busy (nonidle) time accumulated across
all partitions in the pool (nanoseconds)

u_longlong_t shcpu_tot_time Summation of total time across all physical processors
allocated for shared processor use (nanoseconds)

u_longlong_t shcpu_busy_time Summation of busy (nonidle) time accumulated across all
shared processor partitions (nanoseconds)

u_longlong_t
shcpu_scaled_busy_time

Scaled summation of busy time accumulated across all
shared processor partitions (nanoseconds)

int ams_pool_id AMS pool ID of the pool the LPAR belongs to

int var_mem_weight Variable memory capacity weight

u_longlong_t iome I/O memory entitlement of the partition in bytes

u_longlong_t pmem Physical memory currently backing the partition's logical
memory in bytes

u_longlong_t hpi Number of hypervisor page-ins

u_longlong_t hpit Time spent in hypervisor page-ins (in nanoseconds)

u_longlong_t hypv_pagesize Hypervisor page size in KB

uint online_lcpus Number of online logical processors

uint smt_thrds Number of SMT threads

The perfstat_cpu_total_wpar_t structure contains the following members:

Item Description

int ncpus Number of active logical processors in Global environment.

char
description[IDENTIFIER_LENGTH]

Processor description (type or official name).

u_longlong_t processorHZ Processor speed, in Hz.

u_longlong_t pswitch Number of process switches (change in running process).

u_longlong_t sysfork Number of forks system calls that are run.

u_longlong_t loadavg[3] (1<< SBITS) times the average number of runnable
processes during the last 1, 5, and 15 minutes. To calculate
the load average, divide the numbers by (1<< SBITS). SBITS
is defined in the <sys/proc.h> file.

u_longlong_t runque Length of the run queue (processes ready).

u_longlong_t swpque Length of the swap queue (processes waiting to be paged in).

u_longlong_t runocc Updated whenever a runque is updated or occupied. This
structure can be used to compute the simple average of
ready processes.

u_longlong_t swpocc Updated whenever a swpque is updated or occupied. This
structure can be used to compute the simple average
processes waiting to be paged in.

u_longlong_t puser Raw number of physical processor ticks in user mode.

u_longlong_t psys Raw number of physical processor ticks in system mode.

u_longlong_t pidle Raw number of physical processor ticks idle.

Files Reference 979

Item Description

u_longlong_t pwait Raw number of physical processor ticks waiting for I/O.

int ncpus_cfg Number of configured processors in the system.

u_longlong_t syscall Number of system calls that are run.

u_longlong_t sysread Number of read system calls that are run.

u_longlong_t syswrite Number of write system calls that are run.

u_longlong_t sysexec Number of execs system calls that are run.

u_longlong_t readch Number of characters transferred with read system call.

u_longlong_t writech Number of characters transferred with write system call.

u_longlong_t devintrs Number of device interrupts.

u_longlong_t softintrs Number of software interrupts.

u_longlong_t bread Number of blocks read.

u_longlong_t bwrite Number of blocks written.

u_longlong_t lread Number of logical read requests.

u_longlong_t lwrite Number of logical write requests.

u_longlong_t phread Number of physical reads (reads on raw devices).

u_longlong_t phwrite Number of physical writes (writes on raw devices).

u_longlong_t iget Number of inode lookups.

u_longlong_t namei Number of vnode lookup from a path name.

u_longlong_t dirblk Number of 512-byte blocks read by the directory search
routine to locate an entry for a file.

u_longlong_t msg Number of IPC message operations.

u_longlong_t sema Number of IPC semaphore operations.

u_longlong_t ksched Number of kernel processes created.

u_longlong_t koverf Kernel process creation attempts when the configuration
limit of processes has been reached or the user has forked to
the maximum limit.

u_longlong_t kexit Number of kernel processes that became zombie processes.

The perfstat_cpu_total_t structure contains the following members:

Item Description

int ncpus Number of active logical processors.

int ncpus_cfg Number of configured processors.

char description
[IDENTIFIER_LENGTH]

Processor description (type/official name).

u_longlong_t processorHZ Processor speed in Hz.

u_longlong_t user Raw total number of clock ticks spent in user mode.

u_longlong_t sys Raw total number of clock ticks spent in system mode.

u_longlong_t idle Raw total number of clock ticks spent idle.

u_longlong_t wait Raw total number of clock ticks spent waiting for I/O.

980 AIX Version 7.1: Files Reference

Item Description

u_longlong_t pswitch Number of process switches (change in currently running
process).

u_longlong_t syscall Number of system calls executed.

u_longlong_t sysread Number of read system calls executed.

u_longlong_t syswrite Number of write system calls executed.

u_longlong_t sysfork Number of forks system calls executed.

u_longlong_t sysexec Number of execs system calls executed.

u_longlong_t readch Number of characters transferred with read system call.

u_longlong_t writech Number of characters transferred with write system call.

u_longlong_t devintrs Number of device interrupts.

u_longlong_t softintrs Number of software interrupts.

ime_t lbolt Number of ticks since last reboot.

u_longlong_t loadavg[3] (1<< SBITS) times the average number of runnable
processes during the last 1, 5 and 15 minutes. To calculate
the load average, divide the numbers by (1<< SBITS). SBITS
is defined in the <sys/proc.h> file.

u_longlong_t runque Length of the run queue (processes ready).

u_longlong_t swpque Length of the swap queue (processes waiting to be paged
in).

u_longlong_t bread Number of blocks read.

u_longlong_t bwrite Number of blocks written.

u_longlong_t lread Number of logical read requests.

u_longlong_t lwrite Number of logical write requests.

u_longlong_t phread Number of physical reads (reads on raw devices).

u_longlong_t phwrite Number of physical writes (writes on raw devices).

u_longlong_t runocc Updated whenever runque is updated. For example, when
the run queue is occupied. This can be used to compute the
simple average of ready processes.

u_longlong_t swpocc Updated whenever swpque is updated. For example, when
the swpqueue is occupied. This can be used to compute the
simple average processes waiting to be paged in.

u_longlong_t iget Number of inode lookups.

u_longlong_t namei Number of vnode lookup from a path name.

u_longlong_t dirblk Number of 512-byte blocks reads by the directory search
routine to locate an entry for a file.

u_longlong_t msg Number of IPC message operations.

u_longlong_t sema Number of IPC semaphore operations.

u_longlong_t rcvint Number of tty receive interrupts.

u_longlong_t xmtint Number of tyy transmit interrupts.

u_longlong_t mdmint Number of modem interrupts.

u_longlong_t tty_rawinch Number of raw input characters.

Files Reference 981

Item Description

u_longlong_t tty_caninch Number of canonical input characters (always zero).

u_longlong_t tty_rawoutch Number of raw output characters.

u_longlong_t ksched Number of kernel processes created.

u_longlong_t koverf Number of kernel process creation attempts where:

• the user has forked to their maximum limit
• the configuration limit of processes has been reached

u_longlong_t kexit Number of kernel processes that became zombies.

u_longlong_t rbread Number of remote read requests.

u_longlong_t rbread Number of remote read requests.

u_longlong_t rbwrt Number of remote writes.

u_longlong_t rcwrt Number of cached remote writes.

u_longlong_t traps Number of traps.

int ncpus_high Index of highest processor online.

u_longlong_t puser Raw number of physical processor ticks in user mode.

u_longlong_t psys raw Number of physical processor ticks in system mode.

u_longlong_t pidle raw Number of physical processor ticks idle.

u_longlong_t pwait raw Number of physical processor ticks waiting for I/O.

u_longlong_t decrintrs Number of decrementer interrupts.

u_longlong_t mpcrintrs Number of received interrupts for MPC.

u_longlong_t mpcsintrs Number of sent interrupts for MPC.

u_longlong_t phantintrs Number of phantom interrupts.

u_longlong_t idle_donated_purr Number of idle cycles donated by a dedicated partition
enabled for donation.

u_longlong_t idle_donated_spurr Number of idle spurr cycles donated by a dedicated partition
enabled for donation.

u_longlong_t busy_donated_purr Number of busy cycles donated by a dedicated partition
enabled for donation.

u_longlong_t busy_donated_spurr Number of busy spurr cycles donated by a dedicated
partition enabled for donation.

u_longlong_t idle_stolen_purr Number of idle cycles stolen by the hypervisor from a
dedicated partition.

u_longlong_t idle_stolen_spurr Number of idle spurr cycles stolen by the hypervisor from a
dedicated partition.

u_longlong_t busy_stolen_purr Number of busy cycles stolen by the hypervisor from a
dedicated partition.

u_longlong_t busy_stolen_spurr Number of busy spurr cycles stolen by the hypervisor from a
dedicated partition.

short iowait Number of processes that are asleep waiting for buffered
I/O.

short physio Number of processes waiting for raw I/O.

982 AIX Version 7.1: Files Reference

Item Description

longlong_t twait Number of threads that are waiting for file system direct
(cio).

u_longlong_t hpi Number of hypervisor page-ins.

u_longlong_t hpit Time spent in hypervisor page-ins (in nanoseconds).

The description and speed members of the perfstat_cpu_total_t structure are stored in the
information cache. They can be flushed by making one of the following calls:

• perfstat_reset()
• perfstat_partial_reset(NULL, FLUSH_CPUTOTAL)

The perfstat_rawdata_t structure contains the following members:

Item Description

int type Holds one of the following defined values:

• #define UTIL_CPU_TOTAL 10
• #define UTIL_CPU 11
• #define UTIL_PROCESS 12
• #define SHARED_POOL_UTIL 13

perfstat_id_t name Name element.

void *curstat Pointer to the data buffer.

void *prevstat Pointer to the data buffer.

int sizeof_data Size of the stat buffer.

int cur_elems Number of current elements.

int prev_elems Number of previous elements.

The perfstat_partition_total_t structure contains the following members:

Item Description

char name[IDENTIFIER_LENGTH] Name [IDENTIFIER_LENGTH].

perfstat_partition_type_t type Set of bits describing partition type.

int lpar_id Logical partition identifier.

int group_id Identifier of the LPAR group this partition is a member of.

int pool_id Identifier of the shared pool of physical processors this
partition is a member of.

int online_cpus Number of virtual processors currently online on the
partition.

int max_cpus Maximum number of virtual processors this partition can
ever have.

int min_cpus Minimum number of virtual processors this partition must
have.

purr_counter Number of purr cycles spent in user and kernel mode.

real_free Free real memory (in 4 KB pages).

real_avail Number of pages (in 4 KB pages) of memory available
without paging out working segments.

Files Reference 983

Item Description

spurr_counter Number of spurr cycles spent in user and kernel mode.

u_longlong_t online_memory Amount of memory currently online.

u_longlong_t max_memory Maximum amount of memory this partition can ever have.

u_longlong_t min_memory Minimum amount of memory this partition must have.

int entitled_proc_capacity Number of processor units this partition is entitled to
receive.

int max_proc_capacity Maximum number of processor units this partition can ever
have.

int min_proc_capacity Minimum number of processor units this partition must
have.

int proc_capacity_increment Increment value to the entitled capacity.

int unalloc_proc_capacity Unallocated processor units in the shared processor pool to
which this partition belongs.

int var_proc_capacity_weight Unallocated variable processor capacity weight units in the
shared processor pool to which this partition belongs.

int
unalloc_var_proc_capacity_weight

Number of variable processor capacity weight units
currently unallocated in the shared processor pool this
partition belongs to.

int online_phys_cpus_sys Number of physical processors currently active in the
system containing this partition.

int max_phys_cpus_sys Maximum number of physical processors in the system
containing this partition.

int phys_cpus_pool Available physicalprocessors in the shared processor pool
to which this partition belongs.

u_longlong_t puser Raw number of physical processor ticks in user mode.

u_longlong_t psys Raw number of physical processor ticks in system mode.

u_longlong_t pidle Raw number of physical processor ticks idle.

u_longlong_t pwait Raw number of physical processor ticks waiting for I/O.

u_longlong_t pool_idle_time The summation of idle time (in nanoseconds) accumulated
across all partitions in the shared processor pool to which
this partition belongs.

u_longlong_t phantintrs Number of phantom interrupts.

u_longlong_t invol_virt_cswitch Number involuntary virtual processor context switches.

u_longlong_t vol_virt_cswitch Number voluntary virtual processor context switches.

u_longlong_t timebase_last Most recent processor time base timestamp.

u_longlong_t reserved_pages Number of 16 GB pages; cannot participate in DR
operations.

u_longlong_t reserved_pagesize 16 GB pagesize; cannot participate in DR operations.

u_longlong_t idle_donated_purr Number of idle cycles donated by a dedicated partition
enabled for donation.

u_longlong_t idle_donated_spurr Number of idle spurr cycles donated by a dedicated
partition enabled for donation.

984 AIX Version 7.1: Files Reference

Item Description

u_longlong_t busy_donated_purr Number of busy cycles donated by a dedicated partition
enabled for donation.

u_longlong_t busy_donated_spurr Number of busy spurr cycles donated by a dedicated
partition enabled for donation.

u_longlong_t idle_stolen_purr Number of idle cycles stolen by the hypervisor from a
dedicated partition.

u_longlong_t idle_stolen_spurr Number of idle spurr cycles stolen by the hypervisor from a
dedicated partition.

u_longlong_t busy_stolen_purr Number of busy cycles stolen by the hypervisor from a
dedicated partition.

u_longlong_t busy_stolen_spurr Number of busy spurr cycles stolen by the hypervisor from
a dedicated partition.

u_longlong_t shcpus_in_sys Number of physical processors allocated for shared
processor use, across all shared processors pools.

u_longlong_t max_pool_capacity Maximum processor capacity of shared processor pool to
which this partition belongs

u_longlong_t
entitled_pool_capacity

Entitled processor capacity of shared processor pool to
which this partition belongs.

u_longlong_t pool_max_time The summation of maximum time (in nanoseconds) that
might be used by the shared processor pool to which this
partition belongs.

u_longlong_t pool_busy_time The summation of busy (nonidle) time (in nanoseconds)
accumulated across all partitions in the shared processor
pool to which this partition belongs.

u_longlong_t
pool_scaled_busy_time

The summation of busy (nonidle) time in (nanoseconds)
accumulated across all partitions in the shared processor
pool to which this partition belongs. The time is against
rated or nominal frequency.

u_longlong_t shcpu_tot_time The summation of total time (in nanoseconds) across
all physical processors that are allocated to the shared
processor pool (where the Pool ID equals 0) use across all
shared processor pools.

u_longlong_t shcpu_busy_time The summation of busy (nonidle) time (in nanoseconds)
accumulated across all physical processors for shared
processor pool (where the Pool ID equals 0) use across all
shared processor pools.

u_longlong_t
shcpu_scaled_busy_time

The summation of scaled busy (nonidle) time (in
nanoseconds) accumulated across all partitions in the
shared processor pool to which this partition belongs. The
time is against rated or nominal frequency.

int ams_pool_id AMS pool ID of the pool the LPAR belongs to.

int var_mem_weight Variable memory capacity weight.

u_longlong_t iome I/O memory entitlement of the partition in bytes.

u_longlong_t pmem Physical memory currently backing the partition's logical
memory in bytes.

u_longlong_t hpi Number of hypervisor page-ins.

Files Reference 985

Item Description

u_longlong_t hpit Time spent in hypervisor page-ins (in nanoseconds).

u_longlong_t hypv_pagesize Hypervisor page size in KB.

uint online_lcpus Number of online logical processors.

uint smt_thrds Number of SMT threads.

uint power_save_mode Power save mode for the LPAR.

ushort ame_version AME version.

u_longlong_t true_memory True memory size in 4 KB pages.

u_longlong_t expanded_memory Expanded memory size in 4 KB pages.

u_longlong_t target_memexp_factr Target memory expansion factor scaled by 100.

u_longlong_t
current_memexp_factr

Current memory expansion factor scaled by 100.

u_longlong_t target_cpool_size Target compressed pool size in bytes.

u_longlong_t max_cpool_size Maximum size of compressed pool in bytes.

u_longlong_t min_ucpool_size Minimum size of uncompressed pool in bytes.

u_longlong_t ame_deficit_size Deficit memory size in bytes.

u_longlong_t MemPoolSize The memory pool size of the pool to which the partition
belongs in bytes.

u_longlong_t IOMemEntInUse The I/O memory entitlement of the LPAR that is in use (in
bytes).

u_longlong_t IOMemEntFree Free I/O memory entitlement (in bytes).

u_longlong_t IOHighWaterMark The high watermark of the I/O memory entitlement usage
(in bytes).

Note: The fields IOMemEntInUse, IOMemEntFree, and IOHighWaterMark fields displays the actual
values if the system is AMS enabled. Otherwise, it displays a 0. If AMS is enabled and displays a value of
0, it indicates the actual values. The amepatcommand can be used to know whether the system is AMS
enabled.

The perfstat_partition_type_t structure contains the following members:

Item Description

unsigned:1 smt_capable OS supports SMT mode.

unsigned:1 smt_enabled SMT mode is on.

unsigned:1 lpar_capable OS supports logical partitioning.

unsigned:1 lpar_enabled Logical partitioning is on.

unsigned:1 shared_capable OS supports shared processor LPAR.

unsigned:1 shared_enabled Partition runs in shared mode.

unsigned:1 dlpar_capable OS supports dynamic LPAR.

unsigned:1 capped Partition is capped.

unsigned:1 kernel_is_64 Kernel is 64 bits.

unsigned:1 pool_util_authority Pool utilization data is available.

unsigned:1 donate_capable Partition capable of donating cycles.

986 AIX Version 7.1: Files Reference

Item Description

unsigned:1 donate_enabled Partition enabled for donating cycles.

unsigned:1 power_save_mode Partition enabled for power savings.

unsigned:1 ame_enabled Partition enabled for AME

The perfstat_value_t structure contains the following members:

Item Description

u_longlong_t online Online statistics.

u_longlong_t max Maximum statistics.

u_longlong_t min Minimum statistics.

u_longlong_t desired Desired statistics.

The perfstat_partition_config_t structure contains the following members:

Item Description

u_longlong_t version Version number of data structure.

char partitionname[64] Partition name.

char nodename[64] Node name.

perfstat_partition_type_t conf Partition properties.

uint partitionnum Partition number.

uint groupid Group ID.

char processorFamily[64] Processor type.

char processorModel[64] Processor model.

char machineID[64] Machine ID.

double processorMHz Processor clock speed in MHz

perfstat_value_t numProcessors Number of configured physical processors in frame.

char OSName[64] Name of operating system.

char OSVersion[64] Version of operating system.

char OSBuild[64] Build of operating system.

uint lcpus Number of logical CPUs.

uint smtthreads Number of SMT threads.

uint drives Total number of drives.

uint nw_adapters Total number of network adapters.

perfstat_value_t cpucap Min, max, and online CPU capacity.

uint cpucap_weightage Variable processor capacity weightage.

int entitled_proc_capacity Number of processor units this partition is entitled to
receive.

perfstat_value_t vcpus Min, max, and online virtual CPUs.

uint processor_poolid Shared pool ID of physical processors, to which this
partition belongs.

Files Reference 987

Item Description

uint activecpusinpool Count of physical CPUs in the shared processor pool, to
which this partition belongs.

uint cpupool_weightage Pool weightage.

uint sharedpcpu Number of physical processors allocated for shared
processor use.

uint maxpoolcap Maximum processor capacity of partition's pool.

uint entpoolcap Entitled processor capacity of partition's pool.

perfstat_value_t mem Min, max, and online memory.

uint mem_weightage Variable memory capacity weightage.

u_longlong_t totiomement I/O memory entitlement of the partition in bytes.

int mempoolid AMS pool ID of the pool the LPAR belongs to.

u_longlong_t hyperpgsize Hypervisor page size in KB.

perfstat_value_t exp_mem Min, max, and online expanded memory.

u_longlong_t targetmemexpfactor Target memory expansion factor scaled by 100.

u_longlong_t targetmemexpsize Expanded memory size in MB.

uint subprocessormode Sub processor mode for the partition.

The perfstat_wpar_total_t structure contains the following members:

Item Description

char name[MAXCORRALNAMELEN+1] Name of the.workload partition

perfstat_wpar_type_t type Set of bits describing the.WPAR

cid_t wpar_id workload partition identifier.

uint online_cpus Number of virtual processors in partition resource set
(reset) or number of virtual processors that are online in
the Global partition.

int cpu_limit Processor limit. This value is represented in percentage
multiplied by 100. For example, if the limit is 50%, the
value is 5000.

int mem_limit Memory limit. This value is represented in percentage
multiplied by 100. For example, if the limit is 50%, the
value is 5000.

u_longlong_t online_memory Amount of memory that is online in the Global partition.

int entitled_proc_capacity Number of processor units that the partition is entitled to
receive.

The perfstat_wpar_type_t structure contains the following members:

Item Description

uint w

struct b

The b structure contains the following members:

988 AIX Version 7.1: Files Reference

Item Description

unsigned:1 app_wpar WPAR application.

unsigned:1 cpu_rset WPAR restricted to processor resource set.

unsigned:1 cpu_xrset WPAR restricted to processor exclusive resource set.

unsigned:1 cpu_limits Processor resource limits enforced.

unsigned:1 mem_limits Memory resource limits enforced.

unsigned:1 spare Reserved for future usage.

The perfstat_disk_t structure contains the following members:

Item Description

char name[IDENTIFIER_LENGTH] Name of the disk.

char
description[IDENTIFIER_LENGTH]

Disk description (from ODM).

char vgname[IDENTIFIER_LENGTH] Volume group name (from ODM).

u_longlong_t size Size of the disk (in MB).

u_longlong_t free Free portion of the disk (in MB).

u_longlong_t bsize Disk block size (in bytes).

u_longlong_t __rxfers Number of transfers from disk.

u_longlong_t xfers Number of transfers to/from disk.

u_longlong_t wblks Number of blocks written to disk.

u_longlong_t rblks Number of blocks read from disk.

u_longlong_t time Amount of time (in clock ticks) disk is active.

char adapter[IDENTIFIER_LENGTH] Disk adapter name.

uint paths_count Number of paths defined to the disk.

u_longlong_t qdepth Instantaneous "service" queue depth (number of requests
sent to disk and not completed yet).

u_longlong_t q_full "Service" queue full occurrence count (number of times
the disk is not accepting any more request).

u_longlong_t q_sampled Accumulated sampled "service" queue depth.

u_longlong_t rserv Read service time.

u_longlong_t rtimeout Number of read request timeout.

u_longlong_t rfailed Number of failed read requests.

u_longlong_t min_rserv Minimum read service time.

u_longlong_t max_rserv Maximum read service time.

u_longlong_t wserv Write service time.

u_longlong_t wtimeout Number of write request timeout.

su_longlong_t wfailed Number of failed write requests.

u_longlong_t min_wserv Minimum write service time.

u_longlong_t max_wserv Maximum write service time.

Files Reference 989

Item Description

u_longlong_t wq_depth Instantaneous wait queue depth (number of requests
waiting to be sent to disk).

u_longlong_t wq_sampled Accumulated sampled wq_depth.

u_longlong_t wq_time Accumulated wait queuing time.

u_longlong_t wq_min_time Minimum wait queuing time.

u_longlong_t wq_max_time Maximum wait queuing time.

cid_t wpar_id WPAR identifier.

The size, free, vgname, adapter, and description members of the perfstat_disk_t structure are stored
in the information cache. They can be flushed by making one of the following calls:

• perfstat_reset()
• perfstat_partial_reset(NULL, FLUSH_DISK)
• perfstat_partial_reset("disk name", FLUSH_DISK)
• perfstat_partial_reset(NULL, FLUSH_DISKADAPTER)
• perfstat_partial_reset("adapter name of this disk", FLUSH_DISKADAPTER)

The perfstat_disk_total_t structure contains the following members:

Item Description

int number Total number of disks.

u_longlong_t size Total size of all disks (in MB).

u_longlong_t free Free portion of all disks (in MB).

u_longlong_t __rxfers Total number of transfers from disk.

u_longlong_t xfers Total number of transfers to/from disk.

u_longlong_t wblks 512 bytes blocks written to all disks.

u_longlong_t rblks 512 bytes blocks read from all disks.

u_longlong_t time Amount of time (in clock ticks) disks are active.

cid_t wpar_id WPAR identifier.

u_longlong_t rserv; Average read or receive service time.

u_longlong_t min_rserv Min read or receive service time.

u_longlong_t max_rserv Max read or receive service time.

u_longlong_t rtimeout Number of read request timeouts.

u_longlong_t rfailed Number of failed read requests.

u_longlong_t wserv Average write or send service time.

u_longlong_t min_wserv Min write or send service time.

u_longlong_t max_wserv Max write or send service time.

u_longlong_t wtimeout Number of write request timeouts.

u_longlong_t wfailed Number of failed write requests.

u_longlong_t wq_depth Instantaneous wait queue depth (number of requests
waiting to be sent to disk).

u_longlong_t wq_time Accumulated wait queueing time.

990 AIX Version 7.1: Files Reference

Item Description

u_longlong_t wq_min_time Min wait queueing time.

u_longlong_t wq_max_time Max wait queueing time.

The size and free members of the perfstat_disk_total_t structure are stored in the information
cache. They can be flushed by making one of the following calls:

• perfstat_reset()
• perfstat_partial_reset(NULL, FLUSH_DISK)
• perfstat_partial_reset("disk name", FLUSH_DISK)
• perfstat_partial_reset(NULL, FLUSH_DISKADAPTER)
• perfstat_partial_reset("adapter name of this disk", FLUSH_DISKADAPTER)

The perfstat_diskadapter_t structure contains the following members:

Item Description

adapter_type 0
SCSI, SAS, other legacy adapter types

1
Virtual SCSI/SAS Adapter

2
Fiber Channel Adapter

char name[IDENTIFIER_LENGTH] Name of the adapter (from ODM).

char
description[IDENTIFIER_LENGTH]

Adapter description (from ODM).

int number Number of disks connected to adapter.

u_longlong_t size Total size of all disks (in MB).

u_longlong_t free Free portion of all disks (in MB).

u_longlong_t __rxfers Total number of reads via adapter.

u_longlong_t xfers Total number of transfers to/from disk.

u_longlong_t wblks 512 bytes blocks written via adapter.

u_longlong_t rblks 512 bytes blocks read via adapter.

u_longlong_t time Amount of time (in clock ticks) disks are active.

The list of the disk adapters and the size, free, and description members of the
perfstat_diskadapter_t structure are stored in the information cache. They can be flushed by
making one of the following calls:

• perfstat_reset()
• perfstat_partial_reset(NULL, FLUSH_DISKADAPTER)
• perfstat_partial_reset("diskadapter name", FLUSH_DISKADAPTER)
• perfstat_partial_reset(NULL, FLUSH_DISK)
• perfstat_partial_reset("disk linked to this adapter", FLUSH_DISK)

The perfstat_diskpath_t structure contains the following members:

Item Description

char name [IDENTIFIER_LENGTH] Name of the path.

Files Reference 991

Item Description

u_longlong_t __rxfers Number of reads completed through the path.

u_longlong_t xfers Total number of transfers through the path.

u_longlong_t wblks 512 bytes blocks written through the path.

u_longlong_t rblks 512 bytes blocks read through the path.

u_longlong_t time Amount of time (in clock ticks) path is active.

char adapter [IDENTIFIER_LENGTH] Name of the adapter.

u_longlong_t q_full "Service" queue full occurrence count (number of times
the disk is not accepting any more request).

u_longlong_t q_sampled Accumulated sampled "service" queue depth.

u_longlong_t rserv Read service time.

u_longlong_t rtimeout Number of read request timeout.

u_longlong_t rfailed Number of failed read requests.

u_longlong_t min_rserv Minimum read service time.

u_longlong_t max_rserv Maximum read service time.

u_longlong_t wserv Write service time.

u_longlong_t wtimeout Number of write request timeout.

u_longlong_t wfailed Number of failed write requests.

u_longlong_t min_wserv Minimum write service time.

u_longlong_t max_wserv Maximum write service time.

u_longlong_t wq_depth Instantaneous wait queue depth (number of requests
waiting to be sent to disk).

u_longlong_t wq_sampled Accumulated sampled wq_depth.

u_longlong_t wq_time Accumulated wait queuing time.

u_longlong_t wq_min_time Minimum wait queuing time.

u_longlong_t wq_max_time Maximum wait queuing time.

The adapter member of the perfstat_diskpath_t structure is stored in the information cache. It can
be flushed by making one of the following calls:

• perfstat_reset()
• perfstat_partial_reset(NULL, FLUSH_DISKPATH)
• perfstat_partial_reset("diskpath name", FLUSH_DISKPATH)
• perfstat_partial_reset(NULL, FLUSH_DISKADAPTER)
• perfstat_partial_reset("diskadapter name of this diskpath", FLUSH_DISKADAPTER)
• perfstat_partial_reset(NULL, FLUSH_DISK)
• perfstat_partial_reset("disk pointed by this path", FLUSH_DISK)

The perfstat_memory_total_t structure contains the following members:

Item Description

u_longlong_t virt_total Total virtual memory (in 4 KB pages).

u_longlong_t real_total Total real memory (in 4 KB pages).

992 AIX Version 7.1: Files Reference

Item Description

u_longlong_t real_free Free real memory (in 4 KB pages).

u_longlong_t real_pinned Real memory which is pinned (in 4 KB pages).

u_longlong_t real_inuse Real memory which is in use (in 4 KB pages).

u_longlong_t pgbad Number of bad pages.

u_longlong_t pgexct Number of page faults.

u_longlong_t pgins Number of pages paged in.

u_longlong_t pgouts Number of pages paged out.

u_longlong_t pgspins Number of page ins from paging space.

u_longlong_t pgspouts Number of page outs from paging space.

u_longlong_t scans Number of page scans by clock.

u_longlong_t cycles Number of page replacement cycles.

u_longlong_t pgsteals Number of page steals.

u_longlong_t numperm Number of frames used for files (in 4 KB pages).

u_longlong_t pgsp_total Total paging space (in 4 KB pages).

u_longlong_t pgsp_free Free paging space (in 4 KB pages).

u_longlong_t pgsp_rsvd Reserved paging space (in 4 KB pages).

u_longlong_t real_system Real memory used by system segments (in 4 KB pages).
This value is the sum of all the used pages in segment
marked for system usage. Because segment classifications
are not always guaranteed to be accurate, this number is
only an approximation.

u_longlong_t real_user Real memory used by non-system segments (in 4 KB
pages). This is the sum of all pages used in segments not
marked for system usage. Because segment classifications
are not always guaranteed to be accurate, this number is
only an approximation.

u_longlong_t real_process Real memory used by process segments (in 4 KB
pages). This is real_total-real_free-numperm-real_system.
Because real_system is an approximation, this number is
as well.

u_longlong_t virt_active Active virtual pages (avm column in vmstat output). Virtual
pages are considered active if they have been accessed.

u_longlong_t iome I/O memory entitlement of the partition in bytes.

u_longlong_t iomu I/O memory entitlement of the partition in use in bytes.

u_longlong_t iohwm High water mark of I/O memory entitlement used in bytes.

u_longlong_t pmem Amount of physical memory currently backing partition's
logical memory in bytes.

u_longlong_t comprsd_total Total numbers of pages in compressed pool (in 4 KB
pages).

u_longlong_t comprsd_wseg_pgs Number of compressed working storage pages.

u_longlong_t cpgins Number of page ins to compressed pool.

u_longlong_t cpgouts Number of page outs from compressed pool.

Files Reference 993

Item Description

u_longlong_t true_size True memory size in 4 KB pages.

u_longlong_t expanded_memory Expanded memory size in 4 KB pages.

u_longlong_t comprsd_wseg_size Total size of the compressed working storage pages in the
pool.

u_longlong_t target_cpool_size Target compressed pool size in bytes.

u_longlong_t max_cpool_size Maximum size of compressed pool in bytes.

u_longlong_t min_ucpool_size Minimum size of uncompressed pool in bytes.

u_longlong_t cpool_size Compressed pool size in bytes.

u_longlong_t ucpool_size Uncompressed pool size in bytes.

u_longlong_t cpool_inuse Compressed pool used in bytes.

u_longlong_t ucpool_inuse Uncompressed pool used in bytes.

The perfstat_memory_total_wpar_t structure contains the following members:

Item Description

u_longlong_t real_total Global total real memory (in 4 KB pages).

u_longlong_t real_free Global free real memory (in 4 KB pages).

u_longlong_t real_pinned Real memory that is pinned (in 4 KB pages).

u_longlong_t real_inuse Real memory that is in use (in 4 KB pages).

u_longlong_t pgexct Number of page faults.

u_longlong_t pgins Number of pages paged in.

u_longlong_t pgouts Number of pages paged out.

u_longlong_t pgspins Number of page-ins from paging space.

u_longlong_t pgspouts Number of page-outs from paging space.

u_longlong_t scans Number of page-scans by clock.

u_longlong_t pgsteals Number of page-steals.

u_longlong_t numperm Number of frames used for files (in 4 KB pages).

u_longlong_t virt_active Active virtual pages. Virtual pages are considered active if
they have been accessed.

u_longlong_t comprsd_total Total numbers of pages in compressed pool (in 4 KB
pages).

u_longlong_t comprsd_wseg_pgs Number of compressed working storage pages.

u_longlong_t cpgins Number of page ins to compressed pool.

u_longlong_t cpgouts Number of page outs from compressed pool.

u_longlong_t comprsd_wseg_size Total size of the compressed working storage pages in the
pool.

u_longlong_t ucpool_size Uncompressed pool size in bytes.

The perfstat_tape_t structure contains the following members:

Item Description

char name[IDENTIFIER_LENGTH] Name of the tape.

994 AIX Version 7.1: Files Reference

Item Description

char
description[IDENTIFIER_LENGTH]

Tape description (from ODM).

u_longlong_t size Size of the tape (in MB).

u_longlong_t free Free portion of the tape (in MB).

u_longlong_t bsize Tape block size (in bytes).

u_longlong_t xfers Number of transfers to/from tape.

u_longlong_t rxfers Number of read transfers to/from tape.

u_longlong_t wblks Number of blocks written to tape.

u_longlong_t rblks Number of blocks read from tape.

u_longlong_t time Amount of time tape is active.

char adapter[IDENTIFIER_LENGTH] Tape adapter name.

uint paths_count Number of paths to this tape.

u_longlong_t rserv Read or receive service time.

u_longlong_t rtimeout Number of read request timeout.

u_longlong_t rfailed Number of failed read requests.

u_longlong_t min_rserv Minimum read or receive service time.

u_longlong_t max_rserv Maximum read or receive service time.

u_longlong_t wserv Write or send service time.

u_longlong_t wtimeout Number of write request timeout.

u_longlong_t wfailed Number of failed write requests.

u_longlong_t min_wserv Minimum write or send service time.

u_longlong_t max_wserv Maximum write or send service time.

The perfstat_tape_total_t structure contains the following members:

Item Description

int number Total number of tapes.

u_longlong_t size Total size of all tapes (in MB).

u_longlong_t free Free portion of all tapes (in MB).

u_longlong_t rxfers Number of read transfers to/from tape.

u_longlong_t xfers Total number of transfers to/from tape.

u_longlong_t wblks 512 bytes blocks written to all tapes.

u_longlong_t rblks 512 bytes blocks read from all tapes.

u_longlong_t time Total time the tapes are active.

The perfstat_memory_page_t structure contains the following members:

psize_t psize page size in bytes

u_longlong
_t

real_total Number of real memory frames of this page size.

Files Reference 995

psize_t psize page size in bytes

u_longlong
_t

real_free Number of pages on free list.

u_longlong
_t

real_pinned Number of pages pinned.

u_longlong
_t

real_inuse Number of pages in use.

u_longlong
_t

pgexct Number of page faults.

u_longlong
_t

pgins Number of pages paged in.

u_longlong
_t

pouts Number of pages paged out.

u_longlong
_t

pgspins Number of page ins from paging space.

u_longlong
_t

pgspouts Number of page outs from paging space.

u_longlong
_t

scans Number of page scans by clock.

u_longlong
_t

cycles Number of page replacement cycles.

u_longlong
_t

pgsteals Number of page steals.

u_longlong
_t

numperm Number of frames used for files.

u_longlong
_t

numpgsp Number of pages with allocated paging space.

u_longlong
_t

real_system Number of pages used by system segments. This is
the sum of all the used pages in segment marked for
system usage. Because segment classifications are not
always guaranteed to be accurate, This number is only an
approximation.

u_longlong
_t

real_user Number of pages used by non-system segments. This is
the sum of all pages used in segments not marked for
system usage. Because segment classifications are not
always guaranteed to be accurate, This number is only an
approximation.

u_longlong
_t

real_process Number of pages used by process segments. This is
real_total - real_free - numperm - real_system. Because
real_system is an approximation, this number is too.

u_longlong
_t

virt_active Active virtual pages. Virtual pages are considered active if
they have been accessed.

u_longlong
_t

comprsd_total Number of pages of this size compressed.

u_longlong
_t

comprsd_wseg_pgs Number of compressed working storage pages.

996 AIX Version 7.1: Files Reference

psize_t psize page size in bytes

u_longlong
_t

cpgins Number of page ins of this page size to compressed pool.

u_longlong
_t

cpgouts Number of page outs of this page size from compressed
pool.

u_longlong
_t

cpool_inuse Compressed size (in MB) of this page size in compressed
pool.

u_longlong
_t

ucpool_size Uncompressed pool size in MB of this page size.

u_longlong
_t

comprsd_wseg_size Total size of the compressed working storage pages in the
pool.

The perfstat_memory_page_wpar_t structure contains the following members:

psize_t psize page size in bytes

u_longlong_t real_total Number of real memory frames of this page size.

u_longlong_t real_pinned Number of pages pinned.

u_longlong_t real_inuse Number of pages in use.

u_longlong_t pgexct Number of page faults.

u_longlong_t pgins Number of pages paged in.

u_longlong_t pouts Number of pages paged out.

u_longlong_t pgspins Number of page ins from paging space.

u_longlong_t pgspouts Number of page outs from paging space.

u_longlong_t scans Number of page scans by clock.

u_longlong_t pgsteals Number of page steals.

u_longlong_t comprsd_total Number of pages of this size compressed.

u_longlong_t comprsd_wseg_pgs Number of compressed working storage pages.

u_longlong_t cpgins Number of page ins of this page size to compressed pool.

u_longlong_t cpgouts Number of page outs of this page size from compressed
pool.

u_longlong_t cpool_inuse Compressed size (in MB) of this page size in compressed
pool.

u_longlong_t ucpool_size Uncompressed pool size in MB of this page size.

u_longlong_t comprsd_wseg_size Total size of the compressed working storage pages in the
pool.

The perfstat_process_t structure contains the following members:

Item Description

u_longlong_t version Version number of the data structure.

u_longlong_t pid Process ID.

char proc_name[64] Name of the process.

int proc_priority Process priority.

u_longlong_t num_threads Thread count.

Files Reference 997

Item Description

u_longlong_t proc_uid Owner information.

u_longlong_t proc_classid WLM class name.

u_longlong_t proc_size Virtual size of the process (exclusive usage, leaving all
shared library text & shared file pages, shared memory,
and memory mapped).

u_longlong_t proc_real_mem_data Real memory used for data in KB.

u_longlong_t proc_real_mem_text Real memory used for text in KB.

u_longlong_t proc_virt_mem_data Virtual memory used for data in KB.

u_longlong_t proc_virt_mem_text Virtual memory used for text in KB.

u_longlong_t shared_lib_data_size Data size from shared library in KB.

u_longlong_t heap_size Heap size in KB.

u_longlong_t real_inuse The Real memory (in KB) in use by the process including
all kind of segments (excluding system segments). This
includes text, data, shared library text, shared library data,
file pages, shared memory, and memory mapped.

u_longlong_t virt_inuse The virtual memory (in KB) in use by the process including
all kind of segments (excluding system segments). This
includes text, data, shared library text, shared library data,
file pages, shared memory, and memory mapped.

u_longlong_t pinned Pinned memory (in KB) for this process inclusive of all
segments.

u_longlong_t pgsp_inuse Paging space used (in KB) inclusive of all segments.

u_longlong_t filepages File pages used (in KB) including shared pages.

u_longlong_t real_inuse_map Real memory used (in KB) for shared memory and memory
mapped regions

u_longlong_t virt_inuse_map Virtual memory used (in KB) for shared memory and
memory mapped regions.

u_longlong_t pinned_inuse_map Pinned memory used (in KB) for shared memory and
memory mapped regions.

double ucpu_time User mode CPU time is in percentage or milliseconds,
which is based on, whether it is filled by
perfstat_process_util or perfstat_process respectively.

double scpu_time System mode CPU time is in percentage or
milliseconds, which is based on whether it is filled by
perfstat_process_util or perfstat_process respectively.

u_longlong_t last_timebase Timebase counter.

u_longlong_t inBytes Bytes written to disk.

u_longlong_t outBytes Bytes read from disk.

u_longlong_t inOps In operations from disk.

u_longlong_t outOps Out operations from disk

The perfstat_netinterface_t structure contains the following members:

998 AIX Version 7.1: Files Reference

Item Description

char name[IDENTIFIER_LENGTH] Name of the interface.

char
description[IDENTIFIER_LENGTH]

Interface description (from ODM, similar to lscfg output).

uchar type Ethernet, token ring, and so on. Interpretation can be done
using the /usr/include/net/if_types.h file.

u_longlong_t mtu Network frame size.

u_longlong_t ipacets Number of packets received on interface.

u_longlong_t ibytes Number of bytes received on interface.

u_longlong_t ierrors Number of input errors on interface.

u_longlong_t opackets Number of packets sent on interface.

u_longlong_t obytes Number of bytes sent on interface.

u_longlong_t oerrors Number of output errors on interface.

u_longlong_t collisions Number of collisions on csma interface.

u_longlong_t bitrate Adapter rating in bit per second.

u_longlong_t if_iqdrops Dropped on input, this interface.

u_longlong_t if_arpdrops Dropped because no arp response.

The perfstat_logicalvolume_t structure contains the following members:

Item Description

char name[IDENTIFIER_LENGTH] Logical volume name.

char vgname[IDENTIFIER_LENGTH] Volume group name.

u_longlong_t open_close LVM_QLVOPEN, and so on. For more information, see the
lvm.h file.

u_longlong_t state LVM_UNDEF, and so on. For more information, see the
lvm.h file.

u_longlong_t mirror_policy LVM_PARALLEL, and so on. For more information, see the
lvm.h file.

u_longlong_t
mirror_write_consistency

LVM_CONSIST, and so on. For more information, see the
lvm.h file.

u_longlong_t write_verify LVM_VERIFY, and so on. For more information, see the
lvm.h file.

u_longlong_t ppsize Physical partition size in MB.

u_longlong_t logical_partitions Total number of logical partitions configured for this logical
volume.

ushort mirrors Number of physical mirrors for each logical partition.

u_longlong_t iocnt Number of read and write requests.

u_longlong_t kbreads Number of kilobytes read.

u_longlong_t kbwrites Number of kilobytes written.

u_longlong_t if_iqdrops Dropped on input, this interface.

u_longlong_t if_arpdrops Dropped because no arp response.

Files Reference 999

The logical volume statistics collection must be enabled by using the following call:

perfstat_config(PERFSTAT_ENABLE | PERFSTAT_LV, NULL)

The logical volume statistics collection must be disabled after collecting the data by using the following
call:

perfstat_config(PERFSTAT_DISABLE | PERFSTAT_LV, NULL)

The perfstat_volumegroup_t structure contains the following members:

Item Description

char name[IDENTIFIER_LENGTH] Volume group name.

u_longlong_t total_disks Number of physical volumes in the volume group.

u_longlong_t active_disks Number of active physical volumes in the volume group.

u_longlong_t
total_logical_volumes

Number of logical volumes in the volume group.

u_longlong_t
opened_logical_volumes

Number of logical volumes opened in the volume group.

u_longlong_t iocnt Number of read and write requests.

u_longlong_t kbreads Number of kilobytes read.

u_longlong_t kbwrites Number of kilobytes written.

unsigned variedState Volume Group is Available or not

• 0 = Available which implies varied ON
• 1 = Not Available which implies varied OFF

The volume group statistics collection must be enabled by using the following call:

perfstat_config(PERFSTAT_ENABLE | PERFSTAT_LV, NULL)

The volume groups statistics collection must be disabled after collecting the data by using the following
call:

perfstat_config(PERFSTAT_DISABLE | PERFSTAT_LV, NULL)

The description member of the perfstat_netinterface_t structure is stored in the information
cache. It can be flushed by making one of the following calls:

• perfstat_reset()
• perfstat_partial_reset(NULL, FLUSH_NETINTERFACE)
• perfstat_partial_reset("netinterface name", FLUSH_NETINTERFACE)

The perfstat_netinterface_total_t structure contains the following members:

Item Description

int number Number of network interfaces.

u_longlong_t ipackets Number of packets received on interface.

u_longlong_t ibytes Number of bytes received on interface.

u_longlong_t ierrors Number of input errors on interface.

u_longlong_t opackets Number of packets sent on interface.

u_longlong_t obytes Number of bytes sent on interface.

1000 AIX Version 7.1: Files Reference

Item Description

u_longlong_t oerrors Number of output errors on interface.

u_longlong_t collisions Number of collisions on csma interface.

The perfstat_pagingspace_t structure contains the following members:

Item Description

char name[IDENTIFIER_LENGTH] Paging space name.

char type Type of paging device.

The possible values of the members are as follows:

Item Description

LV_PAGING Logical volume.

NFS_PAGING NFS file.

The nfs_paging union has the following fields:

Item Description

char
nfs_paging.hostname[IDENTIFIER_LE
NGTH]

Host name of paging server.

char
nfs_paging.filename[IDENTIFIER_LE
NGTH]

Swap file name on server.

The lv_paging union has the following fields:

Item Description

char
lv_paging.vgname[IDENTIFIER_LENG
TH]

Volume group name.

longlong_t lp_size Size in number of logical partitions.

longlong_t mb_size Size in megabytes.

longlong_t mb_used Portion used in megabytes.

longlong_t io_pending Number of pending I/O.

char active Indicates if active (1 if yes, 0 if not).

char automatic Indicates if automatic (1 if yes, 0 if not).

The list of the paging spaces and the automatic, type, lpsize, mbsize, host name, file name, and vgname
members of the perfstat_pagingspace_t structure are stored in the information cache. They can be
flushed by making one of the following calls:

• perfstat_reset()
• perfstat_partial_reset(NULL, FLUSH_PAGINGSPACE)
• perfstat_partial_reset("paging space name", FLUSH_PAGINGSPACE)

The perfstat_netbuffer_t structure contains the following members:

Files Reference 1001

Item Description

char name[IDENTIFIER_LENGTH] Size in ASCII. It is always a power of 2. For example, 32,
64, and 128.

u_longlong_t inuse Number of buffer currently allocated.

u_longlong_t calls Number of buffer allocations since last reset.

u_longlong_t delayed Number of delayed allocations.

u_longlong_t free Number of free calls.

u_longlong_t failed Number of failed allocations.

u_longlong_t highwatermark High threshold for number of buffer allocated.

u_longlong_t freed Number of buffers freed.

The perfstat_protool_t structure contains the following members:

Item Description

char name[IDENTIFIER_LENGTH] ip, ipv6, icmp, icmpv6, udp, tcp, rpc, nfs, nfsv2, nfsv8

The ip union contains the following fields:

Item Description

u_longlong_t ip.ipackets Number of input packets.

u_longlong_t ip.ierrors Number of input errors.

u_longlong_t ip.iqueueoverflow Number of input queue overflows.

u_longlong_t ip.opackets Number of output packets.

u_longlong_t ip.oerrors Number of output errors.

The ipv6 union contains the following fields:

Item Description

u_longlong_t ipv6.ipackets Number of input packets.

u_longlong_t ipv6.ierrors Number of input errors.

u_longlong_t ipv6.iqueueoverflow Number of input queue overflows.

u_longlong_t ipv6.opackets Number of output packets.

u_longlong_t ipv6.oerrors Number of output errors.

The icmp union contains the following fields:

Item Description

u_longlong_t icmp.received Number of packets received.

u_longlong_t icmp.sent Number of packets sent.

u_longlong_t icmp.errors Number of errors.

The icmpv6 union contains the following fields:

Item Description

u_longlong_t icmpv6.received Number of packets received.

u_longlong_t icmpv6.sent Number of packets sent.

1002 AIX Version 7.1: Files Reference

Item Description

u_longlong_t icmpv6.errors Number of errors.

The udp union contains the following fields:

Item Description

u_longlong_t udp.ipackets Number of input packets.

u_longlong_t udp.ierrors Number of input errors.

u_longlong_t udp.opackets Number of output packets.

u_longlong_t udp.no_socket Number of packets dropped due to no socket.

The tcp union contains the following fields:

Item Description

u_longlong_t tcp.ipackets Number of input packets.

u_longlong_t tcp.ierrors Number of input errors.

u_longlong_t tcp.opackets Number of output packets.

u_longlong_t tcp.initiated Number of connections initiated.

u_longlong_t tcp.accepted Number of connections accepted.

u_longlong_t tcp.established Number of connections established.

u_longlong_t tcp.dropped Number of connections dropped.

The rpc union contains the following fields:

Item Description

u_longlong_t
rpc.client.stream.calls

Total NFS client RPC connection-oriented calls.

u_longlong_t
rpc.client.stream.badcalls

Rejected NFS client RPC calls.

u_longlong_t
rpc.client.stream.badxids

Bad NFS client RPC call responses.

u_longlong_t
rpc.client.stream.timeouts

Timed out NFS client RPC calls with no reply.

u_longlong_t
rpc.client.stream.newcreds

Total NFS client RPC authentication refreshes.

u_longlong_t
rpc.client.stream.badverfs

Total NFS client RPC bad verifier in response.

u_longlong_t
rpc.client.stream.timers

NFS client RPC timeout greater than timeout value.

u_longlong_t
rpc.client.stream.nomem

NFS client RPC calls memory allocation failure.

u_longlong_t
rpc.client.stream.cantconn

Failed NFS client RPC calls.

u_longlong_t
rpc.client.stream.interrupts

NFS client RPC calls fail due to interrupt.

Files Reference 1003

Item Description

u_longlong_t
rpc.client.dgram.calls

Total NFS client RPC connectionless calls.

u_longlong_t
rpc.client.dgram.badcalls

Rejected NFS client RPC calls.

u_longlong_t
rpc.client.dgram.retrans

Retransmitted NFS client RPC calls.

u_longlong_t
rpc.client.dgram.badxids

Bad NFS client RPC call responses.

u_longlong_t
rpc.client.dgram.timeouts

Timed out NFS client RPC calls with no reply.

u_longlong_t
rpc.client.dgram.newcreds

Total NFS client RPC authentication refreshes.

u_longlong_t
rpc.client.dgram.badverfs

Total NFS client RPC bad verifier in response.

u_longlong_t
rpc.client.dgram.timers

NFS client RPC timeout greater than timeout value.

u_longlong_t
rpc.client.dgram.nomem

NFS client RPC calls memory allocation failure.

u_longlong_t
rpc.client.dgram.cantsend

NFS client RPC calls not sent.

u_longlong_t
rpc.server.stream.calls

Total NFS server RPC connection-oriented requests.

u_longlong_t
rpc.server.stream.badcalls

Rejected NFS server RPC requests.

u_longlong_t
rpc.server.stream.nullrecv

NFS server RPC calls failed due to unavailable packet.

u_longlong_t
rpc.server.stream.badlen

NFS server RPC requests failed due to bad length.

u_longlong_t
rpc.server.stream.xdrcall

NFS server RPC requests failed due to bad header.

u_longlong_t
rpc.server.stream.dupchecks

NFS server RPC calls found in request cache.

u_longlong_t
rpc.server.stream.dupreqs

Total NFS server RPC call duplicates.

u_longlong_t
rpc.server.dgram.calls

Total NFS server RPC connectionless requests.

u_longlong_t
rpc.server.dgram.badcalls

Rejected NFS server RPC requests.

u_longlong_t
rpc.server.dgram.nullrecv

NFS server RPC calls failed due to unavailable packet.

u_longlong_t
rpc.server.dgram.badlen

NFS server RPC requests failed due to bad length.

u_longlong_t
rpc.server.dgram.xdrcall

NFS server RPC requests failed due to bad header.

1004 AIX Version 7.1: Files Reference

Item Description

u_longlong_t
rpc.server.dgram.dupchecks

NFS server RPC calls found in request cache.

u_longlong_t
rpc.server.dgram.dupreqs

Total NFS server RPC call duplicates.

The nfs union contains the following fields:

Item Description

u_longlong_t nfs.client.calls Total NFS client requests.

u_longlong_t nfs.client.badcalls Total NFS client failed calls.

u_longlong_t nfs.client.clgets Total number of client NFS clgets.

u_longlong_t
nfs.client.cltoomany

Total number of client NFS cltoomany.

u_longlong_t nfs.server.calls Total NFS server requests.

u_longlong_t nfs.server.badcalls Total NFS server failed calls.

u_longlong_t
nfs.server.public_v2

Total number of NFS version 2 server calls.

u_longlong_t
nfs.server.public_v3

Total number of NFS version 3 server calls.

The nfsv2 union contains the following fields:

Item Description

u_longlong_t nfsv2.client.calls NFS V2 client requests.

u_longlong_t nfsv2.client.null NFS V2 client null requests.

u_longlong_t nfsv2.client.getattr NFS V2 client getattr requests.

u_longlong_t nfsv2.client.setattr NFS V2 client setattr requests.

u_longlong_t nfsv2.client.root NFS V2 client root requests.

u_longlong_t nfsv2.client.lookup NFS V2 client file name lookup requests.

u_longlong_t
nfsv2.client.readlink

NFS V2 client readlink requests.

u_longlong_t nfsv2.client.read NFS V2 client read requests.

u_longlong_t
nfsv2.client.writecache

NFS V2 client write cache requests.

u_longlong_t nfsv2.client.write NFS V2 client write requests.

u_longlong_t nfsv2.client.create NFS V2 client file creation requests.

u_longlong_t nfsv2.client.remove NFS V2 client file removal requests.

u_longlong_t nfsv2.client.rename NFS V2 client file rename requests.

u_longlong_t nfsv2.client.link NFS V2 client link creation requests.

u_longlong_t nfsv2.client.symlink NFS V2 client symbolic link creation requests.

u_longlong_t nfsv2.client.mkdir NFS V2 client directory creation requests.

u_longlong_t nfsv2.client.rmdir NFS V2 client directory removal requests.

Files Reference 1005

Item Description

u_longlong_t nfsv2.client.readdir NFS V2 client read-directory requests.

u_longlong_t nfsv2.client.statfs NFS V2 client file stat requests.

u_longlong_t nfsv2.server.calls NFS V2 server requests.

u_longlong_t nfsv2.server.null NFS V2 server null requests.

u_longlong_t nfsv2.server.getattr NFS V2 server getattr requests.

u_longlong_t nfsv2.server.setattr NFS V2 server setattr requests.

u_longlong_t nfsv2.server.root NFS V2 server root requests.

u_longlong_t nfsv2.server.lookup NFS V2 server file name lookup requests.

u_longlong_t
nfsv2.server.readlink

NFS V2 server readlink requests.

u_longlong_t nfsv2.server.read NFS V2 server read requests.

u_longlong_t
nfsv2.server.writecache

NFS V2 server cache requests.

u_longlong_t nfsv2.server.write NFS V2 server write requests.

u_longlong_t nfsv2.server.create NFS V2 server file creation requests.

u_longlong_t nfsv2.server.remove NFS V2 server file removal requests.

u_longlong_t nfsv2.server.rename NFS V2 server file rename requests.

u_longlong_t nfsv2.server.link NFS V2 server link creation requests.

u_longlong_t nfsv2.server.symlink NFS V2 server symbolic link creation requests.

u_longlong_t nfsv2.server.mkdir NFS V2 server directory creation requests.

u_longlong_t nfsv2.server.rmdir NFS V2 server directory removal requests.

u_longlong_t nfsv2.server.readdir NFS V2 server read-directory requests.

u_longlong_t nfsv2.server.statfs NFS V2 server file stat requests.

The nfsv3 union contains the following fields:

Item Description

u_longlong_t nfsv3.client.calls NFS V3 client calls.

u_longlong_t nfsv3.client.null NFS V3 client null requests.

u_longlong_t nfsv3.client.getattr NFS V3 client getattr requests.

u_longlong_t nfsv3.client.setattr NFS V3 client setattr requests.

u_longlong_t nfsv3.client.lookup NFS V3 client file name lookup requests.

u_longlong_t nfsv3.client.access NFS V3 client access requests.

u_longlong_t nfsv3.client.readlink NFS V3 client readlink requests.

u_longlong_t nfsv3.client.read NFS V3 client read requests.

u_longlong_t nfsv3.client.write NFS V3 client write requests.

u_longlong_t nfsv3.client.create NFS V3 client file creation requests.

u_longlong_t nfsv3.client.mkdir NFS V3 client directory creation requests.

u_longlong_t nfsv3.client.symlink NFS V3 client symbolic link creation requests.

1006 AIX Version 7.1: Files Reference

Item Description

u_longlong_t nfsv3.client.mknod NFS V3 client mknod creation requests.

u_longlong_t nfsv3.client.remove NFS V3 client file removal requests.

u_longlong_t nfsv3.client.rmdir NFS V3 client directory removal requests.

u_longlong_t nfsv3.client.rename NFS V3 client file rename requests.

u_longlong_t nfsv3.client.link NFS V3 client link creation requests.

u_longlong_t nfsv3.client.readdir NFS V3 client read-directory requests.

u_longlong_t nfsv3.client.readdirplus NFS V3 client read-directory plus requests.

u_longlong_t nfsv3.client.fsstat NFS V3 client file stat requests.

u_longlong_t nfsv3.client.fsinfo NFS V3 client file info requests.

u_longlong_t nfsv3.client.pathconf NFS V3 client path configure requests.

u_longlong_t nfsv3.client.commit NFS V3 client commit requests.

u_longlong_t nfsv3.server.calls NFS V3 server requests.

u_longlong_t nfsv3.server.null NFS V3 server null requests.

u_longlong_t nfsv3.server.getattr NFS V3 server getattr requests.

u_longlong_t nfsv3.server.setattr NFS V3 server setattr requests.

u_longlong_t nfsv3.server.lookup NFS V3 server file name lookup requests.

u_longlong_t nfsv3.server.access NFS V3 server file access requests.

u_longlong_t nfsv3.server.readlink NFS V3 server readlink requests.

u_longlong_t nfsv3.server.read NFS V3 server read requests.

u_longlong_t nfsv3.server.write NFS V3 server write requests.

u_longlong_t nfsv3.server.create NFS V3 server file creation requests.

u_longlong_t nfsv3.server.mkdir NFS V3 server director6 creation requests.

u_longlong_t nfsv3.server.symlink NFS V3 server symbolic link creation requests.

u_longlong_t nfsv3.server.mknod NFS V3 server mknode creation requests.

u_longlong_t nfsv3.server.remove NFS V3 server file removal requests.

u_longlong_t nfsv3.server.rmdir NFS V3 server directory removal requests.

u_longlong_t nfsv3.server.rename NFS V3 server file rename requests.

u_longlong_t nfsv3.server.link NFS V3 server link creation requests.

u_longlong_t nfsv3.server.readdir NFS V3 server read-directory requests.

u_longlong_t nfsv3.server.readdirplus NFS V3 server read-directory plus requests.

u_longlong_t nfsv3.server.fsstat NFS V3 server file stat requests.

u_longlong_t nfsv3.server.fsinfo NFS V3 server file info requests.

u_longlong_t nfsv3.server.pathconf NFS V3 server path configure requests.

u_longlong_t nfsv3.server.commit NFS V3 server commit requests.

The perfstat_bio_dev_t structure contains the following members:

Item Description

char name[32] Device Name.

Files Reference 1007

Item Description

dev64_t 64bit device ID.

u_longlong_t rbytes Bytes read

u_longlong_t wbytes Bytes Written

u_longlong_t rerrs Number of read errors

u_longlong_t werrs Number of write errors

u_longlong_t rtime Aggregate time (reads)

u_longlong_t wtime Aggregate time (writes)

u_longlong_t nread Number of reads

u_longlong_t nwrite Number of writes

u_longlong_t dev_status Status of device

1 - Available
0 - Unavailable
0xFFFFFFFF0ERRORNO otherwise

#define GET_DEVERROR(x) ((int)((x<0)?(x & 0x00000000FFFFFFFFLL):0))

The perfstat_cluster_total_t structure contains the following members:

Item Description

char name[MAXHOSTNAMELEN] Name of the cluster.

Perfstat_cluster_type_p type Set of bits describing the cluster.

u_longlong_t num_nodes Number of nodes in the cluster.

perfstat_node_data_t *node_data Contains node details. Can be either NULL or
(sizeof_node_data * total number of nodes).

Note: Memory needs to be allocated by the user.

u_longlong_t sizeof_node_data Equals sizeof(perfstat_node_data_t).

Note: The value is entered by the user.

u_longlong_t num_disks Number of disks in the cluster.

perfstat_disk_data_t *disk_data Contains disk details. Can be either NULL or
(sizeof_disk_data * total number of disks).

Note: Memory needs to be allocated by the user.

u_longlong_t sizeof_disk_data Equals sizeof(perfstat_disk_data_t).

Note: The value is entered by the user.

The perfstat_cluster_type_t structure contains the following members:

Item Description

unsigned:1 is_local Cluster type is Local.

unsigned:1 is_zone Cluster type is Zone.

unsigned:1 is_link Cluster type is Link.

The perfstat_node_data_t structure contains the following members:

1008 AIX Version 7.1: Files Reference

Item Description

char name[MAXHOSTNAMELEN] Name of the node.

u_longlong_t shorthand_id Cluster shorthand ID for the node.

perfstat_node_status_t status State of the node.

u_longlong_t num_clusters Number of clusters node is a member in.

u_longlong_t num_zones Number of zones node is a member in.

u_longlong_t
num_points_of_contact

Number of interfaces node has communicated on.

perfstat_ip_addr_t net_addr Primary IP address of the node.

The perfstat_node_status_t structure contains the following members:

Item Description

unsigned:1 is_up State of the node is UP.

unsigned:1 is_down State of the node is DOWN.

unsigned:1 is_down_not_posted State of the node is DOWN, BUT NOT POSTED TO
CLUSTER.

unsigned:1 is_deleted State of the node is DELETED.

unsigned:1 is_joined State of the node is JOINED.

The perfstat_ip_addr_t structure contains the following members:

Item Description

sa_family_t the_family Address family

union ip IP address.

The perfstat_ip_addr_t.ip structure contains the following members:

Item Description

struct in_addr ip.ip4 IP address Version 4.

struct in_addr ip.ip6 IP address Version 6.

The perfstat_disk_data_t structure contains the following members:

Item Description

char name[IDENTIFIER_LENGTH] Specifies the name of the disk.

dev64_t cluster_dev_t Specifies the dev_t structure of the disk in the cluster.

char uuid[ATTRVALSIZE] Specifies the universally unique identifier (UUID) of the
disk.

char udid[ATTRVALSIZE] Specifies the unique disk identifier (UDID) of the disk.

perfstat_disk_status_t status Specifies the status of the disk.

The perfstat_disk_status_t structure contains the following members:

Item Description

unsigned:1 is_found Cluster disk is found.

Unsigned:1 is_ready Cluster disk is ready for use.

Files Reference 1009

The perfstat_processor_pool_util_t structure contains the following members:

Item Description

max_capacity Maximum processor capacity of pool that is in a partition.

entitled_capacity Entitled processor capacity of pool that is in a partition.

phys_cpus_pool Available physical processors in the shared processor
pool, to which this partition belongs.

idle_cores Available physical processors in the shared processor pool
over the last interval.

max_cores For the last interval, the total maximum number of cores
that might be used by the shared processor pool, to which
this partition belongs.

busy_cores For the last interval, the total busy (nonidle) cores
which are accumulated across all partitions in the shared
processor pool to which this partition belongs.

sbusy_cores For the last interval, normalized total busy (nonidle) cores
which are accumulated across all partitions in the shared
processor pool to which this partition belongs. This is
true when the processor cores run at nominal or rated
frequency.

gpool_tot_cores For the last interval, total cores, across all physical
processors that are allocated for the shared processor
pool use (across all pools).

gpool_busy_cores For the last interval, the total of busy (nonidle) cores which
are accumulated across all shared processor partitions
(across all pools).

gpool_sbusy_cores For last interval, the normalized total busy cores which are
accumulated across all shared processor partitions (across
all pools). This is true when the processor cores run at
nominal or rated frequency.

ssp_id Identifier of shared pool of the physical processors to
which this partition belongs.

tb_last_delta Elapsed number of clock ticks.

version Version number for the data structure.

The node/cluster statistics collection must be enabled by using the following call:

perfstat_config(PERFSTAT_ENABLE | PERFSTAT_CLUSTER_STATS, NULL)

The node/cluster statistics collection must be disabled after collecting the data by using the following
call:

perfstat_config(PERFSTAT_DISABLE | PERFSTAT_CLUSTER_STATS, NULL)

The perfstat_hfistat_t structure contains the following members:

Item Description

u_longlong_t version The version number (1, 2, and so on).

u_longlong_t hfiid The HFI identifier (0, 1, and so on).

1010 AIX Version 7.1: Files Reference

Item Description

u_longlong_t
cycles_blocked_sending

The number of cycles blocked from sending.

u_longlong_t flits_sent The flit sent.

u_longlong_t flits_dropped The flit dropped.

u_longlong_t link_retries The link level retries.

u_longlong_t pkts_sent The aggregate count of the packet sent.

u_longlong_t pkts_dropped_sending The aggregate count of the packet dropped from sending.

_longlong_t pkts_received The aggregate count of the packet received.

u_longlong_t
pkts_dropped_receiving

The aggregate count of the packet dropped from receiving.

u_longlong_t
immediate_send_pkt_count

The aggregate of the immediate send packet count.

u_longlong_t send_recv_pkt_count The aggregate of the send/receive packet count.

u_longlong_t fullRDMA_sent_count The aggregate of the full-RDMA packet sent count.

u_longlong_t halfRDMA_sent_count The aggregate of the half-RDMA packet sent count.

u_longlong_t smallRDMA_sent_count The aggregate of the small-RDMA packet sent count.

u_longlong_t ip_pkt_sent_count The aggregate of the IP packet sent count.

u_longlong_t cau_pkt_sent_count The aggregate of the CAU packet sent count.

u_longlong_t gups_pkt_sent_count The aggregate of the GUPS packet sent count.

u_longlong_t addr_xlat_wait_count The address of the xlat wait count.

u_longlong_t mmu_cache_hits Number of hits to the Nest Memory management Unit
Cache

u_longlong_t mmu_cache_misses Number of hits missed to the Nest Memory management
Unit Cache

u_longlong_t mmu_atlb_hits Number of buffer hits to the Nest Memory management
Unit Address Translation Look-Ahead.

u_longlong_t mmu_atlb_misses Number of buffer hits missed to the Nest Memory
management Unit Address Translation Look-Ahead.

u_longlong_t
cycles_waiting_on_a_credit

Cycles waiting on credit.

The perfstat_hfistat_window_t structure contains the following members:

Item Description

u_longlong_t version The version number (1, 2, and so on).

u_longlong_t hfiid The HFI identifier (0, 1, and so on).

u_longlong_t windowid The window number (0, 1, 2, and so on).

u_longlong_t pkts_sent The number of packets sent.

u_longlong_t pkts_dropped_sending The number of packets dropped while sending.

u_longlong_t
pkt_indicated_send_count

The number of indicated packets that were sent.

Files Reference 1011

Item Description

u_longlong_t
immediate_send_pkt_count

The number of immediate send packets.

u_longlong_t pkts_received The number of packets received.

u_longlong_t
pkts_dropped_receiving

The number of packets dropped from receiving.

u_longlong_t
pkt_indicated_rcv_count

The number of indicated packets that were received.

A perfstat_config() query is provided to verify, if the HFI statistics collection is available.

perfstat_config(PERFSTAT_QUERY|PERFSTAT_HFISTATS, NULL);

The perfstat_netadapter_t structure contains the following members:

Item Description

u_longlong_t version The version number (1, 2, and so on).

char name[IDENTIFIER_LENGTH] Name of the adapter.

u_longlong_t tx_packets Transmit packets on the interface.

u_longlong_t tx_bytes Transmit bytes on the interface.

u_longlong_t tx_interrupts Transfer interrupts.

u_longlong_t tx_errors Transmit errors.

u_longlong_t tx_packets_dropped Packets that are dropped at the time of data transmission.

u_longlong_t tx_queue_size Maximum packets on the software transmit queue.

u_longlong_t tx_queue_len Transmission queue length.

u_longlong_t tx_queue_overflow Transmission queue overflow.

u_longlong_t
tx_broadcast_packets

Number of broadcast packets transmitted.

u_longlong_t
tx_multicast_packets

Number of multicast packets transmitted.

u_longlong_t tx_carrier_sense Lost carrier sense signal count.

u_longlong_t tx_lost_CTS_errors The number of unsuccessful transmissions due to the loss
of the clear-to-send signal error.

u_longlong_t tx_DMA_underrun Number of DMA underruns for transmission.

u_longlong_t
tx_max_collision_errors

Maximum collision errors at transmission.

u_longlong_t
tx_late_collision_errors

Late collision errors at transmission.

u_longlong_t tx_deferred The number of packets that are deferred for transmission.

u_longlong_t tx_timeout_errors Time out errors for transmission.

u_longlong_t
tx_single_collision_count

Number of single collision errors at transmission.

u_longlong_t
tx_multiple_collision_Count

Number of multiple collision errors at transmission.

u_longlong_t rx_packets Received packets on interface.

1012 AIX Version 7.1: Files Reference

Item Description

u_longlong_t rx_bytes Received bytes on interface.

u_longlong_t rx_errors Input errors on interface.

u_longlong_t rx_packets_dropped The number of packets that are accepted by the device
driver for transmission that were not (for any reason) given
to the device.

u_longlong_t rx_bad_packets Number of bad packets received.

u_longlong_t
rx_multicast_packets

Number of multicast packets received.

u_longlong_t
rx_broadcast_packets

Number of broadcast packets received.

u_longlong_t rx_CRC_errors; Number of packets received with the CRC errors.

u_longlong_t rx_DMA_overrun; Number of the DMA overruns for the received data.

u_longlong_t rx_alignment_errors Packets received with an alignment error.

u_longlong_t
rx_noresource_errors

Packets received with no resource errors.

u_longlong_t rx_collision_errors Packets received with collision errors.

u_longlong_t
rx_packet_tooshort_errors

Number of short packets received.

u_longlong_t
rx_packet_toolong_errors

Number of packets received that are too long.

u_longlong_t
rx_packets_discardedbyadapter

Number of received packets that are discarded by the
adapter.

The perfstat_fcstat_t structure contains the following members:

Item Description

u_longlong_t version The version number (1, 2, and so on).

char name[IDENTIFIER_LENGTH] Name of the adapter.

u_longlong_t InputRequests Number of input requests.

u_longlong_t OutputRequests Number of output requests.

u_longlong_t InputBytes Number of input bytes.

u_longlong_t OutputBytes Number of output bytes.

u_longlong_t EffMaxTransfer Effective maximum transfer value of the adapter.

u_longlong_t NoDMAResourceCnt Number of the DMA failures caused due to no DMA
resource available.

u_longlong_t NoCmdResourceCnt Number of failures to allocate a command due to
unavailability of command resource.

int AttentionType Link up or down the indicator.

u_longlong_t
SecondsSinceLastReset

Displays the seconds since the last reset of the statistics
on the adapter.

u_longlong_t TxFrames Number of frames transmitted.

u_longlong_t TxWords Fiber Channel Kbytes transmitted.

Files Reference 1013

Item Description

u_longlong_t RxFrames Number of frames received.

u_longlong_t RxWords Fiber Channel Kbytes received.

u_longlong_t LIPCount Number of loop initialization protocol (LIP) events received
in case we have FC-AL (arbitrated loop which is a FC
topology).

u_longlong_t NOSCount Number of Not_Operational (NOS) events. This indicates
a link failure state. At a high level, this indicates that the
connection to FC network is lost.

u_longlong_t ErrorFrames Number of frames received with the CRC error.

u_longlong_t DumpedFrames Number of lost frames.

u_longlong_t LinkFailureCount Number of link failures.

u_longlong_t LossofSyncCount Number of loss of sync.

_longlong_t LossofSignal Number of signal lost.

u_longlong_t
PrimitiveSeqProtocolErrCount

Number of times a primitive sequence was in error.

u_longlong_t InvalidTxWordCount Number of invalid transmission words received.

u_longlong_t InvalidCRCCount Number of CRC errors in a received frame.

u_longlong_t PortFcId SCSI ID of the adapter.

u_longlong_t PortSpeed Speed of the adapter in Gb (gigabits).

char PortType[PERFSTAT_SIZE] Type of connection. Valid values are fabric, private loop,
point-to-point, and unknown.

u_longlong_t PortWWN Worldwide port name.

u_longlong_t PortSupportedSpeed Supported port speed in Gb (gigabits).

The perfstat_thread_t structure contains the following members:

Item Description

u_longlong_t version Version number of data structure.

u_longlong_t pid Process ID of the kernel thread.

u_longlong_t tid Kernel thread ID.

u_longlong_t cpuid Processor ID to which the thread is bound to.

double ucpu_time User mode CPU time is in percentage or milliseconds
based on, whether it is filled by perfstat_thread_util or
perfstat_thread subroutine respectively.

double scpu_time System mode CPU time is in percentage or milliseconds
based on, whether it is filled by perfstat_thread_util or
perfstat_thread subroutine respectively.

The following are declared as functions:

int perfstat_cpu(perfstat_id_t *name,
 perfstat_cpu_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_cpu_node(perfstat_id_node_t *name,
 perfstat_cpu_t *userbuff,
 int sizeof_userbuff,

1014 AIX Version 7.1: Files Reference

 int desired_number)
int perfstat_cpu_total(perfstat_id_t *name,
 perfstat_cpu_total_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_cpu_total_node(perfstat_id_node_t *name,
 perfstat_cpu_total_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_cpu_total_wpar(perfstat_id_wpar_t *name,
 perfstat_cpu_total_wpar_t* userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_cpu_total_rset(perfstat_id_wpar_t *name,
 perfstat_cpu_total_t* userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_cpu_rset(perfstat_id_wpar_t *name,
 perfstat_cpu_t* userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_partition_total(perfstat_id_t *name,
 perfstat_partition_total_t *userbuff,
 int sizeof_userbuff,
 int devid_number)
int perfstat_partition_total_node(perfstat_id_node_t *name,
 perfstat_partition_total_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_cluster_total(perfstat_id_node_t *name,
 perfstat_cluster_total_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_node_list(perfstat_id_node_t *name,
 perfstat_node_t *userbuff,
 int sizeof_userbuff,
 int desired_number);
int perfstat_disk(perfstat_id_t *name,
 perfstat_disk_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_disk_node(perfstat_id_node_t *name,
 perfstat_disk_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_disk_total(perfstat_id_t *name,
 perfstat_disk_total_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_disk_total_node(perfstat_id_node_t *name,
 perfstat_disk_total_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_disk_total_wpar(perfstat_id_wpar_t *name,
 perfstat_disk_total_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_tape(perfstat_id_t *name,
 perfstat_tape_t* userbuff, int sizeof_userbuff,
 int desired_number)
int perfstat_tape_node(perfstat_id_node_t *name,
 perfstat_tape_t* userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_tape_total(perfstat_id_t *name,
 perfstat_tape_total_t* userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_tape_total_node(perfstat_id_node_t *name,
 perfstat_tape_total_t* userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_diskadapter(perfstat_id_t *name,
 perfstat_diskadapter_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_diskadapter_node(perfstat_id_node_t *name,
 perfstat_diskadapter_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_memory_total(perfstat_id_t *name,
 perfstat_memory_total_t *userbuff,

Files Reference 1015

 int sizeof_userbuff,
 int desired_number)
int perfstat_memory_total_node(perfstat_id_node_t *name,
 perfstat_memory_total_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_memory_page(perfstat_psize_t *psize,
 perfstat_memory_page_t* userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_memory_page_node(perfstat_id_node_t *name,
 perfstat_psize_t *psize,
 perfstat_memory_page_t* userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_memory_page_wpar(perfstat_id_wpar_t *name,
 perfstat_psize_t *psize,
 perfstat_memory_page_wpar_t* userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_memory_total_wpar(perfstat_id_wpar_t *name,
 perfstat_memory_total_wpar_t* userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_netinterface(perfstat_id_t *name,
 perfstat_netinterface_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_netinterface_node(perfstat_id_node_t *name,
 perfstat_netinterface_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_netinterface_total(perfstat_id_t *name,
 perfstat_netinterface_total_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_netinterface_total_node(perfstat_id_node_t *name,
 perfstat_netinterface_total_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_pagingspace(perfstat_id_t *name,
 perfstat_pagingspace_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_pagingspace_node(perfstat_id_node_t *name,
 perfstat_pagingspace_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_netbuffer(perfstat_id_t *name,
 perfstat_netbuffer_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_netbuffer_node(perfstat_id_node_t *name,
 perfstat_netbuffer_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_protocol(perfstat_id_t *name,
 perfstat_protocol_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_protocol_node(perfstat_id_node_t *name,
 perfstat_protocol_t *userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_wpar_total(perfstat_id_wpar_t *name,
 perfstat_wpar_total_t* userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_logicalvolume(perfstat_id_t *name,
 perfstat_logicalvolume_t* userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_logicalvolume_node(perfstat_id_node_t *name,
 perfstat_logicalvolume_t* userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_volumegroup(perfstat_id_t *name,
 perfstat_volumegroup_t* userbuff,
 int sizeof_userbuff,
 int desired_number)
int perfstat_volumegroup_node(perfstat_id_node_t *name,
 perfstat_volumegroup_t* userbuff,

1016 AIX Version 7.1: Files Reference

 int sizeof_userbuff,
 int desired_number)
int perfstat_partial_reset(char *name,
 u_longlong_t defmask)
int perfstat_config(uint command, void *arg)
int perfstat_bio_stats(perfstat_id_t *name,
 perfstat_bio_dev_t* userbuff,
 int sizeof_userbuff,
 ng_t desired_number);

int perfstat_devname2id(perfstat_id_t *name,
 u_longlong_t *userbuff);
int perfstat_biostat_reset();
void perfstat_reset(void)

int perfstat_partition_config(perfstat_id_t *name,
 perfstat_partition_config_t* userbuff,
 int sizeof_userbuff,
 int desired_number);

int perfstat_cpu_util(perfstat_rawdata_t *cpustats,
 perfstat_cpu_util_t *userbuff,
 int sizeof_userbuff,
 int desired_number);

int perfstat_process(perfstat_id_t *name,
 perfstat_process_t *userbuff,
 int sizeof_userbuff,
 int desired_number);

int perfstat_process_util(perfstat_rawdata_t *data,
 perfstat_process_t *userbuff,
 int sizeof_userbuff,
 int desired_number);

int perfstat_hfistat(perfstat_id_t *name,
 perfstat_hfistat_t *userbuff,
 int sizeof_userbuff,
 int desired_number);

int perfstat_hfistat_window(perfstat_id_window_t *name,
 perfstat_hfistat_window_t *userbuff,
 int sizeof_userbuff,
 int desired_number);

int perfstat_hfistat_window(perfstat_id_window_t *name,
 perfstat_hfistat_window_t *userbuff,
 int sizeof_userbuff,
 int desired_number

int perfstat_processor_pool_util(perfstat_rawdata_t *data,
 perfstat_processor_pool_util_t *userbuff,
 int sizeoff_userbuff,
 int desired_number);

int perfstat_netadapter(perfstat_id_t *name,
 perfstat_netadapter_t* userbuff,
 int sizeof_userbuff,
 int desired_number);

int perfstat_netadapter_node(perfstat_id_node_t *name,
 perfstat_netadapter_t* userbuff,
 int sizeof_userbuff,
 int desired_number);

int perfstat_fcstat(perfstat_id_t *name
 perfstat_fcstat_t* userbuff,
 int sizeof_userbuff,
 int desired_number);

int perfstat_fcstat_node(perfstat_id_node_t *name,
 perfstat_fcstat_t* userbuff,
 int sizeof_userbuff,
 int desired_number);

int perfstat_fcstat_wwpn(perfstat_wwpn_id_t *name,
 perfstat_fcstat_t* userbuff,
 int sizeof_userbuff,
 int desired_number);

int perfstat_thread (perfstat_id_t * name,
 perfstat_thread_t * userbuff,

Files Reference 1017

 int sizeof_userbuff,
 int desired_number)

int perfstat_thread_util (perfstat_rawdata_t *data,
 perfstat_thread_t * userbuff,
 int sizeof_userbuff,
 int desired_number)

int perfstat_cluster_disk(perfstat_id_node_t *name,
 perfstat_disk_data_t* userbuff,
 int sizeof_userbuff, int desired_number);

The perfstat_cpu_util_t structure contains the following members:

Item Description

u_longlong_t version The version number (1, 2, and so on).

char cpu_id[IDENTIFIER_LENGTH] Holds the ID of the processors.

float entitlement Percentage entitlement of the partition.

float user_pct Percentage of utilization in user mode.

float kern_pct Percentage of utilization in kernel mode.

float idle_pct Percentage of utilization in idle mode.

float wait_pct Percentage of utilization in wait mode.

float physical_busy Physical processors busy.

float physical_consumed Total processors used up by the partition

float freq_pct Average frequency percentage over the last interval

float entitlement_pct Percentage of entitlement used.

float busy_pct Percentage of entitlement busy.

float idle_donated_pct Percentage idle cycles donated.

float busy_donated_pct Percentage of busy cycles donated.

float idle_stolen_pct Percentage idle cycles stolen.

float busy_stolen_pct Percentage busy cycles stolen.

float l_user_pct Percentage of utilization in user mode, in terms of logical
processor ticks.

float l_kern_pct Percentage of utilization in kernel mode, in terms of logical
processor ticks.

float l_idle_pct Percentage of utilization in idle mode, in terms of logical
processor ticks.

float l_wait_pct Percentage of utilization in wait mode, in terms of logical
processor ticks.

u_longlong_t delta_time Delta time in milliseconds for which the utilization is
evaluated.

Related information
perfstat_cpu subroutine
perfstat_reset subroutine
Perfstat API Programming

1018 AIX Version 7.1: Files Reference

math.h File

Purpose
Defines math subroutines and constants.

Description
The /usr/include/math.h header file contains declarations of all the subroutines in the Math library
(libm.a) and of various subroutines in the Standard C Library (libc.a) that return floating-point values.

Among other things, the math.h file defines the following macro, which is used as an error-return value:

Item Description

HUGE_VAL Specifies the maximum value of a double-precision floating-point number: +infinity on
machines that support IEEE-754 and DBL_MAX otherwise.

If you define the __MATH__ preprocessor variable before including the math.h file, the math.h file
defines macros that make the names of certain math subroutines appear to the compiler as __xxxx. The
following names are redefined to have the __ (double underscore) prefix:

Item Description

exp sin

asin log

cos acos

log10 tan

atan sqrt

fabs atan2

These special names instruct the C compiler to generate code that avoids the overhead of the Math library
subroutines and issues compatible-mode floating-point subroutines directly. The __MATH__ variable is
defined by default.

If _XOPEN_SOURCE variable is defined, the following mathematical constants are defined for your
convenience. The values are of type double and are accurate to the precision of this type. That is, the
machine value is the mathematical value rounded to double precision.

Item Description

M_E Base of natural logarithms (e)

M_LOG2E Base-2 logarithm of e

M_LOG10E Base-10 logarithm of e

M_LN2 Natural logarithm of 2

M_LN10 Natural logarithm of 10

M_PI Pi, the ratio of the circumference of a circle to its diameter

M_PI_2 Value of pi divided by 2

M_PI_4 Value of pi divided by 4

M_1_PI Value of 1 divided by pi

M_2_PI Value of 2 divided by pi

M_2_SQRTPI Value of 2 divided by the positive square root of pi

Files Reference 1019

Item Description

M_SQRT2 Positive square root of 2

M_SQRT1_2 Positive square root of 1/2

Related reference
values.h File

mode.h File

Purpose
Defines the interpretation of a file mode.

Description
This version of the operating system supports a 32-bit mode, which is divided into 3 parts. The 16 most
significant bits are reserved by the system. The least significant 16 bits define the type of file (S_IFMT)
and the permission bits. The 12 permission bits can be changed by using the chmod or chacl subroutine.
The file type cannot be changed.

File-Type Bits

The file type determines the operations that can be applied to the file (including implicit operations, such
as searching a directory or following a symbolic link). The file type is established when the file is created,
and cannot be changed. The following file types are supported:

Item Description

S_IFDIR Defines a directory.

S_IFREG Defines a regular file.

S_IFIFO Defines a pipe.

S_IFCHR Defines a character device.

S_IFBLK Defines a block device.

S_IFLNK Defines a symbolic link.

S_IFSOCK Defines a socket.

The S_IFMT format mask constant can be used to mask off a file type from the mode.

File-Attribute Bits

The file-attribute bits affect the interpretation of a particular file. With some restrictions, file attributes
can be changed by the owner of a file or by a privileged user. The file-attribute bits are:

Item Description

Attribute Description

S_ISUID Bit

Item Description

setuid When a process runs a regular file that has the S_ISUID bit set, the effective user ID of the
process is set to the owner ID of the file. The setuid attribute can be set only by a process on
a trusted path. If the file or its access permissions are altered, the S_ISUID bit is cleared.

S_ISGID (S_ENFMT) Bit

1020 AIX Version 7.1: Files Reference

Item Description

setgid When a process runs a regular file that has both the S_ISGID bit and the
S_IXGRP permission bit set, the effective user ID of the process is set to
the group ID of the file. The setgid attribute can be set only by a process on
a trusted path. If the owner is establishing this attribute, the group of the
file must be the effective group ID or in the supplementary group ID of the
process. If the file or its access permissions are altered, the S_ISGID bit is
cleared.

enforced locking If a regular file has the S_ISGID bit set and the S_IXGRP permission bit
cleared, locks placed on the file with the lockfx subroutine are enforced
locks.

S_IFMPX Bit

Item Description

multiplexed A character device with the S_IFMPX attribute bit set is a multiplexed device. This
attribute is established when the device is created.

S_ISVTX Bit

Item Description

sticky If a directory has the S_SVTX bit set, only the owner of the file or the owner of the directory
can remove a file from the directory.

S_IXACL Bit

Item Description

access control list Any file that has the S_IXACL bit set can have an extended access
control list (ACL). Specifying this bit when setting the mode with the
chmod command causes the permission bits information in the mode
to be ignored. Extended ACL entries are ignored if this bit is cleared.
This bit can be implicitly cleared by the chmod subroutine. The /usr/
include/sys/acl.h file defines the format of the ACL.

S_ITCB Bit

Item Description

trusted Any file that has the S_ITCB bit set is part of the Trusted Computing Base (TCB). Only files in
the TCB can acquire privilege on a trusted path. Only files in the TCB are run by the trusted
shell (which is invoked with the tsh command). This attribute can be established or cleared
only by a process running on the trusted path.

S_IJRNL Bit

Item Description

journaled Any file that has the S_IJRNL bit set is defined as a journaled file. Updates to a journaled
file are added to a log atomically. All directories and system files have the journaled
attribute, which cannot be reset.

S_ICRYPTO Bit

Item Description

encrypted Any file that has the S_ICRYPTO bit set is an encrypted file in an Encrypting File System
(EFS).

Files Reference 1021

File-Permission Bits

The file-permission bits control which processes can perform operations on a file. This includes read,
write, and execute bits for the file owner, the file group, and the default. These bits should not be used to
set access-control information; the ACL should be used instead. The file-permission bits are:

Item Description

S_IRWXU Permits the owner of a file to read, write, and execute the file.

S_IRUSR Permits the owner of a file to read the file.

S_IREAD Permits the owner of a file to read the file.

S_IWUSR Permits the owner of a file to write to the file.

S_IWRITE Permits the owner of a file to write to the file.

S_IXUSR Permits the owner of a file to execute the file or to search the file's directory.

S_IEXEC Permits the owner of a file to execute the file or to search the file's directory.

S_IRWXG Permits a file's group to read, write, and execute the file.

S_IRGRP Permits a file's group to read the file.

S_IWGRP Permits a file's group to write to the file.

S_IXGRP Permits a file's group to execute the file or to search the file's directory.

S_IRWXO Permits others to read, write, and execute the file.

S_IROTH Permits others to read the file.

S_IWOTH Permits others to write to the file.

S_IXOTH Permits others to execute the file or to search the file's directory.

Related reference
cpio File Format
fullstat.h File
stat.h File
types.h File
Related information
chmod command
tsh command

msg.h File

Purpose
Describes the structures that are used by the subroutines that perform message queueing operations.

Syntax
#include <sys/msg.h>

Description
The msg.h file defines the following symbolic constants, types, and structures:

Types:

unsigned int msgqnum_t;
unsigned int msglen_t;

1022 AIX Version 7.1: Files Reference

Symbolic Constants:

Item Description

MSG_NOERROR no error if big message */

MSG_R read permission */

MSG_W write permission */

MSG_RWAIT a reader is waiting for a message */

MSG_WWAIT a writer is waiting to send */

MSG_STAT Number of bytes to copy for IPC_STAT command

MSGXBUFSIZE the length of everything but mtext[1] and padding

MSG_SYSSPACE for rmsgsnd() flags

XMSG for rmsgrcv() flags

There is one msg queue id data structure for each q in the system. The msqid_ds structure contains the
following members:

struct ipc_perm msg_perm; operation permission
struct
void *__msg_first; ptr to first message on q
void *__msg_last; ptr to last message on q
unsigned int __msg_cbytes; current # bytes on q
msgqnum_t msg_qnum; # of messages on q
msglen_t msg_qbytes; max # of bytes on q
pid_t msg_lspid; pid of last msgsnd
pid_t msg_lrpid; pid of last msgrcv
time_t msg_stime; last msgsnd time
time_t msg_rtime; last msgrcv time
time_t msg_ctime; last change time
int __msg_rwait; wait list for message
receive
int __msg_wwait; wait list for message send
unsigned short __msg_reqevents; select/poll requested
events

The msg_hdr struct contains the following members:

time_t mtime; time message was sent
uid_t muid; author's effective uid
gid_t mgid; author's effective gid
pid_t mpid; author's process id
mtyp_t mtype; message type

There is one msg structure for each message that may be in the system. The msg structure contains the
following members:

struct msg *msg_next; ptr to next message on q
struct msg_hdr msg_attr; message attributes
unsigned int msg_ts; message text size
char *msg_spot; pointer to message text

The structure msgbuf is the user message buffer template for msgsnd and msgrcv system calls and
contains the following members:

mtyp_t mtype; message type
char mtext[1]; message text

The msgxbuf structure is the user message buffer template for the msgxrcv system call and contains the
following members:

time_t mtime; time message was sent
uid_t muid; author's effective uid
gid_t mgid; author's effective gid
pid_t mpid; author's process id

Files Reference 1023

mtyp_t mtype; Message type
char mtext[1]; Message text

The msginfo structure contains the following members:

int msgmax, max message size
int msgmnb, max # bytes on queue
int msgmni, # of message queue identifiers
int msgmnm; max # messages per queue identifier

The time_t, size_t, off_t, mtyp_t, pid_t, and gid_t types are as defined in <sys/types.h>.

The following are declared as functions:

int msgget(key_t, int);
int msgrcv(int, void *, size_t, long, int);
int msgsnd(int, const void *, size_t, int);
int msgctl(int, int, struct msqid_ds *);
int msgxrcv(int, struct msgxbuf*, int, long, int);

In addition, all of the symbols from <sys/ipc.h> will be defined when this header is included.

Related information
mmap subroutine
msync subroutine
munmap subroutine

mtio.h File

Purpose
Defines the user include file for the magnetic tape.

Description
The /usr/include/sys/mtio.h file is for use with devices that are driven by the magnetic tape driver. Since
Linux operating system has an mtio.h file, the sys/mtio.h file has been added for Linux compatibility. The
sys/mtio.h file can be used for Linuxsource code compatibility.

Note: For Linux source-code compatibility (that is, source code or definitions based on the Linux
operating system), set the following macro before including the sys/mtio.h file:

#define _LINUX_SOURCE_COMPAT

File
/usr/include/sys/mtio.h

param.h File

Purpose
Describes system parameters.

Description
Certain parameters vary for different hardware that uses the operating system. These parameters are
defined in the /usr/include/sys/param.h file. The most significant parameters are:

1024 AIX Version 7.1: Files Reference

Item Description

NCARGS Indicates the default number of characters, including
terminating null characters, that can be passed using the exec
subroutine.

UBSIZE The unit used by the statistics subroutines for returning block
sizes of files.

This file also contains macros for manipulating machine-dependent fields.

Programs that are intended to comply with the POSIX standard should include the /usr/include/sys/
limits.h file rather than the param.h file.

Related reference
core File Format
filsys.h File
statfs.h File
Related information
exec subroutine
Kernel tunable parameters

pmapi.h File

Purpose
Describes the structures and constants used by the Performance Monitor APIs subroutines.

Syntax

#include <pmapi.h>

Description
The pmapi.h file defines the following symbolic constants, types, and structures:

Symbolic Constants

Item Description

MAX_COUNTERS Maximum number of supported counters

MIN_THRESH_VALUE Minimum threshold value

MAX_THRESH_VALUE Maximum threshold value

COUNT_NOTHING Specifies to not count event

Constants for event filters

Item Description

PM_VERIFIED Specifies events that have been verified

PM_UNVERIFIED Specifies events that have not been verified

PM_CAVEAT Specifies events that work with caveats

PM_GET_GROUPS Not a filter; specifies that supported event groups are to be returned by
pm_init.

Constants for Processor Idents

Files Reference 1025

Item Description

PM_CURRENT Specifies that the PMAPI is to be initialized for the current processor type.

PM_PowerPC®604 Specifies that supported events for the PowerPC®604 are to be returned.

PM_PowerPC®604e Specifies that supported events for the PowerPC604e are to be returned.

PM_RS64_II Specifies that supported events for the RS64-II are to be returned.

PM_POWER3 Specifies that supported events for the POWER3 are to be returned.

PM_RS64_III Specifies that supported events for the RS64-III are to be returned.

PM_POWER3_II Specifies that supported events for the POWER3-II are to be returned.

PM_POWER4 Specifies that supported events and/or groups for the POWER4 are to be
returned.

PM_MPC7450 Specifies that supported events for the MPC7450 are to be returned

PM_POWER4_II Specifies that supported events and/or groups for the POWER4-II are to be
returned.

PM_POWER5 Specifies that supported events and/or groups for the POWER5 are to be
returned.

PM_PowerPC 970 Specifies that supported events and/or groups for the PowerPC 970 are to be
returned.

PM_POWER6® Specifies that supported events and/or groups for the POWER6® are to be
returned.

PM_PPowerPC 970MP Specifies that supported events and/or groups for the PowerPC 970MP are to
be returned.

PM_POWER7® Specifies that supported events and/or groups for the POWER7® are to be
returned.

PM_MAXPROCTYPE Maximum number of processor idents.

Constants for setting mode bits

Item Description

PM_PROCTREE Turns process tree counting on

PM_COUNT Turns counting on immediately

PM_USER Turns user mode counting on

PM_KERNEL Turns kernel mode counting on

PM_PROCESS Creates a process level group

The structure pm_info_t contains the following members:

int maxpmcs number of available counters
int *maxevents number of events for each hw counter
pm_events_t **list_events list of available events
int thresholdmult threshold multiplier
char *proc_name processor name
int hthresholdmult upper threshold multiplier

The structure pm_events_t contains the following members:

int event_id event number
char status 'v': verified
 'u': unverified
 'c': caveat
char threshold 'y': thresholdable

1026 AIX Version 7.1: Files Reference

 'g': group-only
 'G': thresholdable group-only
char *short_name mnemonic name
char *long_name long name
char *description full description

The structure pm_info2_t contains the following members:

int maxpmcs number of available counters
int *maxevents number of events for each hw counter
pm_events2_t **list_events list of available events
int thresholdmult threshold multiplier
int hthresholdmult upper threshold multiplier
int Hthresholdmult hyper threshold multiplier
char *proc_name processor name
pm_feature_t proc_feature processor feature list

The structure pm_events2_t contains the following members:

int event_id event number
pm_status_t status event status
char *short_name mnemonic name
char *long_name long name
char *description full description

The structure pm_status_t contains the following members:

unsigned:1 b.unverified unverified event
unsigned:1 b.verified verified event
unsigned:1 b.caveat event verified with some caveat(see description)
unsigned:1 b.group_only event can only be used within a group
unsigned:1 b.threshold event can be used with a threshold
unsigned:1 b.shared event is shared between hardware threads
unsigned:1 b.support_mode support user, kernel, hypervisor and proctree counting
modes applied
unsigned:1 b.overflow generate an interrupt on overflow
unsigned:1 b.marked marked event

The structure pm_feature_t contains the following members:

unsigned:1 b.hypervisor hypervisor counting mode is supported

The structure pm_groups_info_t contains the following members:

 int maxgroups number of available groups
 pm_groups_t *event_groups list of event groups

The structure pm_groups_t contains the following members:

 int group_id group number
 int *events events in this group, by ID #
 char *short_name mnemonic name
 char *long_name long name
 char *description full description

The structure pm_prog_t contains the following members:

unsigned:6 mode.b.threshold threshold value
unsigned:1 mode.b.thresh_res uses upper threshold mutiplier if set
unsigned:1 mode.b.thresh_hres uses hyper threshold mutiplier if set
unsigned:1 mode.b.nointerrupt interrupt counting disable
unsigned:1 mode.b.runlatch runlatch enable/disable
unsigned:1 mode.b.is_group is an event group
unsigned:1 mode.b.process process level group indicator
unsigned:1 mode.b.hypervisor turns hypervisor mode counting on
unsigned:1 mode.b.kernel turns kernel mode counting on
unsigned:1 mode.b.user turns user mode counting on
unsigned:1 mode.b.count counting state
unsigned:1 mode.b.proctree turns process tree counting on
int events[MAX_COUNTERS] list of counted events

Files Reference 1027

The structure pm_data_t contains the following members:

pm_ginfo_t ginfo group information
long long accu[MAX_COUNTERS] accumulated data

The structure pm_ginfo_t contains the following members:

int members; number of threads in group
unsigned:1 flags.b.process process level group indicator
unsigned:1 flags.b.consistent group data consistent with members

The structure pm_accu_time_t contains the following members:

timebasestruct_t accu_timebase accumulated time base
timebasestruct_t accu_purr accumulated PURR time
timebasestruct_t accu_spurr accumulated SPURR time

Type for timeslice:

typedef int pm_events_prog_t[MAX_COUNTERS] array of counted events

The structure pm_prog_mx_t contains the following members:

unsigned:6 mode.b.threshold threshold value
unsigned:1 mode.b.thresh_res uses upper threshold mutiplier if set
unsigned:1 mode.b.thresh_hres uses hyper threshold mutiplier if set
unsigned:1 mode.b.runlatch runlatch enable/disable
unsigned:1 mode.b.is_group is an event group
unsigned:1 mode.b.process process level group indicator
unsigned:1 mode.b.hypervisor turns hypervisor mode counting on
unsigned:1 mode.b.kernel turns kernel mode counting on
unsigned:1 mode.b.user turns user mode counting on
unsigned:1 mode.b.count counting state
unsigned:1 mode.b.proctree turns process tree counting on
int slice_duration duration of each time slice in ms
int nb_events_prog number of counted event sets
pm_events_prog_t *events_set; array of counted event sets

The structure pm_prog_mm_t contains the following members:

int proctree turns process tree counting on
int slice_duration duration of each time slice in ms
int nb_set_prog number of counted event sets
pm_prog_t *prog_set; array of counted event sets / counting mode

The structure pm_accu_mx_t contains the following members:

timebasestruct_t accu_time accumulated time
timebasestruct_t accu_purr accumulated PURR time
timebasestruct_t accu_spurr accumulated SPURR time
long long accu_data[MAX_COUNTERS] accumulated data

The structure pm_data_mx_t contains the following members:

pm_ginfo_t ginfo group information
int nb_accu_mx number of data accumulator sets
int nb_mx_round number of loops on all the event sets
pm_accu_mx_t *accu_set array of data accumulator sets

The structure pm_wpar_ctx_info_t contains the following members:

cid_t cid WPAR ID
char name[MAXCORRALNAMELEN + 1] WPAR name
pm_wp_handle_t hwpar WPAR opaque handle (unique identifier)

The following are declared as functions:

double pm_cycles(void)
void pm_error(char *where, int error)
int pm_get_proctype()

1028 AIX Version 7.1: Files Reference

int pm_init(int filter, pm_info_t *pminfo, pm_groups_info_t *pmgroupsinfo)
int pm_initialize(int filter, pm_info2_t *pminfo, pm_groups_info_t *pmgroups, int proctype)

int pm_set_program(pm_prog_t *prog)
int pm_set_program_wp(cid_t cid, pm_prog_t *prog)
int pm_get_program(pm_prog_t *prog)
int pm_get_program_wp(cid_t cid, pm_prog_t *prog)
int pm_start(void)
int pm_tstart(timebasestruct_t *time)
int pm_start_wp(cid_t cid)
int pm_tstart_wp(cid_t cid, timebasestruct_t *time)
int pm_stop(void)
int pm_tstop(timebasestruct_t *time)
int pm_stop_wp(cid_t cid)
int pm_tstop_wp(cid_t cid, timebasestruct_t *time)
int pm_reset_data(void)
int pm_reset_data_wp(cid_t cid)
int pm_get_data(pm_data_t *data)
int pm_get_tdata(pm_data_t *data, timebasestruct_t *time)
int pm_get_Tdata(pm_data_t *data, pm_accu_time_t *time)
int pm_get_data_wp(pm_wp_handle_t wp_handle, pm_data_t *data)
int pm_get_tdata_wp(pm_wp_handle_t wp_handle, pm_data_t *data)
int pm_get_Tdata_wp(pm_wp_handle_t wp_handle, pm_data_t *data)
int pm_get_data_cpu(int cpuid, pm_data_t *data)
int pm_get_tdata_cpu(int cpuid, pm_data_t *data, timebasestruct_t *time)
int pm_get_Tdata_cpu(int cpuid, pm_data_t *data, pm_accu_time_t *time)
int pm_get_data_lcpu(int lcpuid, pm_data_t *data)
int pm_get_tdata_lcpu(int lcpuid, pm_data_t *data, timebasestruct_t *time)
int pm_get_Tdata_lcpu(int lcpuid, pm_data_t *data, pm_accu_time_t *time)
int pm_get_data_lcpu_wp(pm_wp_handle_t wp_handle, int lcpuid, pm_data_t *data)
int pm_get_tdata_lcpu_wp(pm_wp_handle_t wp_handle,
 int lcpuid, pm_data_t *data, timebasestruct_t *time)
int pm_get_Tdata_lcpu_wp(pm_wp_handle_t wp_handle,
 int lcpuid, pm_data_t *data, pm_accu_time_t *time)
int pm_get_wplist(const char *name, pm_wpar_ctx_info_t *wp_list, int *size)
int pm_delete_program(void)
int pm_delete_program_wp(cid_t cid, pm_prog_t *prog)

int pm_set_program_mythread(pm_prog_t *prog)
int pm_get_program_mythread(pm_prog_t *prog)
int pm_start_mythread(void)
int pm_tstart_mythread(timebasestruct_t *time)
int pm_stop_mythread(void)
int pm_tstop_mythread(timebasestruct_t *time)
int pm_reset_data_mythread(void)
int pm_get_data_mythread(pm_data_t *data)
int pm_get_tdata_mythread(pm_data_t *data, timebasestruct_t *time)
int pm_get_Tdata_mythread(pm_data_t *data, pm_accu_time_t *time)
int pm_delete_program_mythread(void)

int pm_set_program_thread(pid_t pid, tid_t tid, pm_prog_t *prog)
int pm_get_program_thread(pid_t pid, tid_t tid, pm_prog_t *prog)
int pm_start_thread(pid_t pid, tid_t tid)
int pm_tstart_thread(pid_t pid, tid_t tid, timebasestruct_t *time)
int pm_stop_thread(pid_t pid, tid_t tid)
int pm_tstop_thread(pid_t pid, tid_t tid, timebasestruct_t *time)
int pm_reset_data_thread(pid_t pid, tid_t tid)
int pm_get_data_thread(pid_t pid, tid_t tid, pm_data_t *data)
int pm_get_tdata_thread(pid_t pid, tid_t tid, pm_data_t *data, timebasestruct_t *time)
int pm_get_Tdata_thread(pid_t pid, tid_t tid, pm_data_t *data, pm_accu_time_t *time)
int pm_delete_program_thread(pid_t pid, tid_t tid)

int pm_set_program_mygroup(pm_prog_t *prog)
int pm_get_program_mygroup(pm_prog_t *prog)
int pm_start_mygroup(void)
int pm_tstart_mygroup(timebasestruct_t *time)
int pm_stop_mygroup(void)
int pm_tstop_mygroup(timebasestruct_t *time)
int pm_reset_data_mygroup(void)
int pm_get_data_mygroup(pm_data_t *data)
int pm_get_tdata_mygroup(pm_data_t *data, timebasestruct_t *time)
int pm_get_Tdata_mygroup(pm_data_t *data, pm_accu_time_t *time)
int pm_delete_program_mygroup(void)

int pm_set_program_group(pid_t pid, tid_t tid, pm_prog_t *prog)
int pm_get_program_group(pid_t pid, tid_t tid, pm_prog_t *prog)
int pm_start_group(pid_t pid, tid_t tid)
int pm_tstart_group(pid_t pid, tid_t tid, timebasestruct_t *time)
int pm_stop_group(pid_t pid, tid_t tid)
int pm_tstop_group(pid_t pid, tid_t tid, timebasestruct_t *time)
int pm_reset_data_group(pid_t pid, tid_t tid)
int pm_get_data_group(pid_t pid, tid_t tid, pm_data_t *data)

Files Reference 1029

int pm_get_tdata_group(pid_t pid, tid_t tid, pm_data_t *data, timebasestruct_t *time)
int pm_get_Tdata_group(pid_t pid, tid_t tid, pm_data_t *data, pm_accu_time_t *time)
int pm_delete_program_group(pid_t pid, tid_t tid)

int pm_set_program_pthread(pid_t pid, tid_t tid, ptid_t ptid, pm_prog_t *prog)
int pm_set_program_pgroup(pid_t pid, tid_t tid, ptid_t ptid, pm_prog_t *prog)
int pm_get_program_pthread(pid_t pid, tid_t tid, ptid_t ptid, pm_prog_t *prog)
int pm_get_program_pgroup(pid_t pid, tid_t tid, ptid_t ptid, pm_prog_t *prog)
int pm_start_pthread(pid_t pid, tid_t tid, ptid_t ptid)
int pm_tstart_pthread(pid_t pid, tid_t tid, ptid_t ptid,timebasestruct_t *time)
int pm_start_pgroup(pid_t pid, tid_t tid, ptid_t ptid)
int pm_tstart_pgroup(pid_t pid, tid_t tid, ptid_t ptid,timebasestruct_t *time)
int pm_stop_pthread(pid_t pid, tid_t tid, ptid_t ptid)
int pm_tstop_pthread(pid_t pid, tid_t tid, ptid_t ptid,timebasestruct_t *time)
int pm_stop_pgroup(pid_t pid, tid_t tid, ptid_t ptid)
int pm_tstop_pgroup(pid_t pid, tid_t tid, ptid_t ptid,timebasestruct_t *time)
int pm_reset_data_pthread(pid_t pid, tid_t tid, ptid_t ptid)
int pm_reset_data_pgroup(pid_t pid, tid_t tid, ptid_t ptid)
int pm_get_data_pthread(pid_t pid, tid_t tid, ptid_t ptid, pm_data_t *data)
int pm_get_tdata_pthread(pid_t pid, tid_t tid, ptid_t ptid, pm_data_t *data,
 timebasestruct_t *time)
int pm_get_Tdata_pthread(pid_t pid, tid_t tid, ptid_t ptid, pm_data_t *data,
 pm_accu_time_t *time)
int pm_get_data_pgroup(pid_t pid, tid_t tid, ptid_t ptid, pm_data_t *data)
int pm_get_tdata_pgroup(pid_t pid, tid_t tid, ptid_t ptid, pm_data_t *data,
 timebasestruct_t *time)
int pm_get_Tdata_pgroup(pid_t pid, tid_t tid, ptid_t ptid, pm_data_t *data,
 pm_accu_time_t *time)
int pm_delete_program_pthread(pid_t pid, tid_t tid, ptid_t ptid)
int pm_delete_program_pgroup(pid_t pid, tid_t tid, ptid_t ptid)

int pm_set_program_mx(pm_prog_mx_t *prog)
int pm_get_program_mx(pm_prog_mx_t *prog)
int pm_set_program_mm(pm_prog_mm_t *prog)
int pm_set_program_wp_mm(cid_t cid, pm_prog_mm_t *prog)
int pm_get_program_mm(pm_prog_mm_t *prog)
int pm_get_program_wp_mm(cid_t cid, pm_prog_mm_t *prog)
int pm_get_data_mx(pm_data_mx_t *data)
int pm_get_tdata_mx(pm_data_mx_t *data, timebasestruct_t *time)
int pm_get_data_cpu_mx(int cpuid, pm_data_mx_t *data)
int pm_get_tdata_cpu_mx(int cpuid, pm_data_mx_t *data, timebasestruct_t *time)
int pm_get_data_lcpu_mx(int lcpuid, pm_data_mx_t *data)
int pm_get_tdata_lcpu_mx(int lcpuid, pm_data_mx_t *data, timebasestruct_t *time)
int pm_get_data_wp_mx(pm_wp_handle_t wp_handle, pm_data_mx_t *data)
int pm_get_tdata_wp_mx(pm_wp_handle_t wp_handle, pm_data_mx_t *data, timebasestruct_t *time)
int pm_get_data_lcpu_wp_mx(pm_wp_handle_t wp_handle, int lcpuid, pm_data_mx_t *data)
int pm_get_tdata_lcpu_wp_mx(pm_wp_handle_t wp_handle,
 int lcpuid, pm_data_mx_t *data, timebasestruct_t *time)
int pm_set_program_mythread_mx(pm_prog_mx_t *prog)
int pm_get_program_mythread_mx(pm_prog_mx_t *prog)
int pm_set_program_mythread_mm(pm_prog_mm_t *prog)
int pm_get_program_mythread_mm(pm_prog_mm_t *prog)
int pm_get_data_mythread_mx(pm_data_mx_t *data)
int pm_get_tdata_mythread_mx(pm_data_mx_t *data, timebasestruct_t *time)

int pm_set_program_thread_mx(pid_t pid, tid_t tid, pm_prog_mx_t *prog)
int pm_get_program_thread_mx(pid_t pid, tid_t tid, pm_prog_mx_t *prog)
int pm_set_program_thread_mm(pid_t pid, tid_t tid, pm_prog_mm_t *prog)
int pm_get_program_thread_mm(pid_t pid, tid_t tid, pm_prog_mm_t *prog)
int pm_get_data_thread_mx(pid_t pid, tid_t tid, pm_data_mx_t *data)
int pm_get_tdata_thread_mx(pid_t pid, tid_t tid, pm_data_mx_t *data,
 timebasestruct_t *time)

int pm_set_program_mygroup_mx(pm_prog_mx_t *prog)
int pm_get_program_mygroup_mx(pm_prog_mx_t *prog)
int pm_set_program_mygroup_mm(pm_prog_mm_t *prog)
int pm_get_program_mygroup_mm(pm_prog_mm_t *prog)
int pm_get_data_mygroup_mx(pm_data_mx_t *data)
int pm_get_tdata_mygroup_mx(pm_data_mx_t *data, timebasestruct_t *time)

int pm_set_program_group_mx(pid_t pid, tid_t tid, pm_prog_mx_t *prog)
int pm_get_program_group_mx(pid_t pid, tid_t tid, pm_prog_mx_t *prog)
int pm_set_program_group_mm(pid_t pid, tid_t tid, pm_prog_mm_t *prog)
int pm_get_program_group_mm(pid_t pid, tid_t tid, pm_prog_mm_t *prog)
int pm_get_data_group_mx(pid_t pid, tid_t tid, pm_data_mx_t *data)
int pm_get_tdata_group_mx(pid_t pid, tid_t tid, pm_data_mx_t *data,
 timebasestruct_t *time)

int pm_set_program_pthread_mx(pid_t pid, tid_t tid, ptid_t ptid, pm_prog_mx_t *prog)
int pm_set_program_pgroup_mx(pid_t pid, tid_t tid, ptid_t ptid, pm_prog_mx_t *prog)
int pm_get_program_pthread_mx(pid_t pid, tid_t tid, ptid_t ptid, pm_prog_mx_t *prog)
int pm_get_program_pgroup_mx(pid_t pid, tid_t tid, ptid_t ptid, pm_prog_mx_t *prog)

1030 AIX Version 7.1: Files Reference

int pm_set_program_pthread_mm(pid_t pid, tid_t tid, ptid_t ptid, pm_prog_mm_t *prog)
int pm_set_program_pgroup_mm(pid_t pid, tid_t tid, ptid_t ptid, pm_prog_mm_t *prog)
int pm_get_program_pthread_mm(pid_t pid, tid_t tid, ptid_t ptid, pm_prog_mm_t *prog)
int pm_get_program_pgroup_mm(pid_t pid, tid_t tid, ptid_t ptid, pm_prog_mm_t *prog)
int pm_get_data_pthread_mx(pid_t pid, tid_t tid, ptid_t ptid, pm_data_mx_t *data)
int pm_get_tdata_pthread_mx(pid_t pid, tid_t tid, ptid_t ptid,
 pm_data_mx_t *data, timebasestruct_t *time)
int pm_get_data_pgroup_mx(pid_t pid, tid_t tid, ptid_t ptid,
 pm_data_mx_t *data)
int pm_get_tdata_pgroup_mx(pid_t pid, tid_t tid, ptid_t ptid,
 pm_data_mx_t *data, timebasestruct_t *time)

Related information
pm_cycles subroutine
pm_reset_data subroutine

poll.h File

Purpose
Defines the structures and flags used by the poll subroutine.

Description
The /usr/include/sys/poll.h file defines several structures used by the poll subroutine. An array of pollfd
or pollmsg structures or a pollist structure specify the file descriptors or pointers and message queues
for which the poll subroutine checks the I/O status. This file also defines the returned events flags, error
returned events flags, device-type flags and input flags used in polling operations.

During a polling operation on both file descriptors and message queues, the ListPointer parameter points
to a pollist structure, which can specify either file descriptors or pointers and message queues. The
program must define the pollist structure in the following form:

struct pollist {
 struct pollfd fdlist[f];
 struct pollmsg msglist[m];
};

The pollfd structure and the pollmsg structure in the pollist structure perform the following functions:

Item Description

pollfd[f] This structure defines an array of file descriptors or file pointers. The f variable
specifies the number of elements in the array.

pollmsg[m] This structure defines an array of message queue identifiers. The m variable specifies
the number of elements in the array.

A POLLIST macro is also defined in the poll.h file to define the pollist structure. The format of the macro
is:

POLLIST(f, m) Declarator . . . ;

The Declarator parameter is the name of the variable that is declared as having this type.

The pollfd and pollmsg structures defined in the poll.h file contain the following fields:

Item Description

fd Specifies a valid file descriptor or file pointer to the poll subroutine. If the value of this field
is negative, this element is skipped.

msgid Specifies a valid message queue ID to the poll subroutine. If the value of this field is
negative, this element is skipped.

Files Reference 1031

Item Description

events The events being tracked. This is any combination of the following flags:
POLLIN

Input is present on the file or message queue.
POLLOUT

The file or message queue is capable of accepting output.
POLLPRI

An exceptional condition is present on the file or message queue.

revents Returned events. This field specifies the events that have occurred. This can be any
combination of the events requested by the events field. This field can also contain one
of the following flags:
POLLNVAL

The value specified by the fd field or the msgid field is neither a valid file descriptor or
pointer nor the identifier of an accessible message queue.

POLLERR
An error condition arose on the specified file or message queue.

Related information
fp_poll subroutine
poll subroutine
select subroutine
Input and Output Handling Programmer's Overview

pthread.h File

Purpose
Lists threads.

Syntax
#include <pthread.h>

Description
The pthread.h header defines the following symbols:

PTHREAD_CANCEL_ASYNCHRONOUS PTHREAD_CANCEL_ENABLE PTHREAD_CANCEL_DEFERRED
PTHREAD_CANCEL_DISABLE PTHREAD_CANCELED PTHREAD_COND_INITIALIZER
PTHREAD_CREATE_DETACHED PTHREAD_CREATE_JOINABLE PTHREAD_EXPLICIT_SCHED
PTHREAD_INHERIT_SCHED PTHREAD_MUTEX_DEFAULT PTHREAD_MUTEX_ERRORCHECK
PTHREAD_MUTEX_NORMAL PTHREAD_MUTEX_INITIALIZER PTHREAD_MUTEX_RECURSIVE
PTHREAD_ONCE_INIT PTHREAD_PRIO_INHERIT PTHREAD_PRIO_NONE
PTHREAD_PRIO_PROTECT PTHREAD_PROCESS_SHARED PTHREAD_PROCESS_PRIVATE
PTHREAD_RWLOCK_INITIALIZER PTHREAD_SCOPE_PROCESS PTHREAD_SCOPE_SYSTEM

The pthread_attr_t, pthread_cond_t, pthread_condattr_t, pthread_key_t, pthread_mutex_t,
pthread_mutexattr_t, pthread_once_t, pthread_rwlock_t, pthread_rwlockattr_t, and pthread_t types
are defined as described in sys/types.h.

The following are declared as functions and may also be declared as macros. Function prototypes must
be provided for use with an ISO C compiler.

int pthread_attr_destroy (pthread_attr_t *);
int pthread_attr_getdetachstate (const pthread_attr_t *, int *);
int pthread_attr_getguardsize (const pthread_attr_t *, size_t *);
int pthread_attr_getinheritsched (const pthread_attr_t *, int *);

1032 AIX Version 7.1: Files Reference

int pthread_attr_getschedparam (const pthread_attr_t *, struct sched_param*);
int pthread_attr_getschedpolicy (const pthread_attr_t *, int *);
int pthread_attr_getscope (const pthread_attr_t *, int *);
int pthread_attr_getstackaddr (const pthread_attr_t *, void **);
int pthread_attr_getstacksize (const pthread_attr_t *, size_t *);
int pthread_attr_init (pthread_attr_t *);
int pthread_attr_setdetachstate (pthread_attr_t *, int);
int pthread_attr_setguardsize (pthread_attr_t *, size_t);
int pthread_attr_setinheritsched (pthread_attr_t *, int);
int pthread_attr_setschedparam (pthread_attr_t *, const struct sched_param *);
int pthread_attr_setschedpolicy (pthread_attr_t *, int);
int pthread_attr_setscope (pthread_attr_t *, int);
int pthread_attr_setstackaddr (pthread_attr_t *, void *);
int pthread_attr_setstacksize (pthread_attr_t *, size_t);
int pthread_cancel(pthread_t);
void pthread_cleanup_push (void (*)(void*), void *);
void pthread_cleanup_pop (int);
int pthread_cond_broadcast (pthread_cond_t *);
int pthread_cond_destroy (pthread_cond_t *);
int pthread_cond_init (pthread_cond_t *, const pthread_condattr_t *);
int pthread_cond_signal (pthread_cond_t *);
int pthread_cond_timedwait (pthread_cond_t *, pthread_mutex_t *, const struct timespec *);
int pthread_cond_wait (pthread_cond_t *);
int pthread_condattr_destroy (pthread_condattr_t *);
int pthread_condattr_getpshared (const pthread_condattr_t *, int *);
int pthread_condattr_init (pthread_condattr_t *);
int pthread_condattr_setpshared (pthread_condattr_t *, int);
int pthread_create (pthread_t *, const pthread_attr_t *, void *(*)(void*), void *);
int pthread_detach (pthread_t);
int pthread_equal (pthread_t, pthread_t);
void pthread_exit (void *);
int pthread_getconcurrency (void);
int pthread_getschedparam (pthread_t, int *, struct sched_param *);
void *pthread_getspecific (pthread_key_t);
int pthread_join (pthread_t, void **);
int pthread_key_create (pthread_key_t *, void (*)(void*));
int pthread_key_delete (pthread_key_t);
int pthread_mutex_destroy (pthread_mutex_t *);
int pthread_mutex_getprioceiling (const pthread_mutex_t *, int *);
int pthread_mutex_init (pthread_mutex_t *, const pthread_mutexattr_t *);
int pthread_mutex_lock (pthread_mutex_t *);
int pthread_mutex_setprioceiling (pthread_mutex_t *, int, int *);
int pthread_mutex_trylock (pthread_mutex_t *);
int pthread_mutex_unlock (pthread_mutex_t *);
int pthread_mutexattr_destroy (pthread_mutexattr_t *);
int pthread_mutexattr_getprioceiling (const pthread_mutexattr_t *, int *);
int pthread_mutexattr_getprotocol (const pthread_mutexattr_t *, int *);
int pthread_mutexattr_getpshared (const pthread_mutexattr_t *, int *);
int pthread_mutexattr_gettype (pthread_mutexattr_t *, int *);
int pthread_mutexattr_init (pthread_mutexattr_t *);
int pthread_mutexattr_setprioceiling (pthread_mutexattr_t *, int);
int pthread_mutexattr_setprotocol (pthread_mutexattr_t *, int);
int pthread_mutexattr_setpshared (pthread_mutexattr_t *, int);
int pthread_mutexattr_settype (pthread_mutexattr_t *, int);
int pthread_once (pthread_once_t *, void (*)(void));
int pthread_rwlock_destroy (pthread_rwlock_t *);
int pthread_rwlock_init (pthread_rwlock_t *, const pthread_rwlockattr_t *);
int pthread_rwlock_rdlock(pthread_rwlock_t *);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *);
int pthread_rwlock_trywrlock(pthread_rwlock_t *);
int pthread_rwlock_unlock(pthread_rwlock_t *);
int pthread_rwlock_wrlock(pthread_rwlock_t *);
int pthread_rwlockattr_destroy(pthread_rwlockattr_t *);
int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *, int *);
int pthread_rwlockattr_init(pthread_rwlockattr_t *);
int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *, int);
pthread_t pthread_self(void);
int pthread_setcancelstate(int, int *);
int pthread_setcanceltype(int, int *);
int pthread_setconcurrency(int);
int pthread_setschedparam(pthread_t, int *,
const struct sched_param *);
int pthread_setspecific(pthread_key_t, const void *);
void pthread_testcancel(void);

Inclusion of the pthread.h header will make visible symbols defined in the headers sched.h and time.h.

Files Reference 1033

pwd.h File

Purpose
Describes password structure.

Syntax
#include <pwd.h>

Description
The pwd.h header provides a definition for struct passwd, which includes at least the following members:

char *pw_name user's login name
uid_t pw_uid numerical user ID
gid_t pw_gid numerical group ID
char *pw_dir initial working directory
char *pw_shell program to use as shell

The gid_t and uid_t types are defined as described in sys/types.h.

The following are declared as functions and may also be defined as macros. Function prototypes must be
provided for use with an ISO C compiler.

struct passwd *getpwuid(uid_t);
int getpwnam_r(const char *, struct passwd *, char *, size_t, struct passwd **);
int getpwuid_r(uid_t, struct passwd *, char *, size_t, struct passwd **);
void endpwent(void);
struct passwd *getpwent(void);
void setpwent(void);

Related reference
types.h File
Related information
endpwent, getpwnam, getpwuid subroutine

pwdpolicy.h File

Purpose
Defines the types and manifest constants required to support the passwdpolicy() function.

Description
The format of the pwdpolicy.h header file shall be similar to the password construction rule attributes
as stored in the /etc/security/user file, with the exception that named policies do not include the
histsize and histexpire attributes. Each file is a sequence of zero or more stanzas with the named policy
being the stanza name. Each stanza contains one or more attributes describing the password rules which
must be satisfied for a password to be accepted.

Password policy parameters are in the following table.

Item Description

pwp_version Specifies the version of the passwd_policy_t structure. The current structure
version number is PWP_VERSION_1. Future extensions to this structure will use
a different version number.

pwp_minage The number of seconds as a time32_t between the time a password is modified
and the time the password may again be modified. This field is referenced if
PWP_TOO_SOON is set in checks.

1034 AIX Version 7.1: Files Reference

Item Description

pwp_maxage The number of seconds as a time32_t after a password has been modified when
it is considered to be expired. This field is referenced if PWP_EXPIRED is set in
checks.

pwp_maxexpired The number of seconds, as a time32_t, after a password has expired when it may
not longer be modified. A value of 0 indicates that an expired password may not be
changed. A value of -1 indicates that an expired password may be changed after
any length of time. This field is referenced if PWP_EXPIRED is set in checks.

pwp_minalpha The minimum number of characters in the password which must be alphabetic
characters, as determined by invoking the isalpha() macro. A value less than or
equal to 0 disables this test. This field is referenced if PWP_TOO_FEW_ALPHA is
set in checks.

pwp_minother The minimum number of characters in the password which may not be alphabetic
characters, as determined by invoking the isalpha() macro. A value less than or
equal to 0 disables this test. This field is referenced if PWP_TOO_FEW_OTHER is
set in checks.

pwp_minlen The minimum total number of characters in the password. A value less than or
equal to 0 disables this test. This field is referenced if PWP_TOO_SHORT is set in
checks.

pwp_maxrepeats The maximum number of times an individual character may appear in the
password. A value less than or equal to 0 disables this test. This field is referenced
if PWP_TOO_MANY_REPEATS is set in checks.

pwp_mindiff The minimum number of characters which must be changed between the old
password and the new password. A value less than or equal to 0 disables this test.
This field is referenced if PWP_TOO_MANY_SAME is set in checks.

Example
#include <sys/types.h>
/* Name types */
#define PWP_USERNAME 1
#define PWP_SYSTEMPOLICY 2
#define PWP_LOCALPOLICY 3/* Test flag values */
#define PWP_TOO_SOON 0x0001
#define PWP_EXPIRED 0x0002
#define PWP_TOO_FEW_ALPHA 0x0004
#define PWP_TOO_FEW_OTHER 0x0008
#define PWP_TOO_SHORT 0x0010
#define PWP_TOO_MANY_REPEATS 0x0020
#define PWP_TOO_MANY_SAME 0x0040
#define PWP_IN_DICTIONARY 0x0080
#define PWP_REUSED_PW 0x0100
#define PWP_REUSED_TOO_SOON 0x0200
#define PWP_FAILED_OTHER 0x0400
/* Policy structure version number */
#define PWP_VERSION_1 1
/* Policy structure definition */
typedef struct {
 int pwp_version;
 time32_t pwp_minage;
 time32_t pwp_maxage;
 time32_t pwp_maxexpired;
 int pwp_minalpha;
 int pwp_minother;
 int pwp_minlen;
 int pwp_maxrepeats;
 int pwp_mindiff;
} passwd_policy_t;

Files Reference 1035

The maxage, minage, maxexpired, maxrepeats, mindiff, minalpha, minother, and minlen attributes are
integers. The dictionlist and pwdchecks attributes are comma-separated lists of filenames. For more
information on valid values for attributes, please see /etc/security/user.

Permissions
Only the root user should have write (w) access.

Location
/usr/include/pwdpolicy.h

Related reference
passwd_policy File
user File

sem.h File

Purpose
Describes the structures that are used by subroutines that perform semaphore operations.

Description
The /usr/include/sys/sem.h file defines the structures that are used by the semop subroutine and the
semctl subroutine to perform various semaphore operations.

The sem structure stores the values that the Commands parameter of the semctl subroutine gets and
sets. This structure contains the following fields:

Item Description

semval Specifies the operation permission structure of a semaphore. The data type of this field is
unsigned short.

sempid Specifies the last process that performed a semop subroutine. The data type of this field is
pid_t.

semncnt Specifies the number of processes awaiting semval > cval. The data type of this field is
unsigned short.

semzcnt Specifies the number of processes awaiting semval = 0. The data type of this field is
unsigned short.

The sembuf structure stores semaphore information used by the semop subroutine. This structure
contains the following fields:

sem_num
Specifies a semaphore on which to perform some semaphore operation. The data type of this field is
unsigned short.

sem_op
Specifies a semaphore operation to be performed on the semaphore specified by the sem_num field
and the SemaphoreID parameter of the semop subroutine. This value can be a positive integer, a
negative integer, or 0:
i

If the current process has write permission, the positive integer value of this field is added to the
value of the semval field of the semaphore.

- i
If the current process has write permission, a negative integer value in this field causes one of the
following actions:

1036 AIX Version 7.1: Files Reference

If the semval field is greater than or equal to the absolute value of the sem_op field, the absolute
value of the sem_op field is subtracted from the value of the semval field.

If the semval field is less than the absolute value of the sem_op field and the IPC_NOWAIT flag
is set, the semop subroutine returns a value of -1 and sets the errno global variable to EAGAIN.

If the value of the semval field is less than the absolute value of the sem_op field and the
IPC_NOWAIT flag is not set, the semop subroutine increments the semncnt field associated with
the specified semaphore and suspends execution of the calling process until one of the following
conditions is met:

• The value of the semval field becomes greater than or equal to the absolute value of the
sem_op field. When this occurs, the value of the semncnt vield associated with the specified
semaphore is decremented, the absolute value of the sem_op field is subtracted from semval
value and, if the SEM_UNDO flag is set in the sem_flg field, the absolute value of the sem_op
field is added to the Semadj value of the calling process for the specified semaphore.

• The semaphore specified by the SemaphoreID parameter for which the calling process is
awaiting action is removed from the system (see the semctl subroutine). When this occurs,
the errno global variable is set equal to EIDRM, and a value of -1 is returned.

• The calling process receives a signal that is to be caught. When this occurs, the value of the
semncnt field associated with the specified semaphore is decremented, and the calling process
resumes execution in the manner prescribed in the sigaction subroutine.

0
If the current process has read permission, a value of 0 in this field causes one of the following
actions:

• If the semval field is 0, the semop subroutine returns a value of 0.
• If the semval field is not equal to 0 and the IPC_NOWAIT flag is set, the semop subroutine

returns a value of -1 and sets the errno global variable to EAGAIN.
• If semval is not equal to 0 and the IPC_NOWAIT flag is not set, the semop subroutine

increments the semzcnt field associated with the specified semaphore and suspends execution
of the calling process until one of the following conditions is met:

– The value of the semval field becomes 0, at which time the value of the semzcnt field
associated with the specified semaphore is decremented.

– The semaphore specified by the SemaphoreID parameter for which the calling process is
awaiting action is removed from the system. When this occurs, the errno global variable is set
equal to EIDRM, and a value of -1 is returned.

– The calling process receives a signal that is to be caught. When this occurs, the value of
the semzcnt field associated with the specified semaphore is decremented, and the calling
process resumes execution in the manner prescribed in the sigaction subroutine.

The data type of the sem_op field is short.

sem_flg
If the value of this field is not 0 for an operation, the value is constructed by logically ORing one or
more of the following values:
SEM_UNDO

Specifies whether to modify the Semadj values of the calling process.

If this value is set for an operation and the value of the sem_op field is a positive integer, the value
of the sem_op field is subtracted from the Semadj value of the calling process.

If this value is set for an operation and the value of the sem_op field is a negative integer, the
absolute value of the sem_op field is added to the Semadj value of the calling process. The exit
subroutine adds the Semadj value to the value of the semval field of the semaphore when the
process terminates.

Files Reference 1037

SEM_ORDER
Specifies whether to perform atomically or individually the operations specified by the
SemaphoreOperations array of the semop subroutine. (This flag is valid only when included in
the SemaphoreOperations[0].sem_flg parameter, the first operation in the SemaphoreOperations
array.)

If the SEM_ORDER flag is not set (the default), the specified operations are performed atomically.
That is, none of the semval values in the array are modified until all of the semaphore operations
are completed. If the calling process must wait until some semval requirement is met, the semop
subroutine does so before performing any of the operations. If any semaphore operation would
cause an error to occur, none of the operations are performed.

If the SEM_ORDER flag is set, the operations are performed individually in the order that they
appear in the array, regardless of whether any of the operations require the process to wait. If
an operation encounters an error condition, the semop subroutine sets the SEM_ERR flag in the
sem_flg field of the failing operation; neither the failing operation nor the following operations in
the array are performed.

IPC_NOWAIT
Specifies whether to wait or to return immediately when the semval of a semaphore is not a
certain value.

The data type of the sem_flg field is short.

The semid_ds structure stores semaphore status information used by the semctl subroutine and pointed
to by the Buffer parameter. This structure contains the following fields:

Item Description

sem_perm Specifies the operation permission structure of a semaphore. The data type of this field
is struct ipc_perm.

sem_nsems Specifies the number of semaphores in the set. The data type of this field is unsigned
short.

sem_otime Specifies the time at which a semop subroutine was last performed. The data type of
this field is time_t.

sem_ctime Specifies the time at which this structure was last changed with a semctl subroutine.
The data type of this field is time_t.

Related information
atexit subroutine
semctl subroutine
sigaction subroutine

sgtty.h File

Purpose
Provides the terminal interface for the Berkeley line discipline.

Description
The sgtty.h file defines the structures used by ioctl subroutines that apply to terminal files. The
structures, definitions, and values in this file are provided for compatibility with the Berkeley user
interface for asynchronous communication. Window and terminal size operations use the winsize
structure, which is defined in the ioctl.h file. The winsize structure and the ioctl functions that use it are
described in tty Subsystem Overview in General Programming Concepts: Writing and Debugging Programs.

1038 AIX Version 7.1: Files Reference

Note: Version 4 supports the Berkeley line discipline for compatibility with older applications. However, it
is strongly recommended to use the POSIX compliant line discipline, which interface is described in the
termios.h file.

Basic sgtty.h Modes

Basic ioctl functions use the sgttyb structure defined in the sgtty.h file. This structure contains the
following fields:

sg_ispeed
Specifies the input speed of the device. For any particular hardware, impossible speed changes are
ignored. Symbolic values in the table are as defined in the sgtty.h file.
B0

Hangs up. The zero baud rate is used to hang up the connection. If B0 is specified, the `data
terminal ready' signal is dropped. As a result, the line is usually disconnected.

B50
50 baud.

B75
75 baud.

B110
110 baud.

B134
134.5 baud.

B150
150 baud.

B200
200 baud.

B300
300 baud.

B600
600 baud.

B1200
1200 baud.

B1800
1800 baud.

B2400
2400 baud.

B4800
4800 baud.

B9600
9600 baud.

EXTA
External A.

EXTB
External B.

sg_ospeed
Specifies the output speed of the device. Refer to the description of the sg_ispeed field. The
sg_ospeed field has the same values as the sg_ispeed field.

sg_erase
Specifies the erase character. (The default is Backspace.)

sg_kill
Specifies the kill character. (The default is Ctrl-U.)

Files Reference 1039

sg_flags
Specifies how the system treats output. The initial output-control value is all bits clear. The possible
output modes are:
ALLDELAY

Delays algorithm selection.
BSDELAY

Selects backspace delays. Backspace delays are currently ignored. Possible values are BS0 or
BS1.

VTDELAY
Selects form-feed and vertical-tab delays:
FF0

Specifies no delay.
FF1

Specifies one delay of approximately 2 seconds.
CRDELAY

Selects carriage-return delays:
CR0

Specifies no delay.
CR1

Specifies one delay. The delay lasts approximately 0.08 seconds.
CR2

Specifies one delay. The delay lasts approximately 0.16 seconds.
CR3

Specifies one delay. The delay pads lines to be at least 9 characters at 9600 baud.
TBDELAY

Selects tab delays:
TAB0

Specifies no delay.
TAB1

Specifies one delay. The delay is dependent on the amount of movement.
TAB2

Specifies one delay. The delay lasts about 0.10 seconds.
XTABS

Specifies that tabs are to be replaced by the appropriate number of spaces on output.
NLDELAY

Selects the new-line character delays. This is a mask to use before comparing to NL0 and NL1.
NL0

Specifies no delay.
NL1

Specifies one delay. The delay is dependent on the current column.
NL2

Specifies one delay. The delay lasts about 0.10 seconds.

The delay bits specify how long transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. The actual delays depend on line speed and
system load.

EVENP
Allows even parity on input.

The EVENP and ODDP flags control both parity checking on input and parity generation on output
in COOKED and CBREAK mode (unless the LPASS8 bit is enabled). Even parity is generated on

1040 AIX Version 7.1: Files Reference

output unless the ODDP flag is set and the EVENP flag is clear, in which case odd parity is
generated. Input characters with the wrong parity, as determined by the EVENP and ODDP flags,
are ignored in COOKED and CBREAK mode.

ODDP
Allows odd parity on input. Refer to the description of the EVENP flag.

RAW
Indicates the RAW mode, which features a wake up on all characters and an 8-bit interface.

The RAW mode disables all processing except output flushing specified by the LFLUSHO bit. The
full 8 bits of input are given as soon as they are available; all 8 bits are passed on output. A break
condition in the input is reported as a null character. If the input queue overflows in RAW mode, all
data in the input and output queues is discarded; this applies to both the new and old drivers.

CRMOD
Maps a carriage return into a new line on input and outputs a new line as a carriage return and a
new line.

ECHO
Echo (full duplex).

LCASE
Maps uppercase to lowercase on input and lowercase to uppercase on output on uppercase
terminals.

CBREAK
Enables a half-cooked mode. Programs can read each character as it is typed instead of waiting
for a full line. All processing is done except input editing. Character and word erase, line kill, input
reprint, and special treatment of the backslash character and the EOT character are disabled.

TANDEM
Enables automatic flow control (TANDEM mode), which causes the system to produce a stop
character (Ctrl-S) when the input queue is in danger of overflowing, and a start character (Ctrl-Q)
when the input queue has drained sufficiently. This mode is useful for flow control when the
terminal is actually another computer that understands the conventions.

Note: The same stop and start characters are used for both directions of flow control. The
character specified by the t_stopc field is accepted on input as the character that stops
output and is produced on output as the character to stop input. The character specified by
the t_startc field is accepted on input as the character that restarts output and is produced on
output as the character to restart input.

Basic ioctl Operations

A large number of ioctl commands apply to terminals. Some have the general form:

#include <sgtty.h>
ioctl(FileDescriptor, Code, Value)
struct sgttyb *Value;

The applicable values for the Code parameter are:

Item Description

TIOCGETP Fetches the basic parameters associated with the terminal and stores them in the sgttyb
structure that is pointed to.

TIOCSETP Sets the parameters according to the sgttyb structure that is pointed to. The interface
delays until output stops, then throws away any unread characters before changing the
modes.

TIOCSETN Has the same effect as the TIOCSETP value but does not delay or flush input. Input is not
preserved, however, when changing to or from the RAW mode.

For the following codes, the Value parameter is ignored:

Files Reference 1041

Item Description

TIOCEXCL Sets exclusive-use mode; no further opens are permitted until the file is closed.

TIOCNXCL Turns off exclusive-use mode.

TIOCHPCL When the file is closed for the last time, hangs up the terminal. This is useful when the line
is associated with a modem used to place outgoing calls.

For the following code, the Value parameter is a pointer to an integer.

Item Description

TIOCFLUSH If the integer pointed to by the Value parameter has a zero value, all characters waiting
in input or output queues are flushed. Otherwise, the value of the integer applies to the
FREAD and FWRITE bits defined in the fcntl.h file. If the FREAD bit is set, all characters
waiting in input queues are flushed. If the FWRITE bit is set, all characters waiting in
output queues are flushed.

Note: The FREAD and FWRITE bits cannot be used unless the _KERNEL flag is set.

In the following codes, the argument is 0 unless specified otherwise:

Item Description

TIOCSTI The Value parameter points to a character that the system pretends has been typed on
the terminal.

TIOCSBRK The break bit is set in the terminal.

TIOCCBRK The break bit is cleared.

TIOCSDTR Data terminal ready is set.

TIOCCDTR Data terminal ready is cleared.

TIOCSTOP Output is stopped as if the stop character had been typed.

TIOCSTART Output is restarted as if the start character had been typed.

TIOCGPGRP The Value parameter is a pointer to an integer into which is placed the process group ID
of the process group for which this terminal is the control terminal.

TIOCSPGRP The Value parameter is a pointer to an integer which is the value to which the process
group ID for this terminal will be set.

TIOCOUTQ Returns in the integer pointed to by the Value parameter the number of characters
queued for output to the terminal.

TIONREAD Returns in the integer pointed to by the Value parameter the number of characters
immediately readable from the argument descriptor. This works for files, pipes, and
terminals.

Uppercase Terminals

If the LCASE output-mode bit is set, all uppercase letters are mapped into the corresponding lowercase
letter. The uppercase letter can be generated by preceding it with a \ (backslash). Uppercase letters
are preceded by a backslash when they are output. In addition, the following escape sequences can be
generated on output and accepted on input:

For Use

` (grave) \'

| \!

~ \^

1042 AIX Version 7.1: Files Reference

For Use

{ \(

} \)

To deal with terminals that do not understand that the ~ (tilde) has been made into an ASCII character,
the LTILDE bit can be set in the local-mode word. When the LTILDE bit is set, the ~ (tilde) character will
be replaced with the ` (grave) character on output.

Special Characters

A tchars structure associated with each terminal specifies special characters for both the old and new
terminal interfaces. This structure is defined in the ioctl.h file, for which the sgtty.h file contains an
#include statement. The tchars structure contains the following fields:

Item Description

t_intrc The interrupt character (Ctrl-C, by default) generates a SIGINT signal. This is the normal
way to stop a process that is no longer needed or to regain control in an interactive
program.

t_quitc The quit character (Ctrl-\, by default) generates a SIGQUIT signal. This is used to end a
program and produce a core image, if possible, in a core file in the current directory.

t_startc The start-output character (Ctrl-Q, by default).

t_stopc The stop-output character (Ctrl-S, by default).

t_eofc The end-of-file character (Ctrl-D, by default).

t_brkc The input delimiter (-1, by default). This character acts like a newline in that it ends a line,
is echoed, and is passed to the program.

The stop and start characters can be the same to produce a toggle effect. The applicable ioctl functions
are:

Item Description

TIOCGETC Gets the special characters and puts them in the specified structure.

TIOCSETC Sets the special characters to those given in the structure.

Local Mode

Associated with each terminal is a local-mode word. The bits of the local-mode word are:

Item Description

LCRTBS Backspaces on erase rather than echoing erase.

LPRTERA Printing terminal erase mode.

LCRTERA Erases character echoes as Backspace-Space-Backspace.

LTILDE Converts ~ (tilde) to ` (grave) on output (for terminals that do not recognize the tilde as an
ASCII character).

LMDMBUF Stops and starts output when carrier drops.

LLITOUT Suppresses output translations.

LTOSTOP Sends a SIGTTOU signal for background output.

LFLUSHO Output is being flushed.

LNOHANG Do not send hang up when carrier drops.

LCRTKIL Backspace-Space-Backspace to erase the entire line on line kill.

Files Reference 1043

Item Description

LPASS8 Passes all 8 bits through on input, in any mode.

LCTLECH Echoes input control characters as Ctrl-X, delete as Ctrl-?.

LPENDIN Retypes pending input at next read or input character.

LDECCTQ Only Ctrl-Q restarts output after a Ctrl-S.

LNOFLSH Inhibits flushing of pending I/O when an interrupt character is typed.

The following ioctl functions operate on the local-mode word structure:

Item Description

TIOCLBIS The Value parameter is a pointer to an integer whose value is a mask containing the bits to
be set in the local-mode word.

TIOCLBIC The Value parameter is a pointer to an integer whose value is a mask containing the bits to
be cleared in the local-mode word.

TIOCLSET The Value parameter is a pointer to an integer whose value is stored in the local-mode
word.

TIOCLGET The Value parameter is a pointer to an integer into which the current local-mode word is
placed.

Local Special Characters

The ltchars structure associated with each terminal defines control characters for the new terminal driver.
This structure contains the following fields:

Item Description

t_suspc The suspend-process character (Ctrl-Z, by default). This sends a SIGTSTP signal to
suspend the current process group. This character is recognized during input.

t_dsuspc The delayed suspend-process character (Ctrl-Y, by default). This sends a SIGTSTP signal
to suspend the current process group. This character is recognized when the process
attempts to read the control character rather than when the character is typed.

t_rprntc The reprint line-control character (Ctrl-R, by default). This reprints all characters that are
preceded by a new-line character and have not been read.

t_flushc The flush-output character (Ctrl-O, by default). This flushes data that is written but not
transmitted.

t_werasc The word-erase character (Ctrl-W, by default). This erases the preceding word. This does
not erase beyond the beginning of the line.

t_lnextc The literal-next character (Ctrl-V, by default). This causes the special meaning of the next
character to be ignored so that characters can be input without being interpreted by the
system.

The following ioctl functions, which use the ltchars structure, are supported by the terminal interface for
the definition of local special characters for a terminal:

Item Description

TIOCSLTC Sets local characters. The argument to this function is a pointer to an ltchars structure,
which defines the new local special characters.

TIOCGLTC Sets local characters. The argument to this function is a pointer to an ltchars structure
into which is placed the current set of local special characters.

1044 AIX Version 7.1: Files Reference

The winsize structure and the ioctl functions that use it are described in the discussion of the tty common
code in "tty Subsystem Overview" in General Programming Concepts: Writing and Debugging Programs.

File

Item Description

/dev/tty The tty special file, which is a synonym for the controlling terminal.

Related information
csh command
getty command
stty command
ioctl subroutine
sigvec subroutine
tty Subsystem Overview

shm.h File

Purpose
Describes the structures that are used by the subroutines that perform shared memory operations.

Syntax
#include <sys/shm.h>

Description
The shm.h header file defines the following symbolic constants, types, and structures:

Types:

typedef unsigned short shmatt_t;

Symbolic Constants:

SHMLBA segment low boundary address multiple
SHMLBA_EXTSHM SHMLBA value when environment variable EXTSHM=ON
SHM_RDONLY attach read-only (else read-write)
SHM_RND round attach address to SHMLBA
SHM_MAP map a file instead of share a segment
SHM_FMAP fast file map
SHM_COPY deferred update
SHM_R read permission
SHM_W write permission
SHM_DEST destroy segment when # attached = 0
ZERO_MEM for disclaim
SHMHISEG highest shared memory segment allowed
SHMLOSEG lowest shared memory segment allowed
NSHMSEGS number of shared memory segments allowed

There is a shared mem id data structure for each shared memory and mapped file segment in the system.

Structures

The structure shmid_ds contains the following members:

struct ipc_perm shm_perm operation permission struct
size_t shm_segsz size of segment in bytes
pid_t shm_lpid process ID of last shared memory operation
pid_t shm_cpid pid of creator
shmatt_t shm_nattch number of current attaches
time_t shm_atime last shmat time

Files Reference 1045

time_t shm_dtime time of last shmdt
time_t shm_ctime time of last change by shmctl

The structure shminfo contains the following members:

unsigned int shmmax max shared memory segment size
int shmmin min shared memory segment size
int shmmni # of shared memory identifiers

The types pid_t, time_t, key_t, and size_t are defined as described in <sys/types.h>. The following are
declared as functions:

void *shmat(int, const void *, int);
int shmctl(int, int, struct shmid_ds *);
int shmdt(const void *);
int shmget(key_t, size_t, int);

In addition, all of the symbols from <sys/ipc.h> will be defined when this header is included.

Related reference
types.h File
Related information
shmat subroutine
shmctl subroutine

spc.h File

Purpose
Defines external interfaces provided by the System Resource Controller (SRC) subroutines.

Description
The /usr/include/spc.h file defines data structures and symbolic constants that are used when calling
the SRC subroutines. All subsystems that are controlled by the SRC via sockets or message queues should
include this header file.

The scrreq data structure in the spc.h file defines the format of requests sent to a subsystem by the
srcmstr daemon. This format is also used by SRC subroutines that send requests to the srcmstr daemon.

The srcreq data structure contains the following fields:

Item Description

mtype The message type for the message queue. This field should be included only for message
queue subsystems. Programs should be compiled with the -DSRCBYQUEUE flag to generate
the mtype field.

srchdr The SRC header that must be included in all packets sent to and received from an SRC
subsystem.

subreq The request to be processed by the SRC subsystem.

The srchdr data structure in the srcreq data structure contains the return address that is needed to reply
to the request. The srcrrqs subroutine can be used to extract this information from the request. The
srchdr data structure is also part of the reply structure returned by a subsystem.

The srchdr data structure contains the following fields:

Item Description

retaddr The return address

dversion The SRC packet version.

1046 AIX Version 7.1: Files Reference

Item Description

cont The continuation indicator. The possible values are:
NEWREQUEST

Used in a request to the srcmstr daemon.
CONTINUED

Used in a reply returned by a subsystem, indicating another packet follows.
STATCONTINUED

Used in a status reply returned by a subsystem, indicating another packet follows.
END

Used in a request seen by a subsystem or the last packet in reply sequence.

The subreq data structure contains the request to be processed by the subsystem. This same structure
is used when calling the srcsrqt subroutine to send a request to a subsystem. The srcsrqt subroutine
formats the required srchdr structure. The request is processed by the srcmstr daemon and passed on to
a subsystem.

The subreq data structure contains the following fields:

Item Description

object Defines the object on which to act. The possible values are either the SUBSYSTEM constant,
or a subserver code point. If the object is a subsystem, the value of this field is the
SUBSYSTEM constant as defined in the spc.h file and the objname field contains either
a null value or the subsystem name. If the object is a subserver, the object field value
is the code point from the subserver object definition, and the objname field is subsystem-
defined. The objname field can be null, the subserver name, or the subserver process ID.
The object value for the subserver cannot equal the value reserved for the subsystem.

action SRC action to perform. Possible types are:
START
STOP
STATUS or SRCSTATUS
TRACE
REFRESH

The values 0-255 are reserved for use by the SRC.

parm1 Modifies the SRC action type by indicating a variable associated with an action. This field is
used in a different manner by each of the actions.

parm2 Modifies the SRC action type by indicating a variable associated with an action. This field is
used in a different manner by each of the actions.

objname Name of the object that the request applies to. This can be a subsystem name, a subserver
object, or a subserver process ID.

The srcrep and statrep structures in the spc.h file define formats for the replies returned by a subsystem.
For more information, see the srcsrpy subroutine.

The srcrep data structure must be used for replies to start, stop, refresh, and trace requests. It contains
the following fields:

Item Description

srchdr Specifies the SRC request/reply (srchdr) header.

svrreply A reply structure containing the following fields:

Files Reference 1047

Item Description

rtncode Subsystem response to the request. This response is negative on error or subsystem
unique message.

objtype The object type. This is one of the following:

• SUBSYSTEM
• Subserver code point
• Error code

objtext Text description.

objname Name of the object (subsystem/subserver).

rtnmsg Subsystem unique message.

The statrep data structure is used for replies to status requests. It contains the following fields:

Item Description

srchdr Specifies the SRC request/reply (srchdr) header.

statcode A status structure containing the following fields. There may be an array of these
structures. This structure contains the following fields:

objtype The object type. This is one of the following:

• SUBSYSTEM
• Subserver code point
• Error code

status Status code. See the spc.h file for the symbolic constants that may be used with this field.

objtext Text description.

objname Name of the object (subsystem/subserver) this reply belongs to.

The spc.h file also defines the following constants that are useful in communicating with the srcmstr
daemon:

Item Description

SRCNAMESZ The maximum length of an SRC object name (30 bytes, including the null terminator).

SRCPKTMAX The maximum packet size (8192 bytes).

There are also SRC subroutines to manage SRC objects, including subsystems and subservers. The spc.h
file defines certain symbolic constants which are useful when defining object attributes. The following
SRC object descriptors are defined in the /usr/include/sys/srcobj.h file:

Item Description

Respawn action:

RESPAWN=1

ONCE=2

Item Description

Contact options:

SRCIPC=1

SRCSIGNAL=2

1048 AIX Version 7.1: Files Reference

SRCSOCKET=3

Item Description

Multiple instances of a subsystem are allowed:

SRCYES=1

SRCNO=0

Item Description

Display subsystem status under certain conditions:

SRCYES=1

SRCNO=0

Item Description

Default time limit:

TIMELIMIT=20 (seconds)

The spc.h file also includes the /usr/include/srcerrno.h file, which contains symbolic constants for the
errors returned by the SRC library subroutines. The src_err_msg subroutine can be used to retrieve the
corresponding error message.

SRC Request Structure Example
The following program excerpt is an example of the SRC request (srcreq) structure.

struct srcreq
{
 long mtype; /*Contains the message type in the IPC buffer*/
 /*This field is included if IPC is used and a
 message queue is expected*/

 struct srchdr srchdr; /*src header table entry - defined below*/
 struct subreq subreq; /*the request passed to the subsystem*/
};

struct srchdr /*srchdr structure is used by SRC routines*/
 /*subsystems are not responsible for setting \
 this*/
{
 struct sockaddr_un retaddr;
 short dversion; /*the version of the data format*/
 short cont; /*used to indicate message is continued*/
};

struct subreq
{
 short object; /*object to act on*/
 short action; /*action START, STOP, STATUS,TRACE,REFRESH*/
 short parm1; /* */
 short parm2; /* */
 char objname[SRCNAMES]; /*object name*/
};

Related reference
srcobj.h File
Related information
srcrrqs subroutine
srcstattxt subroutine
System Resource Controller (SRC) Overview for Programmers

Files Reference 1049

Programming Subsystem Communication with the SRC

srcobj.h File

Purpose
Defines object structures used by the System Resource Controller (SRC) subsystem.

Description
The /usr/include/sys/srcobj.h header file contains the structures defining SRC objects. The SRCsubsys
structure contains the following fields:

Item Description

subsysname String that contains the subsystem name. This string can contain 30 bytes, including
the null terminator.

synonym String that contains the subsystem synonym. This string can contain 30 bytes,
including the null terminator.

cmdargs String that contains the subsystem command arguments. This string can contain 200
bytes, including the null terminator.

path String that contains the path to the executable files. This string can contain 200 bytes,
including the null terminator.

uid User ID for the subsystem.

auditid Audit ID for the subsystem. This value is supplied by the system and cannot be
changed by an SRC subroutine.

standin String that contains the path for standard input. This string can contain 200 bytes,
including the null terminator.

standout String that contains the path for standard output. This string can contain 200 bytes,
including the null terminator.

standerr String that contains the path for standard error. This string can contain 200 bytes,
including the null terminator.

action Respawn action. The value of this field can be either ONCE or RESPAWN.

multi Multiple instance support. The value of this field can be either SRCYES or SRCNO.

contact Contact type. The value of this field indicates either a signal (SRCSIGNAL), a message
queue (SRCIPC), or a socket (SRCSOCKET).

srvkey IPC message queue key.

svrmtype IPC message type (mtype) for the subsystem.

priority Nice value, a number from 1 to 40.

signorm Stop normal signal.

sigforce Stop force signal.

display Display inactive subsystem on all or group status. The value of this field can be either
SRCYES or SRCNO.

waittime Stop cancel time to wait before sending a SIGKILL signal to the subsystem restart
time period. (A subsystem can be restarted only twice in this time period if it does not
terminate normally.

grpname String that contains the group name of the subsystem. This string can contain 30 bytes,
including the null terminator.

1050 AIX Version 7.1: Files Reference

The SRCsubsvr structure contains the following fields:

Item Description

sub_type String that contains the type of the subsystem. This string can contain 30 bytes,
including the null terminator.

subsysname String that contains the subsystem name. This string can contain 30 bytes, including
the null terminator.

sub_code Subsystem code. This is a decimal number.

The SRCnotify structure contains the following fields:

Item Description

notifyname String that contains the name of the subsystem or group to which the notify
method applies. This string can contain 30 bytes, including the null terminator.

notifymethod String that is executed when the SRC detects abnormal termination of the
subsystem or group. This string can contain 256 bytes, including the null
terminator.

The possible values indicated for the fields are predefined.

Related reference
spc.h File
Related information
getssys subroutine
Defining Your Subsystem to the SRC

stat.h File

Purpose
Defines the data structures returned by the stat family of subroutines.

Description
The stat data structure in the /usr/include/sys/stat.h file returns information for the stat, fstat, lstat,
statx, and fstatx subroutines.

The stat data structure contains the following fields:

Item Description

st_dev Device that contains a directory entry for this file.

st_ino Index of this file on its device. A file is uniquely identified by specifying the device on
which it resides and its index on that device.

st_mode File mode. The possible file mode values are given in the description of the /usr/
include/sys/mode.h file.

st_nlink Number of hard links (alternate directory entries) to the file created using the link
subroutine.

st_access Field is not implemented. All bits are returned as zero.

Files Reference 1051

Item Description

st_size Number of bytes in a file (including any holes). This field also defines the position of
the end-of-file mark for the file. The end-of-file mark is updated only by subroutines,
for example the write subroutine. If the file is mapped by the shmat subroutine and
a value is stored into a page past the end-of-file mark, that mark will be updated to
include this page when the file is closed or forced to permanent storage.

st_rdev ID of the device. This field is defined only for block or character special files.

st_atime Time when file data was last accessed. st_atime and st_atime_n taken together
represent the last file access time in number of seconds and nanoseconds since the
epoch.

st_atime_n Time when file data was last accessed. st_atime and st_atime_n taken together
represent the last file access time in number of seconds and nanoseconds since the
epoch.

st_mtime Time when file data was last modified. st_mtime and st_mtime_n taken together
represent the last file modification time in number of seconds and nanoseconds since
the epoch.

st_mtime_n Time when file data was last modified. st_mtime and st_mtime_n taken together
represent the last file modification time in number of seconds and nanoseconds since
the epoch.

st_ctime Time when the file status was last changed. st_ctime and st_ctime_n taken
together represent the last file status change in number of seconds and nanoseconds
since the epoch.

st_ctime_n Time when the file status was last changed. st_ctime and st_ctime_n taken
together represent the last file status change in number of seconds and nanoseconds
since the epoch.

st_blksize Size, in bytes of each block of the file.

st_blocks Number of blocks actually used by the file (measured in the units specified by the
DEV_BSIZE constant).

st_gen Generation number of this i-node.

1052 AIX Version 7.1: Files Reference

Item Description

st_type Type of the v-node for the object. This is one of the following values, which are defined
in the /usr/include/sys/vnode.h file:
VNON

Unallocated object; this should not occur
VBAD

Unknown type of object
VREG

Regular file
VDIR

Directory file
VBLK

Block device
VCHR

Character device
VLNK

Symbolic link
VSOCK

Socket
VFIFO

FIFO
VMPC

Multiplexed character device.

st_vfs Virtual file system (VFS) ID, which identifies the VFS that contains the file. By
comparing this value with the VFS numbers returned by the mntctl subroutine, the
name of the host where the file resides can be identified.

st_vfstype File-system type, as defined in the /usr/include/sys/vmount.h file.

st_flag Flag indicating whether the file or the directory is a virtual mount point. This flag can
have the following values:
FS_VMP

Indicates that the file is a virtual mount point.
FS_MOUNT

Indicates that the file is a virtual mount point.
FS_REMOTE

Indicates that the file resides on another machine.

st_uid File owner ID.

st_gid File group ID.

The stat64 data structure in the /usr/include/sys/stat.h file returns information for the stat64, fstat64,
and lstat64 subroutines. The stat64 structure contains the same fields as the stat structure, with the
exception of the following field:

Item Description

st_size Number of bytes in a file. The st_size field is a 64-bit quantity, allowing file sizes greater
than OFF_MAX. The st_size field of the stat64 structure is of the type off64_t.

For remote files, the st_atime, st_mtime, and st_ctime fields contain the time at the server.

The value of the st_atime field can be changed by the following subroutines:

Files Reference 1053

• read, readx, readv, readvx
• readlink
• shmdt
• utime, utimes

The values of the st_ctime and st_mtime fields can be set by the following subroutines:

• write, writex, writev, writevx
• open, openx, creat
• link
• symlink
• unlink
• mknod
• mkdir
• rmdir
• rename
• truncate, ftruncate
• utime, utimes

In addition, the shmdt subroutine can change the st_mtime field, and the chmod, fchmod, chown,
chownx, fchown, and fchownx subroutines can change the st_ctime field.

Because they can create a new object, the open, openx, creat, symlink, mknod, mkdir, and pipe
subroutines can set the st_atime, st_ctime, and st_mtime fields.

Related reference
cpio File Format
fullstat.h File
inode.h File
mode.h File
types.h File
Related information
chownx subroutine
shmat subroutine

statfs.h File

Purpose
Describes the structure of the statistics returned by the statfs, fstatfs, or ustat subroutine.

Description
The statfs and fstatfs subroutines return information on a mounted (virtual) file system in the form of
a statfs structure. The /usr/include/sys/statfs.h file describes the statfs structure, which contains the
following fields:

Item Description

f_version Version number of the statfs structure. This value is currently 0.

f_length Length of the buffer that contains the returned information. This value is currently 0.

f_type Type of information returned. This value is currently 0.

f_bsize Optimal block size of the file system.

1054 AIX Version 7.1: Files Reference

Item Description

f_blocks Total number of blocks in the system.

f_bfree Number of free blocks in the file system. The size of a free block is given in the
f_bsize field.

f_bavail Number of free blocks available to a nonroot user.

f_files Total number of file nodes in the file system.

f_ffree Number of free file nodes in the file system.

f_fsid File system ID.

f_vfstype Type of this virtual file system. Possible values are:
MNT_JFS

Journaled File System (JFS) of the operating system
MNT_NFS

SUN network file system
MNT_CDROM

CD-ROM file system.

f_fsize Fundamental block size of the file system.

f_fname File system name. The value returned by this field depends on the type of file system:
JFS

Value returned is copied from the s_fname field of the superblock (see the filsys.h
file format). You can set this value at the time the file system is created by using
the mkfs command with the -l flag. This field gives the preferred mount point for
the file system.

Note: The s_fname field in the superblock is only 6 bytes wide. Longer names are
truncated to fit.

CD-ROM
The field is filled with null bytes because the f_fname field is not implemented.

NFS
The field is filled with null bytes because the f_fname field is not implemented.

f_fpack File system pack name. The value returned by this field depends on the file system
type:
JFS

The value returned is copied from the s_fpack field of the superblock (see the
filsys.h file format). You can set this value at the time the file system is created
using the mkfs command with the -v flag.

Note: The s_fpack field in the superblock is only 6 bytes wide. Longer pack
names are truncated to fit.

CD-ROM
The value is copied from the volume identifier field in the primary volume
descriptor.

NFS
The field is filled with null bytes because the f_fname field is not implemented.

f_name_max Maximum length of a component name for this file system.

Note: Fields that are not defined for a particular file system are set to a value of -1.

The ustat system returns information on a mounted file system in the form of a ustat structure. The ustat
structure, which is defined in the /usr/include/ustat.h file, contains the following fields:

Files Reference 1055

Item Description

f_tfree Total number of free blocks in the file system. The size of a free block is given in by the
UBSIZE constant. See the param.h file for a description of UBSIZE.

f_inode Number of free i-nodes in the file system.

f_fname File system name.

f_fpack File system pack name.

Files

Item Description

statfs.h Path to the statfs.h file.

ustat.h Path to the ustat.h file.

Related reference
filsys.h File
param.h File
vmount.h File
Related information
statfs, fstatfs, or ustat subroutine

statvfs.h File

Purpose
Describes the structure of the statistics that are returned by the statvfs subroutines and fsatvfs
subroutines.

Description
The statvfs subroutines and fsatvfs subroutines return information on a mounted filesystem in the form
of statvfs. The /usr/include/sys/statvfs.h file describes the following fields in the statvfs subroutine:

Item Description

f_bsize Preferred file system block size

f_frsize Fundamental file system block size

f_block Total number of block f_frsize in the file system.

f_bfree Total number of free blocks of f_frsize in the file system.

f_bavail Total number of available blocks of f_frsize that can be used by users without root
access.

f_files Total number of file nodes in the file system

f_ffree Number of free file nodes in the file system.

f_favail Number of free file nodes that can be user without root access.

f_fsid File system ID.

f_basetype File system type name

1056 AIX Version 7.1: Files Reference

Item Description

f_flag File system flags:
ST_RDONLY

File system is mounted read only
ST_NOSUID

File system does not support set used ID file modes
ST_NODEV

Device opens are not allowed through mounts.

f_namemax Maximum length of a component name for this file system

f_fstr File system specific string.

The following prototypes also appear in the /usr/include/sys/statvfs.h file:

extern int statvfs(const char *, struct statvfs *);

extern int fsatvfs(int, struct statvfs *);

Related information
ststvfs subroutine

systemcfg.h File

Purpose
Defines the _system_configuration structure.

Description
The systemcfg.h file defines the _system_configuration structure. This is a global structure that
identifies system characteristics. The system_configuration structure is provided in read-only system
memory. The attributes in the _system_configuration structure have the following values:

Item Description

architecture Identifies the processor architecture. Valid values for Version 4 are:
POWER_RS

Indicates a POWER® family machine.
POWER_PC

Indicates a POWER processor-based.

implementation Identifies the specific version of the processor. Each implementation is
assigned a unique bit to allow for efficient checking of implementation sets. The
following are examples of valid values (the header file contains more values):
POWER_RS1
POWER_RS2
POWER_RSC
POWER_601

Two special values are also defined: POWER_RS_ALL and POWER_PC_ALL.
These labels are defined as the bit OR of all members of their architecture.

Files Reference 1057

Item Description

version Identifies the central processing unit (CPU) version number. The following are
examples of valid values (the header file contains more values):
PV_RS1

Identifies a POWER family RS1 machine.
PV_RS2

Identifies a POWER family RS2 machine.
PV_RS2G

Identifies a POWER family RS2 machine with graphics assist.
PV_RSC

Identifies a POWER family RSC machine.
PV_601

Identifies a PowerPC 601 RISC Microprocessor machine.

width Contains the processor data-word size. Valid values are 32 or 64. This value
is the maximum data-word size and should not be confused with the current
execution mode.

ncpus Identifies the number of CPUs active on a machine. Uniprocessor (UP)
machines are identified by a 1. Values greater than 1 indicate multiprocessor
(MP) machines.

cache_attr Specifies the cache attributes. Bit 31 determines if the cache is present. If this
bit is 1, the cache is present. If bit 31 is 0, then no cache is present and all other
cache characteristics are 0. Bit 30 indicates the type of cache. If bit 30 is 1, the
cache is combined. Otherwise, if bit 30 is 0 the instruction and data caches are
separate.

icache_size Contains the L1 instruction-cache size in bytes. For combined caches, this value
is the total cache size.

dcache_size Contains the size of the L1 data-cache size in bytes. For combined caches this
the total cache size.

icache_asc Contains the L1 instruction-cache associativity. For a combined cache, this is
the combined caches' associativity.

dcache_asc Contains the L1 data-cache associativity. For a combined cache, this is the
combined caches' associativity.

icache_line Contains the line size in bytes of the L1 instruction cache.

dcache_line Contains the line size in bytes of L1 data cache.

L2_cache_size Contains the size of the L2 cache in bytes. A value of 0 indicates no L2 cache is
present.

L2_cache_asc Identifies the associativity of the L2 cache.

tlb_comb Identifies the type of Transaction Lookaside Buffer (TLB) attributes. If the TLB
is present, bit 31 is 1. Otherwise, if bit 31 is less than 0, the TLB does not exist
and all other TLB characteristics are 0. Bit 30 is 1 if the TLB is combined. If the
TLB is separate for the instruction and data cache, bit 30 is 0.

itlb_size Specifies the number of entries in the instruction TLB. For combined TLBs, this
is the size of the combined TLB.

dtlb_size Specifies the number of entries in the data TLB. For combined TLBs, this is the
size of the combined TLB.

itlb_asc Contains the associativity of the instruction TLB. This attribute's value is equal
to the itlb_size attribute if the system is fully associative.

1058 AIX Version 7.1: Files Reference

Item Description

dtlb_asc Contains the associativity of the instruction TLB. This attribute's value is equal
to the value of the dtlb_size attribute if the system is fully associative.

resv_size Contains the POWER processor-based reservation granule size. This field is a 0
on POWER family machines.

priv_ick_cnt Contains the number of times lock services attempt to lock a spin lock before
blocking AP process/thread in supervisor mode. This a 0 on UP machine. This
parameter is used by system-locking services.

prob_lck_cnt Contains the number of times lock services attempt to lock a spin lock before
blocking a process or thread in problem state. This a 0 on a UP machine. This
parameter is used by system-locking services.

virt_alias Indicates virtual memory aliasing. If 1, the hardware is available for virtual
memory aliasing and this ability is used by the system. Virtual memory aliasing
is the mapping of one real address to more than one virtual address.

cach_cong Contains the number page index bits that can result in a cache synonym. For
machines without cache synonyms, this field is 0.

tar.h File

Purpose
Contains definitions for flags used in the tar archive header.

Description
The /usr/include/tar.h file contains extended definitions used in the typeflag and mode fields of the tar
archive header block. The file also provides values for the required POSIX entries.

tar Archive Header Block

Every file archived using the tar command is represented by a header block describing the file, followed
by zero or more blocks that give the contents of the file. The end-of-archive indicator consists of two
blocks filled with binary zeros. Each block is a fixed size of 512 bytes.

Blocks are grouped for physical I/O operations and groups can be written using a single write subroutine
operation. On magnetic tape, the result of this write operation is a single tape record. The last record is
always a full 512 bytes. Blocks after the end-of-archive zeros contain undefined data.

The header block structure is shown in the following table. All lengths and offsets are in decimal.

Table 36. Header Block Structure

Field Name Structure

name Offset:
0

Length in Bytes:
100

Contents:
File name without a / (slash)

Files Reference 1059

Table 36. Header Block Structure (continued)

Field Name Structure

mode Offset:
100

Length in Bytes:
8

Contents:
File mode

uid Offset:
108

Length in Bytes:
MAXIMPL_LOGIN_NAME_MAX

Contents:
User ID

gid Offset:
116

Length in Bytes:
MAXIMPL_LOGIN_NAME_MAX

Contents:
Group ID

size Offset:
124

Length in Bytes:
12

Contents:
Size in bytes

mtime Offset:
136

Length in Bytes:
12

Contents:
Latest modification time

cksum Offset:
148

Length in Bytes:
8

Contents:
File and header checksum

typeflag Offset:
156

Length in Bytes:
1

Contents:
File type

1060 AIX Version 7.1: Files Reference

Table 36. Header Block Structure (continued)

Field Name Structure

linkname Offset:
157

Length in Bytes:
100

Contents:
Linked path name or file name

magic Offset:
257

Length in Bytes:
6

Contents:
Format representation for tar

version Offset:
263

Length in Bytes:
3

Contents:
Version representation for tar

uname Offset:
265

Length in Bytes:
32

Contents:
User name

gname Offset:
297

Length in Bytes:
32

Contents:
Group name

devmajor Offset:
329

Length in Bytes:
8

Contents:
Major device representation

devminor Offset:
337

Length in Bytes:
8

Contents:
Minor device representation

Files Reference 1061

Table 36. Header Block Structure (continued)

Field Name Structure

prefix Offset:
345

Length in Bytes:
155

Contents:
Path name without trailing slashes

Names are preserved only if the characters are chosen from the POSIX portable file-name character set
or if the same extended character set is used between systems. During a read operation, a file can be
created only if the original file can be accessed using the open, stat, chdir, fcntl, or opendir subroutine.

Header Block Fields

Each field within the header block and each character on the archive medium are contiguous. There is no
padding between fields. More information about the specific fields and their values follows:

name
The file's path name is created using this field, or by using this field in connection with the
prefix field. If the prefix field is included, the name of the file is prefix/name. This field is
null-terminated unless every character is non-null.

mode
Provides 9 bits for file permissions and 3 bits for SUID, SGID, and SVTX modes. All values for this field
are in octal. During a read operation, the designated mode bits are ignored if the user does not have
equal (or higher) permissions or if the modes are not supported. Numeric fields are terminated with a
space and a null byte. The tar.h file contains the following possible values for this field:

Flag Octal Description

TSUID 04000 Set user ID on execution.

TSGID 02000 Set group ID on execution.

TSVTX 01000 Reserved.

TUREAD 00400 Read by owner.

TUWRITE 00200 Write by owner.

TUEXEC 00100 Execute or search by owner.

TGREAD 00040 Read by group.

TGWRITE 00020 Write by group.

TGEXEC 00010 Execute or search by group.

TOREAD 00004 Read by others.

TOWRITE 00002 Write by others.

TOEXEC 00001 Execute or search by other.

uid
Extracted from the corresponding archive fields unless a user with appropriate privileges restores the
file. In that case, the field value is extracted from the password and group files instead. Numeric fields
are terminated with a space and a null byte.

1062 AIX Version 7.1: Files Reference

gid
Extracted from the corresponding archive fields unless a user with appropriate privileges restores the
file. In that case, the field value is extracted from the password and group files instead. Numeric fields
are terminated with a space and a null byte.

size
Value is 0 when the typeflag field is set to LNKTYPE. This field is terminated with a space only.

mtime
Value is obtained from the modification-time field of the stat subroutine. This field is terminated with
a space only.

chksum
On calculation, the sum of all bytes in the header structure are treated as spaces. Each unsigned byte
is added to an unsigned integer (initialized to 0) with at least 17-bits precision. Numeric fields are
terminated with a space and a null byte.

typeflag
The tar.h file contains the following possible values for this field:

Flag Value Description

REGTYPE '0' Regular file.

AREGTYPE '\0' Regular file.

LNKTYPE '1' Link.

SYMTYPE '2' Reserved.

CHRTYPE '3' Character special.

BLKTYPE '4' Block special.

DIRTYPE '5' Directory. In this case, the size
field has no meaning.

FIFOTYPE '6' FIFO special. Archiving a FIFO
file archives its existence, not
contents.

CONTTYPE '7' Reserved.

If other values are used, the file is extracted as a regular file and a warning issued to the standard
error output. Numeric fields are terminated with a space and a null byte.

The LNKTYPE flag represents a link to another file, of any type, previously archived. Such linked-to
files are identified by each file having the same device and file serial number. The linked-to name is
specified in the linkname field, including a trailing null byte.

linkname
Does not use the prefix field to produce a path name. If the path name or linkname value is too
long, an error message is returned and any action on that file or directory is canceled. This field is
null-terminated unless every character is non-null.

magic
Contains the TMAGIC value, reflecting the extended tar archive format. In this case, the uname and
gname fields will contain the ASCII representation for the file owner and the file group. If a file is
restored by a user with the appropriate privileges, the uid and gid fields are extracted from the
password and group files (instead of the corresponding archive fields). This field is null-terminated.

version
Represents the version of the tar command used to archive the file. This field is terminated with a
space only.

uname
Contains the ASCII representation of the file owner. This field is null-terminated.

Files Reference 1063

gname
Contains the ASCII representation of the file group. This field is null-terminated.

devmajor
Contains the device major number. Terminated with a space and a null byte.

devminor
Contains the device minor number. Terminated with a space and a null byte.

prefix
If this field is non-null, the file's path name is created using the prefix/name values together.
Null-terminated unless every character is non-null.

Related information
tar command

termio.h File

Purpose
Defines the structure of the termio file, which provides the terminal interface for Version 2 compatibility.

Description
The /usr/include/sys/termio.h file contains the termio structure, which defines special characters as
well as the basic input, output, control, and line discipline modes. The termio.h file is provided for
compatibility with Version 2 applications.

Version 2 applications that include the termio.h file can use the Version 2 terminal interface provided by
the POSIX line discipline. The following Version 2 terminal interface operations are not supported by the
POSIX line discipline:

• Terminal Paging (TCGLEN ioctl and TCSLEN ioctl)
• Terminal Logging (TCLOG ioctl)
• Enhanced Edit Line Discipline (LDSETDT ioctl and LDGETDT ioctl)

The termio structure in the termio.h file contains the following fields:

• c_iflag
• c_oflag
• c_cflag
• c_lflag
• c_cc

Field Descriptions

c_iflag
Describes the basic terminal input control. The initial input-control value is all bits clear. The possible
input modes are:
IGNBRK

Ignores the break condition. In the context of asynchronous serial data transmission, a break
condition is defined as a sequence of zero-valued bits that continues for more than the time
required to send 1 byte. The entire sequence of zero-valued bits is interpreted as a single break
condition, even if it continues for an amount of time equivalent to more than one byte. If the
IGNBRK flag is set, a break condition detected on input is ignored, which means that the break
condition is not put on the input queue and therefore not read by any process.

BRKINT
Interrupts the signal on the break condition. If the IGNBRK flag is not set and the BRKINT flag
is set, the break condition flushes the input and output queues. If the terminal is the controlling
terminal of a foreground process group, the break condition generates a single SIGINT signal

1064 AIX Version 7.1: Files Reference

to that foreground process group. If neither the IGNBRK nor the BRKINT flag is set, a break
condition is read as a single \0. If the PARMRK flag is set, a break condition is read as \377, \0, \0.

IGNPAR
Ignores characters with parity errors. If this flag is set, a byte with a framing or parity error (other
than break) is ignored.

PARMRK
Marks parity errors. If the PARMRK flag is set and the IGNPAR flag is not set, a byte with a framing
or parity error (other than break) is given to the application as the three-character sequence
\377, \0, x, where \377, \0 is a two-character flag preceding each sequence and x is the data of
the character received in error. To avoid ambiguity in this case, if the ISTRIP flag is not set, a
valid character of \377 is given to the application as \377, \377. If neither the IGNPAR nor the
PARMRK flag is set, a framing or parity error (other than break) is given to the application as a
single character, \0.

INPCK
Enables input parity checking. If this flag is set, input parity checking is enabled. If not set, input
parity checking is disabled. This allows for output parity generation without input parity errors.

ISTRIP
Strips characters. If this flag is set, valid input characters are first stripped to 7 bits; otherwise, all
8 bits are processed.

INLCR
Maps a new-line character (NL) to a carriage return (CR) on input. If this flag is set, a received NL
character is translated into a CR character.

IGNCR
Ignores a CR character. If this flag is set, a received CR character is ignored and not read.

ICRNL
Maps a CR character to an NL character on input. If the ICRNL flag is set and the IGNCR flag is not
set, a received CR character is translated into an NL character.

IUCLC
Maps uppercase to lowercase on input. If this flag is set, a received uppercase, alphabetic
character is translated into the corresponding lowercase character.

IXON
Enables start and stop output control. If this flag is set, a received STOP character suspends
output and a received START character restarts output. When the IXON flag is set, START and
STOP characters are not read, but merely perform flow-control functions. When the IXON flag is
not set, the START and STOP characters are read.

IXANY
Enables any character to restart output. If this flag is set, any input character restarts output that
was suspended.

IXOFF
Enables start-and-stop input control. If this flag is set, the system transmits a STOP character
when the input queue is nearly full and a START character when enough input has been read that
the queue is nearly empty again.

c_oflag
Specifies how the system treats output. The initial output-control value is "all bits clear". The possible
output modes are:
OPOST

Post processes output. If this flag is set, output characters are post-processed as indicated by the
remaining flags; otherwise, characters are transmitted without change.

OLCUC
Maps lowercase to uppercase on output. If this flag is set, a lowercase alphabetic character is
transmitted as the corresponding uppercase character. This function is often used in conjunction
with the IUCLC input mode.

Files Reference 1065

ONLCR
Maps NL to CR-NL on output. If this flag is set, the NL character is transmitted as the CR-NL
character pair.

OCRNL
Maps CR to NL on output. If this flag is set, the CR character is transmitted as the NL character.

ONOCR
Indicates no CR output at column 0 (first position). If this flag is set, no CR character is
transmitted when at column 0 (first position).

ONLRET
NL performs the CR function. If this flag is set, the NL character is assumed to do the carriage-
return function. The column pointer is set to 0, and the delay specified for carriage return is used.
If neither the ONLCR, OCRNL, ONOCR, nor ONLRET flag is set, the NL character is assumed to do
the line-feed function only. The column pointer remains unchanged. The column pointer is also set
to 0 if the CR character is actually transmitted.

The delay bits specify how long a transmission stops to allow for mechanical or other movement when
certain characters are sent to the terminal. The actual delays depend on line speed and system load.

OFILL
Uses fill characters for delay. If this flag is set, fill characters are transmitted for a delay instead of
a timed delay. This is useful for high baud rate terminals that need only a minimal delay.

OFDEL
If this flag is set, the fill character is DEL. If this flag is not set, the fill character is NULL.

NLDLY
Selects the new-line character delays. This is the mask to use before comparing to NL0 and NL1:
NL0

Specifies no delay.
NL1

Specifies one delay of approximately 0.10 seconds. If the ONLRET flag is set, the carriage-
return delays are used instead of the new-line delays. If the OFILL flag is set, two fill
characters are transmitted.

CRDLY
Selects the carriage-return delays. This is the mask to use before comparing to CR0, CR1, CR2,
and CR3:
CR0

Specifies no delay.
CR1

Specifies that the delay is dependent on the current column position. If the OFILL flag is set,
two fill characters are transmitted.

CR2
Specifies a delay of approximately 0.10 seconds. If the OFILL flag is set, this delay transmits
four fill characters.

CR3
Specifies one delay of approximately 0.15 seconds.

TABDLY
Selects the horizontal-tab delays. This is the mask to use before comparing to TAB0, TAB1, TAB2,
and TAB3. If the OFILL flag is set, any of these delays (except TAB3) transmit two fill characters:
TAB0

Specifies no delay.
TAB1

Specifies that the delay is dependent on the current column position. If the OFILL flag is set,
two fill characters are transmitted.

1066 AIX Version 7.1: Files Reference

TAB2
Specifies a delay of approximately 0.10 seconds.

TAB3
Specifies that tabs are to be expanded into spaces.

BSDLY
Selects the backspace delays. This is the mask to use before comparing to BS0 and BS1:
BS0

Specifies no delay.
BS1

Specifies a delay of approximately 0.05 seconds. If the OFILL flag is set, this delay transmits
one fill character.

VTDLY
Selects the vertical-tab delays. This is the mask to use before comparing to VT0 and VT1:
VT0

Specifies no delay.
VT1

Specifies one delay of approximately 2 seconds.
FFDLY

Selects the form-feed delays. This is a mask to use before comparing to FF0 and FF1:
FF0

Specifies no delay.
FF1

Specifies a delay of approximately 2 seconds.
c_cflag

Describes the hardware control of the terminal. In addition to the basic control modes, this field uses
the following control characters:
CBAUD

Specifies baud rate. These bits specify the baud rate for a connection. For any particular hardware,
impossible speed changes are ignored.
B0

Specifies a zero baud rate which is used to hang up the connection. If B0 is specified, the
`data terminal ready' signal is not asserted. As a result, the line is usually disconnected. This
delay transmits two fill characters. Normally, this disconnects the line.

B50
Specifies 50 baud.

B75
Specifies 75 baud.

B110
Specifies 110 baud.

B134
Specifies 134.5 baud.

B150
Specifies 150 baud.

B200
Specifies 200 baud.

B300
Specifies 300 baud.

B600
Specifies 600 baud.

Files Reference 1067

B1200
Specifies 1200 baud.

B1800
Specifies 1800 baud.

B2400
Specifies 2400 baud.

B4800
Specifies 4800 baud.

B9600
Specifies 9600 baud.

B19200
Specifies 19,200 baud.

B38400
Specifies 38,400 baud.

EXTA
Specifies External A.

EXTB
Specifies External B.

CSIZE
Specifies the character size. These bits specify the character size, in bits, for both transmit and
receive operations. The character size does not include the parity bit, if one is used:
CS5

5 bits
CS6

6 bits
CS7

7 bits
CS8

8 bits
CSTOPB

Specifies the number of stop bits. If this flag is set, 2 stop bits are sent; otherwise, only 1 stop bit
is sent.

CREAD
Enables the receiver. If this flag is set, the receiver is enabled. Otherwise, characters are not
received.

PARENB
Enables parity. If this flag is set, parity generation and detection is enabled and a parity bit is
added to each character.

PARODD
Specifies odd parity. If parity is enabled, the PARODD flag specifies odd parity if set. If parity is
enabled and the PARODD flag is not set, even parity is used.

HUPCL
Hangs up on last close. If this flag is set, the line is disconnected when the last process closes the
line or when the process terminates (when the `data terminal ready' signal drops).

CLOCAL
Specifies a local line. If this flag is set, the line is assumed to have a local, direct connection with
no modem control. If not set, modem control (dial-up connection) is assumed.

c_lflag
Controls various terminal functions. The initial value after an open is "all bits clear." This field uses the
following mask name symbols:

1068 AIX Version 7.1: Files Reference

ISIG
Enables signals. If this flag is set, each input character is checked against the INTR and QUIT
special control characters. If an input character matches one of these control characters, the
function associated with that character is performed. If the ISIG function is not set, checking is
not done.

ICANON
Enables canonical input. If this flag is set, it turns on canonical processing, which enables the
erase and kill edit functions as well as the assembly of input characters into lines delimited by NL,
EOF, and EOL characters. If the ICANON flag is not set, read requests are satisfied directly from
the input queue. In this case, a read request is not satisfied until one of the following conditions is
met:

• The minimum number of characters specified by the MIN value are received.
• The time-out value specified by the TIME value has expired since the last character was

received.

As a result bursts of input can be read, while still allowing single-character input. The MIN
and TIME values are stored in the positions for the EOF and EOL characters, respectively. The
character values of MIN and TIME are converted to their ascii equivalents to get the numeric
value. The time value represents tenths of seconds.

XCASE
Enables canonical uppercase and lowercase presentation. If this flag is set along with the
ICANON flag, an uppercase letter (or the uppercase letter translated to lowercase by the IUCLC
input mode) is accepted on input by preceding it with a \ (backslash) character. The output is then
also preceded by a backslash character. In this mode, the output generates and the input accepts
the following escape sequences:

For: Use:

` (grave) \ `

| \ !

~ \ ^

{ \ (

} \)

\ \ \

For example, A is input as \a, \n as \\n, and \N as \\\n.

NOFLSH
Disables queue flushing. If this flag is set, the normal flushing of the input and output queues
associated with the INTR and QUIT characters is not done.

ECHO
Enables echo. If this flag is set, characters are echoed as they are received.

When the ICANON flag is set, the following echo functions are possible:

ECHOE
Echoes the erase character as Backspace-Space-Backspace. If the ECHO and ECHOE flags are
both set, the ERASE character is echoed as one or more ASCII Backspace-Space-Backspace
sequences, which clears the last characters from the screen.

ECHOK
Echoes the NL character after kill. If the ECHOK flag is set, the NL character is echoed after the kill
character is received. This emphasizes that the line is deleted.

Files Reference 1069

ECHONL
Echoes the NL character. If the ECHONL flag is set, the NL character is echoed even if the
ECHO flag is not set. This is useful for terminals that are set to "local echo" (also referred to as
"half-duplex").

c_cc
Specifies an array that defines the special control characters. The relative positions and initial values
for each function are:
VINTR

Indexes the INTR special character (Ctrl-c), which is recognized on input if the ISIG flag is set.
The INTR character generates a SIGINT signal, which is sent to all processes in the foreground
process group for which the terminal is the controlling terminal. If the ISIG flag is set, the INTR
character is discarded when processed.

VQUIT
Indexes the QUIT special character (Ctrl-\), which is recognized on input if the ISIG flag is set.
The QUIT character generates a SIGQUIT signal, which is sent to all processes in the foreground
process group for which the terminal is the controlling terminal, and writes a core image file
into the current working directory. If the ISIG flag is set, the QUIT character is discarded when
processed.

VERASE
Indexes the ERASE special character (Backspace), which is recognized on input if the ICANON
flag is set. The ERASE character does not erase beyond the beginning of the line as delimited by a
NL, EOL, EOF, or EOL2 character. If the ICANON flag is set, the ERASE character is discarded when
processed.

VKILL
Indexes the KILL special character (Ctrl-u), which is recognized on input if the ICANON flag is set.
The KILL character deletes the entire line, as delimited by an NL, EOL, EOF, or EOL2 character. If
the ICANON flag is set, the KILL character is discarded when processed.

VEOF
Indexes the EOF special character (Ctrl-d), which is recognized on input if the ICANON flag is
set. When EOF is received, all the characters waiting to be read are immediately passed to the
process, without waiting for a new line, and the EOF is discarded. If the EOF is received at the
beginning of a line (no characters are waiting), a character count of zero is returned from the
read, indicating an end-of-file. If the ICANON flag is set, the EOF character is discarded when
processed.

VEOL
Indexes the EOL special character (Ctrl-@ or ASCII NULL), which is recognized on input if the
ICANON flag is set. EOL is an additional line delimiter, like NL, and is not normally used.

VEOL2
Indexes the EOL2 special character (Ctrl-@ or ASCII NULL), which is recognized on input if the
ICANON flag is set. EOL2 is another additional line delimiter, like NL, and is not normally used.

VMIN
Indexes the MIN value, which is not a special character. The use of the MIN value is described in
the discussion of non-canonical mode input processing in "POSIX (termios.h File) Line Discipline"
in General Programming Concepts: Writing and Debugging Programs.

VTIME
Indexes the TIME value, which is not a special character. The use of the TIME value is described in
the discussion of non-canonical mode input processing in "POSIX (termios.h File) Line Discipline"
in General Programming Concepts: Writing and Debugging Programs.

The character values for the following control characters can be changed:

• INTR
• ERASE
• EOF

1070 AIX Version 7.1: Files Reference

• EOL2
• QUIT
• KILL
• EOL

The ERASE, KILL, and EOF characters can also be escaped (preceded with a backslash) so that no
special processing is done.

The primary ioctl subroutines have the form:

ioctl (FileDescriptor, Command, Structure)
struct termio *Structure;

The operations using this form are:

TCGETA
Gets the parameters associated with the terminal and stores them in the termio structure referenced
by the Structure parameter.

TCSETA
Sets the parameters associated with the terminal from the structure referenced by the Structure
parameter. The change is immediate.

TCSETAF
Waits for the output to drain, and then flushes the input queue and sets the new parameters.

TCSETAW
Waits for the output to drain before setting the new parameters. This form should be used when
changing parameters that will affect output.

Other ioctl subroutines have the form:

ioctl (FileDescriptor, Command, Value)
int Value;

The operations using this form are:

Note: If the user writes an application that performs a TCSBRK operation followed by a TCFLSH
operation prior to closing a port, the last data left in the concentrator box on the 64-port adapter is
lost. However, no problem occurs if an SIO, 8-port, or 16-port adapter is used.

TCSBRK
Waits for the output to drain. If the Value parameter has a value of 0, it sends a break of 0.25 seconds.
A nonzero value causes a break condition of that many milliseconds.

TCSBREAK
Waits for the output to drain. If the Value parameter has a value of 0, it sends a break of .25 seconds.
A nonzero value causes a break condition of that many milliseconds.

TCXONC
Starts and stops control. If the Value parameter has a value of 0, it suspends output. If the Value
parameter has a value of 1, it restarts suspended output. If the Value parameter has a value of 2, it
blocks input. If the Value parameter has a value of 3, it unblocks input.

TCFLSH
If the Value parameter has a value of 0, it flushes the input queue. If the Value parameter has a value
of 1, it flushes the output queue. If the Value parameter has a value of 2, it flushes both the input and
output queues.

Another form for ioctl subroutines is:

ioctl (FileDescriptor, Command, Structure)
struct csmap* Structure;

Files Reference 1071

TCSCSMAP
Sets the code set map from the structure referenced by the structure parameter and rejects
any invalid map (any map with 0 length/width or a length greater than MB_LEN_MAX). The /usr/
include/sys/tty.h file contains the structure used for TCSCSMAP and TCGCSMAP operations.

TCGCSMAP
Returns a copy of the current code set map in the structure referenced by the structure parameter.
The /usr/include/sys/tty.h file contains the structure used for TCSCSMAP and TCGCSMAP
operations.

The following ioctl operations are used for trusted communications path operations:

TCSAK
Points to an integer that enables the Secure Attention Key (SAK) sequence (Ctrl-X, Ctrl-R) to provide
a clean terminal to which only trusted processes can read or write. When SAK is enabled and the
user types this sequence, all processes that are currently running are ended. The TCSAKON operation
turns the SAK sequence on; the TCSAKOFF operation turns the SAK sequence off.

TCQSAK
Queries the state (TCSAKON or TCSAKOFF) of the SAK sequence.

TCTRUST
Sets a bit by which another process can query, (with the TCQTRUST operation), the state of the
terminal, (TCTRUSTED or TCUNTRUSTED).

TCQTRUST
Queries the state of the terminal (TCTRUSTED or TCUNTRUSTED).

Related information
fork subroutine
sigvec subroutine
csh command
getty command
stty command

termios.h File

Purpose
Defines the structure of the termios file, which provides the terminal interface for POSIX compatibility.

Description
The /usr/include/termios.h file contains information used by subroutines that apply to terminal files. The
definitions, values, and structures in this file are required for compatibility with the POSIX standard. The
termios.h file also supports ioctl modem-control operations.

The general terminal interface information is contained in the termio.h file. The termio structure in the
termio.h file defines the basic input, output, control, and line discipline modes. If a calling program is
identified as requiring POSIX compatibility, the termios structure and additional POSIX control-packet
information in the termios.h file is implemented. Window and terminal size operations use the winsize
structure, which is defined in the ioctl.h file. The termios structure in the termios.h file contains the
following fields:

• c_iflag
• c_oflag
• c_cflag
• c_lflag
• c_cc

The termios.h file also defines the values for the following parameters of the tcsetattr subroutine:

1072 AIX Version 7.1: Files Reference

• OptionalActions
• QueueSelector
• Action

The termios.h file also supports ioctl modem-control operations.

Field Descriptions

c_iflag
Describes the basic terminal input control. The initial input-control value is all bits clear. The possible
input modes are:
IGNBRK

Ignores the break condition. In the context of asynchronous serial data transmission, a break
condition is defined as a sequence of zero-valued bits that continues for more than the time
required to send one byte. The entire sequence of zero-valued bits is interpreted as a single break
condition, even if it continues for an amount of time equivalent to more than one byte. If the
IGNBRK flag is set, a break condition detected on input is ignored, which means that it is not put
on the input queue and therefore not read by any process.

BRKINT
Signal interrupt on the break condition. If the IGNBRK flag is not set and the BRKINT flag is set,
the break condition flushes the input and output queues. If the terminal is the controlling terminal
of a foreground process group, the break condition generates a SIGINT signal to that foreground
process group. If neither the IGNBRK nor the BRKINT flag is set, a break condition is read as a
single \0, or if the PARMRK flag is set, as \377, \0, \0.

IGNPAR
Ignores characters with parity errors. If this flag is set, a byte with a framing or parity error (other
than break) is ignored.

PARMRK
Marks parity errors. If the PARMRK flag is set, and the IGNPAR flag is not set, a byte with
a framing or parity error (other than break) is given to the application as the three-character
sequence \377, \0, x, where \377, \0 is a two-character flag preceding each sequence and x is the
data of the character received in error. To avoid ambiguity in this case, if the ISTRIP flag is not
set, a valid character of \377 is given to the application as \377, \377. If neither the IGNPAR nor
the PARMRK flag is set, a framing or parity error (other than break) is given to the application as a
single character \0.

INPCK
Enables input parity checking. If this flag is set, input parity checking is enabled. If not set, input
parity checking is disabled. This allows for output parity generation without input parity errors.

ISTRIP
Strips characters. If this flag is set, valid input characters are first stripped to 7 bits. Otherwise, all
8 bits are processed.

INLCR
Maps a new-line character (NL) to a carriage return (CR) on input. If this flag is set, a received NL
character is translated into a CR character.

IGNCR
Ignores CR character. If this flag is set, a received CR character is ignored and not read.

ICRNL
Maps a CR character to the NL character on input. If the ICRNL flag is set and the IGNCR flag is
not set, a received CR character is translated into a NL character.

IUCLC
Maps uppercase to lowercase on input. If this flag is set, a received uppercase, alphabetic
character is translated into the corresponding lowercase character.

Files Reference 1073

IXON
Enables start and stop output control. If this flag is set, a received STOP character suspends
output and a received START character restarts output. When the IXON flag is set, START and
STOP characters are not read, but merely perform flow-control functions. When the IXON flag is
not set, the START and STOP characters are read.

IXANY
Enables any character to restart output. If this flag is set, any input character restarts output that
was suspended.

IXOFF
Enables start-and-stop input control. If this flag is set, the system transmits a STOP character
when the input queue is nearly full and a START character when enough input has been read that
the queue is nearly empty again.

IMAXBEL
Echoes the ASCII BEL character if the input stream overflows. Further input is not stored, but
input already present in the input stream is not lost. If this flag is not set, no BEL character is
echoed; the input in the input queue is discarded if the input stream overflows. This function also
requires the IEXTEN bit to be set.

c_oflag
Specifies how the system treats output. The initial output-control value is "all bits clear." The possible
output modes are:
OPOST

Post-processes output. If this flag is set, output characters are post-processed as indicated by the
remaining flags. Otherwise, characters are transmitted without change.

OLCUC
Maps lowercase to uppercase on output. If this flag is set, a lowercase alphabetic character is
transmitted as the corresponding uppercase character. This flag is often used in conjunction with
the IUCLC input mode.

ONLCR
Maps NL to CR-NL on output. If this flag is set, the NL character is transmitted as the CR-NL
character pair.

OCRNL
Maps CR to NL on output. If this flag is set, the CR character is transmitted as the NL character.

ONOCR
Indicates no CR output at column 0. If this flag is set, no CR character is transmitted when at
column 0 (first position).

ONLRET
NL performs CR function. If this flag is set, the NL character is assumed to do the carriage-return
function. The column pointer is set to 0, and the delay specified for carriage return is used. If
neither the ONLCR, OCRNL, ONOCR, nor ONLRET flag is set, the NL character is assumed to do
the line-feed function only. The column pointer remains unchanged. The column pointer is set to 0
if the CR character is actually transmitted.

The delay bits specify how long a transmission stops to allow for mechanical or other movement when
certain characters are sent to the terminal. The actual delays depend on line speed and system load.

OFILL
Uses fill characters for delay. If this flag is set, fill characters are transmitted for a delay instead of a
timed delay. This is useful for high baud rate terminals that need only a minimal delay.

OFDEL
If this flag is set, the fill character is DEL. If this flag is not set, the fill character is NULL.

NLDLY
Selects the new-line character delays. This is the mask to use before comparing to NL0 and NL1:
NL0

Specifies no delay.

1074 AIX Version 7.1: Files Reference

NL1
Specifies a delay of approximately 0.10 seconds. If the ONLRET flag is set, the carriage-return
delays are used instead of the new-line delays. If the OFILL flag is set, two fill characters are
transmitted.

CRDLY
Selects the carriage-return delays. This is the mask to use before comparing to CR0, CR1, CR2, and
CR3:
CR0

Specifies no delay.
CR1

Specifies that the delay is dependent on the current column position. If the OFILL flag is set, this
delay transmits two fill characters.

CR2
Specifies a delay of approximately 0.10 seconds. If the OFILL flag is set, this delay transmits four
fill characters.

CR3
Specifies a delay of approximately 0.15 seconds.

TABDLY
Selects the horizontal-tab delays. This is the mask to use before comparing to TAB0, TAB1, TAB2, and
TAB3. If the OFILL flag is set, any of these delays (except TAB3) transmit two fill characters.
TAB0

Specifies no delay.
TAB1

Specifies that the delay is dependent on the current column position. If the OFILL flag is set, two
fill characters are transmitted.

TAB2
Specifies a delay of approximately 0.10 seconds.

TAB3
Specifies that tabs are to be expanded into spaces.

BSDLY
Selects the backspace delays. This is the mask to use before comparing to BS0 and BS1:
BS0

Specifies no delay.
BS1

Specifies a delay of approximately 0.05 seconds. If the OFILL flag is set, this delay transmits one
fill character.

VTDLY
Selects the vertical-tab delays. This is the mask to use before comparing to VT0 and VT1:
VT0

Specifies no delay.
VT1

Specifies a delay of approximately 2 seconds.
FFDLY

Selects the form-feed delays. This is the mask to use before comparing to FF0 and FF1:
FF0

Specifies no delay.
FF1

Specifies a delay of approximately 2 seconds.

Files Reference 1075

c_cflag
Describes the hardware control of the terminal. In addition to the basic control modes, this field uses
the following control characters:
CBAUD

Specifies baud rate. These bits specify the baud rate for a connection. For any particular hardware,
impossible speed changes are ignored.
B50

50 baud.
B75

75 baud.
B110

110 baud.
B134

134.5 baud.
B150

150 baud.
B200

200 baud.
B300

300 baud.
B600

600 baud.
B1200

1200 baud.
B1800

1800 baud.
B2400

2400 baud.
B4800

4800 baud.
B9600

9600 baud.
B19200

19200 baud.
B38400

38400 baud.
EXTA

External A.
EXTB

External B.
CSIZE

Specifies the character size. These bits specify the character size, in bits, for both transmit and
receive operations. The character size does not include the parity bit, if one is used:
CS5

5 bits
CS6

6 bits
CS7

7 bits

1076 AIX Version 7.1: Files Reference

CS8
8 bits.

CSTOPB
Specifies number of stop bits. If this flag is set, 2 stop bits are sent; otherwise, only 1 stop bit is
sent.

CREAD
Enables receiver. If this flag is set, the receiver is enabled. Otherwise, characters are not received.

PARENB
Enables parity. If this flag is set, parity generation and detection is enabled and a parity bit is
added to each character.

PARODD
Specifies odd parity. If parity is enabled, the PARODD flag specifies odd parity if set. If parity is
enabled and the PARODD flag is not set, even parity is used.

HUPCL
Hangs up on last close. If this flag is set, the line is disconnected when the last process closes the
line or when the process terminates (when the `data terminal ready' signal drops).

CLOCAL
Specifies a local line. If this flag is set, the line is assumed to have a local, direct connection with
no modem control. If not set, modem control (dial-up) is assumed.

CIBAUD
Specifies the input baud rate if different from the output rate.

PAREXT
Specifies extended parity for mark and space parity.

c_lflag
Controls various terminal functions. The initial value after an open is "all bits clear." In addition to the
basic modes, this field uses the following mask name symbols:
ISIG

Enables signals. If this flag is set, each input character is checked against the INTR, QUIT,
SUSP, and DSUSP special control characters. If an input character matches one of these control
characters, the function associated with that character is performed. If the ISIG flag is not set,
checking is not done.

ICANON
Enables canonical input. If this flag is set, it turns on canonical processing, which enables the
erase and kill edit functions as well as the assembly of input characters into lines delimited by NL,
EOF, and EOL characters. If the ICANON flag is not set, read requests are satisfied directly from
the input queue. In this case, a read request is not satisfied until one of the following conditions is
met:

• The minimum number of characters specified by MIN are received.
• The time-out value specified by TIME has expired since the last character was received. This

allows bursts of input to be read, while still allowing single-character input.

The MIN and TIME values are stored in the positions for the EOF and EOL characters, respectively.
The character values of MIN and TIME are converted to their ascii equivalents to get the numeric
value. The time value represents tenths of seconds.

XCASE
Enables canonical uppercase and lowercase presentation. If this flag is set along with the
ICANON flag, an uppercase letter (or the uppercase letter translated to lowercase by the IUCLC
input mode) is accepted on input by preceding it with a \ (backslash) character. The output is then
also preceded by a backslash character. In this mode, the output generates and the input accepts
the following escape sequences:
For

Use

Files Reference 1077

` (grave)
\ `

|
\ !

~
\ ^

{
\ (

}
\)

\
\ \

For example, A is input as \a, \n as \\n, and \N as \\\n.

NOFLSH
Disables queue flushing. If this flag is set, the normal flushing of the input and output queues
associated with the INTR, QUIT, and SUSP characters is not done.

FLUSHO
Flushes the output. When this bit is set by typing the FLUSH character, data written to the terminal
is discarded. A terminal can cancel the effect of typing the FLUSH character by clearing this bit.

PENDIN
Reprints pending input. If this flag is set, any input that is pending after a switch from raw to
canonical mode is re-input the next time a read operation becomes pending or the next time input
arrives. The PENDIN flag is an internal-state bit.

IEXTEN
Enables extended (implementation-defined) functions to be recognized from the input data. If this
flag is not set, implementation-defined functions are not recognized, and the corresponding input
characters are processed as described for the ICANON, ISIG, IXON, and IXOFF flags. Recognition
of the following special control characters requires the IEXTEN flag to be set:

• VEOL2
• VDSUSP
• VREPRINT
• VDISCRD
• VWERSE
• VLNEXT

The functions associated with the following bits also require the IEXTEN flag to be set:

• IMAXBEL
• ECHOKE
• ECHOPRT
• ECHOCTL

TOSTOP
Sends a SIGTTOU signal when a process in a background process group tries to write to its
controlling terminal. The SIGTTOU signal stops the members of the process group.

ECHO
Enables echo. If this flag is set, characters are echoed as they are received.

When the ICANON is set, the following echo functions are also possible:

ECHOE
Echoes the erase character as Backspace-Space-Backspace. If the ECHO and ECHOE flags are
both set and the ECHOPRT flag is not set, the ERASE and WERASE characters are echoed as one

1078 AIX Version 7.1: Files Reference

or more ASCII Backspace-Space-Backspace sequences, which clears the last characters from the
screen.

ECHOPRT
If the ECHO and ECHOPRT flags are both set, the first ERASE and WERASE character in a
sequence are echoed as a \ (backslash), followed by the characters being erased. Subsequent
ERASE and WERASE characters echo the characters being erased, in reverse order. The next
non-erase character causes a / (slash) to be typed before the nonerase character is echoed. This
function also requires the IEXTEN bit to be set.

ECHOKE
Backspace-Space-Backspace entire line on line kill. If this flag is set, the kill character is echoed
by erasing the entire line from the screen (using the mechanism selected by the ECHOE and
ECHOPRT flags). This function also requires the IEXTEN flag to be set.

ECHOK
Echoes the NL character after kill. If the ECHOK flag is set and the ECHOKE flag is not set, the NL
character is echoed after the kill character is received. This emphasizes that the line is deleted.

ECHONL
Echoes the NL character. If the ECHONL flag is set, the NL character is echoed even if the
ECHO flag is not set. This is useful for terminals that are set to "local echo" (also referred to as
"half-duplex").

ECHOCTL
Echoes control characters (with codes between 0 and 37 octal) as ^X, where X is the character
that results from adding 100 octal to the code of the control character. (For example, the character
with octal code 1 is echoed as ^A). The ASCII DEL character (code 177 octal) is echoed as ^?. The
ASCII TAB, NL, and START characters are not echoed. Unless escaped (preceded by a backslash),
the EOF character is not echoed. As a result, because EOT is the default EOF character, terminals
that respond to EOT are prevented from hanging up. This function also requires the IEXTEN flag to
be set.

c_cc
Specifies an array that defines the special control characters. The relative positions and initial values
for each function are:
VINTR

Indexes the INTR special character (Ctrl-c), which is recognized on input if the ISIG flag is set.
The INTR character generates a SIGINT signal, which is sent to all processes in the foreground
process group for which the terminal is the controlling terminal. If the ISIG flag is set, the INTR
character is discarded when processed.

VQUIT
Indexes the QUIT special character (Ctrl-\), which is recognized on input if the ISIG flag is set.
The QUIT character generates a SIGQUIT signal, which is sent to all processes in the foreground
process group for which the terminal is the controlling terminal, and writes a core image file
into the current working directory. If the ISIG flag is set, the QUIT character is discarded when
processed.

VERASE
Indexes the ERASE special character (Backspace), which is recognized on input if the ICANON
flag is set. The ERASE character does not erase beyond the beginning of the line as delimited by a
NL, EOL, EOF, or EOL2 character. If the ICANON flag is set, the ERASE character is discarded when
processed.

VKILL
Indexes the KILL special character (Ctrl-u), which is recognized on input if the ICANON flag is set.
The KILL character deletes the entire line, as delimited by a NL, EOL, EOF, or EOL2 character. If
the ICANON flag is set, the KILL character is discarded when processed.

VEOF
Indexes the EOF special character (Ctrl-d), which is recognized on input if the ICANON flag is
set. When EOF is received, all the characters waiting to be read are immediately passed to the
process, without waiting for a new line, and the EOF is discarded. If the EOF is received at the

Files Reference 1079

beginning of a line (no characters are waiting), a character count of zero is returned from the
read, indicating an end-of-file. If the ICANON flag is set, the EOF character is discarded when
processed.

VEOL
Indexes the EOL special character (Ctrl-@ or ASCII NULL), which is recognized on input if the
ICANON flag is set. EOL is an additional line delimiter, like NL, and is not normally used.

VEOL2
Indexes the EOL2 special character (Ctrl-@ or ASCII NULL), which is recognized on input if the
ICANON and IEXTEN flags are set. EOL2 is an additional line delimiter, like NL, and is not normally
used.

VSTART
Indexes the START special character (Ctrl-q), which is recognized on input if the IXON flag is set,
and generated on output if the IXOFF flag is set. The START character can be used to resume
output that has been suspended by a STOP character. If the IXON flag is set, the START character
is discarded when processed. While output is not suspended, START characters are ignored and
not read. VSTRT is an alias for VSTART.

VSTOP
Indexes the STOP special character (Ctrl-s), which is recognized on input if the IXON flag is
set, and generated on output if the IXOFF flag is set. The STOP character can be used to with
terminals to prevent output from disappearing before it can be read. If the IXON flag is set, the
STOP character is discarded when processed. While output is suspended, STOP characters are
ignored and not read.

VSUSP
Indexes the SUSP special character (Ctrl-z), which is recognized on input if the ISIG flag is set.
The SUSP character generates a SIGTSTP signal, which is sent to all processes in the foreground
process group for which the terminal is the controlling terminal. If the ISIG flag is set, the SUSP
character is discarded when processed.

VDSUSP
Indexes the DSUSP special character (Ctrl-y), which is recognized on input if the ISIG and IEXTEN
flags are set. The DSUSP character generates a SIGTSTP signal as the SUSP character does, but
the signal is sent when a process in the foreground process group attempts to read the DSUSP
character, rather than when DSUSP is typed. If the ISIG and IEXTEN flags are set, the DSUSP
character is discarded when processed.

VREPRINT
Indexes the REPRINT special character (Ctrl-r), which is recognized on input if the ICANON and
IEXTEN flags are set. The REPRINT character reprints all characters, preceded by a new line, that
have not been read. If the ICANON and IEXTEN flags are set, the REPRINT character is discarded
when processed.

VDISCRD
Indexes the DISCARD special character (Ctrl-o), which is recognized on input if the ICANON and
IEXTEN flags are set. The DISCARD character causes subsequent output to be discarded until
another DISCARD character is typed, more input arrives, or the condition is cleared by a program.
If the ICANON and IEXTEN flags are set, the DISCARD character is discarded when processed.

VWERSE
Indexes the WERASE special character (Ctrl-w), which is recognized on input if the ICANON
and IEXTEN flags are set. The WERASE character causes the preceding word to be erased. The
WERASE character does not erase beyond the beginning of the line as delimited by a NL, EOL,
EOF, or EOL2 character. If the ICANON and IEXTEN flags are set, the WERASE character is
discarded when processed.

VLNEXT
Indexes the LNEXT (literal next) special character (Ctrl-v), which is recognized on input if the
ICANON and IEXTEN flags are set. The LNEXT character causes the special meaning of the next
character to be ignored so that characters can be input without being interpreted by the system. If

1080 AIX Version 7.1: Files Reference

the ICANON, ECHO, and IEXTEN flags are set, the LNEXT character is replaced by a ^-Backspace
sequence when processed.

VMIN
Indexes the MIN value, which is not a special character. The use of the MIN value is described
in the discussion of noncanonical mode input processing in "ldterm Line Discipline" in General
Programming Concepts: Writing and Debugging Programs.

VTIME
Indexes the TIME value, which is not a special character. The use of the TIME value is described
in the discussion of noncanonical mode input processing in "ldterm Line Discipline" in General
Programming Concepts: Writing and Debugging Programs.

The character values for the following control characters can be changed:

Item Description Value Value

INTR EOF STOP DISCARD

QUIT EOL SUSP WERASE

ERASE EOL2 DSUSP LNEXT

KILL START REPRINT REPRINT

The ERASE, KILL, and EOF characters can also be escaped (preceded by a backslash) so that no
special processing is done.

Parameter Value Definitions

The following values for the OptionalActions parameter of the tcsetattr subroutine are also defined in the
termios.h file:

Item Description

TCSANOW Immediately sets the parameters associated with the terminal from the referenced
termios structure.

TCSADRAIN Waits until all output written to the object file has been transmitted before setting the
terminal parameters from the termios structure.

TCSAFLUSH Waits until all output written to the object file has been transmitted and until all input
received but not read has been discarded before setting the terminal parameters from
the termios structure.

The following values for the QueueSelector parameter of the tcflush subroutine are also defined in this
header file:

Item Description

TCIFLUSH Flushes data that is received but not read.

TCOFLUSH Flushes data that is written but not transmitted.

TCIOFLUSH Flushes data that is received but not read as well as data that is written but not
transmitted.

The following values for the Action parameter of the tcflow subroutine are also defined in the termios.h
file:

Item Description

TCOOFF Suspends the output of data by the object file named in the tcflow subroutine.

TCOON Restarts data output that was suspended by the TCOOFF action.

TCIOFF Transmits a stop character to stop data transmission by the terminal device.

Files Reference 1081

Item Description

TCION Transmits a start character to start or restart data transmission by the terminal device.

Modem Control Operations

The following ioctl operations, used for modem control, are an extension to the POSIX line discipline
interface. To use these operations in a program, the program must contain an #include statement for the
ioctl.h file.

Item Description

TIOCMBIS The argument to this command is a pointer to an integer that turns on the control lines
specified by the integer mask value. No other control lines are affected.

TIOCMBIC The argument to this command is a pointer to an integer that turns off the control lines
specified by the integer mask value. No other control lines are affected.

TIOCMGET Gets all modem bits. The argument to this command is a pointer to an integer where
the current state of the modem status lines is stored. Which modem status and
modem control lines are supported depends on the capabilities of the hardware and the
hardware's device driver.

TIOCMSET Sets all modem bits. The argument to this command is a pointer to an integer containing a
new set of modem bits. The modem control bits use these bits to turn the modem control
lines on or off, depending on whether the bit for that line is set or clear. Any modem
status bits are ignored. The actual modem control lines which are supported depend on
the capabilities of the hardware and the hardware's device driver.

The integer specifies one of the following modem control or status lines on which the
modem control ioctl command operates:

TIOCM_LE
Line enable

TIOCM_DTR
Data terminal ready

TIOCM_RTS
Request to send

TIOCM_ST
Secondary transmit

TIOCM_SR
Secondary receive

TIOCM_CTS
Clear to send

TIOCM_CAR
Carrier detect

TIOCM_CD
TIOCM_CAR

TIOCM_RNG
Ring

TIOCM_RI
TIOCM_RNG

TIOCM_DSR
Data set ready.

1082 AIX Version 7.1: Files Reference

Item Description

TIOCMIWAI
T

Wait for modem status line to change status.

The argument is a pointer to an integer mask value specifying the modem status line(s) on
which to wait for a status change, and can consist of one or more of the following values:
TIOCM_CTS

Clear to send
TIOCM_CAR

Carrier detect
TIOCM_CD

TIOCM_CAR
TIOCM_RNG

Ring
TIOCM_RI

TIOCM_RNG
TIOCM_DSR

Data set ready.
The request blocks until one of the specified lines changes status, then returns to the
caller. Note that this ioctl blocks even if O_NDELAY or O_NONBLOCK is set.

If none of the specified lines changes status, the ioctl can block indefinitely, so it should
be used in conjunction with an alarm() timer.

If TIOCM_RNG or TIOCM_RI is specified, the transition is reported only when the status
line transitions from on to off due to hardware restrictions.

Note: Correct operation of this ioctl depends on correct cabling.

Related reference
termiox.h File
unistd.h File
Related information
ksh command
stty command
cfgetispeed, cfgetospeed, cfsetispeed, cfsetospeed subroutine

termiox.h File

Purpose
Defines the structure of the termiox file, which provides the extended terminal interface.

Description
The termiox.h file contains an extended terminal interface to support asynchronous hardware flow
control. It defines the termiox structure and ioctl operations using this structure. The termiox structure in
the termiox.h file contains the following fields:

• x_hflag
• x_cflag
• x_rflag
• x_sflag

The termiox.h file also supports ioctl hardware flow control operations.

Files Reference 1083

Field Descriptions

x_hflag Describes the hardware flow control mode. The possible modes are:
CDXON

Enables CD hardware flow control on output. When set, output will occur only if the
`receive line signal detector' (CD) line is raised by the connected device. If the CD line is
dropped by the connected device, output is suspended until the CD line is raised.

CTSXON
Enables CTS hardware flow control on output. When set, output will occur only if the
`clear to send' (CTS) line is raised by the connected device. If the CTS line is dropped by
the connected device, output is suspended until the CTS line is raised.

DTRXOFF
Enables DTR hardware flow control on input. When set, the `data terminal ready' (DTR)
line is raised. If the port needs to have its input stopped, it will drop the DTR line. It is
assumed that the connected device will stop its output until DTR is raised.

RTSXOFF
Enables RTS hardware flow control on input. When set, the `request to send' (RTS) line
is raised. If the port needs to have its input stopped, it will drop the RTS line. It is
assumed that the connected device will stop its output until RTS is raised.

It is not possible to use simultaneously the following flow control modes:

• RTS and DTR
• CTS and CD.

Different hardware flow control modes may be selected by setting the appropriate flags. For
example:

• Bi-directional RTS/CTS flow control by setting RTSXOFF and CTSXON
• Bi-directional DTR/CTS flow control by setting DTRXOFF and CTSXON
• Modem control or uni-directional CTS flow control by setting CTSXON.

x_cflag Reserved for future use.

x_rflag Reserved for future use.

x_sflag Describes the open discipline. This field must be set before the first open; it is usually done
at configuration time. The possible disciplines are:
DTR_OPEN

DTR open discipline. On open, the discipline raises the `data terminal ready' (DTR) and
`request to send' (RTS) lines, and waits for the `data carrier detect' (DCD) line to be
raised. If the port is opened with the O_NDELAY or O_NONBLOCK flags, the wait is not
done. The DTR and RTS lines are dropped at close time.

WT_OPEN
World trade open discipline. On open, the discipline behaves like the DTR open
discipline if not in CDSTL mode. In CDSTL mode, the discipline does not raise the DTR
line until the `ring indicate' (RI) line is raised. The DTR line is dropped when the DSR line
drops for more than 20 milliseconds.

Hardware Flow Control Operations

The following ioctl operations are used for hardware flow control. To use these operations in a program,
the program must contain an #include statement for the ioctl.h file. The argument to these operations is
a pointer to a termiox structure.

1084 AIX Version 7.1: Files Reference

Item Description

TCGETX Gets the terminal parameters. The current terminal parameters are stored in the structure.

TCSETX Sets the terminal parameters immediately. The current terminal parameters are set
according to the structure. The change is immediate.

TCSETXW Sets the terminal parameters after end of output. The current terminal parameters are set
according to the structure. The change occurs after all characters queued for output have
been transmitted. This operation should be used when changing parameters will affect
output.

TCSETXF Sets the terminal parameters after end of output and flushes input. The current terminal
parameters are set according to the structure. All characters queued for output are first
transmitted, then all characters queued for input are discarded, and then the change occurs.

Related reference
termios.h File
Related information
ioctl subroutine
tty Subsystem Overview

threads.h File

Purpose
The threads.h header file includes the time.h header file and defines macros It also declares types,
enumeration constants, and functions that support multiple threads of execution.

Description
The header threads.h header file must not be provided by implementations that define the macro _
_STDC_NO_THREADS_ _ . Also, such implementations must not support any facilities that are specified
by the header threads.h file.

The threads.h header file declares the following macros:
thread_local

Expands to _Thread_local.
ONCE_FLAG_INIT

Expands to a value that can be used to initialize an object of the type once_flag.
TSS_DTOR_ITERATIONS

Expands to an integer constant expression that represents the maximum number of times a
destructor is called when a thread terminates.

The threads.h header file declares following types:
cnd_t

A complete object type that holds an identifier for a condition variable.
thrd_t

A complete object type that holds an identifier for a thread.
tss_t

A complete object type that holds an identifier for a thread-specific storage pointer.
mtx_t

A complete object type that holds an identifier for a mutex.
tss_dtor_t

A function pointer type void (*)(void*), used for a destructor for a thread-specific storage pointer.

Files Reference 1085

thrd_start_t
A function pointer type int (*)(void*) that is passed to thrd_create to create a new thread.

once_flag
A complete object type that holds a flag for use by call_once.

The threads.h header file declares the following enumeration constants:
mtx_plain

The mtx_plain type is passed to mtx_init to create a mutex object that does not support timeout and
test and returns.

mtx_recursive
The mtx_recursive type is passed to mtx_init to create a mutex object that supports recursive
locking.

mtx_timed
The mtx_timed type is passed to mtx_init to create a mutex object that supports timeout.

thrd_timedout
The cnd_t type is returned by a timed wait function to indicate that the time specified in the call was
reached without acquiring the requested resource.

thrd_success
The thrd_success type is returned by the function to indicate that the requested operation
succeeded.

thrd_busy
The thrd_busy type is returned by the function to indicate that the requested operation failed
because a resource requested by a test and return functions is already in use.

thrd_error
The thrd_error type is returned by a function to indicate that the requested operation failed.

thrd_nomem
The thrd_nomem type is returned by a function to indicate that the requested operation failed
because it was unable to allocate memory.

The threads.h header file declares the following functions:

void call_once(once_flag *flag, void (*func)(void));
int cnd_broadcast(cnd_t *cond);
void cnd_destroy(cnd_t *cond);
int cnd_init(cnd_t *cond);
int cnd_signal(cnd_t *cond);
int cnd_timedwait(cnd_t *restrict cond,
mtx_t *restrict mtx,
const struct timespec *restrict ts);
int cnd_wait(cnd_t *cond, mtx_t *mtx);
void mtx_destroy(mtx_t *mtx);
int mtx_init(mtx_t *mtx, int type);
int mtx_lock(mtx_t *mtx);
int mtx_timedlock(mtx_t *restrict mtx,
const struct timespec *restrict ts);
int mtx_trylock(mtx_t *mtx);
int mtx_unlock(mtx_t *mtx);
int thrd_create(thrd_t *thr, thrd_start_t func,
void *arg);
thrd_t thrd_current(void);
int thrd_detach(thrd_t thr);
int thrd_equal(thrd_t thr0, thrd_t thr1);
_Noreturn void thrd_exit(int res);
int thrd_join(thrd_t thr, int *res);
int thrd_sleep(const struct timespec *duration,
struct timespec *remaining);
void thrd_yield(void);
int tss_create(tss_t *key, tss_dtor_t dtor);
void tss_delete(tss_t key);
void *tss_get(tss_t key);
int tss_set(tss_t key, void *val);

1086 AIX Version 7.1: Files Reference

trace.h File

Purpose
Defines implementation trace that IEEE POSIX 1003 identifies.

Description
The <trace.h> header defines the posix_trace_event_info structure that includes the following members:

trace_event_id_t posix_event_id
pid_t posix_pid
void *posix_prog_address
int posix_truncation_status
struct timespec posix_timestamp
pthread_t posix_thread_id

The <trace.h> header defines the posix_trace_status_info structure that includes the following
members:

int posix_stream_status
int posix_stream_full_status
int posix_stream_overrun_status
int posix_stream_flush_status
int posix_stream_flush_error
int posix_log_overrun_status
int posix_log_full_status

The <trace.h> header defines the following symbols:
Table 37. Symbols for the trace.h header

Symbol Usage Description

POSIX_TRACE_ADD_EVENTSET how argument of the posix_trace_set_filter()
function

The resulting set of trace event types to be filtered is the
union of the current set and the trace event type set that
the argument set points to.

POSIX_TRACE_ALL_EVENTS what argument of the posix_trace_eventset_fill()
function

All trace event types defined, both system and user, are
included in the set.

POSIX_TRACE_APPEND logpolicy argument of the
posix_trace_attr_setlogfullpolicy() function

The associated trace stream is flushed to the trace log
without log size limitation.

POSIX_TRACE_CLOSE_FOR_CHILD inheritancepolicy argument of the
posix_trace_eventset_fill() function

After a fork() operation or a spawn() operation, the child is
not traced, and tracing of the parent continues.

POSIX_TRACE_FILTER This event is recorded in the stream when a trace-event-
type filter is changed.

POSIX_TRACE_FLUSH streampolicy argument of the
posix_trace_attr_setstreamfullpolicy() function

This policy is identical to the POSIX_TRACE_UNTIL_FULL
trace-stream full policy, except that the trace stream is
flushed regularly as if the posix_trace_flush() operation has
been explicitly called.

POSIX_TRACE_FLUSH_START This event is recorded in the stream marking the beginning
of a flush operation.

POSIX_TRACE_FLUSH_STOP This event is recorded in the stream marking the end of a
flush operation.

POSIX_TRACE_FLUSHING posix_stream_flush_status member of the
posix_trace_status_info structure

The trace stream is being flushed to the trace log.

POSIX_TRACE_FULL posix_stream_full_status member of the
posix_trace_status_info structure

The space in the trace stream for trace events is exhausted.

POSIX_TRACE_FULL posix_log_full_status member of the
posix_trace_status_info structure

The space in the trace log is exhausted.

POSIX_TRACE_LOOP streampolicy argument of the
posix_trace_attr_setstreamfullpolicy() function

The trace stream loops until the posix_trace_stop()
subroutine explicitly stops it.

POSIX_TRACE_LOOP logpolicy argument of the
posix_trace_attr_setlogfullpolicy() function

The trace log loops until the associated trace stream is
stopped.

POSIX_TRACE_NO_OVERRUN posix_stream_overrun_status member of the
posix_trace_status_info structure

No trace events are lost in the stream.

Files Reference 1087

Table 37. Symbols for the trace.h header (continued)

Symbol Usage Description

POSIX_TRACE_NO_OVERRUN posix_log_overrun_status member of the
posix_trace_status_info structure

No trace events are lost in the trace log.

POSIX_TRACE_NOT_FLUSHING posix_stream_flush_status member of the
posix_trace_status_info structure

No flush operation is in progress.

POSIX_TRACE_NOT_FULL posix_stream_full_status member of the
posix_trace_status_info structure

There is space available in the trace stream.

POSIX_TRACE_NOT_FULL posix_log_full_status member of the
posix_trace_status_info structure

There is space available in the trace log.

POSIX_TRACE_INHERITED inheritancepolicy argument of the
posix_trace_attr_setinherited() function

After a fork() operation or a spawn() operation, if the parent
is traced, its child is traced concurrently using the same
trace stream.

POSIX_TRACE_NOT_TRUNCATED posix_truncation_status member of the
posix_trace_event_info structure

All of the traced data is available.

POSIX_TRACE_OVERFLOW This event is recorded in the stream marking the beginning
of a trace overflow condition.

POSIX_TRACE_OVERRUN posix_stream_overrun_status member of the
posix_trace_status_info structure

At least one trace event is lost and not recorded in the trace
stream.

POSIX_TRACE_OVERRUN posix_log_overrun_status member of the
posix_trace_status_info structure

At least one trace event is lost in the trace log.

POSIX_TRACE_RESUME This event is recorded in the stream marking the end of a
trace overflow condition.

POSIX_TRACE_RUNNING posix_stream_status member of the
posix_trace_status_info structure

Tracing is in progress.

POSIX_TRACE_SET_EVENTSET how argument of the posix_trace_set_filter()
function

The resulting set of trace event types to be filtered is the
trace event type set that the argument set points to.

POSIX_TRACE_START This event is recorded in the stream on a trace start
operation.

POSIX_TRACE_STOP This event is recorded in the stream on a trace stop
operation.

POSIX_TRACE_SUB_EVENTSET how argument of the posix_trace_set_filter()
function

The resulting set of trace event types to be filtered includes
all trace event types in the current set. These trace event
types are not in the set pointed to by the argument set.
Each element of the current set of trace event types is
removed from the current filter.

POSIX_TRACE_SUSPENDED posix_stream_status member of the
posix_trace_status_info structure

The tracing operation has not started, or has stopped.

POSIX_TRACE_SYSTEM_EVENTS what argument of the posix_trace_eventset_fill()
function

All the system-trace-event types are included in the set.

POSIX_TRACE_TRUNCATED_READ posix_truncation_status member of the
posix_trace_event_info structure

Data is truncated at the time the trace event is read from
a trace stream or a trace log because the reader's buffer is
too small.

POSIX_TRACE_TRUNCATED_RECORD posix_truncation_status member of the
posix_trace_event_info structure

Data is truncated at the time the trace event is generated.

POSIX_TRACE_UNNAMED_USER_EVENT If the per-process user name of the trace event is
reached, the POSIX_TRACE_UNNAMED_USEREVENT user
trace event is returned on posix_trace_eventid_open() or
posix_trace_trid_eventid_open().

POSIX_TRACE_UNTIL_FULL streampolicy argument of the
posix_trace_attr_getstreamfullpolicy() function

The trace stream runs until the trace stream resources are
exhausted; then the trace stream stops.

POSIX_TRACE_UNTIL_FULL logpolicy argument of the
posix_trace_attr_getlogfullpolicy() function

The trace stream is flushed to the trace log until the trace
log is full.

POSIX_TRACE_WOPID_EVENTS what argument of the posix_trace_eventset_fill()
function

All the process-independent, system-trace-event types are
included in the set.

The following types are defined as described in the header types.h file:

trace_attr_t
trace_id_t
trace_event_id_t
trace_event_set_t

int posix_trace_attr_destroy(trace_attr_t *);
int posix_trace_attr_getclockres(const trace_attr_t *,
 struct timespec *);

1088 AIX Version 7.1: Files Reference

int posix_trace_attr_getcreatetime(const trace_attr_t *,
 struct timespec *);
int posix_trace_attr_getgenversion(const trace_attr_t *, char *);
int posix_trace_attr_getinherited(const trace_attr_t *restrict,
 int *restrict);
int posix_trace_attr_getlogfullpolicy(const trace_attr_t *restrict,
 int *restrict);
int posix_trace_attr_getlogsize(const trace_attr_t *restrict,
 size_t *restrict);
int posix_trace_attr_getmaxdatasize(const trace_attr_t *restrict,
 size_t *restrict);
int posix_trace_attr_getmaxsystemeventsize(const trace_attr_t *restrict,
 size_t *restrict);
int posix_trace_attr_getmaxusereventsize(const trace_attr_t *restrict,
 size_t, size_t *restrict);
int posix_trace_attr_getname(const trace_attr_t *, char *);
int posix_trace_attr_getstreamfullpolicy(const trace_attr_t *restrict,
 int *restrict);
int posix_trace_attr_getstreamsize(const trace_attr_t *restrict,
 size_t *restrict);
int posix_trace_attr_init(trace_attr_t *);
int posix_trace_attr_setinherited(trace_attr_t *, int);
int posix_trace_attr_setlogfullpolicy(trace_attr_t *, int);
int posix_trace_attr_setlogsize(trace_attr_t *, size_t);
int posix_trace_attr_setmaxdatasize(trace_attr_t *, size_t);
int posix_trace_attr_setname(trace_attr_t *, const char *);
int posix_trace_attr_setstreamsize(trace_attr_t *, size_t);
int posix_trace_attr_setstreamfullpolicy(trace_attr_t *, int);
int posix_trace_clear(trace_id_t);
int posix_trace_close(trace_id_t);
int posix_trace_create(pid_t, const trace_attr_t *restrict,
 trace_id_t *restrict);
int posix_trace_create_withlog(pid_t, const trace_attr_t *restrict,
 int, trace_id_t *restrict);
void posix_trace_event(trace_event_id_t, const void *restrict, size_t);
int posix_trace_eventid_equal(trace_id_t, trace_event_id_t,
 trace_event_id_t);
int posix_trace_eventid_get_name(trace_id_t, trace_event_id_t, char *);
int posix_trace_eventid_open(const char *restrict,
 trace_event_id_t *restrict);
int posix_trace_eventset_add(trace_event_id_t, trace_event_set_t *);
int posix_trace_eventset_del(trace_event_id_t, trace_event_set_t *);
int posix_trace_eventset_empty(trace_event_set_t *);
int posix_trace_eventset_fill(trace_event_set_t *, int);
int posix_trace_eventset_ismember(trace_event_id_t,
 const trace_event_set_t *restrict, int *restrict);
int posix_trace_eventtypelist_getnext_id(trace_id_t,
 trace_event_id_t *restrict, int *restrict);
int posix_trace_eventtypelist_rewind(trace_id_t);
int posix_trace_flush(trace_id_t);
int posix_trace_get_attr(trace_id_t, trace_attr_t *);
int posix_trace_get_filter(trace_id_t, trace_event_set_t *);
int posix_trace_get_status(trace_id_t,
 struct posix_trace_status_info *);
int posix_trace_getnext_event(trace_id_t,
 struct posix_trace_event_info *restrict , void *restrict,
 size_t, size_t *restrict, int *restrict);
int posix_trace_open(int, trace_id_t *);

Files Reference 1089

int posix_trace_rewind(trace_id_t);
int posix_trace_set_filter(trace_id_t, const trace_event_set_t *, int);
int posix_trace_shutdown(trace_id_t);
int posix_trace_start(trace_id_t);
int posix_trace_stop(trace_id_t);
int posix_trace_timedgetnext_event(trace_id_t,
 struct posix_trace_event_info *restrict, void *restrict,
 size_t, size_t *restrict, int *restrict,
 const struct timespec *restrict);
int posix_trace_trid_eventid_open(trace_id_t, const char *restrict,
 trace_event_id_t *restrict);
int posix_trace_trygetnext_event(trace_id_t,
 struct posix_trace_event_info *restrict, void *restrict, size_t,
 size_t *restrict, int *restrict);

Related reference
types.h File
Related information
posix_trace_attr_destroy() subroutine
posix_trace_attr_getclockres() subroutine
posix_trace_attr_getcreatetime() subroutine

types.h File

Purpose
Defines primitive system data types.

Description
The /usr/include/sys/types.h file defines data types used in system source code. Since some system
data types are accessible to user code, they can be used to enhance portability across different machines
and operating systems. For example, the pid_t type allows for more processes than the unsigned short
(ushort_t) type, and the dev_t type can be 16 bits rather than 32 bits.

Standard Type Definitions

The types.h file includes the following standard type definitions, which are defined with a typedef
statement:

Item Description

daddr_t Used for disk addresses, except in i-nodes on disk. The /usr/include/sys/filsys.h
file format describes the format of disk addresses used in i-nodes.

caddr_t Core (memory) address.

clock_t Used for system times as specified in CLK_TCKs.

ino_t File system i-node number.

cnt_t File system reference count type.

dev_t Major and minor parts of a device code specify the kind of device and unit number of
the device and depend on how the system is customized.

chan_t Channel number (the minor's minor).

off_t File offset, measured in bytes from the beginning of a file or device. off_t is
normally defined as a signed, 32-bit integer. In the programming environment which
enables large files, off_t is defined to be a signed, 64-bit integer.

1090 AIX Version 7.1: Files Reference

Item Description

offset_t 64-bit file offset, measured in bytes from the beginning of a file or device.

off64_t 64-bit file offset, measured in bytes from the beginning of a file or device.

soff_t 32-bit file offset, measured in bytes from the beginning of a file or device.

paddr_t Real address.

key_t IPC key.

time_t Timer ID. Times are encoded in seconds, since 00:00:00 UCT, January 1, 1970.

nlink_t Number of file links.

mode_t File mode.

uid_t User ID.

gid_t Group ID.

mid_t Module ID.

pid_t Process ID.

slab_t Security label.

mtyp_t Interprocess communication (IPC) message type.

size_t Data type is used for sizes of objects.

ssize_t Data type is used for a count of bytes or an error indication.

uchar_t Unsigned char.

ushort_t Unsigned short.

uint_t Unsigned int.

ulong_t Unsigned long.

trace_attr_t Trace attributes object.

trace_id_t Trace stream identifier.

trace_event_id
_t

Trace-event-type identifier.

trace_event_se
t_t

Trace-event-type set.

Unsigned Integers and Addresses

The types.h file also includes the following type definitions for unsigned integers and addresses:

typedef struct _quad { long val[2]; } quad;
typedef long swblk_t;
typedef unsigned long size_t;

The following type definitions are for BSD compatibility only:

typedef unsigned char u_char;
typedef unsigned short u_short;
typedef unsigned int u_int;
typedef unsigned long u_long;

Related reference
values.h File
trace.h File
filsys.h File

Files Reference 1091

uchar.h File

Purpose
Declares types and functions for manipulating the Unicode characters.

Description
The uchar.h file declares following types:
char16_t

An unsigned integer type used for 16-bit characters. It is similar to the uint_least16_t type.
char32_t

An unsigned integer types used for 32-bit characters. It is similar to uint_least32_t type.

The uchar.h file also lists the prototype declarations for the following Unicode utility functions:
mbrtoc16(), mbrtoc32(), c16rtomb(), and c32rtomb().

unistd.h File

Purpose
Defines implementation characteristics identified by POSIX standard.

Description
The /usr/include/unistd.h file includes files that contain definitions that are required for compatibility
with the POSIX standard:

Item Description

access.h Defines symbolic constants for the access subroutine.

The unistd.h file also defines symbolic constants for the pathconf, fpathconf, and sysconf subroutines.
The unistd.h file also defines the following symbols, which are used by POSIX applications to determine
implementation characteristics:

Item Description

_POSIX_JOB_CONTROL POSIX-compatible job control is supported.

_POSIX_SAVED_IDS An exec subroutine saves the effective user and group IDs.

_POSIX_VERSION The version of the POSIX standard with which this version of
the operating system complies. The value of this symbol is
198808L.

_POSIX_CHOWN_RESTRICTED The use of the chown function is restricted to a process with
the appropriate privileges. The group ID of a file can be changed
only to the effective group ID or a supplementary group ID of
the process. The value of this symbol is -1.

_POSIX_VDISABLE The terminal special characters, which are defined in the
termios.h file, can be disabled if this character value is defined
by the tcsetattr subroutine. The value of this symbol is -1.

_POSIX_NO_TRUNC Path name components that are longer than NAME_MAX will
generate an error.

The unistd.h file also defines the following symbol, which is used by X/OPEN applications:

1092 AIX Version 7.1: Files Reference

Item Description

_XOPEN_VERSION The version of the X/OPEN standard with which this version of the operating
system complies.

Related reference
fcntl.h File
flock.h File
limits.h File
types.h File
termios.h File
Related information
access subroutine

utmp.h File

Purpose
Defines the structures of certain user and accounting information files.

Description
The structure of the records in the utmp, wtmp, and failedlogin files is defined in the /usr/include/
utmp.h file. The utmp structure in this header file contains the following fields:

Item Description

ut_user User login name.

ut_line Device name (console or lnxx). The maximum length of a string in this field is 11 characters
plus a null character. When accounting for something other than a process, the following
special strings or formats are allowed:
RUNLVL_MSG

Run level: specifically, the run level of the process.
BOOT_MSG

System boot: specifically, the time of the initial program load (IPL).
OTIME_MSG

Old time: specifically, the time of login.
NTIME_MSG

New time: specifically, the time idle.

ut_pid Process ID.

Files Reference 1093

Item Description

ut_type Type of entry, which can be one of the following values:
EMPTY

Unused space in file.
RUN_LVL

The run level of the process, as defined in the inittab file.
BOOT_TIME

The time at which the system was started.
OLD_TIME

The time at which a user logged on to the system.
NEW_TIME

The amount of time the user is idle.
INIT_PROCESS

A process spawned by the init command.
LOGIN_PROCESS

A getty process waiting for a login.
USER_PROCESS

A user process.
DEAD_PROCESS

A zombie process.
ACCOUNTING

A system accounting process.
UTMAXTYPE ACCOUNTING

The largest legal value allowed in the ut_type field.

Embedded within the utmp structure is the exit_status structure, which contains the following fields:

Item Description

e_termination Termination status of a process.

e_exit Exit status of a process, marked as the DEAD_PROCESS value.

ut_time Time at which the entry was made.

Examples

#ifndef -H-UTMP
#define _H_UTMP
#define UTMP_FILE "/etc/utmp"
#define WTMP_FILE "/var/adm/wtmp"
#define ILOG_FILE "/etc/.ilog"
#define ut_name ut_user

struct utmp
{
 char ut_user[256]; /* User login name */
 char ut_id[14]; /* /etc/inittab id */
 char ut_line[64]; /* device name (console, lnxx) */
 pid_t ut_pid; /* process id */
 short ut_type; /* type of entry */
#if !defined(__64BIT__)
 int __time_t_space; /* for 32vs64-bit time_t PPC */
#endif
 time_t ut_time; /* time entry was made */
 struct exit_status
 {
 short e_termination; /* Process termination status */
 short e_exit; /* Process exit status */
 }
 ut_exit; /* The exit status of a process

1094 AIX Version 7.1: Files Reference

 * marked as DEAD_PROCESS.
 */
 char ut_host[256]; /* host name */
 int __dbl_word_pad; /* for double word alignment */
 int __reservedA[2];
 int __reservedV[6];
};
 /* Definitions for ut_type */
#define EMPTY 0
#define RUN_LVL 1
#define BOOT_TIME 2
#define OLD_TIME 3
#define NEW_TIME 4
#define INIT_PROCESS 5 /* Process spawned by "init" */
#define LOGIN_PROCESS 6 /* A "getty" process */

 /* waitingforlogin */
#define USER_PROCESS 7 /* A user process */
#define DEAD_PROCESS 8
#define ACCOUNTING 9
#define UTMAXTYPE ACCOUNTING /* Largest legal value */
 /* of ut_type */

 /* Special strings or formats used in the */
 /* "ut_line" field when accounting for */
 /* something other than a process. */
 /* No string for the ut_line field can be more */
 /* than 11 chars + a NULL in length. */

#define RUNLVL_MSG "run-level %c"
#define BOOT_MSG "system boot"
#define OTIME_MSG "old time"
#define TIME_MSG "new time"

#endif /* _H_UTMP */

Note: The who command extracts information from the /etc/utmp, /var/adm/wtmp, and /etc/security/
failedlogin files.

Files

Item Description

/etc/utmp The path to the utmp file, which contains a record of users
logged in to the system.

/var/adm/wtmp The path to the wtmp file, which contains accounting
information about logged-in users.

/etc/security/failedlogin The path to the failedlogin file, which contains a list of
invalid login attempts.

Related information
getty command
init command
login command
who command

values.h File

Purpose
Defines machine-dependent values.

Files Reference 1095

Description
The /usr/include/values.h file contains a set of constants that are conditionally defined for particular
processor architectures. The model for integers is assumed to be a ones or twos complement binary
representation, in which the sign is represented by the value of the high-order bit.

Item Description

BITS(type) Number of bits in the specified data type

HIBITS Short integer with only the high-order bit set (0x8000)

HIBITL Long integer with only the high-order bit set (0x80000000)

HIBITI Regular integer with only the high-order bit set (same as the HIBITL value)

MAXSHORT Maximum value of a signed short integer (0x7FFF = 32,767)

MAXLONG Maximum value of a signed long integer (0x7FFFFFFF = 2,147,483,647)

MAXINT Maximum value of a signed regular integer (same as the MAXLONG value)

MAXFLOAT Maximum value of a single-precision floating-point number

MAXDOUBLE Maximum value of a double-precision floating-point number

LN_MAXDOUBLE Natural logarithm of the MAXDOUBLE value

MINFLOAT Minimum positive value of a single-precision floating-point number

MINDOUBLE Minimum positive value of a double-precision floating-point number

FSIGNIF Number of significant bits in the mantissa of a single-precision floating-point
number

DSIGNIF Number of significant bits in the mantissa of a double-precision floating-point
number

FMAXEXP Maximum exponent of a single-precision floating-point number

DMAXEXP Maximum exponent of a double-precision floating-point number

FMINEXP Minimum exponent of a single-precision floating-point number

DMINEXP Minimum exponent of a double-precision floating-point number

FMAXPOWTWO Largest power of two that can be exactly represented as a single-precision floating-
point number

DMAXPOWTWO Largest power of two that can be exactly represented as a double-precision
floating-point number

Related reference
limits.h File
math.h File
types.h File

vmount.h File

Purpose
Defines the structure of the data associated with a virtual file system.

Description
The /usr/include/sys/vmount.h file defines the vmount structure. Each active virtual file system (VFS)
has a vmount structure associated with it. The vmount structure contains the mount parameters (such as

1096 AIX Version 7.1: Files Reference

the mount object and the mounted-over object) for that VFS. The vmount data is created when the VFS is
mounted. The mntctl subroutine returns the VFS data.

The vmount structure contains the following fields to describe fixed-length data:

Item Description

vmt_revision The revision code in effect when the program that created this VFS was compiled.

vmt_length The total length of the structure and data. This will always be a multiple of the
word size (4 bytes).

vmt_fsid The two-word file system identifier; the interpretation of this identifier depends
on the vmt_gfstype field.

vmt_vfsnumber The unique identifier of the VFS. Virtual file systems and their identifiers are
deleted at IPL (initial program load).

vmt_time The time at which the VFS was created.

vmt_flags The general mount flags, for example: READONLY, REMOVABLE, DEVICE,
REMOTE.

vmt_gfstype The type of the general file system. Possible values are:
MNT_JFS

Journaled file system (JFS)
MNT_NFS

SUN network file system
MNT_CDROM

CD-ROM file system

The remaining fields in the vmount structure describe variable-length data. Each entry in the vmt_data
array specifies the offset from the start of the vmount structure at which a data item appears, as well as
the length of the data item.

Item Description

vmt_off Offset of the data, aligned on a word (32-bit) boundary.

vmt_size Actual size of the data in bytes.

vmt_data[VMT_OBJECT] Name of the device, directory, or file that is mounted.

vmt_data[VMT_STUB] Name of the device, directory, or file that is mounted over.

vmt_data[VMT_HOST] Short (binary) name of the host that owns the mounted object.

vmt_data[VMT_HOSTNAME] Long (character) name of the host that owns the mounted object.

vmt_data[VMT_INFO] Binary information passed to the file system implementation that
supports this object; the contents of this field are specific to the
generic file system (GFS) type defined by the vmt_gfstype field.

vmt_data[VMT_ARGS] Character-string representation of the arguments supplied when
the VFS was created.

Related reference
statfs.h File
Related information
mntctl subroutine
umount or uvmount subroutine
vmount or mount subroutine

Files Reference 1097

wctype.h File

Purpose
Contains wide-character classification and mapping utilities.

Syntax
#include <wctype.h>

Description
The wctype.h header defines the following data types through typedef:

Item Description

wint_t As described in wchar.h.

wctrans_t A scalar type that can hold values that represent locale-specific character mappings.

wctype_t As described in wchar.h.

The wctype.h header declares the following as functions and may also define them as macros. Function
prototypes must be provided for use with an ISO C compiler.

int iswalnum(wint_t);
int iswalpha(wint_t);
int iswcntrl(wint_t);
int iswdigit(wint_t);
int iswgraph(wint_t);
int iswlower(wint_t);
int iswprint(wint_t);
int iswpunct(wint_t);
int iswspace(wint_t);
int iswupper(wint_t);
int iswxdigit(wint_t);
int iswctype(wint_t, wctype_t);
wint_t towctrans(wint_t, wctrans_t);
wint_t towlower(wint_t);
wint_t towupper(wint_t);
wctrans_t wctrans(const char *);
wctype_t wctype(const char *);

The wctype.h defines the following macro name:

Item Description

WEO
F

Constant expression of type wint_t that is returned by several MSE functions to indicate end-of-
file.

For all functions described in this header that accept an argument of type wint_t, the value will be
representable as a wchar_t or will equal the value of WEOF. If this argument has any other value, the
behaviour is undefined.

The behaviour of these functions is affected by the LC_CTYPE category of the current locale.

Inclusion of the wctype.h header may make visible all symbols from the headers ctype.h, stdio.h,
stdarg.h, stdlib.h, string.h, stddef.h time.h and wchar.h.

Related information
iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper,
iswxdigit subroutine
towctrans subroutine
wctrans subroutine
wctype subroutine

1098 AIX Version 7.1: Files Reference

wlm.h File

Purpose
Defines the constants, data structures and function prototypes used by the Workload Manager (WLM)
Application Programming Interface (API) subroutines.

Description
The wlm.h file defines the wlm_args, wlm_assign, wlm_info, wlm_bio_class_info_t, and
wlm_bio_dev_info_t, and wlm_proc_info structures. These structures are used by the WLM API
functions in the libwlm.a library.

The wlm_args Structure

The wlm_args structure is used to pass class information to WLM when using the API functions to create,
modify or delete a class. The wlm_args structure contains the following fields:

versflags
Specifies the 4 high-order bits that contain a version number used by the API to maintain binary
compatibility if the data structures are ever modified. The rest of the integer is used to pass flags to
the subroutines when needed.

This field should be initialized with a logical OR operation between the version number
WLM_VERSION and whatever flags are needed by the target subroutine. One flag common to all
the API calls is WLM_MUTE, which is used to suppress the output of error messages from the WLM
library to STDERR.

confdir
Specifies a null-terminated string. This field must be initialized with the name of the WLM
configuration to which the target subroutine applies (when applicable, depending on the particular
one).

Alternatively, this field can be set to a null string (\0). The null string indicates that the class addition
or modification is to be applied only to the WLM kernel data, not to the class description files.

class
This field is a structure of type struct class_definition that contains all the information pertaining to
the superclass or subclass that is needed by the target subroutine. The fields in this structure can be
initialized by a call to the wlm_init_class_definition subroutine so that you only need to initialize the
fields you wish to modify.

The main structure in the wlm_init_class_definition subroutine is the class description, struct
class_descr, with the following fields:

res
Specifies an array of type struct wlm_bounds that contains the following fields for each resource
type and for each total limit:
iopriority

Specifies the priority for I/O requests that are issued by the threads that are classified to the
class. This priority is used to prioritize I/O buffers at the device level. Valid I/O priorities range
from 0 through 15.

min
Specifies the minimum value, which is between 0 (the default) and 100 (unused for total
limits).

shares
Specifies the shares number, which is a value between 1 and 65535. The value -1 (default)
indicates that the given resource is not managed by WLM for the class (unused for total limits).

Files Reference 1099

wlmu
The union which contains the softmax (for all resources but total limits) and unit (for total
limits only) fields:
softmax

Specifies the soft maximum limit, which is a value between 0 and 100 (default). The value
must be greater than or equal to the value of the min field.

unit
A string (3 characters maximum) that specifies the units that apply to the hardmax
value for total limits. To let the units remain undefined, set the softmax field to
WLM_UNIT_UNDEF. For WLM_RES_TOTALCONNECT and WLM_RES_TOTALCPU, the
default unit is "s" (seconds) and other values are "m" (minutes), "h" (hours), "d" (days),
and "w" (weeks). For WLM_RES_TOTALDISKIO, the default unit is "KB" (kilobytes) and
other values are "MB" (megabytes), "GB" (gigabytes), "TB" (terabytes), "PB" (petabytes),
"EB" (exabytes). The other total limits do not have units. For WLM_RES_TOTALVMEM and
WLM_RES_PROCVMEM, set the unit to "MB", "GB", and "TB".

hardmax
For all resources but total limits. Specifies the hard maximum limit, which is a value between
0 and 100 (default). The value must be greater than or equal to each of the values of the
min and softmax fields. For total limits, this parameter specifies their value, possibly along
with the unit field. If the user does not specify a units value, the default units value is used.
However, the user can specify a units value other than the default. The default (total limit
unspecified) is WLM_HARDMAX_UNDEF.

The resource types are defined as WLM_RES_CPU, WLM_RES_MEM, WLM_RES_BIO,
and total limits are defined as WLM_RES_TOTALCPU (total CPU time for a process),
WLM_RES_TOTALDISKIO (total disk IOs for a process), WLM_RES_TOTALCONNECT (total
Connection time), WLM_RES_TOTALPROC (total number of processes), WLM_RES_TOTALTHRD
(total number of Threads), WLM_RES_TOTALLOGIN (total number of login sessions),
WLM_RES_TOTALVMEM (total virtual memory usage for a class) and WLM_RES_PROCVMEM
(total virtual memory usage for a process). Each value represents the index in the array of the
element, corresponding to the type of resource or total limit.

tier
Specifies the tier number for the class, which is a value between 0 (default) and 9

inheritance
Specifies how a new process is classified. A value of 0 (the default) indicates that a new process
should be classified using the class assignment rules when calling the exec subroutine. A value of
1 indicates that the process inherits the class assignment from its parent process.

localshm
Indicates whether memory segments in this class remain local to the class (value 1) or if they go
to the Shared class (value 0, the default), when accessed by a process belonging to another class.

assign_uid
Specifies the user ID of the user allowed to manually assign processes to the class. The value
must be a valid user ID.

The default when this attribute is not specified is that no user is authorized (WLM_NOGUID).

assign_gid
Specifies the group ID of the users allowed to manually assign processes to the class. The value
must be a valid group ID. The value must be a valid group ID. The default when this attribute is not
specified is that no group is authorized (WLM_NOGUID).

If both the assign_uid and assign_gid fields are the default value, only the root user can assign
processes to the class.

admin_uid
Specifies the user ID of the user allowed to administer the subclasses of the superclass (this
attribute is valid only for superclasses)

1100 AIX Version 7.1: Files Reference

admin_gid
Specifies the group ID of the users allowed to administer the subclasses of the superclass (this
attribute is valid only for superclasses)

If both the admin_uid and admin_gid fields are left to their default value (WLM_NOGUID), only
the root user can administer the subclasses of this superclass.

name
Specifies the null-terminated full name of the class. The value must be in the format super_name
for a superclass and super_name.sub_name for a subclass. The superclass name and subclass
name are limited to 16 characters each. This field has no default value.

In addition to the class description fields, the class_definition structure adds two more fields:

rset_name
Specifies a null-terminated character string containing the name of the resource set (partition)
that the class is restricted to, when applicable. The default is that the class can access all the
resources on the system.

descr_field
Specifies a null-terminated character string containing the description text of the class. This field
is optional and has no default.

delshm
Specifies whether to delete shared memory segments if the last process referencing the segment
was killed due to a virtual memory limit. Valid values are "yes" and "no" (default).

vmenforce
Specifies whether the faulting process (value "proc", default) or all processes in a class (value
"class") are killed when a virtual memory limit is reached.

The wlm_assign Structure

The wlm_assign structure is used to manually assign processes or groups of processes to a specified
superclass or subclass using the wlm_assign subroutine. The wlm_assign structure contains the
following fields:

Item Description

wa_versflags Specifies the 4 high-order bits containing a version number. This version number
is used by the API to maintain binary compatibility if the data structures are ever
modified. The rest of the integer is used to pass flags to the subroutines when
needed.

This field should be initialized with the version number WLM_VERSION. The flag
WLM_MUTE can be used to suppress the output of error messages from the WLM
library on stderr.

wa_pids Specifies the address of an array containing the process identifiers (PIDs) of the
processes to be manually assigned

wa_pid_count Specifies the number of PIDs in the array above

wa_pgids Specifies the address of an array containing the process group IDs (PGIDs) of the
process groups to be manually assigned

wa_pgid_count Specifies the number of PGIDs in the array above

wa_classname Specifies the full name of the superclass or the subclass of the class to which you
want to manually assign processes

The wlm_info Structure

The wlm_info structure is used to extract information about the current configuration parameters and
current resource utilization of the active classes using the wlm_get_info subroutine. The wlm_info
structure contains the following fields:

Files Reference 1101

Item Description

i_descr Specifies the class description of type struct class_descr

i_regul Specifies the per-resource-type array of structures, which are of the type struct
wlm_regul, containing the following fields:
consum

Specifies the resource consumption of the class. This value is expressed as a
percentage of the total resource available.

total
Specifies the 64-bit number that represents the total amount of the resource
consumed by the class since its creation (or since WLM was started). The value
can be the number of milliseconds for CPU or the total number of 512-byte
blocks for disk I/O. This field is left null (not significant) for memory.

The indexes into the array of the various resources are defined as WLM_RES_CPU,
WLM_RES_MEM and WLM_RES_BIO.

i_class_id Specifies the class identifier (index of the class in the kernel class_control_block
(ccb) table)

i_cl_pri Specifies the priority delta applied to the threads in the class for CPU regulation

i_cl_inuse Specifies the current number of processes in the class

i_cl_nblogins Specifies the current number of logins in the class.

i_cl_nbthreads Specifies the current number of threads in the class.

i_cl_npages Specifies the number of memory pages currently allocated to the class

i_cl_nvpages Specifies the total virtual memory usage for the class.

i_cl_nvpagehi Specifies the virtual memory usage high water mark.

i_cl_mem_hwm Specifies the maximum number of resident memory pages this class had since its
creation (memory high water mark)

i_cl_change_level Specifies the number of increments each time a change in the current WLM
configuration occurs. This field is used by the WLM monitoring tools.

The wlm_bio_class_info_t and wlm_bio_dev_info_t Structures

Two structures can be used to get the I/O statistics using the wlm_get_bio_stats subroutine, depending
on whether the application wants per-class or per-device statistics.

The wlm_bio_class_info_t structure is used to gather I/O statistics per class and per device. The
wlm_bio_class_info_t structure contains the following fields:

Item Description

wbc_dev Specifies the device identifier (dev_t)

wbc_cid Specifies the class identifier (index of the class in the kernel class_control_block
table). Connecting the class ID and the class name can be performed by using the
wlm_get_info subroutine. This subroutine returns the class name (in the i_descr
field) and the class ID (in the i_class_id field) in the wlm_info structure.

1102 AIX Version 7.1: Files Reference

Item Description

wbc_regul Specifies a structure of type struct wlm_regul, which contains for the given class
and device the following disk I/O statistics:

• Resource utilization, which is expressed as a percentage of the total available
throughput of the device (consum)

• Total number of 512-byte blocks read/written from and to the device by
processes in the class since it was created, or since WLM started, whichever
happened most recently

wbc_delay Specifies in milliseconds the delay imposed on the I/Os of the processes in the
class to the device. This delay is intended to limit utilization by class when it is
consuming more than its entitled share.

The wlm_bio_dev_info_t structure is used to gather the global statistics for a given device, taking into
account all I/Os to and from the device by all the classes accessing the device. This structure contains the
following fields:

Item Description

wbd_dev Specifies the device identifier (dev_t)

wbd_active_cntrl Specifies the number of classes actively accessing the device

wbd_in_queue Specifies the number of requests in the device queue

wbd_last Specifies the device statistics for IOs that occurred during the last second.

This field is an array of integer values. The following symbolic values defined
in the wlm.h file describe each index in the array:

Index
Description

WBS_OUT_RTHRPUT
Specifies the number of blocks actually read from the device (I/O
completed)

WBS_OUT_WTHRPUT
Specifies the number of blocks actually written to the device (I/O
completed)

WBS_IN_RTHRPUT
Specifies the requested number of blocks to be read from the device

WBS_IN_WTHRPUT
Specifies the requested number of blocks to write to the device

WBS_REQUESTS
Specifies the number of read/write requests

WBS_QUEUED
Specifies the number of requests queued

WBS_STARVED
Specifies the number of requests starved (not serviced during the time
interval)

wbd_max Contains the maximum values observed since the device was first used
(after WLM was started) for all the entries of the array being described.
For instance, the wbd_max field could contain the maximum number of
blocks actually read from the device in one second since the device was first
accessed.

wbd_av Contains the average values for all the entries in the array, such as the
average number of requests in the device queue

Files Reference 1103

Item Description

wbd_total Specifies an array of 64-bit integers. This array is parallel to the arrays that,
for every entry, contain the total of all the values measured every second
since the device was first accessed. For instance, the value could represent
the total number of blocks written to the device since the device was first
accessed.

The wlm_proc_info Structure

The wlm_proc_info structure is used to extract Workload Manager information about a process using
the wlm_get_procinfo subroutine. The totalconnecttime, termtime, totalcputime, totaldiskio fields are
only meaningful when the total process limits are enabled. The wlm_proc_info structure contains the
following fields:

version
This field should be initialized with WLM_VERSION.

wlmflags
Specifies some Workload Manager properties of the process, such as process with a rset SWLMRSET
or as tag inheritance on fork SWLMTAGINHERITFORK or on exec SWLMTAGINHERITEXEC.

totalconnecttime
Specifies the 64-bit number that represents the amount of time (in seconds) for which the login
session has been active.

totalvmem
Specifies the total amount of virtual memory used by the process in MBs.

termtime
Specifies the 64-bit number that represents the time (in seconds from 1970) when the process has
been requested to terminate.

totalcputime
Specifies the 64-bit number that represents the amount of the CPU consumption (in microseconds) of
the process.

totaldiskio
Specifies the 64-bit number that represents the amount of IO (in 512 bytes blocks) the process has
run.

classname
Specifies the full name of the superclass or the subclass in which the process is classified.

tag
Specifies the character string associated with the process, if any (see wlm_set_tag subroutine).

Error Codes
The various WLM API subroutines may return one or several of the following error codes:

Item Description

WLM_ALREADYINIT A call to the wlm_initialize subroutine has already been made

WLM_ATTERR Attribute format error

WLM_ATTGPATTR Attribute Value Grouping not allowed in attributes

WLM_ATTGPMISS Cannot find Attribute Value Grouping definition

WLM_ATTGPTOOLNG Attribute Value Grouping too long

WLM_BADATTAPP Could not access file (application field of attributes)

WLM_BADATTGP Bad format for Attribute Value Grouping

WLM_BADATTGRP Unknown group in attributes

1104 AIX Version 7.1: Files Reference

Item Description

WLM_BADATTTAG Invalid tag in attributes

WLM_BADATTTYP Invalid process type in attributes

WLM_BADATTUSR Unknown user in attributes

WLM_BADCLNAME Bad class name

WLM_BADCNAME Class names must be alphanumeric

WLM_BADCONFIG Invalid configuration name

WLM_BADDEFLIM Default limits value that is specified in the limits file is invalid

WLM_BADDEFSHR Default shares value that is specified in the shares file is invalid

WLM_BADFLAGS Invalid flags value

WLM_BADGID The specified group ID is not valid on the system

WLM_BADGRP The specified group ID is not valid on the system

WLM_BADINHER The value specified for the class inheritance attribute is invalid

WLM_BADHARDTOTALLIMIT Invalid total limit (under minimum)

WLM_BADHMAX The hard maximum limit values must be between 1 and 100

WLM_BADLIMFMT Value specified for minimum or maximum resource limit is invalid

WLM_BADLISATT Invalid list in attributes

WLM_BADLIST The process attribute list of an assignment rules is invalid

WLM_BADLOCALSHM Bad localshm value

WLM_BADMIN Minimum resource limits values must be between 0 and 100

WLM_BADRANGEF Invalid format for a time range

WLM_BADRGRP A group name specified in the rules file is invalid on the system

WLM_BADRSET Bad Rset attribute for a class

WLM_BADRUSR A user name specified in the rules file is invalid on the system

WLM_BADSHARES Shares values must be between 1 and 65535

WLM_BADSMAX The soft maximum limit values must be between 1 and 100

Item Description

WLM_BADSHRFMT Value specified for resource shares is invalid

WLM_BADSUBLIMIT A subclass total limit exceeds its superclass limit: The superclass
limit will be used (warning)

WLM_BADSUPER Bad superclass for subclass assignment

WLM_BADTIER Tier values must be between 0 and 9

WLM_BADTAG An invalid tag is specified in a rule

WLM_BADTYP Invalid process type in rules

WLM_BADUID The specified user ID is not valid on the system

WLM_BADUSR The specified user ID is not valid on the system

WLM_BADVERS Bad version number passed in the versflags field

WLM_CANTASSIGN Could not make assignment (Internal error)

Files Reference 1105

Item Description

WLM_CANTCHECK Unable to check the configuration

WLM_CANTSETTAG Could not set tag (Internal error)

WLM_CHOWNERR Cannot change file ownership

WLM_CLASSLIMIT A class total (process, thread, or login) limit has been reached

WLM_CLASSMIS No class description found

WLM_CONFNOTFND No configuration found for this time

WLM_CONFNOTINSET Configuration not found in the set

WLM_CREATERR A file could not be created

WLM_DAEMONCMD Invalid WLM daemon command

WLM_DAEMONFAIL WLM daemon failed to update configuration

WLM_DUPKEY 2 classes have the same key (warning)

WLM_EFAULT Bad parameter address

WLM_EMPTYATTR No valid process attributes found

WLM_EMPTYRULE None of the file names specified in the application field of an
assignment rule could be accessed. The rule is ignored (warning).

WLM_EPERM Permission denied

WLM_ESRCH No such processes

WLM_EXCLATTR Exclusions not allowed in attributes

WLM_EXISTS The specified class already exists

WLM_HASSUBS The target superclass has subclasses

WLM_IGNRULE This rule is likely to be ignored (warning)

WLM_ISCONFSET This operation cannot apply to a configuration set

WLM_INVRANGE Invalid time range

WLM_ISLOCKED WLM configuration is locked: retry the operation later

WLM_LOADERR A class cannot be loaded into the kernel

Item Description

WLM_LOCKERR Cannot lock file

WLM_MANYRULES Too many assignment rules

WLM_MANYITEMS Too many items in an assignment rule

WLM_MAXCLASSES The maximum number of classes has been reached

WLM_MINSMAX The minimum limit cannot be greater than the soft maximum limit

WLM_MKDIRERR A directory could not be created

WLM_MULTATTGP Attribute Value Grouping already defined

WLM_MULTATTR Multiple specifications not allowed in attributes

WLM_NOADMINSUB Admin attributes not applicable to subclasses

WLM_NOCLASS The specified class does not exist

WLM_NOCONFIG Missing configuration name

1106 AIX Version 7.1: Files Reference

Item Description

WLM_NOCONFINSET No configuration in the set

WLM_NOCONNECT Failure to connect to WLM daemon

WLM_NODAEMON Failure to start WLM daemon

WLM_NOMEM Not enough memory

WLM_NOSHRLIM Cannot specify a total memory limit for Shared class

WLM_NOSHRRULE Cannot specify rule for Shared class

WLM_NOSUBS The target superclass has no subclasses

WLM_NOSYSLIM Cannot specify a total memory limit for System class

WLM_NOSYSMAX Hardmax not allowed on memory for System class

WLM_NOTASSGND Process is not assigned

WLM_NOTCOMPLETE Could not assign all processes (warning)

WLM_NOTCURRENT Superclass update only applies to current configuration

WLM_NOTINITED No prior call to the wlm_initialize subroutine

WLM_NOTRUNNING WLM is not running

WLM_NOWILDCRD Wildcards not allowed in this field

WLM_ONEDEFAULT Only one default time range allowed in a set

WLM_OPENERR A file could not be opened

WLM_QUERYERR Cannot query WLM state

WLM_READERR Cannot read file

WLM_REFRULE A class is still referred to by rules

WLM_REMERR An attempt to remove a file did not succeed

WLM_RENAMERR An attempt to rename a file did not succeed

WLM_RMPREDEF Predefined classes (such as Default and System) cannot be removed

WLM_RNOCLASS A class specified in the rules file does not exist

Item Description

WLM_RSVDNAME Predefined classes cannot be redefined

WLM_RULERR An assignment rule has an invalid format

WLM_RULESERR The assignment rules table cannot be loaded into the kernel

WLM_RULTOOLNG Rule too long

WLM_RUNERR The WLM library was not able to execute a command needed for the
specific function. This is not an application error, but most likely a
system administration problem. The commands used by the library
are basic operating system commands such as the lsuser, lsgroup,
echo, and grep commands.

WLM_RUNERRATT Cannot expand attribute

WLM_SETERR The WLM state transition requested is illegal

WLM_SHAREDLIM Shared class can have shares and limits set only for memory

WLM_SHAREDSUB Shared superclass cannot have subclasses

Files Reference 1107

Item Description

WLM_SMAXHMAX The soft maximum limit cannot be greater than the hard maximum
limit

WLM_STATERR One or more file name(s) specified in the application field of an
assignment rule could not be accessed. The corresponding name(s)
are ignored (warning)

WLM_SUBINVALID No subclass specification allowed for this operation

WLM_SUMMINS The sum that the minimum limits for a given resource and a given
tier cannot exceed 100%

WLM_SYMLERR An attempt to create a symbolic link did not succeed

WLM_TAGTOOLONG Tag is too long

WLM_TOOLONG The specified class name is too long

WLM_TOOLONGATT Attribute list too long

WLM_TOOMANYATT Too many items in attributes

WLM_TOOMANYPID Process ID list too long

WLM_TOOSMALL Output buffer too small

WLM_TOTALLIMITOUTOFRANGE Invalid total limit (outside allowed range)

WLM_TRGAPS Gaps between time ranges in a configuration set

WLM_TRINDEFAULT Time range not allowed in default stanza

WLM_TROVERLAP Time ranges overlap in a configuration set

WLM_UNLOADERR Cannot unload class

WLM_UNSUPP Operation or flags value not supported

WLM_WILDCRDATT Wildcards not allowed in this attribute field

WLM_WRITERR An attempt to write to a file did not succeed

Related information
wlm_init_class_definition subroutine
wlm_assign subroutine
Workload management

Directories
Information that is needed by several different files or functions is collected into a header file. A header
file contains C-language definitions and structures. Centralizing information into a header file facilitates
the creation and update of programs. Because #include statements are used to insert header files into a
C-language program, header files are often referred to as include files.

Because directories often contain information that should not be available to all users of the system,
directory access can be protected. See File ownership and user groups in Operating system and device
management for more information.

Understanding Types of Directories
Directories can be defined by the system or the system administrator, or you can define your own
directories. The system-defined directories contain specific kinds of system files, such as commands. At
the top of the file system hierarchy is the system-defined root directory. The root directory is represented
by a / (slash) and usually contains the following standard system-related directories:

1108 AIX Version 7.1: Files Reference

Item Description

/admin Filesystem created by the root user at system installation. This filesystem is used for
root privilege process for temporary space for security. The /admin filesystem is defined
on the implemented /dev/hd11admin system logical volume. The discretionary access
control mode of the /admin filesystem is 755. Only the root user can write the /admin
directory.

/admin/tmp Root directory used by several root privilege processes to write temporary files. A root
privileged process is a process that is started by a command with the setuid or setgid
parameter, by a binary, or by a script with root system ownership. The discretionary
access control mode of the /admin/tmp directory is 755. Only root users can write
the /admin/tmp directory.

/bin Symbolic link to the /usr/bin directory. In prior UNIX file systems, the /bin directory
contained user commands that now reside in /usr/bin in the new file structure.

/dev Contains device nodes for special files for local devices. The /dev directory contains
special files for tape drives, printers, disk partitions, and terminals.

/etc Contains configuration files that vary for each machine. Examples include:

• /etc/hosts
• /etc/passwd

The /etc directory contains the files generally used in system administration. Most of
the commands that used to reside in the /etc directory now reside in the /usr/sbin
directory. However, for compatibility, it contains symbolic links to the new locations of
some executable files. Examples include:

• /etc/chown is a symbolic link to the /usr/bin/chown.
• /etc/exportvg is a symbolic link to the /usr/sbin/exportvg.

/export Contains the directories and files on a server that are for remote clients.

/home Serves as a mount point for a file system containing user home directories. The /home
file system contains per-user files and directories.

In a standalone machine, a separate local file system is mounted over the /home
directory. In a network, a server might contain user files that should be accessible from
several machines. In this case, the server's copy of the /home directory is remotely
mounted onto a local /home file system.

/lib Symbolic link to the /usr/lib directory, which contains architecture-independent libraries
with names in the form lib*.a.

/proc/sys Files in /proc/sys are used internally for kernel tuning and statistics gathering.

/sbin Contains files needed to boot the machine and mount the /usr file system. Most of
the commands used during booting come from the boot image's RAM disk file system;
therefore, very few commands reside in the /sbin directory.

/tmp Serves as a mount point for a file system that contains system-generated temporary
files.

/u Symbolic link to the /home directory.

/usr Serves as a mount point for a file system containing files that do not change and can be
shared by machines (such as executables and ASCII documentation).

Standalone machines mount a separate local file system over the /usr directory. Diskless
and disk-poor machines mount a directory from a remote server over the /usr file
system.

Files Reference 1109

Item Description

/var Serves as a mount point for files that vary on each machine. The /var file system is
configured as a file system since the files it contains tend to grow. For example, it is a
symbolic link to the /usr/tmp directory, which contains temporary work files.

Some directories, such as your login or home directory ($HOME), are defined and customized by the
system administrator. When you log in to the operating system, the login directory is the current directory.
If you change directories using the cd command without specifying a directory name, the login directory
becomes the current directory.

Related information
Files, Directories, and File Systems for Programmers
Directories

/etc/locks Directory

Purpose
Contains lock files that prevent multiple uses of communications devices and multiple calls to remote
systems.

Description
The /etc/locks directory contains files that lock communications devices and remote systems so that
another user cannot access them when they are already in use. Other programs check the /etc/locks
directory for lock files before attempting to use a particular device or call a specific system.

A lock file is a file placed in the /etc/locks directory when a program uses a communications device or
contacts a remote system. The file contains the process ID number (PID) of the process that creates it.

The Basic Networking Utilities (BNU) program and other communications programs create a device lock
file whenever a connection to a remote system, established over the specified device, is actually in use.
The full path name of a device lock file is:

/etc/locks/DeviceName

where the DeviceName extension is the name of a device, such as tty3.

When the BNU uucico daemon, cu command, or tip command places a call to a remote system, it puts a
system lock file in the /etc/locks directory. The full path name of a system lock file is:

/etc/locks/SystemName

where the SystemName extension is the name of a remote system, such as hera. The system lock file
prevents more than one connection at a time to the same remote system.

Under normal circumstances, the communications software automatically removes the lock file when the
user or program ends the connection to a remote system. However, if a process executing on the specified
device or system does not complete its run (for example, if the computer crashes), the lock file remains
in the /etc/locks directory either until the file is removed manually or until the system is restarted after a
shutdown.

Related information
connect command
pdelay command
slattach command
uucico command

1110 AIX Version 7.1: Files Reference

/usr/lib/hcon Directory

Purpose
Contains files used by the Host Connection Program (HCON).

Description
The /usr/lib/hcon directory contains files used by the Host Connection Program (HCON). It contains
color and keyboard definition files, terminal definition files, HCON API subdirectories, AUTOLOG example
scripts, configuration data base files, and the command to start the HCON subsystem.

Color and Keyboard Definition Files

The following files contain data used to define and customize the HCON color and keyboard definition
tables:

File Contents

e789_ctbl Default binary color-definition table

e789_ktbl Default binary keyboard-definition table

The color and keyboard definition tables in the /usr/lib/hcon directory specify defaults for use by HCON
emulator sessions. The hconutil command allows users to customize color and keyboard definition
tables.

Terminal Definition Files

The HCON installation process creates a terminfo subdirectory in the /usr/lib/hcon directory.
The /usr/lib/hcon/terminfo directory contains terminal definition files that are specific to HCON. When
HCON is installed, the terminfo directory contains the following files:

File Contents

ibm.ti.H Terminal definitions for LFT, 5081, 3151, 3161, 3162, 3163, and 3164 terminals.

dec.ti.H Terminal definitions for DEC VT100 and DEC VT220 terminals.

wyse.ti.H Terminal definition for the WYSE WY-50 and WYSE WY-60 terminals.

The terminfo binary files for HCON terminal definitions are in subdirectories of the /usr/lib/hcon/
terminfo directory. Each subdirectory is named with the first letter of the terminal name. When HCON
is installed, the terminfo directory contains the following subdirectories:

Subdirectory Contents

a Binary terminal definition file for running within the operating system windows

h Binary terminal definition files for color and monochrome LFT

i Binary terminal definition files for the 5081, 3151, 3161, 3162, and 3163
terminals

j Binary terminal definition file for use with operating system windows

v Binary terminal definition files for the DEC VT100 and DEC VT220 terminals

w Binary terminal definition files for the WYSE WY-50 and WYSE WY-60 terminals

In addition to those delivered with HCON, the /usr/lib/hcon/terminfo subdirectory can contain
customized terminal definitions.

HCON API Subdirectories

Files Reference 1111

The HCON installation process creates two subdirectories in the /usr/lib/hcon directory that contain files
used by the HCON API:

Directory Contents

mvs API programs to use in interfacing to MVS/TSO host systems, including the instalapi
program

vm API programs to use in interfacing to VM/CMS host systems, including the instalapi
program

AUTOLOG Example Scripts

The /usr/lib/hcon directory contains several example files for the AUTOLOG facility. These files are:

File Contents

logform Example genprof form for creating AUTOLOG procedures

SYStso Example AUTOLOG script for MVS/TSO host

SYSvm1 Example AUTOLOG script for VM/CMS host

SYSvm2 Example AUTOLOG script for VM/CMS host

Configuration Data Base Files

The following files contain HCON configuration information. This information is used by HCON programs,
by the Object Data Manager (ODM), and by the HCON configuration commands, which are called by the
System Management Interface Tool (SMIT).

File Contents

sysdflts HCON database system defaults

sysdflts.vc HCON database system defaults

users HCON users database

Command to Start the HCON Subsystem

The sthcondmn command is used to start the hcondmn subsystem after HCON has been installed.

Files

Item Description

/usr/lib/hcon/terminfo directory Contains terminal definitions.

/var/spool/mqueue Directory for Mail

Purpose
Contains the log file and temporary files associated with the messages in the mail queue.

Description
The /var/spool/mqueue directory contains temporary files associated with the messages in the mail
queue and may contain the log file. For further information, see the syslogd daemon.

Temporary files have names that include the mail queue ID (MQID) of the message for which the file was
created:

1112 AIX Version 7.1: Files Reference

Item Description

dfMQID Data file

lfMQID Lock file

nfMQID Backup file

qfMQID Queue control file

tfMQID Temporary control file

xfMQID Transcript file for session

Related information
sendmail command
syslogd command
Mail queue concepts and tasks

/var/spool/uucp Directory for BNU

Purpose
Stores Basic Networking Utilities (BNU) log, administrative, command, data, and execute files in multiple
subdirectories.

Description
The /var/spool/uucp directory, also known as the BNU spooling directory, is the parent directory for
multiple work directories created by the Basic Networking Utilities (BNU) program to facilitate file
transfers among systems.

The following directories are subdirectories of the /var/spool/uucp directory:

Item Description

.Admin Contains four administrative files, including:

• audit
• Foreign
• errors
• xferstats

.Corrupt Contains copies of files that could not be processed by the BNU program.

.Log Contains log files for the uucico and uuxqt daemons.

.Old Contains old log files for the uucico and uuxqt daemons.

.Status Records the last time the uucico daemon tried to contact remote systems.

.Workspace Holds temporary files that the file transport programs use internally.

.Xqtdir Contains execute files with lists of commands that remote systems can run.

SystemName Contains files used by file transport programs, including:

• Command (C.*)
• Data (D.*)
• Execute (X.*)
• Temporary (TM.*)

Files Reference 1113

Related information
uuclean command
Understanding the BNU File and Directory Structure

/var/spool/uucp/.Admin Directory for BNU

Purpose
Contains administrative files used by BNU.

Description
The /var/spool/uucp/.Admin directory contains administrative files used by the Basic Networking
Utilities (BNU) program to facilitate remote communications among systems. The .Admin directory
contains the following files:

File Description

audit Contains debug messages from the uucico daemon.

Foreign Logs contact attempts from unknown remote systems.

errors Records uucico daemon errors.

xferstats Records the status of file transfers.

Related information
uudemon.cleanu command
cron command
BNU maintenance

/var/spool/uucp/.Corrupt Directory for BNU

Purpose
Contains copies of files that could not be processed.

Description
The /var/spool/uucp/.Corrupt directory contains copies of files that could not be processed by the Basic
Networking Utilities (BNU) program. For example, if a file is not in the correct form for transfer, the BNU
program places a copy of that file in the .Corrupt directory for later handling. This directory is rarely used.

The files in the .Corrupt directory are removed periodically by the uudemon.cleanu command, a shell
procedure.

Related information
uudemon.cleanu command
Understanding the BNU File and Directory Structure
BNU maintenance

/var/spool/uucp/.Log Directories for BNU

Purpose
Contain the BNU program log files.

1114 AIX Version 7.1: Files Reference

Description
The /var/spool/uucp/.Log directories contain Basic Networking Utilities (BNU) program log files. The
BNU program normally places status information about each transaction in the appropriate log file each
time you use the networking utilities facility.

All transactions of the uucico and uuxqt daemons as well as the uux and uucp commands are logged
in files named for the remote system concerned. Each file is stored in a subdirectory of the /var/spool/
uucp/.Log directory, named for the daemon or command involved. Each subdirectory contains a separate
file for each remote system contacted. Thus, the log files are named according to one of the following
formats:

/var/spool/uucp/.Log/DaemonName/SystemName

OR

/var/spool/uucp/.Log/CommandName/SystemName

All activities of the uucp command are logged in the SystemName file in the /var/spool/uucp/.Log/
uucp directory. All activities of the uux command are logged in the SystemName file in the /var/spool/
uucp/.Log/uux directory.

The uucp and uuto commands call the uucico daemon. The uucico daemon activities for a particular
remote system are logged in the SystemName file in the /var/spool/uucp/.Log/uucico directory on the
local system.

The uux command calls the uuxqt daemon. The uuxqt daemon activities for a particular remote system
are logged in the SystemName file in the /var/spool/uucp/.Log/uuxqt directory on the local system.

When more than one BNU process is running, however, the system cannot access the standard log file, so
it places the status information in a file with a .Log prefix. The file covers that single transaction.

The BNU program can automatically append the temporary log files to a primary log file. This is called
compacting the log files and is handled by the uudemon.cleanu command, a shell procedure. The
procedure combines the log files of the activities of the uucico and uuxqt daemons on a particular system
and stores the files in the /var/spool/uucp/.Old directory.

The default is for the uudemon.cleanu command to save log files that are two days old. This default can
be changed by modifying the appropriate line in the shell procedure. If storage space is a problem on a
particular system, reduce the number of days that the files are kept in their individual log files.

The uulog command can be used to view the BNU program log files.

Related information
uucp command
cron command
BNU log files

/var/spool/uucp/.Old Directory for BNU

Purpose
Contains the combined BNU program log files.

Description
The /var/spool/uucp/.Old directory contains the combined Basic Networking Utilities (BNU) program log
files.

The BNU program creates log files of the activities of the uucico and uuxqt daemons in the /var/spool/
uucp/.Log directory. The log files are compacted by the /usr/sbin/uucp/uudemon.cleanu command, a
shell procedure, which combines the files and stores them in the .Old directory.

Files Reference 1115

By default, the uudemon.cleanu command removes log files after two weeks. The length of time log files
are kept can be changed to suit the needs of an individual system.

The log files can be viewed using the uulog command.

Files

Item Description

/var/spool/uucp/.Log directory Contains BNU program log files.

Related information
uucp command
cron command
uucico command
BNU log files

/var/spool/uucp/.Status Directory for BNU

Purpose
Contains information about the status of the BNU program contacts with remote systems.

Description
The /var/spool/uucp/.Status directory contains information about the status of the Basic Networking
Utilities (BNU) program contacts with remote systems.

For each remote system contacted, the BNU program creates a file in the .Status directory called
SystemName, which is named for the remote system being contacted. In the .Status/SystemName file,
the BNU program stores:

• Time of the last call in seconds
• Status of the last call
• Number of retries
• Retry time, in seconds, of the next call

Note: The times given in the .Status/SystemName file are expressed as seconds elapsed since midnight
of January 1, 1970 (the output of a time subroutine). Thus, the retry time is in the form of the number
of seconds that must have expired since midnight of January 1, 1970, before the system can retry. To
make this entry in the .Status/SystemName file, BNU performs a time subroutine, adds 600 seconds,
and places the resulting number of seconds in the file.

If the last call was unsuccessful, the uucico daemon will wait until the time specified by the retry time
before attempting to contact the system again. The retry time in the .Status/SystemName file can be
overridden using the -r flag of the uutry or Uutry command.

Related information
uutry command
time subroutine
Understanding the BNU File and Directory Structure

/var/spool/uucp/SystemName Directories for BNU

Purpose
Contain queued requests for file transfers and command executions on remote systems.

1116 AIX Version 7.1: Files Reference

Description
The /var/spool/uucp/SystemName directories are the Basic Networking Utilities (BNU) spooling
directories on the local system. The BNU program creates a SystemName directory for each system listed
in the /etc/uucp/Systems file, including the local system.

Each SystemName directory contains queued requests issued by local users for file transfers to remote
systems and for command executions on remote systems.

The BNU program uses several types of administrative files to transfer data between systems. The files
are stored in the SystemName directories:

Item Description

command (C.*) Contain directions for the uucico daemon concerning file transfers.

data (D.*) Contain data to be sent to remote systems by the uucico daemon.

execute (X.*) Contain instructions for running commands on remote systems.

temporary (TM.*) Contain data files after their transfer to the remote system until the BNU
program can deliver them to their final destinations (usually the /var/spool/
uucppublic directory).

Related information
uucp command
Understanding the BNU File and Directory Structure
BNU maintenance commands

/var/spool/uucp/.Workspace Directory for BNU

Purpose
Holds temporary files used internally by file transport programs.

Description
The /var/spool/uucp/.Workspace directory holds temporary files of various kinds used internally by BNU
file transport programs.

Related information
uucico command
uuxqt command
Understanding the BNU File and Directory Structure

/var/spool/uucp/.Xqtdir Directory for BNU

Purpose
Contains temporary files used by the uuxqt daemon to execute remote command requests.

Description
The /var/spool/uucp/.Xqtdir directory contains temporary files used by the Basic Networking Utilities
(BNU) uuxqt daemon to execute remote command requests.

Related information
uux command
uuxqt command
Understanding the BNU File and Directory Structure

Files Reference 1117

/var/spool/uucppublic Directory for BNU

Purpose
Stores BNU files until they can be delivered.

Description
The /var/spool/uucppublic directory is the public directory for the Basic Networking Utilities (BNU)
facility. One of these directories exists on every system connected by the BNU utilities.

When a user transfers a file to a remote system or issues a request to execute a command on another
system, the files generated by these BNU commands are stored in the public directory on the designated
system until the destination directory is ready to receive them. (A user can also specify a destination other
than the public directory when issuing the uucp, uuto, or uux command.) The transferred files remain in
the uucppublic directory until they are removed manually or automatically.

Note: The files are stored in the uucppublic/SystemName subdirectory of the uucppublic directory,
where the SystemName directory is named for the remote system where the files originated.

All spooling directories are dynamic, including the public directory. Depending on the size of your
installation and the number of files sent to the local /var/spool/uucppublic directory by users on remote
systems, this directory can become quite large.

The uudemon.cleanu command, a shell procedure, cleans up all the BNU spooling directories, including
the public directories. Use the uucleanup command with the -sSystemName flag to clean up the
directories on a specific system.

Related information
uuclean command
uux command
Understanding the BNU File and Directory Structure

1118 AIX Version 7.1: Files Reference

Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 2010, 2016 1119

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as follows:
© (your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as the customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

1120 Notices

For more information about the use of various technologies, including cookies, for these purposes,
see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies”
and the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Notices 1121

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/us/en/copytrade.shtml

1122 AIX Version 7.1: Files Reference

Index

Special Characters
.3270keys file format 415
.3270keys.hft file format 415
.Admin directory (BNU) 1114
.forward file 110
.ids file 124
.info file 126
.kshrc file 140
.Log directory (BNU) 1114
.maildelivery file 161
.mailrc file

setting defaults for mail command 565
.mh_profile file 170
.netrc file format 633
.Old directory (BNU) 1115
.rhosts file format 665
.srf files

overview 377
.Status directory (BNU) 1116
.times 384
.tiprc file format 753
.Workspace directory 1117
.Xqtdir directory (BNU) 1117
/dev/error special file 885
/dev/errorctl special file 885
/dev/hty file 58
/dev/rhp file 58
/etc/ftpd.cnf

File Format 465, 468
/etc/group file 112
/etc/hty_config file format 523
/etc/locks directory 1110
/etc/map3270 file format 569
/etc/mrouted.conf file 179
/etc/nscontrol.conf file 188
/etc/passwd file 228
/etc/rc.ntx file format 656
/etc/security/.ids 124
/etc/security/audit/objects file 216
/etc/security/audit/streamcmds file 377
/etc/security/authorizations file 8
/etc/security/domains File 76
/etc/security/domobjs File 77
/etc/security/environ file 87
/etc/security/group file 114
/etc/security/lastlog file 526
/etc/security/limits file 145
/etc/security/passwd file 232
/etc/security/privcmds file 245
/etc/security/privdevs file 248
/etc/security/pwdalg.cfg file 271
/etc/security/roles file 287
/etc/security/smitacl.group file 348
/etc/security/smitacl.user file 348
/etc/security/sysck.cfg file

setting file definitions 378

/etc/security/user file 387
/etc/security/user.roles file 398
/etc/slp.conf file 345
/usr/lib/hcon directory 1111
/usr/lib/security/audit/bincmds file 13
/usr/lib/security/audit/events file 95
/usr/lib/security/mkuser.default file 177
/usr/spool/mqueue directory (Mail) 1112
/usr/spool/uucp directory

.Admin directory
audit file 8
errors file 94
Foreign file 109
xferstats file 411

.Corrupt directory 1114

.Status directory 1116

.Workspace directory 1117

.Xqtdir directory 1117
SystemName directories 24, 57, 97, 383, 1116

/usr/spool/uucppublic directory 1118
/var/adm/ras/raspertune file 276
/var/spool/uucp directory

.Log directories 1114

.Old directory 1115
$HOME/.kshrc file 140

Numerics
32-bit file formats

ar_small 421
3270 connection adapter 869
3270 Host Connection Program/6000 1111
400ap111845 396

A
a.out file format

standard common object file 799
access_lists 3
accounting information

acct file format 417
acct.h file 417

acct file format 417
acct.cfg 4
acct.h file 417
administrative directory (BNU) 1114
aliases

defining (MH) 574
ANY data type 784
API directories (HCON) 1111
ar file format 419
arguments list structure

syntax 775
asinfo file 80
Asynchronous Terminal Emulation 423
ATE

ate.def file format 423

Index 1123

ATE (continued)
default file format 423
dialing directory file format 454
phone numbers for remote connections 454

ate.def file format 423
attributes

setting
user 228

audit data structures 428
audit file 8
auditing system

defining auditstream commands 377
defining files for an audit 216

audits
defining the structure of accounting information files
1093
defining the structure of user information files 1093
describing auditing data structures 428

authorizations file 8
AUTOLOG example files (HCON) 1112
autosecrets 10
auxiliary header (XCOFF) 803

B
backup file 11
Basic Networking Utilities 444
Berkeley line discipline (sgtty.h file) 1038
bin stanza 28
binary

file
.srf 377

bincmds file 13
BNU

/etc/locks directory 1110
/usr/spool/uucp directory

.Admin directory 8, 94, 109, 411, 1114

.Corrupt directory 1114

.Status directory 1116

.Workspace directory 1117

.Xqtdir directory 1117
SystemName directories 24, 57, 97, 383, 1116

/usr/spool/uucppublic directory 1118
/var/spool/uucp directory

.Log directories 1114

.Old directory 1115
administrative directory 1114
audit file 8
command (C.*) files 24
configuring 686
cycling multispeed modems 692
data (D.*) files 57
data transferred from remote systems 383
defining

devices 444
devices for remote communications 444
dialcodes 449
modems and dialers 450

devices file format 444
dialcodes file format 449
dialers file format 450
errors file 94
execute (X.*) files 97
expect-send sequences 692

BNU (continued)
foreign file 109
limiting instances of

uusched daemon 573
uuxqt daemon 574

listing remote systems for communications 688
log access attempts by unknown systems 278
Maxuuscheds file format 573
Maxuuxqts file format 574
Permissions file format 639
poll file format 649
providing initial variable settings for the tip command
753
public directory 1118
remote systems 57
remote systems for communications 450
remote.unknown file 278
specifying permissions for remote communications 639
specifying when to poll remote systems 649
spooling directory 1113
systems file format 688
temporary (TM.*) files 383
tip command

.tiprc file format 753
phones file format 648
remote file format 657

tunables file format 766
xferstats file 411

BNU file formats
Sysfiles 686

boolean literal 783
BOOTP relay agent configuration file 15
bootparams file (NFS) 17
bootptab file format 431

C
C_BLOCK symbol

XCOFF block auxiliary entry 844
C_EXT symbol

XCOFF csect auxiliary entry 838
XCOFF function auxiliary entry 843

C_FCN symbol
XCOFF block auxiliary entry 844

C_FILE symbol
XCOFF file auxiliary entry 835

C_HIDEXT symbol
XCOFF csect auxiliary entry 838
XCOFF function auxiliary entry 843

C_STAT
section auxiliary entry 845

C_WEAKEXT symbol 838, 843
ca.cfg 17
callbacks list structure

description 776
syntax 776

CD-ROM device driver 877
cdromd daemon 18
cdromd.conf 18
cgaparams.sec file format 431
character set definition source file format

CHARMAP section 433
CHARSETID section 438

character set definitions

1124 AIX Version 7.1: Files Reference

character set definitions (continued)
CharacterSet keyword 795
syntax 795

character set description 433
character sets

parsing rules 780
charmap 433
CHARMAP section 433
CHARSETID section 438
child definitions

Children keyword 798
syntax 798

class definitions
Class keyword 797
control definition list 798
modifications 797
syntax 797

classes stanza 30
code set

code set converter
define types for iconv character converters 964

code set maps
file format 673

color definition table (HCON)
default 84
storing files 1111

combine file 419
command (C.*) files 24
compacted log files (BNU) 1115
compound string literals 782
compver file 26
configuration file

rndc.conf file 285
configuration files

BOOTP relay agent 15
database (HCON) 1112
DHCP client 59
DHCP server 62
mrouted.conf 179
NFS 234
ntp.conf 191
pam.conf 226

configuration information
for gated daemon (TCP/IP) 472
login authentication 147, 934
NIM 126
user authentication 147, 934

configure
/etc/rc.ntx file
656

configuring for BNU 686
console special file 879
constants

machine-defined 1095
constraint arguments 775
control list definitions

Control List keyword 796
syntax 796

control options
file

defining 961
controlling terminal interface

supporting 942
controls list structure

controls list structure (continued)
ChildName 776
syntax 776

copyright file 34
copyright information file 34
core dump

file format 439
ct_class_ids file 34
ct_cssk.kf file 35
ct_ffdc.h 951
ct_has.qkf file 37
ct_has.thl file 38
ctcas_hba2.map file 43
ctcasd.cfg file 44
ctfile.cfg file 40
ctgroups file 42
ctrmc.acls file 46
ctrmc.rio file 47
ctsec_map.global file 49
ctsec_map.local file 53
ctsec.cfg file 48
customizing the MH package (MH) 170
cycling multispeed modems (BNU) 692

D
daemons (TCP/IP) 277
data (D.*) files 57
data storage consumption for string literals

private, exported, and imported 782
data type definitions

DataType keyword 795
syntax 795

data types
standard type definitions 1090
unsigned integers and addresses 1090

defines character symbols as character encodings 433
delta tables 666
describe the format of a compatible versions file 26
describing connections used by the tip command to contact
remote systems (BNU) 648
describing remote systems contacted by the tip command
(BNU) 657
description file

legal lines of
for troff command 763

description of management information base variables 577
determining default settings for ATE connections 423
devexports file 74
device drivers

error special files 885
devices

preventing multiple uses of 1110
devices file format 444
DHCP (dynamic host configuration protocol)

BOOTP relay agent configuration file 15
client configuration file 59
server configuration file 62

DHCP client configuration file 59
DHCP server configuration file 62
dialcodes (BNU) 449
dialcodes file format 449
dialers file format 450
dialing directory file format 454

Index 1125

dials Special File 882
dir file 75, 251
directories

description 1108
entries 1108
file system independent 953, 1085, 1092
formatting entries 953, 1085, 1092
HCON files 1111
types 1108

directories naming 1
diskette device-driver

accessing 886
dlfcn.h 953
DOMAIN files

cache files
file format 456
standard resource record format 677

data file
format 457
standard resource record 677

local data files
format 460
standard resource record format 677

reverse data files
standard resource record format 677

domainsfile 76
domobjsfile 77
dumpdates file 83
DVD device driver

mounting UDFS file system 19
Dynamic Host Configuration Protocol 59

E
e789_ctbl file 84
e789_ktbl file 85
eimadmin command 85
eimadmin.conf file 85
enumeration set definitions

Enumeration Set keyword 796
syntax 796

environ file 87
environment

file 88
setting by user 88
variables

setting at login 650
eqnchar file format 464
error logging special files 885
errors file 94
Ethernet device handler

accessing 884
Ethernet tunnel software network interface 938
ethers file for NIS 95
ethers files

ethernet host addresses 94
eucioctl.h file 954
eucioctl.h files

defining ioctl operations 953
execute (X.*) files 97
expect-send sequences (BNU) 692
exports file (NFS) 100
expressions

description 784

expressions (continued)
set of operators in UIL 784

F
failedlogin file format 791
file definition

setting 378
file format

real-time compliance 468
File Format

/etc/ftpd.cnf 465, 468
/etc/security/rtc/rtcd_policy.conf
468
/etc/security/rtc/rtcd.conf 466
ftpcnf 470
Real-Time Compliance 466
TCP/IP

cgaparams.sec 431
ndpdh.cnf 629
sendh_anchor 671
sendr_anchor 672

file formats
acct 417
bootptab 431
core 439
cpio 442

file mode interpretation
using mode.h file 1020

file system
centralizing characteristics

using filesystems file 106
log attribute 107
node name attribute 107
size attribute 107
type attribute 107

file transfer (BNU)
directions for the uucico daemon 24
queued requests 1116

files
/etc/slp.conf 345
archiving 421, 442
backing-up 442
ClientHostName.info 20
control options

defining 955, 961
ct_class_ids 34
ct_cssk.kf 35
ct_ffdc.h 951
ct_has.qkf 37
ct_has.thl 38
ctcas_hba2.map 43
ctcasd.cfg 44
ctfile.cfg 40
ctgroups 42
ctrmc.acls 46
ctrmc.rio 47
ctsec_map.global 49
ctsec_map.local 53
ctsec.cfg 48
data types

defining primitive system 1090
dir 75
dlfcn.h 953

1126 AIX Version 7.1: Files Reference

files (continued)
environment 88
ethers 95
eucioctl.h 954
filsys.h 957
format

setmaps 673
terminfo 696

formats 412
grp.h 964
header

pmapi.h 1025
inode.h 965
intermediate 377
inttypes.h 968
iso646.h 969
locking 961
mode interpretation 1020
naming 1
netmon.cf 183
NFS

exports 100
permissions 1
pmapi.h 1025
pthread.h 1032
pwd.h 1034
recovering 442
special 868
special I/O 799
specifying formats for 412
status 963
status subroutines

header file 1051
syslog.conf 380
systemcfg.h 1057
TCP/IP

hosts 517
types 1
unix.map 385
wctype.h 1098
wlm.h 1099
workload manager classes 401

Files
cgaparams.sec 431
libperfstat.h 974
ndpdh.cnf 629
sendh_anchor 671
sendr_anchor 672

filesystems file 106
floating-point literal

range 783
foreign file 109
format of a package characteristics file 237
format of SCCS files 666
forward mail 110
fs file 957
ftpaccess.ctl file 111
ftpcnf

File Format 470
ftpusers file format 471
functions

keywords 785
user-specified names 785
value types 785

G
gateways file format 515
groupings file format 117
groups

setting extended attributes 114
grp.h file 964

H
hardware buses

accessing 877
hardware flow control operations 1084
hardware parameters 1024
HCON

/usr/lib/hcon directory 1111
API subdirectories 1111
AUTOLOG example files 1112
configuration database files 1112
directory 1111
e789_ctbl file 84
e789_ktbl file 85
files 1111
LAF example files 1112
storing color definition table files 1111
terminal definition files 1111

header files
acct.h 417
control block

list of 949
fcntl.h 955
flock.h 961
fullstat.h 963
ipc.h 968
limits.h 972
math.h 1019
mode.h 1020
msg.h 1022
param.h 1024
poll subroutine structures 1031
sem.h 1036
sgtty.h 1038
shm.h 1045
spc.h 1046
srcobj.h 1050
stat.h 1051
statfs.h 1054
statvfs.h 1056
termio.h 1064
termios.h 1072
termiox.h 1083
types.h 1090
unistd.h 1092
value.h 1095
vmount.h 1096

holding internal files for remote communications (BNU)
1117
host names and addresses (TCP/IP) 517
host-adapter raw interface

defining 58
hosts file format 517
hosts.equiv file format 519
hosts.lpd file format 522
hty configuration

Index 1127

hty configuration (continued)
hty_config file format 523

I
i-nodes 1108
i-numbers 1108
iconv.h file

defining iconv character converters 964
IDE adapter driver

accessing 891
image.data file

describing installed images 120
indexed archives 421
INed files

programs and data used 125
initialization process 128
inittab file 128
inode.h file 965
integer literals

data storage consumption 783
description 783

intermediate files
.srf (text) 377

inttypes.h file
fixed size integral types 965

ipc.h File 968
irs.conf file 132
isns_servers 131
iso646.h file 969
ispaths file 137
isprime file

overview 139

K
kbd Special File

accessing natively attached keyboards 891
keyboard definition table (HCON)

default 85
storing files 1111

L
LAF (Login Assist Facility) example files (HCON) 1112
lastlog file format 526
LC_COLLATE category 537, 538
LC_CTYPE category 537, 542
LC_MESSAGES category 537, 545
LC_MONETARY category 537, 546
LC_NUMERIC category 537, 552
LC_TIME category 537, 553
LDAP Attribute Mapping 535
ldap.cfg file format 528
ldapid.ldif.template file 144
ldr.h 970
lft special file

providing character-based terminal support
for local graphics displays and keyboards 891

libperfstat.h file 974
Libraries

libperfstat.h 974
limits file 145

line disciplines
Berkeley (sgtty.h file) 1038
POSIX (termios.h file) 1072

line printer device driver
accessing 895

list package contents 240
list sections

arguments list structure 775
syntax 775

local loopback information for named (TCP/IP) 460
local user name 471
local_domain 147
locale definition source file format

LC_COLLATE category 537, 538
LC_CTYPE category 537, 542
LC_MESSAGES category 537, 545
LC_MONETARY category 537, 546
LC_NUMERIC category 537, 552
LC_TIME category 537, 553

locale method source file format 559
lock files

storing devices and remote systems 1110
log access attempts by unknown systems (BNU) 278
log files (BNU)

access attempts by unknown systems 109
compacted 1115
directory 1114

logical volume device driver
accessing 899

login attempt information 244
login authentication

configuration information 147, 934
login.cfg file 147
lp special file 895
lpfk special file 898

M
magic file

defining file types
/etc/magic file
564

mail
/etc/mail/sendmail.cf file

message headings 317
automatically forwards 110

mail command default settings 565
Mail files

/usr/spool/mqueue directory 1112
mail queue files directory 1112
management information base variables 577
mapping

UCS-2 conversion 769
maps

public and secret keys 270
math constants

defined in the math.h file 1019
math.h file 1019
Maxuuscheds file format 573
Maxuuxqts file format 574
Message Handler 178
MH

.mh_profile file 170
maildelivery file 161

1128 AIX Version 7.1: Files Reference

MH (continued)
mh_alias file format 574
mhl.format file 168
mtstailor file 178

mh_alias file format 574
mhl.format file 168
mib.defs file format 577
mibII file

mosy command 175
mkuser.default file 177
modem control operations 1081
modems (BNU)

cycling multispeed modems 692
expect-send sequences 692

module
pam_aix 217
pam_allow 219
pam_allowroot 220
pam_ckfile 221
pam_permission 222
pam_prohibit 224
pam_rhosts_auth 225

modules
pam_mkuserhome 222

mouse special file 908
mpcn special file 909
mpqi special file 912
MPQP device handler

accessing 912
system call support 913

mqueue directory (Mail) 1112
mrouted.conf file 179
msg.h File 1022
mstor special file 915
mtio.h file 1024
mtstailor file 178
multiple screen utility

terminal descriptions (asinfo file) 80
MultiProtocol Quad Port device handler 912

N
name resolution

DOMAIN cache file format 456
DOMAIN data file format 457
DOMAIN local data file format 460
DOMAIN reverse data file format 462
named.conf file format 579
standard resource record format 677

name resolution services
ordering 183

named.conf file format 579
names and strings

object types 778
reserved keywords 778

ndpdh.cnf file format 629
netgroup file

/etc/netgroup
network users list 181

netmasks file
network masks

implementing IP standard subnetting 181
netmon.cf file 183
netsvc.conf file 183

netsvc.conf file format
specifying name resolution service order 182

Network File System 1118
Network Information Service 1118
network interface 938
network masks 182
Network Terminal Accelerator files 58, 523, 656
network time protocol 214
networks file (NFS) 185
networks file format 635
NFS

local_domain 147
realm-to-domain

realm.map file 278
security_default 291

NFS files
bootparams 17
exports 100
networks 185
pcnfsd configuration 234
rpc 290
xtab 412

NIM
configuration information 126

NIS
netmask 182

NLSvec file
encoding PostScript fonts 186

nonvolatile RAM
platform-specific

accessing 918
nroff command

setting terminal driving tables 636
nscontrol.conf file 188
nterm file format 636
ntp.conf file 191
ntp.conf4 File 201
ntp.keys file

authentication of NTP transactions
key and key identifiers 215

null device
accessing 917

null special file 917

O
object file format 799
object sections

description 777
forward-referenced 777
ObjectType 777
syntax 777
TagValue 777

objects file 216
optical media device driver

accessing 920
output format control for the mhl command (MH) 168

P
package characteristics file

format 237
pam_aix 217

Index 1129

pam_allow 219
pam_allowroot 220
pam_ckfile 221
pam_mkuserhome module 222
pam_permission 222
pam_prohibit 224
pam_rhosts_auth 225
pam.conf 226
parameters

hardware 1024
password file 228
password history information 269
phone number abbreviations (BNU) 449
phones file format 648
physical volumes device driver

accessing 927
pkginfo file 237
pkgmap file 240
pmapi.h file 1025
policy.cfg 243
poll file format 649
polling operations

defining structures in the header file 1031
polling systems

specifying times (BNU) 649
Portable Operating System Interface for Computer
Environments 972
portlog file

/etc/security/portlog
per-port unsuccessful login attempt information
244

POSIX
implementation characteristics 1092
implementation limits 972

PostScript fonts
encoding 186

primitive systems
defining data types 1090

printer
configuring a queuing system for 272

privcmds file 245
privdevs file 248
procedure sections

callback tag 774
syntax 774

procedures list structure
description 776
syntax 776

processes
controlling initialization 128
image at time of error 439

profile file format 650
programming interface

special file 889
protocols file format 651
providing diagnostic interface 922
proxy.ldif.template 268
prtglobalconfig File 268
pseudo-terminal device driver 925
pthread.h file 1031, 1032
public directory (BNU) 1118
public key maps 270
publickey file

public or secret keys for maps 270

pwd.h file 1034
pwdalg.cfg file 271
pwdhist file

password history 269

Q
qconfig file 272
queued requests for

file transfers
storage (BNU) 1116

remote command execution
storage (BNU) 1116

queuedefs file
daemon events 651

R
RAM

accessing platform-specific 918
random 919, 943
rc.boot file

machine boot process 276
rc.net file format

setting default gateway 653
setting host ID 653
setting host name 653
setting static route 653

rc.tcpip file 277
rcm special file

using graphic systems
gsc_handle access 925, 938

realm.map 278
received mail, actions on (MH) 161
record contacts from unknown systems (BNU) 109
record uucico daemon errors (BNU) 94
relocation information (xcoff) 818
remote command executions

queued requests (BNU) 1116
remote commands (BNU) 97
remote file format 657
remote file transfers

status of
xferstats file 411

remote systems
BNU

list of 688
data transferred from 383
preventing multiple calls to 1110
specifying permissions for remote communications
(BNU) 639
specifying when to poll (BNU) 649

remote systems (BNU) 57
remote.unknown file 278
remote.unknown shell script 278
resolv.conf file format 661
resource definitions

class definitions 799
Resource keyword 798
syntax 798

retry time
before calling a remote system (BNU) 1116

reverse data file format 462

1130 AIX Version 7.1: Files Reference

rndc.conf file 285
roles file 287
routed daemon

gateways file format 515
rpc file (NFS) 290

S
sample input to mosy 175
sample snmpd agent configuration 350
sccsfile 666
SCSI adapter driver

accessing 933
SCSI tmscsi device driver

accessing 939
secret key maps 270
section headers (XCOFF) 808
sectoldif.cfg 290
security

.ids file 124
security (BNU)

logging access attempts by unknown systems 109
recording access attempts by unknown systems 278
specifying permissions for remote communications 639

security_default 291
secvars.cfg file 934
semaphore operations

sem.h file 1036
sendh_anchor file format 671
sendr_anchor file format 672
Serial Optical Link

accessing 923
Serial Optical Link device driver

opn special file 922
services file format 672
setmaps file format 673
sets up user environment 88
setting

default gateway 655
host name 655
static route 655

setting defaults for mail command 565
setup.csh file 343
setup.sh file 344
sgtty.h file 1038
shm.h File 1045
simprof file format 675
slp.conf 345
Small Computer System Interface 933
smbctune.conf file 347
smi.my file

sample SMI input
mosy command 344

smitacl.group file
group access control list definitions 348

smitacl.user file 348
snmpd.conf file 350
snmpt.boots

machine boot process 360
Source Code Control System (SCCS) 666
special files

3270 connection adapter 869
accessing tablet file 936
CD-ROM device driver 877

special files (continued)
cdromd.conf 18
controlling terminal interfaces with 942
dials 882
diskette device-driver 886
error 885
errorctl 885
Ethernet adapter 884
hardware buses 877
IDE adapter driver 891
line printer device driver 895
logical volume device driver 899
lp 895
lpfk 898
mouse 908
mpcn 909
mpqi 912
mpqn 912
nonvolatile RAM 918
null device 917
opn 922
optical media device driver 920
physical volumes device driver 927
privileged virtual memory

read access 905
write access 905

SCSI adapter driver 933
SCSI tmscsi device driver 939
sequential-access bulk storage medium device driver
929
Serial Optical Link 923
system dump 883, 944, 945
token-ring device handler 940
usbhc 944

spooling directory (BNU) 1113
SRC

SRC process structures 1050
subsystem process structures 1046

standard resource record format
address records 680
canonical name records 682
domain name pointer records 683
gateway ptr records 683
host information records 681
IN-ADDR.ARPA record 682
mail exchanger records 685
mail group member records 685
mail rename name records 684
mailbox information records 684
mailbox records 684
name server records 680
start of authority records 679
well-known services records 681

standards
environment implementation 1092
implementation limits

ANSI C 972
IEEE P1003 POSIX 972

start-up file format 675
statistics

returning file 1054
statistics about status of file transfer requests (BNU) 411
statistics subroutines

structuring of returned data 1054

Index 1131

status of calls to remote systems (BNU) 1116
status subroutines

header file structure 1051
statvfs subroutine statistics

structure 1056
storage

combined log files (BNU) 1115
debugging messages form the uucico daemon (BNU) 8
files awaiting transfer 1113
files that cannot be transferred (BNU) 1114
lock files that prevent multiple uses of communication
devices 1110
log and administrative files (BNU) 1113
reverse name resolution information for named (TCP/IP)
462
transferred files until delivered (BNU) 1118

stream stanza 30
streamcmds file 377
string literals

escape sequences 781
supported character sets 780
syntax 779

string table
XCOFF loader section 819

symbol table
XCOFF loader section 815

sysck.cfg file 378
Sysfiles file format 686
syslog.conf file 380
system consoles

accessing 879
system files 1
System Resource Controller 1046
systemcfg.h file 1057
SystemName directories (BNU) 1116
Systems file format 688

T
tablet special file 936
tailoring MH environments (MH) 178
tar.h file

/usr/include/tar.h 1059
tar archive header 1059

targets 382
TCP/IP

BNU with 453
File Format

cgaparams.sec 431
ndpdh.cnf 629
sendh_anchor 671
sendr_anchor 672

file formats
.3270 keys 415
.netrc 633
.rhosts 665
/etc/map3270 569
DOMAIN cache 456
DOMAIN data 457
DOMAIN local data 460
DOMAIN reverse data 462
ftpusers 471
gated.conf 472
gateways 515

TCP/IP (continued)
file formats (continued)

hosts 517
hosts.equiv 519
hosts.lpd 522
inetd.conf 524
Internet services 672
named.conf 579
networks 635
protocols 651
rc.net 653
resolv.conf 661

files
mrouted.conf 179
rc.tcpip 277

remote hosts
specifying to print on a local host 522

standard resource record format 677
telnet.conf file (TCP/IP) 694
temporary (TM.*) files 383
temporary uuxqt daemon work files, directory for BNU 1117
tepolicies.dat file format 696
terminal capabilities

miscellaneous strings 737
types

Boolean 698
terminal definition files (HCON) 1111
terminal descriptions

asinfo file 80
terminfo database 696

terminal interface
controlling 942
pseudo terminal 925
virtual terminal server 945

terminal map
file format 673

terminfo
database 696
entry 752
file format 696

termio.h file 1064
termios.h file 1072
termiox.h file 1083
threads list 1031
tip command

.tiprc file format 753
contacting remote systems 648, 657
phones file format 648
providing initial variable settings 753
remote file format 657

tmscsi device driver
accessing 939

token-ring adapter 940
Token-Ring device handler

subroutine support 940
using 940

trace special file
event tracing 942

translating terminal_type strings 694
trcfmt file format

storing trace templates 754
troff

command
specifying description files 762

1132 AIX Version 7.1: Files Reference

troff (continued)
font file format 762

troff file format 760
trusted computing base 378
TTY interface

defining 58
TTY subsystem

controlling terminal 942
tunables file format 766

U
uconvdef Source File Format 769
UDFS

mounting options 19
UIL file format

description 771
unix.map file 385
updaters file

updating NIS maps 383
urandom 919, 943
usblibdev 944
user

environment
setting at login 650

file 387
interface language file format 771
keyboard mapping and colors

telnet command 415
tn3270 command 569

setting
basic attributes 228
default attributes 177
extended attributes 387

user ACL definitions list 348
user authentication

configuration information 147, 934
user.roles file 398
users stanza 30
utmp file format 791
uucico daemon

debugging messages from 8
file transfer directions

files of 24
limiting instances of 573
log files 1114
recording errors from 94

UUCP 444
uucp command

log files 1114
uusched daemon

limiting instances of 573
uux command

executing log files 1114
uuxqt daemon

executing log files 1114
limiting instances of 574
storing temporary work files 1117

V
value declaration 785
value sections

value sections (continued)
supported value types 773

versions file, describe the format 26
VFS

data structure definitions 1096
vfs file 400
vgrind command

language definition database 792
vgrindefs file format 792
vts 945
vty_server 945

W
wctype.h file

wide-character classification list 1096
widget meta-language

comments syntax 794
WLM

.times file 384
groupings file format 117

wlm.h file 1099
WML file format

comments syntax 794
description 794

wtmp file format 791

X
XCOFF

headers 803, 808
xferstats file 411
xtab file (NFS) 412

Index 1133

1134 AIX Version 7.1: Files Reference

IBM®

	Contents
	About this document
	Highlighting
	Case sensitivity in AIX
	ISO 9000

	Files Reference
	What's new
	System Files
	access_lists File
	acct.cfg File
	admin File
	aliases File for Mail
	audit File for BNU
	/etc/security/authorizations File
	autosecrets File
	backup File
	bincmds File
	BOOTP Relay Agent Configuration File
	bootparams File for NFS
	ca.cfg File
	cdromd.conf File Format
	ClientHostName.info File
	clsnmp.conf File
	Command (C.*) Files for BNU
	compver File
	config File
	consdef File
	copyright File
	ct_class_ids File
	ct_cssk.kf File
	ct_has.pkf File
	ct_has.qkf File
	ct_has.thl File
	ctfile.cfg File
	ctgroups File
	ctcas_hba2.map File
	ctcasd.cfg File
	ctrmc.acls File
	ctrmc.rio File
	ctsec.cfg File
	ctsec_map.global File
	ctsec_map.local File
	Data (D.*) Files for BNU
	/dev/hty File
	/dev/rhp File
	DHCP Client Configuration File
	DHCP Server Configuration File
	depend File
	devexports File
	dir File
	/etc/security/domains File
	/etc/security/domobjs File
	dpid2.conf File
	dsinfo File
	dumpdates File
	e789_ctbl File for HCON
	e789_ktbl File for HCON
	eimadmin.conf File
	environ File
	environment File
	errors File for BNU
	ethers File for NIS
	events File
	Execute (X.*) Files for BNU
	exports File for NFS
	.fig File
	filesystems File
	Foreign File for BNU
	.forward File
	ftpaccess.ctl File
	/etc/group File
	/etc/security/group File
	Workload Manager groupings File
	hostmibd.conf File
	image.data File
	/etc/security/.ids File
	INed Files
	.info File
	inittab File
	isns_servers File
	irs.conf File
	ispaths File
	isprime File
	.kshrc File
	lapi_subroutines Information
	ldapid.ldif.template File
	limits File
	local_domain File
	login.cfg File
	lpacl Information
	.maildelivery File for MH
	/usr/lib/security/methods.cfg File
	mhl.format File
	.mh_profile File
	mibII.my File
	mkuser.default File
	mtstailor File for MH
	mrouted.conf File
	netgroup File for NIS
	netmasks File for NIS
	netmon.cf File
	netsvc.conf File
	networks File for NFS
	NLSvec File
	/etc/nscontrol.conf File
	ntp.conf File
	ntp.conf4 File
	Network Time Protocol (NTP)
	ntp.keys File
	objects File
	pam_aix Module
	pam_allow Module
	pam_allowroot Module
	pam_ckfile Module
	pam_mkuserhome Module
	pam_permission Module
	pam_prohibit Module
	pam_rhosts_auth Module
	pam.conf File
	/etc/passwd File
	passwd_policy File
	/etc/security/passwd File
	pcnfsd.conf Configuration File
	pkginfo File
	pkgmap File
	policy.cfg File
	portlog File
	/etc/security/privcmds File
	/etc/security/privdevs File
	/etc/security/privfiles File
	/proc File
	proxy.ldif.template File
	prtglobalconfig File
	pwdhist File
	publickey File for NIS
	/etc/security/pwdalg.cfg File
	qconfig File
	raspertune File
	rc.boot File
	rc.tcpip File for TCP/IP
	realm.map File
	remote.unknown File for BNU
	resource_data_input Information
	rmccli Information
	rndc.conf File
	roles File
	rpc File for NFS
	sectoldif.cfg Configuration File
	security_default File
	sendmail.cf File
	setinfo File
	setup.csh File
	setup.sh File
	slp.conf File
	smbctune.conf File
	smi.my File
	smitacl.group File
	smitacl.user File
	snmpd.conf File
	snmpd.boots File
	snmpdv3.conf File
	snmpmibd.conf File
	socks5c.conf File
	space File
	.srf File
	streamcmds File
	sysck.cfg File
	syslog.conf File
	targets File
	Temporary (TM.*) Files for BNU
	Workload Manager .times File
	unix.map File
	updaters File for NIS
	user File
	user.roles File
	vfs File
	Workload Manager classes File
	Workload Manager limits File
	Workload Manager rules File
	Workload Manager shares File
	xferstats File for BNU
	xtab File for NFS

	File Formats
	.3270keys File Format for TCP/IP
	acct File Format
	ar File Format (Big)
	ar File Format (Small)
	ate.def File Format
	audit File Format
	bootptab File Format
	cgaparams.sec File Format for TCP/IP
	Character Set Description (charmap) Source File Format
	core File Format
	cpio File Format
	cronlog.conf File
	Devices File Format for BNU
	Dialcodes File Format for BNU
	Dialers File Format for BNU
	Dialing Directory File Format for ATE
	DOMAIN Cache File Format for TCP/IP
	DOMAIN Data File Format for TCP/IP
	DOMAIN Local Data File Format for TCP/IP
	DOMAIN Reverse Data File Format for TCP/IP
	eqnchar File Format
	/etc/ftpd.cnf File Format for TCP/IP
	/etc/security/rtc/rtcd.conf file format for real-time compliance
	/etc/security/rtc/rtcd_policy.conf file format for real-time compliance
	/etc/ftpd.cnf File Format for TCP/IP
	/etc/tnc_config File
	.ftpcnf File Format for TCP/IP
	ftpusers File Format for TCP/IP
	gated.conf File Format for TCP/IP
	gateways File Format for TCP/IP
	hosts File Format for TCP/IP
	hosts.equiv File Format for TCP/IP
	hosts.lpd File Format for TCP/IP
	hty_config File Format
	inetd.conf File Format for TCP/IP
	lastlog File Format
	ldap.cfg File Format
	LDAP Attribute Mapping File Format
	Locale Definition Source File Format
	LC_COLLATE Category for the Locale Definition Source File Format
	LC_CTYPE Category for the Locale Definition Source File Format
	LC_MESSAGES Category for the Locale Definition Source File Format
	LC_MONETARY Category for the Locale Definition Source File Format
	LC_NUMERIC Category for the Locale Definition Source File Format
	LC_TIME Category for the Locale Definition Source File Format
	Locale Method Source File Format
	magic File Format
	.mailrc File Format
	map3270 File Format for TCP/IP
	Maxuuscheds File Format for BNU
	Maxuuxqts File Format for BNU
	.mh_alias File Format
	mib.defs File Format
	named.conf File Format for TCP/IP
	ndpdh.cnf File Format for TCP/IP
	netcd.conf File Format for netcd
	.netrc File Format for TCP/IP
	networks File Format for TCP/IP
	nroff or troff Input File Format
	nterm File Format
	Permissions File Format for BNU
	phones File Format for tip
	Poll File Format for BNU
	profile File Format
	protocols File Format for TCP/IP
	queuedefs File Format
	rc.net File Format for TCP/IP
	rc.ntx File Format
	remote File Format for tip
	resolv.conf File Format for TCP/IP
	resolv.ldap File Format for TCP/IP
	rfc1108 table
	.rhosts File Format for TCP/IP
	sccsfile File Format
	sendh_anchor File Format for TCP/IP
	sendr_anchor File Format for TCP/IP
	services File Format for TCP/IP
	setmaps File Format
	simprof File Format
	Standard Resource Record Format for TCP/IP
	Sysfiles File Format for BNU
	Systems File Format for BNU
	telnet.conf File Format for TCP/IP
	tempaddr.conf File Format for TCP/IP
	tepolicies.dat File Format
	terminfo Directory
	.tiprc File Format for tip
	trcfmt File Format
	troff File Format
	troff Font File Format
	tunables File Format
	uconvdef Source File Format
	UIL File Format
	utmp, wtmp, failedlogin File Format
	vgrindefs File Format
	WML File Format
	XCOFF Object File Format

	Special Files
	3270cn Special File
	bus Special File
	cd Special File
	console Special File
	dials Special File
	dump Special File
	entn Special File
	Error Logging Special Files
	fd Special File
	fddin Special File
	GIO Special File
	ide Special File
	kbd Special File
	lft Special File
	lp Special File
	lpfk Special File
	lvdd Special File
	mem or kmem Special File
	mouse Special File
	mpcn Special File
	mpqi Special File
	mpqn Special File
	mstor Special File
	null Special File
	nvram Special File
	random and urandom Devices
	omd Special File
	opn Special File
	ops0 Special File
	pty Special File
	rcm Special File
	rhdisk Special File
	rmt Special File
	scsi Special File
	secvars.cfg File
	tablet Special File
	tap Special File
	tmscsi Special File
	tokn Special File
	trace Special File
	tty Special File
	urandom and random Devices
	usb0 Special File
	usbhc Special File
	usblibdev Special File
	usbms Special File
	vty_server Special File

	Header Files
	List of Major Control Block Header Files
	ct_ffdc.h File
	dirent.h File
	dlfcn.h File
	eucioctl.h File
	fcntl.h File
	filsys.h File
	flock.h File
	fullstat.h File
	grp.h File
	iconv.h File
	inode.h File
	inttypes.h File
	ipc.h File
	iso646.h File
	ldr.h File
	limits.h File
	libperfstat.h File
	math.h File
	mode.h File
	msg.h File
	mtio.h File
	param.h File
	pmapi.h File
	poll.h File
	pthread.h File
	pwd.h File
	pwdpolicy.h File
	sem.h File
	sgtty.h File
	shm.h File
	spc.h File
	srcobj.h File
	stat.h File
	statfs.h File
	statvfs.h File
	systemcfg.h File
	tar.h File
	termio.h File
	termios.h File
	termiox.h File
	threads.h File
	trace.h File
	types.h File
	uchar.h File
	unistd.h File
	utmp.h File
	values.h File
	vmount.h File
	wctype.h File
	wlm.h File

	Directories
	/etc/locks Directory
	/usr/lib/hcon Directory
	/var/spool/mqueue Directory for Mail
	/var/spool/uucp Directory for BNU
	/var/spool/uucp/.Admin Directory for BNU
	/var/spool/uucp/.Corrupt Directory for BNU
	/var/spool/uucp/.Log Directories for BNU
	/var/spool/uucp/.Old Directory for BNU
	/var/spool/uucp/.Status Directory for BNU
	/var/spool/uucp/SystemName Directories for BNU
	/var/spool/uucp/.Workspace Directory for BNU
	/var/spool/uucp/.Xqtdir Directory for BNU
	/var/spool/uucppublic Directory for BNU

	Notices
	Privacy policy considerations
	Trademarks

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

