
Linux on System z

WebSphere on IBM System z 64-bit and
31-bit studies with J2EE workloads

���

Linux on System z

WebSphere on IBM System z 64-bit and
31-bit studies with J2EE workloads

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 49.

Contents

Figures v

Tables vii

About this publication ix

Chapter 1. Introduction 1

Chapter 2. Hardware and software
configuration 5
Server hardware and software - LPAR 5
Client hardware and software 6

Chapter 3. System setup 7
Environment 7
Network setup. 8
Workload generator systems 9

Chapter 4. Linux kernel settings 11
WebSphere Application Server Linux kernel settings 11

Enabling 31-bit WebSphere Application Server on
IBM System z to use 1 GB JVM 11
Setting swappiness parameter to zero. 11

Linux kernel settings for the workload generator
systems. 12
Linux kernel settings for the DB2 Universal
Database system. 13

Chapter 5. Setting up WebSphere and
DB2 Universal Database 15
WebSphere V6.1.0 configuration 15

Java DataBase Connectivity connection pools . . 15

Java DataBase Connectivity data source
properties 16
Object Request Broker thread pool. 17
WebContainer thread pool 17
Default thread pool. 18
HTTP transport settings 18
Enterprise Java Beans cache settings 20
Tune the Java Virtual Machine properties . . . 20
Other Java Virtual Machine arguments 22
Transaction service properties 23
Disable Java 2 security. 23

DB2 V9.5 configuration 24
Initial database setup 24
Tuning the populated database 24
DB2 autoconfigure command 25

Chapter 6. Workload description. . . . 27

Chapter 7. Results 29
Heapsize for the 64-bit Java Virtual Machine . . . 29
Comparing 64-bit WebSphere versus 31-bit
WebSphere 31
CPU scaling study 35
Database LPAR analysis 39
Network study – 1 Gb Ethernet versus 10 Gb
Ethernet 42

Appendix. Configuration, tuning, and
performance scripts 47

Notices 49
Trademarks 51
Terms and conditions 52

© Copyright IBM Corp. 2009 iii

iv WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

Figures

1. System configuration for the customer workload 8
2. Setting JDBC connection pools 16
3. JDBC data source configuration 17
4. Thread pool 18
5. HTTP transport settings 19
6. EJB cache settings 20
7. Java Virtual Machine settings 22
8. Heap size studies of 64-bit WebSphere:

throughput and CPU load at workload
submission rate 300 and 500, and different
JVM heap percentages of total available
memory. 30

9. CPU utilization and corresponding average
response times at different JVM heap
percentages 31

10. 64-bit and 31-bit WebSphere comparison: CPU
utilization and throughput 34

11. 64-bit and 31-bit WebSphere comparison:
Response time (in milliseconds) 34

12. CPU scaling study: Workload transaction rates
with 31-bit and 64-bit WebSphere 37

13. CPU scaling study: CPU utilization with 31-bit
and 64-bit WebSphere 38

14. CPU scaling study: Response times with 31-bit
and 64-bit WebSphere 38

15. Database LPAR analysis: Database transaction
rate for scaling WebSphere Application Server
CPUs and workload submission rate. 40

16. Database LPAR analysis: CPU utilization on
Database LPAR 41

17. Database LPAR analysis: Normalized internal
SQL transaction rate 41

18. Network study: Utilization of the 1 Gb OSA
card from the WebSphere Application Server
from the traffic to the clients 44

19. Network study: Utilization of the 10 Gb OSA
card from the WebSphere Application Server
from the traffic to the clients 44

© Copyright IBM Corp. 2009 v

vi WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

Tables

1. Server hardware 5
2. Server storage 5
3. Server software 6
4. Client software 6
5. Heapsize studies of 64-bit WebSphere:

throughput, CPU load, and response time
using workload submission rate 300 and 500,
and different JVM heap percentages of total
available memory 29

6. 64-bit and 31-bit WebSphere comparison: CPU
utilization, workload throughput, and response
time measurements 33

7. CPU scaling study: WebSphere V6.1 CPU
Scaling results for one, two, four, and eight
CPUs at high CPU utilization 37

8. Database LPAR analysis: DB2 UDB CPU
utilization and throughput 40

9. Network study: Data read and written per
second, segment retransmits, and packets
dropped 43

© Copyright IBM Corp. 2009 vii

viii WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

About this publication

Authors

Dr. Juergen Doelle

Paul V. Sutera

Acknowledgements

Thank you to these people for their contributions to this project:
Eugene Ong
Robert Wisniewski

The benchmarks were performed at the IBM System z World Wide Benchmark
Center in Poughkeepsie, NY.

How to send your comments

Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this publication, send your
comments using IBM Resource Link at http://www.ibm.com/servers/resourcelink.
Click Feedback on the navigation pane. Be sure to include the name of the
document and the specific location of the text you are commenting on (for
example, a page number or table number).

© Copyright IBM Corp. 2009 ix

http://www.ibm.com/servers/resourcelink

x WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

Chapter 1. Introduction

This study measures performance and throughput for the WebSphere® Application
Server (both 64-bit and 31-bit) on Linux® for IBM® System z® with Java™ 2
Platform, Enterprise Edition (J2EE) workloads.¹

There are many customer workloads based on Web applications, including those
that use Web servers, J2EE-based middleware, and backend databases. For these
tests, a workload that heavily exercises all the major J2EE components, but does
not make heavy use of resources on the backend database, was chosen. Using this
workload, various performance studies of IBM WebSphere 6.1.0.15 on Linux for
IBM System z with a DB2® database using Java-based clients, including servlets
and Java Server Pages (JSPs), were conducted.

The advantage of 64-bit WebSphere is its ability to make use of a much larger Java
Virtual Machine (JVM) heap than the 31-bit version. In theory, a 64-bit machine can
address up to 16 exabytes of storage, millions of times more than the physical
memory typically found on most computers. Of the available memory dedicated to
a Linux system, a JVM heap can occupy a large percentage of that memory, but not
all of the memory. Even on a system that only runs WebSphere and Java, there are
still memory requirements outside of the heap for thread-level program stack
allocation.1

Objectives

The objective of these tests was to use a representative workload to test different
WebSphere Application Server environments and settings for a Java-based
application on Linux for IBM System z. The environment was three-tiered,
consisting of:
v Up to three J2EE clients
v A WebSphere Application Server in 31-bit or 64-bit mode, both running on 64-bit

Linux for IBM System z
v An IBM DB2 Universal Database™ (UDB) on Linux for IBM System z

The objectives include:
v Study JVM heap size in 64-bit mode.
v Compare 64-bit versus 31-bit performance on WebSphere 6.1.0.
v Study Central Processing Unit (CPU) scaling.

This information will help IT architects design and choose the correct size for
middleware and database resources for Web-based J2EE applications that make
heavy use of J2EE middleware components such as:
v Servlets
v Java Server Pages (JSPs)
v Enterprise Java Beans (EJBs)

1. This paper is intended to provide information regarding performance of environments using WebSphere Application Server 6.1. It
discusses findings based on configurations that were created and tested under laboratory conditions. These findings may not be
realized in all customer environments, and implementation in such environments may require additional steps, configurations,
and performance analysis. The information herein is provided ’AS IS’ with no warranties, express or implied. This information
does not constitute a specification or form part of the warranty for any IBM products.

© Copyright IBM Corporation © IBM 2009 1

v EJB Container Managed Persistence
v Java Messaging Services (JMS)
v Transactions
v Database connections

Executive summary

This study explores the performance of a WebSphere Application Server 6.1 system
under a customer-like J2EE application workload. This study includes a very
detailed description of how the test environment was set up and how the systems
were configured. The difference in performance behavior of the 31-bit and the
64-bit WebSphere versions was compared, and the impact of heap size and garbage
collection was analyzed.

CPU scaling studies explored the maximum workloads using one, two, four, and
eight Central Processing Units (CPUs) and showed a very good linear scaling,
making it easy for a system administrator to plan the resources needed for scaling
this workload.

Results show that with a special scenario at the highest workload level, which
used eight CPUs, the 64-bit WebSphere version with a large heap produced the
best results. With the high computing power of the IBM System z10™, the network
bandwidth becomes a critical factor. At the highest workload submission rate (the
rate that workload transactions are sent to WebSphere), a 10 Gb Ethernet card was
needed to manage the traffic from the workload generating clients.

The results show also that the bandwidth of the interconnect between WebSphere
and the database has a significant impact on performance. The HiperSockets™

connection under LPAR is a very appropriate connectivity type for this.

Summary

The IBM WebSphere Application Server helps drive business agility by providing
developers and IT architects with an innovative, performance-based foundation to
build, reuse, run, integrate, and manage Service Oriented Architecture (SOA)
applications and services. IBM DB2 Universal Database (UDB) provides a database
management system for mission-critical enterprise data. WebSphere as an interface
to DB2 provides a means for the Web-enablement of data and business logic.
WebSphere introduced support for 64-bit platforms early in Version 6, while
continuing to provide a 31-bit WebSphere able to run in compatibility mode.

Java Virtual Machines (JVMs) in 64-bit mode have provided key advantages,
including a significantly larger Java heap size, as well as Java code optimizations.
The IBM System z 31-bit WebSphere provides a maximum heap size of
approximately 1 GB, while the 64-bit WebSphere heap can address as much as 256
TB, far exceeding the available physical memory of the current platforms.

This study set up and used a system that provides a high throughput for a
workload using all major J2EE components on the WebSphere Application Server.
The characteristics of the workload used in this study are that throughput depends
primarily on the submission rate selected when installing the workload. When
sufficient resources are available to support a certain submission rate, more
resources do not increase the throughput. The first indicators of processor
over-utilization are increasing response times and increasing CPU utilization.

2 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

While there are advantages of running on a 64-bit JVM WebSphere, there are also
disadvantages, including 8-byte pointers and a greater memory requirement
overall. This study showed that 64-bit WebSphere could equal or exceed the
performance of 31-bit WebSphere with a more conventional middleware-intensive
workload. However, in some tests, 64-bit WebSphere showed a slightly degraded
performance when compared to 31-bit WebSphere.

While throughput data from this workload is fairly identical across both
architectures, Central Processing Unit (CPU) percent-busy statistics showed that
64-bit WebSphere is, in scenarios with high workloads, able to use its much larger
heap size to provide efficiencies of scale at the higher workload submission rates.

At lower submission-rate workloads, 31-bit WebSphere still had a performance
advantage in terms of shorter response times, because the number of stored objects
(EJBs, JSPs) was smaller and fit comfortably in the 31-bit 1 GB (1024 MB) heap.
Garbage collection durations were short, even if frequent. The comparison studies
were prepared by first studying the optimal heap size for the 64-bit WebSphere
JVM. It was found that for the workload used in this study, a Java heap size
ranging between 70% and 75% of the system memory resulted in the best trade-off
between maximum throughput, short response times, and low CPU utilization.

A CPU utilization rate greater than 90% was not observed for the higher
workloads, indicating an unidentified bottleneck. This bottleneck might be the
HiperSockets connection between the WebSphere Application Server and the
database. Additional investigation would be required. The high CPU utilization
rate of 97% for the run with one CPU on 64-bit WebSphere becomes a critical
threshold for a system running with HiperSockets. This high utilization is very
likely the reason for the high response times observed on the run with one CPU.

The CPU load of the DB2 LPAR is generally quite light for the transaction
workload. A full CPU is rarely used unless there are already eight CPUs used on
the WebSphere system. The workload generally uses short data records and does
not use complex SQL statements, so the backend database load is expected to be
light. The higher cost on the 64-bit WebSphere at a submission rate of 110 strongly
suggests that the WebSphere CPU load is too high for the HiperSockets connection,
because missing CPU resources on the middleware will cause overhead on the
database.

The workload also shows good linear scaling until the highest workload. At the
highest workload, throughput declines, falling away from a linear relationship.
Here, the 64-bit version performs better than the 31-bit version. The poor response
times at the highest workload are an indication of resource contention. It is
assumed that the critical resource here is again the interconnect to the database.
The database shows a decline in throughput and CPU at a fixed ratio (that is, the
CPU cost per transaction stays the same), indicating that the database waits to
receive requests from the application sever. Because there is no contention for CPU,
this strongly suggests that the interconnect is the cause of the bottleneck.

The high response times with the workload submission rate of 600 in LPAR mode
could be easily attributed to network I/O traffic from the clients reaching the limit
of the 1 Gb Ethernet from the WebSphere system being tested. In this study, the
limiting factor was the amount of packages, where the number of 80 000 packages
could be considered as close to the upper limits of a 1 Gb Ethernet interface or
card. Using a 10 Gb Ethernet card improved that situation.

Chapter 1. Introduction 3

4 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

Chapter 2. Hardware and software configuration

To perform the 64-bit and 31-bit WebSphere study with J2EE workloads, a
customer-like environment was created.

Server hardware and software - LPAR
The server side of the 64-bit and 31-bit WebSphere study with J2EE workloads
used two LPARs, one for the WebSphere application server and one for the DB2
database server.

IBM WebSphere Version 6.1 host and IBM DB2 Universal
Database host

There are two LPARs on a 56-way IBM System z10 Enterprise Class (z10 EC), 4.4
GHz, model 2097-E56. They are equipped as described in Table 1.

Table 1. Server hardware

LPAR Description

LPAR 1 for WebSphere Application Server v Between one and ten physical CPUs
dedicated

v 8 GB central storage

v One 1 Gb OSA card for client connectivity
on an isolated performance LAN

v One 10 Gb OSA card for client
connectivity, also on an isolated
performance LAN

v One 1 Gb OSA card for administration

v HiperSockets connection to the DB2 UDB
LPAR

LPAR 2 for DB2 database server v Four physical CPUs dedicated

v 8 GB central storage

v One 1 Gb OSA card for administration

v HiperSockets connection enabled between
WebSphere and DB2 UDB LPARs

Storage setup

The server side of the 64-bit and 31-bit WebSphere study with J2EE workloads
used disks for the operating system, applications, and databases. The server
storage is described in Table 2.

Table 2. Server storage

Disks Description

Operating system and applications on two
Linux host systems

Four disks on an IBM DS8000® configured
with 16 Logical Control Units (LCUs).

Database data disks and DB2 log files 41 ECKD™ mod 9 disks employed using
Logical Volume Manager (LVM) with
striping over 16 LCUs.

© Copyright IBM Corporation © IBM 2009 5

Server software

The server side of the 64-bit and 31-bit WebSphere study with J2EE workloads
used software for the operating system and applications. The server software is
described in Table 3.

Table 3. Server software

Product Version/Level

IBM DB2 Universal Database Enterprise
Server

Version 9.5 fixpack 1

Novell SUSE Linux Enterprise Server SLES 10, SP2 64-bit

Retailing customer workload N/A

WebSphere Application Server Version 6.1.0 fixpack 15, 64-bit and 31-bit

Client hardware and software
The client side of the 64-bit and 31-bit WebSphere study with J2EE workloads used
IBM System x® processors, a operating system, and applications.

Client hardware

The client hardware consists of these processors:
v IBM System x X336 2-way 3.06 GHz Intel® with 8 GB RAM (workload generator

running WebSphere Version 6.0)
v Two IBM X335 Intel XEON 2-way CPU 2.40 GHz (workload generators)

Client software

The client software consists of these operating systems and applications. Table 4
describes the client software.

Table 4. Client software

Product Version/Level

Red Hat Linux AS Release 4 Update 6

Internal workload driver N/A

WebSphere Application Server Version 6.1.0.0

6 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

Chapter 3. System setup

A detailed system setup for the 64-bit and 31-bit WebSphere study with J2EE
workloads is described.

Environment
A customer-like environment was used for the 64-bit and 31-bit WebSphere study
with J2EE workloads.

To emulate a customer environment, these components are used:
v A workload driver that emulates a retail and manufacturing workload
v A single WebSphere V 6.1 Application Server to host the application
v A DB2 UDB V9.5 database

Figure 1 on page 8 shows the configuration used for the testing.

© Copyright IBM Corp. 2009 7

Network setup
The network setup for the 64-bit and 31-bit WebSphere study with J2EE workloads
uses a three-tiered workload.

The network setup for the three-tiered workload is as follows:
v The IBM System x Linux-based guests each had one 1 Gb network interface to

the Ethernet for communication with the WebSphere system on the server.
v The IBM System z was connected with either a 1 Gb or 10 Gb Ethernet card to

the Ethernet network.
v The two Logical Partitions (LPARs) were connected with HiperSockets with a 16

KB frame size for a fast isolated network connection.

The network setup is shown in Figure 1.

Figure 1. System configuration for the customer workload

8 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

Workload generator systems
Up to three IBM System x systems are used to generate the workload for the 64-bit
and 31-bit WebSphere study with J2EE workloads.

A WebSphere Application Server is present on the master workload generator, but
not on the helper machines. These helpers only need a working Java Runtime
Environment (JRE).

A workload generator consisting of multithreaded independent Java processes was
also used. These processes run on all the clients, including the master client.

At workload submission rates greater than 500, two additional client systems are
needed to create the workload.

Chapter 3. System setup 9

10 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

Chapter 4. Linux kernel settings

Different Linux kernel settings were used to optimize performance on the
WebSphere Application Server, workload generator, and the DB2 Universal
Database systems.

WebSphere Application Server Linux kernel settings
To specify the Linux kernel settings for the WebSphere Application Server, enable
the use of a 1 GB JVM, and set the swappiness parameter to zero.

To configure the WebSphere Application Server kernel settings, perform these
tasks:
v “Enabling 31-bit WebSphere Application Server on IBM System z to use 1 GB

JVM”
v “Setting swappiness parameter to zero”

Enabling 31-bit WebSphere Application Server on IBM System
z to use 1 GB JVM

A 31-bit WebSphere Application Server on IBM System z must be changed to use a
1 GB Java Virtual Machine (JVM), in order to improve performance.

Normally, you cannot define more than 768 MB of JVM heap on a 31-bit
distribution of WebSphere Application Server. However, with Linux, you can use
the mapped_base support to enable your system to have up to 1 GB of heap.
Unpredictable results occur if you exceed the 1 GB value. To enable this capability,
place this line into the startServer.sh startup script:
echo 268435456 >/proc/self/mapped_base

The startServer.sh script now looks like this (bold is added for emphasis only):
nwas3:/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/bin # cat startServer.sh
#!/bin/sh
echo 268435456 >/proc/self/mapped_base
WAS_USER_SCRIPT=/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/bin/setupCmdLine.sh
export WAS_USER_SCRIPT
/opt/IBM/WebSphere/AppServer/bin/startServer.sh "$@"

Setting swappiness parameter to zero
Setting the swappiness parameter to zero ensures that application pages will not be
moved to swap space.

The swappiness parameter influences the kernel preference to move memory pages
from applications to swap page, versus reclaiming memory from the cache. After
system restart, set the swappiness parameter to zero. This ensures that if memory
is constrained, the page cache is reduced in an attempt to recover memory before
application pages are moved to swap space:
echo 0 >/proc/sys/vm/swappiness

This setting might improve or degrade the performance of an application. Because
there is adequate memory already dedicated to this workload, large amounts of

© Copyright IBM Corp. 2009 11

memory would not need to be swapped to disk. Because precautionary (early)
swapping is now avoided, the study results are free of the effects of this kind of
swapping.

Linux kernel settings for the workload generator systems
Some Linux kernel settings must be permanently increased to run the driver
workload.

To change the Linux kernel settings, add a shell script named performance.sh to
directory /etc/profile.d. The processing of /etc/profile calls any shell scripts in
the /etc/profile.d directory.

Shell script performance.sh should have these lines:
echo "20000" > /proc/sys/net/core/netdev_max_backlog
echo "20000" > /proc/sys/net/core/somaxconn
echo "30" > /proc/sys/net/ipv4/tcp_fin_timeout
echo "20" > /proc/sys/net/ipv4/tcp_syn_retries
echo "20" > /proc/sys/net/ipv4/tcp_synack_retries
echo "3" >/proc/sys/net/ipv4/conf/all/arp_ignore
echo "2" >/proc/sys/net/ipv4/conf/all/arp_announce

ulimit -n 50000

The ulimit -n 50000 command sets the maximum number of open file descriptors
(and therefore the maximum number of open files) to 50000. The default value is
30000.

The echo commands establish the network settings that produce the largest
throughput without excessive time outs or retries. These are the echo command
arguments:

netdev_max_backlog
Specifies the maximum number of incoming packets that can be enqueued
for upper-layer processing. This is a global variable.

somaxconn
Specifies the maximum number of pending connection requests queued for
any listening socket. These are set to high values that reflect the
expectation of a high initial and high sustained number of both
connections and incoming packets.

tcp_fin_timeout
Specifies how long to keep sockets in the state FIN-WAIT-2 if the socket is
being closed. A longer timeout means that socket structures are held in
memory longer, while the current timeout value of 30 seconds assumes
reasonable completion times and conserves memory.

tcp_syn_retries
Specifies how many times to try to retransmit the initial SYN packet for an
active TCP connection attempt. The current setting is 20, which means that
there are 20 retransmission attempts before the connection times out. This
can take several minutes, depending on the length of the retransmission
attempt.

tcp_synack_retries
Specifies how many times to try to establish a passive TCP connection that
was started by another host. This parameter is also set to a fairly small
value for the same reasons that the tcp_syn_retries parameter was set to a
fairly small value.

12 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

arp_ignore
Defines different modes for sending replies in response to received ARP
requests that resolve local target IP addresses. An arp_ignore value of 3
means to not reply for local addresses configured within the host, but to
reply only for global and link addresses.

arp_announce
Defines different restriction levels for announcing the local source IP
address from IP packets in ARP requests sent on interface. An
arp_announce value of 2 means to always use the best local address for
this target, even if it means ignoring the source IP address and choosing
the preferred IP address for the destination host.

Linux kernel settings for the DB2 Universal Database system
These are the DB2 Universal Database (UDB) Linux kernel settings.

The kernel semaphore settings recommended for DB2 are used. To use these
settings, the kernel.sem setting is placed in the file /etc/sysctl.conf.
kernel.sem=”250 32000 32 4096”

The values in this line are:
v The first value is the number of semaphores per array: 250.
v The second value is the maximum number of semaphores system wide: 32000.
v The third value is the maximum number of operations per semop call: 32.
v The fourth value is the maximum number of semaphore arrays: 4096.

The use of these values also implies a maximum number of system-wide
semaphores, which is calculated by multiplying the maximum number of
semaphore arrays by the number of semaphores per array (4096 multiplied by
250). In this case, the value for system wide semaphores was capped at 32 000.

This setting is activated automatically at system start time when the boot.sysctl
service is enabled, or at run time by issuing this command:
sysctl -p /etc/sysctl.conf

Also, the kernel swappiness parameter is set to zero, as described in “Setting
swappiness parameter to zero” on page 11.

Chapter 4. Linux kernel settings 13

14 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

Chapter 5. Setting up WebSphere and DB2 Universal
Database

To optimize the performance of WebSphere and DB2, tuning scripts are defined
and used.

The scripts included in “Configuration, tuning, and performance scripts,” on page
47 were used to tune WebSphere and DB2 Universal Database (UDB) for the
workload. The WebSphere scripts are jacl-based and run only one time. The DB2
tuning scripts are run each time that the database is created. Adapting the buffer
pools and configuration settings improves DB2 performance. Modifications of the
WebSphere settings are needed in addition to the jacl scripts, as well as changes to
settings that are part of the tests.

WebSphere V6.1.0 configuration
Settings are chosen to improve the performance of WebSphere when running this
workload. While many of these settings are applicable to other workloads, the
settings and their chosen values might not be appropriate for production
environments.

Java DataBase Connectivity connection pools
JDBC connection pools are established to allow multithreaded applications to
request resources from a backend database without having to incur the connect
and disconnect overhead on every database request.

Using larger Java DataBase Connectivity connection pools has the advantage of
holding previously-used connections active in the pool, so that applications and
application threads can share (or pool) their backend database connections.
Subsequent requests by different threads can use an existing connection and avoid
the overhead of new connection creation and teardown, as well as the overhead of
being queued.

Increasing the size of the connection pool increases the memory requirements on
WebSphere and DB2. Therefore, the connection pool requirements must be
balanced against available server memory. Users from Web-based applications
often issue short-lived transactions, where reducing connect and disconnect times
can provide greatly improved response times.

Figure 2 on page 16 displays the values for the Java DataBase Connectivity
connection pools. These are the selected settings:
v A minimum and maximum connection pool value of 100.
v A Connection timeout value of zero, which means that when there are no

available connections (all 100 are in use), the connection request waits for an
indefinite amount of time.

v A Reap time value of zero, which disables the pool maintenance thread so that
the other time-outs related to pool maintenance become irrelevant.

v All other values set to zero.

© Copyright IBM Corporation © IBM 2009 15

Java DataBase Connectivity data source properties
The settings used to configure the Java DataBase Connectivity (JDBC) data source
properties were chosen to maximize performance.

Figure 3 on page 17 displays the settings for the JDBC data source properties.
These are the selected settings:
v A statement cache size of 60 statements was selected because the workload

produces approximately 60 unique SQL statements that are then stored as
precompiled SQL objects.
Caching these statements improves performance because each cached statement
can then be run multiple times without the cost of additional statement
preparation. Increasing the cache size to be greater than the number of needed
statements is related to higher memory use, which is probably not needed. Too
small a cache size causes cached statements to be discarded, and these
statements might have to be recreated in the future.

v The setting to enables JMS one-phase optimization support allows JMS to obtain
optimized connections from the data source. The workload uses message queues
for access to the database; therefore this setting was enabled.

Figure 2. Setting JDBC connection pools

16 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

Object Request Broker thread pool
The Object Request Broker (ORB) is a service that handles requests from clients
over the Remote Method Invocation/Internet Inter-ORB Protocol (RMI/IIOP). One
part of the workload driver connects to the workload application using its
Enterprise Java Beans (EJBs) with Remote Method Invocation of Java methods
(RMI) using RMI/IIOP.

The ORB thread pool values are adapted to the expected amount of RMI/IIOP
traffic. Figure 4 on page 18 displays the setting for the ORB thread pool. These are
the selected settings:
v The size of the ORB pool is set to 15 for the minimum and maximum number of

threads.
v The thread inactivity timeout is set to 3500 milliseconds.

WebContainer thread pool
The WebContainer thread pools are used for HTTP requests that come from the
client.

Figure 3. JDBC data source configuration

Chapter 5. Setting up WebSphere and DB2 Universal Database 17

Figure 4 displays the WebContainer thread pools settings. These settings were
chosen due to the high HTTP traffic generated by the workload, to prevent
requests from being queued in the transport chain when all threads are busy. These
are the selected settings:
v The size for the WebContainer pool is set to 35 minimum and 35 maximum

threads.
v A timeout value is set to 3500 milliseconds.

Default thread pool
The parameters associated with the default thread pool are modified to reuse
threads instead of creating new ones.

Figure 4 displays the default thread pools settings. These are the selected settings:
v The size for the default thread pool is set to 10 minimum and 10 maximum

threads.
v A timeout value is set to 3500 milliseconds.

HTTP transport settings
The default values for the HTTP transport channels associated with a transport
chain are modified to improve performance.

Figure 4. Thread pool

18 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

For the workload, the parameters associated with the chain using port number
9080 are relevant. In the WCInboundDefault window, select the HTTP Inbound
Channel (HTTP_2) link.

Figure 5 displays the HTTP transport settings. These are the selected settings:
v The read timeout is set to 6000 seconds.

This ensures that clients sending data have enough time to send their data.
v The write timeout is set to 6000 seconds.

This ensures that a client can receive all the data being sent (written) to them.
v The HTTP keep-alive setting is modified by increasing the value of the persistent

timeout selection from 30 to 3000 seconds.
This ensures that even when there is no activity, a connection is kept open for
3000 seconds for clients needing a connection to make a request.

v The Maximum persistent requests per connection selection, which would
prevent more than a certain number of requests, is disabled. This sets the radio
button for Unlimited persistent requests per connection.

Figure 5. HTTP transport settings

Chapter 5. Setting up WebSphere and DB2 Universal Database 19

Enterprise Java Beans cache settings
This value specifies the number of buckets in the active instance list available for
Enterprise Java Beans (EJBs).

A bucket can contain multiple enterprise bean instances. This ensures that more
entity beans can be kept active in the EJB cache, improving EJB performance. The
expected number of active enterprise beans determines the best value for the EJB
cache setting, and a larger EJB cache setting means more buckets are allocated.

When the number of instances exceeds the available space in the buckets, some
beans are made passive to allow new beans to become active instances. Because
EJB buckets are allocated from memory, increasing EJB cache settings comes at the
expense of additional memory.

Figure 6 displays the EJB cache settings. For the workload, the EJB cache setting is
changed from the default value to 16533.

Tune the Java Virtual Machine properties
The Java Virtual Machine (JVM) heap is the amount of available memory allocated
to the Java virtual machine. The JVM minimum and maximum values are set
based on heap size studies, with different values for 64-bit WebSphere running a
64-bit JVM, and 31-bit WebSphere running a 31-bit JVM.

Figure 7 on page 22 displays the JVM properties. The selected settings are:
v EJB cache setting is changed from the default value to 16533.
v Both the heap minimum and maximum values are set to the optimum values for

the workload, 6144.
v Verbose garbage collection is selected in order to record that information.
v Under the Generic JVM arguments, these settings are added:

-Dcom.ibm.ws.pm.batch=true
-Dcom.ibm.ws.pm.deferredcreate=true
-Dcom.ibm.CORBA.FragmentSize=3000

The Generic JVM arguments:

Figure 6. EJB cache settings

20 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

com.ibm.ws.pm.batch=true
The flag is used when an application updates multiple container-managed
persistence (CMP) beans inside of a single transaction. This flag can be
used to allow batching of the update so that one transaction containing
both update transactions is presented to the database instead of two or
more transactions. This flag is used only when the database supports
batching of update operations, and the application regularly accesses
multiple CMP beans for update. This saves round trips to the database,
improving performance on these operations.

com.ibm.ws.pm.deferredcreate=true
The flag also provides a performance benefit on an ejbCreate() method call.
The default behavior is to immediately insert an empty row into the
database with only the primary key. Most transactions then modify fields
within the bean, so the insertion of the row into the database can be
deferred until the data in the rows is actually present, saving a database
call.

com.ibm.CORBA.FragmentSize=3000
The setting makes the size of the Object Request Broker (ORB) fragment
3000 bytes. The ORB separates messages into fragments to send over the
ORB connection. The 3000 byte size was calculated to be a good size for
this workload.

Chapter 5. Setting up WebSphere and DB2 Universal Database 21

Other Java Virtual Machine arguments
These Java Virtual Machine (JVM) arguments were identified as beneficial to the
workload used here, and other benchmarks with similar characteristics to the
workload. The values are specific to the workload and should not be expected to
necessarily benefit other workloads or production environments.
-noclassgc -Xss128k -Xgcpolicy:gencon -Xmo768m -Xcodecache16m -Xgcthreads4
-Djava.net.preferIPv4Stack=true -Dsun.net.inetaddr.ttl=0

-Xgcpolicy:gencon
Directs the JVM to manage its heap using the generational concurrent or
split heap. This benefits applications with many short-lived objects, and is
discussed in Chapter 3, “System setup,” on page 7.

-Xmo768m
Specifies that 768 MB of memory is to be dedicated to the tenured part of
the split heap, with the remaining part of the JVM heap dedicated to
buffers and new object or nursery areas. This value is changed for some
64-bit measurements.

Figure 7. Java Virtual Machine settings

22 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

-Xnoclassgc
Directs the JVM to not perform garbage collection on the classes that reside
in the permanent or tenured space in the split heap.

Unloading of these classes means that future references require a costly
load from the file system, instead of an efficient memory load. This is a
commonly used setting for workloads with repetitive use of the same
classes.

-Xgcthreads4
Instructs the JVM to start four threads for garbage collection. The default
value is to have as many garbage collection threads as there are available
processors.

-Xss128k
Allocates 128 KB of memory for the native stack area of each thread. The
native stack area is used for native library loads by Java from the C/C++
environment, which is the native layer.

-Xcodecache16m
Sets the size of each block of memory that is allocated to store native code
of compiled Java methods to 16 MB. By default, this size is selected
internally according to the CPU architecture and the capacity of your
system.

Transaction service properties
The values of the total transaction lifetime timeout and the client inactivity timeout
are set to zero.

Total transaction lifetime timeout
Sets the number of seconds that a transaction can remain inactive before it
is ended by the transaction service. A value of 0 indicates that there is no
timeout limit.

Client inactivity timeout
Sets the number of seconds for which a transaction started by, or
propagated into, this application server can run before it is ended by the
transaction service. A value of 0 indicates that there is no timeout limit.

To set these parameters on the WebSphere Administration console, where server1
stands for the name of the application server:
1. Click Application Servers → server1 → Container Settings → Container Services.
2. Click Transaction Service link.
3. Set Total transaction lifetime timeout to 0.
4. Set Client inactivity timeout to 0.

Disable Java 2 security
Java 2 security is disabled because security policy files are not available for the
workload.

Note: This is not recommended for production environments.

To reset these parameters on the WebSphere Administration Console:
1. Click Security → Global security. The Global security panel is displayed
2. Clear the Enforce Java 2 security option.

Chapter 5. Setting up WebSphere and DB2 Universal Database 23

DB2 V9.5 configuration
Settings for DB2 Version 9.5 used in the 64-bit and 31-bit WebSphere study with
J2EE workloads include settings for the kernel, log files, and buffer pools.

These settings are illustrated in the script contained in “Initial database setup.”

Kernel settings

The recommended kernel semaphore settings are used, as described in “Linux
kernel settings for the DB2 Universal Database system” on page 13.

Log files

Before creating a new database, scripts are run to define the DB2 log files and an
appropriate buffer pool. The first three commands in “Initial database setup”
specify these options:
v DB2 logs will each have 65 MB of space
v A value of 40 logs, for a total of 2.6 GB of log file space
v The /db2log directory contains these 40 log files

Restarting DB2 causes the logs to be put to use, so the available space in the
newlogpath directory then decreases, which reflects the allocation and use of the
DB2 logs.

Buffer pools

The size of the default buffer pool is dependent on available memory, and is later
readjusted by the DB2 autoconfigure commands. The size of the default buffer pool
is set initially to 975 MB. This size then changes dynamically during execution,
increasing or decreasing depending on the workload.

Initial database setup
The initial database setup specifies details about log files and buffer pools.

Use this script for the initial setup of the database used in the 64-bit and 31-bit
WebSphere study with J2EE workloads.
db2 update db cfg for <dbname> using logfilsiz 65535
db2 update db cfg for <dbname> using logprimary 40
db2 update db cfg for <dbname> using newlogpath /db2log
db2 connect to <dbname>
db2 -v alter bufferpool ibmdefaultbp size 975000 automatic
db2 connect reset
db2stop;db2start
db2 connect to <dbname>
db2 connect reset

Tuning the populated database
After the initial setup, the database is populated using a DB2 restore operation.

Before the database is used, it is tuned with these commands:
db2 connect to <dbname>
db2 autoconfigure using mem_percent 80 workload_type simple num_stmts 60 tpm 2000
is_populated yes num_local_apps 0 num_remote_apps 100 isolation rs bp_resizeable yes
apply db and dbm

24 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

db2 terminate
db2 connect to <dbname>
db2 reorgchk update statistics on table all
db2 terminate

See “DB2 autoconfigure command” for a detailed explanation of each argument.

DB2 autoconfigure command
These are the arguments for the DB2 autoconfigure command used to optimize
database performance.

These arguments are specified on the DB2 autoconfigure command displayed in
“Tuning the populated database” on page 24.

mem_percent 80
Allocates 80% of the memory as a buffer pool.

num_stmts 60
Indicates that there are approximately 60 unique SQL statements with this
workload.

workload_type simple
Indicates that the workload uses simple SQL statements, those most
commonly used by WebSphere.

tpm 2000
Indicates the maximum expected number of transactions per minute,
which is estimated at 2000.

num_remote_apps 100
Specifies the number of connections to the database from WebSphere,
which is set in this WebSphere configuration.

rs Indicates an isolation level of read stability, which is required by most of
the Java beans. Isolation level rs means that database rows that are read by
one activation bean are only read when they are not being updated by
another bean. However, subsequent reads can reflect intervening updates
by different beans.

bp_resizeable yes
Tells DB2 to use its autoconfiguration capabilities to adjust the size of the
buffer pool from its original size during future database operations, in a
dynamic manner.

The reorgchk update statistics on table all command updates the statistics
information from the catalog table to find the best plan to access table data. It is
important that this information is current for the optimizer to be able to make the
right decisions here. The reorgchk command runs a RUNSTATs operation on every
table, which improves the query performance for each DB2 table.

Chapter 5. Setting up WebSphere and DB2 Universal Database 25

26 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

Chapter 6. Workload description

A benchmark emulating a customer-like workload was used for the 64-bit and
31-bit WebSphere study with J2EE workloads.

The workload was chosen to stress the middleware and J2EE components using an
end-to-end Web application. The applications are a collection of
v Java classes
v Java Servlets
v Java Server Pages
v Web Services
v Enterprise Java Beans (EJBs) built to open J2EE APIs

All major components of J2EE technologies are exercised, including:
v The Web container (servlets and JSPs)
v The EJB container
v EJB 2.0 Container Managed Persistence
v Java Messaging Service (JMS)
v Message Driven Beans (MDBs)
v Transaction management
v Database connectivity

The workload exercises all parts of the infrastructure, such as hardware, JVM
software, database software, Java DataBase Connectivity (JDBC) drivers and the
system network. The workload implements a Web layer and makes extensive use
of JMS and MDB technology.

The workload is a retail and manufacturing application implementing a set of user
services such as login and logout, stores, buying, selling, account details, and so
on, using standards-based HTTP and Web services protocols. In addition to the
retail domain, a manufacturing work order domain is also simulated to drive other
high-volume transactions. The retail domain uses Web layer connections to access
the applications, with the manufacturing domain connecting to the application
with the EJBs with the RMI protocol using RMI/IIOP.

These server connection modes are used:

EJB Database access uses EJB 2.1 methods to drive retail and manufacturing
operations.

Direct Database and messaging access using direct JDBC and JMS code.

Type 4 JDBC connectors are used with EJB containers.

The workload is driven by the workload generator machines at a certain
submission rate. Data must be present in the database before running the
customer’s workload simulation. The number of retailers, number of customers,
and manufacturing data varies with the intended submission rate.

Scripts to load the database use an argument representing the amount of data to
load. For submission rates greater than 100, they are a multiple of 100. For

© Copyright IBM Corporation © IBM 2009 27

example, at submission rate 110 the database scripts are given an argument of 200.
The database size is therefore roughly correlated with the submission rate.

28 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

Chapter 7. Results

The results of the 64-bit and 31-bit WebSphere study with J2EE workloads are
presented, along with observations and conclusions.

Results are observed and analyzed according to these categories:
v “Heapsize for the 64-bit Java Virtual Machine”
v “Comparing 64-bit WebSphere versus 31-bit WebSphere” on page 31
v “CPU scaling study” on page 35
v “Database LPAR analysis” on page 39
v “Network study – 1 Gb Ethernet versus 10 Gb Ethernet” on page 42

Heapsize for the 64-bit Java Virtual Machine
To compare the performance of 64-bit WebSphere to 31-bit WebSphere, an attempt
was made to identify the optimal percentage of available memory to dedicate to
the JVM heap for the workload.

A starting value of 50% of available memory was used, and the value was
increased to 80%. Throughput, workload operations per second, and CPU
utilization are recorded. Response times are also recorded as another possible
measure of optimization.

The data is collected at two different workload submission rates, 300 and 500, with
either four or eight CPUs, and with either 4 GB or 8 GB of memory configured on
the WebSphere LPAR. Within each submission rate, WebSphere’s JVM minimum
and maximum heap settings are set to identical values corresponding to different
percentages of the LPAR’s configured memory.

To analyze the results, two comparisons were done:
v “Throughput and CPU utilization”
v “CPU utilization and response times” on page 31

Throughput and CPU utilization

The results for throughput and CPU utilization are summarized in Table 5, and
displayed graphically in Figure 8 on page 30.

Table 5. Heapsize studies of 64-bit WebSphere: throughput, CPU load, and response time using workload submission
rate 300 and 500, and different JVM heap percentages of total available memory

Workload
submission

rate

Number of
CPUs

Memory in
GB

Heap percentage of
memory

Normalized
workload

throughput

CPU
utilization

Response time
(ms)

300 4 4 33% 100% 346% 349

300 4 4 60% 100% 322% 334

300 4 4 69% 100% 315% 343

300 4 4 75% 100% 333% 359

500 8 8 59% 165% 633% 740

500 8 8 70% 166% 542% 751

© Copyright IBM Corporation © IBM 2009 29

Table 5. Heapsize studies of 64-bit WebSphere: throughput, CPU load, and response time using workload submission
rate 300 and 500, and different JVM heap percentages of total available memory (continued)

Workload
submission

rate

Number of
CPUs

Memory in
GB

Heap percentage of
memory

Normalized
workload

throughput

CPU
utilization

Response time
(ms)

500 8 8 75% 165% 554% 706

500 8 8 80% 165% 573% 706

Observation

The measures of throughput are generally fairly constant with this workload. The
CPU utilization generally is lowest at values between 68% and 75% of the available
memory of the processor. When memory of 8 GB is dedicated to the Linux system,
the 75% of available memory value provides the lowest CPU utilization. When
memory of 4 GB is dedicated to the Linux System, the optimal heap size tends to
be closer to the 70% of available memory value.

Conclusion

The throughput seems to be dependent only on the submission rate. When
sufficient resources are available to support a certain submission rate, more
resources do not increase the throughput. The CPU utilization seems to be a better
parameter to determine the best JVM heap size. For this workload, a value of
between 70% and 75% from the main memory is the best, where smaller heap sizes
are better for smaller memory sizes.

Figure 8. Heap size studies of 64-bit WebSphere: throughput and CPU load at workload submission rate 300 and 500,
and different JVM heap percentages of total available memory

30 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

CPU utilization and response times

Another parameter to observe is the response time between the simulated Web
operation, such as a purchase or a browse operation, and the turnaround time of
the request from the WebSphere system. The results for CPU utilization and
response time are summarized in Table 5 on page 29 and displayed graphically in
Figure 9. Response times are shown as a bar chart, and unlike throughput
measures, smaller response time values are considered optimal.

Observation

In this workload, the CPU utilization is lowest, and the response times shortest, at
between 68% and 75% of the available memory of the processor. Mainly it seems
that the response time follows the CPU utilization.

Conclusion

The correlation of response time with CPU utilization when scaling the Java heap
size indicates that both have a common dependency. A larger heap can avoid some
garbage collection, which leads to a decreasing CPU utilization. And it seems that
a heap that is too large increases the CPU utilization (user space CPU), probably
caused by an increased garbage collection duration that degrades performance
when compared with a smaller heap size. For the other studies with 8 GB memory,
a heap size of 75%, which is 6144 MB, was used.

Comparing 64-bit WebSphere versus 31-bit WebSphere
This study compares the performance of 64-bit WebSphere to 31-bit WebSphere .

Figure 9. CPU utilization and corresponding average response times at different JVM heap percentages

Chapter 7. Results 31

Performance of 64-bit WebSphere

The workload stresses all of the major J2EE components in the middleware layer,
but does not stress the database or client software layers. The intent was to explore
how deploying on a WebSphere Application Server running the 64-bit JVM versus
deploying on the 31-bit version affected performance. This workload uses most of
the J2EE components, including some components that other applications are only
beginning to exploit, such as message queues and the service oriented architecture
(SOA). Here data points are used where expected CPU utilization would not be
maximized as it was in the CPU scaling studies, so CPU usage is not a limiting
resource.

Costs and advantages of using 64-bit WebSphere

Significant performance gains are expected in applications capable of taking
advantage of 64-bit WebSphere features. For example, reducing database requests
by leveraging a large heap space to cache database data can provide significant
gains. However, there is also a disadvantage for 64-bit WebSphere applications. All
address references are 64-bits wide, roughly double the size of address references
in 31-bit deployments. This results in an increased memory footprint and can
reduce hardware cache efficiency. Therefore, applications might actually see a
performance loss. The 64-bit processors also provide hardware support for
double-precision numbers and wider 64-bit integers.

Heapsize and other factors

As with other studies, a 75% heap size value is chosen for all variations of the
64-bit WebSphere test, and used the 1024 MB (1 GB) heap size variation of the
31-bit WebSphere test. For 31-bit WebSphere, a mapped_base kernel setting is used
to reduce the kernel memory footprint and provide more space for the 1 GB heap
to live inside the 2 GB 31-bit address space.

At a workload submission rate of 600, the response times were unacceptably long.
Reports generated by the sar command show that the network traffic between the
client systems and the WebSphere system was exceeding the capacity of the
network card on the WebSphere Application Server LPAR. Therefore, the 1 Gb
OSA card is replaced with a 10 Gb OSA card for the test cases with a workload
submission rate of 600. The network issue is discussed in detail in “Network study
– 1 Gb Ethernet versus 10 Gb Ethernet” on page 42.

Garbage collection

The -Xgcpolicy:gencon garbage collection option specifies a choice of either Split
Heap or Generational Concurrent garbage collection mode. The heap is split into
two areas: the tenured area for long-lived objects, and a nursery area, where new
and recently used objects are stored. This garbage collection features a movement
of longer-lived objects (ones that have survived between five and ten scavenger
garbage collections) to the tenured heap. The global garbage collection is a garbage
collection of the tenured area with the longest-lived objects. This global garbage
collection is associated with pause times, during which objects managed by the
JVM are held exclusively (locked) and not available to the application. The
Generational Concurrent option was chosen for this workload due to the existence
of very short-lived objects coexisting with longer-lived J2EE objects that survive
beyond the transactional commit phase.

32 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

The tenured heap size is set with the -Xmo<sizeM> JVM option. For example,
-Xmo768m defines a 768 MB tenured area. The remainder of the heap is then
dedicated to a nursery area. The -Xmo2048m option was chosen for the tenured
area on the 64-bit runs using 8 GB of memory. The option -Xmo768m was chosen
for the 31-bit JVM because the total heap for the JVM is only 1024 MB. It is
possible to increase the tenured area to an even larger size on 64-bit WebSphere,
but at the value of 2048m for the tenured area, only one global garbage collection
occurs during the 10 minute steady-state interval, and that frequency of tenured
area maintenance is considered acceptable. For more information about these
options, see “Other Java Virtual Machine arguments” on page 22.

Methodology

CPU utilization, workload throughput, and response times were measured during
the steady-state phase with workload submission rates of 300, 500 and 600. For the
300 workload submission rate, four dedicated CPUs were assigned to the system
being tested. For the 500 and 600 workload submission rates, eight dedicated CPUs
were used. The DB2 image continued to run with four CPUs and 8 GBs of
memory. The submission rates reflect a high but not fully-utilized CPU load.

CPU utilization, throughput, and response time measurements are summarized in
Table 6 and displayed graphically in Figure 10 on page 34 and Figure 11 on page
34.

Table 6. 64-bit and 31-bit WebSphere comparison: CPU utilization, workload throughput, and response time
measurements

31-bit or
64-bit JVM

Workload
submission rate

Normalized
workload

throughput

Number of
CPUs

CPU utilization
Response
time (ms)

gc* sec/sec

31-bit 300 100% 4 302% 323 147/0

64-bit 300 100% 4 333% 337 61/0

31-bit 500 165% 8 551% 651 246/0

64-bit 500 165% 8 538% 709 76/0

31-bit 600 200% 8 612% 562 276/9

64-bit 600 200% 8 641% 518 127/1

*gc = nursery heap garbage collection in seconds divided by tenured heap garbage collection in seconds

Chapter 7. Results 33

Observations

The same throughput is observed for 31-bit and 64 bit WebSphere Application
Servers. Also, the CPU utilization is very similar. There is a difference in the
response time, which is slightly slower on 64-bit WebSphere Application Servers,
until the 600 submission rate test, and then the response time on 64-bit WebSphere
Application Servers is slightly better than 31-bit WebSphere Application Servers.

Figure 10. 64-bit and 31-bit WebSphere comparison: CPU utilization and throughput

Figure 11. 64-bit and 31-bit WebSphere comparison: Response time (in milliseconds)

34 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

The Java garbage collection statistics were added to show the effect of the larger
heap sizes of 64-bit WebSphere on the total amount of time spent in garbage
collection. More total time spent in garbage collection is observed on the 31-bit
WebSphere than on the 64-bit version. On 31-bit, the average duration of garbage
collection intervals is much shorter, but the frequency of garbage collection is much
higher than on 64-bit. The total garbage collection time is used, which takes into
account both garbage collection frequency and duration.

Using total garbage collection time, the time spent in garbage collection on 64-bit
WebSphere was, approximately between 30% and 46% of the garbage collection
time spent on the 31-bit version, significantly lower. At the highest workload
submission rate of 600, the garbage collection time of the tenured heap area
(Global garbage collection) was up to ten times longer on 31-bit WebSphere than
on 64-bit WebSphere.

Conclusions

Under this workload, the behavior of the WebSphere Application Server is very
similar for both 31-bit and 64-bit versions. With the larger workload, the 64-bit
WebSphere Application Server has better response time, probably because garbage
collection behaves differently. The -Xgcpolicy:gencon option was specified on the
JVM command line for 64-bit WebSphere as well as the 31-bit WebSphere
installation. The design of Generational Concurrent garbage collection is to
minimize the time spent in global garbage collection of the tenured heap area by
doing some concurrent cleanup of new object areas called nurseries.

Although pause times from exclusive locks held by global garbage collection are
minimized by the JVM, they still consumed 9 seconds of total time on 31-bit
WebSphere versus 1 second of total time on 64-bit WebSphere. This is one
parameter that causes the slightly better response times observed on 64-bit
WebSphere at the higher workloads with the larger 6 GB JVM heap. The larger
tenured area (2048 MB versus 768 MB) on 64-bit WebSphere showed that fewer
stop the world global garbage collections of the tenured area are needed on 64-bit
WebSphere. Another reason for better response time is that the large nursery area
afforded by the large 64-bit heap allows for the storage of more short-lived objects
in memory for longer durations of time, resulting in fewer scavenger garbage
collections and fewer memory allocation failures in the nursery area of the split
heap.

These differences should result in improved performance on 64-bit WebSphere.
However, this improvement is probably offset by the generally higher CPU
requirements of 64-bit WebSphere observed for the workload.

CPU scaling study
This study shows how the workload scales when workload submission rates are
increased while available dedicated Central Processing Units (CPUs) are scaled.

Introduction to CPU Scaling

CPU scaling is a measure of how much workload can be driven when the CPU
resources are increased. An increase of workload can occur when the number of
total transactions or the transaction rate are increased. For this workload, the
workload submission rate (the rate at which work is submitted to the J2EE
middleware layer), has to be increased. However, increased workload in this study
also requires a larger database, which means that not only the workload must be

Chapter 7. Results 35

scaled, but the whole environment. Scaling the whole environment might have
other effects on the performance than just doing more work with the same data.

Maximizing CPU utilization

To determine the performance characteristics of the workload, measurements are
taken using one, two, four, and eight dedicated CPUs on the WebSphere system. A
workload entry rate is chosen that is high enough to drive the CPUs to near full
utilization. The results can be used to gain a better understanding of the scalability
of the workload, and can be used as a way to measure differences in the
performance of the same workload on 64-bit WebSphere versus 31-bit WebSphere.

In all 64-bit WebSphere measurements, the heap settings for the JVM are set to 75%
of the 8 GB available memory. This is the optimum percentage derived from the
study “Heapsize for the 64-bit Java Virtual Machine” on page 29. That worked out
to a 64-bit WebSphere JVM heap settings of -Xms6144m -Xmx6144m. A memory
size of 8 GB is also configured for the DB2 LPAR, which runs with four configured
CPUs for all of the tests.

10 Gb Ethernet chosen for highest workload

The workload submission rate of 600 was found to exceed the capacity of the 1 Gb
Ethernet network. This causes network saturation, dampening throughput and
providing additional work for error handling. The 600 workload submission rate
tests are therefore run using a 10 Gb Ethernet, to remove the effects of a network
bottleneck on the results. A submission rate higher than 600 would have required a
larger restructuring of the environment, because of the higher resource usage from
the clients to WebSphere and up to the database. This would have exceeded the
scope of the study.

CPU Scaling

Dedicated CPUs are assigned to the WebSphere System being tested. The
experiments use one, two, four, or eight dedicated CPUs. The workload is then
varied until a CPU utilization close to or greater than 90% is observed. The
workload is adjusted by changing the workload submission rate. When eight CPUs
are dedicated to the WebSphere image, only approximately 80% total CPU
utilization at a workload submission rate of 600 was observed. This is because, as
explained in “10 Gb Ethernet chosen for highest workload,” different WebSphere or
client tuning values would have been needed for a submission rate greater than
600.

Transaction scaling and response time measurements

The transaction rate is the throughput as reported by the client-side summary
reports. Response time measured is the observed response time of a simulated Web
operation (such as an online Web purchase or a Web browse operation) and the
turnaround of the Web request from the WebSphere system after the completion of
some business logic. These response times are averaged with response times for
manufacturing operations. The performance of the DB2 subsystem is also
represented in this data. Table 7 on page 37 summarizes these results in tabular
format. Figure 12 on page 37, Figure 13 on page 38, and Figure 14 on page 38 are
graphical representations of the results.

36 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

With this workload, the throughput measurements stay fairly constant and
performance degradations are first indicated by increasing response times and CPU
utilization.

Table 7. CPU scaling study: WebSphere V6.1 CPU Scaling results for one, two, four, and eight CPUs at high CPU
utilization

31-bit or
64-bit JVM

Workload
submission rate

Workload
throughput

Number of
CPUs

CPU utilization
Response
time (ms)

31-bit 110 101% 1 87% 432

64-bit 110 100% 1 97% 793

31-bit 190 174% 2 175% 385

64-bit 190 174% 2 189% 654

31-bit 350 322% 4 353% 361

64-bit 350 321% 4 371% 404

31-bit 600 551% 8 612% 562

64-bit 600 550% 8 641% 518

Figure 12. CPU scaling study: Workload transaction rates with 31-bit and 64-bit WebSphere

Chapter 7. Results 37

Observations

The workload scales very linearly for both 31-bit and 64-bit WebSphere Application
Servers. The 31-bit version requires a little less CPU at higher workloads than the
64-bit version. The utilization of the CPUs also scales very linearly for both 31-bit
and 64-bit WebSphere.

Figure 13. CPU scaling study: CPU utilization with 31-bit and 64-bit WebSphere

Figure 14. CPU scaling study: Response times with 31-bit and 64-bit WebSphere

38 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

An unexpected behavior is shown by the response time. The response time
becomes shorter with the higher workloads when using a larger number of CPUs,
and increases again on the last scaling step with the highest workload. Here, the
31-bit WebSphere Application Server differs significantly from the 64-bit
WebSphere Application Server; the response time with one CPU is much shorter,
but the gap decreases with the scaling. At a submission rate of 600 with eight
CPUs, the 64-bit WebSphere Application Server’s response time becomes shorter.

Conclusions

The very good linear scaling in throughput and CPU utilization makes scaling of
this workload easy for a system administrator. The difference between the 31-bit
WebSphere and the 64-bit WebSphere is small. The more efficient garbage
collection of the 64-bit version seems to compensate for the drawback of the larger
memory addresses, as seen in other studies. See http://
download.boulder.ibm.com/ibmdl/pub/software/dw/linux390/perf/ZSW03030-
USEN-00.pdf.

At higher workload submission rates, the advantages of a larger heap on 64-bit
WebSphere result in an improving response time curve. A more detailed analysis of
garbage collection can be found in “Comparing 64-bit WebSphere versus 31-bit
WebSphere” on page 31.

A CPU utilization greater than 90% was not observed for the higher workloads,
indicating an unidentified bottleneck, which might be the HiperSockets connection
between the WebSphere Application Server and the database. Additional
investigation would be required to determine the cause of this bottleneck. The high
CPU utilization of 97% of the one CPU run with the 64-bit WebSphere becomes
critical for a system running with HiperSockets, and is very likely the reason for
the high response times there.

Large heaps provide more space for both long-lived and newly-created objects. It
seems that the Generational Concurrent garbage collection option works very
efficiently, even for this workload, which was designed to have a high load and
resource utilization on the WebSphere Application Server.

Database LPAR analysis
This study measures the effect on the DB2 relational database of scaling the
workload and the CPUs on the WebSphere system.

Even though the transactional workload stresses the DB2 backend database system
only slightly, this stress shows the effects resulting from scaling the workload and
the CPUs on the WebSphere system.

Methodology

The DB2 snapshot tool is used to collect database snapshot data before and after
the steady state portion of the workload. The Dynamic SQL statements attempted
during the 10 minute steady state were added to the static SQL statements, and a
DB2 workload throughput rate is established. CPU utilization data was also
obtained. The CPU cost per unit is calculated as sql/sec/CPU * 100, meaning that
the number of transactions driven with 100% CPU (== 1 Integrated Facility for
Linux (IFL)). This is the value shown in the sql/sec/CPU * 100 column. It is a
measurement of the throughput that takes into account the CPU cost.

Chapter 7. Results 39

http://download.boulder.ibm.com/ibmdl/pub/software/dw/linux390/perf/ZSW03030-USEN-00.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/linux390/perf/ZSW03030-USEN-00.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/linux390/perf/ZSW03030-USEN-00.pdf

Table 8 summarizes these results in tabular format. Figure 15, Figure 16 on page 41,
and Figure 17 on page 41 are graphical representations of the results.

Table 8. Database LPAR analysis: DB2 UDB CPU utilization and throughput

Workload
throughput

31-bit or 64-bit
WebSphere

CPU utilization
SQL statements per

second
sql/sec/CPU * 100

101 31-bit 23% 4193 18326

100 64-bit 25% 4282 17350

174 31-bit 38% 7263 19013

174 64-bit 39% 7233 18700

322 31-bit 65% 13500 20692

321 64-bit 65% 13476 20732

551 31-bit 115% 21853 19057

550 64-bit 120% 22973 19176

Figure 15. Database LPAR analysis: Database transaction rate for scaling WebSphere Application Server CPUs and
workload submission rate.

40 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

Observations

The number of SQL statements per second for the 64-bit WebSphere Application
Server is very linear, while the 31-bit WebSphere Application Server causes fewer
statements per second at a submission rate of 600. The CPU utilization scales
linearly up to a submission rate of 350, with a higher slope to the submission rate
of 600, where it increases faster with a 64-bit WebSphere Application Server.

Figure 16. Database LPAR analysis: CPU utilization on Database LPAR

Figure 17. Database LPAR analysis: Normalized internal SQL transaction rate

Chapter 7. Results 41

Looking at the CPU cost in terms of how many statements are driven with one
CPU, it is shown that the cost is independent of the addressability from the
application server, except for the submission rate of 110. It is also shown that
submission rate 350 achieves the largest number of SQL statement processed with
the database CPUs.

Conclusions

The CPU load of the DB2 LPAR is generally quite light for the transaction
workload. A full CPU is rarely used unless there are eight CPUs used on the
WebSphere system. The workload generally uses short data records and does not
use complex SQL statements, so the amount of backend database load is expected
to be light.

It should be remembered that in an end-to-end transaction, the performance of the
middleware will affect the DB2 CPU utilization and workload throughput. The
DB2 load originating from 31-bit or 64-bit WebSphere was nearly identical. The
higher cost on the 64-bit version at a submission rate of 110 strongly suggests that
the WebSphere CPU load is too high for the HiperSockets connection, because
missing CPU resources for the HiperSockets on the middleware will cause
overhead on the database for re-sending packets.

Network study – 1 Gb Ethernet versus 10 Gb Ethernet
This is a study of network traffic between the WebSphere Application Server and
the workload generating clients. Network traffic is measured during workload
runs, and the issue of network saturation is discussed.

Network considerations

In analyzing the first data from the workload submission rate 600 runs, as shown
in “Comparing 64-bit WebSphere versus 31-bit WebSphere” on page 31, response
times increased dramatically from sub-seconds to approaching 5 seconds. With
CPU utilization at less than 75%, little or no swapping has occurred, indicating
that there is no contention for resources. While the configuration of WebSphere and
DB2 was designed to take advantage of the available memory, the near absence of
swapping to disk indicates that constrained memory did not cause the poor
response time.

Examination of the sar and netstat command data from submission rate 500 runs
showed good response time, so it had to be determined if the workload
submission rate of 600 created network traffic exceeding the bandwidth of the 1 Gb
OSA Express2 Ethernet card. Some benchmark measurements indicated some
reduced throughput at a workload submission rate of 600.

Methodology

Several key measurements are taken to establish network traffic rates at different
data points. Network traffic bits per second are found in the sar command report
under these two fields:

rxkB/s Represents kilobytes per second read.

txkB/s Represents kilobytes per second transmitted.

To use these values to obtain a total number of network bits per second, perform
this calculation:

42 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

1. Add the rxkB/s and txkB/s values together.
2. Multiply this sum by 1024. This produces the total number of bytes.
3. Multiply the total number of bytes by eight. This produces the total number of

network bits per second.

The total number of network bits per second is a good overall measurement of
network traffic.

Two measurements of network congestion consistent with an I/O-bound workload
were obtained. The first measurement, segments retransmitted, came from the
netstat command report. A netstat snapshot before and after the workload is taken,
because the ramp-up or warmup phase of the benchmark would also accumulate
network data and that should not be included in the measurements.

To calculate the number of segments retransmitted during the steady-state phase,
subtract the number of segments retransmitted found in the first netstat command
report (that included ramp-up data) from the number displayed in the second
report.

The second measurement, txdrop/s is the number of packets dropped per second,
because of resource constraints. It is found in the sar report.

Table 9 summarizes these results in tabular format. Figure 18 on page 44 and
Figure 19 on page 44 are graphical representations of the results.

Table 9. Network study: Data read and written per second, segment retransmits, and packets dropped

31-bit/64-bit
WebSphere

Workload
submission rate

Network card link
speed

Megabits read or
written per

second

Segments
retransmitted

txdrop/sec

31bit 500 1 Gb Ethernet 746 N/A 0.46

64-bit 500 1 Gb Ethernet 749 N/A 0.29

31bit 600 1 Gb Ethernet 770 N/A 241

64-bit 600 1 Gb Ethernet 783 158,828 249

31bit 600 10 Gb Ethernet 901 4232 0.75

64-bit 600 10 Gb Ethernet 902 198 0.07

Chapter 7. Results 43

Figure 18. Network study: Utilization of the 1 Gb OSA card from the WebSphere Application Server from the traffic to
the clients

Figure 19. Network study: Utilization of the 10 Gb OSA card from the WebSphere Application Server from the traffic to
the clients

44 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

Observations

The number of packets dropped per second was a high value (greater than 240) for
both 64-bit and 31-bit WebSphere. Related to these same high drop rates is a high
number of segment retransmits, which additionally increase the load on the
network card. With the 10 Gb Ethernet card, the total throughput increased by
12%, and the amount of packages increased by 14%.

Conclusions

The poor response times with the workload submission rate of 600 could be easily
attributed to network I/O traffic reaching the limit of the 1 Gb Ethernet on the
WebSphere system being tested. The results also show that for this workload, the
practical limit for good response time on a 1 Gb Ethernet might be approximately
780 Mb per second, which indicates that the throughput itself is not the major
limiting factor.

Another factor is the number of packages, where the number of 80 000 packages or
more could be considered as close to the upper limits. There is seen, on average, a
very small package size here (less than 100 bytes). In these cases, the maximum
throughput will not be reached because the high number of I/O requests per
second are the limiting factor. This might also reach limits on other resources such
as the network switch.

Chapter 7. Results 45

46 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

Appendix. Configuration, tuning, and performance scripts

These configuration, tuning, and performance scripts were used in the 64-bit and
31-bit WebSphere study with J2EE workloads.

Script for first time database creation run before database load
db2 update db cfg for mydb using logfilsiz 65535
db2 update db cfg for mydb using logprimary 40
db2 update db cfg for mydb using newlogpath /db2log
db2 connect to mydb
db2 -v alter bufferpool ibmdefaultbp size 675000 automatic
db2 connect reset
db2stop;db2start
db2 connect to mydb
db2 connect reset

Tuning script for DB2 after database load
DB2 Auto Configurator Example
#
Using this command can help you tune DB2 automatically for your environment
#
1. Manually adjust your log file locations
2. Specify the values that is needed for DB2 Auto Configurator
#
#
Example:
#
db2 autoconfigure using mem_percent 80 workload_type simple num_stmts 60
tpm 2000 is_populated yes
num_local_apps 0 num_remote_apps 65 isolation rs bp_resizeable
yes apply db and dbm
#
mem_percent - the percentage of system memory you would like to use for
bufferpool memory.
#
Workload_type - for our purpose, WebSphere generally uses simple SQLs.
#
num_stmts - number of statements involved in the workload
#
tpm - estminate the transaction per minute that you want DB2 to handle
#
is_populated - is the database populated with data?
#
num_local_apps - number of applications connecting locally.
If you setup is a two tier config with WebSphere on a separate machine,
then enter '0'
#
num_remote_app - number of applications that will connect to DB2 remotely.
This number should be the summation of all the connection pool sizes from
WebSphere. For our workload, it is the size of Connection Pool size of the DB.
If it is a WebSphere cluster, multiply it by the number of WebSphere nodes.
#
isolation - specify the highlest isolation level your Application demands.
#
bp_resizable - bufferpool resizable or not. Generally is 'yes'
#
apply db and dbm - apply the settings on your behalf.
#
I have a dedicated DB2 machine that is in a 2-tier setup separated from the
WebSphere machine.
- use 80% of the memory as my buffer pool.

© Copyright IBM Corporation © IBM 2009 47

- workload has about 60 statements,
- simple workload,
- tpm is dictated by workload rate, so my guess it will hit 2000 max
for my work on this machine.
- Data is already loaded. I have 65 connections coming in from Websphere,
- most of the beans require isolation level rs.

db2 connect to mydb
db2 autoconfigure using mem_percent 80 workload_type simple num_stmts 60
tpm 2000 is_populated yes num_local_apps 0 num_remote_apps 100 isolation
rs bp_resizeable yes apply db and dbm
#Run the following db2 terminate or else the changes won't take.
db2 terminate
db2 connect to mydb
db2 reorgchk update statistics on table all
db2 terminate

Shell script to capture DB2 performance statistics
#invocation: ./startgatherDB2 testname
db2 -v connect to mydb
db2 -v update monitor switches using bufferpool on
db2 -v get snapshot for database on MYDB >snapA$1.out
db2 -v get snapshot for tablespaces on MYDB >tablesnapA$1.out
db2 -v get snapshot for all applications >appsnapA$1.out
db2 -v get snapshot for all bufferpools >buffersnapA$1.out
date >>snapA$1.out
############## Beginning of steady state – sleep through the whole thing!
sleep 600
db2 -v get snapshot for database on MYDB >snapC$1.out
date >>snapC$1.out
db2 -v get snapshot for all applications >appsnapC$1.out
#############
db2 -v reset monitor all

Gather performance statistics on WebSphere and DB2
echo 'in startmeas'
mkdir $1
cd $1
#First argument is Directory off the current directory
#Second argument is total seconds to run - choose 600 for 10
#Third argument is seconds between sadc snapshots - typically 20
let totsamps=$2/$3
echo "created directory /results/$1"
echo "Running for a total of $2 seconds"
echo "Total sar snapshots is $totsamps"
/usr/lib/sa/sadc $3 $totsamps sadc.out.$HOSTNAME &
netstat -as >netstat.$1.out1.$HOSTNAME
sleep $2
netstat -as >netstat.$1.out2.$HOSTNAME

48 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing 2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2009 49

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

50 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information in softcopy, the photographs and color
illustrations may not appear.

Edition notices

© Copyright International Business Machines Corporation 2009. All rights
reserved.

U.S. Government Users Restricted Rights — Use, duplication, or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

Trademarks
IBM, the IBM logo, ibm.com®, DB2, DB2 Universal Database, DS8000, ECKD,
HiperSockets, Resource Link™, System x, System z, System z10, and WebSphere are
trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM
trademarked terms are marked on their first occurrence in this information with
the appropriate symbol (® or ™), indicating US registered or common law
trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries.
A complete and current list of IBM trademarks is available on the Web at
http://www.ibm.com/legal/copytrade.shtml

Adobe®, the Adobe logo, PostScript®, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Cell Broadband Engine™ is a trademark of Sony Computer Entertainment, Inc. in
the United States, other countries, or both and is used under license therefrom.

Intel, Intel logo, Intel Inside®, Intel Inside logo, Intel® Centrino®, Intel Centrino
logo, Celeron®, Intel® Xeon®, Intel SpeedStep®, Itanium®, and Pentium® are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 51

http://www.ibm.com/legal/copytrade.shtml

Terms and conditions
Permissions for the use of these publications is granted subject to the following
terms and conditions.

Personal Use: You may reproduce these publications for your personal,
noncommercial use provided that all proprietary notices are preserved. You may
not distribute, display or make derivative works of these publications, or any
portion thereof, without the express consent of the manufacturer.

Commercial Use: You may reproduce, distribute and display these publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these publications, or reproduce, distribute
or display these publications or any portion thereof outside your enterprise,
without the express consent of the manufacturer.

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any data,
software or other intellectual property contained therein.

The manufacturer reserves the right to withdraw the permissions granted herein
whenever, in its discretion, the use of the publications is detrimental to its interest
or, as determined by the manufacturer, the above instructions are not being
properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

THE MANUFACTURER MAKES NO GUARANTEE ABOUT THE CONTENT OF
THESE PUBLICATIONS. THESE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A
PARTICULAR PURPOSE.

52 WebSphere on IBM System z 64-bit and 31-bit studies with J2EE workloads

����

Printed in USA

	Contents
	Figures
	Tables
	About this publication
	Chapter 1. Introduction
	Chapter 2. Hardware and software configuration
	Server hardware and software - LPAR
	Client hardware and software

	Chapter 3. System setup
	Environment
	Network setup
	Workload generator systems

	Chapter 4. Linux kernel settings
	WebSphere Application Server Linux kernel settings
	Enabling 31-bit WebSphere Application Server on IBM System z to use 1 GB JVM
	Setting swappiness parameter to zero

	Linux kernel settings for the workload generator systems
	Linux kernel settings for the DB2 Universal Database system

	Chapter 5. Setting up WebSphere and DB2 Universal Database
	WebSphere V6.1.0 configuration
	Java DataBase Connectivity connection pools
	Java DataBase Connectivity data source properties
	Object Request Broker thread pool
	WebContainer thread pool
	Default thread pool
	HTTP transport settings
	Enterprise Java Beans cache settings
	Tune the Java Virtual Machine properties
	Other Java Virtual Machine arguments
	Transaction service properties
	Disable Java 2 security

	DB2 V9.5 configuration
	Initial database setup
	Tuning the populated database
	DB2 autoconfigure command

	Chapter 6. Workload description
	Chapter 7. Results
	Heapsize for the 64-bit Java Virtual Machine
	Comparing 64-bit WebSphere versus 31-bit WebSphere
	CPU scaling study
	Database LPAR analysis
	Network study – 1 Gb Ethernet versus 10 Gb Ethernet

	Appendix. Configuration, tuning, and performance scripts
	Notices
	Trademarks
	Terms and conditions

