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About this document

This document supports z/OS (5650-ZOS).

This document describes the application programming of JES2 and JES3. It
provides the information that you need to:
v Use the Spool Data Set Browse
v Use the Server/Client Print Interface
v Use the Internal Reader
v Use the IBM supplied External Writer

Who should use this document
This document is intended for JES2 and JES3 application programmers who are
using spool data set browse, server/client print interface, internal reader, and
external writer.

How to use this document
Use this document in conjunction with the following documents:
v z/OS JES2 Initialization and Tuning Guide

v z/OS JES3 Initialization and Tuning Guide

v z/OS MVS Using the Subsystem Interface

Most referenced publications are abbreviated throughout the text; their full titles
appear in “Where to Find More Information,” which follows.

Where to Find More Information
This document references the following publications for further details about
specific topics. Abbreviated forms of these titles are used throughout this
document. The following table lists all abbreviated titles, full titles, and their order
numbers that are not listed in the z/OS® Information Roadmap. See that document
for all z/OS publications.

Short Title Used in This
document Title Order Number

JES2 Initialization and
Tuning Guide

z/OS JES2 Initialization and Tuning
Guide

SA22-7532

JES3 Initialization and
Tuning Guide

z/OS JES3 Initialization and Tuning
Guide

SA22-7549

MVS Using the Subsystem
Interface

z/OS MVS Using the Subsystem Interface SA22-7642
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How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the Contact z/OS.
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS JES Application Programming
SA32-0987-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at IBM support portal.

© Copyright IBM Corp. 2008, 2013 xi
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z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide
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Chapter 1. Introduction

JES provides several application programs to supplement its performance. This
document talks about procedures and considerations when you use the following
application programs:
v Chapter 2, “JES Spool Data Set Browse,” on page 3
v Chapter 3, “JES Client/Server Print Interface,” on page 15
v Chapter 4, “JES Symbol Service (IAZSYMBL),” on page 21
v Chapter 5, “Internal reader facility,” on page 33
v The External Writer

© Copyright IBM Corp. 2008, 2013 1
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Chapter 2. JES Spool Data Set Browse

Spool data set browse (SDSB) is a function application program that can be
invoked to process spool data sets. JES provides an interface that application
programs can use for this purpose. SDSB can be used to access data sets that are
still open in running address spaces. Any full data buffers that have been written
to SPOOL can be read and optionally, data that has not been written (unwritten
buffer support) can also be accessed.

Note: To read unwritten buffers with JES3, each of the following systems must be
at z/OS V1R11, or higher:
v The system of the application.
v The system of the global processor.
v The system where the target data set is open.

If the application is running on the same system where the target data set is open,
the system must be at z/OS V1R10, or higher.

Programs can use SDSB to allocate SPOOL data sets. The data set being requested
is specified by passing the JES data set name along with a SPOOL browse token to
MVS™ dynamic allocation. When the data set is allocated, the data set can be read
using one of two methods:
1. Using the compatibility interface (DCB, GET).
2. Using the ACB/RPL interface.

You use the compatibility interface when synchronous sequential access is
required. You use the ACB/RPL interface when random access to the spool file is
required, or when asynchronous processing is required.

Allocation
JES recognizes an allocation of spool data set browse when a SPOOL browse token
is specified on a dynamic allocation call. The SPOOL browse token is specified
along with the data set name and contains optional control information JES uses to
allocate the data set you want. SDSB can only be specified on dynamic allocation
requests, and the following text units are required on the dynamic allocation
request:
v DALDSNAM (data set name)

Note: DALDSNAM can also be set from PDBDSNAM (JES2 only) or STVSDSN
that is returned by extended status.

v DALSTATS (disposition = SHR)
v DALSSREQ or DALUASSR (subsystem name)

Note: DALUASSR is the unauthorized version of DALSSREQ. They are
mutually exclusive.

v DALBRTKN (browse token)

Other text units are optional. For example, DALRTDDN, used to return the
ddname allocated to the data set.

© Copyright IBM Corp. 2008, 2013 3



Note: The DALSSREQ text unit can only be specified by authorized programs,
and the allocation must be performed in authorized state. After the allocation is
complete, an unauthorized task can perform I/O operations on the spool data set.

Specifying the Data Set Name (DALDSNAM)
The JES data set name is passed to dynamic allocation using the DALDSNAM key.
The format of the data set name is:
userid.jobname.jobid.Ddskey.dsname

If the exact data set name is not known, the generic characters '?' and '*' can be
used in the data set name. However the jobname and jobid are required. In the
event that more than one data set matches the data set name requested, then the
first data set that matches is allocated.

In addition to the standard JES data set name, there are some alternate data names
that can be used to allocate specific JES data sets (without knowing the exact data
set name) and logical data set concatenations. One alternate format is:
userid.jobname.jobid.jes_dsname

The jes_dsname is one of the following values:
v JCL - This is the input JCL (including the SYSIN data sets) exactly as submitted
v JESJCLIN - Same as JCL
v JESJCL - JCL images as output by the converter
v JESMSGLG - JES message log (WTOs issued by the job)
v JESYSMSG - JES system messages

Note:

1. When JESMSGLG is used as the data set name, if JESLOG SPIN is specified,
JES2 attempts to logically concatenate the spun off JESMSGLG data sets into a
single logical data set.

2. When JESYSMSG is used as the data set name, if JESLOG SPIN is specified,
JES2 attempts to logically concatenate the spun off JESYSMSG data sets into a
single logical data set.

3. JES3 does not concatenate spun off JESMSGLG and JESYSMSG data sets into a
single logical data set. The data sets are used as individual ones.

SPOOL Data Set Browse also supports accessing the current SYSLOG for a system
(provided that there the system is maintaining a SYSLOG in this JESPLEX). To
allocate the logical SYSLOG concatenation for a system specify the following data
set name (in DALDSNAM):
sysname.SYSLOG.SYSTEM

The sysname is the MVS system name of the system whose SYSLOG the application
will examine. JES logically concatenates all the SYSLOG data sets (even if there are
multiple jobs) for the specified system in chronological order.

Building the Browse Token (DALBRTKN)
Before issuing the dynamic allocation request, the application must build the
browse token and pass it with the DALBRTKN text unit. The format of the browse
token is mapped by macro IAZBTOKP. The browse token is built in text unit
format with 7 subparameters. When building the browse token, the following SVC
99 text unit fields must be set:
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Field Value
S99TUKEY DALBRTKN
S99TUNUM 7
S99TUPAR Mapped by IAZBTOKP

The token is of fixed length and all subparameters must be coded. Each browse
token subparameter contains a length followed by the data, so it will be in text
unit format.

You can complete the fields in the token as follows:

BTOKPL1
Length of the browse token identifier (LENGTH(BTOKID)).

BTOKID
Browse token id (BTOK). The IAZBTOKP macro defines constant
BTOKCID to be used to set this field.

BTOKPL2
Length of the token version field (LENGTH(BTOKVER)).

BTOKVER
The 2 byte version number of the token parameter list. Byte 1 (or
TOKTYPE) indicates the call type. If it is set to BTOKBRWS, then this is a
normal browse request. If it is set to BTOKSTKN, then this is a SPOOL
token based browse request. JES3 supports only BTOKSTKN. Byte 2 (or
BTOKVERS) is the parm list version and should be set to BTOKVRNM.

BTOKPL3
Length of the data pointer field.

BTOKIOTP/BTOKSPLT
Data pointer whose content is based on the first byte of BTOKVER.

BTOKIOTP
If BTOKVER is set to BTOKBRWS (JES2 only), this is a normal browse, and
BTOKIOTP is either zero or the MTTR of the IOT containing the PDDB of
the file to be allocated (obtained from JOEIOTTR or IOTTRACK, for
example). The data set name supplied in DALDSNAM keyed text unit is
used to locate the specific data set to be allocated. If BTOKIOTP is zero, the
data set is located by using only the data set name.

BTOKSPLT
If BTOKVER is set to BTOKSTKN, BTOKSPLT can be zeroes or point to a
client token (returned from dynamic allocation using key DALRTCTK) or a
data set token (returned by the SAPI SSI in field SSS2DSTR or the
Extended Status SSI in field STVSCTKN). If BTOKIOTP is zeroes, JES will
use the data set name supplied in the DALDSNAM keyed text unit to find
the specific data set to allocate. If BTOKIOTP points to a client or data set
token, the token is used to find the data set to allocate and the data set
name supplied in the DALDSNAM keyed text unit is ignored.

BTOKPL4
Length of the job key field (LENGTH(BTOKJKEY)).

BTOKJKEY
Optional job key of the file to be allocated (for example, the job key
obtained from JCTJBKEY, JQEJBKEY, or SJBJKEY). This field is not used if
BTOKVER is set to BTOKSTKN. This field is required if BTOKTYPE is set
to BTOKBRWS and BTOKIOTP is non-zero. JES3 does not support this
parameter and this field is set to zero.
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BTOKPL5
Length of the ASID field (LENGTH(BTOKASID)).

BTOKASID
The 2 byte ASID of the data set owning job if active buffers are needed. If
active buffers are not needed, then pass 0. If the ASID is not known, then
pass X'FFFF' and JES will determine the correct ASID.

BTOKPL6
Length of the RECVR field (LENGTH(BTOKRCID)).

BTOKRCID
Eight byte userid to be used as the RECVR on the SAF call or zeros if the
RECVR is not being used. JES uses this field to check authority to the
browse request. When RECVR is used, the value must be left justified and
padded with blanks. For JES3, this is supported for authorized callers only.

When this parameter is specified, the logstr field should also be used so
that usage of recvr can be logged. However, neither JES nor SAF enforces
this convention.

BTOKPL7
Length of the logstr field (LENGTH(BTOKLOGS)).

BTOKLSDL
Length of the logstr (specified in field BTOKLSDA) to be used on the SAF
call used by JES to check authority to the browse request, or zero if the
logstr is not being used.

The logstr length must be a value from 0 to 254.

BTOKLSDA
Text of the logstr if BTOKLSDL is non-zero, or zeros if the logstr is not
being used.

The maximum length text is 254 characters.

Note: When you use the compatibility interface to read the data set, you could
also use text units specifying the record format, record length, and blocksize.

Security
JES does not perform any SAF call during allocation. When the SPOOL data is
opened, JES uses SAF to verify read access to a JESSPOOL resource associated with
the data set. SPOOL browse uses both the standard form of the JESSPOOL class
resources and modified forms for special system data sets. Any generic characters
that may have been specified at allocation are replaced by the actual values for the
data set allocated.

When a logical data set name was specified for DALDSNAM, then the format of
the resource name passed to SAF is:
localnodeid.userid.jobname.jobid.jes_dsname

In the resource name:

localnodeid
The NJE node name of the node on which the SYSIN or SYSOUT data set
currently resides. The localnodeid appears in the JES job log of every job.

userid The userid associated with the job. This is the userid RACF® used for
validation when the job runs.

6 z/OS JES Application Programming



jobname
The name that appears in the name field of the JOB statement.

jobid The job number JES assigned to the job. The jobid appears in notification
messages and the JES job log of every job.

jes_dsname
One of the following fixed names:
v JCL - This represents the jobs input JCL (with all SYSIN data sets)
v JESJCL - The JCL images data set as created by the conversion process
v JESMSGLG - The JES2 job log data set
v JESYSMSG - The MVS SYSTEM messages data set

When a SYSLOG data set is allocated, the format of the resource name passed to
SAF is:
localnodeid.userid.SYSLOG.SYSTEM.sysname

In the resource name:

localnodeid
The NJE node name of the node on which the SYSLOG data set resides.
The localnodeid appears in the JES2 job log of every job

userid The user ID provided by the security product. If RACF is used, the user ID
will be +MASTER+.

sysname
The MVS system name of the system that created the SYSLOG.

If the browse token specifies a recvr userid, the SAF call is performed with the
RECVR parameter. When the recvr userid is specified, the logstr parameter should
also be supplied.

If the data set fails the security check, the open request fails with R15=0C and an
error code stored in ACBERFLG (decimal 152).

The system performs a SAF call as part of OPEN processing to ensure that the user
is authorized to the data set. In JES2, if the user is not authorized, a system abend,
code S913, results. In JES3, although control is returned to the application, the
DCBOFOPN bit is not set and the application cannot read the data set. After the
DCB has been opened, use a GET macro pointing to the DCB to read the file.
When processing is complete, use a CLOSE macro to close the file. The same task
that opened the DCB must be used to close it.

Errors and Return Codes
Three types of errors might occur:
v If an error occurs allocating the data set, in both JES2 and JES3, dynamic

allocation returns an S99ERROR reason code of X'04F8' describing the error. You
can use the DAIRFAIL service to format the error text.

v If, during allocation, JES2 detects an un-initialized data set (that is, PDBMTTR
contains zeros), it fails the dynamic allocation also with an S99ERROR reason
code of X'04F8'. This condition does not apply to JES3.

v If, during data set open, an error occurs:
– JES2 sets a return code in register 15 following the OPEN and stores a reason

code in the ACB.
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– JES3 does not set upon the flag ACBOPEN or DCBOFOPN returned from the
OPEN macro.

Using the Compatibility Interface
After allocating the spool data set, you can use the compatibility interface to
sequentially read each record. Your application program builds and opens a DCB
that specifies the ddname of the allocated spool data set. The record format, record
length, and block size could be specified on the allocation or in the DCB, or they
could be obtained from the SYSOUT data set that was allocated.

Using the ACB/RPL Interface
Your application can use the ACB/RPL interface to obtain the most flexibility when
using spool data set browse (SDSB). With this method, the application builds and
opens an ACB (access method control block), and uses RPL based macros to read
and position the data set. You use a subset of the ACB/RPL macros as documented
for VSAM. In general, JES implements only those features required to process the
data set. Other options specified on the macros are ignored. When coding the ACB
and RPL macros, AM=VSAM should be specified or defaulted.

Building the ACB
After the dynamic allocation completes for the data set, your application builds
and opens an ACB. You can use the GENCB service or map the ACB with IFGACB
macro. The storage for the ACB must be resident below the 16 megabyte line. You
then use the SHOWCB and MODCB services to display and modify selected fields
of the ACB. However, some of the fields required by JES are not processed by
those services, and hence they may be of limited use. The only required field for
the ACB is the ddname to use. The ddname can be assigned when the spool data
set is allocated, or the system can return a generated name. In either case, the
ACBDDNAM must be completed before the ACB is opened.

Note: The ACB can also specify an optional exit list. The exit list is built with the
EXLST macro, and can be used to specify the EODAD, SYNAD, and LERAD exits.

When the ACB is generated, your application opens it using an OPEN macro. As
part of open, the system performs a SAF call to ensure that the user is authorized
to the data set. In JES2, if the user is not authorized, a system abend, code S913,
results. In JES3, although control is returned to the application, the ACBOPEN bit
is not set and the application cannot read the data set.

Note: Unless authorization has changed between the time the data set was
allocated and opened, an unauthorized user will be detected at allocation time.

After the open is successful, you use RPL based macros to read the data set.If the
open is not successful, error and reason codes that describe the error are placed in
the ACB.

When processing is complete, your application should issue a CLOSE macro
specifying the open ACB. If a CLOSE is not performed, an automatic close occurs
by the system when end-of- task occurs. The close must be done by the same task
that opened the ACB.
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Requesting Carriage Control
The spool data set browse (SDSB) interface can be used to obtain the carriage
control character if it is contained in the record. The spool data set browse interface
returns carriage control with the record only if it is requested. Your application
indicates that carriage control is wanted by setting flag ACBCCTYP as follows:
v ACBCCTYP.ACBCCASA = ON indicates that ASA characters are wanted.
v ACBCCTYP.ACBCCMCH = ON indicates that machine characters are wanted.

Both bits can be turned on to indicate that carriage control is required regardless of
format. When a data set contains carriage control, and the application requests
carriage control for that type, the control character will be returned in the first byte
of the record area returned by JES.

If the data set does not contain carriage control, but the application requests
carriage through the setting of ACBCCTYP, JES performs the following:
v If ACBCCASA is on, JES returns a X'40' as the carriage control.
v If ACBCCMCH is on, JES returns a X'09' as the carriage control.
v If both ACBCCASA and ACBCCMCH are on, JES2 returns a X'09' and JES3

returns a X'40' as the carriage control.

To obtain the exact carriage control associated with a record and an indicator of the
carriage control type, an application should set the ACBCCANY bit. If this bit is
set, JES returns a pointer to the carriage control in RPLCCHAR and the type of
carriage control in RPLOPT4.

Using RPL-based macros
All I/O requests are specified using an RPL. The RPL contains the address of an
open ACB. You build the RPL using the GENCB service, or map it with the
IFGRPL macro. You can then use SHOWCB and MODCB for some functions. The
storage for the RPL must be resident below the 16 megabyte line.

The processing options are specified in the RPLOPTCD parameter. Only a subset of
those defined by VSAM are recognized by JES. In particular, spool data set browse
supports only "move mode" (OPTCD=MVE) processing. OPTCD=SYN can be
specified for synchronous requests (the default), or OPTCD=ASY can be used for
asynchronous processing.

Your application must obtain a buffer area where JES places the record it reads.
The address of the area is placed in RPLAREA and its length in RPLBUFL. If the
area is not large enough to contain the record, JES sets an error code in the RPL.
The storage for the buffer may be resident above the 16 megabyte line.

Your application reads each record using a GET macro which points to the RPL.
When synchronous processing is used, control returns to the application when the
GET is complete and the record has been moved to the application provided area.
JES sets the length of the returned record in field RPLRLEN.

When asynchronous processing is used, your application must issue a CHECK
macro specifying the RPL that is to be waited on. Control then returns to your
application when the function specified by the RPL is complete.

After each GET request, JES returns a token your application can use to position
directly to the record if it needs to be reread. JES returns the 8 byte token in field
RPLRBAR after each GET. Your application should treat RPLRBAR strictly as a
token, and not depend on it to be in a specific format.

Using the Compatibility Interface
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Your application can use the POINT macro to locate a previously read record.
POINT specifies an RPL that contains an RPLRBAR that was returned on the GET
request for the record you want. POINT positions JES to the record to be read; it
does not read the record. A GET macro must be issued after the POINT to retrieve
the record. Input to POINT is an 8 byte RBA value pointed to by RPLARG. This
RBA value can be either a RPLRBAR value that was saved from a previous GET
request, or a record number that is relative to the start of the data set
(0-16,777,215). If the record that is requested is not found due to an I/O error, the
result depends upon whether it is being processed by a JES2 or JES3 subsystem, as
follows:

JES2: For JES2, if the record that is requested for POINT is not found due to an
I/O error, POINT processing positions to the last record of the previous
buffer that it can read. A GET request after this POINT will return records
starting from the positioned record. If the record requested by GET is not
found due to an I/O error, GET processing positions to a buffer that it can
successfully read and continues returning the records. If records are
skipped on a GET request due to I/O error and IAZDSINF is provided, the
indicator DSIN1RSK(X'40') is set in DSINFLG1 to indicate the skipped
records. If the I/O error is at the end of the data set (no buffers found after
the I/O error), the EOF and DSIN1RSK indicators are set.

JES3: For JES3, if the record requested for POINT is not found, POINT
processing fails, leaving the data set in an undefined state. A GET request
after a failed POINT results in unpredictable data being returned. If the
record requested by GET is not found due to an I/O error, the remainder
of the current data set is skipped.

Each GET request returns a logical record in the file. The application is isolated
from the internal format of the record. JES places the complete record in the
RPLAREA buffer and its length in the RPLRLEN field. JES performs the necessary
unwritten buffer support for active jobs; however, no indication of the source of
the record is placed in the RPL. JES places feedback information in the RPL after
each request. RPLRTNCD and RPLCNDCD should be checked for satisfactory
completion after each operation.

Special Processing for Logical SYSLOG Data Sets
When a SYSLOG data set is allocated by using the special data set name of
sysname.SYSLOG.SYSTEM, a number of additional options are available. This is in
addition to all the options available to normal SPOOL Data Set Browse processing.
Additional information can be returned on a successful GET request. To obtain this
information, do the following settings:
v Set RPLERMSA to the address of a data area mapped by IAZDSINF.
v Set RPLEMLEN to the length of the data area (DSINSIZ1).
v Set DSINEYE eyecatcher to the value of DSIN.

The following information can be returned:
v The source record number (relative to this data set and the beginning of the

concatenation).
v The time stamp associated with the message (STCKE format).
v The source job number and data set number for the record.
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In addition, POINT processing is enhanced to provide support for additional RBA
formats. All new RBA formats start with a X'FF', which is followed by a 1-byte
function number and a 6-byte argument. Table 1 shows the RBA values (in hex)
that JES supports.

Table 1. Additional RBA formats

RBA value (in hex) Function

FF00cccc cccccccc Go to first occurrence of time stamp passed
in cccc cccccccc (STCKE format)

FF01cccc cccccccc Go to next record with a time stamp of cccc
cccccccc

FF02cccc cccccccc Go to previous record with a time stamp of
cccc cccccccc

FF03rrrr rrrrrrrr Move rrrr rrrrrrrr records (signed value)
from the current record

FF04rrrr rrrrrrrr Move to absolute record rrrr rrrrrrrr from
start of the (logical) data set

Note:

1. Messages in the log might not be in chronological order. This must be
considered when search for records based on a time stamp.

2. In a JES3 environment, SYSLOG data that was created prior to z/OS V1R11 is
ignored when processing a POINT based on time stamp.

POINT processing that specifies a specific time (RBA values starting with X'FF00'),
an absolute record number (RBA values starting with X'FF04'), or a relative record
number (RBA values starting with X'FF03') will position the data set to the first or
last record of a file if the argument specified if beyond the end or before the start
of the data set.

Return Codes
By using the ACB/RPL interface, the requests of JES I/O return error information
in a 3–byte RPL field, RPLFDBK. The list below explains the meaning of the these
bytes:

Byte Meaning

RPLRTNCD
Requests return code.

RPLNOERR - X'00'
No error encountered.

RPLLOGER - X'08'
Logic error encountered.

RPLPHYER - X'0C'
Physical error encountered.

RPLCMPON
Component processing request.

X'02'
JES2 processing request.

X'03'
JES3 processing request.
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RPLERRCD
Error code associated with return code. The meaning of the error code is
based on the request return code:
v For request return code RPLLOGER, RPLERRCD could be one of the

following values:

RPLEODER - X'04'
Normal end of data has occurred.

RPLNOREC - X'10'
A POINT request was issued but the record specified by the RBA
passed in RPLARG was not found. Another POINT must be done
before any further GETs.

RPLINRBA - X'20'
An RBA associated with a POINT or a GET-UPDATE request was
found to be invalid (not a recognizable format).

RPLNOVRT - X'28'
The request required the scheduling of an SRB to complete but the
needed virtual storage could not be obtained.

RPLINBUF - X'2C'
On a GET request, the size of the area (RPLBUFL) passed in
RPLAREA was too small to contain the record being returned. The
actual record size is set in RPLRLEN. Obtain a larger area and
re-issue the GET request.

RPLINACC- X'44'
Access type is not allowed for this data set. For example, an attempt
to PUT to a data set that was opened for input processing.

RPLINUPD - X'5C'
PUT-UPDATE occurred before GET-UPDATE.

RPLDLCER - X'64'
PUT-UPDATE length was changed.

RPLINLEN - X'6C'
A PUT was done for a record and the specified length exceeds the
JES limit of 32767 bytes.

RPLNOBFR - X'98'
A POINT request was made but all available buffers are being used
by outstanding locate mode GET requests.

RPLREOB - X'20'
A GET request was made but all available buffers are being used by
outstanding locate mode GET requests.

v For request return code RPLPHYER, RPLERRCD could be one of the
following values:

RPLRDERD - X'04'
The read request failed because either there was an physical read
error or the record read did not pass validation processing.

RPLWTERD - X'10'
A write operation encountered a physical write error.

Using the Compatibility Interface

12 z/OS JES Application Programming



End of File Processing
For jobs not running, the spool data set browse (SDSB) interface utilizes the end-
of- file exit when no more data can be read. When using the compatibility
interface, the exit is defined using the EODAD parameter of the DCB. When using
the ACB/RPL interface, the end-of-file exit is defined on the EXLST macro. In
addition, the return codes are placed in the RPL to indicate the end of file
condition.

For jobs actively running, using the ACB/RPL interface, your application attempts
to read unwritten spool buffers that reside in the address space of the active job.
When all unwritten buffers have been read, the ACB/RPL utilizes the end-of-file
exit. Your application can issue subsequent get requests to obtain additional data.
On each get request, the ACB/RPL interface returns the unwritten buffer data, if
available. Thus, an end of file condition for an active job should be considered
temporary rather than permanent. As the active job creates additional data,
subsequent get requests can be used to retrieve it. If no more data is available at
the time of the get, end of file will be driven.

Note: This processing differs from standard access methods. Normally, a get
request issued after end of file is considered as a permanent error. However, this
condition should be expected when using the spool data set browse interface
against an active job.

Performance
Spool data set browse (SDSB) presents a record level interface (that is, a complete
record is returned on each get request). If a record is internally stored in several
JES spool blocks, your application's use of the interface performs the necessary
spool I/O to assemble the record segments. JES maintains only one spool buffer in
storage at a time. Similarly, if a POINT macro is issued for a record not contained
in the last spool block, JES initiates the I/O to read the block.

Your application can improve the performance of the interface by optimizing the
number of I/O requests. For example, you might want your application to buffer
previously read records in storage, rather than call the interface with POINT and
GET to reread a record.

Secondary Subsystem Support
The spool data set browse (SDSB) interface supports allocation of spool data sets to
secondary JES2 subsystems. Specify the subsystem name in the DALSSREQ or
DALUASSR text unit and direct the allocation to the proper JES2.

Note:

1. JES3 cannot be a secondary subsystem.
2. A secondary subsystem cannot be halted until all outstanding allocations are

freed.
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Chapter 3. JES Client/Server Print Interface

JES provides an interface for a job to function as a server and make SYSOUT
requests on behalf of a client.

There are several ways in which a data set created by a server differs from a data
set created by an ordinary SYSOUT DD or dynamic allocation.
1. Data sets created by a server use the DALRTCTK dynamic allocation text unit,

which causes JES to create a unique Client Token(CTOKEN) associated with
the data set from that point on.

2. The server can use the Extended Status or SYSOUT Application Programming
Interface (SAPI) Subsystem Interface (SSI) calls to access a data set, specifying a
CTOKEN in the selection criteria in order to request a particular data set,
without needing to know any other information about the data set.

3. When a data set has a CTOKEN, JES informs the application, through the use
of ENF signal 58, of events relating to the data set. Among these events are
selection by a writer, deselection by a writer, and data set purge. JES also issues
signals for important events related to any job that has created at least one data
set with a CTOKEN, such as job purge.

Creating a CTOKEN
The server creates an 80-byte CTOKEN using the Dynamic Allocation text unit of
DALRTCTK. The DALRTCTK text unit appears as follows:

+0 +2 +4 +6

DALRTCTK 00 01 00 50 Returned data

Upon return from SVC 99, the data starting at position 6 in the CTOKEN text unit
contains the CTOKEN returned by JES, provided the allocation was successful.
When a CTOKEN is returned to you, add it to your list of CTOKENs for later use.

CTOKENs contain internal information that JES uses to locate the data set when
the server issues SSI requests. Once you have received a CTOKEN from JES, do
not change its contents except in one special case that will be discussed later.

CTOKENs contain ordering information. This allows you to store CTOKENs in a
data structure of your choice that can make use of the order and result in faster
searches. CTOKENs are not ordered according to a creation timestamp; they are
ordered internally by JES.

Refer to SSI 54 in z/OS MVS Using the Subsystem Interface for a detailed description
of the Subsystem Version Information Call.

Comparing CTOKENs
At various times during your processing, you will need to compare CTOKENs.
Typically, you will do this when JES signals an event for a CTOKEN and you need
to find this token in your list so that you can take some kind of action based on
the event.

© Copyright IBM Corp. 2008, 2013 15



To compare one CTOKEN to another, you must not simply compare the entire 80
byte values. This is because under certain JES processing, CTOKEN equality is
based on a subset of the information in the CTOKENs matching while other
information in the CTOKENs could be different. IBM provides a macro
IAZXCTKN which you must use to compare CTOKENs. This macro determines
which information in two CTOKENs is significant and compares just this
information. The macro works in such a way that you never need to interpret any
information inside the CTOKEN.

Depending on the return code from the IAZXCTKN macro, you can determine
whether the two CTOKENs are the same, whether the first CTOKEN is less than
the second one, or whether the second CTOKEN is less than the first one.

IAZXCTKN also provides a special comparison function. At certain times, JES
signals events for an entire job. When this happens, the signal includes a job level
CTOKEN. Using IAZXCTKN, you can determine whether a CTOKEN for a data
set in which you are interested is covered by the job level CTOKEN that JES
provides.

Job level CTOKENs contain no ordering information; therefore a job level
CTOKEN can be considered by IAZXCTKN to be "equal" or "not equal" to another
CTOKEN but never "greater" or "less" than another CTOKEN.

Refer to the book z/OS MVS Programming: Authorized Assembler Services Guide for
information about using the IAZXCTKN macro.

Obtaining Status for a Data Set
You can obtain status for a data set using the Extended Status subsystem interface
(SSI 80) code. To do this, you supply as STATCTKN the address of the CTOKEN
for the data set you are interested in and set the selection flag STATSCTK. When
you use the STATSCTK selection flag, you cannot use the STATSJBI selection flag,
and vice versa.

Refer to SSI 80 in z/OS MVS Using the Subsystem Interface for a detailed description
of the Extended Status call.

Accessing a Data Set
You can access a data set using the SYSOUT Application Programming Interface,
SSI 79. You would do this in order to:
v Show the contents of the data set to the requesting client.
v Allow the client to delete a data set.
v Allow the client to release a data set from hold to print.

To request JES to perform a SAPI operation on a client data set, you supply as
SSS2CTKN the address of the CTOKEN for the data set you are interested in and
set the selection flag SSS2SCTK. When you use the SSS2SCTK selection flag, you
cannot use the SSS2SJBI selection flag, and vice versa.

When a data set is processed by a program written using SAPI, there is a
distinction between a data set that is selected for processing and a data set that is
selected for browsing. In the former case, the intention is to select the data set in
much the same way as it would be selected for a writer (such as an external
writer), which may or may not cause its state to be changed. In the latter case, the
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intention is to not change its state at all. The main purpose for this distinction is to
prevent "noise" caused by unnecessary ENF signals.

You can set the flag SSS2SBRO when you know that the intention of a SAPI access
is to browse a data set. When this flag is on, JES will not issue any signals for the
SAPI access to this data set. When this flag is off JES will issue signals whenever a
data set with a CTOKEN is selected or deselected by a SAPI Put/Get operation.
Do not set this flag if you need to be informed of selects and deselects.

This flag controls signals for selects and deselects only. If a data set is purged by a
SAPI Put operation (for example, by turning off flag SSS2DKPE), a signal will be
issued even if SSS2SBRO is set.

You must use SAPI in order to suppress signals when accessing a data set for
browse. When a Process Sysout (PSO) application selects or deselects a data set
with a CTOKEN, a signal is always issued.

The SSS2SBRO flag is valid only for Put/Get requests.

Refer to SSI 79 in z/OS MVS Using the Subsystem Interface for a detailed description
of SAPI.

Security
Since all SYSOUT allocations and SAPI calls are being done by you as the server,
preventing a client from having unauthorized access to another client's data set is
your responsibility.

One way you can do this is by performing the dynamic allocation to create the
SYSOUT file under a security environment with the client's identity. This is
accomplished by using the RACROUTE macro with REQUEST=VERIFY. Then,
when a client makes a request requiring you to make a SAPI SSI call, you would
use RACROUTE REQUEST=VERIFY with the requesting client's user id to
establish a security environment for the requestor. As part of the SAPI processing,
JES makes authorization checks using the JESSPOOL security class.

Refer to the book z/OS Security Server RACROUTE Macro Reference for information
on using the RACROUTE macro.

This method requires your clients to be defined as users in your security product,
even if they never directly log on to your system. If this is not possible, you must
design your own security protocol.

Identifying a Requestor on a Header Page
JES typically has printers defined to print with a header page identifying the job
creating a SYSOUT data set.

However, the job information that prints on the header page is associated with the
job that created the data set. This ordinarily identifies the job that runs your server,
not the client that requested the printout. You would probably prefer that the
client's identification print rather than the server's in order to be able to tell one
client's output apart from another's.

In order to do this, you can use the IAZXJSAB macro. You could do something like
the following:
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IAZXJSAB CREATE,JOBNAME=client_jobname,
USERID=client_userid,TYPE=SUBTASK

The CREATE call must be made prior to allocating the dataset in both the
DYNALLOC and ALLOC cases.

To make sure that the job identification does not persist beyond the requested data
set, you can delete the JSAB after the first OPEN for the dataset by making the
following call:
IAZXJSAB DELETE,TYPE=SUBTASK

or you can update it with different user identification after the first OPEN by
making the following call:
IAZXJSAB UPDATE,JOBNAME=new_client_jobname,

USERID=new_client_userid

In the CREATE and DELETE cases, you must use the parameter TYPE=SUBTASK,
otherwise JES will not recognize the requesting user identification correctly.

See the information on the IAZXJSAB macro in z/OS MVS Programming: Authorized
Assembler Services Reference EDT-IXG for additional information about using the
IAZXJSAB macro.

Listening for Events
During the course of JES operations, data sets and jobs are subject to changes for
various reasons. When such events occur for a client data set (for example, a data
set that was allocated with the DALRTCTK text unit) or a job containing at least
one client data set, JES issues an Event Notification (ENF) signal. The ENF number
of the signal is 58. The signal is issued only for data sets that have been allocated
using the DALRTCTK text unit.

To listen for this signal, you could do something like the following:
ENFREQ ACTION=LISTEN,CODE=58,EXIT=exit_address,XSYS=YES,

PARM=parameter_address,DTOKEN=end_token_address

Note: The XSYS=YES parameter is used because JES could be issuing signals on a
different processor from the one where your server runs.

To stop listening for this signal, you could do something like the following:
ENFREQ ACTION=DELETE,CODE=58,DTOKEN=end_token_address

The data area received by your listen exit from ENF is mapped by the IAZENF58
macro. You must include this macro in your program in order to use the data
supplied by the ENF signal. This data area contains the following information:

ENF58_LENGTH
Length of parameter list

ENF58_QUALIFIER
Qualifier code — defined below:

ENF58_Q_PURGE
Data set was purged

ENF58_Q_SELECT
Data set was selected
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ENF58_Q_DESELECT_PROCESSED
Data set was processed

ENF58_Q_DESELECT_NOT_PROCESSED
Data set is no longer selected, disposition was not changed

ENF58_Q_DESELECT_NOT_PROCESSED_HELD
Data set is no longer selected, disposition was not changed and
data set is held

ENF58_Q_DESELECT_ERROR
An error resulting in a system level hold occurred

ENF58_Q_EOD_OK
End of data set notification occurred — successful

ENF58_Q_EOD_ERROR
End of data set notification occurred — unsuccessful

ENF58_Q_JOB_CHANGE
Job-status change occurred

ENF58_Q_TOKEN_CHANGE
Client token has changed

ENF58_Q_CHECKPOINT
A checkpoint has occurred on the printer on which the data set is
printing.

ENF58_SYS_HOLD
System hold reason — refer to IAZOHLD for possible values

ENF58_JES_NAME
JES2 Member Name / JES3 MAIN name

ENF58_REASON
Reason text

ENF58_CTOKEN
Data Set Client Token

ENF58_NEW_CTOKEN
New client token that should replace the CTOKEN for a
TOKEN_CHANGE ENF type

You should determine what action you need to take based on this event. For
example, if you receive a signal with ENF58_Q_PURGE it usually means that you
should delete from your list all information pertaining to the dataset with the
CTOKEN of ENF58_CTOKEN.

To take action on the CTOKEN, you must first go through your CTOKEN list and
issue IAZXCTKN macros, comparing ENF58_CTOKEN to CTOKENs from your list
until you find the CTOKEN specified in the signal in your list. If
ENF58_QUALIFIER is ENF58_Q_JOB_CHANGE, it means that ENF58_CTOKEN is
a job level CTOKEN and you must go through your entire list of CTOKENs until
you have identified, and taken action on, all data set level tokens covered by the
job level CTOKEN.

Note:

1. When ENF58_QUALIFIER is ENF58_Q_JOB_CHANGE, the CTOKEN in
ENF58_CTOKEN is a job level CTOKEN. At all other times it is a data set level
CTOKEN.
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2. When ENF58_QUALIFIER is ENF58_Q_TOKEN_CHANGE, the ENF58
parameter list contains a new CTOKEN and ENF58_LENGTH reflects the
existence of this new CTOKEN.

3. When an event with ENF58_Q_TOKEN_CHANGE is received, the CTOKEN in
your list should be replaced with the contents of ENF58_NEW_CTOKEN. This
is the only time that you should change the contents of a CTOKEN. Replacing
this CTOKEN does not change the ordering of the CTOKEN you previously
had in your list for this data set.

4. ENF58_NEW_CTOKEN is present only when ENF58 QUALIFIER is
ENF58_Q_TOKEN_CHANGE. ENF58_LENGTH is larger for this qualifier type
than it is for other types.

5. When an event with ENF58_Q_CHECKPOINT is received, the below fields are
also present and contain the status of the print at the time that the checkpoint
is taken.

ENF58_COPY
Checkpointed copy count

ENF58_RECORD
Checkpointed current record

ENF58_PAGE
Checkpointed current page

These fields are present only when ENF58_QUALIFIER is
ENF58_Q_CHECKPOINT. ENF58_LENGTH is larger for this qualifier type than
it is for other types except ENF58_NEW_CTOKEN.
If checkpoints occur frequently, ENF58 checkpoint signals may be generated at
a fast rate.
If a restart of JES or the printer occurs after a checkpoint, the next checkpoint
could be for a page or record count that represents reprocessed records or
pages. This is because after a restart a writer will continue at the last
checkpointed record or page, not the last one that completed printing.

6. Trace ID 43 traces ENF58 events that are sent and trace ID 44 traces ENF58
events that are received.

See z/OS MVS Programming: Authorized Assembler Services Guide and z/OS MVS
Programming: Authorized Assembler Services Reference EDT-IXG for information about
using the ENFREQ macro and coding the listen exit.
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Chapter 4. JES Symbol Service (IAZSYMBL)

The JES Symbol Service (IAZSYMBL) provides a single view of JCL and JES
symbols. The JES Symbol Service consists of the IAZSYMBL invocation macro and
the IAZSYMDF data definition macro.

The JES Symbol Service manages JES Symbols, which can be used in the following
ways:
1. Several special purpose JES Symbols can be used to pass information between

applications and JES: refer to “JES system symbols” on page 22.
2. JES symbols can be used internally by an application. As a method of

communication, a JES symbol that is created by one program can be consumed
by another program within the same job step.

3. JES symbols can be passed on to a submitted job by including the symbol
names in the SYMLIST= keyword of an internal reader (INTRDR) allocation.
JES symbols passed in this way must be valid JCL symbol names, which consist
of 1-8 characters from the subset A-Z (capitals only), 0-9 (numerics), @ (at
character), # (number sign character) and $ (dollar sign character).

4. JES symbols can be used for in-stream symbol substitution in the same job step.
JES in-stream substitution is performed when in-stream data set is read. During
this substitution, the following symbols can be used:
v JCL symbols EXPORTed by converter
v JES symbols dynamically created by the JES Symbol Service
v System symbols

The specific symbols to use for substitution are defined using the SYMBOLS
keyword parameter on the DD statement that defines the in-stream data set.
Refer to z/OS MVS JCL Reference.

5. JES Symbols can be used to communicate information between applications and
JES2. This capability is not currently supported for JES3.

The JES Symbol Service manages two classes of symbols, JCL Symbols and JES
Symbols:

JCL symbols
JCL symbols are defined by the EXPORT JCL statement and made available
by the converter at job execution time. JCL symbols can be read but not
updated by the JES Symbol Service. However, the JES Symbol Service can
be used to create a JES symbol with the same name as JCL symbol, which
overrides the JCL symbol of the same name. Rules for JCL Symbol Service
(IEFSJSYM) names and values are documented in z/OS MVS Programming:
Authorized Assembler Services Reference EDT-IXG.

JES symbols
JES symbols are created and managed by the JES Symbol Service at the job
step level or current task level. Rules for JES symbol names and values are
the same as those for JCL symbols, with the following exceptions:
1. The underscore character (_) can be used in a JES symbol name.
2. A JES symbol name can be 1-16 characters long.
3. A JES symbol value can be 0-4096 bytes long.

Note:
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1. See the following special rules for the SYS_CORR_USRDATA symbol,
which must be printable.

2. JES Symbols that are exported using the INTRDR SYMLIST feature
must conform to JCL rules, or a JCL error will result.

JES system symbols
JES symbols with the prefix SYS are system symbols, which communicate
information between applications and the system. JES SYS symbols are read-only
and applications are not allowed to manage them, with two exceptions. The
SYS_CORR_USRDATA and SYS_JOB_NOTIFY symbols, which communicate
information from applications to JES, are user-defined and subject to the following
rules:

SYS_CORR_USRDATA
The SYS_CORR_USRDATA symbol defines the user portion of the job
correlator. The job correlator is an attribute that is associated with every job
on a system, and can be used to uniquely identify a job. The job correlator
is a 64-character printable value, consisting of two strings separated by a
colon character (:). The first string is a 31-character system value, which
applications must always treat as a single value. The second string is an
optional 32-character user-defined value.

To define the user portion of the job correlator, use the JES Symbol Service
to assign a value to the SYS_CORR_USRDATA symbol before the job is
submitted. The SYS_CORR_USRDATA symbol value must comply with
the following rules:
v The value must be 0-32 characters in length (an empty value is valid,

and equivalent to a value of all blank characters).
v The first character must be from the subset A-Z (capitals only), @ (at

character), # (number character), or $ (dollar sign character).
v Subsequent characters must be from the subset A-Z (capitals only), 0-9

(numerics), @ (at character), # (number character), $ (dollar sign
character) and _ (underscore character).

v Embedded blank characters are not supported.

SYS_JOB_NOTIFY
Assigning a value to the JES SYS_JOB_NOTIFY symbol, before submitting
a job, prompts JES to provide notification when the job is no longer eligible
for execution. Notification is provided by ENF 78 upon successful
completion of the job, or upon an error, cancellation, or purge that prevents
the job from being executed. The only restriction on the SYS_JOB_NOTIFY
value is a maximum length of 4096 bytes.

The following JES System Symbols are system-defined, read-only, and provide a
flow of information from JES to applications:

SYS_CORR_CURRJOB
The SYS_CORR_CURRJOB value is the job correlator of the current job.

SYS_CORR_LASTJOB
The SYS_CORR_LASTJOB value is the job correlator of the most recent
job that was submitted successfully by the current task through the
internal reader (INTRDR). If a job submission through the internal reader
fails, this symbol will have an empty value. If a job submission through
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the internal reader succeeds, this symbol is set to the job correlator of the
submitted job, including any user portion that is defined by the
SYS_CORR_USRDATA symbol.

SYS_LASTJOBID
The value of the SYS_LASTJOBID symbol is the job identifier of the most
recent job that was successfully submitted by the current task through the
internal reader (INTRDR). If a job submission through the internal reader
fails, this symbol will have an empty value.

JES Symbol (IAZSYMBL) macro
The interface to the JES Symbol application is the IAZSYMBL macro. The
parameter structure of the JES Symbol Service is mapped by the IAZSYMDF
macro. The IAZSYMBL service performs the following operations on JES symbols:
v Creates symbols at the task or job step level and assigns initial values
v Clears symbols
v Updates symbol values
v Deletes symbols
v Extracts symbol values

IAZSYMBL syntax
The IAZSYMBL macro uses the following syntax:

IAZSYMBL PARM=prmlst | (reg) | <null>
The IAZSYMBL PARM= keyword can be defined as a parameter list,
register or null value (blank):

prmlst Specifies an RX-type address of the parameter list that is passed to
the IAZSYMBL service. The parameter list structure and data
which are returned by the service are mapped by the IAZSYMDF
macro.

(reg) Specifies that a parameter list address was loaded by the caller to
the register reg.

<null>
If the PARM= keyword is omitted, the default location for the
parameter list address loaded by the caller is register 1.

The return code is located in register 15. If the invocation was successful
(R15=0), then the return code from the IAZSYMBL service is listed in the
JSYMRETN field in the parameter list.

Input register information
Before issuing the IAZSYMBL macro, the caller does not have to place any
information into any register, unless it is either using the information in register
notation for a PARM parameter, or as a base register.

Output register information
The following IAZSYMBL register usage values indicate the status of the register
upon exiting the macro:

Register Contents

0 Unchanged

1 Used as work registers by the system
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2-13 Unchanged

14 Used as a work register by the system

15 Contains the return code

Return code information
The following IAZSYMBL return code information indicates the status of the
register upon exiting the macro:

Return Code
Meaning and Action

0 The service was successfully called. To check the result of the call, refer to
the return code in the JSYMRETN field and to the reason code in the
JSYMREAS field of the parameter list.

No action is required.

8 The parameter list is unusable because of one of the following errors:
v No parameter was passed
v Eyecatcher was incorrect
v Parameter list version was incorrect
v Parameter list has incorrect length

Check the parameters that are being passed to the service and repeat the
request.

12 There is not enough storage to invoke the JES Symbol Service.

Increase the size of the main storage available to the application and repeat
the request.

16 The service is not available.

Report the problem to the system programmer for problem determination
and correction.

Environment
The IAZSYMBL environment requires the CVT and IHAECVT macros to map CVT
and ECVT, respectively:

Minimum authorization
Problem or Supervisor state, with any PSW key

Dispatchable unit mode
Task, unless JSYMLVNJ is used

Cross Memory Mode
PASN=HASN=SASN

AMODE
31-bit

ASC mode
Primary

Locks No locks held unless option JSYMLVNJ is used.

Restrictions
Access to JCL symbols requires that the caller does not hold any locks and is in
task mode: refer to “DELETE and EXTRACT symbols” on page 29. Specifying the
JSYMLVNJ option removes these restrictions, but also prevents access to the JCL
symbols.
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JES Symbol Service data definition (IAZSYMDF) macro
The JES Symbol Service data definition (IAZSYMDF) macro is used to map the
parameter structure that is passed to the JES Symbol Service and the data
structures that are returned by the service.

Access to the IAZSYMDF macro is defined by the following syntax:

IAZSYMDF DSECT=YES | NO
Controls access to the IAZSYMDF macro:

DSECT=YES
Generates a DSECT statement for the parameter list structure.

DSECT=NO
Does not generate a DSECT statement for the parameter list
structure. Setting DSECT=NO can be used to reserve space for the
parameter list in the current CSECT or DSECT.

Return codes (JSYMRETN)
The following JES Data Definition macro return codes (JSYMRETN) are provided:

Field Name
Description

JSYMOK
Request successful.

JSYMERRW
Request completed with possible errors; “Reason codes (JSYMREAS)”
contains the reason code.

JSYMERRU
Request not completed due to user error; “Reason codes (JSYMREAS)”
contains the reason code.

JSYMERRJ
Request not completed due to an internal (JES) error; “Reason codes
(JSYMREAS)” contains the internal JES reason code.

Reason codes (JSYMREAS)
The following JES Data Definition macro reason codes (JSYMREAS) apply to
non-zero return codes:

Field Name
Description

JSYMNOTF
Some or all of the symbols were not found.

JSYMSTRE
Not enough storage provided by the caller (refer to the JSYMSRCM field).

JSYMOPER
Invalid operation requested.

JSYMSLEV
Invalid symbol level or scope.

JSYMINTB
Invalid input symbol table.
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JSYMTRNC
Some values were truncated.

JSYMDUP
Duplicate symbols.

JSYMAUTH
Caller not authorized to perform this operation or caller not authorized to
manage system symbols.

JSYMNMER
Invalid symbol name.

JSYMNSTG
Not enough storage for symbol table.

JSYMSSVE
Invalid value for a system symbol.

JSYMISTG
Extract not complete due to storage shortage for internal processing.

JSYMISNE
Incorrect length of symbol name in the input symbol list.

JSYMSPSY
Special symbols can be extracted by name but cannot be managed as
symbols.

JSYMENVE
Environment error - function not available in SRB mode.

Parameter list (JSYMPARM)
The JSYMPARM data structure is a JES Symbol Service parameter. A pointer to
this parameter list is passed in register 1 when calling the service (refer to the
Chapter 4, “JES Symbol Service (IAZSYMBL),” on page 21 macro).

Field Name
Description

JSYMEYE
Eyecatcher.

JSYMLNG
Length of parameter list.

JSYMVRM
Parameter version and modification.

JSYMVER
Parameter version.

Field Name
Description

JSYMVRM1
Original version and modification.

JSYMVRMC
Latest version and modification.

JSYMMOD
Parameter modification.
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JSYMSVER
Service version and modification.

JSYMSVRM
Service version.

Field Name
Description

JSYMSVM1
Original service version and modification.

JSYMSVMC
Latest service version and modification.

JSYMSMOD
Service modification

Requested operations (JSYMRQOP)
The following JES Data Definition macro operations (JSYMRQOP) can be
requested:

Field Name
Description

JSYMRQOP
Specifies the requested operation:

CREATE (JSYMCRT)
Given the input symbol table provided by the caller in JSYMISYT, the
service will create the specified symbols with the specified values.

CLEAR (JSYMCLR)
Deletes all defined symbols at the specified levels. This operation is only
available for authorized callers.

UPDATE (JSYMUPDT)
Given the input symbol table provided by the caller in JSYMISYT, the
service will update the specified symbols with the new specified values.

DELETE (JSYMDELE)
Given the symbol filter specified by the caller in JSYMSNMA/JSYMSNM#,
the service will delete the specified symbols. Refer to “DELETE and
EXTRACT symbols” on page 29.

EXTRACT (JSYMEXTR)
Given the symbol filter specified by the caller in JSYMSNMA/JSYMSNM#,
the service will return the output symbol table with the names and values
of the requested symbols. The EXTRACT subfunction provides access to
both JES and JCL symbols, unless the JSYMLVNJ option is specified. Refer
to “DELETE and EXTRACT symbols” on page 29.

Defining JES symbols
JES Symbol Service (IAZSYMBL) symbols are defined at either the task level or the
job step level. JES symbols that are defined at the task level are only visible to the
code that is running in the same task (TCB). Symbols that are defined at the job
step level are visible to the code that is running in all tasks in the same job step. A
JES symbol at the task level overrides a JES symbol with the same name at the job
step level.
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The JES Symbol Service manages JES symbols by using the CREATE, CLEAR,
UPDATE, DELETE operations. In addition, the EXTRACT operation provides
access to JCL Symbols, unless the JSYMLVNJ option is specified. When access to
JCL symbols is required, the caller must be in the task mode and cannot hold any
locks. When access to a JCL symbol is requested, the JCL symbol is only returned
if no JES symbol with the same name was found.

The CREATE operation requires the symbol definition level to be selected by
setting either the JSYMLVLT or JSYMLVLJ option, but not both.

The CLEAR operation requires the symbol definition level to be selected by setting
the JSYMLVLT or JSYMLVLJ option, or both.

The UPDATE, DELETE and EXTRACT operations ignore the symbol definition
level selection. Processing for the these operations always starts at the task level
and only moves to the job step level if the requested symbol was not found at the
task level. If the EXTRACT function does not find a JES symbol with a particular
name, it will search for a JCL symbol with the same name.

The JSYMLVUD option modifies the behavior of a CREATE operation request
when duplicate symbols are encountered. If the JSYMLVUD option is specified,
duplicate symbols are updated. If the JSYMLVUD option is not specified,
duplicate symbols are not processed and a duplicate symbol warning is returned.

The JSYMLVJC option applies JCL constraints during EXTRACT operation
processing. If the JSYMLVJC option is specified, only symbols that can be used for
JCL substitution are returned. The JCL constraints are a maximum symbol name
length of 8 characters, and a maximum symbol value length of 255 characters.
Rules for JCL Symbol Service (IEFSJSYM) names and values are documented in
z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG.

JES symbol options (JSYMLVL)
The JSYMLVL field specifies the following JES symbol options:

Field Name
Description

JSYMLVLT
Access symbols at the task level.

JSYMLVLJ
Access symbols at the job step level.

JSYMLVNJ
Do not access JCL symbols. This option only applies to an EXTRACT
request. If this option is not selected, an EXTRACT request will continue
looking for the requested symbol or symbols among the exported JCL
symbols. When accessing JCL symbols, the caller must be in task mode and
cannot be holding any locks.

JSYMLVUD
Allow a CREATE request to update a symbol value if the symbol already
exists at the specified level. If this option is not specified, the duplicate
symbol will not be changed and a duplicate symbol warning will be
returned.

JSYMLVJC
Check JCL constraints.
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Input symbol table (JSYMISYT)
The JSYMISYT option points to an input symbol table. The caller passes this table
to CREATE and UPDATE operations to define names and values of the symbols to
create or update. The layout of the symbol table is defined by the JSYTABLE
structure.

Field Name
Description

JSYMISYT
Pointer to an input symbol table.

DELETE and EXTRACT symbols
The JES Symbol Service uses the symbol selection list to specify symbols for the
DELETE and EXTRACT operations. Each element in the selection list specifies the
name of a symbol to be selected. Symbol names must be left-justified and padded
by blank spaces to the specified length. Wildcard characters can be used in any
element in the selection list. If the EXTRACT function does not find a JES symbol
with a particular name, it will search for a JCL symbol with the same name.

The selection list is defined by the following fields:

Field Name
Description

JSYMSNMA
Pointer to a symbol selection list.

JSYMSNM#
Number of elements in the symbol selection list.

JSYMSNML
Length of each element in the selection list. Valid values for this field are
0-16 characters. A value of 0 defaults to 16 characters.

The EXTRACT operation returns a symbol table with the names and values of the
symbols that were found. The output table is created in the output area provided
by the caller. The layout of the symbol table is defined by the JSYTABLE data
structure.

The total size of the output symbol table is returned in the JSYTLEN field in the
table header. However, the value of the JSYTLEN field does not necessarily
represent the minimum size required for the table, because the output symbol table
created by the service can have unused space inside. The real size of meaningful
data inside the output table is returned in the JSYMSRCM field. If the size of the
output area provided by the caller is not sufficient for the output symbol table, the
reason code field JSYMREAS will be set to JSYMSTRE and the JSYMSRCM field
will contain the recommended size of the output area.

Field Name
Description

JSYMOUTA
Pointer to the caller-provided output area.

JSYMOUTS
Size of the caller-provided output area.

JSYMRETN
Service return code.
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JSYMREAS
Service reason code.

JSYMSRCM
Recommended size of the output area.

JSYMERAD
If the service returns an error, this field is a pointer to the approximate
location in the input data where the error was detected.

JSYMSZE1
Length of version 1 of the parameter list (JSYMPRM).

JSYMSIZE
Length of the current version of the parameter list (JSYMPRM).

Symbol table (JSYTABLE)
The JES symbol table (JSYTABLE) contains information about JES symbols and
their names. The symbol table consists of a table header that is mapped by the
JSYTABLE data structure, and zero or more symbol entries that are mapped by the
JSYENTRY data structure.

Field Name
Description

JSYTEYE
Eyecatcher - JSYT.

JSYTLEN
The total length of the table, which includes the table header, symbol
entries and space for symbol values. The JSYTLEN field indicates the
distance between the first byte of table header and the first byte which
follows the table. Note that if the table has unused space (between symbol
values, for example), the unused space is accounted for by the JSYTLEN
field.

JSYTVER
Version of the table.

Field Name
Description

JSYTVER1
Version 1 of the table.

JSYTENT1
Offset from the beginning of the table to the first entry.

JSYTENT#
Number of entries in the table.

JSYTENTS
Size of each entry.

Symbol entry (JSYENTRY)
A symbol entry in the symbol table is mapped by the JSYENTRY data structure:

Field Name
Description

JSYENAME
Symbol name.
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JSYEVALO
Offset from the beginning of the table header (JSYTABLE) to the symbol
value.

JSYEVALS
Size of the symbol value.
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Chapter 5. Internal reader facility

The internal reader facility is a logical device similar to a card reader that allows
you to submit jobs to JES. You can also read job streams from tape, disk or any
QSAM-supported device through the internal reader to JES by using the procedure
named RDR. Using the internal reader facility, you can submit jobs from
time-sharing logons, started tasks, or other jobs. The ability to submit jobs from
currently running jobs or tasks is especially powerful. This ability gives the
programmer the flexibility to have a job that reaches a point successfully to submit
another job for execution.

Defining the internal reader facility
In JES2, define the attributes of the internal reader facility with the INTRDR
statement.

There are three types of internal readers:
v TSO logons are submitted by use of TSOINRDR. TSUINRDR and TSOINRDR

are used interchangeably.
v Started tasks are submitted by use of STCINRDR.
v Batch jobs are submitted by use of INTRDR.

In JES3, internal readers are dynamically managed by the JES3 global and are
always available for use.

If BATCH=NO is specified, you cannot use internal readers for batch jobs.
However, you can still submit batch jobs through real (local) card readers, RJE,
NJE, or spool offload.

Using the internal reader facility
There are four methods of using the internal reader facility. These methods are:
v Using a special external writer called INTRDR to submit a job from input in a

batch job stream.
v Dynamically allocating the internal reader from your program.
v Using the IBM-supplied RDR procedure from either a batch job stream or the

operator's console to read the job from a QSAM-supported device.
v Using the TSO/E SUBMIT command to pass a job stream to the internal reader

facility. For more details about the TSO/E SUBMIT command, see z/OS TSO/E
Command Reference.

Note: The user portion of the job correlator can be set using the UJOBCORR JCL
keyword on the JOB card. For more information on the UJOBCORR keyword, refer
to z/OS MVS JCL Reference. A user portion that is set by the UJOBCORR keyword
will be overridden by the value that is set in the SYS_CORR_USRDATA symbol.
The user portion can also be set in installation exits 2 and 52 for JOB JCL statement
scan, and in exits 20 and 50 for end of job input. A user portion that is set in an
installation exit will override any value that is specified on the UJOBCORR
keyword or in the SYS_CORR_USRDATA symbol. For more information on
installation exits, refer to z/OS JES2 Installation Exits.
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Submitting to the internal reader from jobs or tasks
Figure 1 shows a step from a job (or task) that submits a job to the internal reader.

Step 9 writes the JCL that follows the STEP9 SYSUT1 card (up to the XX which
acts as a delimiter) to a SYSOUT data set used as input to the INTRDR program.

If the ACB interface was used to open the internal reader, you can use the
ENDREQ macro to complete the submission of jobs. For more information about
coding the ENDREQ macro, see z/OS DFSMS Macro Instructions for Data Sets and
z/OS Communications Server: SNA Programming. For more information about JES
control statement processing, see “JES control statements that affect the internal
reader” on page 38.

Dynamically allocating the internal reader
You can allocate SYSOUT data sets to the special external writer, INTRDR, just as
you would any other external writer. For example, your program can issue an SVC
99 (for details on SVC 99, see z/OS MVS Programming: Assembler Services Guide) and
write JCL-images directly to the internal reader.

The following text units are required on the dynamic allocation request to allocate
an internal reader:
v DALSYSOU - to indicate that this is a SYSOUT data set and the default

MSGCLASS for jobs that are submitted thought this internal reader. If '*' is
specified, the MSGCLASS is the same as the MSGCLASS, job or TSO/E logon
that allocated the internal reader.

v DALSPGNM - you must specify "INTRDR" to indicate that an internal reader is
being allocated.

v DALDDNAM or DALRTDDN - specifies the DD name to associate with the
internal reader or to request that the system assign a DD name.

v DALSSREQ or DALUASSR - optionally specify the name of the subsystem that
the internal reader should be associated with. The name must be that of an
active JES2 subsystem on this member. To use DALSSREQ, the caller must be
APF authorized.

Note: If DALSSREQ or DALUASSR is specified, the address space that allocates
the internal reader does not have to be associated with the JES2 that is specified.
The allocating address space can be associated with the master address space (such
as a started task running SUB=MSTR) or running under another JES subsystem
(such as a job associated with the primary subsystem allocating an internal reader

...
//STEP9 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=Z
//SYSUT2 DD SYSOUT=(A,INTRDR)
//SYSIN DD DUMMY
//SYSUT1 DD DATA,DLM=XX
//MYJOB1 JOB ACCT,VAZQUEZ,CLASS=A
//STEP1 EXEC PGM=CRUSHER
//ERRORS DD SYSOUT=A
//INPUT DD DSN=JES2.INIT.TUNE,DISP=SHR
//OUTPUT DD DSN=SMALL.BOOK,DISP=SHR
XX
//STEP10 EXEC ......

Figure 1. Submitting a Job to the Internal Reader
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on a secondary subsystem). However, having an internal reader allocated will
prevent the owning JES2 from shutting down. IBM recommends that applications
using DALSSREQ or DALUASSR not keep the internal reader allocated for an
extended period of time or have a mechanism to request that the internal reader be
unallocated. This prevents the internal reader allocation from impacting the
starting and stopping of JES2 subsystems.

Passing JCL symbols to the submitted job
When using the internal reader facility, the submitting job can be used to pass JCL
symbols to the submitted job. These JCL symbols can be used in the JCL of the
submitted job in the same way that JCL symbols created by a SET JCL statement
are used. To pass JCL symbols to the submitted job using the internal reader, the
list of symbols to pass must be defined for this internal reader using two methods:
1. Use the SYMBOLS= keyword on the DD statement that defines the internal

reader (for static allocation). Refer to z/OS MVS JCL Reference for details.
2. Use the DALSYML text unit during dynamic allocation of the internal reader.

Refer to z/OS MVS Programming: Authorized Assembler Services Guide for details.

The following symbols can be passed as JCL symbols to the submitted job:
v JCL symbols that were previously made available to the job by an EXPORT JCL

statement.
v JES symbols that were dynamically created by the JES Symbol Service

(IAZSYMBL). Refer to Chapter 4, “JES Symbol Service (IAZSYMBL),” on page 21
for details.

If dynamically-created JES symbols are passed by the submitting job, they must
conform to the limitations of JCL symbols; refer to z/OS MVS JCL Reference for
details. The special value SYMBOLS=* passes all symbols that are available to the
current task and that conform to JCL limitations to the submitted job, which
includes all JCL symbols and all usable JES symbols.

The list of JCL symbols to be passed by the internal reader specifies symbol names,
but not their values. Symbol values are captured by the internal reader when the
job is submitted. Applications can set or change symbol values before submitting a
job so that different jobs submitted through the same internal reader will have the
same set of symbols but different values.

Requesting job notification
The internal reader facility can be used to request job notification for a job that is
being submitted:
v Job notification is requested by defining the SYS_JOB_NOTIFY symbol before

submitting a job using the internal reader.
v When the job is no longer eligible for execution, JES sends job completion

notification by ENF 78. Refer to z/OS MVS Programming: Authorized Assembler
Services Reference EDT-IXG for ENF 78 information.

v ENF 78 includes job identification information and the value of the
SYS_JOB_NOTIFY symbol.

v Applications can use job notification to track submitted jobs.

Assigning the user portion of the job correlator
The internal reader facility can be used to assign the user portion of the job
correlator:

Chapter 5. Internal reader facility 35



v The job correlator (JOBCORR parameter) can be used to limit the volume of
processing that is required to control all batch jobs, STCs and TSUs.

v The job correlator value consists of a system portion and a user portion.
v The user portion of a job correlator can be set by assigning a value to the

SYS_CORR_USRDATA symbol before submitting the job through the internal
reader. Refer to “JES system symbols” on page 22 for details on using the
SYS_CORR_USRDATA symbol. The user portion can also be set using the
UJOBCORR parameter (see z/OS MVS JCL Reference) or using JES2 installation
exits 2 and 52 for JOB JCL statement scan, and exits 20 and 50 for end of job
input (see z/OS JES2 Installation Exits).

For details on using the JOBCORR parameter, refer to z/OS JES2 Commands.

Getting feedback
You can get feedback from the internal reader:
v The internal reader signals the result of the job submission by using special JES

symbols.
v If the job was successfully submitted, the following special JES symbols are set:

SYS_CORR_LASTJOB
This value is set to the job correlator of the job that was just submitted,
including the user portion if provided (refer to “Getting feedback”).

SYS_LASTJOBID
This value is set to the job identifier of the job that was just submitted.

v If job submission failed, these SYS symbols are set to empty values.

Time-sharing logon (TSO/E) and started task (STC) flow
Time-sharing logons and started system tasks appear to JES as two special forms of
jobs that are received from designated internal readers. In JES2, these jobs are
queued in special job classes (TSU and STC) and are assigned a MSGCLASS that is
set during JES2 initialization (MSGCLASS parameter on the JOBCLASS(TSU) and
JOBCLASS(STC) initialization statement). In JES3, the MSGCLASS for these jobs
defaults to the MSGCLASS parameter specified on the CIPARM initialization
statement. The two byte of PARMID= parameter on CIPARM statement is
referenced by the INTPMID= parameter on the STANDARDS initialization
statement.

The time-sharing message class (MSGCLASS parameter on the JOBCLASS(TSU) or
CIPARM statement) becomes the output class for all dynamically allocated
SYSOUT data sets for which a class is not specified, and becomes the MSGCLASS
for all submitted jobs with no MSGCLASS parameter on the JOB statement. It is,
therefore, not advisable to set MSGCLASS= to a SYSOUT class that specifies
OUTDISP=PURGE. See the information on output disposition for SYSOUT data
sets in z/OS JES2 Initialization and Tuning Guide for further information.

Time-sharing users can dynamically allocate data sets, dynamically deallocate them
(spinoff), and print them at the time-sharing terminal (OUTPUT command). JES
treats a file submitted by the TSO/Extensions interactive data transmission facility
as an output data set.
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Using the RDR procedure
Figure 2 shows the JCL procedure IBM supplies for you to use the internal reader
to read jobs from tape, disk, or any QSAM-supported device.

Examples of using the RDR procedure
The operator can invoke the RDR procedure to read:
v A job stream from the second file of a tape named JOBTAP on device 180:

S RDR,180,JOBTAP,LABEL=2,DSN=JOBS

v A job stream from a cataloged library of jobs:
S RDR,3330,DSN=PRODUCTN(PAYROLL)

v A job stream starting with a specific job on a tape named JOBTAP, the operator
must submit a job to JES2 similar to:

By using conditional JCL, you can cause internal readers to start only under
specific conditions. You can then form a dependent job or set of jobs that execute
(without operator intervention) only when a master job executes in a manner you
want.

For example, to submit BADNEWS only if GOODNEWS does not complete
successfully, specify the following:

User-written procedures and programs can further exploit the internal reader
facility to select particular jobs, to generate special job streams, and to allow
operator submission of production job streams.

//IEFPROC EXEC PGM=IEBEDIT
//SYSUT1 DD DDNAME=IEFRDER
//IEFRDER DD DSN=NULLFILE,DISP=OLD
//SYSUT2 DD SYSOUT=(A,INTRDR)
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY

Figure 2. The RDR Procedure

//READJOBx JOB ...
// EXEC RDR
//IEFRDER DD DSN=JOBS,VOL=SER=JOBTAP,
// UNIT=3400,DISP=OLD
//SYSIN DD *

EDIT START=JOBx
/*

//STEPTHEN IF (RC = 0)THEN
//*
//GOODNEWS EXEC PGM=IEBGENER
//SYSPRINT DD DUMMY
//SYSIN DD DUMMY
//SYSUT1 DD JOBS(JOBA)
//SYSUT2 DD SYSOUT=(A,INTRDR)
//*
//STEPELSE ELSE
//BADNEWS EXEC PGM=IEBGENER
//SYSPRINT DD DUMMY
//SYSIN DD DUMMY
//SYSUT1 DD JOBS(JOBB)
//SYSUT2 DD SYSOUT=(A,INTRDR)
//*
//STEPEND ENDIF
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JES control statements that affect the internal reader
The following JES control statements affect the way in which the internal reader
handles the input stream it receives:
v /*EOF - ends the current job in the data set and makes it eligible for immediate

processing.
v /*DEL - deletes the job in the data set and schedules it for immediate SYSOUT

processing. This statement deletes the current job in the job stream. If there is no
job in the data set, this statement has no effect. The SYSOUT consists of any JCL
submitted, followed by a message indicating that the job was deleted before
execution.

v /*SCAN - causes the job to be scanned for JCL errors, but not executed. (The
same processing occurs if TYPRUN=SCAN appears on the JOB statement.)

v /*PURGE - deletes the job in the data set and schedules it for purge processing.
If no job is in the data set, this statement deletes the previous job in the job
stream. No output is produced for this job. This is for JES2 only because JES3
does not recognize /*PURGE as a control statement.

Performance considerations for JES internal reader
The following performance considerations affect the performance of internal reader
in a JES subsystem.

Use of unblocked records for SYSIN and SYSOUT data sets
You should not block SYSIN and SYSOUT data sets because the SAM (sequential
access method) compatibility interface will increase overhead by unnecessarily
deblocking and blocking data sets.

Held internal readers in JES2
JES2 treats all internal readers as a single facility, therefore holding one internal
reader places all internal readers in hold. This is particularly troublesome when the
central operator holds the internal readers and TSO/E users want to submit
jobs.You can avoid this problem by:
1. Assigning a specific job class for all jobs submitted through a particular internal

reader. Instead of holding the internal reader, you can hold the class by using
either a JES2 initialization statement or a JES2 $T JOBCLASS(x),QHELD=YES
command.

2. Use the TYPRUN=HOLD parameter or TYPRUN=JCLHOLD parameter on the
JOB statement.

3. Submitting the job through an internal reader and individually hold it with the
JES2 $H J command.

Record length of SYSIN data sets
Jobs can include input data in SYSIN data sets. In JES2, the maximum length of a
record written to the internal reader is 32760 bytes. In JES3, the maximum length is
the installation defined buffer size. These can be processed locally or sent to other
nodes through NJE. Some NJE nodes do not support SYSIN records that are
greater than 254 bytes (in JES2) or 80 characters (in JES3) in length. When data is
sent to one of these nodes, the SYSIN records will be truncated to 254 bytes (in
JES2) or 80 characters (in JES3). Before attempting to send long SYSIN records to a
node, ensure that the node and any intermediate node support long SYSIN records
(for example, by sending a test).
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SYSIN record formats
JES sets the record format for SYSIN data sets based on the data written to them. If
all records that are written are of the same length (before any blank truncation),
the record format (RECFM) will be set to fixed (F). If the records vary in length,
the record format will be set to V. If carriage control is detected in the SYSIN
stream, the record format will be updated to FM, FA, VB or VA depending on
whether the records vary in length or not and whether the carriage control is ASA
or Machine. If both ASA and Machine carriage control are detected, the record
format will be set in the RECFM.
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Chapter 6. The External Writer

This chapter documents Intended Programming Interface and Associated Guidance
Information.

An external writer allows an installation to perform output processing for data sets
not eligible for processing by the primary job entry subsystem (JES2 or JES3). For
example, an external writer processes data sets going to printers, plotters, diskettes
or data sets that are to be stored on a device not supported by JES.

There are two major parts of the IBM-supplied external writer that can be modified
or replaced by an installation: the output writing routine and the output separator
routine.

This chapter describes:
v Overview of the IBM-supplied external writer
v How to set up and start the IBM-supplied external writer
v How the IBM-supplied output writing routine works
v How to add your own output writing routine
v How the IBM-supplied output separator routine works
v How to add your own output separator routine

See z/OS MVS Using the Functional Subsystem Interface for information in subsystem
interface (SSI) function code 1 on how to write your own external writer.

Overview of the IBM-Supplied External Writer
IBM supplies an external writer, which contains two routines that can be modified
or replaced by the installation:
v The output writing routine. This routine processes data sets.
v The output separator routine. This routine writes separator records within a

continuous listing or deck to help the operator separate one job's output from
another's.

Characteristics of the IBM-Supplied External Writer
The external writer has the following features:
v It runs as a started task, in its own address space, in 24-bit addressing mode.
v It processes only those data sets that meet its selection criteria. You set some of

these in a cataloged procedure (see “The External Writer Cataloged Procedure”
on page 42) but you can override them with the START and/or the MODIFY
operator commands (see z/OS MVS System Commands for the general description
of these commands).
If you do not specify data set selection criteria, the external writer will be used
to process all the output in the system.

v It removes data sets from the JES spool. That is, it dynamically allocates the data
sets, reads them, writes them to output devices, and then dynamically
deallocates them. A large format spool data set can be shared.

v It supports basic format, extended format and large format sequential data sets
on DASD.
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v It supports checkpoint and spool on 3390 Model 9 and Enterprise Storage Server
(ESS).

v It accesses data sets according to one or more of the following criteria:
– Output class
– Job ID
– Forms specification
– Destination (LOCAL, or remote workstation name)
– The name of your output writing routine

The usual technique however, for setting data set selection criteria, is to build a
list of eligible SYSOUT classes for the devices that will use the external writer.
If no class is specified, then we will not start selecting any output and will wait
for a MODIFY command to be issued. For example, if you have the following in
process:
//IEFPROC EXEC PGM=IASXWR00,PARM=’P’,REGION=20K

No class is specified. An S XWTR will cause the external writer to be started, but
idle. Then, a F XWTR,F=ABC may be specified to have the external writer select
by form type. If another F XWTR,C= is issued, then everything on the output
queue will be selected because a null class is specified.

How to Set Up and Start the External Writer
For an external writer to work in a JES environment, it must be defined to the
system in a cataloged procedure residing in SYS1.PROCLIB; and it must be started
by a START command, either from the system console or from within a program.

There are two ways to set up the criteria by which the external writer selects
output. The PARM= field (described below) allows the specification of SYSOUT
classes to select. Other criteria (such as forms, destination, writer name, jobid and
also SYSOUT class) must be specified using the MVS MODIFY command. See z/OS
MVS System Commands for a complete description of the modify command as it
applies to the external writer.

The External Writer Cataloged Procedure
The IBM-supplied external writer is defined and invoked by the cataloged
procedure named XWTR, which can serve as the base or a model for a procedure
you would write for your own output writer.

XWTR contains one step and consists of two JCL statements:
v The EXEC statement specifies the name of the external writer program to be

executed.
v The DD statement, which must be named IEFRDER as shown below, defines the

output data set.

Following is the actual XWTR procedure:
//IEFPROC EXEC PGM=IASXWR00,REGION=20K, X
// PARM=’PA,,’
//IEFRDER DD UNIT=TAPE,VOLUME=(,,,35), X
// DSNAME=SYSOUT,DISP=(NEW,KEEP), X
// DCB=(BLKSIZE=133,LRECL=133,BUFL=133, X
// BUFNO=2,RECFM=FM)
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The EXEC Statement
The generalized format for the EXEC statement is:
//IEFPROC EXEC PGM=IASXWR00[,REGION=nnnnnK,]
// [PARM='cxxxxxxxx[,seprname]]'
// [PARM='cxxxxxxxx[,seprname][,CERTIFY=Y|N]]'

The stepname must be IEFPROC, as shown. The parameter requirements are as
follows:

PGM=IASXWR00
The name of the external writer load module. It must be IASXWR00, as shown.

REGION=nnnnnK
This parameter specifies the region size for the external writer program. The
value nnnnn is a 1- to 5-digit number that is multiplied by 1K (1024 bytes) to
designate the region size. The region size can vary according to the size of
buffers and the size of your output writing routine. Insufficient region size will
cause the external writer to abend.

[PARM=‘cxxxxxxxx[,seprname][,CERTIFY=Y|N]]’
[PARM=‘cxxxxxxxx[,seprname][]’

Specifies output writer routine characteristics.

c An alphabetic character, either P (for printer) or C (for card punch), that
specifies the control characters for the class of output the output writing
routine will process.

xxxxxxxx
From one to eight (no padding required) single-character SYSOUT class
names. These characters specify the classes the output writing routine will
process and establish the priority for those classes, with the highest
priority at the high-order (leftmost) end of the character string.

Note: If the START command includes class name parameters, they
override all of the class names coded here. If you do not code class names
on the procedure EXEC statement or the START command, then the
external writer will wait for a MODIFY command from the operator before
processing any output.

seprname
This is the name of the output separator routine to run with the output
writing routine. If you omit this subparameter, no output separator pages
are produced.

IEFSD094 is the IBM-supplied output separator routine. If you write your
own output separator routine, and name it here, put it in SYS1.LINKLIB
(or a library concatenated to LINKLIB through a LNKLSTxx member of
parmlib).

Note: Do not use CERTIFY as the name of your output separator routine.
For your separator routine to be invoked, you must either code its name
on this subparameter or name it in the parameters on the START
command.

CERTIFY=Y|N
Indicates whether (Y) or not (N) you want to ensure that all data is safely
written to the output device. CERTIFY=Y indicates that data will not be
lost even if the external writer abnormally terminates, such as would occur
if the output data set becomes full.
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Note:

1. The use of the certify function increases processing overhead and
decreases efficient space utilization by the output data set.

2. If you write your own output writing routine and require the CERTIFY
function, you need to modify your code to be similar to that supplied
by IBM. Refer to “Using the CERTIFY Function” within section
“Programming Considerations for the Output Writing Routine” on page
49 for further details.

3. IBM cannot guarantee data set integrity when writing multiple data
sets to a PDS/PDSE member even if you specify CERTIFY=Y. See
“Functions of the Output Writer Routine” on page 46 for further
details.

The DD Statement
In this statement, you must define the output data set that the external writer will
use. The generalized format for the DD statement is:
//IEFRDER DD UNIT=device,LABEL=(,type), X
// VOLUME=(,,,volcount),DSNAME=anyname, X
// DISP=(NEW,KEEP),DCB=(list of attributes), X
// UCS=(code[,FOLD][,VERIFY]), X
// FCB=(image-id[,ALIGN]|[,VERIFY])

The ddname must be IEFRDER, as shown. The parameter requirements are as
follows:

UNIT=device
This specifies the printer, tape, card punch, or DASD device on which the
output data set is to be written.

LABEL=type
This describes a data set label, if one is needed (for tape data sets only). If this
parameter is omitted, a standard tape label is used.

VOLUME=(,,,volcount)
Needed for tape data sets only, this parameter limits the number of tape
volumes that this external writer can use during its entire operation.

DSNAME=anyname
This specifies a name for the output data set, so later steps in the procedure
can refer to it. The data set name is required for the disposition of KEEP.

DISP=(NEW,KEEP)
The disposition of KEEP prevents deletion of the data set (tape and DASD
only) at the end of the job step.

DCB=(list of attributes)
The DCB parameter specifies the characteristics of the output data set and the
buffers. The BLKSIZE and LRECL subparameters are always required. The
BUFL value, if you do not code it, is calculated from the BLKSIZE value. Other
subparameter fields may be coded as needed; if they are not, the defaults are
the QSAM default attributes. These are:

BUFNO—
Three buffers for the 2540 punch; two buffers for all other devices.

RECFM—
U-format, with no control characters.

TRTCH—
Odd parity, no data conversion, and no translation.
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DEN—
Lowest density.

OPTCD—
Printer data checks are suppressed, and “select translate table”
characters are printed as data. The IBM external writer does not
support OPTCD=J, a printer dependent specification.

UCS=(code[,FOLD][,VERIFY])
This specifies the code for a universal character set (UCS) image to be loaded
into the UCS buffer.

FOLD causes bits 0 and 1 to be ignored when comparing characters between
the UCS and print line buffers, thereby allowing lowercase alphabetic
characters to be printed (in uppercase) by an uppercase print chain or train.

VERIFY causes the specified UCS image to be printed for verification by the
operator.

The UCS parameter is optional, and is valid only when the output device is a
1403, a 3211, or a 3203-5 printer.

FCB=(image-id[,ALIGN]|[,VERIFY])
This causes the specified forms control buffer (FCB) image to be loaded into
the FCB. ALIGN and VERIFY are optional subparameters that allow the
operator to align forms. In addition, VERIFY causes the specified FCB image to
be printed for visual verification. The FCB parameter is valid only for a 3203-5,
3211, or 3800 printer; otherwise, it is ignored.

See z/OS MVS JCL Reference for more information on the parameters mentioned
here.

Special Printer Output Considerations: To process output jobs that require
special chains for printing, you should have specific classes for each different print
chain. You can specify the desired chain in your output writer procedure, and
when that output writer is started, the chain will be loaded automatically. (Printers
used with special chains should be named with esoteric group names as defined at
system installation.) See z/OS HCD Planning for information on the eligible device
table.

Following is an example of the JCL needed to define a special print chain in a
cataloged procedure for an external writer.
//IEFPROC EXEC PGM=IASXWR00,REGION=20K,PARM=’PDEG,IEFSD094’
//IEFRDER DD UNIT=SYSPR,DSNAME=SYSOUT,FCB=(STD2,ALIGN), X
// UCS=P11,DISP=(,KEEP), X
// DCB=(BLKSIZE=133,LRECL=133,BUFL=133, X
// BUFNO=2,RECFM=FM)

In this example, the UCS DD parameter requests the print chain alias for data sets
in the SYSOUT classes D, E, and G.

If the output device is a 3211 or a 3203-5, a UCS or FCB image can be loaded
dynamically between the printing of data sets. Therefore, you can specify a
mixture of data sets using different images in a single output class for this device.
This will probably require mounting trains and changing forms, however, so it
might not be desirable.
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When the output device is a 1403 or 3800, the UCS image or 3800 attributes are
specified at START XWTR time; they cannot be changed until the writer is
stopped. Therefore, all data sets within an output class must be printed using the
same train.

The FCB image is ignored when the 1403 printer is the output device.

External writer output to an IBM 3800 Printing Subsystem can also make use of
the CHARS, COPIES, FLASH, and MODIFY JCL parameters on the DD statement.
For information about using these parameters, see 3800 Printing Subsystem
Programmer's Guide. The coding rules and defaults are documented in z/OS MVS
JCL Reference.

How the IBM-Supplied Output Writer Routine Works
As stated previously, there are two main pieces to the external writer that can be
modified or replaced by the installation: The output writer routine and the output
separator routine. When the external writer is called, it gets control in module
IASXWR00. The main function of IASXWR00 is to initialize a 7-word parameter list
for the use of the other external writer routines.

The parameter list contains information about the output device and DCB
addresses for each data set. The input data set to the external writer was a job's
output data set which met the criteria for processing by the external writer. This
input data set is not yet open.

The format of the external writer parameter list is as follows:

Table 2. External Writer Parameter List

Byte Meaning

0 Used to describe the type of output device

Bit Meaning

011. .... 2540 punch unit

001. .... 1403, 3203-5, 3211, or 3800 printer device

010. .... tape device with punch-destined output

000. .... tape device with printer-destined output
1-3 Reserved for IBM use
4-7 Address of the DCB for the opened output data set where the external writer

will put the input records
8-11 Address of the DCB for the input data set, from which the external writer

will obtain logical records.
12-15 Address of the cancel ECB for writer routine subtask (IEFSD087 or

user-written writer routine).

The switches indicated by the three high-order bit settings in byte 0 can be used in
translating control character information from the input records to the form
required by the output device.

Functions of the Output Writer Routine
When you specify IEFSD087 as the output writer on the SYSOUT= parameter of
the DD statement, or when you leave this parameter blank, control will pass to the
IBM-supplied output writing routine in module IEFSD087, and it:
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v Issues an OPEN (J type) for the input data set previously taken from the JES
spool.

v Provides its own SYNAD error-handling routine on behalf of both the input and
output data sets. See z/OS DFSMSdfp Advanced Services for more information
about OPEN-J and SYNAD.

v Reads the input data set, using the locate mode of the GET macro.
v Calls a subroutine to handle ANSI and machine control character differences and

to handle conversions between the input records and the output data set.
v Calls a routine to write records to the output data set, using the locate mode of

the PUT macro.
v Closes the input data set after it has been read.
v Provides accounting support by updating fields in the SMF type 6 record for the

input data set.
v Frees the buffer associated with the input data set (by issuing the FREEPOOL

macro).
v Returns control to the main logic control module of the external writer,

IASXWR00, using the RETURN macro and setting a return code.

Note: When writing multiple data sets to a PDS/PDSE member, if the
‘end-of-output-data-set’ condition arises, the output external writer cannot
guarantee (even if you set CERTIFY=Y as a startup parameter) that all records will
be saved. The current data set is saved, but all records written up to that point
cannot be recovered in the case of writing to a PDS/PDSE member.

The following diagram shows the general flow of the IBM-supplied output writing
routine:
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How to Add Your Own Output Writing Routine
If you want to add your own output writing routine to the external writer,
consider whether your routine will be needed more often than the IBM-supplied
routine. If your routine will be invoked to write most of the external writer's
output, you might want to replace the IBM-supplied with your own routine, so
that your routine will be called by default. You can retain the IBM-supplied routine
by renaming it to an alias.

Replacing the IBM-Supplied Routine
You can replace the IBM-supplied routine with your routine by:
v Renaming the IBM-supplied routine (IEFSD087) to an alias.
v Naming your routine IEFSD087
v Installing your routine in SYS1.LINKLIB

The external writer will call your routine by default. You can request the
IBM-supplied routine by coding its alias on the SYSOUT= parameter. For example:

//MYDATA DD SYSOUT=(H,IBMWRITR)

Figure 3. General Flow of IBM's Output Writing Routine
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where IBMWRITR is the alias you've given to the IBM-supplied routine.

Do not code STDWTR as a writer name. STDWTR and INTRDR are and are
reserved for JES used as a parameters in the MVS operator's MODIFY command.

In a JES3 system, do not code NJERDR as a writer name. NJERDR is reserved for
JES3.

Using Your Routine for Only Certain Jobs
If you plan to have your routine invoked for only certain jobs, give it a unique
name, and install it in SYS1.LINKLIB or an authorized library concatenated to
LINKLIB through a LNKLSTxx member of SYS1.PARMLIB. To have your routine
invoked, the end-user must specify its name on the SYSOUT= parameter of the
job's DD statement. When your routine is not specified, the system calls the
IBM-supplied routine by default.

Coding Conventions for the Output Writing Routine
In order for your output writing routine to work in the external writer, it must
observe the following conventions:
v If you put your routine in LPA so that you only use one copy for all external

writers, then it must be reentrant. If you use a STEPLIB and each writer can
have its own copy, then the code need not be reentrant.

v The routine must use standard entry and exit linkage, saving and restoring its
caller's registers.
At entry, register 1 points to the parameter list and register 13 points to an
18-word save area.

v The routine must issue an OPEN-J macro to open the desired input data set. The
data set to which the output writing routine will write records is opened before
the routine is loaded.

v The routine must use the GETMAIN and FREEMAIN macros, or the STORAGE
macro, to acquire and release any necessary storage.

v The routine must return control to its caller through the RETURN macro, in the
same addressing mode it was called in. It must put a return code in register 15:
– A return code of 0 indicates that the data set was processed successfully to

the output device.
– A return code of 8 indicates that the routine was unable to process the data

set because of an output error.

Programming Considerations for the Output Writing Routine
In addition to the coding conventions, consider the following when writing your
own output writing routine:
v Obtaining Storage for Work Areas: Using the GETMAIN or STORAGE macro,

the output writing routine should obtain storage in which to set up switches and
save record lengths and control characters.

v Processing an Input Data Set: To process a data set, the writing routine must
get each record individually from the input data set, transform (if necessary) the
record format and the control characters to conform to the output data set's
requirements, and put the record in the output data set. Consider each of these
tasks individually:
1. Before the routine actually obtains a record from an input data set, the

routine must provide a way to handle the two forms of record control
character that are allowed in an output data set, if the output device is a
printer.
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Most printers are designed so that, if the output data set records contain
machine control characters, a record (line) is printed before the effect of its
control character is considered. However, if ANSI control characters are used
in the output records, the control character's effect is considered before the
printer prints the line. Thus, if the input data sets do not all have the same
type of control characters, you will need to avoid overprinting the last line of
one data set with the first line of the next.
When the input records have machine control characters and the output
records are to have ANSI control characters, the standard (IBM-supplied)
output writing routine produces a control character that indicates one line
should be skipped before printing the first line of output data.
When the input records have ANSI control characters and the output records
are to have machine control characters, the standard writing routine prints a
line of blanks before printing the first actual output data set record.
Following this line of blanks, the printer generates a one-line space before
printing the first record.
Depending upon the characteristics of the printers in your installation, you
will probably want your output writer to perform some kind of “printer
initialization” like that outlined here.

2. After the output writing routine has properly opened the input data set and
has completed any necessary printer initialization, it must obtain records
from the input data set.
The standard output writing routine uses the locate mode of the GET macro.
If you use this macro, you will need to check the MACRF field of the input
data set's DCB to see if GET in locate mode is allowed. If not, you can
override the MACRF parameter on the GET macro itself. See z/OS DFSMSdfp
Advanced Services for information on coding and using all the QSAM macros.
In a JES2 system, the padding is done automatically.
In a JES3 system, if blank truncation is in effect (TRUNC=YES specified on
the BUFFER initialization statement or the SYSOUT initialization statement),
then fixed format records will not be padded with blanks. You need to do
the padding manually.

3. Having obtained a record from the input data set, the output writing routine
must now make sure that its format and control character are compatible
with the requirements of the output data set.
Because the output data set is already opened when the output writing
routine is entered, your routine will have to adhere to the established
conventions.
The standard output writing routine uses the PUT macro in the locate mode
to write records to the output data set. For fixed-length output, it obtains the
record length for the output data set from the DCBLRECL field of the DCB.
If an input record is longer than the length specified for the output records,
the standard output writing routine truncates the input record from the right.
If an input record is shorter than the length specified for the output records,
the standard output writer left-justifies the input record and pads the field
with blanks.
When the output record length is variable and the input record length is
fixed, the standard output writer adds control character information (if
necessary) and variable record control information to the output record.
Control character information is one byte, and record control information is
four bytes long. Both additions are at the high-order end of the record.
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If the output record is not at least 18 bytes long, the standard output writer
pads it on the right with blanks. The standard output writer also adjusts the
length of the output record to match the length of the output buffer.

4. When the output writing routine has successfully adjusted the input and
output records, it can read the input data set until end of data. At that point,
you need to consider another aspect of input data set processing: what is
going to happen to the last input record?
The standard output writer handles output to either card punch or printer, as
required; your routine could also send output to an intermediate tape or
DASD device. Depending upon the kind of device, the last few records
obtained from the input data set will receive different treatment.
It might happen that all the records from a given data set are not available
on the output device until the output of records from the next data set is
started, or until the output data set is closed. However, if you specify
CERTIFY=Y as a start-up parameter, the records can be made available on
the output device after all the input records have been written by the output
writing routine. When the output data set is closed, the standard output
writer automatically puts out the last record of its last input data set.
For Punch Output: When a card punch is the output device, the last three
output cards could still be in the machine when the input data set is closed.
To put out these three records with the rest of the data set, and with no
breaks, the standard output writer provides for three blank records following
the actual data set records.
For Printer Output: When a printer is the output device, the last record of
the input data set is not normally put in the output data set at the time the
input data set is closed.
To force out this last record, the standard output writer generates a blank
record to follow the last record of the actual data set.

v Using the CERTIFY Function: The CERTIFY function can be specified as a
parameter when starting the external writer. It guarantees that data will not be
lost when an abend condition occurs. If the CERTIFY function is not enabled, it
is possible that records written to the QSAM buffers, but not yet written to the
output device, can be purged before they are recorded during an abend
situation. This is possible, for example, when the output data set is not large
enough to contain the data, resulting in an ’end-of-volume’ (x37) abend.
The CERTIFY function flushes the buffers each time an input data set is
processed, and makes that data available on the output device. However, while
guaranteeing data integrity, this function might also increase processing
overhead and decrease efficient output data set space utilization. Also, note that
even with CERTIFY=Y, data integrity might be compromised in the case of
writing multiple JES data sets to a partitioned dataset (PDS) or PDSE in an
abend situation.
If you need to use the CERTIFY function, you need to modify your output
writing routine to be similar to that supplied by IBM. Refer to module IEFSD087
for an example of how to enable the CERTIFY function. Basically, you must do
the following:
1. In the external writer main task, force the number of buffers for the output

data set to 1. That is, set DCBBUFNO=1.
2. In the output writing routine after all records are PUT to the data set,

perform a second PUT to write a blank line (a ‘transition record’) after the
data to separate the data sets.

3. In the output writing routine, commit the data to the output device.
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v Closing Input Data Set(s): After the standard output writer finishes putting out
the records of an input data set, it closes the data set before returning control to
the calling module. All input data sets must be closed.
After closing the input data set, it is recommended that your output writer free
the buffer pool associated with the input data set (by issuing the FREEPOOL
macro).

v Releasing Main Storage: The output writing routine should release the storage
it acquired, using the FREEMAIN or STORAGE macro, before returning to its
caller.

v Handling Errors: The routine must put a return code into register 15 before
returning to its caller using the RETURN macro.
The standard output writer sets a return code of 8 if it terminates because of an
unrecoverable error on the output data set; otherwise, the return code is 0. The
output writing routine must handle input errors itself.

How the IBM-Supplied Output Separator Routine Works
The second major part of the IBM-supplied external writer routine is the output
separator routine. Any output processing to a punch or printer must include a
means of separating one job from another within the continuous deck or listing.
When you specify IEFSD094 on the PARM= parameter on the EXEC card of the
external writer, the IBM-supplied output separator routine writes separation
records to the output data set prior to the writing of each job's output.

You can modify this separator routine to suit your installation's needs, or you can
create your own routine. IBM's version does the following:
v For Punch-Destined Output: The separator routine provides three

specially-punched cards (deposited in stacker 1) prior to the punch card output
of each job. Each of these cards is punched in the following format:

Columns 1 to 35
blanks

Columns 36 to 43
job name

Columns 44 to 45
blanks

Column 46
output classname

Columns 47 to 80
blanks

v For Printer-Destined Output: The IBM-supplied separator routine provides three
specially-printed pages prior to printing the output of each job. Each of these
separator pages is printed in the following format:
– Beginning at the channel 1 location (normally near the top of the page), the

job name is printed in block characters over 12 consecutive lines. The first
block character of the 8-character job name begins in column 11. Each block
character is separated by 2 blank columns.

– The next two lines are blank.
– The output classname is printed in block characters covering the next 12 lines.

This is a 1-character name, and the block character begins in column 35.
– The remaining lines, to the bottom of the page, are blank.
– In addition to the block characters, a full line of asterisks (*) is printed twice

(that is, overprinted) across the folds of the paper. These lines are printed on
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the fold preceding each of the three separator pages, and on the fold following
the third page. This is to make it easy for the operator to separate the job
output in a stack of printed pages.

To control the location of the lines of asterisks on the page, the IBM-supplied
separator routine requires that a channel 9 punch be included (along with the
channel 1 punch) on the carriage control tape or in the forms control buffer
(FCB). The channel 9 punch should correspond to the bottom of the page. The
printer registration should be offset to print the line of asterisks on the fold of
the page.
The IBM-supplied separator routine makes no provision for the 3800 printing
subsystem; if you use it on a 3800, the FCB must locate a channel 9 punch at
least one-half inch from the paper perforation.

Separator Routine Parameter List: IBM's external writer provides its separator
routine with a 7-word parameter list of necessary information. When the separator
routine receives control, register 1 contains the address of the parameter list, which
contains the following:

Table 3. Separator Routine Parameter List

Byte Meaning

0 Used to describe the type of output device

Bit Meaning

011. .... 2540 punch unit

001. .... 1403, 3203-5, 3211, or 3800 printer device

010. .... tape device with punch-destined output

000. .... tape device with printer-destined output
1-3 Not used, but must be present
4-7 Address of the DCB for the opened output data set where the external writer

will put the input records
8-11 Address of an 8-character field containing the job name
12-15 Address of a 1-character field containing the output class name
16-19 Address of the data set PROC name in the SSOB extension.
20-23 Address of the data set STEP name in the SSOB extension.
24-27 Address of the data set DD name in the SSOB extension.

The parameter list points to a DCB; this DCB is established for the QSAM output
data set, which is already open when the separator program receives control.

The address of the job name and the address of the output classname are provided
in the parameter list so they can be used in the separation records the separator
routine writes.

Output from the Separator Routine: A separator routine can write any kind of
separation identification. IBM supplies a routine that constructs block characters.
(See “Using the Block Character Routine” on page 54.) The separator routine can
punch as many separator cards, or print as many separator pages, as necessary.

The output from the separator program must conform to the attributes of the
output data set. To find out what these attributes are, examine the open output
DCB pointed to by the parameter list. The attributes are:
v Record format (fixed, variable, or undefined length)
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v Record length
v Type of carriage control characters (machine, ANSI, or none)

For printer-destined output, a separator routine can begin its separator records on
the same page as the previous job output, or skip to any subsequent page.
However, the separator routine should skip at least one line before writing any
records because in some cases the printer is still positioned on the line last printed.

After completing the output of the separation records, the separator routine should
write sufficient blank records to force out the last separation record. This also
allows the error exit routine to obtain control if an uncorrectable output error
occurs while writing the last record. One blank record, for printer-destined output,
and three blank records, for punch-destined output, are sufficient to force out the
last record.

How to Add Your Own Output Separator Routine: If you write your own
separator routine, it must conform to the following requirements:
v The routine must have a unique name and this name must be specified in the

PARM= parameter on the EXEC card for the external writer. If you do not
specify the name of an output separator routine, no separator records are
written.

Note: Do not use CERTIFY as the name of your output separator routine.
Refer to “The EXEC Statement” on page 43 for details on specifying an output
separator routine on the PARM= parameter.

v If you want to replace the standard IBM routine, then name your routine
IEFSD094. This should reside in SYS1.LINKLIB or in a library concatenated to
LINKLIB through a LNKLSTxx member of SYS1.PARMLIB.

v The routine must use standard entry and exit linkages, saving and restoring its
caller's registers, and returning to its caller through the RETURN macro, with a
return code in register 15.

v The routine must use the QSAM PUT macro in locate mode to write separation
records to the output data set.

v The routine must use the GETMAIN and FREEMAIN macros, or the STORAGE
macro, to obtain and release the storage required for work areas.

v The routine must establish its own synchronous error exit routine, and place the
exit address in the DCBSYNAD field of the output DCB. The error routine will
receive control during output writing in case of an uncorrectable I/O error; it
must set a return code of 8 (binary) in register 15 to indicate an unrecoverable
output error.
If the separator routine completes processing successfully, it must set a return
code of 0 in register 15, before returning to its caller.

Note: The separator routine receives control in problem-program state, but with a
protection key of 0. Therefore, the routine must ensure data protection during its
execution.

Using the Block Character Routine: For printer-destined output, the separator
routine can use an IBM-supplied routine to construct separation records in a block
character format. This routine is a reentrant module named IEFSD095 that resides
in the module library SYS1.AOSB0.

The block character routine constructs block letters (A to Z), block numbers (0 to
9), and a blank. The separator routine furnishes the desired character string and
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the construction area. The block characters are constructed one line position at a
time. Each complete character is contained in 12 lines and 12 columns; therefore, a
block character area consists of 144 print positions. For each position, the routine
provides either a space or the character itself.

The routine spaces 2 columns between each block character in the string. However,
the routine does not enter blanks between or within the block characters. The
separator routine must prepare the construction area with blanks or other desired
background before entering the block character routine.

To invoke the IBM-supplied block character routine, the IBM-supplied separator
routine executes the CALL macro with the entry point name of IEFSD095. Since the
block characters are constructed one line position at a time, complete construction
of a block character string requires 12 entries to the routine. Each time, the address
of a 7-word parameter list is provided in register 1.

The parameter list contains the following:

Table 4. Block Character Routine Parameter List

Byte Meaning

0-3 This fullword is the address of a field containing the desired character string
in EBCDIC format.

4-7 This fullword is the address of a field containing the line count as a binary
integer from 1 to 12. This represents the line position to be constructed on
this call.

8-11 This word is the address of a construction area where the routine will build
a line of the block character string. The required length in bytes of this
construction area is 14n-2, where n represents the number of characters in
the string.

12-15 This word is the address of a fullword field containing, in binary, the
number of characters in the string.

16-19 Address of the data set PROC name in the SSOB extension.
20-23 Address of the data set STEP name in the SSOB extension.
24-27 Address of the data set DD name in the SSOB extension.

Chapter 6. The External Writer 55



56 z/OS JES Application Programming



Appendix. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM® Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
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exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 \* FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* \* FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!
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(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix. Accessibility 59



60 z/OS JES Application Programming



Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.
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IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted
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for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: (no navtitle)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml
(http://www.ibm.com/legal/copytrade.shtml).
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