
z/OS Communications Server

SNA Programmer's LU 6.2 Guide
Version 2 Release 1

SC27-3669-00

���

Note:
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
395.

First Edition (September 2013)

This edition applies to version 2, release 1, modification 0 of z/OS (5650-ZOS), and to subsequent releases and
modifications until otherwise indicated in new editions.

IBM welcomes your comments. You may send your comments to the following address.
International Business Machines Corporation

Attn: z/OS Communications Server Information Development

Department AKCA, Building 501

P.O. Box 12195, 3039 Cornwallis Road

Research Triangle Park, North Carolina 27709-2195

You can send us comments electronically by using one of the following methods:

Fax (USA and Canada):
1+919-254-1258

Send the fax to “Attn: z/OS Communications Server Information Development”

Internet email:
comsvrcf@us.ibm.com

World Wide Web:
http://www.ibm.com/systems/z/os/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number. Make sure to
include the following information in your comment or note:
v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2000, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/systems/z/os/zos/webqs.html

Contents

Figures . ix

Tables . xi

About this document . xiii
Who should use this document . xiii
Typographic conventions used in this document . xiii
How this document is organized . xiv
How to use this document . xv

Determining whether a publication is current . xv
How to contact IBM service . xvi

Conventions and terminology that are used in this document xvi
Prerequisite and related information . xvii

Summary of changes. xxiii

Chapter 1. Understanding VTAM LU 6.2 application programs 1
About this chapter . 1
Advantages of LU 6.2 application programs . 1
The role of LU 6.2 in SNA networks . 1

Logical units . 1
Session types . 3

Important LU 6.2 concepts . 4
Peer-to-peer protocol . 4
LU protocol boundary . 4
Transaction programs . 5
Conversations . 6
Conversation states . 7
Logical records and buffers . 7
Full-duplex and half-duplex protocols . 8
Single and parallel sessions . 8
Mode name groups . 9
Session contention . 10
Session limits . 10

VTAM-supported LU 6.2 application programs . 11
Responsibilities for implementing LU 6.2 . 11

Chapter 2. LU 6.2 and the VTAM API . 13
About this chapter . 13
Standard features of the API. 13
Unique LU 6.2 features of the API . 13
VTAM as session manager . 14
VTAM macroinstruction language . 15
Control blocks and mappings . 15

Common control blocks and mappings . 15
LU 6.2 control blocks and mappings . 17

Common macroinstructions . 18
Macroinstructions required for requesting LU 6.2 services 18
Macroinstructions for building non-LU 6.2 control blocks 18
Non-APPCCMD VTAM macroinstructions . 19

Session limits and CNOS commands . 22
VTAM conversations . 23
Conversation states . 23
LU 6.2 global variables . 24

© Copyright IBM Corp. 2000, 2013 iii

Vector lists. 24
Vector lists used during OPEN processing . 26
Vector lists used during APPCCMD processing . 30

Application exit routines . 33
RPL-specified exit routines . 33
Exit-list (EXLST) exit routines . 33

Register usage . 34
Operating system environment . 35
Overview of LU 6.2 transaction processing . 35

Chapter 3. How VTAM implements LU 6.2 architecture 37
About this chapter . 37
LU 6.2 verbs . 37

Verbs that VTAM implements . 37
Pass-through verbs (application program implements) . 38
Mapped conversation verbs (application program implements) 41
Verbs not supported by VTAM . 41

LU 6.2 option sets . 42
Option sets that VTAM implements . 42
Option sets that the application program implements . 46
Option sets that VTAM does not offer . 48

LU 6.2 verb cross reference . 48
VTAM LU-mode table . 51

Data structures . 51
Blank mode names . 52
Table entries . 52
Initializing the LU-mode table . 54

Chapter 4. Designing programs to use LU 6.2 services 57
About this chapter . 57
Request of LU 6.2 services . 57

RPL extension user field . 57
Evaluating feedback information . 58

Startup processing for LU 6.2 application programs . 59
Opening an ACB . 59
Issuing a SETLOGON macroinstruction . 59
Restoring modes and any associated persistent LU-LU sessions 60
Negotiating session limits . 63

LU 6.2 transaction processing . 66
Understanding conversations . 66
Conversation queues for macroinstruction processing . 69
Allocating a conversation and receiving the allocate . 72
Comparing normal information to expedited information 73
Determining conversation status . 75
Sending and receiving normal information . 75
Sending and receiving expedited information . 76
Deallocating the conversation . 77

Implementing LU 6.2 option sets . 77
Mapped conversations. 77
Security procedures. 77
Synchronization point services . 78
Program initialization parameters (PIP) data . 79

Chapter 5. Coding the APPCCMD macroinstruction 81
About this chapter . 81
Use of the APPCCMD macroinstruction . 81
Use of the CONTROL keyword. 82
Use of the QUALIFY keyword . 83
Keywords and returned parameters . 87

Parameter-to-DSECT mapping . 93

iv z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Keyword specifications . 95

Chapter 6. Managing sessions . 99
About this chapter . 99
Negotiating session limits . 99

How session limits are used . 100
Application's role in session limit negotiation. 102
VTAM's role in session negotiation . 105
VTAM's role in session limit negotiation when PLU=SLU 107
Example of a CNOS request . 108
Example of CNOS negotiation . 109

Logon mode table versus LU-mode table . 111
Logon mode table . 112
LU-mode table . 112

Specifying values for session limit negotiation . 114
Defined negotiation limits . 116
Parameters on the APPL definition statement . 117

Building a CNOS session limits control block . 118
Layout of the CNOS session limits control block. 118
Draining and session deactivation responsibility. 125
Security acceptance information . 128

Defining negotiation limits and displaying session limits . 129
Initializing and pointing to the control block . 129
Limitations of the display function . 130
Layout of the DEFINE/DISPLAY control block . 130
Example of setting the DEFINE/DISPLAY control block 138
Displaying LU-mode data . 140
Example of displaying LU-mode data . 140

Setting session limits to 0 . 141
Closing a mode. 141
Closing a SNASVCMG mode . 142
Deleting mode entries . 142

Additional session limit considerations . 142
Parallel session support . 142
Session limits for single-session-capable partners . 143
Session limits for SNASVCMG mode name . 144

Activating and deactivating sessions. 145
VTAM's role in session activation and deactivation . 145
Application program's role in session activation and deactivation 147
Example of accepting a session . 149
BIND image and response . 149
CNOS general data stream (GDS) variable. 171

Retrieving information for a mode and sessions to be restored 172

Chapter 7. Allocating a conversation . 175
About this chapter . 175
Initiating a conversation . 175

Building an FMH-5 . 176
Issuing the CONTROL=ALLOC macroinstruction . 182

Responding to an FMH-5 . 185
Restrictions on types of notification . 186
Example of receiving an FMH-5 . 186
Receiving PIP and DCE data . 187
Checking the received FMH-5 . 187
Queuing the RCVFMH5 macroinstruction . 189

Reserving a session for a conversation . 189
Description of the conversation identifier . 190
Description of the session instance identifier . 191
Session activation . 191

Type of session activated . 191

Contents v

Number of sessions activated . 192
Sync point capability . 192
Full-duplex session capability . 192
Synchronizing end points after session activation failure 192

Chapter 8. Deallocating a conversation . 195
About this chapter . 195
Deallocating a half-duplex conversation . 195

Deallocating a half-duplex conversation normally . 195
Deallocating a Half-duplex conversation abnormally . 199

Deallocating a full-duplex conversation. 202
Deallocating a full-duplex conversation normally . 202
Deallocating a full-duplex conversation abnormally . 203

Restrictions on abnormally deallocating conversations . 204
Deallocating a pending conversation . 205
Rejecting a conversation pending deallocation for persistent sessions 206

Chapter 9. Sending information . 207
About this chapter . 207
Sending information on half-duplex conversations . 207

Background of the SEND buffer . 207
Use of the SEND buffer . 208
Roles of sender and receiver . 210
Sending normal information . 213
Sending expedited information . 217

Sending information on full-duplex conversations . 218
Use of the SEND buffer . 218
Roles of sender and receiver . 219
Sending normal information . 220
Sending expedited information . 221

Buffer list requirements . 221
Example of using a buffer list . 221
BUFFLST differences for LU 6.2 . 223

Handling storage shortages. 224
Send requests not using a buffer list . 224
Send requests using a buffer list . 224

Chapter 10. Receiving information . 227
About this chapter . 227
Determining what is received . 227

What-received field . 228
What-received indicators . 229
Checking the what-received field . 236

Receiving information on half-duplex conversations . 236
Roles of sender and receiver . 237
Receiving normal information . 238
Responding to confirmation requests . 239
Receiving expedited information . 242

Receiving information on full-duplex conversations . 243
Roles of sender and receiver . 243
Receiving normal information . 244
Receiving expedited data . 246

Specifying how information is received. 247
Logical records versus buffers . 247
Continuation modes for receiving normal information . 249
Continuation modes for receiving expedited information 252

Error handling . 252

Chapter 11. Sending and receiving data using high performance data transfer 255
About this chapter . 255

vi z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

The role of CSM and the IVTCSM macroinstruction . 255
Applications that use the HPDT interface . 256
Using the APPCCMD macroinstruction for HPDT requests 256
Designing programs to use HPDT . 256

Design considerations for HPDT applications. 257
Macroinstructions used by HPDT applications . 257
Application authorization . 258
Application responsibilities for using HPDT . 258
How support for HPDT is communicated between the application and VTAM 259
Verifying the session's capabilities . 259
Using the extended buffer list (XBUFLST) . 260

Sending data using HPDT . 261
SEND processing using the HPDT interface . 262
How VTAM processes an HPDT send request . 264
Send macroinstruction completion considerations . 264

Receiving data using HPDT . 268
RECEIVE processing using HPDT . 268
Passing HPDT receive requirements to VTAM . 269
Receive macroinstruction completion considerations . 270
Data delivery considerations . 274

Using the SENDRCV macroinstruction for HPDT . 275
APPCCMD application requirements to ensure CSM storage recovery 277

General APPCCMD storage ownership requirement . 278
Application responsibilities when the RPL is posted complete with an error 278
Application responsibilities when the RPL is not posted complete 278

MPC pad character considerations . 279
Confidential text considerations . 280

Application data clear responsibilities . 280

Chapter 12. Using exit routines. 283
About this chapter . 283
Using the ATTN exit . 284

Parameter list . 284
FMH-5 function . 285
CNOS function . 286
LOSS function . 287

Using other EXLST exit routines . 289
SYNAD . 289
LERAD . 290
TPEND . 290
LOGON . 291
SCIP . 293
LOSTERM exit routine . 294

Chapter 13. VTAM's LU 6.2 security options 295
About this chapter . 295
Security management product requirements . 295

Defining profiles for LU-LU session pairs in RACF . 295
Session-level verification. 296

Session activation using level 1 session-level verification 296
Session activation using level 2 session-level verification 297
Enabling session-level security . 298
Informing the application program of verified sessions 301
Session activation failures . 301
VTAM's support for session-level verification. 302

Conversation-level security . 303
Verifying end users using conversation-level security . 303
Security acceptance levels . 303
VTAM's level of support . 304
The application's maximum security acceptance level . 306

Contents vii

Partner application's maximum security acceptance level 307
Specifying a conversation's security level . 308

Data encryption . 308
Levels of data encryption . 309
Determining a session's data encryption level . 309
Selective data encryption . 312

Chapter 14. Handling errors . 313
About this chapter . 313
General sequence of error checking . 313
Using exit routines to handle errors . 318
Evaluating RCPRI, RCSEC return codes . 318
Response to errors. 319

Choice of response . 320
Error types . 320

Data purging and truncating . 322
Purging error codes . 322
Truncating error codes . 323

Error log variables. 324
VTAM sense codes . 324

Sense codes for FMH-7 . 324
Sense codes for UNBIND . 328

Appendix A. Conversation states . 335
States of conversations . 335
Half-duplex conversation states . 335
Full-duplex conversation states . 337
State matrix . 340

Appendix B. APPCCMD macroinstruction overview 345
Session and conversation information . 345
Information from the application to VTAM . 348
Information flow from VTAM to the application. 352

Appendix C. Example of a sample LU 6.2 application program 357
Sample VTAM LU 6.2 application program . 357
Console log . 376

Appendix D. Example of retrieving information for a mode and any restored sessions 383
Logic for retrieving restore information. 385
Example program for retrieving restore information . 387

Appendix E. Architectural specifications. 389

Appendix F. Accessibility . 391

Notices . 395
Programming interface information . 403
Policy for unsupported hardware. 403
Trademarks . 403

Bibliography. 405

Index . 409

Communicating your comments to IBM . 431

viii z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Figures

1. Conventions used in network illustrations . xiv
2. SNA network of LU 6.2s . 2
3. Session between APPL1 and APPL2 . 3
4. Conversation flowing on a session . 7
5. Comparison of single and parallel sessions . 9
6. VTAM and application program implementation responsibilities 12
7. Format of a vector list . 25
8. Format of Application-Capabilities Vector . 26
9. Format of vectors built by VTAM during OPEN processing 28

10. Format of APPCCMD vectors . 31
11. Conceptual view of LU-mode table structure . 53
12. Valid operands for APPCCMD macroinstructions: ALLOC—OPRCNTL 88
13. Valid operands for APPCCMD macroinstructions: PREALLOC—RPL 89
14. Valid operands for APPCCMD macroinstructions: SEND—TESTSTAT 90
15. Returned parameters for APPCCMD macroinstructions: ALLOC—OPRCNTL 91
16. Returned parameters for APPCCMD macroinstructions: PREALLOC—RESETRCV 92
17. Returned parameters for APPCCMD macroinstructions: SEND—TESTSTAT 93
18. Results of session limit negotiation . 102
19. Example of a CNOS request . 109
20. Sample CNOS negotiation . 110
21. Example of setting the DEFINE/DISPLAY control block 139
22. Exchange of LU names during session activation . 166
23. Name mismatch in two BIND responses for the same partner LU 167
24. Name mismatch when the partner LU is the PLU . 168
25. Sample FMH-5 divided into its component fields . 182
26. Example of receiving an FMH-5 . 187
27. SEND processing using CSM buffers . 263
28. RECEIVE processing using CSM buffers . 269
29. Comparison of BUFFLST and XBUFLST entries associated With APPCCMD CONTROL = SENDRCV (part 1

of 2) . 276
30. Comparison of BUFFLST and XBUFLST entries associated with APPCCMD CONTROL = SENDRCV (part 2

of 2) . 277
31. Information exchanged between LUs during session activation 297
32. Information exchanged between LUs during session activation 298
33. Example of already-verified support processing . 305
34. Example of persistent-verification support processing 306
35. Half-duplex conversation state transitions . 340
36. Full-duplex conversation state transitions . 342
37. Console log part 1 of 7 . 376
38. Console log part 2 of 7 . 377
39. Console log part 3 of 7 . 378
40. Console log part 4 of 7 . 379
41. Console Log Part 5 of 7 . 380
42. Console Log part 6 of 7 . 381
43. Console log part 7 of 7 . 382
44. Information for three LU-modes . 384
45. Logic for retrieving RESTORE information . 386

© Copyright IBM Corp. 2000, 2013 ix

x z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Tables

1. Vector lists . 25
2. Special-purpose exit routines applicable to all session types 34
3. Verb-to-macro cross-reference . 49
4. Session establishment with partner LU1 . 53
5. Session establishment with partner LU2 . 53
6. Impact of SETLOGON on session establishment . 59
7. Sync point processing . 79
8. CONTROL keyword operands and their meanings . 82
9. QUALIFY keyword operands and their meanings . 83

10. RPL fields and DSECT labels in IFGRPL . 94
11. RPL extension fields and DSECT labels in ISTRPL6X. 94
12. Operand specifications for the APPCCMD macroinstruction 96
13. Return codes for a successful CNOS macroinstruction 104
14. Methods for determining negotiated values . 105
15. Values and parameters used in session limit negotiation 115
16. APPL statement parameters and CNOS session control block fields 118
17. Layout of the CNOS session limits control block . 118
18. Draining options for the target LU . 126
19. Deactivation bits and location . 127
20. Layout of the DEFINE/DISPLAY session limits control block 130
21. Default session limits for single-session partners . 144
22. Constant values for RPL6LAST . 146
23. LOGON and SCIP exits are scheduled . 147
24. Locating the Communication ID (CID) . 148
25. LOGON and SCIP exits and the BIND . 149
26. Bind request unit fields the application program can set 150
27. Bind response unit fields the application program can set 157
28. CNOS (X'1210') GDS variable . 171
29. Layout of the RESTORE control block (ISTSREST) . 173
30. Layout of the session information for restored sessions pending recovery (SRESESS) 173
31. Types of conversation allocation . 183
32. Macroinstructions for normal deallocation of half-duplex conversations 196
33. Sample buffer list contents . 222
34. Description of bits in WHATRCV field . 228
35. Valid combinations of what-received indicators . 230
36. Examples of the FILL parameter . 248
37. ATTN exit: register contents upon entry . 284
38. Contents of the network identifier parameter list at the ATTN exit 285
39. Information provided in the RPL6X field . 288
40. Fields returned in the RPL6X for the ATTN exit . 289
41. Application program's security acceptance level, alternate BIND 306
42. Application program's security acceptance level, CNOS 307
43. Partner LU's security acceptance level . 307
44. Partner LU's support for conversation-level security 308
45. Level of cryptography for LU 6.2 cryptographic sessions 310
46. Completion conditions available at acceptance stage of asynchronous requests 315
47. Completion conditions for synchronous requests or CHECK of asynchronous requests 316
48. Unreported return codes . 323
49. Correlation of basic conversation macroinstructions to half-duplex conversation states 336
50. Correlation of basic conversation macroinstructions to full-duplex conversation states 339
51. Session / conversation information . 345
52. Flow from local application to VTAM . 348
53. Flow from VTAM to local application . 352

© Copyright IBM Corp. 2000, 2013 xi

xii z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

About this document

This document is intended to help customers write VTAM® application programs
that use VTAM's logical unit (LU) 6.2 support.

This document describes the VTAM application programming interface's support
for LU type 6.2. It describes both the APPCCMD macroinstruction that provides
LU 6.2 services and the programming techniques for using the macroinstruction. It
applies to programs that use only LU 6.2 sessions and to those that use LU 6.2
sessions with other session types. (VTAM-supported LU 6.2 application programs
are those whose APPL definition statement includes APPC=YES.)

This book is intended to teach how to use VTAM's application programming
interface (API) for LU 6.2 services. It should be used together with z/OS
Communications Server: SNA Programmer's LU 6.2 Reference, which contains a
complete list of all VTAM macroinstructions, return codes and DSECTs used for
LU 6.2 programming.

This document must also be used with z/OS Communications Server: SNA
Programming, which contains information common to all VTAM application
programs not contained in this manual.

All of the exit routines described in this document are user exit routines. The
function of user exit routines is described in Chapter 12, “Using exit routines,” on
page 283. The user exit routines are also called exit routines and exits in this book.

Who should use this document

This document is for system programmers who code VTAM application programs
that use VTAM's LU 6.2 support. This audience can include programmers who are
modifying existing programs or writing new ones. The information can also be of
use to planners who are estimating the amount of work required to use the VTAM
interface.

You should be familiar with LU 6.2 architecture before you write LU 6.2 programs.
The SNA Transaction Programmer's Reference Manual for LU Type 6.2 provides this
familiarity and is, therefore, a core requisite for using this document.

Typographic conventions used in this document

This publication uses the following typographic conventions:
v Commands that you enter verbatim onto the command line are presented in

bold.
v Variable information and parameters that you enter within commands, such as

file names, are presented in italic.
v System responses are presented in monospace.

Note: In this manual, examples of macroinstructions have blank spaces between
macroinstruction operands. This convention is used to improve the formatting of
the manual. When coding the macroinstructions, you must delete the blanks.

© Copyright IBM Corp. 2000, 2013 xiii

Figure 1 shows the conventions used in this book to illustrate the parts of a
network.

How this document is organized

This document is organized into the following topics:
v Chapter 1, “Understanding VTAM LU 6.2 application programs,” on page 1

discusses data-transfer application programs that conform to the rules of LU
type 6.2 protocols.

v Chapter 2, “LU 6.2 and the VTAM API,” on page 13 describes the return
codes.discusses the interface VTAM offers for LU 6.2 services and compares it to
the interface offered for non-LU 6.2 session types.

v Chapter 3, “How VTAM implements LU 6.2 architecture,” on page 37 describes
the functions that VTAM implements, the functions that the application program
implements (pass-through verbs and mapped conversation verbs), and the
optional LU 6.2 functions.

SDLC
Link

Non-SNA
Device

Coupling Facility
running in a sysplex

Host Processor

VTAM

SNA Device

Token Ring

Data Flow

Ethernet

3274

Communication
Adapter

Modems

VTAM

User
Application

VTAM
VTAM

CDS

VTAMLST

zSeries zSeries

3172

Subarea
Connection

Interchange Node

Central Directory
Server

IBM
Open Systems

Adapter

Network Boundary
NETA NETB

Disk/DASD

Composite
Network Node

3745
NCP NCP NCP

NCP

APPN
Network

ATM
Network

APPN Connection

AS/400

Terminals

ESCON
Director
(ES/9000)

Packet Switched
Data Network
(PSDN)

NN

Network Node

End Node

SSCP-SSCP
Session

LU-LU
Session

Virtual
Node

CP-CP Sessions

ESCON
Connection

ESCD

LU

PU

EN
Workstation

Figure 1. Conventions used in network illustrations

xiv z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

v Chapter 4, “Designing programs to use LU 6.2 services,” on page 57 describes
the designing programs to use LU 6.2 services.

v Chapter 5, “Coding the APPCCMD macroinstruction,” on page 81 describes the
coding the APPCCMD macroinstruction.

v Chapter 6, “Managing sessions,” on page 99 describes how a VTAM LU 6.2
application program can manage sessions.

v Chapter 7, “Allocating a conversation,” on page 175 describes how a VTAM LU
6.2 application program can allocate a conversation.

v Chapter 8, “Deallocating a conversation,” on page 195 describes how a VTAM
LU 6.2 application program can deallocate a conversation.

v “Sending information” on page 196 describes how a VTAM LU 6.2 application
program can send information.

v Chapter 10, “Receiving information,” on page 227 describes how a VTAM LU 6.2
application program can receive information.

v Chapter 11, “Sending and receiving data using high performance data transfer,”
on page 255 describes how a VTAM LU 6.2 application program can send and
receive data using high performance data transfer.

v Chapter 12, “Using exit routines,” on page 283 discusses the use of exit routines
for LU 6.2 application programs.

v Chapter 13, “VTAM's LU 6.2 security options,” on page 295 describes the
VTAM's LU 6.2 security options.

v Chapter 14, “Handling errors,” on page 313 discusses how to analyze feedback
from the VTAM program for errors and special conditions associated with the
APPCCMD macroinstruction.

v Appendix A, “Conversation states,” on page 335, Appendix B, “APPCCMD
macroinstruction overview,” on page 345, Appendix C, “Example of a sample
LU 6.2 application program,” on page 357, Appendix D, “Example of retrieving
information for a mode and any restored sessions,” on page 383, Appendix E,
“Architectural specifications,” on page 389, and Appendix F, “Accessibility,” on
page 391 provide additional information for this document.

How to use this document

Determining whether a publication is current

As needed, IBM® updates its publications with new and changed information. For
a given publication, updates to the hardcopy and associated BookManager®

softcopy are usually available at the same time. Sometimes, however, the updates
to hardcopy and softcopy are available at different times. The following
information describes how to determine if you are looking at the most current
copy of a publication:
v At the end of a publication's order number there is a dash followed by two

digits, often referred to as the dash level. A publication with a higher dash level
is more current than one with a lower dash level. For example, in the
publication order number GC28-1747-07, the dash level 07 means that the
publication is more current than previous levels, such as 05 or 04.

v If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy
publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

About this document xv

v To compare softcopy publications, you can check the last 2 characters of the
publication's file name (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a
publication is new or changed.

How to contact IBM service

For immediate assistance, visit this website: http://www.software.ibm.com/
network/commserver/support/

Most problems can be resolved at this website, where you can submit questions
and problem reports electronically, and access a variety of diagnosis information.

For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-IBM-SERV).
You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m.
– 5:00 p.m., local customer time).

Outside the United States or Puerto Rico, contact your local IBM representative or
your authorized IBM supplier.

If you would like to provide feedback on this publication, see “Communicating
your comments to IBM” on page 431.

Conventions and terminology that are used in this document

Commands in this book that can be used in both TSO and z/OS® UNIX
environments use the following conventions:
v When describing how to use the command in a TSO environment, the command

is presented in uppercase (for example, NETSTAT).
v When describing how to use the command in a z/OS UNIX environment, the

command is presented in bold lowercase (for example, netstat).
v When referring to the command in a general way in text, the command is

presented with an initial capital letter (for example, Netstat).

All the exit routines described in this document are installation-wide exit routines.
The installation-wide exit routines also called installation-wide exits, exit routines,
and exits throughout this document.

The TPF logon manager, although included with VTAM, is an application program;
therefore, the logon manager is documented separately from VTAM.

Samples used in this book might not be updated for each release. Evaluate a
sample carefully before applying it to your system.

Note: In this information, you might see the term RDMA network interface card
(RNIC) that is used to refer to the IBM 10GbE RoCE Express feature.

For definitions of the terms and abbreviations that are used in this document, you
can view the latest IBM terminology at the IBM Terminology website.

xvi z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

http://www.software.ibm.com/network/commserver/support/
http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/software/globalization/terminology/index.jsp

Clarification of notes

Information traditionally qualified as Notes is further qualified as follows:

Note Supplemental detail

Tip Offers shortcuts or alternative ways of performing an action; a hint

Guideline
Customary way to perform a procedure

Rule Something you must do; limitations on your actions

Restriction
Indicates certain conditions are not supported; limitations on a product or
facility

Requirement
Dependencies, prerequisites

Result Indicates the outcome

Prerequisite and related information

z/OS Communications Server function is described in the z/OS Communications
Server library. Descriptions of those documents are listed in “Bibliography” on
page 405, in the back of this document.

Required information

Before using this product, you should be familiar with TCP/IP, VTAM, MVS™, and
UNIX System Services.

Softcopy information

Softcopy publications are available in the following collection.

Titles Order
Number

Description

IBM System z® Redbooks
Collection

SK3T-7876 The IBM Redbooks® publications selected for this CD series are
taken from the IBM Redbooks inventory of over 800 books. All the
Redbooks publications that are of interest to the zSeries® platform
professional are identified by their authors and are included in this
collection. The zSeries subject areas range from e-business
application development and enablement to hardware, networking,
Linux, solutions, security, parallel sysplex, and many others. For
more information about the Redbooks publications, see
http://www-03.ibm.com/systems/z/os/zos/zfavorites/.

Other documents

This information explains how z/OS references information in other documents.

When possible, this information uses cross-document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS Information Roadmap (SA23-2299). The Roadmap describes what level of
documents are supplied with each release of z/OS Communications Server, and
also describes each z/OS publication.

About this document xvii

http://www-03.ibm.com/systems/z/os/zos/zfavorites/

To find the complete z/OS library, including the z/OS Information Center, see
www.ibm.com/systems/z/os/zos/bkserv/.

Relevant RFCs are listed in an appendix of the IP documents. Architectural
specifications for the SNA protocol are listed in an appendix of the SNA
documents.

The following table lists documents that might be helpful to readers.

Title Number

DNS and BIND, Fifth Edition, O'Reilly Media, 2006 ISBN 13: 978-0596100575

Routing in the Internet, Second Edition, Christian Huitema (Prentice Hall 1999) ISBN 13: 978-0130226471

sendmail, Fourth Edition, Bryan Costales, Claus Assmann, George Jansen, and
Gregory Shapiro, O'Reilly Media, 2007

ISBN 13: 978-0596510299

SNA Formats GA27-3136

TCP/IP Illustrated, Volume 1: The Protocols, W. Richard Stevens, Addison-Wesley
Professional, 1994

ISBN 13: 978-0201633467

TCP/IP Illustrated, Volume 2: The Implementation, Gary R. Wright and W. Richard
Stevens, Addison-Wesley Professional, 1995

ISBN 13: 978-0201633542

TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX Domain
Protocols, W. Richard Stevens, Addison-Wesley Professional, 1996

ISBN 13: 978-0201634952

TCP/IP Tutorial and Technical Overview GG24-3376

Understanding LDAP SG24-4986

z/OS Cryptographic Services System SSL Programming SC24-5901

z/OS IBM Tivoli Directory Server Administration and Use for z/OS SC23-6788

z/OS JES2 Initialization and Tuning Guide SA32-0991

z/OS Problem Management SC23-6844

z/OS MVS Diagnosis: Reference GA32-0904

z/OS MVS Diagnosis: Tools and Service Aids GA32-0905

z/OS MVS Using the Subsystem Interface SA38-0679

z/OS Program Directory GI11-9848

z/OS UNIX System Services Command Reference SA23-2280

z/OS UNIX System Services Planning GA32-0884

z/OS UNIX System Services Programming: Assembler Callable Services Reference SA23-2281

z/OS UNIX System Services User's Guide SA23-2279

z/OS XL C/C++ Runtime Library Reference SC14-7314

zEnterprise 196, System z10, System z9 and eServer zSeries OSA-Express
Customer's Guide and Reference

SA22-7935

Redbooks publications

The following Redbooks publications might help you as you implement z/OS
Communications Server.

Title Number

IBM z/OS V1R13 Communications Server TCP/IP Implementation, Volume 1: Base
Functions, Connectivity, and Routing

SG24-7996

xviii z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

http://www.ibm.com/systems/z/os/zos/bkserv/

Title Number

IBM z/OS V1R13 Communications Server TCP/IP Implementation, Volume 2: Standard
Applications

SG24-7997

IBM z/OS V1R13 Communications Server TCP/IP Implementation, Volume 3: High
Availability, Scalability, and Performance

SG24-7998

IBM z/OS V1R13 Communications Server TCP/IP Implementation, Volume 4: Security
and Policy-Based Networking

SG24-7999

IBM Communication Controller Migration Guide SG24-6298

IP Network Design Guide SG24-2580

Managing OS/390® TCP/IP with SNMP SG24-5866

Migrating Subarea Networks to an IP Infrastructure Using Enterprise Extender SG24-5957

SecureWay Communications Server for OS/390 V2R8 TCP/IP: Guide to Enhancements SG24–5631

SNA and TCP/IP Integration SG24-5291

TCP/IP in a Sysplex SG24-5235

TCP/IP Tutorial and Technical Overview GG24-3376

Threadsafe Considerations for CICS SG24-6351

Where to find related information on the Internet

z/OS

This site provides information about z/OS Communications Server release
availability, migration information, downloads, and links to information
about z/OS technology

http://www.ibm.com/systems/z/os/zos/

z/OS Internet Library

Use this site to view and download z/OS Communications Server
documentation

www.ibm.com/systems/z/os/zos/bkserv/

IBM Communications Server product

The primary home page for information about z/OS Communications
Server

http://www.software.ibm.com/network/commserver/

IBM Communications Server product support

Use this site to submit and track problems and search the z/OS
Communications Server knowledge base for Technotes, FAQs, white
papers, and other z/OS Communications Server information

http://www.software.ibm.com/network/commserver/support/

IBM Communications Server performance information

This site contains links to the most recent Communications Server
performance reports.

http://www.ibm.com/support/docview.wss?uid=swg27005524

IBM Systems Center publications

Use this site to view and order Redbooks publications, Redpapers™, and
Technotes

About this document xix

http://www.ibm.com/systems/z/os/zos/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/support/docview.wss?uid=swg27005524

http://www.redbooks.ibm.com/

IBM Systems Center flashes

Search the Technical Sales Library for Techdocs (including Flashes,
presentations, Technotes, FAQs, white papers, Customer Support Plans,
and Skills Transfer information)

http://www.ibm.com/support/techdocs/atsmastr.nsf

RFCs

Search for and view Request for Comments documents in this section of
the Internet Engineering Task Force website, with links to the RFC
repository and the IETF Working Groups web page

http://www.ietf.org/rfc.html

Internet drafts

View Internet-Drafts, which are working documents of the Internet
Engineering Task Force (IETF) and other groups, in this section of the
Internet Engineering Task Force website

http://www.ietf.org/ID.html

Information about web addresses can also be found in information APAR II11334.

Note: Any pointers in this publication to websites are provided for convenience
only and do not serve as an endorsement of these websites.

DNS websites

For more information about DNS, see the following USENET news groups and
mailing addresses:

USENET news groups
comp.protocols.dns.bind

BIND mailing lists
https://lists.isc.org/mailman/listinfo

BIND Users

v Subscribe by sending mail to bind-users-request@isc.org.
v Submit questions or answers to this forum by sending mail to

bind-users@isc.org.

BIND 9 Users (This list might not be maintained indefinitely.)

v Subscribe by sending mail to bind9-users-request@isc.org.
v Submit questions or answers to this forum by sending mail to

bind9-users@isc.org.

The z/OS Basic Skills Information Center

The z/OS Basic Skills Information Center is a web-based information resource
intended to help users learn the basic concepts of z/OS, the operating system that
runs most of the IBM mainframe computers in use today. The Information Center
is designed to introduce a new generation of Information Technology professionals
to basic concepts and help them prepare for a career as a z/OS professional, such
as a z/OS systems programmer.

xx z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs
http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html
http://www.isc.org/ml-archives/

Specifically, the z/OS Basic Skills Information Center is intended to achieve the
following objectives:
v Provide basic education and information about z/OS without charge
v Shorten the time it takes for people to become productive on the mainframe
v Make it easier for new people to learn z/OS

To access the z/OS Basic Skills Information Center, open your web browser to the
following website, which is available to all users (no login required):
http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp

About this document xxi

http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp

xxii z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Summary of changes

This section describes the release enhancements that were made.

New in z/OS Version 2 Release 1

For specifics on the enhancements for z/OS Version 2, Release 1, see the following
publications:
v z/OS Summary of Message and Interface Changes
v z/OS Introduction and Release Guide
v z/OS Planning for Installation
v z/OS Migration

© Copyright IBM Corp. 2000, 2013 xxiii

xxiv z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Chapter 1. Understanding VTAM LU 6.2 application programs

About this chapter

VTAM supervises telecommunications activity in a Systems Network Architecture
(SNA) network. VTAM helps direct data transfer between application programs
and devices, such as terminals, and between different application programs.

This manual discusses data-transfer application programs that conform to the rules
of LU type 6.2 protocols, also known as advanced program-to-program
communication (APPC) protocols. LU 6.2 protocols and services are defined by
SNA to support communication between type 6.2 logical units. (For a definition of
logical units, see “Logical units.”)

Advantages of LU 6.2 application programs

VTAM LU 6.2 support enables programmers to write or modify host application
program protocols with less programming effort, encouraging the use of
peer-to-peer protocols throughout a network. This, in turn, enhances the processing
power of smaller systems used in developing distributed processing application
programs.

VTAM LU 6.2 application programs run in a host processor. These application
programs communicate with other host programs and devices in the network that
support LU 6.2 protocols. VTAM's support for host LU 6.2 application programs
enhances the connectivity between the host and non-host points in the network.

A personal computer or AS/400®, for example, cannot be a peer to a host
application program without LU 6.2 support in VTAM or without its own
implementation of the LU 6.2 architecture. Otherwise, it appears to the host as a
terminal rather than as another application program. Many host application
programs do not provide a complete LU 6.2 implementation. In such cases,
non-host systems must emulate a terminal to communicate with the host programs
that does not take full advantage of the processing power available in the nonhost
system.

The role of LU 6.2 in SNA networks

LU 6.2 application programs are an important part of an SNA network. Their
function in the network can be understood by comparing them to other logical
units and the session types associated with these logical units.

Logical units

A logical unit is a device or application program by which an end user (an
application program, a terminal user, or an input/output mechanism) gains access
to a SNA network. Any device or application program that implements LU 6.2
protocols appears as an LU 6.2 in the network. All application programs using
SNA sessions, including LU 6.2 application programs, are considered logical units
by SNA. To the network, a logical unit is the source of a request coming into the

© Copyright IBM Corp. 2000, 2013 1

network, although the logical unit might not be the original source. The contents of
the request or the information on which the request is based might have originated
at a device controlled by the logical unit.

For example, in a 4702 Finance Controller, the logical unit is an application
program that handles input and output for one or several finance terminals
attached to the controller. Input actually originates at one of the terminals, but the
logical unit (the application program) in the 4702 uses the input to create and
transmit the request. Similarly, the network sees a logical unit as the destination of
a request, but the logical unit might actually pass the data to a device for
recording, printing, or displaying.

A VTAM application program is also a logical unit. VTAM sees an application
program as an originator of and destination for requests. Other programs in the
host processor can interact with a VTAM application program and use it to
communicate with other parts of the network. In such cases, these programs are
the application LU's end users.

SNA categorizes LUs into different types depending on the set of SNA functions
the LU supports. SNA defines LU types of 1, 2, 3, 4, 6.1, 6.2, and 7. SNA does not
define an LU type of 0. However, type 0 is used to describe communication
between LUs that do not conform to SNA protocols.

Figure 2 shows an SNA network composed of type 6.2 LUs.

LU6.2F

CICS
LU6.2B

VTAM APPL
LU6.2C

CICS
LU6.2D

AS/400

Host 1 Host 2

VTAM APPL
LU6.2A

NCPNCP

APPC/PC

LU6.2E

Figure 2. SNA network of LU 6.2s

2 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Session types

When two logical units in the network want to exchange data, VTAM establishes a
communication connection between the two LUs. The logical connection between
the LUs is called a session in SNA. Figure 3 shows APPL1, running on LU 6.2A,
in session with APPL2, running on LU 6.2C.

When two LUs communicate over a session, the protocols used on the session
correspond to the type of LUs communicating. Consequently, protocols on the
session can be described as an LU session type.

The following list gives the characteristics of the LU session types. LU types 1
through 4 and LU type 7 describe a host program supporting a device with limited
function. LU types 6.1 and 6.2 describe program-to-program protocols.

LU 0 These protocols are not defined by SNA. The LUs that are communicating
must implement a set of protocols. For example, the protocols that VTAM
uses to support non-SNA 3270 binary synchronous communication (BSC)
terminals are LU 0 protocols.

LU 1 LU 1 protocols provide access to nondisplay I/O devices such as printers
and keyboard printer terminals.

LU 2 LU 2 protocols provide access to display terminals with the IBM 3270 data
stream.

LU 3 LU 3 protocols provide access to printers with a subset of the IBM 3270
data stream.

LU 4 LU 4 protocols provide access to terminals that are similar to LU 1
terminals but have more functions.

LU 6.1 LU 6.1 protocols provide communication access to other application
programs. These are the original protocols SNA defined for communication
between application programs. Only application programs in a host
processor can use LU 6.1 protocols.

LU 6.2 LU 6.2 protocols support sessions between two application programs in a
distributed data processing environment. LU 6.2 provides a connection
between its transaction programs and network resources. These protocols
can be implemented by application programs running on non-host systems
and by programmable hardware devices in the network. (This manual,

VTAM

LU6.2A

APPL1

VTAM

LU6.2C

APPL2

LU - LU Session

Host 1 Host 2

Figure 3. Session between APPL1 and APPL2

Chapter 1. Understanding VTAM LU 6.2 application programs 3

however, is concerned only with LU 6.2 application programs that are in
the host and that can issue VTAM APPCCMD macroinstructions.)

LU 7 LU 7 protocols provide access to a single display station.

VTAM application programs can function as many different LU types
simultaneously. For example, when an application program exchanges data with a
terminal that supports only LU type 2, the session between the two logical units
uses only LU type 2 protocols; during that session, the application program is an
LU type 2. When the application program exchanges data with another application
program and LU protocols of 6.1 or 6.2 are used, the LU is one of those types
during that session.

An application program can function as a type 6.2 LU and can still communicate
as any of the other SNA LU types. It can have sessions with printers or terminals
and still request LU 6.2 services from VTAM when it communicates with another
LU 6.2 application program.

Refer to SNA Technical Overview for more details on SNA protocols for non-LU 6.2
application programs.

Important LU 6.2 concepts

The discussion of the VTAM LU 6.2 application programming interface (API)
assumes that the reader understands certain concepts that are fundamental to LU
6.2 architecture. This section reviews those fundamental concepts. For more
information, see the LU 6.2 architecture manuals: the SNA Transaction Programmer's
Reference Manual for LU Type 6.2 and the SNA Format and Protocol Reference Manual:
Architecture Logic for LU Type 6.2.

Peer-to-peer protocol

LU 6.2 protocols control synchronous communication between peers. Both of the
points communicating have similar communication processing capability. They
might not have equal processing power, but they are capable of fulfilling the basic
communication functions of a type 6.2 LU. A PC, for example, does not have the
processing capabilities of a mainframe.

LU 6.2 peers are program processes running on one or more computers. For
example, a personal computer can use software such as Communications Server for
OS/2 to appear to programs in the host as another application program instead of
a terminal. LU 6.2 can also be implemented in microcode (or even in hardware) on
devices such as line printers or terminals. The LU 6.2 protocol is equally applicable
to line printers and to complicated, distributed database operations.

Throughout this book, the term application program is used to describe the LU 6.2
peers that are communicating. These peers can be anything capable of
implementing the LU 6.2 protocol, including microcode and hardware logic.

LU protocol boundary

To accommodate LU 6.2 implementations on different processors and in different
languages, SNA LU 6.2 architecture defines how application programs request LU

4 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

6.2 services in generic terms. This generic interface is called an LU protocol
boundary. Protocol boundaries offered to user application programs are defined in
terms of verbs.

For example, the function of sending data somewhere else in the network is
defined in the LU 6.2 architecture by the verb SEND_DATA. The SNA definition
for this verb further specifies the format the data must be in, what parameters can
be supplied on the request, and what parameters can be returned to the
application program. The APPCCMD CONTROL=SEND, QUALIFY=DATA
macroinstruction conforms to this definition by allowing application programs to
specify the input parameters required by the architecture and by returning the
required output parameters.

Through LU 6.2 support, VTAM provides an API that enables its application
programs to implement an LU protocol boundary. The application program takes
advantage of the VTAM API by using the APPCCMD macroinstruction. The
various forms of the APPCCMD macroinstruction offer the functions of verbs
defined in the architecture.

By using these verb functions, an application program on one end of the network
can initiate a transaction with another application program or device on the
network, send and receive data as required by the transaction, and terminate the
transaction. All of this can be done without the application program being aware
of the configuration of the network or even of the SNA protocols used to establish
connections and transmit data across the network.

VTAM offers its application programs both conversation verbs and control operator
verbs. VTAM does not support all the conversation verbs defined in the
architecture. However, it does support a large subset of the base set and many key
optional layers. For more information on VTAM verbs, see “LU 6.2 verbs” on page
37.

Control operator verbs are used to request services to control the LU. These
services include establishing limits for the number and types of sessions the LU
can have.

Transaction programs

LU 6.2 treats a session as a relatively long-lived reusable connection between two
LUs. Sessions can be compared to pipes through which data flows between the
LUs.

LU 6.2 breaks down the data that is exchanged between two LUs into units called
transactions. Transactions are the units of work done between the LUs.

For example, an interaction between an automatic teller machine and a host
database program for a given customer could constitute a transaction. The
interaction could involve several exchanges of data but all for the purpose of
serving the customer using the teller machine. The following sequence could make
up the transaction:
1. The customer inserts a card, alerting the teller machine to contact the host

database program. The logical connection is established and the transaction
begins. This transaction is on behalf of one customer. No exchange of data
involving another customer can take place until this one is finished.

Chapter 1. Understanding VTAM LU 6.2 application programs 5

2. The customer requests a cash withdrawal. The teller machine reports the
request to the host program, which checks the database, reports to the teller
machine that the withdrawal can take place, and updates the database to reflect
the new balance.

3. The teller machine dispenses the money. The customer then signals the teller
machine that the transaction is being terminated. The teller machine reports
this to the host program, and the logical connection that is set up to serve the
customer is disconnected.

The teller machine and the host program would have many transactions each day.
These transactions cannot be interrupted and are executed serially on each session.
One transaction must finish before another one can use the session resource to
exchange data.

Transactions are governed in a host by the VTAM application program involved.
The application program supports an associated set of execution threads, called
transaction programs. A subroutine, for example, might make up a transaction
program. The application program issues VTAM macroinstructions to request LU
6.2 services for these processing threads.

Note: The application program must implement transaction programs.

Conversations

LUs are connected by sessions, and transaction programs are connected by
conversations. A conversation is a logical connection between two transaction
programs that uses a session between two LUs to transport data. The conversation
can be thought of as a time slice of a session. One session can support only one
conversation at a time, but one session can support many conversations in
sequence. Figure 4 on page 7 shows a session between LU 6.2A and LU 6.2B and a
conversation between TP1 and TP2.

6 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

When a transaction program requests a conversation, it uses the function of the
ALLOCATE verb. The transaction program specifies the name of a partner LU and
the session mode name, which identifies certain session characteristics. The
application program also specifies a name that identifies the partner transaction
program that is to be started. (This function is provided in VTAM by the
APPCCMD macroinstruction with CONTROL=ALLOC.)

When a transaction program requests a conversation, VTAM allocates the session
to the requested conversation if the following conditions are present:
v A session exists between the two LUs.
v The session has the specified mode name.
v The session is not being used for another conversation.

If a session is not available, VTAM starts a new session (if possible) using the
specified mode name. This session is then used for the conversation.

After the conversation is initiated, the two transaction programs use LU 6.2 verb
functions to send and receive data as necessary for the transaction. When the
transaction is finished, the conversation is deallocated (ended) by using the
DEALLOCATE verb. The session is now available for another conversation
between transaction programs using the same LUs.

Conversation states

A conversation is the communication mechanism between two transaction
programs. The conversation may appear different to each transaction program.
Although the appearance of the conversation differs, the views are complementary.
For example, one conversation partner on a half-duplex conversation would be
receiving while the other partner is sending. The appearance of a conversation for
a transaction program is described by the state in which the conversation exists for
that transaction program. Whenever the term conversation state is used in this
publication, it refers to the local view of the conversation.

Logical records and buffers

Data is transmitted across conversations in logical records. A logical record consists
of a 2-byte length field followed by up to 32765 bytes of data. The value in the
length field specifies the length of the data and the length field together.

TP2TP1
LU6.2A LU6.2B

Conversation

SessionHost 1 Host 2

Figure 4. Conversation flowing on a session

Chapter 1. Understanding VTAM LU 6.2 application programs 7

The transaction program can receive data one logical record at a time or in one
input/output buffer at a time. Both buffer size and logical record size are
independent of the SNA RU size used on the session.

Full-duplex and half-duplex protocols

During BIND negotiation, each LU indicates its support for full-duplex or
half-duplex conversations.

Full-duplex protocols

Full-duplex protocols allow an application program to send and receive
information concurrently. This allows the application sending information to
continue without waiting for a response from the partner LU. The partner LU can
also send information without waiting for an appropriate response. Neither LU has
to wait for the partner LU to surrender its right to receive or send information.

Full-duplex conversations are especially suited for transactions in which the data
sent and received is either independent or indirectly related (for example, process
control). This is advantageous for transactions in which an immediate response is
desired. For example, sensor data (temperature, for example) is continuously
received in a process control environment and corrective information is
continuously sent. A full-duplex conversation allows the controlling application to
detect an abnormal condition and respond to correct the condition immediately.
Fewer system resources are used, and the integrity of the environment is
maintained.

Because full-duplex conversations are not suited for tightly coupled transactions
such as sync point and inquiry-reply transactions, sync point is not supported for
full-duplex conversations.

Half-duplex protocols

Half-duplex protocols do not allow LUs to exchange information concurrently.
Only one LU at a time can send or receive data. One LU is designated as the
sender and the other LU as the receiver. The receiver can request permission to
become the sender and can take over that role under certain error conditions, but
in general, the receiver cannot send data until the sender surrenders that right.

Half-duplex conversations are well-suited to tightly coupled transactions, such as
sync point or inquiry and reply transactions.

Single and parallel sessions

An LU might have more than one session at the same time with another LU. Such
sessions are called parallel sessions. LUs that can support parallel sessions are
parallel-session-capable LUs. When the first session is established between LUs,
part of the session establishment process defines whether the partners are capable
of parallel sessions. If either LU is not parallel-session capable, the session is said
to be a single session. If both are parallel-session capable, the session is called a
parallel session, even if it is the only one in existence at the time.

Parallel and single sessions use different protocols. Establishing a session as a
single session restricts the LUs to only one session at a time. LUs capable of only a
single session can support only one transaction program at a time. LUs that are
capable of parallel sessions can support more than one session at a time and more

8 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

than one transaction program at a time. Figure 5 shows a comparison of type 6.2
LUs capable of only a single session and type 6.2 LUs that are parallel-session
capable.

In parallel sessions, an LU can have more than one TP at a time, and a TP can
have more than one session at a time.

LUs that are parallel-session-capable can also support conversations between
transaction programs located at the same LU (option set 204).

Mode name groups

LU 6.2 associates each session with a set of characteristics for a type of device. This
set of characteristics is called a mode name. A mode name defines characteristics
such as pacing level and class of service. When transaction programs request a
conversation, they usually do not specify which session to use for the conversation,
but they can specify the mode name of the session. Each mode name is defined in
the logon mode table, which describes the session parameters. For additional
information on logon mode tables, refer to z/OS Communications Server: SNA
Resource Definition Reference and z/OS Communications Server: SNA
Programming.

Each mode name can be used by several sessions. In an LU type 6.2, these sessions
form a group that is treated as a pool of sessions, all of which share the same
mode name characteristics. An application program can control the size of a pool,
but VTAM handles the individual sessions that make up the pool. You cannot
specify pool size for non-LU 6.2 sessions.

LUs can define a number of different mode name groups for sessions with another
LU. For example, an LU might have a FILESERV mode name defined for sessions
with a partner LU used by file-server programs. FILESERV denotes sessions with a
large request unit (RU) size, which aids bulk transmission of data. This LU also
might have other mode names, such as INTERACT, defined for sessions with the
same LU used for database queries.

By using different mode groups, you can avoid the possibility of database queries
getting backed up behind mass file-server requests. To determine whether different
mode name groups are beneficial, consider the following factors:

TP TP TP TP

TP

LU
6.2

LU
6.2

LU
6.2

LU
6.2

SINGLE SESSION PARALLEL SESSIONS

SESSION

CONVERSATION

Figure 5. Comparison of single and parallel sessions

Chapter 1. Understanding VTAM LU 6.2 application programs 9

v Importance of the data exchange
v Nature of the data exchange
v Desired response time

As part of its support for LU 6.2, VTAM maintains a data structure for the
application program that:
v Lists possible partner LUs
v Determines valid names for the partner LU
v Associates valid mode names defined for each partner LU
v Contains information about the mode names

This data structure is the LU-mode table. It is unique in VTAM to LU 6.2 support.
For more information on the LU-mode table, see “Data structures” on page 51.

Some SNA-defined modes are used for special purposes. For example, the
SNASVCMG mode is used by VTAM to exchange control information. Application
programs should not normally use SNASVCMG sessions for a conversation. The
CPSVCMG mode is defined but it is also reserved.

Session contention

Two LUs in different hosts can request a conversation at the same time, and the
VTAM in each host can choose the same session for both conversations. Such a
situation is called contention. For a specific session, one of the partner LUs is the
contention winner and the other partner LU is the contention loser. Contention
winner versus contention loser is decided during BIND negotiation. The choice of
contention winner versus contention loser is primarily due to information learned
during the change number of sessions (CNOS) negotiation.

A contention loser can request use of the session from the contention winner. For
VTAM-supported LU 6.2 application programs, VTAM requests use of sessions on
the contention-loser side and grants or denies use on the contention-winner side.

LUs capable of parallel sessions can divide the contention-winner role between
them for their sessions. For example, if two LUs have five parallel sessions, one LU
might be designated the contention winner for three sessions and the other LU the
contention winner for two sessions. The number of contention winners can be
established at system definition time or dynamically. VTAM-supported LU 6.2
application programs are involved in setting the numbers of contention-winner and
contention-loser sessions.

Session limits

The LU 6.2 architecture does not permit an unlimited number of sessions between
parallel-session-capable LUs. Limits are imposed on the number of sessions an LU
can have for a given mode name. Limits also are imposed on the number of
contention-winner sessions an LU can have for a given mode name. These limits
are called session limits. Before a session can be activated between two LUs on a
given mode, the session limits on that mode must be negotiated between the two
LUs.

Because each mode name has its own session limits, LUs have multiple session
limits. An application program might be limited, for example, to five sessions with
another LU using a mode name of EXAMPLE and be able to have 10 sessions with

10 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

the same LU using a mode name of TESTCASE. Session limits can be defined
dynamically while the application programs are executing. LU 6.2 architecture
defines control operator verbs that can be used to change session limits.

VTAM-supported LU 6.2 application programs

VTAM-supported LU 6.2 application programs have APPC=YES coded on their
APPL definition statements. (For details on defining an application program to
VTAM, refer to z/OS Communications Server: SNA Resource Definition Reference.)
These LU 6.2 application programs can issue the VTAM APPCCMD
macroinstruction, which provides LU 6.2 services. They also can support non-LU
6.2 sessions by using the macroinstructions provided with the record API. The set
of assembler-language macroinstructions VTAM offers to its application programs
is called the application program interface (API). The application program uses the
API by issuing the macroinstructions. Once the system programmer defines the
application program to VTAM, the application program is authorized to issue these
types of macroinstructions.

LU 6.2 support is a specialized enhancement to the interface that VTAM offers to
all its application programs.

In general, an application program uses the VTAM API by:
v Issuing VTAM macroinstructions to request VTAM services.
v Manipulating storage that contains control information that VTAM needs to

process macroinstructions.
v Providing exit routines for VTAM to schedule when a request completes or

when an external event requires the application program's attention. (The exit
routines are optional, but some are highly recommended.)

For a detailed explanation of the VTAM record API, and of concepts pertaining to
all VTAM application programs, refer to z/OS Communications Server: SNA
Programming.

Responsibilities for implementing LU 6.2

VTAM and the application program share responsibility for implementing a type
6.2 LU.

VTAM is responsible for the following actions:
v Providing a higher-level API that assists an application program in building an

LU protocol boundary, as described in the LU 6.2 architecture. This protocol
boundary, largely implemented through the APPCCMD macroinstruction,
enables application programs to request LU 6.2 services.

v Associating network communication resources with the application program.
v Terminating LU 6.2 communication services with an application program's

partners if the application program ends prematurely.

The application program is responsible for the following actions:
v Implementing the LU 6.2 concept of transaction programs
v Using VTAM's APPCCMD macroinstruction to perform LU 6.2 functions
v Maintaining internal resources needed to support a type 6.2 LU

Chapter 1. Understanding VTAM LU 6.2 application programs 11

Figure 6 shows that VTAM and the application program share the responsibility for
implementing a type 6.2 LU.

LU Type 6.2

VTAM-Appl
Boundary

Application

VTAM

LU 6.2 Protocol Boundary

Figure 6. VTAM and application program implementation responsibilities

12 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Chapter 2. LU 6.2 and the VTAM API

About this chapter

VTAM application programs can support LU 6.2 and non-LU 6.2 session types.
This chapter discusses the interface VTAM offers for LU 6.2 services and compares
it to the interface offered for non-LU 6.2 session types.

Application programs that use VTAM's implementation of LU 6.2 must have APPL
definition statements coded with APPC=YES and must let VTAM establish and
terminate their LU 6.2 sessions. The application programs manage conversations
and implement transaction programs.

The discussion of the similarities and differences of the VTAM LU 6.2 interface
covers features that all VTAM application programs use and features that only LU
6.2 application programs use.

Many of the concepts of the interface common to both LU 6.2 functions and other
session types are documented in z/OS Communications Server: SNA
Programming. This book discusses them briefly, but the full explanation and
details are found in z/OS Communications Server: SNA Programming.

Standard features of the API

All VTAM application programs perform some common tasks regardless of the
types of sessions being used. Even if an application program uses LU 6.2 services
exclusively, it does much of the same processing as a program using other session
types.

All VTAM application programs do the following actions:
v Use the VTAM macroinstruction language to request VTAM services
v Use control blocks to identify themselves and their requests to VTAM
v Use many of the same macroinstructions
v Have access to vector lists that describe the level of VTAM on the system and

that specify resource identifiers that otherwise might be unknown to the
application program

v Provide VTAM with a list of special-purpose exit routines to handle external
events

v Use general-purpose registers
v Use the same operating system environment

Unique LU 6.2 features of the API

Although similarities exist in the way LU 6.2 and other application programs use
the VTAM API, some features of the interface are unique to LU 6.2 support. The
primary differences are in how the LU 6.2 interface treats sessions and how the LU
6.2 application program uses conversations. VTAM initiates and terminates LU 6.2
sessions. The LU 6.2 application programs initiate and terminate conversations.
Some other differences follow.

© Copyright IBM Corp. 2000, 2013 13

v The following VTAM macroinstructions are normally used to establish and
terminate sessions by applications whose APPL statement specifies APPC=NO.
These macroinstructions are not valid for use with LU 6.2 sessions in LU 6.2
applications whose APPL statement specifies APPC=YES:
– OPNDST
– CLSDST
– TERMSESS
– OPNSEC

v The LU 6.2 application program is not concerned with the node initialization
block (NIB), a control block used by non-LU 6.2 applications in session initiation
and termination.

v VTAM handles many SNA request units for the application program for LU 6.2
sessions. This means that:
– Network services request units for LU 6.2 sessions are VTAM's responsibility.

Therefore, LU 6.2 application programs do not need an NSEXIT exit routine
for LU 6.2 sessions. However, if an LU 6.2 APPL initiates a non-LU 6.2 session
(that is, REQSESS) and a failure prevents a BIND, notification could be
received in the NSEXIT.

– Most of the conditions that cause application program SYNAD exits to be
scheduled are instead handled by VTAM for LU 6.2 sessions.

– Only the CONTROL=BIND option is valid on the SESSIONC
macroinstruction for LU 6.2 sessions.

– APPCCMD SEND and RECEIVE macroinstructions are simpler than their
counterparts for non-LU 6.2 sessions. The options and RPL fields required to
process SNA RUs, such as data-flow-control requests, do not concern the
application program.

Other features of the LU 6.2 interface are:
v Additional control blocks and fields in the RPL
v A special-purpose exit, the ATTN exit, for LU 6.2 support
v Finite state machine concepts to restrict the varieties of the APPCCMD

macroinstruction that an application program can issue at any given time

VTAM as session manager

To ensure that application programs defined with APPC=YES do not perform their
own session management for LU 6.2 sessions, VTAM monitors the use of the
session-establishment macroinstructions used to establish non-LU 6.2 sessions and
rejects any that would cause such an LU 6.2 session.

VTAM manages LU 6.2 sessions only for those application programs that have
APPC=YES coded on their APPL definition statement. However, application
programs can implement LU 6.2 support entirely on their own. When they do,
they do not code APPC=YES on their APPL definition statement. These application
programs establish and terminate sessions according to the rules of LU 6.2
architecture, but do so using the application program macroinstructions described
in z/OS Communications Server: SNA Programming.

VTAM-supported LU 6.2 application programs can communicate with application
programs that implement LU 6.2 on their own. In such a case, VTAM still
establishes and terminates sessions for the application program that is using VTAM
support.

14 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

The LU 6.2 application program controls the session limits for a given mode name
for sessions between itself and a partner LU. An application program can indirectly
start and end sessions by asking VTAM to allocate a conversation or change the
session limits between itself and another LU. VTAM handles the details of starting
or ending the sessions.

VTAM macroinstruction language

VTAM macroinstructions are assembler macroinstructions and follow the same
rules. (Refer to z/OS Communications Server: SNA Programmer's LU 6.2 Reference
for details on coding rules for these macroinstructions.) With only a few
exceptions, the operands on VTAM and VTAM APPCCMD macroinstructions can
be entered in any order.

The four categories of VTAM macroinstructions are:

Declarative
These macroinstructions build control blocks during assembly.

RPL-Based
These macroinstructions use the RPL to describe requests to VTAM. Most
of the macroinstructions this manual discusses are RPL-based, including
APPCCMD.

ACB-Based
These macroinstructions tell VTAM that the application program is
beginning or ending its use of VTAM services. They are required for
VTAM to recognize the application program as active.

Manipulative
These macroinstructions build and manipulate control block values during
application program execution. They do not support the LU 6.2-unique
control block fields, but they do support some control block fields that are
common to both LU 6.2 and other application programs.

Control blocks and mappings

To use VTAM macroinstructions, the application program must reserve and
manipulate storage for the control information that VTAM needs to process the
application program's request. These storage areas are called control blocks. (Some
of the VTAM macroinstructions can be used to build the control blocks and
initialize them to appropriate values. In addition, IBM supplies assembler-language
DSECTs with VTAM that help the application program manipulate control block
storage fields.)

When an application program requests VTAM services, it must ensure that the
appropriate control block fields are initialized. In many cases, the application
program can do so with parameters on the VTAM macroinstruction. When VTAM
finishes processing a macroinstruction request, it passes back completion
information to the application program in these control blocks and in
general-purpose registers.

Common control blocks and mappings

Some control blocks can be used by both LU 6.2 and non-LU 6.2 application
programs. The manipulative macroinstructions VTAM provides to create control

Chapter 2. LU 6.2 and the VTAM API 15

blocks and gain access to control block fields are only of limited use for LU 6.2
functions. They do not support the unique LU 6.2 control blocks. IBM does,
however, supply DSECTs that enable application programs to refer to control block
fields symbolically.

Access method control block

Application programs must use an access method control block (ACB) to identify
themselves to VTAM. The ACB points to a location in the program that contains
the name of the application program as specified in an APPL definition statement
during VTAM definition. It can also point to an EXLST control block containing the
addresses of exit routines that are to be associated with the application program.

The application program name pointed to by the ACB corresponds to the LU name
that another VTAM application program would specify if requesting a conversation
with one of the application program's transaction programs.

The application program must create the ACB and initialize the fields within it.
VTAM provides a macroinstruction, ACB, that allows application programs to
build ACBs during program assembly.

Opening an ACB:

The application program uses the OPEN macroinstruction, which points to an
ACB, to formally present itself to VTAM. After this macroinstruction completes
successfully, the application program can request VTAM services.

More than one ACB can be opened by an application program. This means that an
application program that performs more than one function (for example,
communicating with logical units and acting as a program operator application
program) can be defined so that it is viewed by VTAM as being more than one
application program. However, most VTAM users will find it satisfactory to open
only one ACB for each application program.

Closing an ACB:

To stop using VTAM services, an application program uses the CLOSE
macroinstruction. The CLOSE macroinstruction terminates all sessions that VTAM
started for the application program and halts communication between VTAM and
the application program. As far as VTAM is concerned, the application program
becomes totally inactive. The application program can continue to perform other
processing not related to VTAM, however.

For more details on ACBs and the OPEN and CLOSE processes, refer to z/OS
Communications Server: SNA Programming.

RPL control block and APPC extension

Application programs request LU 6.2 services from VTAM with the APPCCMD
macroinstruction. The APPCCMD macroinstruction uses a request parameter list
(RPL) to describe its requests to VTAM and to provide necessary processing
information. The RPL is a control block that LU 6.2 application programs use
frequently. It must be specified on each APPCCMD or other macroinstruction
issued by the application to request VTAM services.

Application programs can explicitly set RPL fields themselves and specify only the
address of the RPL on the VTAM macroinstruction, or they can use operands on

16 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

the macroinstruction that cause VTAM to set the relevant RPL fields for a
particular operation. As with any RPL-based request, the application program can
specify an exit routine to receive control when the operation completes.

For APPCCMD requests, an RPL extension is used with the RPL. An RPL APPC
extension supports only LU 6.2 functions. This extension is not appended to the
RPL but is pointed to by the AAREA field in the RPL. In effect, the RPL for
APPCCMD macroinstructions consists of a linked data structure. VTAM supplies
the macroinstruction ISTRPL6 to create this extension and the DSECT ISTRPL6X to
enable the application program to refer to its fields symbolically.

The following keyword operands for the RPL are valid for APPCCMD
macroinstructions:
v ACB
v AAREA
v AREA
v AREALEN
v BRANCH
v ECB
v EXIT
v OPTCD
v RECLEN

All other information in the RPL that pertains to LU 6.2 functions is in the
extension. The length of the extension is found in AAREALN. The length is
determined and the length field properly initialized by the APPCCMD
macroinstruction. The application program does not need to modify this field.

BIND request unit (RU) mapping

The BIND includes numerous session parameters relevant to LU 6.2 support. For
details, see “BIND image and response” on page 149.

LU 6.2 control blocks and mappings

Two of the control blocks deal with session limits. The CNOS session limits control
block is used as an interface for the APPCCMD CONTROL=OPRCNTL,
QUALIFY=CNOS macroinstruction. The DEFINE/DISPLAY session limits control
block is used as an interface to the LU-mode table for the APPCCMD
CONTROL=OPRCNTL, QUALIFY=DEFINE and APPCCMD
CONTROL=OPRCNTL, QUALIFY=DISPLAY macroinstructions.

A mapping of the function management header type 5 (FMH-5) is used in
conversation allocation. It is used on the APPCCMD CONTROL=ALLOC,
APPCCMD CONTROL=RCVFMH5, and the APPCCMD CONTROL=SENDFMH5
macroinstructions.

The TESTSTAT control block contains information passed to the application about
the status of one or more active conversations.

The RESTORE control block contains information that describes the LUs, modes,
and sessions that are being restored for a VTAM application program that is
recovering after a previous failure. For information on the:

Chapter 2. LU 6.2 and the VTAM API 17

v Recovery process, see “Restoring modes and any associated persistent LU-LU
sessions” on page 60.

v RESTORE control block, see “Retrieving information for a mode and sessions to
be restored” on page 172.

v Retrieval of information from the RESTORE control block, see Appendix D,
“Example of retrieving information for a mode and any restored sessions,” on
page 383.

Common macroinstructions

Every VTAM application program must use some non-APPCCMD
macroinstructions, even if it uses LU 6.2 services exclusively. In addition to these
required macroinstructions, an LU 6.2 application program might find a number of
other non-APPCCMD macroinstructions useful.

Macroinstructions required for requesting LU 6.2 services

The following non-APPCCMD macroinstructions establish the environment for
using the APPCCMD macroinstructions:
v OPEN
v CLOSE
v SETLOGON

OPEN and CLOSE were discussed earlier. (See “Opening an ACB” on page 16 and
“Closing an ACB” on page 16.) The SETLOGON macroinstruction must be issued
so VTAM can begin accepting session-initiation requests on behalf of the
application program.

These three macroinstructions are all that an application program must use in
addition to the APPCCMD macroinstruction to request LU 6.2 services from
VTAM. A complete description of these macroinstructions, including return code
information, is found in z/OS Communications Server: SNA Programming.

Macroinstructions for building non-LU 6.2 control blocks

Application programs can use VTAM-supplied macroinstructions to build non-LU
6.2 control blocks such as the ACB or EXLST. Application programs have many
options for using macroinstructions; therefore, no macroinstructions are listed as
required. VTAM supplies macroinstructions that build control blocks at assembly
time and those that allow control blocks to be built dynamically. In addition,
VTAM supplies DSECT macroinstructions that enable the application program to
obtain storage for a control block and use the DSECT to map the fields in the
control block.

The macroinstructions that an application program can use to build and
manipulate non-LU 6.2 control blocks and their fields are:
v ACB
v EXLST
v GENCB
v MODCB
v RPL
v SHOWCB

18 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

v TESTCB

The DSECT macroinstructions that an application program can use to map control
block storage for non-LU 6.2 control blocks are:
v IFGACB
v IFGEXLST
v IFGRPL
v ISTNRIPL
v ISTBLENT
v ISTDBIND
v ISTUSFBC

IBM also supplies other DSECT macroinstructions, but these map control blocks
are not used for LU 6.2 functions. Four of the above macroinstructions (the
manipulative macrosinstructions GENCB, MODCB, SHOWCB and TESTCB) are
used to create control blocks dynamically and test and set values in the control
block fields. These can be used only for control blocks that are not exclusively for
LU 6.2 use, such as the ACB, RPL, and EXLST. The manipulative macroinstructions
do not support LU 6.2-unique control blocks such as the RPL extension for LU 6.2
or the session limits control blocks.

The declarative macroinstructions (ACB, RPL, and EXLST) build control blocks at
assembly time. VTAM supplies an LU 6.2-unique declarative macroinstruction,
ISTRPL6, to build the RPL extension. The other LU 6.2-unique control blocks, such
as session limits control blocks, can be built from storage supplied by the
application program. VTAM supplies DSECTs that enable the application program
to map the storage. In addition, the APPCCMD macroinstruction includes
operands that can set many of the RPL and RPL extension fields that must be
initialized.

Non-APPCCMD VTAM macroinstructions

The following list summarizes the non-APPCCMD VTAM macroinstructions and
indicates whether an application program can use them for VTAM-supported LU
6.2 sessions.

Note: These comments and restrictions apply only to those application programs
that use VTAM LU 6.2 support by including APPC=YES on their APPL definition
statements. They do not apply to application programs that provide their own LU
6.2 implementations.

ACB This macroinstruction can be used to build the ACB. LU 6.2 application
programs must specify MACRF=LOGON on the ACB macroinstruction,
even if they do not contain a LOGON or SCIP exit. This allows VTAM to
activate sessions for the application program's conversations.
MACRF=NLOGON prevents VTAM from activating any sessions or from
responding to session-initiation requests from partner LUs.

CHANGE
This macroinstruction can be used by an LU 6.2 application program acting
as a generic resource to terminate an association with a partner LU.

CHECK
This macroinstruction cannot be issued for an RPL that specified an

Chapter 2. LU 6.2 and the VTAM API 19

APPCCMD macroinstruction. APPCCMD CONTROL=CHECK must be
used to check the completion status of an APPCCMD request.

CLOSE
This macroinstruction is unaffected by LU 6.2 support. LU 6.2 application
programs should use this macroinstruction to terminate use of VTAM
services.

CLSDST
The function of this macroinstruction depends on whether the application
program specifies that a particular session or a group of sessions is to be
terminated. If the application program specifies the secondary logical unit
(SLU) name by means of the NIBSYM field and does not specify the
communication identifier (CID) of a session (NIBCID=0), only non-LU 6.2
sessions are terminated. If the application program specifies the CID of an
LU 6.2 session, the CLSDST is rejected.

The APPCCMD CONTROL=DEALLOC macroinstruction must be used in
conjunction with APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS to
free and then terminate active LU 6.2 sessions in an orderly manner. The
application program can use the APPCCMD CONTROL=REJECT
macroinstruction to abnormally terminate sessions and their conversations.

If the application has specified a SCIP exit when this exit is scheduled, the
application may choose to terminate the pending LU 6.2 sessions by
issuing the APPCCMD CONTROL=OPRCNTL, QUALIFY=DACTSESS
macroinstruction.

EXECRPL
LU 6.2 application programs can use this macroinstruction to reissue an
APPCCMD that is rejected because of a temporary condition. The
temporary condition is marked by return codes in RCPRI and RCSEC that
indicate a condition that can be retried.

EXLST
Application programs can use this macroinstruction to build the EXLST
exit list. If they are providing an exit list, LU 6.2 application programs
need to include the ATTN exit in this list.

GENCB
This macroinstruction is unaffected by LU 6.2 support. This
macroinstruction cannot be used to create LU 6.2-unique control blocks,
such as the RPL extension.

INQUIRE
This macroinstruction is unaffected by LU 6.2 support.

INTRPRET
This macroinstruction is unaffected by LU 6.2 support.

MODCB
This macroinstruction is unaffected by LU 6.2 support. This
macroinstruction cannot be used to modify LU 6.2-unique control blocks,
such as the RPL extension.

NIB This macroinstruction is not used by application programs for LU 6.2
session establishment. However, NIB can be used by LU 6.2 application
programs to specify a generic resource name with which it will identify
itself to the network.

OPEN LU 6.2 application programs must use this macroinstruction to obtain the
use of VTAM services.

20 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

OPNDST
The application program cannot use this macroinstruction to establish an
LU 6.2 session. Any attempt to do so results in the rejection of the
OPNDST. In addition, this macroinstruction cannot be used to accept a
pending CINIT that is initiated by VTAM. The following list describes the
preceding two points in more detail:
v An OPNDST that specifies a BIND image (using the BNDAREA field of

a NIB) is rejected if the BIND image contains an LU type of 6.2. For
OPNDST ACCEPT, the CINIT is not rejected; only the macroinstruction
is rejected. The application program must issue APPCCMD
CONTROL=OPRCNTL, QUALIFY=ACTSESS or APPCCMD
CONTROL=OPRCNTL, QUALIFY=DACTSESS to accept or reject the
CINIT.

v An OPNDST that specifies a set of default session parameters or a logon
mode name (using the LOGMODE field of a NIB) that resolves to a set
of session parameters containing an LU type of 6.2 is rejected. For
OPNDST ACCEPT, the CINIT is also rejected.

v An OPNDST ACCEPT SPEC by CID that would result in a LU 6.2 BIND
is rejected. The CINIT is not rejected. The application program must
respond to the CINIT by using APPCCMD CONTROL=OPRCNTL,
QUALIFY=ACTSESS or APPCCMD CONTROL=OPRCNTL,
QUALIFY=DACTSESS.

v An OPNDST RESTORE by CID that specifies an LU 6.2 session is
rejected. The application program must restore the LU 6.2 session using
APPCCMD CONTROL=OPRCNTL, QUALIFY=RESTORE.

If the application has specified a LOGON exit, then when this exit is
scheduled, the application may choose to accept the pending session by
issuing the APPCCMD CONTROL=OPRCNTL, QUALIFY=ACTSESS
macroinstruction.

OPNSEC
The application program cannot use this macroinstruction to establish an
LU 6.2 session. If it attempts to do so, both the OPNSEC and the specified
BIND request are rejected. The APPCCMD CONTROL=OPRCNTL,
QUALIFY=ACTSESS macroinstruction must be issued to accept BIND
requests from partner LUs for LU 6.2 sessions under VTAM's control.

RCVCMD
This macroinstruction is unaffected by LU 6.2 support.

RECEIVE
OPTCD=SPEC cannot be issued for an LU 6.2 session. If this occurs, the
request is rejected. OPTCD=ANY is unaffected by LU 6.2 support. It can
receive data for non-LU 6.2 sessions, but it cannot be used to receive data
for an LU 6.2 session.

REQSESS
This macroinstruction is unaffected by LU 6.2 support.

RESETSR
This request cannot be issued for an LU 6.2 session. If this occurs, the
request is rejected.

RPL Application programs can use this macroinstruction to build the RPL used
by the APPCCMD macroinstructions. The AAREA field must be set to
point to an extension for LU 6.2 services. The extension can be built with
the LU 6.2-unique ISTRPL6 macroinstruction.

Chapter 2. LU 6.2 and the VTAM API 21

SEND This request cannot be issued for an LU 6.2 session. If this occurs, the
request is rejected.

SENDCMD
This macroinstruction is unaffected by LU 6.2 support.

SESSIONC
CONTROL=CLEAR, CONTROL=RQR, CONTROL=SDT, and
CONTROL=STSN cannot be issued for an LU 6.2 session. If this occurs, the
request is rejected. CONTROL=BIND still rejects a bind for an LU 6.2
session.

SETLOGON
This macroinstruction is used to control the scheduling of the LOGON and
SCIP exits. It is not affected by LU 6.2 support. An application program
must issue SETLOGON OPTCD=START before VTAM can begin to
establish sessions for the application program, even if the application
program does not provide a LOGON or SCIP exit. This macroinstruction
can also be used to enable or disable an application's support for persistent
sessions, or to create or delete an association between an application's
network name and a generic resource name specified on the NIB
macroinstruction.

SHOWCB
This macroinstruction is unaffected by LU 6.2 support. This
macroinstruction cannot be used to access information in LU 6.2-unique
control blocks, such as the RPL extension.

SIMLOGON
This macroinstruction cannot be used to initiate an LU 6.2 session by an
application that uses LU 6.2 support.

TERMSESS
The function of this macroinstruction depends on whether the application
program specifies that a particular session or group of sessions is to be
terminated. If the application program specifies the PLU name by means of
the NIBSYM field and does not specify the CID of a session (NIBCID=0),
only non-LU 6.2 sessions are terminated. If the application program
specifies the CID of an LU 6.2 session, the TERMSESS is rejected.

TESTCB
This macroinstruction is unaffected by LU 6.2 support. This
macroinstruction cannot be used to test LU 6.2-unique control blocks, such
as the RPL extension.

Session limits and CNOS commands
Although application programs cannot explicitly establish and terminate LU 6.2
sessions, they do take actions that result in sessions being established or
terminated. Most of these actions involve controlling the session limits between an
application program and a partner LU for a given mode name.

An application program uses the APPCCMD CONTROL=OPRCNTL,
QUALIFY=CNOS macroinstruction to set new session limits for sessions between
itself and another LU using a specified mode name. These new session limits can
cause VTAM to activate or deactivate sessions for the application program.
However, the application program has no control over which particular session is
activated or deactivated.

22 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

The session limits apply to a given mode name. An application program can set
new session limits with a partner LU for a mode name of EXAMPLE and can leave
session limits unchanged for other mode names for the same LU. Session limits for
a mode must be negotiated before VTAM can activate a session on that mode.

See Chapter 6, “Managing sessions,” on page 99 for a discussion of the interaction
of session limits, the CNOS macroinstruction, and session activation and
deactivation.

VTAM conversations

Although application programs do not control LU 6.2 sessions, they do explicitly
start and stop conversations. The macroinstructions used to do this are APPCCMD
CONTROL=ALLOC and APPCCMD CONTROL=DEALLOC. Allocation and
deallocation can cause VTAM to activate or deactivate sessions between the
application program and its partner LU, depending on the session limits and
number of sessions in use. (See Chapter 6, “Managing sessions,” on page 99 for a
detailed description.)

The way application programs use conversations is analogous to the way they use
non-LU 6.2 sessions. When conversations are allocated, VTAM assigns an identifier
that application programs can find in the CONVID field in the RPL extension.
(When the APPCCMD CONTROL=ALLOC or CONTROL=RCVFMH5
macroinstructions complete successfully, CONVID is returned.) The application
programs can use the CONVID value to specify particular conversations on
APPCCMD macroinstructions.

The application program uses the APPCCMD macroinstruction to control a
particular conversation. For example, macroinstructions used to send data or
deallocate a conversation all specify a particular conversation. Application
programs can request that VTAM do the following for a particular conversation:
v Send or receive data and control information over the conversation.
v Deallocate a conversation.
v Change the role of one of the conversation partners on a half-duplex

conversation from sender to receiver.
v Change how data is received from a partner.
v Return status information about an active conversation to the application.

All of these options are discussed in detail in Chapter 6, “Managing sessions,” on
page 99 through Chapter 11, “Sending and receiving data using high performance
data transfer,” on page 255. For basic information about conversations, see
“Conversations” on page 6.

Conversation states

In supporting LU 6.2, VTAM uses the concept of finite state machines to describe
the condition of one side of a conversation at any given time. The LU 6.2
architecture defines what transaction programs can do in any given state.
Consequently, application programs are restricted to using a subset of the
APPCCMD macroinstructions at any given time. For example, an application
program that has been asked to respond to a confirmation request must use one of
the APPCCMDs appropriate to a confirmation response. VTAM rejects any other
macroinstructions. For more information on conversation states, see “Maintaining
conversation states” on page 67.

Chapter 2. LU 6.2 and the VTAM API 23

LU 6.2 global variables

Application programs can use a set of global variables to verify the LU 6.2 options
that VTAM supports. The application program requests VTAM to initialize the
variables by using one of the following macroinstructions:
v The VTAM macroinstruction ISTGAPPC
v The macroinstruction IFGRPL AM=VTAM
v The macroinstruction IFGACB AM=VTAM

For a list of the global variables and their meanings, refer to z/OS
Communications Server: SNA Programmer's LU 6.2 Reference.

The initialization of variables is done during program assembly, not during
program execution. To have the indicators show the support for new functions that
are in VTAM, you must reassemble the application program. Each global variable
is an arithmetic symbol that can be set to 0, 1, or 2. The meanings of the numbers
are:

X'00' Option is not supported.

X'01' Option is supported.

X'02' Option is not provided by VTAM but can be implemented by the
application program as a pass-through function of VTAM.

Vector lists

Vector lists provide an open-ended interface for application programs to exchange
information with VTAM. Each vector list contains a 2-byte length field followed by
a set of contiguous vectors in random order, as shown in Figure 7 on page 25.

24 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Each vector in the vector list is a set of contiguous data containing a length field,
an identifier, and a value field containing vector data. The fields containing vector
data can have trailing blanks. Some vector lists are built before or during OPEN
processing, while others are built during processing of the APPCCMD
macroinstruction. Table 1 shows the vector lists available to VTAM applications,
the macroinstruction with which they are associated, and their function.

Table 1. Vector lists

Name Pointer Macroinstruction DSECT Purpose For More Information

Access-
Method-
Support

ACBAMSVL
field in the
ACB

OPEN ACB ISTAMSVL Supplies information to
the application about the
VTAM that opened the
ACB

“Access-method-support
vector list” on page 28

Resource-
Information

ACBRIVL
field in the
ACB

OPEN ACB ISTRIVL Supplies information to
the application about the
resources available to the
application

“Resource-information
vector list” on page 29

Application-
ACB

ACBAVPTR
field in the
ACB

OPEN ACB ISTVACBV Supplies information to
VTAM about the
application's capabilities

“Vector lists supplying
information to VTAM” on
page 26

VTAM-
APPCCMD

VTRINA
field in the
RPL
extension

APPCCMD ISTAPCVL Supplies information to
the application about a
particular conversation
with a partner LU

“Vector lists used during
APPCCMD processing” on
page 30

LU6.2F

CICS
LU6.2B

VTAM APPL
LU6.2C

CICS
LU6.2D

AS/400

Host 1 Host 2

VTAM APPL
LU6.2A

NCPNCP

APPC/PC

LU6.2E

Figure 7. Format of a vector list

Chapter 2. LU 6.2 and the VTAM API 25

Table 1. Vector lists (continued)

Name Pointer Macroinstruction DSECT Purpose For More Information

Application-
APPCCMD

VTROUTA
field in the
RPL
extension

APPCCMD ISTAPCVL Supplies information to
VTAM about a particular
request on a conversation
with a partner LU

“Vector lists used during
APPCCMD processing” on
page 30

Vector lists used during OPEN processing

There are two types of vector lists associated with OPEN processing:
v Those used by the application program to supply information to VTAM
v Those used by VTAM to supply information to the application program

Vector lists supplying information to VTAM

The application program can pass information to VTAM for OPEN processing
through the application-ACB vector list (pointed to by the ACBAVPTR field in the
ACB). The IBM-supplied DSECT ISTVACBV enables you to refer to the fields in
the application-ACB vector list symbolically.

OPEN processing vector lists built by the application have a 2–byte length field.
The format of the application-capabilities vector is shown in Figure 8.

The application-ACB vector list consists of the following vectors:
v Application-Capabilities vector:

This vector is used by VTAM LU 6.2 applications to provide the following
information about the application's capabilities:

Field Capability

VAC81MLE (X'80')
Application supports having its logon exit driven multiple times per
session request. Applications with LOGON exits must set this indicator
to benefit from verification reduction. For more information about this
function, refer to z/OS Communications Server: SNA Network
Implementation Guide.

VTAM

LU6.2A

APPL1

VTAM

LU6.2C

APPL2

LU - LU Session

Host 1 Host 2

Figure 8. Format of Application-Capabilities Vector

26 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

VAC81FPR (X'40')
Application can receive data directly into CSM buffers by specifying
OPTCD=XBUFLST on the APPCCMD macroinstruction.

VAC81PWS (X'20')
Application can use password substitution.

VAC81ESS (X'10')
Application is capable of handling extended security sense codes.

VAC81FPS (X'08')
Application can send data directly from CSM storage by specifying
OPTCD=XBUFLST on the APPCCMD macroinstruction.

The vector ID is X'81'.
v Local-Application's-DCE-Capability Vector: This vector is used by LU 6.2

applications to inform VTAM about the application's DCE security capabilities.
During session establishment, VTAM passes this information to the partner LU
in byte 22 of the BIND.
The vector ID is X'82'.

To supply the application-ACB vector list, an application specifies
PARMS=(APPLVCTR=address) on the OPEN ACB macroinstruction, where address
is the location of the application-built vector list. To build the application-ACB
vector list, the application program:
1. Obtains storage for the vector list.
2. Initializes the fields using the ISTVACBV DSECT and the DSECTs contained

within the ISTVACBV DSECT.

For the complete layout of the ISTVACBV DSECT, refer to z/OS Communications
Server: SNA Programmer's LU 6.2 Reference.

Vector lists supplying information to the application

All VTAM application programs have access to vector lists that VTAM builds
during its processing of the OPEN macroinstruction. These vector lists describe the
features of VTAM to the application program and provide lists of resource
identifiers that might be unknown to the application program.

Two address fields in the ACB point to the vector lists. These areas are located in
storage that is read-only for the application program. The storage is addressable
from the MVS address space or the VM virtual machine in which the OPEN is
issued. Each address field contains the address of a vector list. The two vector lists
are:
v The access-method-support vector list (pointed to by the ACBAMSVL field in

the ACB DSECT). This list describes the VTAM program that processed the
OPEN macroinstruction.

v The resource-information vector list (pointed to by the ACBRIVL field in the
ACB DSECT). This list specifies resource identifiers and definition values that
might be unknown to the application program.

OPEN processing vector lists built by VTAM have a field that is 1-byte in length.
The format for vectors contained in the access-method-support vector list and the
resource-information vector list is shown in Figure 9 on page 28.

Chapter 2. LU 6.2 and the VTAM API 27

The vector lists can be examined at any time after the OPEN macroinstruction
completes and until the CLOSE macroinstruction or equivalent terminations, such
as an abend, occurs.

Access-method-support vector list:

The access-method-support vector list is pointed to by the ACB's ACBAMSVL field
in the ACB DSECT. This list describes the global variables for the VTAM program
that processed the OPEN macroinstruction.

For the complete layout of the ISTAMSVL DSECT, refer to z/OS Communications
Server: SNA Programmer's LU 6.2 Reference.

The access-method-support vector list consists of the following vectors:
v Component-Identification Vector: This vector contains product identification

information about a major component or feature of the VTAM licensed program.
This information is used by IBM for VTAM program maintenance. When a
vector list contains multiple component-identification vectors, the first vector
designates the base VTAM product; subsequent vectors designate features or
other major components of VTAM. The vector ID is X'04'.

v Function-List Vector: This vector contains a variable-length bit string in which
each bit corresponds to a particular VTAM function. If a bit is on, the
corresponding function is present in the particular release of VTAM. If a bit is
off, the function is not available. If the vector is not present, or if it is shorter
than expected, you can assume the value of the missing bits to be 0. Refer to
z/OS Communications Server: SNA Programmer's LU 6.2 Reference for more
information about the fields contained in this vector. The vector ID is X'05'.
The information contained in the function-list vector is also available at
assembly time in global variables created with the ISTGLBAL macroinstruction.
z/OS Communications Server: SNA Programming describes the use of global
variables.

v LU 6.2-Support-Function-List Vector: This vector is provided to indicate which
LU 6.2 options are supported by this release of VTAM. This vector is not present
for applications that do not use VTAM's APPC API. The vector ID is X'06'.
Each subvector in this vector list can have one of the following values that
corresponds one-to-one with LU 6.2 global variables:

X'00' Option is not supported.

TRANSACTION PROGRAM TRANSACTION PROGRAM

VTAM LU 6.2
APPLICATION

VTAM LU 6.2
APPLICATION

VTAMVTAM

ACB ACB RPLRPL

MODETAB MODETAB

HOST1 HOST2

LU-MODE
TABLE

LU-MODE
TABLE

Figure 9. Format of vectors built by VTAM during OPEN processing

28 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

X'01' Option is supported.

X'02' Pass-through. (VTAM offers support for the function, but the application
program must implement the function.)

Refer to z/OS Communications Server: SNA Programmer's LU 6.2 Reference for
more information about the fields contained in this vector.
The vector list information is not available until execution time. Refer to z/OS
Communications Server: SNA Programmer's LU 6.2 Reference for the list of
global variables.

v Release-Level Vector: This vector contains the access method version and release
number. The vector ID is X'01'.

Resource-information vector list:

The resource-information vector list provides information about the application
program that opened an ACB at execution time. The ACB's ACBRIVL field points
to the list. The application program must search the vector list to find a particular
vector.

For the complete layout of the ISTRIVL DSECT, refer to z/OS Communications
Server: SNA Programmer's LU 6.2 Reference.

The resource-information vector list provides the following vectors:
v APPCCMD-Vector-Area-Length Vector: This vector contains the absolute

minimum length and the recommended minimum length for full use of the
APPCCMD vector area. The vector ID is X'11'.

v Application-ACB-Name Vector: This vector contains the ACBNAME of the
application program. This is the name specified by the APPLID operand of the
ACB statement; if the ACBNAME operand is not present, the network name of
the application program LU is used. The vector ID is X'03'.

v Application-Network-Name Vector: This vector contains the network name of
the application program LU. This name is specified by the name field of the
APPL definition statement. The vector ID is X'02'.

v Application-To-VTAM-Vector-Keys Vector: This vector contains a list of all ACB
vector keys presented by the application program on the VTAM-ACB-
information vector. The vector ID is X'12'.

v Host-Subarea-PU-Network-Address Vector: This vector contains the network
address of the host subarea PU. The vector ID is X'09'.

v Host-Subarea-PU-Network-Name Vector: This vector contains the network
name of the host subarea physical unit (PU) contained in this host. This name is
specified by the HOSTPU start option; if the HOSTPU start option is not
specified, this vector contains the default host subarea PU name, ISTPUS. This
name is part of the session awareness data provided to the NetView® program
or session monitor when a resource is contained within the subarea of the host
PU. The vector ID is X'08'.

v LU 6.2-Application-Definition Vector: This vector is present in this list for LU
6.2 application programs. The LU 6.2 application program may use this vector to
determine the values coded on the APPL definition statement.
For more information about the APPL definition statement, refer to z/OS
Communications Server: SNA Resource Definition Reference. Refer to z/OS
Communications Server: SNA Programmer's LU 6.2 Reference for more
information about the fields contained in this vector. The vector ID is X'0B'.

Chapter 2. LU 6.2 and the VTAM API 29

v Maximum-Subarea Vector: This vector contains the maximum subarea number
(in binary) that is valid for this host's domain. This is obtained from the
MAXSUBA start option. The vector ID is X'0A'.

v Network-Name Vector: This vector contains the name of the network in which
the host resides. This name is specified by the NETID start option; if the NETID
start option is not specified, this vector contains 8 bytes of blanks. The vector ID
is X'06'.

v Performance-Monitor Vector: This vector identifies any retired fields in the
performance data parameter list of the installation-wide performance monitor
exit routine (ISTEXCPM). The vector points to a table of retired field entries,
each of which contains information needed to locate the position of the retired
field within the affected vector. Refer to z/OS Communications Server: SNA
Customization for more information. Refer to z/OS Communications Server:
SNA Programmer's LU 6.2 Reference for more information about the fields
contained in this vector. The vector ID is X'13'.

v SSCP-Name Vector: This vector contains the name of the SSCP. This name is
specified by the SSCPNAME start option. The name contained in this vector is
used to identify the SSCP to the NetView* program. The vector ID is X'07'.

Vector lists used during APPCCMD processing

LU 6.2 applications can obtain information from VTAM by specifying the address
and length of a VTAM-APPCCMD vector list on the VTRINA and VTRINL
parameters of the APPCCMD macroinstruction. The application can pass vector
information to VTAM by specifying the address and length of an
application-APPCCMD vector list on the VTROUTA and VTROUTL parameters of
the APPCCMD macroinstruction. The format of an APPCCMD vector is shown in
Figure 10 on page 31.

30 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Vector lists used for APPCCMD processing are mapped by the ISTAPCVL DSECT.
Refer to z/OS Communications Server: SNA Programmer's LU 6.2 Reference for
more information.

Vectors supplied by the application

When an application specifies the VTROUTA and VTROUTL parameters on an
APPCCMD CONTROL=RECEIVE macroinstruction, the application can supply the
XBUFLST-receive vector (vector ID=X'82'). This vector provides information to
VTAM about the area in which the application will receive data in CSM buffers.
See “Passing HPDT receive requirements to VTAM” on page 269 for a complete
description of the fields in this vector.

Vectors returned to the application

When an application specifies the VTRINA and VTRINL parameters on an
APPCCMD macroinstruction, VTAM can return the following vectors:
v Local-Nonce Vector: This vector contains the nonce (random data) that the local

application will use to generate an encrypted password for the session on which
the vector was returned. The vector can be returned on an
APPCCMD CONTROL=PREALLOC macroinstruction. The vector ID is X'13'.

v Name-Change Vector: This vector indicates whether the partner LU is known by
a name other than the one that was provided on the APPCCMD
macroinstruction. This vector can be returned on the following
macroinstructions:
– APPCCMD CONTROL=ALLOC
– APPCCMD CONTROL=OPRCNTL,QUALIFY=CNOS
– APPCCMD CONTROL=PREALLOC
This vector can also be returned on an ATTN CNOS exit. The vector ID is X'18'.

v Partner-Application-Capabilities Vector: This vector provides information about
functions supported by the partner LU. This vector can be returned on the
following macroinstructions:
– APPCCMD CONTROL=ALLOC
– APPCCMD CONTROL=PREALLOC

Application A VTAM A Application BVTAM B

SNASVCMG
Session

Figure 10. Format of APPCCMD vectors

Chapter 2. LU 6.2 and the VTAM API 31

– APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS
– APPCCMD CONTROL=OPRCNTL, QUALIFY=DISPLAY
– APPCCMD CONTROL=RCVFMH5
This vector can also be returned on the ATTN CNOS exit. The vector ID is X'1A'

v Partner's-DCE-Capability Vector This vector indicates whether the partner LU
supports third party authentication (DCE security). If the partner does support
DCE security, it indicates which type of authentication mechanism it uses. Valid
authentication mechanisms include:
– DCE authentication
– Kryptoknight
– Kerberos V5
– DCE Performance Mechanism
This vector can be returned on the following macroinstructions:
– APPCCMD CONTROL=PREALLOC
– APPCCMD CONTROL=RCVFMH5
– APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS
– APPCCMD CONTROL=OPRCNTL, QUALIFY=DISPLAY
This vector can also be returned on an ATTN CNOS exit. The vector ID is X'12'.

v Partner's-Nonce Vector: This vector contains the nonce (random data) that the
local application will use to verify the partner's encrypted password for the
session on which the vector was returned. The vector can be returned on an
APPCCMD CONTROL=PREALLOC macroinstruction. The vector ID is X'14'.

v PCID Vector: This vector provides the procedure correlation identifier of the
session that is being used by a conversation. This vector can be returned on the
following macroinstructions:
– APPCCMD CONTROL=ALLOC
– APPCCMD CONTROL=PREALLOC
– APPCCMD CONTROL=RCVFMH5
The vector ID is X'17'.

v Receive-FMH_5-Sequence-Number Vector: This vector contains the sequence
number that the local application will use to verify the partner's encrypted
password for the session on which the vector was returned. The vector can be
returned on an APPCCMD CONTROL=RCVFMH5 macroinstruction. The vector
ID is X'16'.

v Send-FMH_5-Sequence-Number Vector: This vector contains the sequence
number that the local application will use to generate an encrypted password for
the session on which the vector was returned. The vector can be returned on an
APPCCMD CONTROL=PREALLOC macroinstruction. The vector ID is X'15'.

v Session-Information Vector: This vector provides information relevant to
applications using CSM storage for sending and receiving data. This vector can
be returned on the following macroinstructions:
– APPCCMD CONTROL=ALLOC
– APPCCMD CONTROL=PREALLOC
– APPCCMD CONTROL=RCVFMH5
The vector ID is X'19'.

v VTAM-to-APPL-Required-Information Vector: This vector indicates whether
VTAM was able to return vector information successfully and the minimum
length required to contain the vectors. The application can obtain the length

32 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

required to contain the VTAM-APPCCMD vector list from the
APPCCMD-vector-area-length vector, which can be found in the
resource-information vector list.
This vector is returned only when other VTAM-APPCCMD vectors are returned.
The vector ID is X'10'.

Refer to z/OS Communications Server: SNA Programmer's LU 6.2 Reference for
more information about the fields contained in these vectors.

Note: The vector length requested by the application on the VTRINL parameter
must be large enough to accept the 2-byte length field of the VTAM-APPCCMD
vector list plus the VTAM-to-APPL-required-information vector. Otherwise, VTAM
returns an RCPRI, RCSEC combination of X'002C', X'002F',
PARAMETER_ERROR— VECTOR_AREA_LENGTH_INSUFFICIENT.

Application exit routines

In addition to using an ACB, all VTAM application programs can provide VTAM
with a list of exit routines to use when external events occur that affect the
application program. They can, for example, provide an error-handling exit routine
for VTAM to schedule when a communication link between the application
program and an LU is lost. When the event occurs, VTAM gives the exit routine
control as soon as possible.

The following information shows two kinds of application program exit routines
and a description of each.

RPL-specified exit routines

These exit routines contain instructions to be executed when asynchronous
RPL-based operations are completed. In any individual conversation-establishment,
communication, or other RPL-based macroinstruction, if an RPL exit-routine
address is specified, the exit routine is scheduled as an alternative to VTAM's
posting an event control block (ECB) when the requested action completes. Using
the ECB provides programs with greater control over the order in which events are
to be handled. A program can use a mixture of ECB-posting and RPL exit routines,
or it can use all one or the other.

Exit-list (EXLST) exit routines

These are special-purpose exit routines that VTAM schedules when appropriate,
such as on receipt of a CINIT request as a result of a logon or initiate request. The
exit-routine addresses (entry points) are specified in an exit list created with the
EXLST macroinstruction.

A program can define more than one exit list by using multiple EXLST
macroinstructions. However, an ACB can point to only one exit list at a time.

An exit list can be specified in an ACB and thus can be used by VTAM when an
exit-routine event occurs for any session with the program, including those
sessions that VTAM sets up to support LU 6.2 conversations.

The ATTN exit, which is an EXLST exit, handles LU 6.2-specific event notifications.
VTAM schedules the ATTN exit when one of the following conditions occurs:

Chapter 2. LU 6.2 and the VTAM API 33

v The application program receives an FMH-5.
v VTAM processes a CNOS request from a partner LU or an operator command,

and new session limits are established.
v The last session or each session of a mode name group is terminated.

For details on this exit routine, see “Using the ATTN exit” on page 284.

Not all the exit routines that application programs can supply have meaning for
LU 6.2 functions. The names of the already-existing special-purpose exit routines
applicable to LU 6.2 and the events that cause them to be entered are summarized
in Table 2.

Table 2. Special-purpose exit routines applicable to all session types

Exit Routine
Name Event

LERAD A logic error has been detected for an RPL-based request.

LOGON An application program is being requested to establish a session as a
primary logical unit.

LOSTERM A session with an application program has been terminated or
disrupted, or a conditional terminate request for a session has been
received.

RELREQ Another application program has requested a session with a logical unit
that is presently in session with this program, and the logical unit is at
its session limit.

SCIP A session-control request has been received. This exit is only scheduled
for LU 6.2 sessions when a BIND request is received for the application
program. The other types of session-control requests that this exit deals
with are handled by VTAM for an LU 6.2 session.

SYNAD An error other than a logic error has been detected for an RPL-based
request.

TPEND The VTAM operator shuts down the network or this application
program, or VTAM halts or abends, or a VTAM application program is
being taken over.

The existing exit routines not applicable to LU 6.2 sessions are:
v DFASY
v NSEXIT
v RESP

For more details on the special-purpose exit routines, see Chapter 12, “Using exit
routines,” on page 283.

Register usage

VTAM uses the general-purpose registers in the same fashion regardless of the
type of session being used, and it uses them for a variety of purposes. VTAM
frequently passes back return codes and parameter-list addresses in the registers.
Refer to z/OS Communications Server: SNA Programmer's LU 6.2 Reference for a
summary of how VTAM uses the registers.

The APPCCMD macroinstruction follows register usage of other RPL-based
macroinstructions, including the requirement that register 13 point to an 18-word

34 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

save area. VTAM does define some additional codes for LU 6.2 services. See the
following sections for further information:
v For information on evaluating register feedback, see “Registers” on page 58.
v For information on register contents when using the ATTN exit, see “Using the

ATTN exit” on page 284.

(For more details on handling VTAM errors and special conditions associated with
the APPCCMD macroinstructions, see Chapter 14, “Handling errors,” on page 313.)

Operating system environment

LU 6.2 support, with one exception, does not affect the operating system
environment for VTAM application programs. Refer to z/OS Communications
Server: SNA Programming for a description of this environment.

Application programs can still use multitasking, service request blocks (SRBs), and
authorized path in their application programs. The only LU 6.2 restriction is that
VTAM does not support the full use of the MVS multiple-address-space facility for
LU 6.2 application programs. Application programs can issue APPCCMD
macroinstructions only from the address space where the ACB was opened. Refer
to the section on operating system considerations in z/OS Communications Server:
SNA Programming for details and restrictions on using cross-memory mode.

Sessions established by applications defined as APPC=YES in the application major
node are associated with the task that opens the ACB.

Overview of LU 6.2 transaction processing

Although each LU 6.2 application program is unique, part of the initial sequence of
information is similar from one application program to another. The following
examples show a typical sequence for an inquiry transaction for both the initiator
and the responder.

Initiator's view of the inquiry transaction:
v At Application Startup

– APPC=YES on the APPL statement.
– Open ACB.
– Enable sessions—SETLOGON OPTCD=START.
– Initialize session limits with CNOS—APPCCMD.

v Ongoing:
– Allocate a conversation—APPCCMD.
– Send data—APPCCMD.
– Receive and wait for a reply—APPCCMD.
– Deallocate the conversation—APPCCMD.

Responder's view of the inquiry transaction:
v At Application Startup:

– APPC=YES on the APPL statement.
– Open ACB.
– Enable sessions—SETLOGON OPTCD=START.
– Be informed of session limits—ATTN (CNOS) exit.

Chapter 2. LU 6.2 and the VTAM API 35

v Ongoing:
– Be informed of the allocate—ATTN (FMH-5) exit or RPL.
– Receive the allocate—APPCCMD.
– Receive the data—APPCCMD.
– Send the reply—APPCCMD.
– Receive deallocate—APPCCMD.
– Wait for the next request.

36 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Chapter 3. How VTAM implements LU 6.2 architecture

About this chapter

Although the VTAM program implements a large portion of the LU 6.2 function,
the application program must implement some of it. The application program also
can implement some optional LU 6.2 functions. This chapter describes the
following items:
v Functions that VTAM implements
v Functions that the application program implements (pass-through verbs and

mapped conversation verbs)
v Optional LU 6.2 functions

Refer to SNA Transaction Programmer's Reference Manual for LU Type 6.2 for more
information on the architecture.

LU 6.2 verbs

LU 6.2 architecture defines functions in terms of verbs. The process of establishing
a conversation, for example, is defined with the ALLOCATE verb.

Verbs that VTAM implements

The VTAM APPCCMD macroinstruction implements the functions of the following
LU 6.2 verbs:

Conversation verbs

The following information shows LU 6.2 conversation verbs.

ALLOCATE
Start a conversation.

CONFIRM
Transmit any data in the send buffer and request confirmation that the
data has been received and meets criteria specified by the transaction
programs.

CONFIRMED
Give confirmation that all data to this point has been received successfully
and meets criteria specified by the transaction programs.

DEALLOCATE (except TYPE=LOCAL)
End a conversation. (TYPE=LOCAL is explained under “Verbs not
supported by VTAM” on page 41.)

FLUSH
Transmit any data remaining in the send buffer.

PREPARE_TO_RECEIVE
Transmit any data remaining in the send buffer along with an indication
that the remote transaction program can now transmit. This can include
the function of the CONFIRM verb.

© Copyright IBM Corp. 2000, 2013 37

RECEIVE_AND_WAIT
If information sent by the partner LU has arrived, receive it; if no
information has been sent yet, wait for it.

RECEIVE_EXPEDITED_DATA
Receive expedited data from a partner LU.

RECEIVE_IMMEDIATE
If information sent by the partner has arrived, receive it; if no information
has been sent, do not wait for it.

REQUEST_TO_SEND
Ask the partner LU for permission to send data.

SEND_DATA
Place data in the send buffer and, if enough data has accumulated,
transmit it.

SEND_ERROR
Place information describing an error in the send buffer and, if enough
data has accumulated, transmit it. (Negative responses to confirmation
requests are sent immediately, without being buffered.)

SEND_EXPEDITED_DATA
Send expedited data to a partner LU on a full-duplex-capable session.

Control operator verbs

The following information shows control operator verbs:

CHANGE_SESSION_LIMIT
Change the LU-mode session limit and number of contention-winner
sessions for each LU for parallel-session connections. The new LU-mode
session limit and number of contention-winner sessions for each LU are
enforced until changed by another CNOS verb. As a result of this change,
LU-LU session with the specified mode name might be activated or
deactivated to match the new session limits.

DEACTIVATE_CONVERSATION_GROUP
Deactivate the session associated with a specified conversation group ID.

INITIALIZE_SESSION_LIMIT
Establish the initial LU-mode session limit for single-session or
parallel-session connections and the contention-winner polarities for
parallel-session connections. Initialization of the session limit might cause
one or more LU-LU sessions with the specified mode name to be activated.

RESET_SESSION_LIMIT
Reset to 0 the LU-mode session limit for both single-session or
parallel-session connections and the contention-winner polarities for the
parallel-session connections. This function causes all active sessions with
the specified mode name, or all mode names, to be deactivated.

Pass-through verbs (application program implements)

Although VTAM does not implement the following verbs, VTAM provides services
that enable application programs to implement them. In some cases, the
application program handles everything, and the data passes through VTAM. An
example of this would be the LUW_IDENTIFIER. In other cases, the application
program handles most things, but requires assistance from VTAM. For example,
the application program handles the use of SECURITY_USER_ID and

38 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

SECURITY_PROFILE in conversation security, but VTAM negotiates conversation
security at the time of the BIND. Also, the application program handles SYNCPT
and BACKOUT, but VTAM provides a function for that with APPCCMD
CONTROL=REJECT and APPCCMD CONTROL=SETSESS and the handling of the
PS headers.

GET_ATTRIBUTES
Returns information pertaining to the specified conversation.

Much of the information defined for GET_ATTRIBUTES can be found in
the FMH-5 that is used to start a conversation. To obtain this function, the
application program should save the pertinent information from the
FMH-5 when it is received or built.

The types and location of information returned on GET_ATTRIBUTES are:
v CONVERSATION_CORRELATOR

A unique value used to correlate conversations. It is available in the
FMH-5.

v CONVERSATION_GROUP_ID
The variable for returning the conversation group identifier. This value is
returned to the application program on the RPL extension for the
conversation winner on the APPCCMD CONTROL=ALLOC and
APPCCMD CONTROL=RCVFMH5 macroinstructions.

v CONVERSATION_STATE
The variable for returning the current conversation state of the specified
conversation. The current conversation state is returned in the RPL
extension for every conversation-based (APPCCMD) macroinstruction.

v MODE_NAME
The mode name group used for a session supporting a conversation. It is
a returned parameter on an RCVFMH5 macroinstruction. The initiating
LU must save the mode name it has requested.

v PARTNER_LU_NAME
The variable for returning the name of the LU at which the remote
transaction program is located. This is a name by which a local LU
knows the partner-LU for the purpose of allocating a conversation. For
more details, refer to the description of the LUNAME operand of the
APPCCMD CONTROL=ALLOC macroinstructions in the z/OS
Communications Server: SNA Programmer's LU 6.2 Reference. This
name is contained in the BIND and in the read-only copy of the RPL
provided by the ATTN(FMH5) exit.

v PARTNER_NETWORK_QUALIFIED_LU_NAME
The variable for returning the network-qualified name of the LU at
which the remote transaction program is located. If the partner's
network-qualified LU name is not known, a null value is returned. It can
be obtained by using APPCCMD CONTROL=OPRCNTL,
QUALIFY=DISPLAY. This name is also contained in the BIND.

v SYNC_LEVEL
Indicates the synchronization level of the conversation, as defined by LU
6.2 architecture. It is available in the FMH-5.

GET_TP_PROPERTIES
Returns information pertaining to the transaction program that issues the
verb.

Chapter 3. How VTAM implements LU 6.2 architecture 39

The types and location of information returned on GET_TP_PROPERTIES
are:
v LUW_IDENTIFIER

A unique conversation identifier used for accounting and sync point
purposes. It is available in the FMH-5.

v OWN_FULLY_QUALIFIED_LU_NAME
The application program's unique network name, consisting of the
network identifier, if applicable, and the application LU name. The
application program can find the network identifier (if present) in the
X'06' vector and the application LU name in the X'02' vector in the
resource-information vector list. This list is available to the application
program when the OPEN for the ACB of the application program
completes. (See “Vector lists” on page 24 for the details of the
resource-information vector list.)

v OWN_TP_INSTANCE
The variable for returning the system-generated identifier for this
instance of the transaction program.

v OWN_TP_NAME
The variable for returning the local application program's own
transaction program name. This information is received in the
ATTN(FMH5) and in data of the RCVFMH5 macroinstruction.

v PROTECTED_LUW_IDENTIFIER
The variable for returning the logical unit of work (LUW) identifier used
by the transaction program when it accesses protected resources. For
VTAM LU 6.2, this is the same as the LUW identifier, which is in the
data returned for the RCVFMH5 macroinstruction.

v SECURITY_PROFILE
A profile used for conversation security purposes. It is available in the
FMH-5, in an access security subfield.

v SECURITY_USER_ID
A user identifier used for conversation-level security. It is available in a
security access subfield in the FMH-5.

GET_TYPE
Returns the type of conversation (full-duplex basic or full-duplex mapped).
This information is available in the FMH-5.

Note: GET_ATTRIBUTES, GET_TP_PROPERTIES, and GET_TYPE are not
technically pass-through verbs because the application program does not issue a
macroinstruction that is processed by VTAM. The information requested by the
GET_ATTRIBUTES, GET_TP_PROPERTIES, and GET_TYPE verbs is
conversation-level information (for example, the partner network-qualified LU
name or whether the conversation is basic or mapped). To manage its transaction
programs, the application program must maintain this information. VTAM does
not maintain this type of information. The GET_ATTRIBUTES,
GET_TP_PROPERTIES, and GET_TYPE verbs are listed here to show that the
function of these verbs, although not supported by VTAM, can be achieved by the
application program.

BACKOUT
Restore all protected resources to their status as of the previous
synchronization point.

40 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

POST_ON_RECEIPT
Requests that the conversation be posted when data or other information is
available.

PREPARE_FOR_SYNCPT
Causes protected resources associated with the conversation to be prepared
to advance to the next synchronization point. Protected resources are those
currently allocated to the transaction with a synchronization level of
SYNCPT. As part of processing the PREPARE_FOR_SYNCPT verb, the LU
flushes its send buffer for the conversation.

SET_SYNCPT_OPTIONS
Changes the options that affect the processing of the SYNCPT, BACKOUT,
and PREPARE_FOR_SYNCPT verbs. The default options are in effect when
the transaction program starts. The options set by this verb remain in use
until the verb is issued again or the transaction program ends. The
program is not required to specify any parameter having a value that it
does not need to change.

SYNCPT
Advance all protected resources to the next synchronization point.

Mapped conversation verbs (application program implements)

These verbs provide an interface that is at a higher level than that provided by the
basic conversation verbs and that allows data mapping.

Implementing mapped conversations means that the application program is
offering its own API, consistent with LU 6.2 architecture for mapped conversations,
to its transaction programs. The application program translates input from this API
into VTAM macroinstructions.

For information on mapped conversations, refer to SNA Transaction Programmer's
Reference Manual for LU Type 6.2.

Verbs not supported by VTAM

VTAM does not support the following conversation and control operator verbs.

Conversation verbs

The following conversation verbs are not supported:

DEALLOCATE (TYPE=LOCAL)
VTAM does not define a local type of deallocation corresponding to the
DEALLOCATE (TYPE=LOCAL) described in the LU 6.2 architecture. The
purpose of the local type of deallocation is to enable a transaction program
to inform the LU of whether it wants a resource identifier to be discarded
or retained for a future reconnection. Because VTAM does not support the
reconnect function, it always discards resource identifiers at the end of a
conversation. Therefore, no local type of deallocation is necessary across
the VTAM API.

RECONNECT
Reconnects a conversation that previously existed between the local
transaction program and a specified remote transaction program.

TEST Determines if the conversation has been posted or if a request-to-send

Chapter 3. How VTAM implements LU 6.2 architecture 41

indication has been received from the remote transaction program. The
request-to-send portion may be accomplished by APPCCMD
CONTROL=TESTSTAT.

WAIT Waits for any conversation in a list of conversations to be posted.

Control operator verbs

The following control operator verbs are not supported:

DELETE
Deletes parameter values, established by the DEFINE verbs, that control
the operation of the local LU.

PROCESS_SIGNOFF
Permits a privileged service transaction program to instruct the LU to
receive and process one or more Sign-Off GDS variables.

SIGNOFF
Permits a privileged program to remove list entries from the LU's
signed-on lists. The control operator uses this verb to maintain the
signed-on list.

LU 6.2 option sets

This section describes the support that VTAM provides for the option sets listed in
the LU 6.2 architecture. Option sets are LU 6.2 functions that are not required for
the minimum implementation of a type 6.2 LU. The option set number is in
parentheses following the option set name.

Option sets that VTAM implements

VTAM implements the following conversation option sets:

Flush the LU's send buffer (101)
Enables a transaction program to explicitly cause the LU to transmit any
data in its SEND buffer, regardless of the amount of data in the buffer. Any
of the APPCCMD macroinstructions that send data accept a QUALIFY
value that forces data transmission through the network.

PREPARE_TO_RECEIVE (105)
Enables an application program to change a half-duplex conversation state
from SEND to RECEIVE and, at the same time, include the function of the
FLUSH or CONFIRM verb. The APPCCMD CONTROL=PREPRCV
macroinstructions implement this option set.

Receive immediate (106)
Enables a transaction program to receive whatever information is available
on a conversation without having to request posting of the conversation.
The functions available through VTAM (including the VTAM receive-any
function and asynchronous return after issuing an APPCCMD
macroinstruction) largely negate any need for this option set.

Full-duplex and expedited data support (112)
Enables a transaction program to allocate a full-duplex conversation. This
option set also enables the transaction program to send and receive
expedited data. Option sets 101, 110, 113, and 247 are required in addition
to this option set for full-duplex support.

42 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Nonblocking architecture (113)
Enables support for nonblocking architecture. This option set provides
enhancement for half-duplex conversations and provides the basic
functions required to support full-duplex conversation architecture.

Queued allocation of a contention-winner session (201)
Enables a local program to allocate a conversation to a remote program on
a session for which the local LU must be the contention winner. It also
enables a local program to queue the conversation request if no
contention-winner session is available immediately.

Immediate allocation of a session (203)
Enables a program to allocate a contention-winner session only if one is
immediately available; otherwise, the allocation is unsuccessful. The
application program issues the APPCCMD CONTROL=ALLOC,
QUALIFY=IMMED macroinstruction.

Queued allocation for when session free (205)
Enables a local program to allocate a conversation to a remote program on
a session for which the local program waits for the duration of a session
activation, if necessary. If session activation cannot be accomplished by the
LU 6.2 application program, control is returned to the local program if
activation fails. The application program issues the APPCCMD
CONTROL=ALLOC, QUALIFY=WHENFREE macroinstruction.

Long locks (244)
Enables a transaction program on a half-duplex conversation to issue a
PREPARE_TO_RECEIVE verb, which includes the function of the
CONFIRM verb, and to resume processing when data is subsequently
received from the remote transaction program. The LOCKS=LONG
keyword on the APPCCMD CONTROL=PREPRCV macroinstructions
implement this option set.

Test for request to send received (245)
Enables a transaction program on a half-duplex conversation to test
whether a request-to-send notification has been received on a conversation
(for example, following sync point processing).

VTAM and security option sets

The LU 6.2 architecture defines a number of conversation-level security option sets
that include passwords, user identifiers, and profiles in allocation requests. The LU
6.2 architecture also defines a session-level security option set. The architecture
requires that session-level LU-LU verification be allowed when conversation-level
security option sets are enabled and when the LUs that make up the network are
not physically secure (as determined by installation management).

VTAM supports session-level security and offers pass-through support for
conversation-level security. It is the responsibility of the application programs to
implement conversation-level security.

Because VTAM's security support is compatible with the architecture's
conversation-level security features, application programs can have conversations
with LUs that implement the architecture's security options. These conversations
can make use of passwords, user identifiers, and profiles in implementing security
procedures.

Chapter 3. How VTAM implements LU 6.2 architecture 43

Session-level security option sets

VTAM supports the following session-level security option:

Session-level LU-LU verification (211)
Enables two LUs to verify each other's identity before a session is
established between them.

Conversation-level security option sets

VTAM supports the following conversation-level security option sets:

User ID verification (212)
Enables an application program to specify a user identifier and password
that the local LU can use to verify a user identifier on a request for a
conversation. The application program that receives the request can use
this information to determine whether to accept the conversation request.

Program supplied user identifier and password (213)
Enables a program that is allocating a conversation to supply the user
identifier and password to be sent on the allocation request. VTAM offers
pass-through support for this option set by allowing security access
subfields on the allocation requests. The application program can
implement the option set.

User ID authorization (214)
Enables a program or operator to designate the user identifiers that are
authorized to access specific resources of the LU, such as transaction
programs. VTAM offers pass-through support for this option set by
allowing security access subfields on the allocation requests. The
application program can implement the option set.

Profile verification and authorization (215)
Enables a program or operator to designate the profiles that the local LU
uses to verify a profile carried on allocation requests it receives. The
program can also designate the profiles that are authorized to specific
resources of the LU, such as transaction programs. VTAM offers
pass-through support for this option set by allowing security access
subfields on the allocation requests. The application program can
implement the option set.

Profile pass-through (217)
Enables the transaction program that is allocating a conversation to specify
that the allocation request carry the profile received on the request that
started the program. The application program can implement this option
set by maintaining a table of profiles used when allocation requests are
received. VTAM offers pass-through support for this option set by allowing
security access subfields on the allocation requests. The application
program can implement the option set.

Program supplied profile (218)
Enables the application program that is allocating a conversation to supply
the profile to be sent on the allocation request. VTAM offers pass-through
support for this option set by allowing security access subfields on the
allocation requests. The application program can implement the option set.

Control operator option sets

VTAM supports the following control operator option sets:

44 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

CHANGE_SESSION_LIMIT verb (501)
Enables a program at the source LU to request a change in the mode name
group session limit from one nonzero value to another or to request a
change in the minimum number of contention-winner sessions for the
source LU or target LU. This is implemented through APPCCMD
CONTROL=OPRCNTL, QUALIFY=CNOS.

LU-definition verbs (505)
Enables a program or an operator to specify the operating parameters of its
LU. These parameters include the LU's network-qualified name, session
limit information, and security information such as passwords and profiles.
See Chapter 6, “Managing sessions,” on page 99 for information on
controlling session limits. Security information can be maintained by the
application program independently of VTAM.

MIN_CONTENTION_WINNERS_TARGET parameter (601)
Enables a program at the source LU to request a nonzero value for the
target LU's minimum number of contention-winner sessions. This is
implemented through APPCCMD CONTROL=OPRCNTL,
QUALIFY=CNOS.

RESPONSIBLE(TARGET) parameter (602)
Enables a program at the source LU to request that the target LU
deactivate sessions when a CNOS verb requires a decrease in the number
of active sessions. This is implemented through the RESP field in the
CNOS session limits control block.

DRAIN_TARGET(NO) parameter (603)
Enables a transaction program to prevent its partner from honoring queued
conversation requests for a mode name group when the group's session
limit is being set to 0. This is implemented with the DRAINR field in the
CNOS session limits data structure.

Locally known LU names (606)
Enables a program or an operator to specify the locally known names of
remote LUs. The 1- through 8-byte LU name that is used on all of VTAM's
APIs is considered by architecture to be the locally known name for the
network-qualified LU name.

Uninterpreted LU names (inbound only) (607)
Enables a program to specify the uninterpreted names of partner LUs.
VTAM provides this function as part of its services to all of its application
programs. It is not unique to LU 6.2 support.

Single-session reinitiation (608)
Enables a program to specify the responsibility for reinitiating single
sessions to partner LUs. VTAM does this by ensuring that the BIND image
used to establish a single session specifies that either side of the session
can reinitiate.

Maximum RU size bounds (610)
Enables a program to specify the upper bounds for the maximum RU sizes
on sessions within a mode name group. The application program can
control maximum RU sizes by setting fields in the BIND when issuing
APPCCMD CONTROL=OPRCNTL, QUALIFY=ACTSESS.

Session-level mandatory cryptography (611)
Enables a program or an operator to specify that session-level mandatory
cryptography is to be used on sessions within an LU-mode group.

Chapter 3. How VTAM implements LU 6.2 architecture 45

Contention winner automatic activation limit (612)
Enables a program to specify the limit for automatically activating
contention-winner sessions within a mode name group. This option set can
be implemented through the use of the AUTOSES parameter on the APPL
definition statement.

Session-level selective cryptography (617)
Enables data that is both encrypted and not encrypted to be sent on the
same session.

Option sets that the application program implements

Although VTAM does not offer the option sets in this section, the application
program can implement them. An application should verify VTAM's support for
these option sets at assembly time with the ISTGAPPC macroinstruction, or at
OPEN ACB time by examining the LU-6.2-function-list vector in the
access-method-support vector list:

Get attributes (102)
Enables a program to obtain attributes of a mapped conversation.

Post on receipt with wait (104)
Enables a transaction program to request posting of multiple conversations
and to wait (suspend its processing) until information is available on any
one of the conversations. The functions available through VTAM (including
the VTAM receive-any function and asynchronous return after issuing an
APPCCMD macroinstruction) largely negate any need for this option set.

Sync point services (108)
Enables a program to request synchronization point processing of all
protected resources (any resource to which access is controlled) throughout
the transaction. Transaction programs can synchronize their resources when
partners in protected conversations fail or encounter errors. To keep
databases consistent, a network of protected resources is built into a
synchronization tree. Sync point services include the SYNCPT and
BACKOUT verbs.

Get conversation type (110)
Enables a program that supports both basic and mapped conversations to
determine which category of verbs it should use in conjunction with a
resource identifier.

Conversations between transaction programs located at the same LU (204)
Enables a local transaction program to allocate a conversation to a remote
transaction program located at the same LU as the local program. This
option set is not available for applications that are either single-session
capable or serving as a generic resource.

Send persistent verification (219)
Enables a program to allocate consecutive conversations during which the
conversation-level security information, once verified, remains verified for
specific combinations of user identifiers, profiles, and partner LUs.

Receive persistent verification (220)
Enables a program or an operator to designate the remote LUs from which
the local LU can accept consecutive allocation requests that, once verified,
remain verified for specific combinations of user identifiers, profiles, and
partner LUs.

46 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Password substitution (223)
Enables an LU to send or receive tokens that represent an end user's
password for an ALLOCATE.

A VTAM application indicates support for this option on the application
capabilities vector. For more information, see “Vector lists supplying
information to VTAM” on page 26.

Extended Security Sense Codes (225)
Allows an LU to generate and return a more granular set of return codes
for security errors during ALLOCATE. The more granular security return
codes provide a greater level of detail in regards to the security failures on
ALLOCATE. The use of the more granular return codes is indicated to the
partner on the BIND. Option set 211 is a prerequisite.

A VTAM application indicates support for this option on the application
capabilities vector. For more information, see “Vector lists supplying
information to VTAM” on page 26. Extended security sense codes are
listed in z/OS Communications Server: IP and SNA Codes.

Authentication using GSS-API Mechanisms (230)
Allows a program or an operator to designate the remote LUs that are
permitted to send to the local LU allocation requests carrying a DCE ticket
based authentication information. This option set also allows the program
allocating a conversation to specify that the allocation request carry DCE
ticket based access security information determined by the local LU.

A VTAM application indicates support for this option on the application
capabilities vector. For more information, see “Vector lists supplying
information to VTAM” on page 26.

Optimization using GSS_Continue_Deferred (231)
Allows an LU to optimize performance when using a GSS-API
Authentication Mechanism that returns GSS_Continue_Deferred.

Option sets 230 and 243 are prerequisites.

Send PIP data (241)
Enables the local program allocating a conversation to provide the remote
program with program initialization parameter (PIP) data. VTAM offers
pass-through support for this option by allowing PIP data on the FMH-5.

Receive PIP data (242)
Enables the local program to receive some program initialization
parameters from the remote program allocating a conversation. VTAM
offers pass-through support for this option by allowing PIP data on the
FMH-5.

Accounting (243)
Enables an LU implementation to generate and send both a
logical-unit-of-work (LUW) identifier and a conversation correlator (CC) to
the remote LU.

Data mapping (246)
Enables a program to request mapping of the data by the local and partner
LUs. This is done through the use of mapped conversations.

FMH data (247)
Enables programs to send and receive data records containing FM header
data.

Chapter 3. How VTAM implements LU 6.2 architecture 47

Mapped conversation LU services component (291)
Enables implementation of a mapped conversation LU services component
program, which processes mapped conversation verbs.

Logging of data in a system log (296)
Enables a transaction program to record error information in the system's
error log.

Option sets that VTAM does not offer

VTAM does not offer the following conversation and control operator option sets:

Unsupported conversation option sets

The application program should not attempt to implement these option sets. They
are part of the conversation verb option sets related to either verbs or verb
parameters.

Post on receipt with test for posting (103)
Enables a transaction program to request posting of a conversation and to
test the conversation to determine whether information is available.

Unsupported control operator option sets

The application program should not attempt to implement these option sets. They
are part of the control operator verb option sets related to verb parameters and are
found in the SNA Transaction Programmer's Reference Manual for LU Type 6.2.

ACTIVATE_SESSION verb (502)
Enables a program to activate LU-LU sessions.

DEACTIVATE_SESSION verb (504)
Enables a program to deactivate LU-LU sessions. However, you can still
use a VTAM VARY command, such as VARY TERM, to deactivate a
session. Refer to z/OS Communications Server: SNA Operation for details
on the VARY commands. The application program can use CNOS to
decrease session limits to cause VTAM to deactivate sessions (if necessary)
to adhere to the new limit. The application program can also use the
APPCCMD CONTROL=REJECT macroinstruction to deactivate sessions
and conversations due to protocol violation or for cleanup purposes.

FORCE parameter (604)
Enables a program or an operator to specify that the mode name group
session limit be reset to 0 even if the CNOS exchange between the source
LU and target LU is unsuccessful.

LU-LU session limit (605)
Enables a program or an operator to specify the LU-LU session limit.

LU 6.2 verb cross reference

Table 3 on page 49 indicates the correspondence between the LU 6.2 architected
verbs and VTAM's APPCCMD macroinstruction. VTAM does not implement some
LU 6.2 verbs, and the LU 6.2 architecture does not have some APPCCMD
macroinstructions.

Note: Table 3 on page 49 is used to represent related verbs and macroinstructions.
The correlation does not imply an exact duplication of function.

48 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 3. Verb-to-macro cross-reference

LU 6.2 Verb APPCCMD Macroinstruction

ACTIVATE_SESSION (none)

ALLOCATE (LUNAME=OWN) CONTROL=ALLOC, LUNAME=target, where target is the
same as the source

ALLOCATE (RETURN_CONTROL=IMMEDIATE) CONTROL=ALLOC, QUALIFY=IMMED

ALLOCATE (RETURN_CONTROL=
WHEN_CONVERSATION GROUP_ALLOCATED)

CONTROL=ALLOC, QUALIFY=CONVGRP

ALLOCATE (RETURN_ CONTROL=
WHEN_CONWINNER_ALLOCATED)

CONTROL=ALLOC, QUALIFY=CONWIN

ALLOCATE (RETURN_CONTROL=
WHEN_SESSION_ALLOCATED)

CONTROL=ALLOC, QUALIFY=ALLOCD

ALLOCATE (RETURN_CONTROL=
WHEN_SESSION_FREE)

CONTROL=ALLOC, QUALIFY=WHENFREE

BACKOUT (none)

CHANGE_SESSION_LIMIT CONTROL=OPRCNTL, QUALIFY=CNOS

CONFIRM CONTROL=SEND, QUALIFY=CONFIRM

CONFIRMED CONTROL=SEND, QUALIFY=CONFRMD

DEACTIVATE_CONVERSATION_GROUP CONTROL=REJECT, QUALIFY=CONVGRP

DEACTIVATE_SESSION (none)

DEALLOCATE (TYPE=FLUSH) CONTROL=DEALLOC, QUALIFY=FLUSH

DEALLOCATE (TYPE=SYNC_LEVEL(CONFIRM)) CONTROL=DEALLOC, QUALIFY=CONFIRM

DEALLOCATE (TYPE=ABEND_PROG) CONTROL=DEALLOC|DEALLOCQ,
QUALIFY=ABNDPROG

DEALLOCATE (TYPE=ABEND_SVC) CONTROL=DEALLOC|DEALLOCQ,
QUALIFY=ABNDSERV

DEALLOCATE (TYPE=LOCAL) (none)

DEALLOCATE (TYPE=TIMER) CONTROL=DEALLOC|DEALLOCQ,
QUALIFY=ABNDTIME

DELETE (none)

FLUSH CONTROL=SEND, QUALIFY=FLUSH

GET_ATTRIBUTES (none)

GET_TP_PROPERTIES (none)

GET_TYPE (none)

INITIALIZE_SESSION_LIMIT CONTROL=OPRCNTL, QUALIFY=CNOS

POST_ON_RECEIPT CONTROL=TESTSTAT

PREPARE_FOR_SYNCPT (none)

PREPARE_TO_RECEIVE (LOCKS=LONG,
TYPE=SYNC_LEVEL(CONFIRM))

CONTROL=PREPRCV, QUALIFY=CONFIRM,
LOCKS=LONG

PREPARE_TO_RECEIVE (LOCKS=SHORT,
TYPE=SYNC_LEVEL(CONFIRM))

CONTROL=PREPRCV, QUALIFY=CONFIRM,
LOCKS=SHORT

PREPARE_TO_RECEIVE (TYPE=FLUSH) CONTROL=PREPRCV, QUALIFY=FLUSH

PROCESS_SESSION_LIMIT (none)

PROCESS_SIGNOFF (none)

Chapter 3. How VTAM implements LU 6.2 architecture 49

Table 3. Verb-to-macro cross-reference (continued)

LU 6.2 Verb APPCCMD Macroinstruction

RECEIVE_AND_WAIT (FILL=BUFFER) CONTROL=RECEIVE, QUALIFY=SPEC, FILL=BUFF

RECEIVE_AND_WAIT (FILL=LL) CONTROL=RECEIVE, QUALIFY=SPEC, FILL=LL

RECEIVE_EXPEDITED_DATA CONTROL=RCVEXPD, QUALIFY=ANY|IANY

RECEIVE_EXPEDITED_DATA CONTROL=RCVEXPD, QUALIFY=SPEC|ISPEC

RECEIVE_IMMEDIATE (FILL=BUFFER) CONTROL=RECEIVE, QUALIFY=ISPEC, FILL=BUFF

RECEIVE_IMMEDIATE (FILL=LL) CONTROL=RECEIVE, QUALIFY=ISPEC, FILL=LL

RECONNECT (none)

RESET_SESSION_LIMIT CONTROL=OPRCNTL, QUALIFY=CNOS

REQUEST_TO_SEND CONTROL=SEND, QUALIFY=RQSEND

SEND_DATA CONTROL=SEND, QUALIFY=DATA

SEND_DATA and CONFIRM CONTROL=SEND, QUALIFY=DATACON

SEND_DATA and DEALLOCATE (TYPE=CONFIRM) CONTROL=DEALLOC, QUALIFY=DATACON

SEND_DATA and DEALLOCATE (TYPE=FLUSH) CONTROL=DEALLOC, QUALIFY=DATAFLU

SEND_DATA and FLUSH CONTROL=SEND, QUALIFY=DATAFLU

SEND_DATA and PREPARE_TO RECEIVE
(TYPE=CONFIRM, LOCKS=LONG)

CONTROL=PREPRCV, QUALIFY=DATACON,
LOCKS=LONG

SEND_DATA and PREPARE_TO RECEIVE
(TYPE=CONFIRM, LOCKS=SHORT)

CONTROL=PREPRCV, QUALIFY=DATACON,
LOCKS=SHORT

SEND_DATA and PREPARE_TO RECEIVE
(TYPE=FLUSH)

CONTROL=PREPRCV, QUALIFY=DATAFLU

SEND_ERROR (TYPE=PROG) CONTROL=SEND, QUALIFY=ERROR,
TYPE=PROGRAM

SEND_ERROR (TYPE=SVC) CONTROL=SEND, QUALIFY=ERROR, TYPE=SERVICE

SEND_EXPEDITED_DATA CONTROL=SENDEXPD

SET_SYNCPT_OPTIONS (none)

SIGNOFF (none)

SYNCPT (none)

TEST (none)

TEST_POSTED (none)

TEST_REQUEST_TO_SEND_RECEIVED CONTROL=RCVEXPD,
QUALIFY=ANY|IANY|ISPEC|SPEC

WAIT (none)

(none) CONTROL=CHECK

(none) CONTROL=DEALLOC|DEALLOCQ,
QUALIFY=ABNDUSER

(none) CONTROL=OPRCNTL, QUALIFY=ACTSESS

(none) CONTROL=OPRCNTL, QUALIFY=DACTSESS

(no direct correlation between verb and macroinstruction) CONTROL=OPRCNTL, QUALIFY=DEFINE

(no direct correlation between verb and macroinstruction) CONTROL=OPRCNTL, QUALIFY=DISPLAY

(none) CONTROL=OPRCNTL, QUALIFY=RESTORE

(none) CONTROL=PREALLOC

(none) CONTROL=RCVFMH5

50 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 3. Verb-to-macro cross-reference (continued)

LU 6.2 Verb APPCCMD Macroinstruction

(none) CONTROL=RECEIVE, QUALIFY=ANY

(none) CONTROL=RECEIVE, QUALIFY=IANY

(none) CONTROL=REJECT, QUALIFY=CONV

(none) CONTROL=REJECT, QUALIFY=SESSION

(none) CONTROL=RESETRCV

(none) CONTROL=SEND, QUALIFY=ERROR, TYPE=USER

(none) CONTROL=SENDFMH5

(none) CONTROL=SENDRCV

(none) CONTROL=SETSESS, QUALIFY=RESUME

(none) CONTROL=SETSESS, QUALIFY=SUSPEND

(none) CONTROL=SETSESS, QUALIFY=SYNCBEG

(none) CONTROL=SETSESS, QUALIFY=SYNCEND

VTAM LU-mode table

The LU 6.2 architecture describes system definition data structures that represent
the state and configuration of the LU's resources. These data structures include
information about the partner LUs with which an LU can communicate and the
mode names characterizing possible sessions with particular LUs.

Data structures

The architectural data structures and VTAM's representation of those structures are
provided in this section.

Architectural base

The data structures defined by the architecture are:
v The PARTNER_LU structure describes a partner LU. This information includes

the partner LU's names, local LU name, network-qualified LU name, and
uninterpreted LU name. It also includes the set of the LU's optional capabilities
such as parallel sessions. The PARTNER_LU structure also contains a list of
mode descriptions. The list of mode descriptions has one entry for each mode
name that is defined for the particular partner LU name.

v The MODE structure describes a logon mode that can be used to establish
sessions with a partner LU. This structure contains the session parameters that
characterize this mode, such as maximum RU size. It also includes the set of
optional functions that are supported by the partner LU on a mode basis.
The MODE structure contains several session limit fields. These fields limit the
total number of sessions and the number of contention-winner and
contention-loser sessions that this LU can have with the partner LU and mode
name represented by the MODE structure.

Chapter 3. How VTAM implements LU 6.2 architecture 51

VTAM's representation of data structures

VTAM's representation of the data structures is the LU-mode table. One LU-mode
table exists for each opened ACB of an application program capable of using the
VTAM LU 6.2 interface. It contains two kinds of information:
v Defined

Information provided by system definition (on the APPL statement) or the
application program (on APPCCMD CONTROL=OPRCNTL,
QUALIFY=DEFINE) to define values used when negotiating a CNOS reply.

v Dynamically accumulated
Information dynamically accumulated by VTAM to record data pertinent to the
partner LU, or mode, or both. This information is used by VTAM when
controlling the assignment of conversations to sessions and when controlling the
activation and deactivation of sessions. Some of it can be displayed to the
application program with APPCCMD CONTROL=OPRCNTL,
QUALIFY=DISPLAY.

Blank mode names

VTAM's support for LU 6.2 does not allow a blank name to be specified as a value
on the LOGMODE keyword. For example, if the application issues an APPCCMD
CONTROL=OPRCNTL, QUALIFY=CNOS and the LOGMODE value is blanks, the
macroinstruction will fail with an RCPRI,RCSEC of X'002C',X'0001'
PARAMETER_ERROR_INVALID_MODE.

After a successful CNOS negotiation, the application might attempt to allocate a
conversation with the partner using the name and mode just negotiated. If this
occurs, VTAM will internally issue the equivalent on the SIMLOGON
macroinstruction to start the session for the conversation to use. If the logmode
name specified on the APPCCMD CONTROL=ALLOC, QUALIFY=ALLOCD and
subsequently used on the SIMLOGON is not defined1 with the VTAM that owns
the secondary logical unit (SLU), the SIMLOGON fails with a SNA sense code of
X'08210002'. However, when VTAM receives this sense code, it reissues the internal
version of the SIMLOGON with a logmode of blanks. When this macroinstruction
completes with the default logmode values in the session initiation information
(for example, the BIND image in the CINIT) then VTAM's support for LU 6.2 alters
these values as specified in Table 26 on page 150.

To summarize, after a successful CNOS, VTAM successfully activates the session
even if the VTAM that owns the SLU does not contain a definition for the logmode
name specified.

Table entries

An LU-mode table has two kinds of entries:
v LU entries

Each LU entry holds information about a partner LU. The entries for all partner
LUs for a specific LU are associated with each other. LU entries, once placed in
the table, cannot be changed by APPCCMD QUALIFY=OPRCNTL,
QUALIFY=DEFINE, or CNOS.

1. Defined in this sense means that either the logon mode name is defined by the MODEENT macroinstruction of a logmode table
or that other system parameters from the IBM-supplied table, ISTINCLM, have overridden the blank mode name. See “Logon
mode table” on page 112 for more information.

52 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

v Mode entries
Each mode entry holds information about one mode associated with one partner
LU. All the mode entries for the same partner LU are associated with each other,
and the collection of mode entries is associated with the LU entry.

Figure 11 shows a conceptual view of the LU-mode table entry. Table 4 and Table 5
show how the session parameters are used for session activation.

The local LU has the possibility of establishing sessions with partner LU1 or
partner LU2.

The session establishment with partner LU1 can use the session parameters
specified in the logon mode table for Mode A, Mode B, or Mode C.

Table 4. Session establishment with partner LU1

Mode Group Pool Size Results (from the local LU's point of view)

A 4 One session is guaranteed to be a contention
winner; two sessions are guaranteed to be
contention losers. The unspecified session
can be activated as a contention winner by
either LU.

B 3 Two sessions are guaranteed to be
contention winners; one session is
guaranteed to be a contention loser.

C 2 One session is guaranteed to be a contention
winner. The unspecified session can be
activated as a contention winner by either
LU.

The session establishment with partner LU2 can use the session parameters
specified in the logon mode table for Mode A or Mode B.

Table 5. Session establishment with partner LU2

Mode Group Pool Size Results (from the local LU's point of view)

A 2 One session is guaranteed to be a contention
winner; one session is guaranteed to be a
contention loser.

Partner LU1 Partner LU2

Mode A
(4,1,2)

Mode B
(3,2,1)

Mode C
(2,1,0)

Local LU

Mode A
(2,1,1)

Mode B
(3,1,2)

Figure 11. Conceptual view of LU-mode table structure

Chapter 3. How VTAM implements LU 6.2 architecture 53

Table 5. Session establishment with partner LU2 (continued)

Mode Group Pool Size Results (from the local LU's point of view)

B 3 One session is guaranteed to be a contention
winner; two sessions are guaranteed to be
contention losers.

Mode A can be defined in both partner LUs and have the same session limits or
different session limits. Also, the mode names defined can be different for the
partner LUs.

Initializing the LU-mode table

LU 6.2 architecture specifies that the partner LU and mode name pairs be explicitly
defined during system definition. By dynamically defining LU and mode entries
for the application program, VTAM removes the burden of additional system
definition and coordination that is required by the architectural implementation of
the LU-mode table. See “VTAM's LU-mode table” on page 63 for more discussion
about updating information in the LU-mode table.

When an LU-mode pair is first added to the LU-mode table, VTAM associates it
with the following LU 6.2-specific operands that are supplied on the application
program's APPL definition statement:
v ATNLOSS
v AUTOSES
v DDRAINL
v DMINWNL
v DMINWNR
v DRESPL
v DSESLIM
v LIMQSINT
v LMDENT
v OPERCNOS
v SECACPT
v SYNCLVL
v VERIFY

Refer to z/OS Communications Server: SNA Resource Definition Reference for a
description of these operands.

After VTAM places the LU-mode pair in the table, the values determined by the
APPL definition statement can be changed for only the following operands:
v AUTOSES
v DDRAINL
v DMINWNL
v DMINWNR
v DRESPL
v DSESLIM

The MODIFY DEFINE operator command and the APPCCMD
CONTROL=OPRCNTL, QUALIFY=DEFINE macroinstruction explain how to

54 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

change these values. Refer to z/OS Communications Server: SNA Operation for a
description of the MODIFY DEFINE command.

Chapter 3. How VTAM implements LU 6.2 architecture 55

56 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Chapter 4. Designing programs to use LU 6.2 services

About this chapter

The organization of a VTAM application program affects how much storage it uses,
how well it performs, how easy it is to write, and how easy it is to migrate to a
later release of VTAM, if required.

z/OS Communications Server: SNA Programming contains VTAM programming
considerations for organizing an application program. Refer to that book for the
following issues that affect LU 6.2:
v Processing synchronously versus asynchronously
v Using ECBs versus RPL exit routines
v Interfacing with the operating system
v Managing control block storage
v Easing migration to later VTAM releases

This chapter covers the following additional considerations that are unique to LU
6.2:
v “Request of LU 6.2 services”
v “Startup processing for LU 6.2 application programs” on page 59
v “LU 6.2 transaction processing” on page 66
v “Implementing LU 6.2 option sets” on page 77

Note: The first three items in the list of unique LU 6.2 considerations must be
addressed. The application program may also implement optional LU 6.2
functions. These depend on the specific application in which the LU 6.2
architecture is being used.

Request of LU 6.2 services

To request LU 6.2 services, the application program uses the RPL-based APPCCMD
macroinstruction (in conjunction with at least the VTAM OPEN, CLOSE, and
SETLOGON macroinstructions). The RPL extension provides feedback and return
code information to the application program.

RPL extension user field

The USERFLD field of the RPL extension enables the application program to
uniquely identify an RPL. This field could contain the address of a data structure
that represents a conversation. With the RPL extension, the application program
can handle a series of input and output actions for a particular conversation. For
example, the application program might associate a conversation request with the
address of a user-defined data structure that contains information about the
conversation that the application program needs.

© Copyright IBM Corp. 2000, 2013 57

The USERFLD field contains space for 4 bytes of information. VTAM saves the
information that is placed in the field at the time a conversation is established. This
information is available to the application program in the RPL extension specified
for a particular macroinstruction.

Evaluating feedback information

Feedback information is found in the registers and in the return codes. For more
information, see “General sequence of error checking” on page 313.

Registers

The starting points for checking feedback from an APPCCMD macroinstruction are
registers 15 and 0. Register 15 contains the general return code from VTAM. Only a
few values are defined for the general return code, and it gives a quick indication
of whether the macroinstruction was successful. Register 0 contains either a
conditional completion return code or recovery action return code. In the case of
errors, it provides more detail on the cause of the error.

If both register 15 and register 0 are 0, the APPCCMD has completed or been
accepted without error. If register 15 is 0 but register 0 contains X'000000B', the
request completed conditionally.

Return codes

APPCCMD macroinstructions can pass back any of a large number of return codes
in the RPL extension. Each individual macroinstruction description in the z/OS
Communications Server: SNA Programmer's LU 6.2 Reference includes a list of
applicable return codes. In addition to describing error situations, many of the
return codes also indicate whether the error is likely to recur. For example, an
RCPRI, RCSEC return code combination of X'0004', X'0001' on an ALLOC
macroinstruction indicates that the macroinstruction failed because of a temporary
condition. The application program can attempt to allocate the conversation again.
Return codes also indicate whether data purging or truncation occurred in an error
situation and whether attempts to send or receive data should be repeated.

The extent to which the application program screens return codes depends upon
its needs and the extent of the error handling it must provide. Some of the return
codes indicate temporary conditions. Therefore, you should analyze the possible
return codes to determine which ones the application program should handle.

The mechanism for handling return codes depends on the application program.
The application program can include inline code for dealing with selected return
codes, or it can include error-handling subroutines. The primary return codes
passed back in the RPL extension field RCPRI are multiples of four and can be
used to index into a branch table.

VTAM also uses feedback from an APPCCMD macroinstruction to pass other
important information to the program. VTAM uses fields in the RPL extension to
indicate to the application program that a conversation request has been received
from a partner LU and that a request-to-send has been received from a partner LU.
When an error is reported, a field in the RPL extension indicates whether error log
data follows. The application program should check these fields and respond
appropriately.

58 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Startup processing for LU 6.2 application programs

Some of the functions associated with an LU 6.2 application program are used only
during startup. They are:
v Opening an ACB
v Issuing a SETLOGON instruction
v Restoring modes and any associated persistent LU-LU sessions
v Negotiating session limits

Opening an ACB

An LU 6.2 application program must issue an OPEN macroinstruction, which
points to an ACB, to formally present itself to VTAM. LU 6.2 application programs
must also be defined to VTAM using APPC=YES on the APPL definition statement.
The OPEN ACB also plays a role in the recovery of a persistent LU-LU session.

LU 6.2 applications can inform VTAM about application capabilities during OPEN
ACB by building an application-ACB vector list. The address of the
application-ACB vector list is indicated on the PARMS=APPLVCTR parameter of
the ACB macroinstruction. For more information about the application-ACB vector
list, see “Vector lists used during OPEN processing” on page 26.

Refer to z/OS Communications Server: SNA Programming for detailed information
about opening an ACB.

Issuing a SETLOGON macroinstruction

An LU 6.2 program must issue the SETLOGON OPTCD=START macroinstruction
before VTAM can activate any sessions managed by VTAM. Session activation can
be initiated, but not completed, until the SETLOGON is issued. Therefore, session
activations that are initiated as a result of APPCCMD CONTROL=CNOS,
CONTROL=ALLOC, or CONTROL=PREALLOC macroinstructions are queued
until the SETLOGON is issued. The APPCCMD does not complete while the
activation is queued.

Table 6 summarizes how SETLOGON OPTCD=START affects session initiation.

Table 6. Impact of SETLOGON on session establishment

Application's Capability
Before SETLOGON
OPTCD=START

After SETLOGON
OPTCD=START

For the establishment of
sessions initiated by VTAM
to satisfy conversation
requests.

All CINITs are queued. CINITs either:

v Schedule the LOGON exit.

v If a LOGON exit has not
been provided, then they
are accepted by VTAM for
the application program if
the application has
specified APPC=YES and
this is an LU 6.2 session.

The SETLOGON macroinstruction is also used to control other characteristics of an
application program. Two types of the SETLOGON macroinstruction,
OPTCD=PERSIST and OPTCD=NPERSIST, permit the persistent LU-LU session

Chapter 4. Designing programs to use LU 6.2 services 59

function to be dynamically enabled and disabled. The PERSIST option enables
VTAM to retain modes and any associated sessions when an application program
fails. The NPERSIST option disables that capability. In addition, a timer can be
specified with the PERSIST option to control the maximum amount of time that
can elapse between a failure and a recovery.

The SETLOGON macroinstruction with OPTCD=GNAMEADD and
OPTCD=GNAMEDEL may be used in a sysplex environment to allow an
application to support a generic resource name. For more information about the
generic resources function, refer to z/OS Communications Server: SNA Network
Implementation Guide.

Refer to z/OS Communications Server: SNA Programming for detailed information
on the SETLOGON macroinstruction.

Restoring modes and any associated persistent LU-LU
sessions

Persistent LU-LU session support can be used by a VTAM application program to
facilitate recovery after a failure, or to manage a planned takeover. There are two
types of persistent session support.

Single-Node persistent session support is used to help recover sessions that are
disrupted by an application failure. When a VTAM application program fails after
it has enabled persistence, VTAM retains the LU-LU sessions. In order for sessions
to be retained as single-node persistent sessions, VTAM and the operating system
must remain active.

Multinode persistent session support is used to help recover sessions that are
disrupted by a node failure, such as a failure in the hardware, operating system or
VTAM. Multinode persistent session support is available in a sysplex environment.
Information used to reestablish the LU-LU session environment with their
associated modes is maintained in the coupling facility.

After the recovery of the application program, these retained sessions and modes
must be restored to permit continued use. (Refer to the information about using
persistent LU-LU session support in z/OS Communications Server: SNA
Programming for more information about how the two types of session persistence
can be used to recover from unplanned or planned outages.)

Establishing persistence

An application program indicates that it is capable of persistence by specifying
PARMS=(PERSIST=YES) on the ACB macroinstruction. In addition, if the
application is to be capable of Multinode persistent sessions as well as single-node
persistence, PERSIST=MULTI must be specified on the APPL definition statement
for the application program and it must be operating in a sysplex environment.
The application program enables persistence by specifying OPTCD=PERSIST on
the SETLOGON macroinstruction. At any time, the application program can
disable persistence by issuing SETLOGON OPTCD=NPERSIST. (Refer to z/OS
Communications Server: SNA Programming for more information.)

Note: An application program must be capable of persistence before it can enable
persistence. Throughout this book, the term “enabled” (relative to persistence)
implies that the application program is also capable of persistence.

60 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Managing the recovery

Persistent LU-LU session support can be used to manage the recovery or the
planned takeover of an application program that has enabled persistence.

When a failure occurs, the application program has several ways to manage the
recovery:
v Another instance of the failing application program can restart, recover the

connection to the active VTAM, and restore sessions.
v An alternate application program that has been started already can recover the

connection to the active VTAM and restore sessions.
v Using multinode persistence, another instance of the application program can

restart on the same node or a different node in the sysplex, connect to the
VTAM on that node, and restore sessions.

Opening the ACB during recovery

During a failure, VTAM closes the ACB on behalf of the application program but
retains the LU-LU sessions and modes. The recovering application program opens
its ACB specifying PARMS=(PERSIST=YES), and VTAM reconnects the failed
application program.

When a single-node persistent session planned takeover occurs, the takeover
application program connects to VTAM and restores sessions, even though the
original application program has not failed. The takeover application program
opens its ACB specifying PARMS=(PERSIST=YES). VTAM schedules the TPEND
exit of the original application program to notify that application program to issue
a CLOSE and then closes the original application program. The original application
program issues a CLOSE to handle cleanup. If the original application program
does not have a TPEND exit, VTAM closes it without any notification. For a
multinode persistent session planned takeover, the application must close its ACB
before it can be reopened on the same node or a different node in the sysplex.

The failure of an application program starts the safety timer, if one was specified
on the SETLOGON OPTCD=PERSIST request. If the timer expires before a
recovering application program issues an OPEN ACB, VTAM terminates the
retained sessions as if persistence had not been enabled and releases the held
resources. For more details, refer to z/OS Communications Server: SNA
Programming.

States of recovery

After a failure, a VTAM application program that has enabled persistent LU-LU
session support is in one of three recovery states:

Recovery Pending
The application program fails, and the recovering application program has
not opened its ACB.

Recovery-in-Progress
The recovering application program has opened its ACB, and sessions are
pending recovery. The application program remains in this state until the
last session is either restored or terminated.

Recovery Complete
The application program has restored all modes.

Chapter 4. Designing programs to use LU 6.2 services 61

Note: VTAM retains a mode even if it has no associated sessions at the time of the
failure. The mode must be restored before it can be used.

Activity during a failure

During a failure, VTAM places any existing modes and active LU-LU sessions in a
recovery pending state and deallocates all active conversations. If VTAM cannot
communicate the deallocation to the partner LU, the deallocation is delayed until
the conversation state permits VTAM to send the deallocation.

Any data associated with a deallocated conversation is discarded. Newly arriving
FMH-5s and any associated data received during the outage are queued for
delivery following recovery.

Pending and queued sessions are terminated. If an application program has
enabled persistence and fails (or is taken over) during a critical exchange of
information on a session, such as a synchronization exchange, VTAM unbinds that
session. The unbind permits the LUs to make consistent decisions and ensures
continued synchronization between the two LUs.

Restoring resources

After the recovering application opens its ACB, the application program can use
the APPCCMD CONTROL=OPRCNTL, QUALIFY=RESTORE macroinstruction for
any modes that need to be restored. The SETLOGON START macroinstruction
must be issued before the RESTORE macroinstruction. When all modes are
restored, the recovery is complete because VTAM restores all sessions that are
pending recovery for a given LU and mode as it restores the mode.

Restoring a mode

A recovering (or takeover) application program can manage the restore process by
specifying an LU and mode, an LU only, or neither an LU nor a mode. If neither
an LU nor a mode is specified, VTAM restores each LU and its related modes.

To ensure that all LUs and modes are restored, at the end of recovery processing,
the application program can issue the RESTORE macroinstruction without
specifying an LU and mode. If X'0000' RCPRI and X'0006' RCSEC are received, all
LUs and modes have been processed. (The meaning associated with this
RCPRI,RCSEC combination is that the RESTORE was unnecessary.)

During the restore process, VTAM, if requested, provides information that
describes the LUs, modes, and sessions that are being restored. The application
program specifies the level of information that is to be returned in the RESTORE
control block by using the LIST keyword in the APPCCMD
CONTROL=OPRCNTL, QUALIFY=RESTORE macroinstruction. For more details
on the control block, see “Retrieving information for a mode and sessions to be
restored” on page 172.

In addition to using the APPCCMD CONTROL=OPRCNTL, QUALIFY=RESTORE
macroinstruction, you can take other actions for modes that are pending recovery.
v The following APPCCMDs can be issued:

– APPCCMD CONTROL=OPRCNTL, QUALIFY=DISPLAY
– APPCCMD CONTROL=REJECT, QUALIFY=SESSION
– APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS for an LU that was not

a partner at the time of the failure

62 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

– APPCCMD CONTROL=RECEIVE, QUALIFY=ANY, even if modes are
pending recovery, because this macroinstruction is not specific to a mode

v New modes can be added after the SNASVCMG mode for an LU has been
restored, but any mode that exists when the failure (or takeover) occurs cannot
be used until that mode has been restored.

v When the application program's LOGON or SCIP exit is driven, the APPCCMD
CONTROL=OPRCNTL, QUALIFY=ACTSESS and APPCCMD
CONTROL=OPRCNTL, QUALIFY=DACTSESS macroinstructions can be issued.

Negotiating session limits

The factors in the negotiation of session limits are discussed in this section. For
details about the negotiation, see Chapter 6, “Managing sessions,” on page 99.

VTAM's LU-mode table

VTAM maintains the LU-mode table to record partner-LU names and mode-name
groups associated with each LU. (See “Mode name groups” on page 9 and “VTAM
LU-mode table” on page 51, respectively, for more information on mode name
groups and LU-mode pairs.) Application programs can use APPCCMD
CONTROL=OPRCNTL, QUALIFY=DISPLAY to display values in the table and
APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE to change negotiation
values in the table. VTAM can determine when entries are added and deleted from
the table, but the application program also can control entries and deletions with
the DEFINE macroinstruction. (See “Adding to the LU-mode table” on page 113 for
more discussion about updating information in the LU-mode table.)

Defining logon mode names

Application programs define logon mode names to establish characteristics for
sessions with various partner LUs. The existing VTAM logon mode table holds
logon mode name definitions. The application program refers to these definitions
by using the LOGMODE operand on the APPCCMD macroinstruction. VTAM
constructs the session parameters for a session, using the information in the logon
mode table. Session parameters are carried in the BIND image used to set up a
session.

IBM supplies a definition for the SNASVCMG mode name, which can be used as a
model for defining other logon mode names. Refer to z/OS Communications
Server: SNA Resource Definition Reference for information on creating entries in
the logon mode table. IBM also supplies a definition for the CPSVCMG mode
name, which is reserved.

Note: Do not confuse the logon mode table with the LU-mode table maintained by
VTAM for the application program. The logon mode table defines a set of session
characteristics for each logon mode name. The LU-mode table associates logon
mode name groups with partner LUs.

Keep a SNASVCMG mode name definition in the logon mode table. Even if
parallel sessions are not used, VTAM can still attempt to establish a conversation
on this logon mode when establishing the initial session with a single-session
partner, if the partner is not specified as single-session capable.

Chapter 4. Designing programs to use LU 6.2 services 63

Single-session partners

Although most application programs that use LU 6.2 protocols are capable of
parallel sessions, some are not. (Application can refer to code that implements LU
6.2 in devices in the network.) A number of limitations apply to single-session
partners.

Session limits designating local and remote contention-winner sessions cannot
exceed 1 for any mode name group for a single-session partner. Only one mode
name group at any given time can have nonzero session limits because only one
session can be active at a time. Before it issues an ALLOC or PREALLOC using a
second mode name, the application program must issue a CNOS request setting
the session limits for the first mode name to 0, which causes the session to be
deactivated when the conversation ends. It then issues a CNOS request for the
second mode name.

When an application program issues a CNOS request, session limits are negotiated
if the partner is capable of parallel sessions. No negotiation takes place for
single-session partners. Instead, all processing is done by VTAM in the local host
system. For single-session devices, the session limits are always 0 or 1.

If the application program knows that the partner LU is a single-session LU, it can
specify this information in the CNOS request. This prevents the initiation of a
SNASVCMG session for initial CNOS requests involving the partner LU. A session
partner that does not support parallel sessions can initiate an LU 6.2 session as an
SLU. The mode entry used must specify that parallel sessions and CNOS are not
supported. Reference the byte 'BINFLG2' at hex offset 17 in the BIND DSECT.
(Refer to z/OS Communications Server: SNA Programmer's LU 6.2 Reference for
this byte.)

Note: When VTAM receives a BIND request for a single-session-capable LU and
no LU-mode entry exists for the LU, VTAM creates an LU-mode entry with session
limits of (1,0,0) for the LU. Because of these limits, the application program
receiving the BIND cannot successfully issue an APPCCMD CONTROL=ALLOC,
QUALIFY=CONWIN macroinstruction once the session is available.

SNASVCMG mode name group

As with single-session partners, special considerations apply to the SNASVCMG
mode name group used by VTAM for control functions. The application program
should not use SNASVCMG sessions for conversations. SNASVCMG should be
specified by the application program only for control operator functions or other
transaction programs required to use this mode name. The only valid session limits
for SNASVCMG are two sessions (with each partner assured one
contention-winner session) or limits of 0. SNASVCMG cannot be specified as a
mode name on a CNOS request for a single-session partner or on an APPCCMD
CONTROL=OPRCNTL, QUALIFY=DEFINE macroinstruction.

Initializing session limits:

An application program can attempt to initialize session limits with APPCCMD
CONTROL=OPRCNTL, QUALIFY=CNOS before VTAM has determined the
partner LU's session capability. If the partner LU is single-session capable, the
session request sent by VTAM returns that information. (For information on how a
partner LU can return this indication, see “Session limits for single-session-capable
partners” on page 143.) VTAM determines the session-capability of the partner

64 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

from the response, and the CNOS request completes with an RCPRI, RCSEC
combination of X'0000', X'0004', indicating that the partner LU is single-session
capable. The session limits are, however, initialized. If session limits greater than 1
are specified on the macroinstruction or if no session limits are specified, the
default values of (1,0,0) are used.

An installation should always include the IBM-supplied entry for the SNASVCMG
mode in its logon mode tables. Even if no parallel sessions are planned for an
application program, VTAM can still use this mode as part of its processing for
session limits with partner LUs whose session capability is unknown.

Note: The SNASVCMG logon mode is included in the logon mode table provided
by IBM with the VTAM system.

As with CNOS processing for a single-session partner, no CNOS negotiation is
done for the SNASVCMG mode. The local LU handles all CNOS processing. The
SNASVCMG session limits cannot be reset to 0 until all other mode name groups
with the partner LU have session limits of 0. VTAM deactivates the SNASVCMG
session only after all other sessions to the partner LU have been deactivated. No
draining of pending conversation allocation requests is to take place on any of
these SNASVCMG sessions for the local LU.

Impact on conversation initiation:

The requests issued to start a conversation differ depending on whether an
application program requires explicit control of the SNASVCMG session. The
application program can control the activation and deactivation of the SNASVCMG
session through the APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS request,
or it can let VTAM automatically activate the SNASVCMG session. VTAM activates
the SNASVCMG session if all of the following conditions are met.
v The application program issues APPCCMD CONTROL=OPRCNTL,

QUALIFY=CNOS for a mode name other than SNASVCMG.
v The SNASVCMG session is not active.
v The application program has not specified on the CNOS request that the partner

LU is single-session capable.

When the application program controls the activation of the SNASVCMG session,
the first APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS (where
LOGMODE=SNASVCMG) for a partner LU indicates that the partner LU should
support parallel sessions. VTAM does not negotiate the activation with the partner
LU. If a subsequent BIND is received from the partner LU indicating single-session
capability, VTAM rejects the BIND.

Application programs cannot issue APPCCMD CONTROL=OPRCNTL,
QUALIFY=CNOS for the SNASVCMG mode name if the partner LU is not
parallel-session capable. Partner-LU parallel-session capability cannot be changed
once it is established by VTAM.

Session initiation and termination

Application programs have little explicit control over whether sessions are
initiated. They use CNOS requests to control session limits. These requests cause
VTAM to activate or deactivate sessions.

Application programs can explicitly accept or reject session establishment requests
in the LOGON and SCIP exit routines by using CONTROL=OPRCNTL,

Chapter 4. Designing programs to use LU 6.2 services 65

QUALIFY=ACTSESS or CONTROL=OPRCNTL, QUALIFY=DACTSESS. These exits
must be present in the application program for this capability to exist. The
LOGON and SCIP exits also enable the application program to change session
parameters by specifying an alternate BIND or BIND response.

A session partner that does not support parallel sessions can initiate a 6.2 session
as an SLU. The mode entry used must specify that parallel sessions and CNOS are
not supported. Reference the byte 'BINFLG2' at hex offset 17 in the BIND DSECT.
(Refer to z/OS Communications Server: SNA Programmer's LU 6.2 Reference for
this byte.)

After VTAM establishes the session, the application program can request rejection
termination of the session by issuing the APPCCMD CONTROL=REJECT,
QUALIFY=SESSION macroinstruction. See Chapter 6, “Managing sessions,” on
page 99 for more details on controlling session limits.

Application termination

There is a field in the RPL extension called RPL6LAST. This field is completed by
APPC/VTAM when it schedules the ATTN(LOSS) exit. RPL6LAST is a 2–bit field
that indicates whether the session being terminated is:
v Not the last session to this LU for this particular modename. (Other sessions

remain active for this modename.)
v The last session to this LU for this particular modename.
v The last session to this LU for all non-control mode modenames. (SNASVCMG

and CPSVCMG are control modes).
v The last session to this LU for all modenames.

The safest way to terminate an application is to perform the following tasks:
1. Issue an APPCCMD (DEFINE) to set session limits to 0 for all modes. This

stops a CNOS from the partner from starting sessions successfully.
2. Issue an APPCCMD (CNOS, ALL) to set session limits to 0 for all non-control

mode modenames.
3. When RPL6LAST indicates all non-control mode sessions are ended, issue an

APPCCMD (CNOS) to set SNASVCMG session limits to 0.
4. Repeat these steps for all partner LUs.
5. When RPL6LAST indicates all sessions are ended for all LUs, CLOSE the ACB.

LU 6.2 transaction processing

Transaction processing for LU 6.2 is achieved by means of conversations on
established sessions. Transaction processing for LU 6.2 includes the following
steps:.
v Allocating a conversation and receiving the allocate
v Sending and receiving data
v Deallocating the conversation

Understanding conversations

A conversation is the communication mechanism between two transaction
programs. The conversation may appear different to each transaction program.
While the appearance of the conversation differs, the views of each conversation

66 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

partner are complementary. The appearance of a conversation is described by the
state of the conversation. Whenever the term conversation state is used in this book,
it refers to the local view of the conversation. Just as the term "half-session" is used
to describe the local state of the session, "conversation state" is used to describe the
local view of the conversation. See Appendix A, “Conversation states,” on page 335
for more information.

Synchronous nature of conversations

Conversations are single-thread processes. Most APPCCMD macroinstructions
cannot be issued for a conversation until the previous one completes. This is
independent of whether the APPCCMD macroinstruction is issued synchronously
or asynchronously.

Each conversation is considered to be one thread in a multithread program.

Maintaining conversation states

LU 6.2 architecture defines the status of a conversation at any given time in terms
of a finite state machine. The states define conditions such as whether the
application program is sending or receiving data, or ending a conversation. VTAM
maintains a finite state machine internally to track changes in a conversation's
status. As the name implies, only a limited number of states are possible. While in
a given state, application programs are restricted to a subset of APPCCMD
macroinstructions. VTAM always tracks the state of the conversation and prevents
application programs from issuing macroinstructions not allowed in a specific
state.

The state of a conversation is somewhat predictable. For half-duplex conversations,
the states for each side of the conversation are complementary. When one side of
the conversation is in SEND state, the other side of the conversation is in RECEIVE
state. The SEND state implies that the LU on the side of the conversation in this
state can send data. The RECEIVE state implies that the LU on the side of the
conversation in RECEIVE state can receive data. When the application program on
the SEND side of a half-duplex conversation issues a RECEIVE macroinstruction,
the application program's side of the conversation enters RECEIVE state and the
other side of the conversation enters SEND state.

For full-duplex conversations, both sides of the conversation maintain a
SEND/RECEIVE state, because both conversation partners can send and receive
information concurrently. When an APPCCMD
CONTROL=DEALLOC|DEALLOCQ macroinstruction is issued, the conversation
initiating the deallocation enters RECEIVE_ONLY state. The conversation partner's
side of the conversation is placed in SEND_ONLY state as soon as the deallocation
request is received.

Application programs do not have to implement their own finite state machine to
track a conversation. Many of the states are of interest only to VTAM. When
designing the application program, however, be aware of which state the
conversation is in and which APPCCMD macroinstructions the application
program can issue from that conversation state. (For example, normal deallocation
of a half-duplex conversation could not be initiated by the application program
while the conversation is in RECEIVE state.) You can code the application program
to include flags to prevent the application program from attempting to issue
invalid macroinstructions, or you can implement your own version of a finite state
machine.

Chapter 4. Designing programs to use LU 6.2 services 67

Information about the current conversation state can be obtained several ways.
VTAM returns the current conversation state in the RPL6CCST (CONSTATE) field
of the ISTRPL6X on many of the APPCCMD macroinstructions. The APPCCMD
CONTROL=TESTSTAT, QUALIFY=SPEC|ISPEC macroinstruction can also return
conversation state information. The following sections provide further information
about conversation states.
v For a list of macroinstructions that set the CONSTATE field, see “Keywords and

returned parameters” on page 87.
v Refer to z/OS Communications Server: SNA Programmer's LU 6.2 Reference for

the ISTRPL6X DSECT.
v See “Querying the current status of a conversation” for more information on

TESTSTAT.
v For more information on conversation states and the APPCCMD

macroinstructions that cause changes in these states, see Appendix A,
“Conversation states,” on page 335.

v The z/OS Communications Server: SNA Programmer's LU 6.2 Reference lists
state changes as a result of nonzero return codes on APPCCMD
macroinstructions.

Querying the current status of a conversation

The APPCCMD CONTROL=TESTSTAT macroinstruction provides a variety of
status information about a conversation to the application. The application is able
to query the information on a specific conversation, as well as for all conversations
for a particular ACB.

Types of information returned by this macroinstruction include the following
items:
v CONVID of the conversation being reported.
v Amount of the normal data waiting to be received, including the LL field and

the LL remainder.
v Amount of expedited data waiting to be received.
v Whether a REQUEST_TO_SEND indication is waiting to be received.
v Whether the conversation is in CA mode for receiving normal information.
v Whether the conversation is in CA mode for receiving expedited information.
v State of the conversation reported. (The conversation state is reported only when

QUALIFY=SPEC|ISPEC is specified.)

The APPCCMD CONTROL=TESTSTAT, QUALIFY=ALL|IALL macroinstructions
return status information from any active conversation for the specified ACB. The
APPCCMD CONTROL=TESTSTAT, QUALIFY=ALL macroinstruction returns any
status that is immediately available. If no information is currently available, the LU
waits until status information is received before completing. The APPCCMD
CONTROL=TESTSTAT, QUALIFY=IALL macroinstruction also returns status on
any immediately available information, but if no information is currently available,
the macroinstruction completes with an RCPRI, RCSEC combination of X'0000',
X'0008' NO_IMMEDIATELY_AVAILABLE_INFORMATION.

The APPCCMD CONTROL=TESTSTAT, QUALIFY=SPEC|ISPEC macroinstructions
provide status information for a specific conversation. The APPCCMD
CONTROL=TESTSTAT, QUALIFY=SPEC macroinstruction returns any information
immediately available. If no information is immediately available, the LU waits for
this information before the macroinstruction completes. The APPCCMD

68 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

CONTROL=TESTSTAT, QUALIFY=ISPEC macroinstruction returns status
information that is immediately available. If no information is available, the
macroinstruction completes with an RCPRI, RCSEC combination of X'0000', X'0008'
NO_IMMEDIATELY_AVAILABLE_INFORMATION.

For more information on the APPCCMD CONTROL=TESTSTAT, refer to the
macroinstructions in z/OS Communications Server: SNA Programmer's LU 6.2
Reference.

Conversation queues for macroinstruction processing

Conversation queues are used to store macroinstructions until their processing is
complete. A conversation queue, in general, is used to store macroinstructions that
perform a specific function. For example, a macroinstruction that sends expedited
information is stored on the EXPEDITED SEND conversation queue until
processing of the macroinstruction is complete.

VTAM limits the conversation queues to a maximum of one macroinstruction
outstanding on a conversation queue at a time. If an APPCCMD macroinstruction
is issued when that queue is at its limit (that is, a macroinstruction is already being
held), it is rejected with an RCPRI, RCSEC combination of X'002C', X'0011',
PARAMETER_ERROR— PREVIOUS_MACROINSTRUCTION_OUTSTANDING.
The following macroinstructions are exceptions and may be allowed to process if
there is a macroinstruction already outstanding on the queue:
v APPCCMD CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDPROG
v APPCCMD CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDSERV
v APPCCMD CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDTIME
v APPCCMD CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDUSER
v APPCCMD CONTROL=REJECT, QUALIFY=CONV

VTAM also allows only one APPCCMD CONTROL=TESTSTAT,
QUALIFY=ALL|IALL to be outstanding at a time. If one of these
macroinstructions is outstanding, the issuance of another one will be rejected with
an RCPRI, RCSEC combination of X'002C', X'0011',
PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING.

The following macroinstructions are queue-independent; their acceptance is not
related to a particular existing conversation:
v APPCCMD CONTROL=ALLOC
v APPCCMD CONTROL=CHECK
v APPCCMD CONTROL=OPRCNTL
v APPCCMD CONTROL=PREALLOC
v APPCCMD CONTROL=RCVFMH5, QUALIFY=NULL|QUEUE
v APPCCMD CONTROL=REJECT, QUALIFY=SESSION
v APPCCMD CONTROL=REJECT, QUALIFY=CONVGRP
v APPCCMD CONTROL=SETSESS

The APPCCMD CONTROL=RCVFMH5, QUALIFY=DATAQUE macroinstruction is
initially queue-independent but moves to the SEND/RECEIVE queue for the
receive function.

Chapter 4. Designing programs to use LU 6.2 services 69

VTAM has no limit to the number of APPCCMD CONTROL=ALLOC|PREALLOC
macroinstructions an application program can issue.

At certain points during conversation deallocation, VTAM prohibits further
macroinstructions from being accepted for the conversation queues. The
application program will then receive an RCPRI, RCSEC combination of X'00A0',
X'0002', REQUEST_NOT_ALLOWED— REQUEST_BLOCKED, on any
macroinstruction issued that is directed to one of the conversation queues. This
return code indicates that the conversation is in the process of being deallocated or
terminated and no other processing will be accepted for the conversation.

Queues for half-duplex conversations

There are four conversation queues associated with a half-duplex conversation:
v SEND/RECEIVE queue
v EXPEDITED SEND queue
v EXPEDITED RECEIVE queue
v TESTSTAT queue

VTAM allows macroinstructions to be outstanding on all four queues
simultaneously.

The SEND/RECEIVE queue is used to store macroinstructions that either send or
receive normal information. The following macroinstructions are stored on the
SEND/RECEIVE queue when issued by the application program:
v APPCCMD CONTROL=SEND, QUALIFY=CONFIRM|CONFIRMD|

DATA|DATACON|DATAFLU|ERROR|FLUSH
v APPCCMD CONTROL=PREPRCV
v APPCCMD CONTROL=SENDRCV
v APPCCMD CONTROL=RECEIVE
v APPCCMD CONTROL=DEALLOC
v APPCCMD CONTROL=DEALLOCQ
v APPCCMD CONTROL=REJECT, QUALIFY=CONV
v APPCCMD CONTROL=RESETRCV
v APPCCMD CONTROL=SENDFMH5

The APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY macroinstructions
are placed on the queue when they are matched to information for the
conversation.

The EXPEDITED SEND queue is used to store macroinstructions that send
expedited information. The following macroinstructions are stored on the
EXPEDITED SEND queue when issued by the application program:
v APPCCMD CONTROL=SEND, QUALIFY=RQSEND
v APPCCMD CONTROL=SENDEXPD, QUALIFY=DATA

The EXPEDITED RECEIVE queue is used to store macroinstructions that receive
expedited information. The following macroinstructions are stored on the
EXPEDITED RECEIVE queue when issued by the application program:
v APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY|IANY
v APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC|ISPEC

70 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

The APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY|IANY macroinstructions
are placed on the queue when they are matched to information for the
conversation.

The TESTSTAT queue is used to store macroinstructions that query the
conversation. The following macroinstructions are stored on the TESTSTAT queue
when issued by the application program:
v APPCCMD CONTROL=TESTSTAT, QUALIFY=SPEC
v APPCCMD CONTROL=TESTSTAT, QUALIFY=ISPEC

The APPCCMD CONTROL=TESTSTAT, QUALIFY=ALL|IALL macroinstructions
are not placed on the queue because they pertain to all conversations for an
application rather than being specific to a particular conversation.

Queues for full-duplex conversations

There are five conversation queues associated with a full-duplex conversation:
v SEND queue
v RECEIVE queue
v EXPEDITED SEND queue
v EXPEDITED RECEIVE queue
v TESTSTAT queue

VTAM allows macroinstructions to be outstanding on all five queues
simultaneously. Because sending and receiving is allowed concurrently, the
SEND/RECEIVE queue is replaced, on a full-duplex conversation, with a SEND
and RECEIVE queue.

The SEND queue is used to store macroinstructions that send normal information.
The following macroinstructions are stored on the SEND queue when issued by
the application program:
v APPCCMD CONTROL=SEND, QUALIFY=DATA|DATAFLU|ERROR|FLUSH
v APPCCMD CONTROL=DEALLOC,

QUALIFY=DATAFLU|FLUSH|ABNDPROG|
ABNDSERV|ABNDTIME|ABNDUSER

v APPCCMD CONTROL=DEALLOCQ
v APPCCMD CONTROL=REJECT, QUALIFY=CONV
v APPCCMD CONTROL=RESETRCV
v APPCCMD CONTROL=SENDFMH5

The RECEIVE queue is used to store macroinstructions that receive normal
information. The following macroinstructions are stored on the RECEIVE queue
when issued by the application program:
v APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY
v APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC

The EXPEDITED SEND queue is used to store macroinstructions that send
expedited information. The following macroinstruction is stored on the
EXPEDITED SEND queue when issued by the application program:
v APPCCMD CONTROL=SENDEXPD, QUALIFY=DATA

Chapter 4. Designing programs to use LU 6.2 services 71

For a full-duplex conversation, the EXPEDITED RECEIVE and TESTSTAT queues
have the same function and store the same macroinstructions as a half-duplex
conversation.

Allocating a conversation and receiving the allocate

One of the partners initiates transaction processing by allocating a conversation. Its
partner receives the notification of the conversation through the ATTN(FMH-5) exit
and issues the RCVFMH5 to accept the conversation. (You have to receive the
allocate and then deallocate the conversation if you want to reject the conversation.
See Chapter 8, “Deallocating a conversation,” on page 195 for more information.)
See Chapter 7, “Allocating a conversation,” on page 175 for detailed information
about allocating a conversation.

Some functions used by LU 6.2 applications require use of the APPCCMD
CONTROL=PREALLOC macroinstruction prior to sending the FMH-5. See
“Reserving a session for a conversation” on page 189 for more information.

Types of conversation allocation

Application programs have several ways to allocate a conversation when using the
APPCCMD CONTROL=ALLOC macroinstruction:

QUALIFY=ALLOCD
Requests that the conversation be assigned to any free session, regardless
of whether the session is a contention-winner or contention-loser. If no
sessions are available and session limits allow, VTAM activates another
session and allocates the conversation to it. If session limits do not permit
establishing a new session, VTAM queues the conversation request until a
session becomes available.

QUALIFY=CONVGRP
Requests that the conversation be assigned to a specific session that is
identified by a unique conversation group identifier. If that specific session
exists but is not available, VTAM queues the request until that session
becomes available. If that specific session does not exist, VTAM fails the
allocation request.

QUALIFY=CONWIN
Requests that the conversation be assigned to a free contention-winner
session, if one is available. If no contention-winner session is available and
the session limits permit activating another contention-winner session,
VTAM activates a contention-winner session and allocates the conversation
to it. If session limits do not permit activating another contention-winner
session, VTAM queues the allocation request until a contention-winner
session becomes available.

QUALIFY=IMMED
Requests that the conversation be assigned to a free contention-winner
session. If there is no contention-winner session, the allocation request fails.
The conversation request can be satisfied only if a contention-winner
session is available immediately.

The QUALIFY=IMMED form of the macroinstruction can complete faster
than QUALIFY=ALLOCD.

QUALIFY=WHENFREE
Requests that the conversation be assigned to any free session, regardless
of whether the session is a contention-winner or contention-loser. If no

72 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

sessions are available and session limits allow, VTAM activates another
session and allocates the conversation to that session, if no other
conversation requests are queued ahead of this request. If a session is
pending, VTAM queues the pending request until the request is met or
until all pending session activation requests have been depleted. In other
words, the allocation can be queued waiting for a session, but the
application does not want this allocation queued behind another
conversation. If all pending session activation requests are depleted before
the request is met, VTAM fails the request with an error code.

If optimal performance is crucial, design the application program so that
contention-winner sessions are always available to it. See Chapter 6, “Managing
sessions,” on page 99 for information about setting and changing session limits.

Notification of conversation requests

When a conversation request, represented as an FMH-5, is received, VTAM notifies
the application program of the request. Application programs can use either of the
following methods for receiving notification of the receipt of an FMH-5:
v If an ATTN exit is provided, VTAM schedules it when an FMH-5 is received.
v When an APPCCMD macroinstruction completes, VTAM sets a feedback field in

the RPL extension to indicate that an FMH-5 is outstanding.

The system programmer can best determine the method to use. Application
programs also can maintain an internal timer and issue a macroinstruction at
regular intervals to receive FMH-5s that are outstanding.

Comparing normal information to expedited information

Systems Network Architecture (SNA) provides for the control of the flow of
information through the network to prevent congestion. Session pacing is a
mechanism available to the application that is used to accomplish this flow control.
The implementation of flow control requires that, under certain conditions, the
information be queued and not transmitted. This is the case with normal
information. While this process is necessary and useful, there are times when the
transaction program wants to send an indication to the partner and wants to
ensure that the indication will not be queued along the session path. Expedited
information may be used to meet this requirement.

Expedited information flows on the session path but is never queued if session
pacing is in effect. The expedited information can bypass the normal information
and is forwarded on to the conversation partner.

To summarize:
v Normal information is subject to flow control and may be queued at

intermediate points in the session path.
v Expedited information is not subject to flow control and will not be queued at

intermediate points in the session path.

To assist the application programmer, VTAM has provided separate
macroinstructions for each type of information. These macroinstructions allow the
application program to structure itself more logically by using expedited
macroinstructions for expedited information and normal macroinstructions for
normal information.

Chapter 4. Designing programs to use LU 6.2 services 73

Normal information and expedited information both contain categories of data
(information that can be transmitted by a conversation partner) and indications
(information that can be sent by VTAM or intervening network applications). Each
of these categories is described in the following section.

Comparing data to indications

VTAM provides intelligence or facts to the application, including data and control
signals from the partner and some control signals generated locally by VTAM to
report the status of the partner or the status of the connection to the partner.
Information includes data transmitted to the application from the conversation
partner. Information also includes indications that cause the application's
APPCCMD CONTROL=RECEIVE macroinstruction to complete. Indications are
initiated by the partner application by way of macroinstructions or they are
initiated using the intervening network components.

This section defines the terms used to describe the categories of normal and
expedited information that can be sent and received by the application.

The types of normal information differ from the types of expedited information.
Normal information includes normal data and normal indications. Expedited
information includes expedited data and expedited indications.

Normal information that can be provided by the application by way of an
APPCCMD macroinstruction or reported to the application includes the following
information:
v Normal data:

– Normal transaction data (for example, logical records)
– PS_Header data
– Error data (for example, Log Data)
– Function management data (for example, FMH-5)

v Normal indications:
– The SEND indication
– The DEALLOC indication
– The CONFIRM indication
– Error indications (for example, a conversation failure)
– Other normal indications that do not cause a receive macroinstruction to

complete:
- Log data is waiting to be received—indicated by LOGRCV (RPL6RLOG) in

the RPL extension.
- An FMH_5 is waiting to be received—indicated by FMH5RCV

(RPL6FMH5) in the RPL extension.

Expedited information that can be sent by the application or reported to the
application includes:
v Expedited data:

– Expedited transaction data
v Expedited indications:

– The request to send received (RTSR) indication—SIGRCV (RPL6RSIG) and
SIGDATA (RPL6SGNL).

74 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

– Other expedited indications (for example, expedited data is waiting to be
received—indicated by EXPDRCV (RPL6EXDR) in the RPL extension). Note
that these do not cause a receive macroinstruction to complete.

Determining conversation status

The current status, or state, of a conversation can be determined by examining the
RPL fields returned on the APPCCMD CONTROL=TESTSTAT,
QUALIFY=ISPEC|SPEC macroinstruction.

An application program can also determine the status of a conversation by
examining the RPL extension returned on the APPCCMD CONTROL=RECEIVE
macroinstruction. The application program should first check the RCPRI field in
the RPL extension to check that the RECEIVE completed successfully. If RCPRI is
set to 0, the application program can then check the What-Received field and
examine the send bit to see if the conversation has been placed in a sending state.

When the application program that is sending issues a RECEIVE, the receiver can
become the sender without asking for permission to send. The receiver should
check the What-Received field on every RECEIVE to determine whether the
conversation has been placed in a sending state. The application program also can
refer to RPL6CCST to determine the state of the conversation at the successful
completion of any APPCCMD macroinstructions that specify a specific
conversation.

Sending and receiving normal information

Once the conversation is allocated, the transaction programs issue SENDs and
RECEIVEs to transfer the data available for the transactions. (For detailed
information about sending and receiving data, see Chapter 9, “Sending
information,” on page 207 and Chapter 10, “Receiving information,” on page 227.)
Multiple APPCCMD macroinstructions pertaining to different conversations can be
outstanding.

Receiving input without specifying a conversation

An application program might not know which conversation will have data ready
to receive next. Rather than issuing an APPCCMD CONTROL=RECEIVE,
QUALIFY=SPEC|ISPEC macroinstruction for each conversation, VTAM provides a
way for the application program to issue a single macroinstruction to receive data
on the next conversation that has data available to be received.

To receive the next available data on any conversation, the conversations are first
placed in continue-any mode with the CONMODE operand of an APPCCMD
macroinstruction such as APPCCMD CONTROL=PREPRCV, QUALIFY=FLUSH.
Then, the application program issues APPCCMD CONTROL=RECEIVE,
QUALIFY=ANY|IANY.

Receiving next available data

The APPCCMD CONTROL=RECEIVE, QUALIFY=ANY macroinstruction
completes when data arrives on any of the conversations that is in continue-any
mode. When APPCCMD CONTROL=RECEIVE, QUALIFY=ANY completes, the
conversation identifier (CONVID) field in the RPL extension is set to indicate on
which conversation the data is received.

Chapter 4. Designing programs to use LU 6.2 services 75

Typically, the APPCCMD CONTROL=RECEIVE, QUALIFY=ANY macroinstruction
is issued with CONMODE=CS, which places the conversation in continue-specific
mode after the APPCCMD CONTROL=RECEIVE, QUALIFY=ANY
macroinstruction completes. Once the conversation is in continue-specific mode,
only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC macroinstructions can be
used to receive data on the conversation. The application program issues
APPCCMD macroinstructions to process a transaction. When the transaction is
complete, the application program can return the conversation to continue-any
mode.

Receiving data immediately available

The APPCCMD CONTROL=RECEIVE, QUALIFY=IANY macroinstruction can also
be used to receive data that is immediately available on a conversation in
continue-any mode. If data is immediately available, the data is copied into the
supplied data area or control block specified by the AREA parameter. The
CONVID of the conversation sending the data is also returned. If no data is
immediately available, the macroinstruction completes and an RCPRI, RCSEC
combination of X'0000', X'0008' NO_IMMEDIATELY_ AVAILABLE_INFORMATION
is returned to the application.

Sending and receiving expedited information

Conversations on full-duplex capable sessions support the sending and receiving of
expedited information. If the underlying session is not full-duplex capable, an
RCPRI,RCSEC combination of X'00A0', X'0001' REQUEST_NOT_ALLOWED—
LU_PAIR_DOES_NOT_SUPPORT_SENDING_ EXPEDITED_DATA is returned to
the application.

Sending expedited data

The APPCCMD CONTROL=SENDEXPD, QUALIFY=DATA macroinstruction sends
expedited information. This macroinstruction completes immediately without
waiting for a response from the conversation partner. This macroinstruction
corresponds to the SEND_EXPEDITED_DATA verb described in LU 6.2
architecture.

For more information on this macroinstruction, refer to z/OS Communications
Server: SNA Programmer's LU 6.2 Reference.

Receiving expedited data

The APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY|IANY| SPEC|ISPEC
macroinstructions receive expedited information.

The APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY|IANY macroinstructions
receive expedited information from any active conversation from a partner LU
whose expedited data mode is continue-any. The APPCCMD
CONTROL=RCVEXPD, QUALIFY=ANY macroinstruction waits for expedited
information to arrive on a conversation in continue-any mode to complete. The
APPCCMD CONTROL=RCVEXPD, QUALIFY=IANY returns any expedited
information that is immediately available. If no expedited information is available,
the macroinstruction completes and an RCPRI,RCSEC of X'0000', X'0008'
NO_IMMEDIATELY_AVAILABLE_INFORMATION is returned to the application.
Refer to z/OS Communications Server: SNA Programmer's LU 6.2 Reference for
more information.

76 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

The APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC|ISPEC macroinstructions
receive expedited information from the specified conversation.

The APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC macroinstruction receives
expedited information from the specified conversation. If expedited information is
not immediately available, the LU waits to receive expedited information before
completing the request. The APPCCMD CONTROL=RCVEXPD, QUALIFY=ISPEC
macroinstruction receives expedited information that is immediately available. If
expedited information is not available, the macroinstruction completes and an
RCPRI,RCSEC of X'0000', X'0008'
NO_IMMEDIATELY_AVAILABLE_INFORMATION is returned to the application.
Refer to z/OS Communications Server: SNA Programmer's LU 6.2 Reference for
more information.

Deallocating the conversation

After the partners have completed the transfer of data, the conversation is
deallocated. See Chapter 8, “Deallocating a conversation,” on page 195 for detailed
information about deallocating a conversation.

Implementing LU 6.2 option sets

The application program implements optional LU 6.2 functions. However, it cannot
implement all of the LU 6.2 options. The following list shows the options that it
can implement:
v “Mapped conversations”
v “Security procedures” (conversation–level)
v “Synchronization point services” on page 78
v “Program initialization parameters (PIP) data” on page 79

See “LU 6.2 option sets” on page 42 for details.

Mapped conversations

Mapped conversations describe conversations in which the data to be sent and
exchanged is in some form other than logical records. The conversation partners
cannot directly issue the VTAM APPCCMD macroinstructions to send and receive
data. Instead, they must rely on some other portion of the application program to
map the data to be transmitted into logical records. This processing part of the
application program then issues the VTAM APPCCMD macroinstructions. Consult
the SNA Transaction Programmer's Reference Manual for LU Type 6.2 for more
information on mapped conversations.

Security procedures

VTAM supports architected security options for session-level security and data
encryption. VTAM also offers pass-through support for application programs that
implement the architected conversation-level security options. For more
information on security, see Chapter 13, “VTAM's LU 6.2 security options,” on page
295.

Chapter 4. Designing programs to use LU 6.2 services 77

Synchronization point services

Recovery from errors and failures is a prime consideration in the design of
transaction programs. LU 6.2 provides optional services to help transaction
programs recover from errors. LU 6.2 sync point services enable transaction
programs to synchronize their resources when partners in protected conversations
fail or encounter errors.

VTAM offers pass-through support for sync point services, but the application
program must implement these services. VTAM enables the application program to
implement sync point services. VTAM supports the flow of PS headers, which
enables the application program to implement the sync point manager. The sync
point manager polices the protected conversations and resources.

For detailed information on sync point services, refer to the SNA Transaction
Programmer's Reference Manual for LU Type 6.2 and the SNA LU 6.2 Peer Protocols
Reference .

VTAM support for sync point services

Note: Sync point services cannot be used within a full-duplex conversation.

To support the application program's implementation of sync point services, VTAM
includes the following functions:
v Defining the system

– Enables the application program to indicate the synchronization level that is
supported by the local LU. The application program does this by specifying
the keyword SYNCLVL=CONFIRM or SYNCLVL=SYNCPT on the APPL
definition statement.

– Enables the application program to specify the frequency of occurrence of the
ATTN(LOSS) exit that is being driven. The application program does this by
specifying the keyword ATNLOSS=LAST or ATNLOSS=ALL on the APPL
definition statement.

Note: The use of the ATNLOSS operand on the APPL definition statement is
not restricted to sync point services.

v Allocating conversations and activating sessions
– Establishes a sync point session if both LUs support the sync point services.
– Allocates sync point conversations on sync point sessions if the application

program requests sync point in its allocation request.
– Because an FMH-5 for a conversation requires the Logical Unit of Work

(LUW) identifier, the application should include the LUW in the FMH-5
presented to VTAM with the APPCCMD CONTROL=ALLOC
macroinstruction.

v Sending and receiving data
– Enables the application program to send PS headers, which are logical records

with a length field of X'0001' used to convey sync point information.
v Rejecting sessions

– Deactivates sessions by using session instance identifiers. Terminates any
conversation associated with the session.

Note: This function is not restricted to sync point services.
v Returning the conversation state

78 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

– Returns the current conversation state at the completion of each
conversation-related command. This information is contained in the
CONSTATE field in many of the APPCCMD macroinstructions.

Note: This function is not restricted to sync point processing.
v Suspending sessions

– Suspends a subsequent conversation's outflow of normal flow requests and
suspends the normal deactivation of a session currently in use by a sync point
conversation.

Note: If an application program is using persistent LU-LU session support
during sync point processing and fails after APPCCMD CONTROL=SETSESS,
QUALIFY=SUSPEND has been issued, but APPCCMD CONTROL=SETSESS,
QUALIFY=RESUME has not been issued, VTAM unbinds the sync point
sessions. In the same situation, VTAM also unbinds sync point sessions for
which APPCCMD CONTROL=SETSESS, QUALIFY=SYNCBEG has been
issued but neither APPCCMD CONTROL=SETSESS, QUALIFY=SYNCEND
nor APPCCMD CONTROL=SETSESS, QUALIFY=RESUME has been issued at
the time of the failure.

v Resuming sessions
– Resumes a session that has been suspended.

Table 7 shows several ways in which you might use the APPCCMD
CONTROL=SETSESS macroinstructions.

Table 7. Sync point processing

Macroinstruction Description of Circumstances

APPCCMD CONTROL=SETSESS, QUALIFY=SUSPEND
APPCCMD CONTROL=SETSESS, QUALIFY=RESUME

Use these two commands when you have a period of
processing time in which the session might have to be
unbound before VTAM stops the outbound flow.

APPCCMD CONTROL=SETSESS, QUALIFY=SYNCBEG
APPCCMD CONTROL=SETSESS, QUALIFY=SUSPEND
APPCCMD CONTROL=SETSESS, QUALIFY=RESUME

Use this combination of commands if you have a period
of processing time before the outbound flow is to be
stopped, if you are using persistent LU-LU session
support, and if you want VTAM to unbind the session
during that processing period. (In this situation,
APPCCMD CONTROL=SETSESS, QUALIFY=SYNCEND
could be used, but it would have to be used with
APPCCMD CONTROL=SETSESS, QUALIFY=RESUME.)

APPCCMD CONTROL=SETSESS, QUALIFY=SYNCBEG
APPCCMD CONTROL=SETSESS, QUALIFY=SYNCEND

Use these two commands when you do not ever want the
outbound flow stopped, but you do want VTAM to
unbind a session during a failure when persistence is
enabled.

Program initialization parameters (PIP) data

Program Initialization Parameters (PIP) data is a means of presenting data to the
partner's transaction program as part of the conversation initialization. PIP data is
described in the SNA Transaction Programmer's Reference Manual for LU Type 6.2 as
Send PIP Data (241) and Receive PIP Data (242).

For the application to send PIP data to the partner, it must accompany the FMH-5
when the APPCCMD CONTROL=ALLOC macroinstruction is issued. The
application is responsible for:

Chapter 4. Designing programs to use LU 6.2 services 79

v Constructing the PIP data properly. See the FM5PIPFM structure contained in
the ISTFMH5 structure for the proper values allowed in the PIP GDS variable
X'12F5'.

v Indicating in the FMH-5 that the PIP data is attached. Set FM5PIPPR=B'1'.

On the receiving side, the PIP data is not received with the FMH-5 data. After
issuing an APPCCMD CONTROL=RCVFMH5, if the FMH-5 indicates that the PIP
data is attached (FM5PIPPR=B'1'), then the first APPCCMD CONTROL=RECEIVE
will receive the PIP GDS variable X'12F5'.

See “PIP data field” on page 180 for more information about building PIP data on
a conversation allocation request.

80 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Chapter 5. Coding the APPCCMD macroinstruction

About this chapter

Application programs request LU 6.2 services from the VTAM program with the
APPCCMD macroinstruction. The APPCCMD macroinstruction has many
variations, most of which are designated with the CONTROL and QUALIFY
keywords. Application programs use the APPCCMD macroinstruction to request
both conversation and control operator verb functions.

Application programs can use VTAM LU 6.2 support with this macroinstruction
and still issue other VTAM macroinstructions on non-LU 6.2 sessions.

The CONTROL keyword is the highest level qualifier on the APPCCMD
macroinstruction and is required on the APPCCMD macroinstruction. The
QUALIFY keyword handles additional variations of the APPCCMD
macroinstruction and can be omitted if the RPL field for the QUALIFY value is set
properly. For example, a series of requests to send data might require that an
APPCCMD macroinstruction be issued several times, using the same RPL. The
QUALIFY keyword can be omitted after the first SEND macroinstruction if it does
not need to be changed.

Use of the APPCCMD macroinstruction

The APPCCMD macroinstruction requests LU 6.2 services from VTAM. Application
programs use it to request services for a specific conversation.

Although the macroinstructions can be issued asynchronously, with OPTCD=ASY
specified on the macroinstruction, most macroinstruction processing for a
conversation is done synchronously. A conversation cannot, for example, have two
SEND macroinstructions outstanding at any one time. The asynchronous nature of
the APPCCMD macroinstruction applies to the application program as a whole.
The application program can have multiple APPCCMD macroinstructions
outstanding against several conversations. Several macroinstructions can be
outstanding on a conversation. The application program uses the APPCCMD
CONTROL=CHECK macroinstruction to get completion information from an
asynchronous macroinstruction that VTAM has finished processing.

Refer to z/OS Communications Server: SNA Programming for information on
asynchronous processing.

In error situations, an APPCCMD macroinstruction that abnormally deallocates a
conversation or terminates its session can be issued while a previous APPCCMD
macroinstruction completes.

When a macroinstruction completes, return code feedback information is contained
in two RPL fields and two RPL extension fields. The RPL fields are used by all
VTAM application programs. The RPL extension fields support only LU 6.2
functions.

There are two RPL fields:
v RTNCD

© Copyright IBM Corp. 2000, 2013 81

v FDB2

There are two RPL extension fields:
v RCPRI
v RCSEC

If the RTNCD and FDB2 fields are 0, the macroinstruction has completed
successfully and the RCPRI and RCSEC fields have no meaning. If the RTNCD,
FDB2=X'00', X'0B', respectively, they indicate conditional completion of the
macroinstruction. You should inspect the RCPRI and RCSEC fields to determine
what happened.

Other RPL extension fields return:
v Security-level support information.
v An indicator that a request for permission to send data has been received from a

partner LU.
v An indicator that error log data has been received.
v An indicator that an FMH-5 has been received.
v The conversation state.
v An indicator that expedited data has been received.

For RECEIVE macroinstructions, the WHATRCV field in the RPL extension also
contains feedback information.

Use of the CONTROL keyword

The CONTROL keyword specifies one of the major functions of the APPCCMD
macroinstruction. Table 8 describes the CONTROL keyword operands and the
functions they specify.

Table 8. CONTROL keyword operands and their meanings

Operand Function

ALLOC Allocate a conversation.

CHECK Await completion of an asynchronous macroinstruction and update RPL
and RPL extension fields.

DEALLOC Deallocate a conversation.

DEALLOCQ Deallocate a conversation.

OPRCNTL Execute an LU 6.2 control-operator request, such as changing the
number of sessions between two LUs.

PREALLOC Reserve a session for a conversation without sending an FMH-5.

PREPRCV Switch from SEND state to RECEIVE state (half-duplex conversations
only).

RCVFMH5 Receive the function management header required to start a
conversation.

RCVEXPD Receive expedited information from a partner LU on a full-duplex
capable session.

RECEIVE Receive normal information from a partner LU.

REJECT End a session and conversation due to error and cleanup.

RESETRCV Reset the conversation's continuation mode

SEND Send data to a conversation partner.

82 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 8. CONTROL keyword operands and their meanings (continued)

Operand Function

SENDEXPD Send expedited data to a conversation partner on a full-duplex capable
session.

SENDFMH5 Send the FMH-5 to a partner LU for a preallocated conversation.

SENDRCV Send data to a conversation partner and receive normal information
from the partner (half-duplex only).

SETSESS Transfer information that pertains to a session between the LU 6.2
function in VTAM and the application program (half-duplex
conversations only).

TESTSTAT Query the current status of conversations.

Use of the QUALIFY keyword

Most of the major LU 6.2 functions designated by the CONTROL keyword can be
further controlled through use of the QUALIFY keyword. For example, you can
use the QUALIFY keyword with CONTROL=SEND to request a confirmation and
order VTAM to flush the send buffer.

Table 9 gives the QUALIFY variations for each CONTROL keyword for the
APPCCMD macroinstruction. The z/OS Communications Server: SNA
Programmer's LU 6.2 Reference describes each variation in detail.

The QUALIFY keyword is optional on the APPCCMD macroinstruction. If it is not
specified, it defaults to the value contained in the RPL extension. If it is omitted,
the RPL extension field must contain the proper value.

Table 9. QUALIFY keyword operands and their meanings

CONTROL
Operand

QUALIFY
Operand Meaning

ALLOC ALLOCD Wait for a session to become available when
allocating a conversation or when the session limit
increases, allowing new sessions to be activated.

CONVGRP Allocate resources for a conversation and assign to
the conversation a particular existing session with a
unique specified conversation group identifier.

CONWIN Wait until either an existing contention-winner
session becomes available or the contention-winner
session limit increases, allowing for a new
contention-winner session to be activated.

IMMED Allocate a conversation only if a contention-winner
session is available immediately.

WHENFREE Assign an available session to the conversation. If no
session is available but one can be started, queue the
conversation. If no session can be started, fail the
request.

Chapter 5. Coding the APPCCMD macroinstruction 83

Table 9. QUALIFY keyword operands and their meanings (continued)

CONTROL
Operand

QUALIFY
Operand Meaning

DEALLOC ABNDPROG Deallocate a conversation when the application
program detects an error.

ABNDSERV Deallocate a conversation when an LU services
component encounters an error.

ABNDTIME Deallocate a conversation when information is not
received within a certain amount of time.

ABNDUSER Deallocate a conversation and give VTAM
application-specified sense information describing the
error.

CONFIRM Flush the send buffer, send a confirmation request,
and deallocate the conversation if successful
(half-duplex conversations only).

DATACON Send data, flush the send buffer, send a confirmation
request, and deallocate the conversation if successful
(half-duplex conversations only).

DATAFLU Send data, flush the send buffer, and deallocate the
conversation if successful.

FLUSH Flush the send buffer and deallocate the conversation
if successful.

DEALLOCQ ABNDPROG Deallocate a conversation when the application
program detects an error.

ABNDSERV Deallocate a conversation when an LU services
component encounters an error.

ABNDTIME Deallocate a conversation when information is not
received within a certain amount of time.

ABNDUSER Deallocate a conversation and give VTAM
application-specified sense information describing the
error.

OPRCNTL ACTSESS Respond positively to a session establishment
request.

CNOS Change the number of sessions between LUs.

DACTSESS Respond negatively to a session establishment
request.

DEFINE Change information in the LU-mode table.

DISPLAY Return information about an LU or mode name
associated with an LU.

RESTORE Restore mode names and associated sessions that are
pending recovery.

84 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 9. QUALIFY keyword operands and their meanings (continued)

CONTROL
Operand

QUALIFY
Operand Meaning

PREALLOC ALLOCD Wait for a session to become available when
preallocating a conversation or when the session limit
increases, allowing new sessions to be activated.

CONVGRP Preallocate resources for a conversation and assign to
the conversation a particular existing session with a
unique specified conversation group identifier.

CONWIN Wait until either an existing contention-winner
session becomes available or the contention-winner
session limit increases, allowing for a new
contention-winner session to be activated.

IMMED Preallocate a conversation only if a contention-winner
session is available immediately.

WHENFREE Assign an available session to the conversation. If no
session is available but one can be started, queue the
conversation. If no session can be started, fail the
request.

PREPRCV
(Half-duplex
conversations
only)

CONFIRM Send confirmation request and place application
program in RECEIVE state if successful.

DATACON Send data, send confirmation request, and place
application program in RECEIVE state if successful.

DATAFLU Send data and place application program in
RECEIVE state after flushing send buffer.

FLUSH Flush the send buffer and prepare to receive data by
entering RECEIVE state.

RCVEXPD ANY Receive expedited information from any conversation
whose expedited information mode is continue-any;
the LU will wait for expedited data to arrive to
satisfy the macro request.

IANY Receive expedited information immediately available
on any conversation whose expedited information
mode is continue-any; the LU will not wait for
expedited data to arrive to satisfy the macro request.

ISPEC Receive expedited information immediately available
from the specified conversation; the LU will not wait
for expedited data to arrive to satisfy the macro
request.

SPEC Receive expedited information from the specified
conversation; the LU will wait for expedited data to
arrive to satisfy the macro request.

RCVFMH5 DATAQUE Queue the RCVFMH5 request prior to receipt of an
FMH-5 and receive any accompanying data.

NULL Receive the function management header required to
start a conversation. (QUALIFY=NULL is optional for
this macroinstruction.)

QUEUE Queue the RCVFMH5 request prior to receipt of an
FMH-5.

Chapter 5. Coding the APPCCMD macroinstruction 85

Table 9. QUALIFY keyword operands and their meanings (continued)

CONTROL
Operand

QUALIFY
Operand Meaning

RECEIVE ANY Receive normal information for any conversation in
continue-any mode.

SPEC Receive normal information on a specific
conversation.

IANY Receive normal information that is immediately
available from any conversation in continue-any
mode.

ISPEC Receive normal information that is immediately
available from a specific conversation.

REJECT CONV Deallocate the conversation and the underlying
session.

CONVGRP Deactivate the session associated with a specified
conversation group identifier.

SESSION Deactivate the session and deallocate any
conversation associated with it.

RESETRCV NULL Reset the conversation's continuation mode.
(QUALIFY=NULL is optional for this
macroinstruction.)

SEND CONFIRM Flush the send buffer and send a confirmation
request (Half-duplex conversations only).

CONFRMD Respond positively to a confirmation request
(half-duplex conversations only).

DATA Send normal data to a conversation partner.

DATACON Send normal data, flush the send buffer, and send a
confirmation (half-duplex conversations only).

DATAFLU Send normal data and flush the send buffer.

ERROR Send error information or respond negatively to a
confirmation.

FLUSH Flush the send buffer. (Special case for full-duplex
conversations: If the partner LU issues a receive
FILL=BUFF, the request is completed by a
FLUSH-type send, regardless of the amount of data
received.)

RQSEND Request to enter SEND state (half-duplex
conversations only).

SENDEXPD
(Full-duplex-
capable sessions
only)

DATA Send expedited data to a conversation partner on a
full-duplex capable session.

SENDFMH5 NULL Send the FMH-5 to a partner LU for a preallocated
conversation.

SENDRCV DATAFLU Send normal data, flush the send buffer, and receive
normal information from the partner (half-duplex
only).

86 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 9. QUALIFY keyword operands and their meanings (continued)

CONTROL
Operand

QUALIFY
Operand Meaning

SETSESS
(Half-duplex
conversations
only)

RESUME Resume the suspended session.

SUSPEND Suspend all outgoing normal flow requests and
normal deactivation of a session.

SYNCBEG Indicate that a synchronization exchange is
beginning.

SYNCEND Indicate that a synchronization exchange is ending.

TESTSTAT ALL Obtains status on information that is available from
any active conversation associated with the specified
ACB.

IALL Obtains status on information that is immediately
available from any active conversation associated
with the specified ACB.

ISPEC Obtains status on information that is immediately
available on a specified conversation.

SPEC Obtains status on information that is available on a
specified conversation.

Keywords and returned parameters

The following figures show the operands that can be coded for the APPCCMD
macroinstruction:
v Figure 12 on page 88
v Figure 13 on page 89
v Figure 14 on page 90

Chapter 5. Coding the APPCCMD macroinstruction 87

ARREA
ACB
AREA
AREALEN
ARG
BRANCH
CD
CGID
CONFTXT
CONMODE
CONTROL
CONVID
CONMOD
CRYPT
DEACTYP
ECB
EXIT
FILL
LIST
LOCKS
LOGMODE
LUAFFIN
LUNAME
NAMEUSE
NETID
OPTCD
QUALIFY
RECLEN
RPL
RTSRTRN
SENSE
SESSID
SESSIDL
TYPE
USERFLD
VTRINA
VTRINL
VTROUTA
VTROUTL

ALLOC DEALOC DEALLOCQ OPRCNTL

C
O
N
W
I
N

A
L
L
O
C
D

C
O
N
V
G
R
P

C
H
E
C
K

I
M
M
E
D

W
H
E
N
F
R
E
E

A
B
N
D
T
I
M
E

A
B
N
D
P
R
O
G

A
B
N
D
S
E
R
V

D
A
T
A
C
O
N

A
B
N
D
U
S
E
R

C
O
N
F
I
R
M

D
A
T
A
F
L
U

F
L
U
S
H

C
N
O
S

I
S
T
R
P
L
6

A
C
T
S
E
S
S

D
I
S
P
L
A
Y

D
A
C
T
S
E
S
S

D
E
F
I
N
E

R
E
S
T
O
R
E

A
B
N
D
T
I
M
E

A
B
N
D
P
R
O
G

A
B
N
D
S
E
R
V

A
B
N
D
U
S
E
R

Figure 12. Valid operands for APPCCMD macroinstructions: ALLOC—OPRCNTL

88 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

ARREA
ACB
AREA
AREALEN
ARG
BRANCH
CD
CGID
CONFTXT
CONMODE
CONTROL
CONVID
CONMOD
CRYPT
DEACTYP
ECB
EXIT
FILL
LIST
LOCKS
LOGMODE
LUAFFIN
LUNAME
NAMEUSE
NETID
OPTCD
QUALIFY
RECLEN
RPL
RTSRTRN
SENSE
SESSID
SESSIDL
TYPE
USERFLD
VTRINA
VTRINL
VTROUTA
VTROUTL

PREALLOC RCVEXPO RCVFMN5 REJECT

C
O
N
W
I
N

A
L
L
O
C
D

C
O
N
V
G
R
P

A
N
Y

I
M
M
E
D

I
S
P
E
C

N
U
L
L

C
O
N
V

Q
U
E
U
E

D
A
T
A
C
O
N

S
P
E
C

C
O
N
F
I
R
M

D
A
T
A
F
L
U

F
L
U
S
H

R
E
S
E
T
R
C
V

D
A
T
A
Q
U
E

S
E
S
S
I
O
N

R
P
L

I
A
N
Y

A
N
Y

I
S
P
E
C

I
A
N
Y

S
P
E
C

C
O
N
V
G
R
P

W
H
E
N
F
R
E
E

PREPRCV RECEIVE

Figure 13. Valid operands for APPCCMD macroinstructions: PREALLOC—RPL

Chapter 5. Coding the APPCCMD macroinstruction 89

The following figures show the parameters that can be returned for each
APPCCMD macroinstruction.
v Figure 15 on page 91
v Figure 16 on page 92
v Figure 17 on page 93

ARREA

ACB

AREA

AREALEN

ARG

BRANCH

CD

CGID

CONFTXT

CONMODE

CONTROL

CONVID

CONMOD

CRYPT

DEACTYP

ECB

EXIT

FILL

LIST

LOCKS

LOGMODE

LUNAME

NAMEUSE

NETID

OPTCD

QUALIFY

RECLEN

RPL

RTSRTRN

SENSE

SESSID

SESSIDL

TYPE

USERFLD

VTRINA

VTRINL

VTROUTA

VTROUTL

SEND SENDEXPO SENDRCV

D

A

T

A

C

O

N

F

I

R

M

C

O

N

F

I

R

M

D

E

R

R

O

R

D

A

T

A

C

O

N

D

A

T

A

F

L

U

F

L

U

S

H

R

Q

S

E

N

D

D

A

T

A

D

A

T

A

F

L

U

S

Y

N

C

E

N

D

S

U

S

P

E

N

D

S

Y

N

C

B

E

G

I

S

P

E

C

A

L

L

I

A

L

L

S

P

E

C

R

E

S

U

M

E

TESTSTATSETSESS

S

E

N

D

F

M

H

S

Figure 14. Valid operands for APPCCMD macroinstructions: SEND—TESTSTAT

90 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

AVFA
CGID
CONSTATE
CONVID
CONVSECP
CRYPTLVL
EXPDLEN
EXPDRCV
FDB2
FMNSLEN
FMNSRCV
LOGMODE
LOGRCV
LUAFFIN
LUNAME
NETID
PRSISTVP
RCPRI
RCSEC
RECLEN
RPLXSRV
RTNCD
SENSE
SESSID
SESSIDL
SIGDATA
SIGRCV
SLS
STSHBF
STSHDS
USERFLD
WHATRCV

ALLOC DEALOC DEALLOCQ OPRCNTL

C
O
N
W
I
N

A
L
L
O
C
D

C
O
N
V
G
R
P

C
H
E
C
K

I
M
M
E
D

W
H
E
N
F
R
E
E

A
B
N
D
T
I
M
E

A
B
N
D
P
R
O
G

A
B
N
D
S
E
R
V

D
A
T
A
C
O
N

A
B
N
D
U
S
E
R

C
O
N
F
I
R
M

D
A
T
A
F
L
U

F
L
U
S
H

C
N
O
S

A
C
T
S
E
S
S

D
I
S
P
L
A
Y

D
A
C
T
S
E
S
S

D
E
F
I
N
E

R
E
S
T
O
R
E

A
B
N
D
T
I
M
E

A
B
N
D
P
R
O
G

A
B
N
D
S
E
R
V

A
B
N
D
U
S
E
R

Figure 15. Returned parameters for APPCCMD macroinstructions: ALLOC—OPRCNTL

Chapter 5. Coding the APPCCMD macroinstruction 91

AVFA
CGID
CONSTATE
CONVID
CONVSECP
CRYPTLVL
EXPDLEN
EXPDRCV
FDB2
FMNSLEN
FMNSRCV
LOGMODE
LOGRCV
LUAFFIN
LUNAME
NETID
PRSISTVP
RCPRI
RCSEC
RECLEN
RPLXSRV
RTNCD
SENSE
SESSID
SESSIDL
SIGDATA
SIGRCV
SLS
STSHBF
STSHDS
USERFLD
WHATRCV

PREALLOC RCVEXPO RCVFMN5 REJECT

C
O
N
W
I
N

A
L
L
O
C
D

C
O
N
V
G
R
P

A
N
Y

I
M
M
E
D

I
S
P
E
C

N
U
L
L

C
O
N
V

Q
U
E
U
E

D
A
T
A
C
O
N

S
P
E
C

C
O
N
F
I
R
M

D
A
T
A
F
L
U

F
L
U
S
H

R
E
S
E
T
R
C
V

D
A
T
A
F
L
U

S
E
S
S
I
O
N

I
A
N
Y

A
N
Y

I
S
P
E
C

I
A
N
Y

S
P
E
C

C
O
N
V
G
R
P

W
H
E
N
F
R
E
E

PREPRCV RECEIVE

Figure 16. Returned parameters for APPCCMD macroinstructions: PREALLOC—RESETRCV

92 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Parameter-to-DSECT mapping

The following tables illustrate which fields of the RPL DSECT (IFGRPL) and the
RPL extension DSECT (ISTRPL6X) correspond to the RPL and RPL extension field
names used in this book. They show the RPL fields that are meaningful for an RPL
used for an APPCCMD macroinstruction. Table 10 on page 94 shows the DSECT
labels for the RPL fields used for LU 6.2 support. For a complete description of the
RPL DSECT (IFGRPL), refer to z/OS Communications Server: SNA Programming.

This manual shows the RPL extension fields in which the application program
passes information to and receives information from VTAM, along with the
corresponding DSECT label in the ISTRPL6X DSECT.

For the actual storage layout of the RPL extension, refer to z/OS Communications
Server: SNA Programmer's LU 6.2 Reference. The figure shows the DSECT label for

AVFA

CGID

CONSTATE

CONVID

CONVSECP

CRYPTLVL

EXPDLEN

EXPDRCV

FDB2

FMNSLEN

FMNSRCV

LOGMODE

LOGRCV

LUNAME

NETID

PRSISTVP

RCPRI

RCSEC

RECLEN

RPLXSRV

RTNCD

SENSE

SESSID

SESSIDL

SIGDATA

SIGRCV

SLS

STSHBF

STSHDS

USERFLD

WHATRCV

SEND SENDEXPO SENDRCV

D

A

T

A

C

O

N

F

I

R

M

C

O

N

F

I

R

M

D

E

R

R

O

R

D

A

T

A

C

O

N

D

A

T

A

F

L

U

F

L

U

S

H

R

Q

S

E

N

D

D

A

T

A

D

A

T

A

F

L

U

S

Y

N

C

E

N

D

S

U

S

P

E

N

D

S

Y

N

C

B

E

G

I

S

P

E

C

A

L

L

I

A

L

L

S

P

E

C

R

E

S

U

M

E

TESTSTATSETSESS

S

E

N

D

F

M

H

S

Figure 17. Returned parameters for APPCCMD macroinstructions: SEND—TESTSTAT

Chapter 5. Coding the APPCCMD macroinstruction 93

each field, followed by the symbolic name of the field (if any) in parentheses.
Blank fields in the figure indicate fields that should not be used or examined by
application programs.

Table 40 on page 289 shows the RPL extension fields that are returned for the
ATTN exit.

Table 10. RPL fields and DSECT labels in IFGRPL

RPL Field Corresponding DSECT Label

AAREA RPLAAREA

AAREALN RPLAARLN

ACB RPLDACB

AREA RPLAREA

AREALEN RPLBUFL

ARG RPLARG

BRANCH RPLEXTDS

CRYPT RPLTCRYP

ECB RPLECB

EXIT RPLEXTDS

FDB2 RPLFDB2

OPTCD=KEEPSRB, OPTCD=NKEEPSRB RPLKPSRB

OPTCD=BUFFLST, OPTCD=NBUFFLST,
OPTCD=XBUFLST

RPLOPT6

OPTCD=ASY, OPTCD=SYN RPLOPT1

RECLEN RPLRLEN

RTNCD RPLRTNCD

Table 11. RPL extension fields and DSECT labels in ISTRPL6X

RPL Extension Field Corresponding DSECT Label

AVFA RPL6AVFA

CD RPL6CD

CGID RPL6CGID

CONFTXT RPL6CFTX

CONMODE RPL6CMOD

CONSTATE RPL6CCST

CONTROL RPL6REQ

CONVID RPL6CNVD

CONVSECP RPL6CLSA

CONXMOD RPL6CXMD

CRYPTLVL RPL6CRYP

DEACTYP RPL6DETP

EXPDLEN RPL6EXDL

EXPDRCV RPL6EXDR

FILL RPL6FILL

94 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 11. RPL extension fields and DSECT labels in ISTRPL6X (continued)

RPL Extension Field Corresponding DSECT Label

FMH5LEN RPL6MH5L

FMH5RCV RPL6RMH5

LAST RPL6LAST

LIST RPL6LIST

LOCKS RPL6LOCK

LOGMODE RPL6MODE

LOGRCV RPL6RLOG

LUAFFIN RPL6AFFN

LUNAME RPL6LU

NAMEUSE RPL6NAMU

NETID RPL6NET

QUALIFY RPL6QUAL

PRSISTVP RPL6PV

RCPRI RPL6RCPR

RCSEC RPL6RCSC

SENSE (specified parameter) RPL6SNSO

RTSRTRN RPL6RTSX

SENSE (returned parameter) RPL6SNSI

SESSID RPL6SSID

SESSIDL RPL6SIDL

SIGDATA RPL6SGNL

SIGRCV RPL6RSIG

SLS RPL6SLS

STSHBF RPL6STBF

STSHDS RPL6STDS

TYPE RPL6TYPE

USERFLD RPL6USR

VTRINA RPL6VAIA

VTRINL RPL6VAIL

VTROUTA RPL6VAOA

VTROUTL RPL6VAOL

WHATRCV RPL6WHAT

Keyword specifications

Table 12 on page 96 shows the types of values that you can specify for APPCCMD
macroinstruction keywords.

Chapter 5. Coding the APPCCMD macroinstruction 95

Table 12. Operand specifications for the APPCCMD macroinstruction

Keyword
Operand

Notation
Category Format Example

AAREA Address Symbolic name AAREA=AAREA1

Register AAREA=(7)

ACB Address Symbolic name ACB=ACB1

Register ACB=(5)

AREA Address Symbolic name AREA=WAREA

Register AREA=(7)

AREALEN Quantity Decimal number AREALEN=98

Register AREALEN=(8)

ARG Indirect value Symbolic name ARG=ARG1

Register ARG=(5)

BRANCH Fixed value BRANCH=YES

CD Fixed value CD=IMMED

CGID Indirect value Symbolic name CGID=CONWCGID

Register CGID=(7)

CONFTXT Fixed value CONFTXT=NO

CONMODE Fixed value CONMODE=LLCA

CONTROL Fixed value CONTROL=SEND

CONVID Indirect value Symbolic name CONVID=ID062

Register CONVID=(7)

CONXMOD Fixed value CONXMOD=SAME

CRYPT Fixed value CRYPT=NO

DEACTYP Address Symbolic name DEACTYP=DEAC001

Register DEACTYP=(7)

ECB Address Symbolic name ECB=ECB1

Register ECB=(7)

Fixed value ECB=INTERNAL

EXIT Address Symbolic name EXIT=EXIT1

Register EXIT=(7)

FILL Fixed value FILL=BUFF

LIST Fixed value LIST=NONE

LOCKS Fixed value LOCKS=SHORT

LOGMODE Name LOGMODE=MODEX

LUAFFIN Fixed Value LUAFFIN=NOTAPPL

LUNAME Name LUNAME=LU6201

NAMEUSE Fixed value NAMEUSE=GNAME

NETID Name NETID=NETWORK6

OPTCD Fixed value OPTCD=ASY
OPTCD=(ASY,BUFFLST)

QUALIFY Fixed value QUALIFY=DATACON

96 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 12. Operand specifications for the APPCCMD macroinstruction (continued)

Keyword
Operand

Notation
Category Format Example

RECLEN Quantity Decimal number RECLEN=98

Register RECLEN=(8)

RPL Address Symbolic name RPL=RPL1

Register RPL=(1)

RTSRTRN Fixed value RTSRTRN=BOTH

SENSE Quantity Hexadecimal SENSE=X'08890000'

Register SENSE=(8)

SESSID Address Symbolic name SESSID=SESS001

Register SESSID=(7)

SESSIDL Quantity Decimal number SESSIDL=8

Indirect value Register SESSIDL=(7)

TYPE Fixed value TYPE=PROGRAM

USERFLD Quantity Register USERFLD=(8)

Character USERFLD=C'LU01'

Fixed-point USERFLD=F'100'

Hexadecimal USERFLD=X'0043E010'

A-type address constant USERFLD=A(RTN1)

V-type address constant USERFLD=V(EXTRTN)

VTRINA Address Symbolic name VTRINA=VTRINAD

Register VTRINA=(3)

VTRINL Quantity Decimal number VTRINL=100

Register VTRINL=(4)

VTROUTA Address Symbolic name VTROUTA=BUBBA

Register VTROUTA=(3)

VTROUTL Quantity Decimal number VTROUTL=100

Register VTROUTL=(4)

Chapter 5. Coding the APPCCMD macroinstruction 97

98 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Chapter 6. Managing sessions

About this chapter

This chapter describes how a VTAM LU 6.2 application program can:
v Negotiate session limits to initialize, change, and reset session limits between

two LUs on a per-mode basis.
v Specify negotiation values for CNOS session limit negotiation.
v Activate and deactivate sessions in response to increased or decreased session

limits resulting from changes in session limits.
v Retrieve information for a mode and sessions that are to be restored.

The information in this chapter applies to VTAM-to-VTAM communications. Other
platforms might be subtly different. If you have VTAM-to-AS/400 communications,
you might want to refer to:
v SAA Common Programming Interface Communications Reference

v AS/400 Communications: Intersystem Communication Function Programming Guide

v AS/400 Programming: Data Description Specifications Reference

v AS/400 Communications: APPN Network User's Guide

If you have VTAM-to-OS/2 communications, you might want to refer to:
v Communications Server for Windows NT and Windows 2000, Version 6.1 and Personal

Communications for Windows, Version 5.5.

Negotiating session limits

Session limit negotiation is the process by which two parallel-session-capable LUs
determine the session limits for a logon mode group before they establish a session
on that logon mode. (Session limits are not negotiated for single-session-capable
LUs.) These session limits define the type and number of sessions in use between
the two LUs. The logon mode is associated with specific characteristics, such as
class of service, which describe its communication capabilities, and is represented
by a logon mode name.

To initiate session limit negotiation, either the local LU or the partner LU issues the
APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction. The LU
that initiates the CNOS request is the source side, and the partner LU is the target
side.

VTAM performs the session limit negotiation.

During the process of negotiating session limits, the LUs also can:
v Establish draining responsibility.
v Negotiate session deactivation responsibility.
v Negotiate level of conversation-level security.

© Copyright IBM Corp. 2000, 2013 99

How session limits are used

The dialogue between transaction programs is called a conversation. The dialogue
between logical units (LUs) is called a session. The conversation uses the session as
its transmission medium. The session is a serially reusable resource of the
conversation. While the session is in use for one conversation, it cannot be used for
any other conversation. More than one session can be active between the same pair
of LUs, which is called parallel sessions. The sessions between two LUs are
grouped together by mode name. One of the application programs, acting on
behalf of the transaction program, initiates the action.

To help with the allocation of storage at the LU, limits are placed on the number of
sessions that an LU can have for a given logon mode name.

Before two LUs can start any conversations between them, they must negotiate the
type and number of sessions, referred to as session limits. These session limits
restrict the number of concurrent conversations an application program manages.
Each conversation must be allocated to an active session.

Session limits do not affect the number of conversation requests that the
application program can issue. VTAM manages the conversation workload for the
application program by controlling when a session is assigned to a conversation
request.

A session is associated with a mode, which represents a specific set of session
characteristics or capabilities. LUs negotiate session limits on a per-mode basis
before any conversations can be allocated on a mode. An LU can use several
modes, giving it greater capability, and more than one LU can use the same mode.
Each set of characteristics, or mode, is stored in the logon mode table and
identified by a logon mode name.

As an example of how session limits function, suppose two LUs negotiate a limit
of 10 sessions between them on a logon mode, but they need 100 conversations on
that logon mode to service transaction programs. The application programs can
issue macroinstructions requesting the 100 conversations. However, because a limit
of 10 sessions has been negotiated, only 10 sessions can be active between the two
LUs on that logon mode. Therefore, no more than 10 conversations can be active at
any given time. When all 10 sessions are assigned to conversations, the remaining
conversation requests can be queued until the currently active conversations end
and sessions become free. As sessions are freed, they are assigned to queued
conversation requests.

Types of sessions

From the perspective of two LUs that are communicating, two types of sessions
exist: a contention-winner session and a contention-loser session. Contention occurs
when two LUs try to assign the same session simultaneously to different
conversation requests received from an application program. An allocation race
results. For a specific session, one of the partner LUs is the contention winner and
the other partner LU is the contention loser.

Contention-winner session:

A contention-winner session is one for which the local LU is designated to win an
allocation race. A contention winner does not have to request permission to use an
available session.

100 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Contention-loser session:

A contention-loser session is one that the local LU surrenders to the partner LU. A
contention loser must request permission from the partner LU before using the
session.

Bidding for a session:

Before VTAM assigns a contention-loser session to a conversation request (if
allowed), VTAM bids on the session, on behalf of the contention loser, to ensure
that the partner LU, which is the contention winner and controls the session, does
not need the session.

Number and representation of sessions

If one LU in an LU-LU pair has only contention-loser sessions available, it might
not be able to start a conversation because its partner gets first priority on using all
sessions. To prevent this, the LU-LU pair negotiates a guaranteed number of
contention-winner sessions for each LU, in addition to the overall session limits for
the exchange.

The number of sessions, or session limit values, is negotiated between an LU-LU
pair for each logon mode used. These values are described as follows:

Value Description

SESSLIM
Overall session limit, which is the maximum number of concurrent
sessions active between two LUs, using a given logon mode name

MINWINL
Number of contention-winner sessions guaranteed to the local LU, using a
given logon mode name

MINWINR
Number of contention-winner sessions guaranteed to the partner LU, using
a given logon mode name

In this publication, these values are shown as a triplet of numbers, (6,4,2), which
represent the three types of session limits that are negotiated: SESSLIM,
MINWINL, MINWINR. Use this type of notation when issuing a MODIFY CNOS
command.

The same session limits are written differently for each partner LU. For example, if
LU A and LU B negotiate the following session limits for a logon mode:
v The overall session limit is 6.
v LU A is guaranteed 4 contention-winner sessions.
v LU B is guaranteed 2 contention-winner sessions.

The session limits for LU A on that logon mode would be written (6,4,2), and the
same session limits for LU B would be written as (6,2,4); Figure 18 on page 102
illustrates this.

Chapter 6. Managing sessions 101

The sum of MINWINL and MINWINR cannot be greater than SESSLIM. However,
the sum can be less than or equal to SESSLIM. Either partner LU can attempt to
activate more than its guaranteed number of contention-winner sessions so long as
the overall session limit is maintained.

Application's role in session limit negotiation

Initiating session limit negotiation

The application program initiates session limit negotiation by issuing an
APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction.

When the application program initiates session limit negotiation:

The application program can initiate a session limit negotiation under the
following circumstances:
v Before allocating conversations on a mode.

Before VTAM can activate any sessions on a logon mode between an LU-LU
pair, it negotiates with the partner LU the session limits for that logon mode.
This ensures that neither application program is overburdened with
conversations.
When session limits are lowered to 0, VTAM resets session limit information. If
this occurs, the application program has to negotiate session limits again before
VTAM can activate more sessions.

v When application program performance needs tuning.
The application program can change session limits at any time to make better
use of its resources. Raising session limits enables VTAM to activate more
sessions as needed. Lowering session limits causes VTAM to deactivate sessions
as they are freed by conversations.
The VTAM operator also can issue commands to raise or lower session limits.

v When closing a mode.
During normal shutdown, the application program closes the mode for all logon
modes, including the SNASVCMG mode, before it deactivates the session. This
ensures that all conversations are ended in an orderly fashion. Closing the mode
includes:
– Setting session limits for the mode to 0
– Disabling draining.

For information on closing a mode, see “Closing a mode” on page 141.

Host 1

VTAM APPL
LU6.2B
(6, 2, 4)

VTAM APPL
LU6.2A
(6, 4, 2)

Host 2LU 6.2 A
Contention-Winner
Sessions

LU 6.2 B
Contention-Winner
Sessions

Figure 18. Results of session limit negotiation

102 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Source-side versus target-side CNOS initiation:

An application program's responsibilities during CNOS processing differ
depending on whether it is the source or target side of the processing. The LU that
initiates the session limit negotiation is the source side of CNOS processing. The
LU that receives a session limit negotiation request from its partner is the target
side of the CNOS request.

Both LUs in an LU-LU pair are equal in that either one can initiate a CNOS
request. Both LUs are responsible for participating in a CNOS negotiation request.
However, each logon mode between an LU-LU pair can have only one CNOS
request in progress at a time, which means that session limits can be changed for
only one mode name at a time with a given partner LU.

If both partners initiate a CNOS request for a logon mode at the same time, they
are in a CNOS race. VTAM fails one CNOS request with return codes that indicate
a CNOS race has occurred. VTAM continues CNOS negotiation for the other CNOS
request. LUs must inspect the return codes.

Source-side processing:

To perform a CNOS negotiation, the application program:
1. Can create an entry in the LU-mode table.

The application program enters the negotiation values in the LU-mode table by:
v Issuing the APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE

macroinstruction and specifying the DEFINE control block.
v Allowing VTAM to use the default negotiation limits on the APPL definition

statement. (If an application program issues a CNOS request and has not
issued an APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE
macroinstruction, VTAM uses these default negotiation limits.)

v Allowing VTAM to use the default values of (2,1,1) when no default
negotiation limits have been coded on the APPL definition statement.

The LU-mode table entry contains the defined negotiation limits that VTAM
uses as session limit defaults when the application program does not specify
session limits on the CNOS request. The entry in the LU-mode table represents
the logon mode being negotiated between the two partner LUs and must exist
before the CNOS negotiation can begin.
The application program can change the defined negotiation limits as needed
by using the APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE
macroinstruction. See “Defined negotiation limits” on page 116 for more
information on setting defined negotiation limits.
If the LU does not create an entry in the LU-mode table, VTAM builds an entry
for the LU, using the default defined negotiation limits from the APPL
definition statement.

2. Can build a CNOS session limits control block (ISTSLCNS structure).
Before initiating the CNOS request, the application program builds a CNOS
session limits control block to represent the session limits to be set for the logon
mode group. In addition to the proposed session limits, the CNOS session
limits control block also contains information that is negotiated between the
two LUs on a logon-mode basis. The application program can map storage for
the CNOS session limits control block using the ISTSLCNS DSECT. See
“Building a CNOS session limits control block” on page 118 for detailed
information regarding the structure and meaning of the fields in the CNOS
session limits control block.

Chapter 6. Managing sessions 103

If the application program does not build a CNOS session limits control block
for the CNOS request, VTAM builds one internally by using the defined
negotiation limits for the logon mode that are contained in the LU-mode table.

3. Issues the CNOS macroinstruction.
The application program issues the APPCCMD CONTROL=OPRCNTL,
QUALIFY=CNOS macroinstruction to start the CNOS negotiation. On the
macroinstruction, the application program specifies the partner LU that is the
target of the CNOS request and the logon mode that the CNOS request
represents. It also specifies the address of the CNOS session limits control
block, if the application program builds one.

4. Determines negotiation results.
For a successful CNOS request, the combination for register 15 and register 0 is
always X'0' and X'B', respectively. When the CNOS macroinstruction completes
successfully, the application program should check the RCPRI and RCSEC
fields in the RPL extension as shown in Table 13.

Table 13. Return codes for a successful CNOS macroinstruction

RCPRI RCSEC Indicates

X'0000' X'0001' Application program's limits were accepted as
specified.

X'0000' X'0002' Specified limits were negotiated to different values.

When an RCPRI code of X'0028' is returned, which indicates the partner LU has
closed the mode, no sessions can be activated on that mode. This condition is
not necessarily permanent. The CNOS request can be retried later.

RCPRI RCSEC Indicates

X'0028' X'0000' Partner LU has closed the mode; no sessions can be
activated on the mode.

“Example of CNOS negotiation” on page 109 shows a negotiated CNOS request
and the effect that the request has on the session limits.
If the session limits are negotiated to different values from those originally
specified, the source-side LU can determine what the negotiated values are as
shown in Table 14 on page 105.

Target-side processing:

The application program on the target side of the CNOS negotiation does not have
any required responsibilities. VTAM manages the target side of the negotiation for
the application program.

VTAM creates entries in the LU-mode table as needed for target-side negotiation
and initializes those entries using the defined negotiation limits found in the APPL
definition statement. However, the target side can create the LU-mode table entry
and set the defined negotiation limits by issuing the APPCCMD
CONTROL=OPRCNTL, QUALIFY=DEFINE macroinstruction and specifying the
DEFINE control block.

VTAM uses the defined negotiation limits to determine the negotiated session
limits to use to process the CNOS request. See “Defined negotiation limits” on
page 116 for more information.

104 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

If the session limits are negotiated to different values from those originally
specified, the target-side LU can determine what the negotiated values are as
shown in Table 14.

Determining negotiated values:

The application program on the source and target side of the CNOS negotiation
can determine the existing session limit values that have been negotiated. The
methods for doing this are shown in Table 14.

Table 14. Methods for determining negotiated values

LU Method Description

Source side only Checks the CNOS session limits
control block

If the application program specified a CNOS session limits
control block as input to the CNOS macroinstruction, VTAM
writes the negotiated values back to the CNOS session limits
control block when completing the CNOS negotiation. The
application program can read the new values directly from the
CNOS session limits control block.

Target side only Processes the ATTN(CNOS) exit When a CNOS negotiation completes successfully, VTAM
schedules the LU's ATTN exit if the application program has one.
The ATTN exit is scheduled with the results of the CNOS
negotiation, which the application program can read. For more
information on the ATTN exit, see “Using the ATTN exit” on
page 284.
Note: If a CNOS negotiation is processed as a result of the
MODIFY CNOS command or an automatic internal CNOS,
VTAM schedules the ATTN exit for both the source and target
side.

Source or target
side

Issues the DISPLAY
macroinstruction

The application program can issue an APPCCMD
CONTROL=OPRCNTL, QUALIFY=DISPLAY macroinstruction to
retrieve from the LU-mode table current information about the
partner LU and the logon mode.

VTAM's role in session negotiation

These steps describe VTAM's role in session limit negotiation when the target LU
is different from the source LU, which is usually the case. See “VTAM's role in
session limit negotiation when PLU=SLU” on page 107 for more information.
VTAM, on both the source side and target side of the LU, manages the CNOS
negotiation as follows:
1. Builds source-side LU-mode table entries as needed.

VTAM determines whether an LU-mode table mode entry exists for the logon
mode being negotiated between the LU-LU pair. If one does not exist, VTAM
builds and initializes the entry using default defined negotiation limits. For
more details on how VTAM gets the defined negotiation limits, see “How
defined negotiation limits are set” on page 117.

2. Builds a CNOS session limits control block, if needed.
If the application program did not specify a CNOS session limits control block
when it issued the APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS
macroinstruction, VTAM builds one for the application program, using the
defined negotiation limits contained in the LU-mode table. This CNOS session
limits control block represents the proposed session limits for the source side.

3. Starts SNASVCMG conversation.

Chapter 6. Managing sessions 105

The source-side VTAM starts a conversation with the target-side VTAM using
the SNASVCMG mode.

Note: The application program does not have to negotiate CNOS session
limits for the SNASVCMG mode before requesting a CNOS negotiation for
another user logon mode. VTAM defaults the SNASVCMG mode limits to
(2,1,1) automatically when needed.

4. Sends the proposed session limits to the target LU.
VTAM builds a GDS change-number-of-sessions (CNOS) variable that contains
the information in the source-side CNOS session limits control block and
sends it on the SNASVCMG conversation to the target side.

5. Target side receives the GDS variable and starts its CNOS processing.
6. Builds target-side LU-mode table entry as needed.

VTAM checks for an LU-mode table mode entry for the logon mode being
negotiated between the LU-LU pair. If one does not exist, VTAM builds and
initializes the entry using default defined negotiation limits. See “How defined
negotiation limits are set” on page 117 for more details on how VTAM gets
the defined negotiation limits.

7. Negotiates the session limits.
The target-side VTAM uses the source side's proposed limits and the target
side's defined negotiation limits and determines the negotiated session limits
as follows:
a. The requested SESSLIM value (source) is compared to the DSESLIM value

(target), and the smaller of the two values is used for the rest of the
negotiation. This value is the overall session limits.

b. Half of the negotiated SESSLIM value (rounded downward) is compared
to the DMINWNR value. The larger of the two values is used in the next
step of the negotiation.

c. The value determined in the previous step is compared to the number of
contention-winner sessions the partner application program is requesting.
The smaller of the two values is used.

d. The number of contention-winner sessions given to the partner LU is
subtracted from the overall session limit determined in step 7a. This value
is compared to the DMINWNL value, and the smaller of the two values is
used to determine the number of contention-winner sessions to give to the
application program whose VTAM is conducting the negotiation.

e. The part of the CNOS request that handles responsibility for session
deactivation is checked against the DRESPL value. Deactivation
responsibility is performed when session limits are being lowered or set to
0.

8. Sends the negotiated limits to the source side.
The target side updates the GDS variable with the negotiated session limits
and sends them back to the source side. The SNASVCMG mode conversation
is deallocated.

9. Updates LU-mode table.
When the session limit negotiation is successful, the VTAM on each side of the
negotiation updates the session limits in the LU-mode table to reflect the
newly negotiated session limits.

10. Schedules ATTN exit.

106 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

When the session limit negotiation is successful, the VTAM on only the target
side of the negotiation gives control to the application program's ATTN exit
routine (if it has one) to notify the application program of the new session
limits.

11. Initiates session activation or deactivation as needed.
When the session limit negotiation is successful, the VTAM on each side of the
negotiation initiates session activation or deactivation as needed. If AUTOSES
is set on, VTAM tries to match it within the constraints of the session limits
and to satisfy all session activation requests that are waiting. For more
information on session activation and deactivation, see “VTAM's role in
session activation and deactivation” on page 145.

12. Completes the CNOS macroinstruction.
VTAM sets return codes and posts them to the source application program. If
the application program specified a CNOS session limits control block on the
APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction, the
negotiated session limits are copied back to the CNOS session limits control
block when the macroinstruction completes.

VTAM's role in session limit negotiation when PLU=SLU

An LU 6.2 application can specify itself on the LUNAME parameter of a CNOS
request. This allows transaction programs on the application to allocate LU=OWN
conversations. If VTAM determines that the target LU is the same as the source LU
for the CNOS request, VTAM accepts the request and manages the CNOS
negotiation as follows:
1. Builds source-side LU-mode table entries as needed.

VTAM determines whether an LU-mode table entry exists for the logon mode
being negotiated between the LU-LU pair. If one does not exist, VTAM builds
and initializes the entry using default defined negotiation limits.

2. Builds a CNOS session limits control block, if needed.
If the application program did not specify a CNOS session limits control block
when it issued the APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS
macroinstruction, VTAM builds one for the application program, using the
defined negotiation limits in the LU-mode table. This CNOS session limits
control block represents the proposed session limits for the source side.

3. Starts SNASVCMG conversation.
The source-side VTAM starts a conversation with the target-side VTAM using
the SNASVCMG mode.

Note: The application program does not have to negotiate CNOS session limits
for the SNASVCMG mode before requesting a CNOS negotiation for another
user logon mode. VTAM defaults the SNASVCMG mode limits to (2,1,1)
automatically when needed.

4. Bypasses target side CNOS processing.
Because the source side LU and the target side LU are the same, the proposed
session limits are not sent to the target side. A separate target side LU-mode
entry is not built. One LU-mode entry suffices for both sides.

5. Adjusts proposed session limits.
The proposed session limits are adjusted as follows:
v The requested SESSLIM value is doubled. This is because each time a session

is used, internal session representations are used two at a time.

Chapter 6. Managing sessions 107

v The number of contention winner sessions is set to the requested SESSLIM
value.

v The number of contention loser sessions is set to the requested SESSLIM
value.

For example, if SESSLIM=10, then VTAM sets the session limits to (20,10,10).
6. Updates the LU-mode table.

If the adjusted session limits are deemed acceptable, then VTAM updates the
session limits in the LU-mode table to reflect the adjusted values.

7. Does not schedule the ATTN exit.
Unlike normal CNOS processing, when an LU requests a session with itself, the
ATTN(CNOS) exit is not scheduled on the target side.

8. Initiates session activation or deactivation as needed.
When the session limit negotiation is successful, VTAM initiates session
activation or deactivation as needed. If AUTOSES is set on, VTAM tries to
match it within the constraints of the session limits and to satisfy all session
activation requests that are waiting.

9. Completes the CNOS macroinstruction.
VTAM sets return codes and posts them to the source application program. If
the application program specified a CNOS session limits control block on the
APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction, the
negotiated session limits are copied back to the CNOS session limits control
block when the macroinstruction completes.

Example of a CNOS request

Figure 19 on page 109 is an example that shows an application program with an
ACB of APPLA requesting new session limits for sessions using the mode
EXAMPLE with a partner application program called APPLB.

The application program is requesting overall session limits of 11: 8 local
contention-winner sessions, and 3 contention-winner sessions for APPLB. The
CNOS requests that APPLB be responsible for deactivating sessions. (In studying
this example, refer to the descriptions of the CNOS session limits control block and
the ISTSLCNS DSECT. “Building a CNOS session limits control block” on page 118
describes the control block. Table 17 on page 118 shows the layout of the CNOS
session limits control block. The z/OS Communications Server: SNA Programmer's
LU 6.2 Reference shows the DSECT.)

108 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

In the example, the AREA parameter could also have been coded as AREA=(10)
because the address of the control block was in the register. See “Example of
CNOS negotiation” for an example showing the use of this CNOS request in a
situation involving a partner LU.

Example of CNOS negotiation

Using the sample macroinstructions shown in Figure 19 and in Figure 21 on page
139, see how VTAM would process these macroinstructions. Figure 20 on page 110
shows a simplified view of the flow of the CNOS request. The following
description is keyed to the numbers in the figure.

Six sessions are active with Application B. Each side has three contention-winner
sessions. None are presently allocated for conversations. Application A's AUTOSES
value is 8.

LA 10,CNOSCB * LOAD ADDRESS OF CONTROL BLOCK
USING ISTSLCNS,10 * ESTABLISH ADDRESSABILITY
MVC SLCSESSL,=X’000B’ * SET OVERALL SESSION LIMITS FIELD
MVC SLCMCWL,=X’0008’ * SET LOCAL CONTENTION WINNERS FIELD
MVC SLCMCWP,=X’0003’ * SET PARTNER CONTENTION WINNERS FIELD
MVI SLCPARMS,SLCPRSPL * PARTNER LU TO DEACTIVATE SESSIONS

*
APPCCMD CONTROL=OPRCNTL, X

QUALIFY=CNOS, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
LUNAME=APPLB, X
LOGMODE=EXAMPLE, X
AREA=CNOSCB, X
RECLEN=16

•
•
•

CNOSCB DS XL16 * STORAGE FOR CONTROL BLOCK
RPLA RPL AM=VTAM * RPL STORAGE
RPLAX ISTRPL6 * RPL EXTENSION STORAGE
APPLA ACB AM=VTAM,MACRF=LOGON,APPLID=APPLNAME * ACB STORAGE

Figure 19. Example of a CNOS request

Chapter 6. Managing sessions 109

1 Application A issues the following APPCCMD:

APPCCMD CONTROL=OPRCNTL,QUALIFY=CNOS,RPL=RPLA,ACB=APPLA, X
AAREA=RPLAX,LUNAME=APPLB,LOGMODE=EXAMPLE,AREA=CNOSCB, X
RECLEN=16

(For more information on this sample CNOS request, see the example in Figure 19
on page 109.) The first 7 bytes of the CNOS session limits control block are set to
X'000B0008000320', which indicates the requested session limit values. The values
are SESSLIM=11, MINWINL=8, and MINWINR=3, and indicate that the partner
application program is responsible for session deactivation.

2 VTAM A uses the SNASVCMG session to pass Application A's CNOS request to
VTAM B.

3 VTAM B negotiates the CNOS request and returns the results to VTAM A over
the SNASVCMG session. The negotiation values in effect in Application B's
LU-mode table for the EXAMPLE mode are DSESLIM=12, DMINWNL=8, and
DMINWNR=4, and deactivation responsibility will not be accepted.

The negotiation values were established earlier by Application B by issuing the
following macroinstruction:

APPCCMD CONTROL=OPRCNTL,QUALIFY=DEFINE,RPL=RPLB,ACB=APPLAB, X
AAREA=RPLBX,LUNAME=APPLA,LOGMODE=EXAMPLE,AREA=CBAREA, X
RECLEN=68

(See the example in Figure 21 on page 139 for more information on the
macroinstruction.)

Application B's AUTOSES value is 5.

VTAM B negotiates the CNOS request as follows:
1. The requested SESSLIM value (source) is compared to the DSESLIM value

(target), and the smaller value used for the rest of the negotiation. In this case,
the SESSLIM value of 11 is used because the DSESLIM value is 12.

Application A VTAM A Application BVTAM B

SNASVCMG
Session

Figure 20. Sample CNOS negotiation

110 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

2. Half of the negotiated SESSLIM value (rounded downward) is compared to the
DMINWNR value. The larger of the two values is used in step three of the
negotiation. In this case, half of SESSLIM is 5. This value is used because
DMINWNR is 4.

3. The value determined in step two is compared to the number of
contention-winner sessions that Application A is requesting. The smaller of the
two values is used. In this case, 5 is being compared to 8; therefore, five
contention-winner sessions will be given to Application A.

4. The number of contention-winner sessions given to Application B is subtracted
from the overall session limit determined in step one. This value is compared
to the DMINWNL value, and the smaller of the two values is used to
determine the number of contention-winner sessions to give to the application
program whose VTAM is conducting the negotiation. In this case, six sessions
are left over and this number is compared to the DMINWNL value of 8. Six is
smaller; therefore, Application B will be given six contention-winner sessions.

5. The part of the CNOS request that handles responsibility for session
deactivation is checked against the DRESPL value. In this case, VTAM B will
not accept a CNOS that requires Application B to be responsible for
deactivation, so the DRESPL value of the reply is set appropriately. (The
DRESPL value is set in the CNOS session limits control block values returned
to the application program after the CNOS negotiation is complete.)

4 VTAM B schedules Application B's ATTN exit to inform it of the new session
limits. The AREA field of the read-only RPL in the exit's parameter list points to a
CNOS control block. The first 7 bytes of this CNOS control block are set to hex
000B0006000520. This indicates values of SESSLIM=11, MINWINL=6, and
MINWINR=5, and the partner is responsible for session deactivation.

VTAM B also activates two additional contention-winner sessions for Application
B, bringing the number of contention-winner sessions to the AUTOSES limit of 5.
Application B still has an inactive contention-winner session available.

5 VTAM A completes the CNOS request macroinstruction of Application A and sets
return codes of X'0000' in RCPRI and X' 0002' in RCSEC. This combination of
return codes indicates successful processing. (For a description of the return codes,
refer to z/OS Communications Server: SNA Programmer's LU 6.2 Reference.)

The CNOS control block supplied by Application A has been updated and is now
X'000B0005000600'. This indicates values of SESSLIM=11, MINWINL=5, and
MINWINR=6, and the local LU (Application A) is responsible for deactivation. The
AUTOSES value for Application A is 8, but VTAM A activates only two more
contention-winner sessions because the contention-winner limit is 5, and three
sessions are already active.

Logon mode table versus LU-mode table

Two tables are defined to VTAM for modes:

Logon mode table
This table defines the characteristics, or capabilities, of sessions and is used
by all types of LUs. Each logon mode is identified by a logon mode name.

LU-mode table
This table contains session limits. It contains the names of LUs that are
possible partners and the logon mode names and their characteristics that
have been defined for each LU through the APPCCMD

Chapter 6. Managing sessions 111

CONTROL=OPRCNTL, QUALIFY=DEFINE macroinstruction, or the APPL
definition statement, or the VTAM default, which is dynamically built. The
logon mode name in the LU-mode table should match the logon name in
the logon mode table. This table is specific to LU 6.2.

Logon mode table

VTAM uses the logon mode table to construct session parameters. You define
entries for the logon mode table using the MODEENT macroinstruction. This
macroinstruction associates a logon mode name, defined in the logon mode table,
with a set of parameters that represents session protocols. The logical unit
presentation services usage field specifies the optional protocols and data streams
for the LU. (This field is coded on the MODEENT macroinstruction using the
PSERVIC operand.)

For more information on the MODEENT macroinstruction and on how to build a
logon mode table, refer to z/OS Communications Server: SNA Resource Definition
Reference. For information about the specific bits of the PSERVIC operand and
setting the session parameter fields, refer to z/OS Communications Server: SNA
Programming.

Define the logon mode table before using a logon mode name when allocating a
conversation.

When two LUs allocate a session, they use a logon mode name, representing a
logon mode table entry, to specify the session characteristics needed.

If a logon mode name is present on the LOGMODE operand, the content of the
MODEENT macroinstruction is moved to the suggested BIND image that flows
within the CINIT RU. (Values can be overridden as necessary.)

If you do not define the logon mode name with the MODEENT macroinstruction
before attempting to allocate a conversation using the logon mode name, VTAM
has no associated parameters for that logon mode name to use when establishing a
session for the application program if the application program is to act as the
secondary logical unit.

If a specified logon mode name is not defined to the VTAM that owns the SLU,
that VTAM may use a default logon mode name, ISTCOSDF, depending on the
setting of the ISTCOSDF start option. For more information on the ISTCOSDF start
option, refer to z/OS Communications Server: SNA Resource Definition Reference.

VTAM's support for LU 6.2 does not allow a blank name to be specified as a value
on the LOGMODE keyword in APPCCMD macroinstructions. See “Blank mode
names” on page 52 for more information.

LU-mode table

VTAM dynamically builds an LU-mode table for an application program when an
OPEN ACB macroinstruction is processed. Once the table is built, it contains the
names of the LUs that are possible partners and the logon mode names and their
session limit characteristics as defined for each LU. The table associates the logon
mode names with the partner LUs.

112 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Each LU-LU pair can have unique modes that have unique session limits. As a
result, one LU-LU pair might have different capabilities than another LU-LU pair.
For more information on logon mode names, refer to z/OS Communications
Server: SNA Programming.

Adding to the LU-mode table

The application program and VTAM can define LU entries and mode entries for
the LU-mode table as follows:
v The application program can define entries to the LU-mode table dynamically by

using either of the following macroinstructions:
– APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS
– APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE

When either of these macroinstructions processes successfully, an entry is added
to the LU-mode table, if one is not present.

v VTAM defines entries to the LU-mode table when it receives a session activation
request (BIND or CINIT) or a CNOS request for an application program, and the
partner LU or the mode name is not already in the table.

An entry also is added if the operator issues a MODIFY CNOS or MODIFY
DEFINE command and the LU or the mode name is not in the table.

LU entries in the LU-mode table

VTAM allows, at most, two LU entries for a given partner LU. For example, if an
application attempts to initiate a session with a partner LU using the partner's
generic resource name, the partner can return its real network name on the BIND
response. VTAM manages the LU entries so that the name supplied by the
application can be associated with the name returned by the partner. Only one set
of mode entries is maintained for the partner, eliminating conflicting information.

There can be five types of LU entries in the LU-mode table.

SUPPLIED_NAME Entry
This is an LU entry that is created using the LU name specified on an
APPCCMD macroinstruction or the corresponding operator command. This
type of entry holds any mode entries for the partner LU. This type of entry
may or may not have an associated entry.

RCVD_NAME Entry
This is an LU entry that is created due to a session initiation request from
the partner LU. This type of entry holds any mode entries for the partner
LU. It may subsequently be changed to a SUPPLIED_NAME entry or a
VARIANT_NAME entry. This type of entry does not have an associated
entry.

VARIANT_NAME Entry
This is an LU entry that is created when the LUNAME in the BIND
response is different than that specified on the APPCCMD or operator
command which caused the session request. This type of entry has no
mode entries and contains only a limited amount of relevant information.
This type of entry is always associated with a SUPPLIED_NAME entry,
which contains the complete set of LU information and all related mode
entries for the partner LU.

UNUSABLE_NAME Entry
This is an LU entry that has been marked unusable due to inappropriate

Chapter 6. Managing sessions 113

name translations or conflicting LU definitions in the network. Any
attempt to use this LU name is rejected as an error. This type of entry has
no mode entries. An UNUSABLE entry contains a limited amount of
information for problem determination purposes, and remains in the
LU-Mode table until the table is deleted when the application closes its
ACB or an operator deletes the entry on a MODIFY DEFINE command.

DISASSOC_NAME Entry
This is an LU entry that was previously a VARIANT_NAME entry but is
no longer associated with any other entry. It remains in the table but is
changed to another entry type if its name is referenced in session startup.
This type of entry has no mode entries.

For more information about how VTAM uses the types of LU entries in the
LU-mode table, see “LU 6.2 names used for session activation” on page 165.

Retrieving information from the LU-mode table

The application program can retrieve information from the LU-mode table by
using the APPCCMD CONTROL=OPRCNTL, QUALIFY=DISPLAY
macroinstruction. This macroinstruction displays the fields of the
DEFINE/DISPLAY control block, which contain the information from the LU-mode
table.

Specifying values for session limit negotiation

The application program is responsible for specifying values used during session
limit negotiation. VTAM finds values for CNOS negotiation as follows:
v If the application program sets negotiation values on the CNOS session limits

control block using the APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS
macroinstruction, VTAM uses those values.

v If the application program does not specify a CNOS session limits control block,
VTAM builds one. VTAM uses the defined negotiation limits from the LU-mode
table to build the control block. These values would have to have been set
previously by specifying a DEFINE control block using the APPCCMD
CONTROL=OPRCNTL, QUALIFY=DEFINE macroinstruction. (You also can
issue the MODIFY DEFINE command to set defined negotiation limits.)

v If defined negotiation limits were not specified with an APPCCMD
CONTROL=OPRCNTL, QUALIFY=DEFINE macroinstruction, VTAM uses the
values of the parameters coded on the APPL definition statement.

v If parameters were not coded on the APPL definition statement, VTAM uses the
defaults for the parameters: (2,1,1). The defaults are explained in the z/OS
Communications Server: SNA Resource Definition Reference.

The values that can be negotiated during session limit negotiation are shown in
Table 15 on page 115.

114 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 15. Values and parameters used in session limit negotiation

Value Source Set by Stored

Defined negotiation
limits

DEFINE control block Application program using the
APPCCMD
CONTROL=OPRCNTL,
QUALIFY=DEFINE
macroinstruction

LU-mode
table

APPL definition
statement

Systems programmer LU-mode
table

VTAM default values
(2,1,1)

VTAM LU-mode
table

CNOS negotiation
limits

CNOS control block Application program using the
APPCCMD
CONTROL=OPRCNTL,
QUALIFY=CNOS
macroinstruction

LU-mode
table

VTAM using defined negotiation
limits from the DEFINE control
block or the APPL definition
statement

LU-mode
table

Local draining
responsibility

CNOS control block Application program using the
APPCCMD
CONTROL=OPRCNTL,
QUALIFY=CNOS
macroinstruction

CNOS
control
block

Remote draining
responsibility

CNOS control block Application program using the
APPCCMD
CONTROL=OPRCNTL,
QUALIFY=CNOS
macroinstruction (Remote side
might negotiate to not allow
draining)

CNOS
control
block

Local draining
acceptance

DEFINE control block Application program using the
APPCCMD
CONTROL=OPRCNTL,
QUALIFY=DEFINE
macroinstruction

LU-mode
table

APPL definition
statement

System programmer LU-mode
table

VTAM default value
(DDRAINL=NALLOW)

VTAM LU-mode
table

Session deactivation
responsibility

CNOS control block Application program using the
APPCCMD
CONTROL=OPRCNTL,
QUALIFY=CNOS
macroinstruction

CNOS
control
block

Chapter 6. Managing sessions 115

Table 15. Values and parameters used in session limit negotiation (continued)

Value Source Set by Stored

Local session
deactivation
acceptance

DEFINE control block Application program using the
APPCCMD
CONTROL=OPRCNTL,
QUALIFY=DEFINE
macroinstruction

LU-mode
table

APPL definition
statement

System programmer LU-mode
table

VTAM default value
(DRESPL=NALLOW)

VTAM LU-mode
table

Local security
acceptance level

DEFINE control block Application program using the
APPCCMD
CONTROL=OPRCNTL,
QUALIFY=DEFINE
macroinstruction

LU-mode
table

CNOS control block Application program using the
APPCCMD
CONTROL=OPRCNTL,
QUALIFY=CNOS
macroinstruction

LU-mode
table

APPL definition
statement

System programmer LU-mode
table

VTAM default value
(SECACPT=NONE)

VTAM LU-mode
table

Defined negotiation limits

The application program issues the APPCCMD CONTROL=OPRCNTL,
QUALIFY=DEFINE macroinstruction to set the defined negotiation limits specified
in the DEFINE control block. Otherwise, VTAM sets the default defined
negotiation limits using values on the APPL definition statement. (The defined
negotiation limits on the APPL definition statement are specified before a CNOS
negotiation takes place.)

Defined negotiation limits can be predefined for use during CNOS negotiation
when no other values are available. They are set for each logon mode and stored
in the LU-mode table with the session limits. They are different from session limits.

When VTAM is the target of a CNOS request, VTAM uses the defined negotiation
limits as the target application program's bid in the CNOS negotiation. These limits
are not necessarily the final negotiated limits.

For example, an application program might have (10,5,5) as the defined negotiation
limits for a logon mode, but when a CNOS negotiation completes with a partner
LU, the resulting session limits might be negotiated to (4,2,2). VTAM enforces the
(4,2,2) limits on that logon mode group.

The defined negotiation limits are also used when VTAM is the source side of the
CNOS request and the application program does not specify a CNOS session limits
control block.

116 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

How defined negotiation limits are set

When session limits are added to the LU-mode table, the defined negotiation limits
are set as follows:
v When the application program sets the values

If the application program issued the APPCCMD CONTROL=OPRCNTL,
QUALIFY=DEFINE macroinstruction to add negotiated limits to the LU-mode
table, VTAM reads the defined negotiation limits out of the DEFINE/DISPLAY
control block (ISTSLD structure) that was specified on the macroinstruction. See
“Defining negotiation limits and displaying session limits” on page 129 for more
information on how to issue a DEFINE macroinstruction.

v When VTAM sets the values
If VTAM is adding an LU-mode table entry (not modifying an entry) because a
CNOS request is being processed on the logon mode (on either the target or
source side), VTAM adds the LU-mode table entry and sets the defined
negotiation values using the corresponding parameters on the APPL definition
statement:

Parameter
Description

DSESLIM
Sets the defined overall session limit in the LU-mode table mode entry.
If this parameter is not coded on the APPL definition statement, VTAM
uses the default value of 2.

DMINWNL
Sets the defined number of guaranteed contention-winner sessions for
the local LU. If this parameter is not coded on the APPL definition
statement, VTAM uses the default value of 1.

DMINWNR
Sets the defined number of guaranteed contention-winner sessions for
the remote LU. If this parameter is not coded on the APPL definition
statement, VTAM uses the default value of 1.

For more information on the default values and on coding the APPL definition
statement, refer to the z/OS Communications Server: SNA Resource Definition
Reference.

Parameters on the APPL definition statement

In addition to the defined negotiation limits, you can define on the APPL definition
statement other parameters that VTAM uses during CNOS negotiation. The
application program sets these values in the CNOS session limits control block.
These values are exchanged between the two LUs during CNOS negotiation at the
same time the session limits are negotiated. The CNOS control block is specified on
the APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction.

The parameters of the APPL definition statement and their corresponding fields in
the CNOS session limits control block are shown in Table 16 on page 118. Refer to
the z/OS Communications Server: SNA Resource Definition Reference for detailed
information on coding these parameters. For the meaning and usage of these
parameters, see “Building a CNOS session limits control block” on page 118.

Chapter 6. Managing sessions 117

Table 16. APPL statement parameters and CNOS session control block fields

APPL Parameter Symbolic Name DSECT Name

DSESLIM SESSLIM SLCSESSL

DMINWNL MINWINL SLCMCWL

DMINWNR MINWINR SLCMCWP

DRESPL RESP SLCPRSPL

DDRAINL DRAINL SLCDRAL

Building a CNOS session limits control block

The CNOS session limits control block (ISTSLCNS) is used to:
v Provide the CNOS session limits that VTAM is to use to process a CNOS request

from an application program.
v Return the negotiated values—both to an application program that issues a

CNOS request and to an application program that is the target of a CNOS
request—provided the target application program has an ATTN exit.

Building a CNOS session limits control block is an optional action. If you request a
CNOS session limits control block by issuing the APPCCMD
CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction, set the AREA field of
the RPL to point to the control block and set the AREALEN field of the RPL to
decimal 16, the length of the control block.

If you provide the CNOS session limits control block, when the APPCCMD
CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction completes, VTAM sets
in the control block the updated values that were negotiated. For details on setting
the address of the control block and its length in the RPL, refer to the z/OS
Communications Server: SNA Programmer's LU 6.2 Reference.

Note: When a CNOS session limits control block is specified on the APPCCMD
CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction, initialize all fields in
the control block, even when only one field is to be changed. If the application
program does not specify a CNOS session limits control block, VTAM uses
previously defined negotiation limits found in the LU-mode table. For more
information on defined values, see “How defined negotiation limits are set” on
page 117. Table 17 shows the values for each field.

Layout of the CNOS session limits control block

Table 17 shows the layout of the control block for CNOS session limits.

Table 17. Layout of the CNOS session limits control block

Byte
(Hex) Bit Symbolic Name DSECT Name Usage

0–1 — SESSLIM1 SLCSESSL Session limit of mode name
group.

2–3 — MINWINL1 SLCMCWL Number of parallel sessions
of which the source side is
guaranteed to be the
contention winner.

118 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 17. Layout of the CNOS session limits control block (continued)

Byte
(Hex) Bit Symbolic Name DSECT Name Usage

4–5 — MINWINR1 SLCMCWP Number of parallel sessions
of which the partner LU is
guaranteed to be the
contention winner.

6 0 DRAINL1 SLCDRAL Whether the source side can
drain its allocation requests.

6 1 DRAINR1 SLCDRAP Whether the target side can
drain its allocation requests.

6 2 RESP1 SLCPRSPL The LU responsible for
deactivating the sessions as
a result of resetting the
session limit or changing the
contention-winner values for
parallel-session connections.

6 3 NBRMODE3 SLCALL Whether the resetting of the
session limits to 0 is to
apply for only the specified
mode name or for all mode
names that apply to the
partner LU.

6 4 SNGSESLU3 SLCSSLU The partner LU is a
single-session LU and does
not support parallel
sessions.

6 5 CONVSECL1 SLCLCONV Whether the local LU
accepts conversation
requests that include
security information from a
partner LU.

6 6 ALRDYVL1 SLCLAVFA Whether the already-verified
indicator can be accepted by
the local LU on conversation
requests.

6 7 PRSISTVL1 SLCLPV Whether
persistent-verification
indicators can be accepted
by the local LU on
conversation requests.

7 — (reserved)

8–9 — DSESLIM2 SLCDSESL The value for the maximum
session limit for the mode
name group. This value is
used when the application
program is the target side of
a CNOS request.

Chapter 6. Managing sessions 119

Table 17. Layout of the CNOS session limits control block (continued)

Byte
(Hex) Bit Symbolic Name DSECT Name Usage

A–B — DMINWNL2 SLCDMCWL The number of parallel
sessions of which the
application program is the
contention winner. This
value is used when the
application program is the
target side of a CNOS
request.

C–D — DMINWNR2 SLCDMCWP The number of parallel
sessions of which the
partner LU is the contention
winner. This value is used
when the application
program is the target side of
a CNOS request.

E 0 DDRAINL2 SLCDDRAL Whether the local LU
accepts permission to drain
its allocation requests. This
value is used when the
application program is the
target side of a CNOS
request.

E 1 DRESPL2 SLCDRSPL Whether the local LU is
willing to be responsible for
session deactivations. This
value is used when the
application program is the
target side of a CNOS
request.

E 2 DEFINE2 SLCDEFND Whether ATTN CNOS is
scheduled because of a
CNOS request processed on
the target side or because
the MODIFY DEFINE
command is issued.

F — (reserved)

The following notes apply to the entries in the Symbolic Name field.

1 These fields specify the input and return output. The output value might not be
the same as the input value.

2 These values are returned from CNOS and are set either with the values specified
on the APPL definition statement or with the APPCCMD CONTROL=OPRCNTL,
QUALIFY=DEFINE macroinstruction.

3 These fields only specify input.

The following information shows a description of the fields in the control block.
The DSECT name of the field is given in parentheses after the symbolic name used
in the text.

120 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

v ALRDYVL (SLCLAVFA) indicates whether the already-verified indicator can be
accepted by the local LU on conversation requests. If YES is specified, it also
must be specified on the CONVSECL parameter. See the “CONVSECL
(SLCLCONV)” description in this section for more information.
– B'0' (NO) specifies that the local LU does not accept already-verified requests.
– B'1' (YES) specifies that the local LU does accept already-verified requests.

v CONVSECL (SLCLCONV) specifies whether the local LU accepts conversation
requests that include security information from a partner LU. Security
information can include a password, an identifier, an optional profile, and other
indicators. If no session limits structure is provided on the CNOS request,
VTAM uses as the default the value provided by the SECACPT operand on the
APPL definition statement. This field is either YES or NO. Because this value
must be consistent across all sessions between the LU_mode pair, this value is
significant only when the session limits are being changed from 0 to a nonzero
value. Therefore, this field is used only for a CNOS request that is initializing
session limits from 0 to a nonzero value. It is ignored for a CNOS request that
simply changes session limits from one nonzero value to another.
– B'0' (NO) indicates that the LU will not accept FMH-5s that include security

fields.
– B'1' (YES) indicates that the LU accepts FMH-5s that include security fields.

v DDRAINL (SLCDDRAL) specifies whether the local LU accepts permission on
a CNOS request to drain its allocation requests. This field applies only when the
session limit is reset to 0. The application program can indicate either the value
ALLOW or NALLOW.
– B'0' (NALLOW) specifies that VTAM does not accept a CNOS request that

specifies that the LU can drain its allocation requests. If DDRAINL=NALLOW
is specified, VTAM negotiates the drain target value to indicate that no
draining is to be performed.

– B'1' (ALLOW) specifies that VTAM accepts a CNOS request that specifies that
the LU can drain its allocation requests. If DDRAINL=ALLOW is specified,
VTAM does not negotiate the drain target value that is carried in the received
CNOS request.

v DEFINE (SLCDEFND) specifies whether ATTN CNOS is scheduled because a
MODIFY DEFINE command is issued or because a CNOS request is processed.
– B'0' (NO) specifies that ATTN CNOS is scheduled because a CNOS request is

processed. This CNOS request may be the result of the following conditions:
- MODIFY CNOS issued locally.
- Automatic internal MODIFY CNOS issued locally.

– B'1' (YES) specifies that ATTN CNOS is scheduled because the MODIFY
DEFINE command is issued.

v DMINWNL (SLCDMCWL) contains the number of parallel sessions for which
the application program is guaranteed to be the contention winner. This value is
used to negotiate limits only when VTAM receives a CNOS initiated by the
partner. The specified number can range from 0–32767.
This field does not apply to single-session connections. For an initial CNOS
request, the partner might not be identified as single-session.

v DMINWNR (SLCDMCWP) contains the number of parallel sessions for which
the partner LU is guaranteed to be the contention winner. This value is used to
negotiate limits only when VTAM receives a CNOS initiated by the partner. The
specified number can range from 0–32767.
This field does not apply to single-session connections.

Chapter 6. Managing sessions 121

v DRAINL (SLCDRAL) specifies whether the source side can drain its allocation
requests. For parallel-session connections, the target side cannot negotiate this
value. This field applies only if the session limit is being reset to 0. The
application program can indicate either YES or NO for all mode names except
the SNASVCMG mode name. If the SNASVCMG mode name is specified,
VTAM sets DRAINL to NO.
– B'0' (NO) specifies that the source side cannot drain its allocation requests.

All requests currently awaiting allocation or subsequently issued at the source
side are rejected with a return code indicating the session limit is 0.

– B'1' (YES) specifies that the source side can drain its allocation requests. The
source side continues to allocate conversations to the sessions until no
requests are awaiting allocation, at which time its draining is ended.
Allocation requests that are issued at the source side subsequent to this
issuance of the APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS
macroinstruction while draining is taking place are added to the source side's
queue of allocation requests to be serviced. All allocation requests issued at
the source side after draining is ended are rejected with a return code
indicating the session limit is 0.

If the session limits structure is not specified, DRAINL defaults to NO.
v DRAINR (SLCDRAP) specifies whether the target side can drain its allocation

requests. This field applies only if the limit is being reset to 0. The application
program can indicate either YES or NO for all mode names except the
SNASVCMG mode name. If the SNASVCMG mode name is specified, VTAM
sets DRAINR to NO.
– B'0' (NO) specifies that the target side cannot drain its allocation requests. All

requests currently awaiting allocation or subsequently issued at the target
side are rejected with a return code indicating the session limit is 0. For
parallel-session connections, the target side cannot negotiate this field.
If DRAINR=NO is specified, this field is accepted for all mode names,
regardless of the session limit currently in effect.

– B'1' (YES) specifies that the target side can drain its allocation requests. The
target side continues to allocate conversations to the sessions until no requests
are awaiting allocation, at which time its draining is ended. All allocation
requests issued at the target side after draining is ended are rejected with a
return code indicating the session limit is 0. For parallel-session connections,
the target side can negotiate this value to NO, in which case the target side
cannot drain its allocation requests.

If the session limits structure is not specified, DRAINR defaults to NO.
v DRESPL (SLCDRSPL) specifies whether the local LU is willing to assume

responsibility for deactivating sessions if a CNOS request is received that
specifies it as the responsible LU. This value is for CNOS negotiation. The
application program can indicate a value of either ALLOW or NALLOW.
– B'1' (ALLOW) specifies that VTAM accepts a CNOS request that specifies that

the LU is responsible for deactivating sessions. If DRESPL=ALLOW is
specified, VTAM does not negotiate the responsibility value carried in the
received CNOS request.

– B'0' (NALLOW) specifies that VTAM does not accept a CNOS request that
specifies that the LU is responsible for deactivating sessions. If
DRESPL=NALLOW is specified, VTAM negotiates the responsibility value for
the CNOS reply to be the sender of the CNOS request.

v DSESLIM (SLCDSESL) contains the value for the maximum mode name group
session limit that VTAM is to accept when it receives a CNOS request. The
specified number can range from 0–32767.

122 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

This field is only for the target side of the CNOS negotiation. It does not apply
to single-session connections.

v MINWINL (SLCMCWL) specifies the number of parallel sessions of which the
source side is guaranteed to be the contention winner.
For parallel-session capable LUs, the specified session limit value can range from
0–32767, except for the SNASVCMG mode, which must have a value of 1 (when
SESSLIM=2) or 0 (when SESSLIM=0). For single-session capable LUs, the
specified session limit must be 1 or 0.
The value of MINWINL is determined as follows:
– If you specify a CNOS session limits control block on the APPCCMD

CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction, specify a
MINWINL value to use for the CNOS negotiation.

– If you do not specify a CNOS session limits control block, the current value of
the DMINWNL operand of the last APPCCMD CONTROL=OPRCNTL,
QUALIFY=DEFINE macroinstruction or the DMINWNL operand on the LU's
APPL definition statement is used. The value of the APPL definition
statement is used until an APPCCMD (CNOS or DEFINE) provides a new
value. For APPL definition statement default values, refer to the z/OS
Communications Server: SNA Resource Definition Reference.

v MINWINR (SLCMCWP) specifies the number of parallel sessions of which the
partner LU is guaranteed to be the contention winner.
For parallel-session capable LUs, the specified session limit value can range from
0–32767, except for the SNASVCMG mode, which must have a value of 1 (when
SESSLIM=2) or 0 (when SESSLIM=0). For single-session capable LUs, the
specified session limit must be 1 or 0.
The value of MINWINR is determined as follows:
– If you specify a CNOS session limits control block on the APPCCMD

CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction, specify a
MINWINR value to use for the CNOS negotiation.

– If you do not specify a CNOS session limits control block, the value of the
current DMINWNR operand of the last APPCCMD CONTROL=OPRCNTL,
QUALIFY=DEFINE macroinstruction or the DMINWNR operand on the LU's
APPL definition statement is used. The value of the APPL definition
statement is used until an APPCCMD (CNOS or DEFINE) provides a new
value. For APPL definition statement default values, refer to the z/OS
Communications Server: SNA Resource Definition Reference.

v NBRMODE (SLCALL) specifies whether the resetting of the session limit and
contention-winner polarity values to 0 is to apply for only the specified mode
name or for all mode names that apply to the partner LU. This field is specified
when the application program is changing the session limit and
contention-winner polarity values to 0. The application program can indicate
either ONE or ALL.
– B'0' (ONE) specifies that the session limit and contention-winner polarity

values for only the mode name specified in the LOGMODE operand on the
APPCCMD are to be reset to 0.

– B'1' (ALL) specifies that the session limit and contention-winner polarity
values for all mode names that apply to the partner LU are to be reset to 0
(the request is rejected if ALL is specified with a nonzero session limit),
except for SNASVCMG, which remains unchanged. ALL is applicable only to
parallel-session connections.
If the session limits structure is not specified, the value of the NBRMODE
parameter defaults to ONE.

Chapter 6. Managing sessions 123

v PRSISTVL (SLCLPV) specifies whether persistent-verification indicators can be
accepted by the local LU on conversation requests. If YES is specified, the value
of the CONVSECL parameter must also be YES. See the “CONVSECL
(SLCLCONV)” description in this section for more information.
– B'0' (NO) specifies that the local LU does not accept persistent-verification

indicators.
– B'1' (YES) specifies that the local LU does accept persistent-verification

indicators.
v RESP (SLCPRSPL) specifies which LU is responsible for deactivating the

sessions as a result of decreasing the session limits. The application program can
indicate a value of either LOCAL or REMOTE if the partner LU is
parallel-session capable and the mode name is not the SNASVCMG mode name.
Otherwise, VTAM sets the RESP parameter to LOCAL.
– B'0' (LOCAL) specifies that the source side is responsible for deactivating

sessions. The target side cannot negotiate this value.
– B'1' (REMOTE) specifies that the target side is responsible for deactivating

sessions. The target side can negotiate this value to LOCAL, in which case the
local LU becomes responsible.

The DRAINL and DRAINR fields determine when the responsible LU can
deactivate the sessions. (For DRAINL, if the local LU is responsible for
deactivating the session, VTAM does this on behalf of the LU.)
– If an LU is to drain its allocation requests, it continues to allocate

conversations to active sessions. The responsible LU deactivates a session only
when the conversation allocated to the session is deallocated and no request
is awaiting allocation to any session with the specified LU name and mode
name. The allocation of a waiting request takes precedence over the
deactivation of a session.

– If an LU is not to drain its allocation requests, the responsible LU deactivates
a session as soon as the conversation allocated to the session is deallocated. If
no conversation is allocated to the session, the responsible LU deactivates the
session immediately.

Active conversations are not deallocated abnormally. If the session limits
structure is not specified, the value of the RESP parameter defaults to LOCAL.
Although both VTAM and the application program can act as the LU, the
application program never deactivates a session.

v SESSLIM (SLCSESSL) specifies the maximum number of sessions that can be
activated between the source side LU and the target side LU on a particular
logon mode.
For parallel-session capable LUs, the specified session limit value can range from
0–32767, except for the SNASVCMG mode, which must have a value of 0 or 2.
For single-session capable LUs, the specified session limit must be 0 or 1.
The value of SESSLIM is determined as follows:
– If you specify a CNOS session limits control block on the APPCCMD

CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction, specify a
SESSLIM value to use for the CNOS negotiation.

– If you do not specify a CNOS session limits control block, the current value of
the SESSLIM operand of the last APPCCMD CONTROL=OPRCNTL,
QUALIFY=DEFINE macroinstruction or the DSESLIM operand on the LU's
APPL definition statement is used. The value of the APPL definition
statement is used until an APPCCMD (CNOS or DEFINE) provides a new
value. For APPL definition statement default values, refer to the z/OS
Communications Server: SNA Resource Definition Reference.

124 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

v SNGSESLU (SLCSSLU) specifies that the partner LU is a single-session capable
LU, and does not support parallel sessions or LU=OWN conversations. VTAM
uses this parameter to determine the indication of parallel-session support and
CNOS support that it specifies in BIND requests and responses. VTAM examines
the value of the SNGSESLU parameter only if an LU entry does not exist for the
partner LU in the LU-mode table. This is the case for the initial CNOS for a
mode name with a partner LU. When the supplied information indicates the
partner LU is single-session-capable, the partner LU's fully qualified name
(FQNAME) is not available and the name length (FQNLEN) is 0 until a
successful allocation completes. The application must check the FQNLEN field
and make sure it is not 0 before checking the FQNAME field.
The application program can indicate a value of either YES or NO.
– B'0' (NO) specifies that the partner LU supports parallel sessions and CNOS

exchanges. If this bit is set off, VTAM activates a SNASVCMG session as the
first session with the partner LU. If the partner LU does not support parallel
sessions, it can either negotiate the SNASVCMG mode name BIND to
single-session support, or reject the SNASVCMG mode name BIND indicating
that parallel sessions are not supported. For a SNASVCMG mode name BIND
negotiated to single-session support, VTAM ends the SNASVCMG mode
name session and marks the partner LU as single-session. Any session
activation requests or responses after the session capability has been
determined specify that parallel sessions and CNOS are not supported.

– B'1' (YES) specifies that the partner LU does not support parallel sessions or
CNOS exchanges. If this bit is set on for the initial CNOS request for a mode
name, VTAM subsequently sets off the parallel-session and CNOS support
indicators in the session parameters (used in any session activation requests
or responses sent to the partner LU) to indicate that the partner LU is
parallel-session-capable. If the bit is set on, VTAM does not activate a
SNASVCMG session while processing the CNOS request.

If the session limits structure is not specified, the SNGSESLU parameter defaults
to NO.

Draining and session deactivation responsibility

Application programs also use draining and session deactivation responsibility to
manage sessions.

Draining

Draining responsibility is negotiated during processing of a CNOS request.

Draining in VTAM LU 6.2:

In addition to conversations already in progress, either or both LUs can have
conversation requests outstanding from previous allocation macroinstructions.
When negotiating session limits to 0 with an APPCCMD CONTROL=OPRCNTL,
QUALIFY=CNOS macroinstruction, the LUs can specify whether to honor these
queued requests before deactivating sessions. The process of honoring queued
allocation requests in these circumstances is called draining.

Each LU can set draining to YES or NO. The value YES indicates that the queued
allocation requests are given a session. The value NO indicates that the queued
requests are failed and that appropriate return codes are passed back on an

Chapter 6. Managing sessions 125

APPCCMD CONTROL=ALLOC macroinstruction. Draining allows outstanding
transaction program requests to be honored before sessions with the partner LU
are deactivated.

If draining is allowed, new requests that are received before draining is complete
are also honored. If allocation requests are arriving faster than they can be
honored, the queue could theoretically grow during draining. As soon as VTAM
can empty the queue, draining is finished and new requests are rejected.

How an application program indicates draining:

An application program indicates:
v Draining responsibility by issuing the APPCCMD CONTROL=OPRCNTL,

QUALIFY=CNOS macroinstruction and specifying the CNOS session limits
control block where the values are set. DRAINL (SLCDRAL) is used for the
source side and DRAINR (SLCDRAP) for the target side of the CNOS request.

v Draining acceptance by issuing the APPCCMD CONTROL=OPRCNTL,
QUALIFY=DEFINE macroinstruction and specifying the DEFINE control block
where the values are set. The DDRAINL (SLDDDRAL) value is used when the
LU is the target side of a CNOS request. This macroinstruction is used when an
application program is defining its negotiation values to be used for a CNOS
request.

When VTAM builds and initializes the CNOS control block and a mode entry has
not been added to the LU-mode table, VTAM uses the values from the APPL
definition statement or the VTAM default values.

Negotiating draining capability:

The source LU can specify draining capability for itself and for its partner LU
(target) when issuing a CNOS request. It would use DRAINL (SLCDRAL) and
DRAINR (SLCDRAP), respectively.

The target LU cannot negotiate the draining capability of the source LU that makes
the CNOS request. The target LU must accept what the source LU has specified.
The target LU can negotiate the draining capability for its own side to indicate that
it will not enable draining on the target side.

The source LU that issues the CNOS request can prevent draining on the target
side by setting the value of the DRAINR parameter to NO in the CNOSsession
limits control block.

The draining options for the target LU are shown in Table 18.

Table 18. Draining options for the target LU

Source Side LU (DRAINR in
CNOS structure (SLCNS))

Target Side LU (DDRAINL
in DEFINE structure (SLD)) Target Side Options

NO YES Cannot support draining

NO NO Cannot support draining

YES NO Negotiates draining support
to NO and does not do
draining

YES YES Supports draining

126 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

When the CNOS request applies to all mode names, a value of YES for the
DRAINR parameter in the CNOS control block is ignored for a particular mode
name if draining on the target side for that mode name is currently not enabled
and the current session limit for that mode name is 0.

Terminating draining:

If draining is enabled and requested conversations are taking too long to complete,
an application program can try to terminate draining. A conversation already in
progress is not interrupted, but the draining indicator can be changed. If the
indicator is changed, queued conversation requests are not honored.

Application programs can alter the draining indicator by issuing an APPCCMD
CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction with the appropriate
draining indicator bits set off in the CNOS session limits control block. (In addition
to the SLCDRAP bit, the SLCPARMS field contains the SLCDRAL bit, the source
side draining indicator bit.)

If a CNOS request is issued that specifies a value of YES for the DRAINL
parameter for a mode name with a session limit of 0 and draining is not enabled
on the source side for that mode name, the macroinstruction is rejected with a
parameter error indication.

Session deactivation

Session deactivation responsibility determines which LU is responsible for
deactivating sessions to honor new session limits for a mode name group. This
value is negotiated during the processing of a CNOS request in which session
limits are being lowered or set to 0. When a CNOS request is issued to decrease
session limits, sessions are deactivated to reach the lowered session limits.

The application program indicates:
v Deactivation responsibility by issuing the APPCCMD CONTROL=OPRCNTL,

QUALIFY=CNOS macroinstruction and specifying the CNOS control block
where the values are set.

v Deactivation acceptance by issuing the APPCCMD CONTROL=OPRCNTL,
QUALIFY=DEFINE macroinstruction and specifying the DEFINE control block
where the values are set.

When VTAM builds and initializes the CNOS control block and a mode entry has
not been added to the LU-mode table, VTAM uses the values in the APPL
definition statement or the VTAM default values. When VTAM builds the CNOS
control block for the source side, the source-side VTAM deactivates sessions.

The indication for responsibility is either LOCAL, which refers to the source LU, or
REMOTE, which refers to the partner LU. If REMOTE is specified, the partner LU's
side of the session is responsible for deactivating sessions. The partner LU does not
handle deactivation if the partner is only single-session-capable or if the mode
name in question is SNASVCMG.

The deactivation bits and their locations are shown in Table 19.

Table 19. Deactivation bits and location

Bit Control Block

SLCDRSPL CNOS control block

Chapter 6. Managing sessions 127

Table 19. Deactivation bits and location (continued)

Bit Control Block

SLDDRSPL DEFINE/DISPLAY

In the case of single sessions or SNASVCMG sessions, if the local LU has
permission to deactivate the session, VTAM deactivates the session on behalf of the
local LU. (Single sessions and SNASVCMG sessions are the local LU.)

Application programs can divide session deactivation responsibility for different
mode names.

Security acceptance information

The LUs notify one another of the level of conversation-level security that they
accept on a logon mode.

Security level definition

The application program specifies the acceptance level for security using any of the
following macroinstructions:
v APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction

specifying the CNOS session limits control block
v APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE macroinstruction

specifying the DEFINE control block (target LU uses to negotiate acceptance)
v Alternate BIND using the APPCCMD CONTROL=OPRCNTL,

QUALIFY=ACTSESS macroinstruction to modify the session parameters.

If the application program issues a CNOS request but does not build a CNOS
control block, VTAM builds a CNOS control block and uses the values on the
APPL definition statement or the VTAM default values. For information on coding
the APPL definition statement, refer to z/OS Communications Server: SNA
Resource Definition Reference.

Overriding the default security acceptance level:

The application program can override the default security acceptance value found
in the LU-mode table. To do this, it specifies the security acceptance level
(CONVSECL, ALRDYVL, PRSISTVL) on the CNOS session limits control block
(ISTSLCNS) when it issues the APPCCMD CONTROL=OPRCNTL,
QUALIFY=CNOS macroinstruction.

Security manager product

If you have a security manager product, it can limit the highest level of security
that can be defined using the CNOS request or the APPL definition statement. (A
security manager product is required for session-level security.)

If the application program specifies a security acceptance level using the
APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction or the
APPCCMD CONTROL=OPRCNTL, QUALIFY=ACTSESS macroinstruction (to
modify the BIND response fields) and the security manager product also specifies
a security acceptance level, VTAM ensures that the acceptance level defined by

128 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

either macroinstruction is not greater than the acceptance level defined by the
security manager product. (A BIND can have a security level specified in a SCIP or
LOGON exit routine.)

Security indicators and subfields

The level of conversation-level security defines the fields in the FMH-5 that the
application program can use to implement conversation-level security. The FMH-5
can have both security indicators and subfields. The subfields can contain user
identifiers, passwords, and profiles that the application program can use to
implement conversation-level security.

For more information on the fields in the FMH-5 that are related to
conversation-level security, see “Verifying end users using conversation-level
security” on page 303. For more information on the architected LU 6.2 verbs
necessary to implement a security program, refer to SNA Transaction Programmer's
Reference Manual for LU Type 6.2.

Defining negotiation limits and displaying session limits

The DEFINE/DISPLAY control block (ISTSLD) is used to:
v Specify defined negotiation limits that VTAM uses in CNOS negotiation.
v Display CNOS session limits that are currently in effect.

You can add defined negotiation limits to the LU-mode table using the APPCCMD
CONTROL=OPRCNTL, QUALIFY=DEFINE macroinstruction and specifying the
DEFINE control block where the values are set.

You can display the values currently being used for CNOS negotiations using the
APPCCMD CONTROL=OPRCNTL, QUALIFY=DISPLAY macroinstruction to
specify the DISPLAY control block where the values are returned.

Initializing and pointing to the control block

Depending on which APPCCMD macroinstruction the application program issues,
the application program must initialize the DEFINE/DISPLAY control block and
supply an area for the control block.

When to Initialize the DEFINE/DISPLAY control block fields

Before issuing an APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE
macroinstruction, the application program initializes the DEFINE/DISPLAY control
block fields to the specific values to be used for setting defined negotiation limits.
The application program determines what values are to be used.

When to supply a 68-byte area for the control block

When issuing either the DEFINE or the DISPLAY macroinstruction, the application
program supplies a pointer to the control block in the AREA field of the RPL. The
AREALEN field in the RPL should be set to decimal 68, the length of the control
block.

Chapter 6. Managing sessions 129

When to supply a 40-byte area for the control block

If the APPCCMD CONTROL=OPRCNTL, QUALIFY=DISPLAY macroinstruction is
issued with the LOGMODE field specified as 0, or the LOGMODE field of the RPL
extension is set to 0, VTAM returns only the following data to the application
program:
v LU-related fields in the control block
v Session capability of the specified partner LU
v Some security information about the partner LU
v Partner LU's network-qualified name
v Sync point level
v Negotiated conversation capability

Because these values are contained in the first 40 bytes of the control block, the
application program can supply an area of only 40 bytes. For more information on
setting the control block address and length in the RPL fields, refer to z/OS
Communications Server: SNA Programmer's LU 6.2 Reference.

Limitations of the display function

Until VTAM receives a positive BIND response with a user data field containing
subfield TYPE=X'05' (the SLU network name), the partner LU's name is not in the
LU-mode table. In this situation you cannot display the partner LU's name using
the APPCCMD CONTROL=OPRCNTL, QUALIFY=DISPLAY macroinstruction or
using the DISPLAY, CNOS command and specifying the partner. Therefore, if an
application issues a CNOS macroinstruction and the RCPRI, RCSEC is
X'0000',X'0004', a subsequent DISPLAY may not contain the SLU network name
until a successful ALLOC is issued and a positive BIND response is received.

Layout of the DEFINE/DISPLAY control block

Table 20 shows the layout of the DEFINE/DISPLAY session limits control block.
The field descriptions of the DEFINE/DISPLAY session limits control block follow
the layout.

Table 20. Layout of the DEFINE/DISPLAY session limits control block

Byte
(Hex) Bit Symbolic Name DSECT Name Usage

0 0–1 SESSCAP2. SLDSCAP Session capability of partner
LU

0 2–3 SYNCLVL2 SLDSYNCH Negotiated synchronization
level

0 4–7 (reserved)

1 0 CONVSECV2 SLDCLSV Whether security
information is valid

1 1 CONVSECP2 SLDPCLSA Whether the partner LU
accepts security access
subfields

1 2 ALRDYVP2 SLDPAVFA Whether the partner LU
accepts the already-verified
indicator

130 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 20. Layout of the DEFINE/DISPLAY session limits control block (continued)

Byte
(Hex) Bit Symbolic Name DSECT Name Usage

1 3 PRSISTVP2 SLDPPV Whether the partner LU
accepts the
persistent-verification
indicator

1 4 CONVSECL1 SLDLCLSA Whether the local LU
accepts security access
subfields

1 5 ALRDYVL1 SLDLAVFA Whether the local LU
accepts the already-verified
indicator

1 6 PRSISTVL1 SLDLPV Whether the local LU
accepts the
persistent-verification
indicator

7 (reserved)

2 — FQNLEN2 SLDFQNLN Length of partner LU's
fully-qualified name

3–13 — FQNAME2 SLDFQNAM Partner LU's fully-qualified
name

14 0—1 CONVCAP2 SLDCNVCP Negotiated conversation
capability of partner LU

14 2—7 (reserved)

15 — NAMEUSE2 SLDNMUSE Form of name being used by
the local LU on sessions
with the partner LU

16 — NMTYPE2 SLDTYPE Type of LU entry in the
LU-mode table

17–27 — (reserved)

28–29 — DSESLIM1 SLDDSESL The value of the maximum
session limit for the mode
name. This value is used
when the application
program is the target side of
a CNOS request.

2A–2B — DMINWNL1 SLDDMCWL The number of parallel
sessions of which the
application program is the
contention winner. This
value is used when the
application program is the
target side of a CNOS
request.

2C–2D — DMINWNR1 SLDDMCWP The number of parallel
sessions of which the
partner LU is the contention
winner. This value is used
when the application
program is the target side of
a CNOS request.

Chapter 6. Managing sessions 131

Table 20. Layout of the DEFINE/DISPLAY session limits control block (continued)

Byte
(Hex) Bit Symbolic Name DSECT Name Usage

2E 0 DRESPL1 SLDDRSPL Whether the LU is willing to
be responsible for session
deactivations. This value is
used when the application
program is the target side of
a CNOS request.

2E 1 DDRAINL1 SLDDDRAL Whether the LU accepts
permission to drain its
allocation requests. This
value is used when the
application program is the
target side of a CNOS
request.

2E 2 DELETE1 SLDDELET Whether a mode name entry
can be deleted from the
LU-mode table

2E 3 AUTOSET3 SLDAUTOS Whether the AUTOSES field
can override the number of
contention-winner sessions
started automatically

2E 4 DELUNUSE SLDDNUNS Whether unusable logmode
entries are being deleted on
a MODIFY DEFINE
command

2E 5–7 (reserved)

2F 0 DRAINL2 SLDDRAL Whether the application
program can drain its
allocation requests

2F 1 DRAINR2 SLDDRAP Whether the partner LU can
drain its allocation requests

2F 2–7 (reserved)

30–31 — SESSLIM2 SLDSESSL Returns the session limit for
the current logon mode
name group

32–33 — MINWINL2 SLDMCWL Returns the current number
of parallel sessions of which
the application program is to
be the contention winner

34–35 — MINWINR2 SLDMCWP Returns the current number
of parallel sessions of which
the partner LU is to be the
contention winner

36–37 — AUTOSES1 SLDAUTO Specifies or returns the
number of
contention-winner sessions
that VTAM starts
automatically for the local
LU after the CNOS
negotiation

38–39 — SESSCNT2 SLDSESSC Returns the number of active
mode name group sessions

132 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 20. Layout of the DEFINE/DISPLAY session limits control block (continued)

Byte
(Hex) Bit Symbolic Name DSECT Name Usage

3A–3B — WINLCNT2 SLDWINLC Returns the number of
currently active sessions in
which the application
program is the contention
winner

3C–3D — WINRCNT2 SLDWINPC Returns the number of
currently active sessions in
which the partner LU is the
contention winner

3E–3F — FREECNT2 SLDFREEC Returns the number of free,
active sessions

40–41 — QALLOC2 SLDQALLC Returns the number of
queued ALLOCATE requests

42–43 — (reserved)

The following notes apply to the entries in the Symbolic Name field.

1 This field specifies input for the DEFINE command and returns output for the
DEFINE and DISPLAY commands.

2 This field returns only output.

3 This field specifies only input.

In the following description of the control block, the symbolic name of the field is
given, followed by the actual DSECT label in parentheses.
v ALRDYVL (SLDLAVFA) indicates that the local LU accepts the already-verified

indicator on conversation requests.
– B'0' (NO) specifies that the local LU does not accept already-verified requests.
– B'1' (YES) specifies that the local LU does accept already-verified requests.

v ALRDYVP (SLDPAVFA) indicates that the partner LU accepts the
already-verified indicator on conversation requests.
– B'0' (NO) specifies that the partner LU does not accept already-verified

requests.
– B'1' (YES) specifies that the partner LU does accept already-verified requests.

v AUTOSES (SLDAUTO) returns the value specified by the application program
for the number of contention-winner sessions that the application program
requests VTAM to activate automatically.

v AUTOSET (SLDAUTOS) specifies whether the content of the AUTOSES field is
to be used to override the default values provided by the APPL definition
statement. If a value is provided but the bit is not set, VTAM uses the default
values from the APPL definition statement.

v CONVCAP (SLDCNVCP) indicates the negotiated conversation capability of the
partner LU.
– B'10' (FULL-DUPLEX) indicates that sessions with the partner LU are capable

of full-duplex or half-duplex conversations and expedited data is allowed.
– B'01' (HALF-DUPLEX) indicates that sessions with partner LU are capable of

half-duplex conversations only.

Chapter 6. Managing sessions 133

– B'00' (UNKNOWN) indicates that the conversation capability of the partner
LU is unknown.

v CONVSECL (SLDLCLSA) indicates whether the application program accepts
FMH-5s that include access security subfields.
– B'0' (NO) indicates that the application program does not accept security

information when receiving allocation requests.
– B'1' (YES) indicates that the application program does accept security

subfields on an FMH-5.
v CONVSECP (SLDPCLSA) indicates whether the partner LU accepts FMH-5s

that include access security subfields.
– B'0' (NO) indicates that the partner LU does not accept security information

when receiving allocation requests.
– B'1' (YES) indicates that the partner LU does accept security subfields on an

FMH-5.
v CONVSECV (SLDCLSV) indicates whether the returned security information in

the control block is valid. VTAM does not set the security information until the
first session is established with a partner LU.
– B'0' (NO) indicates that a session has not been established with the partner

LU; therefore, the security information in the control block cannot be used.
– B'1' (YES) indicates that a session has been established and that the security

information in the control block can be used.
v DELUNUSE (SLDDNUNS) indicates that the MODIFY DEFINE command is

being used to delete LU-mode table entries that are marked UNUSABLE. For
more information about the types of LU-mode table entries, see “LU entries in
the LU-mode table” on page 113. For more information about using the MODIFY
DEFINE command, refer to z/OS Communications Server: SNA Operation.

v DDRAINL (SLDDDRAL) specifies whether VTAM should accept permission on
a CNOS request, on behalf of the local LU, to drain the local LU's allocation
requests. This field applies to the local LU when it is the target. (The local LU
can be either the source or the target.) This field applies only if the session limit
is being reset to 0.
– B'1' (ALLOW) specifies that VTAM accepts a CNOS request specifying the LU

can drain its allocation requests. If DDRAINL=ALLOW is specified, VTAM
performs no negotiation of the drain-target value carried in the received
CNOS request.

– B'0' (NALLOW) specifies that VTAM does not accept a CNOS request
specifying the LU can drain its allocation requests. If DDRAINL=NALLOW is
specified, VTAM negotiates the drain-target value to indicate no draining is to
be performed.

For single-session connections, this field is not applicable.

Note: If a CNOS request for all mode names is received, the DDRAINL
parameter is used to set the DRAINL value for each mode name associated with
the LU. The DDRAINL value has to be set for each mode name.

v DELETE (SLDDELET) indicates whether a mode name entry can be considered
for deletion from the LU-mode table. This field applies only if the session limit
is being reset to 0.
– B'1' (ALLOW) specifies that a mode name entry can be considered for

deletion from the LU-mode table.
– B'0' (NALLOW) specifies that a mode name entry will not be considered for

deletion from the LU-mode table.

134 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Note: Deletion saves storage because subsequent CNOS requests, if any, use the
values in the APPL definition statement.

v DMINWNL (SLDDMCWL) contains the number of parallel sessions of which
the application program is guaranteed to be the contention winner. This value is
used when the LU is the target side of the negotiation and also when the LU is
the source side but did not specify session negotiation limits on the APPCCMD
CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction. (When an LU sends
a CNOS request to the local LU, the local LU becomes the target .) The specified
number can range from 0–32767.
For single-session connections, this field is not applicable.

v DMINWNR (SLDDMCWP) contains the number of parallel sessions of which
the partner LU is guaranteed to be the contention winner. This value is used for
CNOS negotiation. The specified number can range from 0–32767. This value is
used when the LU is the target side of the negotiation and also when the LU is
the source side but did not specify session negotiation limits on the APPCCMD
CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction.
For single-session connections, this field is not applicable.

v DRAINL (SLDDRAL) indicates whether the application program currently
enables draining of allocation requests. This field applies only if the session limit
is 0. This field also is not applicable to the SNASVCMG sessions. This is not the
defined drain-local parameter, as provided on the APPL definition statement or
the APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE macroinstruction. It
is the actual drain-local parameter supplied through the APPCCMD
CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction or agreed upon
during a CNOS negotiation. (The defined drain-local parameter is returned to
the application program through the DDRAINL field described in this section.)
– B'0' (NO) specifies that the LU cannot drain its allocation requests. All

requests currently awaiting allocation, or subsequently issued, at the LU are
rejected with a return code indicating the session limit is 0.

– B'1' (YES) specifies that the LU can drain its allocation requests. The LU
continues to allocate conversations to the sessions until no requests are
awaiting allocation, at which time its draining is ended. Allocation requests
that are issued at the LU while draining is taking place are added to the LU's
queue of allocation requests to be serviced. All allocation requests issued at
the LU after draining is ended are rejected with a return code indicating the
session limit is 0.

v DRAINR (SLDDRAP) indicates whether the partner LU can drain its allocation
requests. This field applies only if the limit is 0.
– B'0' (NO) specifies that the partner LU cannot drain its allocation requests. All

requests currently awaiting allocation or subsequently issued at the partner
LU are rejected with a return code indicating the session limit is 0. For
parallel-session connections, the partner LU cannot negotiate this field.

– B'1' (YES) specifies that the partner LU can drain its allocation requests. The
partner LU continues to allocate conversations to the sessions until no
requests are awaiting allocation, at which time its draining is ended. All
allocation requests issued at the partner LU after draining is ended are
rejected with a return code indicating the session limit is 0.

Note: Because of the method of negotiating a CNOS request for all mode names,
the value of the DRAINR parameter cannot be the same as the value of the
partner LU's DRAINL parameter.

v DRESPL (SLDDRSPL) specifies whether the LU is willing to assume
responsibility for deactivating sessions if a CNOS request is received specifying

Chapter 6. Managing sessions 135

it as the responsible LU. VTAM handles this responsibility on behalf of the local
LU. This DRESPL value is used when the LU is the target side of the
negotiation. The application program can indicate either ALLOW or NALLOW.
– B'1' (ALLOW) specifies that VTAM accepts a CNOS request specifying that

the LU is responsible for deactivating sessions. If DRESPL=ALLOW is
specified, VTAM performs no negotiation of the responsibility value carried in
the CNOS request.

– B'0' (NALLOW) specifies that VTAM does not accept a CNOS request
specifying the LU is responsible for deactivating sessions. If
DRESPL=NALLOW is specified, VTAM negotiates the responsibility value for
the CNOS reply to be the sender of the CNOS request.

For single-session connections, this field is not applicable.

Note: When a CNOS request for all mode names is received from the partner
LU, VTAM assigns the responsibility for deactivating sessions to the source side
of the request.

v DSESLIM (SLDDSESL) contains the value of the maximum session limits for
the mode name group that VTAM is to accept when it receives a CNOS request,
or when the LU initiates a CNOS request and did not specify any session limits
for CNOS negotiation. The specified number can range from 0–32767.
This session limit value is used only for CNOS negotiation. For single-session
connections, this field is not applicable.

Note: The value specified for the DSESLIM parameter must be greater than or
equal to the value of the DMINWNL parameter plus the value of the
DMINWNR parameter.

v FQNAME (SLDFQNAM) contains the partner LU's fully qualified name. The
FQNLEN field contains the actual length of the name. The fully qualified
network name consists of an optional 1- through 8-byte network identifier and a
1- through 8-byte LU name. When present, the network identifier is
concatenated to the left of the LU name, using a separating period and has the
form NETID.name . When the network identifier is omitted, the period is omitted.
The fully qualified name is available only after successful establishment of a
session with the partner LU.

Note: The partner LU provides its fully qualified network name in the Userdata
subfield of the BIND. Because this name is optional information, it might not be
provided. It is returned in the SLD only when it has been included in the BIND.
It is not available until the LU receives a BIND response from the partner LU. If
a CNOS request is negotiated with a partner LU that is single-session-capable,
the name might not be available. In this case, the length field will be 0. Check
the FQNLEN (SLDFQNLN) field to determine whether it is not 0 before
checking the name.

v FQNLEN (SLDFQNLN) indicates the length of the partner LU's fully qualified
name, contained in the FQNAME field. The value of this field can range from
0–17. Zero is returned for the length if the fully qualified name is not available.
See the note in the description for the FQNAME field for information about
processing this field.

v FREECNT (SLDFREEC) returns the number of sessions active with the partner
LU that are currently available (free for use by a conversation).

v MINWINL (SLDMCWL) returns the current number of parallel sessions of
which the application program is guaranteed to be the contention winner. This is
not the defined value, as provided on the APPL definition statement or the
APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE macroinstruction. It is

136 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

the actual minimum contention-winner value supplied through an APPCCMD
CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction or agreed upon
during a CNOS negotiation. (The defined value is returned to the application
program through the DMINWNL field.)

v MINWINR (SLDMCWP) returns the current number of parallel sessions of
which the partner LU is guaranteed to be the contention winner. This is not the
defined value, as provided on the APPL definition statement or the APPCCMD
CONTROL=OPRCNTL, QUALIFY=DEFINE macroinstruction. It is the actual
minimum contention-winner value supplied through the APPCCMD
CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction or agreed upon
during a CNOS negotiation. (The defined value is returned to the application
program through the DMINWNR field.)

v NAMEUSE (SLDNMUSE) indicates how the application is identified to the
partner LU. This field can indicate whether the name used is a user variable, a
generic resource name, the application network name, or is unknown.

v NMTYPE (SLDTYPE) indicates how the LU-mode table has classified the name
for the partner LU. This field can indicate whether the name used is a supplied
name, variant name, received name, disassociated name, or unusable.

v PRSISTVL (SLDLPV) specifies whether the local LU accepts
persistent-verification indicators on conversation requests.
– B'0' (NO) specifies that the local LU does not accept persistent-verification

requests.
– B'1' (YES) specifies that the local LU does accept persistent-verification

requests.
v PRSISTVP (SLDPPV) specifies whether the partner LU accepts

persistent-verification indicators on conversation requests.
– B'0' (NO) specifies that the partner LU does not accept persistent-verification

requests.
– B'1' (YES) specifies that the partner LU does accept persistent-verification

requests.
v QALLOC (SLDQALLC) returns the number of queued ALLOCATE requests

when a DEFINE or DISPLAY request completes.
v SESSCAP (SLDSCAP) is the field in the DEFINE/DISPLAY session limits

structure that indicates the session capability of the partner LU. The possible
states that can be returned are:
– B'01' (PENDING_SINGLE) indicates that VTAM is in the process of

determining the session capability of the partner LU. The initial determination
is that the partner LU is not parallel-session capable. This state changes to
SINGLE after VTAM has confirmed the session capability. If this does not
occur, VTAM deletes the LU entry in the LU-mode table associated with the
partner LU.

– B'00' (SINGLE) indicates VTAM has determined the partner LU to be
single-session capable.
When the partner LU is single-session capable (SLDSINGL field of the
DEFINE/DISPLAY session limits structure), the partner name might be
missing in the returned information because the BIND response has not
returned. Check the FQNLEN (SLDFQNLN) field to be sure it is not 0 before
checking the FQNAME (SLDFQNAM) field for the partner LU's fully
qualified name.

– B'10' (PENDING_PARALLEL) indicates that VTAM is in the process of
determining the session capability of the partner LU. The initial determination
is that the partner LU is parallel-session capable. This state changes to either

Chapter 6. Managing sessions 137

SINGLE or PARALLEL after VTAM has confirmed the session capability. If
this does not occur, VTAM deletes the LU entry in the LU-mode table
associated with the partner LU.

– B'11' (PARALLEL) indicates VTAM has determined the partner LU to be
parallel-session capable.

v SESSCNT (SLDSESSC) returns the session count for the number of sessions
active currently with the partner LU that have the specified mode name.

v SESSLIM (SLDSESSL) is the field in the DEFINE/DISPLAY session limits
structure in which the session limit for the current mode name group is
returned. This is not the defined session limit, as provided on the APPL
definition statement or the APPCCMD CONTROL=OPRCNTL,
QUALIFY=DEFINE macroinstruction. It is the actual session limit supplied
through the APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS
macroinstruction or agreed upon during a CNOS negotiation. (The defined
session limit is returned to the application program through the DSESLIM field.)

v SYNCLVL (SLDSYNCH) indicates the negotiated level of synchronization.
– B'00' specifies that no synchronization level is supported.
– B'01' specifies that the confirm synchronization level is supported.
– B'10' specifies that the confirm and sync point levels are supported.

v WINLCNT (SLDWINLC) returns the number of currently active sessions for
which the application program is the contention winner.

v WINRCNT (SLDWINPC) returns the number of currently active sessions for
which the partner LU is the contention winner.

Example of setting the DEFINE/DISPLAY control block

The following example shows an application program with an ACB name of
APPLB setting the control block and issuing the APPCCMD to define negotiation
values of overall session limits of 12, 8 contention-winner sessions for APPLB, and
4 contention-winner sessions for the partner LU (12, 8, 4). The indications for
draining and mode deletion are set to indicate that the LU allows draining and
that this mode can be deleted from the LU-mode table. APPLB is defining these
negotiation values for sessions using the EXAMPLE mode with a partner LU called
APPLA. (In this example, study the description of the DEFINE/DISPLAY control
block and the ISTSLD DSECT. Table 20 on page 130 shows the layout of the
DEFINE/DISPLAY control block. “Defining negotiation limits and displaying
session limits” on page 129 discusses the fields contained in the control block. The
z/OS Communications Server: SNA Programmer's LU 6.2 Reference shows the
DSECT.)

138 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

In the example, the instructions to set the RPLAREA field and RPLRLEN field in
the RPL could have been omitted by using additional parameters on the
macroinstruction. It could have been coded as:

APPCCMD CONTROL=OPRCNTL, X
QUALIFY=DEFINE, X
RPL=RPLB, X
ACB=APPLB, X
AAREA=RPLBX, X
LUNAME=APPLB, X
LOGMODE=EXAMPLE, X
AREA=CBAREA, X
RECLEN=68

For a more detailed example of the use of the above macroinstruction and the
defined negotiation limits in a situation involving a partner LU, see “Example of
CNOS negotiation” on page 109.

The APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE macroinstruction can
be issued before a CNOS request. However, this function benefits only LU partners
that support parallel sessions. In other cases, the APPCCMD
CONTROL=OPRCNTL, QUALIFY=DEFINE macroinstruction might be issued after
a CNOS negotiation involving the partner LU has occurred and the LU entry has
been added to the LU-mode table. This might occur because the negotiation values
assigned automatically by the APPL definition statement are not appropriate for a
subsequent operation. The APPCCMD CONTROL=OPRCNTL,QUALIFY=DEFINE
macroinstruction can be used to raise and lower the negotiation values as needed.

Note: While the application program is active, it can use the APPCCMD
CONTROL=OPRCNTL, QUALIFY=DISPLAY macroinstruction to determine the

LA 10,CBAREA * LOAD ADDRESS OF CONTROL BLOCK
USING ISTSLD,10 * ESTABLISH ADDRESSABILITY
MVC SLDDSESL,=X’000C’ * SET OVERALL SESSION LIMITS FIELD
MVC SLDDMCWL,=X’0008’ * SET LOCAL CONTENTION WINNERS FIELD
MVC SLDDMCWP,=X’0004’ * SET PARTNER CONTENTION WINNERS FIELD
MVI SLDDEFPA, * SET DRAINING, DELETE FLAG FIELD BITS X

SLDDDRAL+SLDDELET
LA 8,RPLB * LOAD RPL ADDRESS
USING IFGRPL,8 * ESTABLISH RPL ADDRESSABILITY
ST 10,RPLAREA * PUT CONTROL BLOCK ADDRESS IN RPL
MVC RPLRLEN,CBLEN * PUT CONTROL BLOCK LENGTH IN RPL

*
APPCCMD CONTROL=OPRCNTL, X

QUALIFY=DEFINE, X
RPL=RPLB, X
AAREA=RPLBX, X
ACB=APPLB, X
LUNAME=APPLA, X
LOGMODE=EXAMPLE

•
•
•

CBAREA DS XL68 * STORAGE FOR CONTROL BLOCK
DS 0F * ALIGN TO FULLWORD BOUNDARY

CBLEN DC XF68 * LENGTH OF CONTROL BLOCK
RPLB RPL AM=VTAM * RPL STORAGE
RPLBX ISTRPL6 * RPL EXTENSION
APPLB ACB AM=VTAM,MACRF=LOGON,APPLID=APPLNAME * ACB STORAGE

Figure 21. Example of setting the DEFINE/DISPLAY control block

Chapter 6. Managing sessions 139

session limits. The operator can change the defined negotiation limits or CNOS
negotiation limits at any time by issuing the MODIFY CNOS command.

Displaying LU-mode data

An application program can query information in the LU-mode table by using the
APPCCMD CONTROL=OPRCNTL, QUALIFY=DISPLAY macroinstruction. The
application program specifies the DISPLAY control block on the macroinstruction
using the AREA and AREALEN input parameters. When the DISPLAY request
completes, the DISPLAY control block fields contain the information from the
LU-mode table.

VTAM returns both the actual session limit values in use and the set of defined
negotiation limits used for session limit negotiation purposes. It also returns some
additional session-related information, such as the number of free sessions
available (FREECNT) with a partner LU. (For details on the syntax and operands
for the macroinstruction, refer to z/OS Communications Server: SNA
Programmer's LU 6.2 Reference.)

Before the DISPLAY function can be used, information about partner LUs and
modes must be stored in the LU-mode table as the result of one of the following
items:
v Session-establishment
v CNOS processing
v A prior APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE

macroinstruction

See Table 20 on page 130 to determine the fields that can be set for CNOS
negotiation.

Example of displaying LU-mode data

As an example of displaying data, suppose an application program with an ACB
name of APPLA compares the number of active local contention-winner sessions
with the session limits value controlling the minimum number of
contention-winner sessions guaranteed to the application program. Assume that
the partner LU is APPLB and the mode is EXAMPLE. The following code might be
used to issue the APPCCMD CONTROL=OPRCNTL, QUALIFY=DISPLAY
macroinstruction to retrieve the information:

LA 9,RPLA * GET RPL ADDRESS
LA 11,RPLAX * GET RPL EXTENSION ADDRESS
LA 10,CBAREA * GET CONTROL BLOCK ADDRESS
USING ISTSLD,10 * ESTABLISH ADDRESSABILITY
L 8,CBLEN * GET CONTROL BLOCK LENGTH

*
APPCCMD CONTROL=OPRCNTL, X

QUALIFY=DISPLAY, X
RPL=(9), X
AAREA=(11), X
ACB=APPLA, X
OPTCD=SYN, X
LUNAME=APPLB, X
LOGMODE=EXAMPLE, X
AREA=(10), X
AREALEN=(8)

*
LTR 15,15 * CHECK GENERAL RETURN CODE IN 15

140 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE
CLC SLDMCWL,SLDWINLC * RETURN CODES OK - COMPARE VALUES
BH LOWROUT * IF ACTUAL COUNT LESS, GO SOMEWHERE
B NOTLOW * OTHERWISE, GO SOMEWHERE ELSE

•
•
•

CBAREA DS XL68 * STORAGE FOR CONTROL BLOCK
DS 0F * ALIGN TO FULLWORD BOUNDARY

CBLEN DC X’0000044’ * CONTROL BLOCK LENGTH
RPLA RPL AM=VTAM * RPL STORAGE
RPLAX ISTRPL6 * RPL EXTENSION STORAGE
APPLA ACB AM=VTAM,MACRF=LOGON,APPLID=APPLNAME * ACB STORAGE

You can specify AREA and AREALEN using a keyword on the macroinstruction or
by setting a keyword with a name in the APPL definition statement.

Setting session limits to 0

When session limits are set to 0, the sessions with the specified LU that is using
the specified mode name (LU-mode) are deactivated. Sessions that are not needed
currently are deactivated immediately. Sessions being used by a conversation are
not deactivated until the conversation finishes. In addition, if draining was set on,
draining now takes effect. For a description of when sessions are deactivated, see
“VTAM's role in session activation and deactivation” on page 145.

If the application program requests 0 session limits on a CNOS negotiation, the
session limits cannot be negotiated. The partner LU must accept 0 limits. At the
time of this CNOS request to set session limits to 0 the application program can
specify that the change is to apply to all mode names with the partner LU except
the SNASVCMG mode. The application program does this by setting the
NBRMODE (SLCALL) bit on in the CNOS session limits control block. (NBRMODE
can be set to ALL only when session limits are being set to 0.) VTAM can negotiate
session draining responsibility and draining capability on the target side.

If the CNOS request is for all mode names and target side draining was specified,
VTAM examines the negotiation value for each mode name and enables target side
draining only for those modes whose negotiation value allows it. If the CNOS
request specified that draining is not enabled on the target side, VTAM accepts that
restriction without negotiation.

Closing a mode

Closing a mode means to end all conversations on a mode and to prevent any
more conversations on that mode.

To close a mode, the application program must issue two macroinstructions:
v The APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE macroinstruction,

setting the defined limits to 0 and marking the mode (using the DELETE
bit—SLDDELET) as not eligible for deletion from the LU-mode table.

v The APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction,
setting session limits for the mode to 0 and specifying DRAINL=NO. (This
prevents the LU from honoring future conversation requests.)

Chapter 6. Managing sessions 141

The combination of these two macroinstructions issued in this manner ensures that
if a CNOS request that specifies that mode name is received from a partner LU, the
request is rejected and is returned to the partner LU with a return code of
MODE_NAME_CLOSED.

Not allowing the mode to be deleted when session limits are 0 prevents the
partner LU from allocating conversations on the mode. To obtain this control, the
application program sets the mode to 0 and marks the mode as not to be deleted.
This forces the mode to retain 0 as the session limit. Deleting a mode saves
storage, but because VTAM no longer has entries for this mode, the partner LU can
initialize the mode by issuing another CNOS request.

Closing a SNASVCMG mode

For sessions with parallel-session-capable partners, the SNASVCMG mode name
sessions are the last to be deactivated. Application programs should wait until the
SNASVCMG sessions with all partners of the local LU are deactivated before
closing the ACB. To help the application program determine the current number of
active sessions assigned to the partner LU, VTAM returns the RPL6LAST field in
the RPL extension when the ATTN(LOSS) exit is scheduled.

Deleting mode entries

To delete a mode entry, the application program issues the following
macroinstructions:
v The APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE macroinstruction,

setting the defined limits to 0 and marking the mode name as a candidate for
deletion with the DELETE bit (SLDDELET) set on in the DEFINE/DISPLAY
session limits control block.

v The APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction,
setting session limits for the mode to 0.

The application program can issue the QUALIFY=DEFINE request either before or
after the CNOS request. As long as the negotiation values and session limits are
both 0 and the mode name has been marked for deletion, the mode name will be
deleted.

Additional session limit considerations

In addition to specifying the negotiation values, you might need to handle the
following items:
v Parallel session support
v Session limits for single-session partners
v Session limits for SNASVCMG mode name

Parallel session support

VTAM receives data from the partner LU that indicates the partner's support of
parallel sessions. The application program interrogates VTAM to determine the
partner's support of parallel sessions.

142 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

How VTAM receives indicators

If the partner LU is not parallel-session capable, it indicates this to VTAM in any of
the following ways:
v Partner LU receives the BIND.

– The partner LU can negotiate the BIND and send back a positive response
that indicates that it supports only single sessions. (It changes the
parallel-session support bit and the CNOS support bit 6 and 7 in byte 24 of
the BIND response.) In this case, VTAM deactivates the SNASVCMG session
and marks the session partner as single-session capable.

– The partner LU can reject the BIND, sending a negative BIND response or
UNBIND with a sense code of X'0835'xxxx, where xxxx can be either the offset
of the first character of the SNASVCMG mode name or X'0018' (the offset in
the BIND of the byte containing the indication of parallel-session support).
When this occurs, VTAM concludes that the partner is single-session capable.

v Partner LU sends the BIND.
If VTAM receives a session-initiation request from the partner LU, VTAM
determines from the BIND whether the partner is single- or parallel-session
capable.

How an application program interrogates VTAM

To determine the capability of a potential session partner, the application program
can issue the APPCCMD CONTROL=OPRCNTL, QUALIFY=DISPLAY
macroinstruction with a mode name of X'0' and specify the DISPLAY control block.
The returned SLDSCAP field in the DISPLAY control block indicates whether the
partner LU supports parallel sessions. (The AREA field in the RPL points to the
DEFINE/DISPLAY control block.) This method can be used only after a CNOS
request that involves the partner LU has completed.

Note:

1. Even if parallel sessions are not going to be used by an application program, an
entry for the SNASVCMG mode should be included in an installation's logon
mode table. VTAM can use this mode internally as part of its processing for
session limits with single-session partners if VTAM does not already know the
session capability of the partner LU.

2. If a CNOS request other than (1,1,0) is specified to a partner LU that is only
single-session capable, a session will not be started automatically regardless of
the setting of AUTOSES.

Session limits for single-session-capable partners

CNOS negotiation does not occur when session limits are set with a
single-session-capable partner. A single-session-capable LU is an LU that can have
only one active session at a time with a partner LU. Therefore, the only nonzero
session limits it can use are (1,1,0), (1,0,1), or (1,0,0). They can have only one mode
with nonzero session limits.

VTAM determines single-session or parallel-session capability in one of the
following ways:
v The application program can specify the session capability of the partner with

the SLDSCAP bit field in the CNOS session limits control block. Setting the bit
on indicates that the partner does not support parallel sessions. (This is
applicable only for the first CNOS request involving the partner LU.)

Chapter 6. Managing sessions 143

v For an initial CNOS request with a partner LU, where the application program
does not set the session capability indicator bit (SLDSCAP), VTAM assumes the
partner LU is parallel-session capable and attempts to establish a SNASVCMG
mode session to negotiate the session limits. VTAM receives the information
regarding the partner's session capability, and the application program issues the
APPCCMD CONTROL=OPRCNTL, QUALIFY=DISPLAY macroinstruction to
determine the partner's session capability. (This is true regardless of the mode to
which the CNOS request applies.)

v For SLU session initiation, VTAM will use the parallel/single session indicated
in the CINIT to force a nonparallel session starting BINPSS=0 on PSERVIC.

The default session limits used for single-session LUs are shown in Table 21.

Table 21. Default session limits for single-session partners

How Capability is Detected Default Session Limits

LU-mode table indicates partner LU is
single-session capable.

(1,1,0)

LU-mode table indicates partner LU is
pending parallel capable but partner LU
actually is single-session capable.

(1,0,0)

BIND negotiation received from
single-session-capable LU and no LU entry
exists in the LU-mode table.

(1,0,0)

Some types of the APPCCMD CONTROL=ALLOC macroinstruction are not
appropriate for single-session LUs. For example, the APPCCMD
CONTROL=ALLOC, QUALIFY=CONWIN macroinstruction and the APPCCMD
CONTROL=ALLOC, QUALIFY=IMMED macroinstruction are possible for one of
the LUs, the contention winner, and the contention-winner role can be reversed at
BIND (not at CNOS negotiation). The APPCCMD CONTROL=ALLOC,
QUALIFY=ALLOCD macroinstruction is recommended for single-session LUs.

Note: When VTAM receives a BIND request for a single-session-capable LU and
no LU-mode entry exists for the LU, VTAM creates an LU-mode entry with session
limits of (1,0,0) for the LU. Because of these limits, the application program
receiving the BIND cannot successfully issue an APPCCMD CONTROL=ALLOC,
QUALIFY=CONWIN macroinstruction once the session is available.

Session limits for SNASVCMG mode name

Additional session limit considerations apply when changing the session limits for
the SNASVCMG mode name. This is a special mode name that VTAM uses to
exchange information with other LUs in implementing the LU 6.2 architecture.
(Issuing a CNOS request to change the session limits for the SNASVCMG mode
name alters certain information only for the local LU. The partner LU is not
notified of the changes.)

Application programs can issue commands to change the session limits for this
mode name. However, the maximum number of sessions can only be 2 on this
mode name, and the maximum number of contention-winner or contention-loser
sessions can only be 1. Therefore, the session limits for the SNASVCMG mode are
set to (2,1,1) when active and (0,0,0) when reset.

144 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Note: If default session limits of (1,1,0) are set for a single-session capable LU and
AUTOSES is nonzero, one contention winner session will be activated on behalf of
the application.

The session limits for the SNASVCMG mode name can be 0 only if all other
session limits with a partner LU are also 0. In addition, no queued conversation
requests can be awaiting completion. (For information on how the application
program can specify whether queued requests are honored, see “Draining and
session deactivation responsibility” on page 125.)

VTAM allows CNOS requests for modes other than the SNASVCMG mode to be
issued without requiring the application program to first issue a CNOS request for
the SNASVCMG mode. If the application program does not issue a CNOS request
for the SNASVCMG mode, VTAM:
v Issues the CNOS request for the SNASVCMG mode on behalf of the application

program
v Adds the SNASVCMG mode to the LU-mode table
v Updates the SNASVCMG mode session limit to a value of 2

This allows the successful completion of a CNOS without the additional overhead
of issuing a CNOS request against the SNASVCMG mode.

If VTAM handles the CNOS request of the SNASVCMG mode, the results might be
slightly different than when the application program issues the CNOS request. For
example, if the application program issues the CNOS request for the SNASVCMG
mode, the usage of the AUTOSES operand immediately becomes applicable for the
SNASVCMG mode. If VTAM handles the CNOS request, the AUTOSES operand is
not immediately activated for the SNASVCMG mode; VTAM starts only the
sessions it needs for the SNASVCMG.

Activating and deactivating sessions

Both the application program and VTAM can play a role in session activation and
deactivation.

VTAM's role in session activation and deactivation

CNOS requests frequently cause sessions to be activated or deactivated.

Note: If a CNOS request is issued for a partner LU that is an independent LU, the
request to start a session does not complete if not active SNASVCMG session exists
and if one cannot be activated. The request completes only after a session can be
established with the independent LU and the CNOS negotiation can be performed.

When VTAM activates sessions

VTAM usually activates sessions only as needed to meet conversation requests. If
the session limit is raised as a result of a CNOS negotiation, VTAM can activate
sessions up to the new session limit. VTAM does not activate sessions that would
exceed the current negotiated session limits.

Chapter 6. Managing sessions 145

You can force VTAM to activate sessions as soon as the session limits on a mode
are negotiated by using the AUTOSES parameter. If you code the AUTOSES
parameter on the APPL definition statement, VTAM activates contention-winner
sessions up to the lesser of:
v New minimum number of contention-winner sessions
v Number of sessions specified for the AUTOSES value on the APPL definition

statement
v Number of sessions specified for the AUTOSES value on the APPCCMD

CONTROL=OPRCNTL, QUALIFY=DEFINE macroinstruction

The AUTOSES value specifies the number of contention winner sessions VTAM
will maintain. VTAM automatically reestablishs sessions when AUTOSES is
specified. For example, if the minimum negotiated contention winner limit is 5 and
the AUTOSES value is 4, after the CNOS negotiation for the mode, VTAM
automatically activates four sessions. When a session is deactivated, VTAM
automatically starts a new session.

A CNOS that lowers the minimum number of contention winners to a value less
than the value of AUTOSES causes VTAM to deactivate sessions as they become
free.

Care should be taken when specifying the AUTOSES value. The operator may not
be able to bring down unwanted sessions. A terminate request can result in VTAM
starting a new session as stated above.

When VTAM deactivates sessions

VTAM deactivates sessions only when they are not currently assigned to a
conversation and the number of sessions exceeds the negotiated session limits for
the mode, and VTAM is responsible for deactivation. If session limits are lowered
as the result of a CNOS negotiation, VTAM deactivates sessions to reach the lower
session limits.

The negotiated draining value affects when sessions are deactivated. See “Draining
and session deactivation responsibility” on page 125 for more information on
draining.

If the application program specifies ATTNLOSS=ALL on the APPL definition
statement, VTAM schedules the ATTN(LOSS) exit when each session is
deactivated. Otherwise, VTAM schedules the ATTN(LOSS) exit when the last
session on the mode is deactivated.

VTAM returns the RPL6LAST field when the ATTN(LOSS) exit is scheduled. This
provides information to the application program about the active sessions for the
partner LU. RPL6LAST is found in the ISTRPL6 DSECT. The constant values for
RPL6LAST are shown in Table 22.

Table 22. Constant values for RPL6LAST

Value Description

RPL6NLST Sessions exist for the specified mode.

RPL6MOD Last session deactivated for the specified mode.

RPL6NCTL Last session deactivated for non-control modes (all but the
SNASVCMG mode).

RPL6ALL All sessions for this LU have been deactivated.

146 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Deactivation of sessions with parallel-session-capable partners

For sessions with parallel-session-capable partners, the SNASVCMG mode name
sessions are the last to be deactivated. Application programs should wait until the
SNASVCMG sessions with all partners of the local LU are deactivated before
closing the ACB (access method control block). To help the application program
determine the current number of active sessions assigned to the partner LU, VTAM
returns the RPL6LAST field in the RPL extension when the ATTN(LOSS) exit is
scheduled.

Application program's role in session activation and
deactivation

When CNOS negotiation occurs, session limits might increase or decrease as a
result of the negotiation. The resulting change in the session limits might cause
VTAM to activate or deactivate sessions. A conversation allocation request also
might cause session activation.

Application programs with LOGON and SCIP exits can respond to session
activation requests by specifying QUALIFY=ACTSESS or QUALIFY=DACTSESS
and supplying a different set of session parameters or stopping a session from
being activated.

For VTAM LU 6.2 sessions, LOGON and SCIP exits are scheduled as shown in
Table 23.

Table 23. LOGON and SCIP exits are scheduled

Exit Scheduled When

LOGON VTAM activates a session in response to an allocation
request and receives a CINIT request.

SCIP VTAM receives a BIND as the result of an allocation request
by a partner LU, or VTAM receives a session request as the
result of a CNOS request by a partner LU.

The LOGON exit is not scheduled when VTAM activates a session for use in
negotiating session limits on a CNOS request. (This is a SNASVCMG mode
session.)

For detailed information on SCIP and LOGON exits, refer to z/OS
Communications Server: SNA Programming.

Determining session type after LOGON exit

After the LOGON exit is driven, the application program checks the CINIT to
determine whether the session is an LU 6.2 session. If bytes 14 and 15 of the BIND
image in the CINIT are X'0602', the CINIT represents an LU 6.2 session. (The high
order bit of byte 14 is not used in the comparison of bytes 14 and 15 to X'0602'.) If,
in addition, the RPLVACS bit is on in the read-only RPL, the session is
VTAM-initiated.

The application program can respond to a VTAM-initiated LU 6.2 session request
with one of the following macroinstructions:

Chapter 6. Managing sessions 147

v APPCCMD CONTROL=OPRCNTL, QUALIFY=ACTSESS to accept new sessions
v APPCCMD CONTROL=OPRCNTL, QUALIFY=DACTSESS to reject new sessions

If the session is not VTAM-initiated, the application program can change the
session parameters to create a non-LU 6.2 session and accept the session with a
non-LU 6.2 record API macroinstruction. For more details about the LOGON exit,
see “LOGON” on page 291.

Determining session type after SCIP exit

After the SCIP exit is driven, the application program checks the RPLVACS bit in
the read-only RPL supplied in the parameter list to determine if the session is an
LU 6.2 session. If this bit is set on, the application program should respond to the
session request with one of the following macroinstructions:
v APPCCMD CONTROL=OPRCNTL, QUALIFY=ACTSESS to accept new sessions
v APPCCMD CONTROL=OPRCNTL, QUALIFY=DACTSESS to reject new sessions

For more details about the SCIP exit, see page “SCIP” on page 293.

When the application program issues the APPCCMD CONTROL=OPRCNTL,
QUALIFY=ACTSESS or APPCCMD CONTROL=OPRCNTL, QUALIFY=DACTSESS
macroinstruction, it must include the communication identifier (CID) of the
session. The CID is found in the parameter list that VTAM supplies in register 1
when the exit is scheduled. The location of the CID is shown in Table 24.

Table 24. Locating the Communication ID (CID)

Exit CID Location

LOGON Word 6 of the parameter list

SCIP Word 2 of the parameter list

The ARG field on the APPCCMD macroinstruction is set to the CID when the
macroinstruction is issued.

For details on the syntax and operands for the macroinstructions, refer to z/OS
Communications Server: SNA Programmer's LU 6.2 Reference.

How to provide different session parameters

To supply different session parameters, the application program builds a BIND
image and passes its address on the APPCCMD CONTROL=OPRCNTL,
QUALIFY=ACTSESS macroinstruction.

Application programs without a LOGON or SCIP exit cannot alter session
parameters. In this case, VTAM performs the LOGON or SCIP exit functions.

Application programs are limited in what they can specify when changing the
BIND and BIND response. If the application program uses the APPCCMD
CONTROL=OPRCNTL, QUALIFY=ACTSESS macroinstruction, VTAM
automatically overrides anything the application program specifies for certain
BIND image fields. If the application program does not plan to specify new session
parameters, set the RPL's AREA field to 0. Otherwise, VTAM assumes that the
contents of the field are an address for new parameters.

For more information on the parameter values of the BIND image, see “BIND
image and response” on page 149.

148 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Example of accepting a session

Suppose that an application program called APPLA has had its SCIP exit
scheduled. The application program checks that the session will be an LU 6.2
session and then issues an APPCCMD macroinstruction to establish the session.
This is shown in the following example:

L 10,16(,1) * GET RPL ADD. (5TH WORD OF PARM LIST)
USING IFGRPL,10 * ESTABLISH ADDRESSABILITY
TM RPLCNTDC,RPLTBIND * WAS EXIT DRIVEN FOR BIND?
BNO NOTBIND * GO ELSEWHERE FOR OTHER REQUESTS
L 9,4(,1) * GET CID (2ND WORD OF PARM LIST)
TM RPLCHN,RPLVACS * IS THIS BIND FOR AN LU 6.2 SESSION?
BNO NONAPPC * GO ELSEWHERE FOR OTHER SESSION TYPES

*
* EXIT WAS DRIVEN FOR 6.2 BIND - ACCEPT IT WITH APPCCMD.
*

APPCCMD CONTROL=OPRCNTL, X
QUALIFY=ACTSESS, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
ARG=(9), X
AREA=0

•
•
•

RPLA RPL AM=VTAM * RPL STORAGE
RPLAX ISTRPL6 * RPL EXTENSION STORAGE
APPLA ACB AM=VTAM,MACRF=LOGON,APPLID=APPLNAME * ACB STORAGE

BIND image and response

Table 26 on page 150 and Table 27 on page 157 indicate the BIND fields that an
application program can set and those that VTAM sets. The values for fields that
the application program can set are obtained as shown in Table 25.

Table 25. LOGON and SCIP exits and the BIND

Application Program BIND Field Value Obtained

Has no LOGON exit or does not supply a BIND image
request (session parameters)

From the corresponding field
in the pending CINIT request
or is set by VTAM

Has no SCIP exit or does not supply a BIND image response
(session parameters)

From the corresponding field
in the received BIND or is set
by VTAM

The options available to an application program are listed in Table 26 on page 150
and Table 27 on page 157. These options apply only when VTAM sends the BIND
or BIND image.

Note: The application program might provide session parameters. These
parameters, if provided, do not include the BIND request code byte. If the BIND
image that is received is to be mapped with the ISTDBIND DSECT, base the
DSECT on byte 1 of the BIND image, not byte 0, which contains the X'31' request
code.

For example, if you specify the BIND image using the RPLAREA of the APPCCMD
CONTROL=OPRCNTL, QUALIFY=ACTSESS macroinstruction, the address
specified in the RPLAREA should be the beginning of the ISTDBIND. It begins

Chapter 6. Managing sessions 149

with the BIND format and type that follows the X'31' request code. Refer to z/OS
Communications Server: SNA Programmer's LU 6.2 Reference for the ISTDBIND
DSECT.

Although architecturally the PLU name in the BIND is a variable-length field, the
ISTDBIND DSECT treats it as an 8-byte name. If the actual name is fewer than 8
bytes, pad it with blanks when using ISTDBIND to build the session parameters.
The BIND area must match the ISTDBIND DSECT, not the BIND RU.

Byte 13 of the ISTDBIND (byte 14 of the BIND RU) is the first byte of the
presentation services usage field, which continues through byte 24 of the
ISTDBIND (byte 25 of the BIND RU). This field is used to specify optional
protocols or data streams that apply to the specific type of LU. However, an LU 6.2
application program has control of only byte 23 of the BIND RU.

Some fields that VTAM sets in the BIND are determined by vectors that are passed
to VTAM when the application opens an ACB. These vectors are located in the
application-ACB vector list and mapped by the ISTVACBV DSECT. See “Vector
lists used during OPEN processing” on page 26 for more information.

For information on setting the session parameter fields, refer to z/OS
Communications Server: SNA Programming.

Table 26. Bind request unit fields the application program can set

BIND RU ISTDBIND Use Application's Options VTAM's Action

Byte 0 (Not present) Request code Not accessible to the
application program

VTAM sets to X'31'.

Byte 1 Byte 0
BINFMTY

Format and type

Bit Meaning

0–3 Format

4–7 Type

VTAM ignores or overrides
application program's
setting.

VTAM sets to X'00'.

Byte 2 Byte 1
BINFM

FM profile VTAM ignores or overrides
application program's
setting.

VTAM sets to X'13'.

Byte 3 Byte 2 BINTS TS profile VTAM ignores or overrides
application program's
setting.

VTAM sets to X'07'.

Byte 4 Byte 3
BINPRIP

FM usage, PLU

Bit Meaning

0 Chaining

1 Request control

2–3 Chain response

4–6 Reserved

7 Send end bracket
indicator

VTAM ignores or overrides
application program's
setting.

VTAM sets to X'B0'.

150 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 26. Bind request unit fields the application program can set (continued)

BIND RU ISTDBIND Use Application's Options VTAM's Action

Byte 5 Byte 4
BINSECP

FM usage, SLU

Bit Meaning

0 Chaining

1 Request control

2–3 Chain response

4–6 Reserved

7 Send end bracket
indicator

VTAM ignores or overrides
application program's
setting.

VTAM sets to X'B0'.

Byte 6 Byte 5
BINCMNP

FM usage, common

Bit Meaning

0 Segmenting

1 FM Header use

2 Bracket usage

3 Bracket term rule

4 Alternate code

5–6 Reserved

7 BIND RSP queue
capability

VTAM ignores or overrides
application program's
setting.

VTAM sets to X'50'.

Chapter 6. Managing sessions 151

Table 26. Bind request unit fields the application program can set (continued)

BIND RU ISTDBIND Use Application's Options VTAM's Action

Byte 7 Byte 6
BINCMNP2

FM usage, common

Bit Meaning

0–1 Send/Receive
Mode

VTAM ignores or overrides
application program's
setting.

VTAM sets to half-duplex
flip-flop (B'10') if the
application specified
PARMS=(FDX=NO), or
defaulted this field on the
ACB. VTAM sets to B'00'
Full-Duplex if the
application specified
PARMS=(FDX=YES) on the
ACB.

2 Symmetric
responsibility for
recovery

VTAM ignores or overrides
application program's
setting.

VTAM always sets this
value to B'1', symmetric
responsibility for recovery.

3 Primary/
secondary

Primary

1=Primary is
brackets first
speaker and
contention winner;
secondary is
brackets bidder
and contention
loser.

Secondary

0=Secondary is
brackets first
speaker and
contention winner;
primary is
brackets bidder
and contention
loser.

VTAM ignores or overrides
application program's
setting.

VTAM sets to B'1' or B'0'
depending on session
polarity.

4–5 Alternate code
processing
identifier

VTAM ignores or overrides
application program's
setting.

VTAM APPC code sets to
B'00'.

6 Control vectors
are included after
the SLU name

VTAM ignores or overrides
application program's
setting.

VTAM's APPC code sets to
B'0'. Subsequent processing
may set to B'1'.

7 Reset state for
Half-Duplex
flip-flop (for
example, at start
of session.)
1=Primary sends
first.

VTAM ignores or overrides
application program's
setting.

VTAM sets to B'1'.

152 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 26. Bind request unit fields the application program can set (continued)

BIND RU ISTDBIND Use Application's Options VTAM's Action

Byte 8 Byte 7
BINAPACE

SLU's send pacing window

Bit Meaning

0 Staging indicator

1 Reserved

2–7 Secondary TC's
send window size

VTAM ignores or overrides
application programs'
setting.

VTAM sets bits 0–1. Bits
2–7 are copied and used
for tuning in adaptive
session pacing. Adaptive
session pacing is always
used unless the pacing
stage endpoints are not at
the appropriate level.

Byte 9 Byte 8
BINRPACE

SLU's receive pacing
window

Bit Meaning

0 Adaptive pacing

1 Reserved

2–7 Secondary TC's
receive window
size

VTAM ignores or overrides
application programs'
setting.

VTAM sets bit 0 to B'1'.
Bits 2–7 are copied and
used for tuning in adaptive
session pacing.

Byte 10 Byte 9
BINRUSZ

SLU's maximum RU size Application program can
set from X'80'–X'FF'.

If the application program
sets maximum RU size to 0
(unspecified) or less than
256, VTAM overrides this
value with a value of 4096
(X'89').
Note: RU sizes
corresponding to values
X'01' through X'7F' are not
supported architecturally.
The high order bit of the
maximum RU size must be
set to 1 for the byte to be
interpreted as a supported
value.

Byte 11 Byte 10
BINPRUSZ

PLU's maximum RU size Application program can
set from X'80'–X'FF'.

If the application program
sets maximum RU size to 0
(unspecified) or less than
256, VTAM overrides this
value with a value of 4096
(X'89').
Note: RU sizes
corresponding to values
X'01' through X'7F' are not
supported architecturally.
The high order bit of the
maximum RU size must be
set to 1 for the byte to be
interpreted as a supported
value.

Chapter 6. Managing sessions 153

Table 26. Bind request unit fields the application program can set (continued)

BIND RU ISTDBIND Use Application's Options VTAM's Action

Byte 12 Byte 11
BINSPACE

PLU's send pacing window

Bit Meaning

0 Staging indicator

1 Reserved

2–7 Primary TC's send
window size

VTAM ignores or overrides
application programs'
setting.

VTAM sets bits 0–1. Bits
2–7 are copied and used
for tuning in adaptive
session pacing.

Byte 13 Byte 12
BINBPACE

PLU's receive pacing
window

Bit Meaning

0–1 Reserved

2–7 Primary TC's
receive window
size

Application program can
set bits 2-7 to X'00' - X'3F'.
VTAM overrides if value
greater than CINIT bind
image.

If bits 2-7 are 0, VTAM
defaults to a receive pacing
window of 32767 (X'7FFF').

Byte 14 Byte 13
BINLUP

PS profile

Bit Meaning

0 PS usage format

1–7 LU type 6

VTAM ignores or overrides
application program's
setting.

VTAM sets to X'06'.

Byte 15 Byte 14
BINPSCHR

PS usage

Bit Meaning

0 LU-6 level

1–7 Level 2

VTAM ignores or overrides
application program's
setting.

VTAM sets to X'02'.

Bytes 16–21 Bytes 15–20 Reserved or retired VTAM ignores or overrides
application program's
setting.

VTAM sets to
X'00000000000000'.

Byte 22
Byte 21
BINDSSSP
BINDESS

Distributed Systems
SecurityExtended Security
Sense Codes

Bit Meaning

0 Support for third
party DCE
security services

1 Extended Security
Sense Codes

2–7 Reserved

VTAM ignores or overrides
application program's
setting.

If the application supplies
a local-application's-DCE-
capability vector
(ISTVAC82) and indicates
support for DCE security,
then VTAM sets bit 0 to
B'1'.

If the application supplies
an application-capabilities
vector (ISTVAC81) and
indicates support for
extended security sense
codes (VAC81ESS), then
VTAM sets bit 1 to B'1'.

154 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 26. Bind request unit fields the application program can set (continued)

BIND RU ISTDBIND Use Application's Options VTAM's Action

Byte 23 Byte 22
Bit Meaning

0–2 Reserved

3 FMH-5 security
subfields support
indicator

4 Session-level
verification
protocol support
indicator

5 Password
substitution
indicator

6 Already-verified
support indicator

7 Persistent-
verification
support indicator
(MVS only)

Application program can
set bits 3, 6, and 7 but only
on the initial session with
a partner LU. After a
session is established with
a partner LU, these bits are
ignored if the application
program sets them. Bits 6
and 7 can be set only if bit
3 is also set.

If the application sets bit 5,
VTAM ignores or overrides
this setting.

If the application program
does not provide a BIND
image, VTAM sets bits 3, 6,
and 7 according to the
value specified on the
SECACPT operand of the
APPL definition statement.
If a security management
product also provides
conversation security
information, the most
secure level of security will
be used. Other bits in the
byte are set to B'0'.

For the initial session with
the partner, VTAM sets bit
5 if the application
indicates support for
password substitution in
its application-capabilities
vector. For subsequent
sessions with this partner,
VTAM sets bit 5 according
to the negotiated support
for password substitution.

Byte 24 Byte 23
Bit Meaning

0 Reserved

VTAM ignores or overrides
application program's
setting.

VTAM sets to B'0'.

1–2 Sync point,
backout support

VTAM ignores or overrides
application program's
setting.

If this is the first session to
the partner, VTAM sets this
field as specified by the
SYNCLVL operand on the
APPL definition statement.
That is, VTAM sets the
field to B'10' if
SYNCLVL=SYNCPT and
sets the field to B'01' if
SYNCLVL=CONFIRM. If
this is not the first session
to the partner, VTAM sets
this field as the prior
sessions have set this field.

3 Reconnect support
VTAM ignores or overrides
application program's
setting.

VTAM sets to B'0'.

4–5 Session reinitiation
VTAM ignores or overrides
application program's
setting.

VTAM sets to B'00' for
parallel-session partners or
B'11' for single-session
partners.

6 Parallel- session
support

VTAM ignores or overrides
application program's
setting.

VTAM sets the bit to B'0'
(not supported) if the
BIND image contained in
the CINIT-specified single
session.

Chapter 6. Managing sessions 155

Table 26. Bind request unit fields the application program can set (continued)

BIND RU ISTDBIND Use Application's Options VTAM's Action

7 CNOS support
VTAM ignores or overrides
application program's
setting.

VTAM's APPC support
ensures the CNOS support
bit has the same value as
the parallel-session support
bit.

Byte 25 Byte 24
Bit Meaning

0 Reserved

1 Limited-resource
support

2–5 Reserved

6–7 Data compression
indicators

VTAM ignores or overrides
application program's
setting.

VTAM's APPC support sets
these fields to zero. Other
components of VTAM may
override this setting. For
example, limited resources
support is set to 1 if
LIMRES is specified on the
LINE or PU definition
statement.

Byte 26 Byte 25
BINCRCTL

Cryptography support VTAM ignores or overrides
application program's
setting.

VTAM sets this based on
the ENCR setting on the
APPL statement.

Byte 27 Byte 26
BINPRIML

PLU name length VTAM ignores or overrides
application program's
setting.

VTAM sets.

Bytes 28–m Bytes 27–m
BINPRIMN

PLU name VTAM ignores or overrides
application program's
setting.

VTAM sets.

Byte m+1 Byte m+1
BINUSEL

User data length Application can set. VTAM can set.

Byte m+2 Byte m+2 User data key Application program can
set. If the application
program plans to supply
unformatted user data, the
user data key must be set
to X'00'.

VTAM can set.

Bytes m+3–o Bytes m+3–o Unformatted user data Application program can
set.

VTAM copies from BIND
supplied by application
program.

Bytes o+1–p Bytes o+1–p Mode name subfield VTAM ignores or overrides
application program's
setting.

VTAM sets.

Bytes p+1–q Bytes p+1–q Session instance ID
subfield

VTAM ignores or overrides
application program's
setting.

VTAM sets.

Bytes q+1–r Bytes q+1–r Network-qualified PLU
network name

VTAM ignores or overrides
application program's
setting.

VTAM sets.

Bytes r+1–t Bytes r+1–t Random data VTAM ignores or overrides
application program's
setting.

VTAM sets if session level
verification is used.

Bytes t+1–u Bytes t+1–u URC VTAM ignores or overrides
application program's
setting.

VTAM sets.

156 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 26. Bind request unit fields the application program can set (continued)

BIND RU ISTDBIND Use Application's Options VTAM's Action

Bytes u+1–v Bytes u+1–v SLU name VTAM ignores or overrides
application program's
setting.

VTAM sets.

Table 27. Bind response unit fields the application program can set

BIND RU ISTDBIND Use Application's Options VTAM's Action

Byte 0 (Not present) Request code Not accessible to the
application program

VTAM sets to X'31'.

Byte 1 Byte 0
BINFMTY

Format and type

Bit Meaning

0–3 Format

4–7 Type

VTAM ignores or
overrides application
program's setting.

VTAM sets to X'00'.

Byte 2 Byte 1
BINFM

FM profile VTAM ignores or
overrides application
program's setting.

VTAM sets to X'13'.

Byte 3 Byte 2 BINTS TS profile VTAM ignores or
overrides application
program's setting.

VTAM sets to X'07'.

Byte 4 Byte 3
BINPRIP

FM usage, PLU

Bit Meaning

0 Chaining

1 Request control

2–3 Chain response

4–6 Reserved

7 Send end bracket
indicator

VTAM ignores or
overrides application
program's setting.

VTAM sets to X'B0'.

Byte 5 Byte 4
BINSECP

FM usage, SLU

Bit Meaning

0 Chaining

1 Request control

2–3 Chain response

4–6 Reserved

7 Send end bracket
indicator

VTAM ignores or
overrides application
program's setting.

VTAM sets to X'B0'.

Chapter 6. Managing sessions 157

Table 27. Bind response unit fields the application program can set (continued)

BIND RU ISTDBIND Use Application's Options VTAM's Action

Byte 6 Byte 5
BINCMNP

FM usage, common

Bit Meaning

0 Segmenting

1 FM header use

2 Bracket usage

3 Bracket term rule

4 Alternate code

5–6 Reserved

7 BIND RSP queue
capability

VTAM ignores or
overrides application
program's setting.

VTAM sets to X'50'.

158 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 27. Bind response unit fields the application program can set (continued)

BIND RU ISTDBIND Use Application's Options VTAM's Action

Byte 7 Byte 6
BINCMNP2

FM usage, common

Bit Meaning

0–1 Send/Receive
Mode

VTAM ignores or
overrides application
program's setting.

VTAM sets to B'00'
(full-duplex) if both of the
following items are true:

v The BIND request
contained B'00'

v The application specified
PARMS=(FDX=YES) on
the ACB.

Otherwise, VTAM sets
B'10' (half-duplex) and the
session is limited to
half-duplex capability.

2 Symmetric
responsibility for
recovery

VTAM ignores or
overrides application
program's setting.

VTAM always sets this
value to B'1', symmetric
responsibility for recovery.

3 Primary/
secondary

Primary

1=Primary is
brackets first
speaker and
contention
winner; secondary
is brackets bidder
and contention
loser.

Secondary

0=Secondary is
brackets first
speaker and
contention
winner; primary is
brackets bidder
and contention
loser.

VTAM ignores or
overrides application
program's setting.

VTAM sets to B'1' or B'0'
depending on session
polarity.

4–5 Alternate code
processing
identifier

VTAM ignores or
overrides application
program's setting.

VTAM APPC code sets to
B'00'.

6 Control vectors
are included after
the SLU name

VTAM ignores or
overrides application
program's setting.

VTAM APPC code sets to
B'0', subsequent processing
may set to B'1'.

7 Reset state for
Half-Duplex
flip-flop (for
example, at start
of session.)
1=Primary sends
first.

VTAM ignores or
overrides application
program's setting.

VTAM sets to B'1'.

Chapter 6. Managing sessions 159

Table 27. Bind response unit fields the application program can set (continued)

BIND RU ISTDBIND Use Application's Options VTAM's Action

Byte 8 Byte 7
BINAPACE

SLU's send pacing window

Bit Meaning

0 Staging indicator

1 Reserved

2–7 Secondary TC's
send window size

Application program can
set bit bits 2–7 to
X'00'–X'3F'.

VTAM sets bits 0–1. If the
pacing stage endpoint
supports PU type 2.1
protocols, VTAM sets bits
2–7 to X'00'. Otherwise,
VTAM copies bits 2–7 from
the BIND response
supplied by the application
program.

Byte 9 Byte 8
BINRPACE

SLU's receive pacing
window

Bit Meaning

0 Adaptive pacing

1 Reserved

2–7 Secondary TC's
receive window
size

Application program can
set bits 2–7 to X'00'–X'3F'.

If the pacing stage
endpoint supports PU type
2.1 protocols, VTAM sets
bit 0 to B'1' and bits 2–7 to
X'00'. Otherwise, VTAM
copies bits 2–7 from the
BIND response supplied
by the application
program.

Byte 10 Byte 9
BINRUSZ

SLU's maximum RU size Application program
cannot change this to less
than 256.

VTAM rejects the session if
this value is less than 256.
Note: RU sizes
corresponding to values
X'01' through X'7F' are not
supported architecturally.
The high order bit of the
maximum RU size must be
set to 1 for the byte to be
interpreted as a supported
value.

Byte 11 Byte 10
BINPRUSZ

PLU's maximum RU size Application program
cannot change this to less
than 256.

VTAM rejects the session if
this value is less than 256.
Note: RU sizes
corresponding to values
X'01' through X'7F' are not
supported architecturally.
The high order bit of the
maximum RU size must be
set to 1 for the byte to be
interpreted as a supported
value.

Byte 12 Byte 11
BINSPACE

PLU's send pacing window

Bit Meaning

0 Staging indicator

1 Reserved

2–7 Primary TC's send
window size

Application program can
set bits 2–7 to X'00'–X'3F'.

VTAM sets bits 0–1. If the
pacing stage endpoint
supports PU type 2.1
protocols, VTAM sets bits
2–7 to X'00'. Otherwise,
VTAM copies bits 2–7 from
the BIND response
supplied by the application
program.

160 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 27. Bind response unit fields the application program can set (continued)

BIND RU ISTDBIND Use Application's Options VTAM's Action

Byte 13 Byte 12
BINBPACE

PLU's receive pacing
window

Bit Meaning

0–1 Reserved

2–7 Primary TC's
receive window
size

Application program can
set bits 2–7 to X'00'–X'3F'.

VTAM sets bits 0–1. If the
pacing stage endpoint
supports PU type 2.1
protocols, VTAM sets bits
2–7 to X'00'. Otherwise,
VTAM copies bits 2–7 from
the BIND response
supplied by the application
program.

Byte 14 Byte 13
BINLUP

PS profile

Bit Meaning

0 PS usage format

1–7 LU type 6

VTAM ignores or
overrides application
program's setting.

VTAM sets to X'06'.

Byte 15 Byte 14
BINPSCHR

PS usage

Bit Meaning

0 LU-6 level

1–7 Level 2

VTAM ignores or
overrides application
program's setting.

VTAM sets to X'02'.

Bytes 16–21 Bytes 15–20 Reserved or retired VTAM ignores or
overrides application
program's setting.

VTAM sets to
X'00000000000000'.

Byte 22
Byte 21
BINDSSSP
BINDESS

Distributed Systems
SecurityExtended Security

Sense Codes

Bit Meaning

0 Support for third
party DCE
security services

1 Extended Security
Sense Codes

2–7 Reserved

VTAM ignores or
overrides application
program's setting.

If the application supplies
a local-application's-DCE-
capability vector
(ISTVAC82) and indicates
support for DCE security,
then VTAM sets bit 0 to
B'1'.

If the application supplies
an application-capabilities
vector (ISTVAC81) and
indicates support for
extended security sense
codes (VAC81ESS), then
VTAM sets bit 1 to B'1'.

Chapter 6. Managing sessions 161

Table 27. Bind response unit fields the application program can set (continued)

BIND RU ISTDBIND Use Application's Options VTAM's Action

Byte 23 Byte 22
Bit Meaning

0–2 Reserved

3 FMH-5 security
subfields support
indicator

4 Session-level
verification
protocol support
indicator

5 Password
substitution
indicator

6 Already-verified
support indicator

7 Persistent-
verification
support indicator
(MVS only)

Application program can
set bits 3, 6, and 7 but
only on the initial session
with a partner LU. After a
session is established with
a partner LU, these bits
are ignored if the
application program sets
them. Bits 6 and 7 can be
set only if bit 3 is also set.

If the application sets bit 5,
VTAM ignores or
overrides this setting.

If the application program
does not provide a BIND
image, VTAM sets bits 3, 6,
and 7 according to the
value specified on the
SECACPT operand of the
APPL definition statement.
If a security management
product also provides
conversation security
information, the most
secure level of security will
be used.

For the initial session with
the partner, VTAM sets bit
5 if both the partner LU
and the local application
indicate support for
password substitution. For
subsequent sessions with
this partner, VTAM sets bit
5 according to the
negotiated support for
password substitution.

Other bits in the byte are
set to B'0'.

Byte 24 Byte 23
Bit Meaning

0 Reserved

VTAM ignores or
overrides application
program's setting.

VTAM sets to B'0'.

162 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 27. Bind response unit fields the application program can set (continued)

BIND RU ISTDBIND Use Application's Options VTAM's Action

1–2 Sync point,
backout support

VTAM ignores or
overrides application
program's setting.

If this is the first session to
the partner, VTAM
negotiates this value as
follows:

v If the value received on
the BIND is B'01'
(CONFIRM), then
VTAM echoes this value
in the response.

v If the value received on
the BIND is B'10'
(SYNCPT) and
SYNCLVL=SYNCPT on
the APPL statement,
then VTAM echoes B'10'
on the response.

v If the value received on
the BIND is B'10'
(SYNCPT) and
SYNCLVL=CONFIRM
on the APPL statement,
then VTAM negotiates
the response to B'01'
(CONFIRM).

If this is not the first
session to the partner,
VTAM sets this field as the
prior sessions have set the
field.

3 Reconnect support
VTAM ignores or
overrides application
program's setting.

VTAM sets to B'0'.

4–5 Session
reinitiation

VTAM ignores or
overrides application
program's setting.

VTAM sets to B'00' for
parallel-session partners.
For single-session partners,
VTAM copies the value
from the BIND request.

6 Parallel- session
support

Application program can
set.

VTAM overrides the
application program's
setting and sets the bit to
B'0' (not supported) if the
BIND image specified
single session.

7 CNOS support
Application program can
set.

VTAM ensures that the
CNOS support bit has the
same value as the
parallel-session support bit.

Chapter 6. Managing sessions 163

Table 27. Bind response unit fields the application program can set (continued)

BIND RU ISTDBIND Use Application's Options VTAM's Action

Byte 25 Byte 24
Bit Meaning

0 Reserved

1 Limited-resource
support

2–5 Reserved

6–7 Data compression
indicators

VTAM ignores or
overrides application
program's setting.

VTAM's APPC support
echoes these fields. Other
components of VTAM may
modify these bits as
appropriate. For example,
Limited Resource will be
set to 1 if LIMRES is
specified on the LINE or
PU macroinstruction.

Byte 26 Byte 25
BINCRCTL

Cryptography support VTAM ignores or
overrides application
program's setting.

VTAM sets based on the
setting of the ENCR
keyword as specified, for
example, on the APPL
statement and other
appropriate
macroinstructions.

Byte 27 Byte 26
BINPRIML

PLU name length VTAM ignores or
overrides application
program's setting.

Reserved on response.
VTAM sets to X'00'.

Bytes 28–m Bytes 27–m
BINPRIMN

PLU name VTAM ignores or
overrides application
program's setting.

Reserved on response.
VTAM copies from BIND
request.

Byte m+1 Byte m+1
BINUSEL

User data length Application program can
set.

VTAM can set.

Byte m+2 Byte m+2 User data key Application can set. If the
application program
wishes to supply
unformatted user data, the
user data key must be set
to X'00'.

VTAM can set.

Bytes m+3–o Bytes m+3–o Unformatted user data Application program can
set.

VTAM copies from BIND
supplied by application
program.

Bytes o+1–p Bytes o+1–p Mode name subfield VTAM ignores or
overrides application
program's setting.

VTAM copies from BIND
request.

Bytes p+1–q Bytes p+1–q Session instance ID
subfield

VTAM ignores or
overrides application
program's setting.

VTAM copies from BIND
request.

Bytes s+1–t Bytes s+1–t Network-qualified SLU
network name

VTAM ignores or
overrides application
program's setting.

VTAM sets.

Bytes q+1–r Bytes q+1–r Random data X'11' VTAM ignores or
overrides application
program's setting.

VTAM sets as appropriate.

Bytes r+1–s Bytes r+1–s Enciphered random data
X'12'

VTAM ignores or
overrides application
program's setting. End of
userdata subfields.

VTAM sets as appropriate.

164 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 27. Bind response unit fields the application program can set (continued)

BIND RU ISTDBIND Use Application's Options VTAM's Action

Bytes t+1–u Bytes t+1–u URC VTAM ignores or
overrides application
program's setting.

VTAM does not set.

Bytes u+1–v

Bytes u+1–v SLU name VTAM ignores or overrides
application program's
setting.

VTAM does not set.
Reserved upon response.

User data structured subfields

The user data structured subfields are in the BIND, but not at fixed locations.
(These fields are not always at the same offset in the BIND because of the
variable-length fields.) They must be in the correct order. VTAM uses these
architectural user data structured subfields during BIND processing as follows:
1. Unformatted user data

Unformatted user data subfield X'00' is included, if provided by the user.
2. Mode name

Mode name structured data subfield X'02' is included in all LU 6.2 BIND
requests and responses sent by VTAM.

3. Session instance identifier
All LU 6.2 BIND requests and responses sent by APPC VTAM carry the session
instance identifier structured data subfield X'03'. The identifier is unique among
sessions between two LUs.

4. Network-qualified network name
Network-qualified PLU network name structured data subfield X'04' is
included in all LU 6.2 BIND requests sent by VTAM.
Network-qualified SLU network name structured data subfield X'05' is included
in all LU 6.2 BIND responses sent by VTAM.

5. Random data
Random data structured subfield X'11' is sent on BIND and BIND responses
when the session is being established with session-level LU-LU session
verification.

6. Security reply data
Enciphered random data structured subfield X'12' is used on the BIND
response when the session is being established with session-level LU-LU
session verification.

7. Nonce data
Nonce data is sent on the BIND in X'13' when password substitution support is
indicated on the application-capabilities vector.

8. Security mechanisms
Security policy information is sent on the BIND in X'14' when support for
Generic Security Services (DCE security services) are requested on the
application-capabilities vector.

LU 6.2 names used for session activation

In LU 6.2 architecture, an LU learns its partner's name through the user data field
of the BIND. In Figure 22 on page 166, the PLU causes the BIND request, and its

Chapter 6. Managing sessions 165

subsequent response, to flow by issuing either an APPCCMD
CONTROL=ALLOC|PREALLOC or an APPCCMD CONTROL=OPRCNTL,
QUALIFY=CNOS (1). These macroinstructions require the name of the target to be
specified on the LUNAME parameter. For network-qualified names, the NETID
parameter must also be specified. The PLU indicates its own name in subfield X'04'
of the user data field of the BIND request unit (2). The SLU returns its own name
in subfield X'05' of the user data field of the BIND response unit (3). These are the
names most often used by the LUs during operation.

In most cases, the name specified as the target (LUNAME) on the APPCCMD
macroinstruction is identical to the name returned on the BIND response unit from
the SLU. When these names are not identical, VTAM tracks both names in the
LU-mode table. VTAM may report these name mismatches to the application on
the name change vector and sometimes to the partner LU using a sense code on
the session.

How can the LU names differ?:

There are several circumstances that may cause the name returned in the SLU's
BIND response to differ from the name specified on the PLU's BIND request. For
example, in VTAM, the partner LU may be known by a generic resource name or a
USERVAR. The following scenarios explain how name translations are managed by
VTAM's name mismatch detection for LU 6.2 applications.

Partner LU known by multiple names
In VTAM, for example, when the LUALIAS keyword is specified on a
CDRSC definition statement, the name of the target LU may be altered.

For example, if LUALIAS=LUX is specified on the CDRSC definition
statement for an LU whose real name is NETA.LU2, then when an
APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS is issued specifying
LUNAME=LUX, the BIND response will contain NETA.LU2 in the user
data field. In this case, VTAM maintains both LU names in the LU-mode
table. The name specified on the APPCCMD (LUX) becomes a
SUPPLIED_NAME entry and the name returned on the BIND response
unit (NETA.LU2) becomes a VARIANT_NAME entry. In this example,
VTAM does not allow the local application to start any sessions using the
name NETA.LU2. This prevents possible errors that could occur when an
LU attempts CNOS negotiations with what appears to be different
partners.

APPCCMD
CONTROL=OPRCNTL,
QUALIFY=CNOS,
NETID=NETA,
LUNAME=LU2

1

2

3

LU1

VTAM

BIND Request

PLU name = LU1

BIND Response

SLU name = LU2

LU2

Figure 22. Exchange of LU names during session activation

166 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Name changes while sessions are active
After a session is established, VTAM saves the partner name specified on
the LUNAME parameter and the name that was returned by the partner in
the BIND response unit. These names are not required to be identical.
However, if a second session request is sent to the same partner (as is
shown in Figure 23), it is possible that the partner returns a name in the
BIND response unit that is not identical to the name returned on the first
session.

Two possible explanations are that the partner LU changed its name
between sessions or the second session was directed to a different LU. In
either case, VTAM terminates the second session and returns an error code
with an RCPRI type of X'00B0' to the APPCCMD macroinstruction.

Partner LU initiates the session
In Figure 24 on page 168, assume that VTAM is the target of a partner LU's
CNOS request.

APPCCMD
CONTROL=OPRCNTL,
QUALIFY=CNOS,
NETID=NETA,
LUNAME=LU2

APPCCMD
CONTROL=OPRCNTL,
QUALIFY=CNOS,
NETID=NETA,
LUNAME=LU2

LU1

VTAM

BIND Request

PLU name = LU1

BIND Request

PLU name = LU1

BIND Response

SLU name = LU2

BIND Response

SLU name = LUB

LU2

Figure 23. Name mismatch in two BIND responses for the same partner LU

Chapter 6. Managing sessions 167

1 A remote LU issues an APPCCMD CONTROL=OPRCNTL,
QUALIFY=CNOS and specifies the local application (LU1) as the
SLU. After a successful CNOS negotiation, VTAM reports the
results, including the partner's name (as specified on the BIND
request unit) and the LOGMODE used to the local application by
scheduling the ATTN(CNOS) exit. In this case, the name reported
to the local application is LUB. VTAM enters LUB as a
RCVD_NAME entry in the LU-mode table.

2 The partner LU then sends an FMH-5 to initiate a conversation.
VTAM reports these results, again including the partner's name
(LUB) and the LOGMODE used to the local application by
scheduling the ATTN(FMH5) exit.

3 The local application then issues an APPCCMD
CONTROL=RCVFMH5, which completes the initiation of the
conversation.

Note that in the preceding steps, the local application has not
specified the partner's LU name (LUB) on any APPCCMD
macroinstruction.

4 The local application then issues an APPCCMD
CONTROL=OPRCNTL, QUALIFY=CNOS containing
LUNAME=LUA. If there exists an LUALIAS definition that
converts LUA to LUB, then the following conditions occur:
v The APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS

completes with an RCPRI, RCSEC combination of X'0000',
X'000C' or X'0000', X'000D', which indicates a name change.

v VTAM changes the record of LUB in the LU-mode table to a
VARIANT_NAME entry. LUA becomes a SUPPLIED_NAME
entry for the partner LU. All subsequent APPCCMD
macroinstructions that specify LUB will be rejected with an
RCPRI, RCSEC combination of X'00B0', X'0001',

APPCCMD

APPCCMD

CONTROL=RCVFMH5
•
•
•

CONTROL=OPRCNTL,
QUALIFY=CNOS,
LUNAME=LUA

LU1

VTAM
BIND Request

PLU name = LUB

FMH-5

BIND Response

SLU name = LU1

APPCCMD
CONTROL=OPRCNTL,
QUALIFY=CNOS,
LUNAME=LU1

APPCCMD
CONTROL=ALLOC

1

2

3

4

LUB

Figure 24. Name mismatch when the partner LU is the PLU

168 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

NAME_RESOLUTION_ERROR—
LUNAME_FOUND_IN_A_VARIANT_NAME_ENTRY.

v If the application requested APPCCMD vector information, a
name-change vector is returned that reports the “passive” name,
LUB, and the “active” name, LUA. The local application should
examine the name-change vector to obtain the name that was
returned.

v All subsequent reporting of actions formerly attributed to LUB,
such as ATTN exit scheduling, will now be attributed to LUA.

For information about the types of LU entries, see “LU entries in the LU-mode
table” on page 113.

LU 6.2 in an extended recovery facility (XRF) environment

You can use the USERVAR facility for LU 6.2 application programs in a recovery
environment. The recovery environment can be XRF or another type of recovery
environment.

You can run a backup application program to which a failing application program
can be switched. When the application program establishes the session, VTAM
substitutes a generic application name for the specific name of the XRF application
program in the BIND or BIND response user data field. The partner LU sees the
generic application name regardless of which specific application program is
called.

You can identify the USERVAR that VTAM is to use for a specific application
program. This is done by specifying APPC=YES on the MODIFY USERVAR
command before VTAM negotiates the BIND. For more information about this
command, refer to z/OS Communications Server: SNA Operation.

This function has restrictions that apply to LU 6.2 communications managed by
VTAM because such communications customarily depend on VTAM being aware
of the identity of the actual partner LU. These restrictions follow:
v Only one USERVAR ID can be assigned to an application program.
v Only one application program can be the primary provider of a service

requested with a USERVAR ID.
v The MODIFY USERVAR command must be performed on the host system of the

application program supporting the services requested with the USERVAR ID.
v Once a USERVAR ID is assigned to an active application program, VTAM

maintains the understanding of this relationship until the application program
closes its ACB.

v While a USERVAR ID is assigned to an active application program, the BIND
request and response RUs contain the USERVAR ID in the appropriate User Data
subfield names.

v Once you assign a USERVAR ID to an application program, any LUs trying to
establish a session with the application program must use that USERVAR.

LU 6.2 applications as generic resources

You can define a group of LU 6.2 applications that provide the same function to be
known and accessed by a single generic name. LUs can initiate sessions using the
generic name; VTAM determines which application program is used to establish
the session. The LU knows the application program by its generic name only. This

Chapter 6. Managing sessions 169

function enables VTAM to provide workload balancing by distributing incoming
session initiations among a number of identical application programs, instead of
overwhelming one application program.

Applications establish an association with a generic resource name after OPEN
ACB and before SETLOGON OPTCD=START by issuing SETLOGON
OPTCD=GNAMEADD. This association allows the application to be known by its
generic resource name. An LU 6.2 application can request VTAM to use its generic
name or its application network name for a particular session with an LU by
specifying NAMEUSE=GNAME|APNAME on any APPCCMD macroinstruction
that causes a session to be started. The application program can terminate this
association with the generic resource name by issuing SETLOGON
OPTCD=GNAMEDEL.

VTAM keeps track of the identity of the LU and the identity of the application that
is acting as the generic resource for this session. This ensures that all subsequent
session initiations from an LU that is in session with a generic resource resolve to
the same application program. In this regard, the LU is said to have an “affinity”
with the application.

For more information about this function, refer to z/OS Communications Server:
SNA Network Implementation Guide or z/OS Communications Server: SNA
Programming.

Ownership of the affinity between an LU and a generic resource member:

When VTAM establishes sessions between application programs and LUs, VTAM
keeps track of the LUs that are currently in session with a generic resource
application. VTAM can distinguish which applications are acting as generic
resources, and is aware of the affinity that is created between an application and
any LU that has established a session with it. Each time the LU initiates a session
using the generic resource name, VTAM establishes the session with the same
generic resource application until the affinity is terminated.

The affinity between an LU and an application program is controlled by either
VTAM or the application program; the controlling party owns the affinity. LU 6.2
application programs control this affinity if the session uses sync point services,
limited resource support, or if the application specifies OPTCD=GNAMEADD on
the SETLOGON macroinstruction with AFFIN=APPL in the NIB. An LU 6.2
application program can also override the ownership on a specific LU basis using
an optional APPCCMD macroinstruction keyword, LUAFFIN=APPL|NOTAPPL.
This optional keyword applies to the ALLOC, PREALLOC, and OPRCNTL CNOS
APPCCMD macroinstructions. (Refer to those macroinstructions for additional
details.) When the affinity is owned by the application program, the CHANGE
macroinstruction must be used to cause VTAM to terminate the affinity. The LU 6.2
application can terminate this affinity between the LU and an application that is a
member of a generic resource. When VTAM owns the affinity, it will be terminated
when the session is ended, in most cases.

For more information about the CHANGE macroinstruction, refer to z/OS
Communications Server: SNA Programming.

170 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

CNOS general data stream (GDS) variable

The GDS is architected to provide a common understanding between transaction
programs (TPs) using LU 6.2 protocols. GDS variables standardize the data format
so that both sending and receiving TPs can process the data.

The CNOS GDS variable is a mapping of what VTAM builds and sends on the
CNOS conversation. The description of the CNOS GDS is shown in Table 28.

Table 28. CNOS (X'1210') GDS variable
Byte Bit Content
0—1 Length (17 or n—1), in binary, of CNOS GDS variable,

including this Length field
GDS ID:
X'1210'

4 Service flag:
0—3 Reserved
4—7 Request/reply indicator:

0010 request

1000 reply, function completed abnormal

1010 reply, function accepted but not yet completed
5 Reply modifier (reserved if byte 4, bits 4—7 = 0010):

X'00' normal—no negotiation performed

X'01' abnormal—command race deleted

X'02' abnormal—mode name not recognized

X'03' reserved

X'04' normal—negotiated reply

X'05' abnormal—(LU-mode) session limit is 0
6 Action:

X'00' set, (LU-mode) session limits

X'01' reserved

X'02' close
7 Drain immediacy:

0—2 Reserved
3 Source LU drain (reserved if byte 6 is not equal to 02):

0 no (send BIS at next opportunity)

1 yes
4—6 Reserved
7 Target LU drain (reserved if byte 6 is not equal to 02):

0 no (send BIS at next opportunity)

1 yes
8 Action flags:

0—6 Reserved
7 Session deactivation responsibility:

0 sender of CNOS request (source LU)

1 receiver of CNOS request (target LU)
9—10 (LU-mode) session limit:

0 Reserved

Chapter 6. Managing sessions 171

Table 28. CNOS (X'1210') GDS variable (continued)
Byte Bit Content

1—15 Maximum (LU-mode) session count, in binary
11—12 Source LU contention winners:

0 Reserved
1—15 Guaranteed minimum number of contention-winner sessions at

source LU, in binary
13—14 Target LU contention winners:

0 Reserved
1—15 Guaranteed minimum number of contention-winner sessions at

target LU, in binary
15 Mode name selection:

0—6 Reserved
7 Mode names affected by this command:

0 A single mode name is affected.

1 All mode names are affected (valid if byte 6 = 02).
16 Length (values 0 to 8 are valid; reserved if byte 15, bit 7 = 1), in

binary, of mode name
Mode name
(omitted if
byte 16 =
X'00')

Note: Bytes 9—14 are reserved if byte 6 is not equal to 0.

Retrieving information for a mode and sessions to be restored

When a mode is being restored, VTAM, if requested, returns information in the
RESTORE (ISTSREST) control block and associated data areas. This control block
contains the partner LU name, the mode name, and CNOS and session
information.

A VTAM application program can use persistent LU-LU session support to
facilitate recovery after a failure or to manage a planned takeover. After the
recovery of the application program, the sessions and modes must be restored to
permit continued use. The identifying information for the modes and sessions can
be returned in the RESTORE control block.

The application program specifies the level of information that is to be returned in
the RESTORE control block by using the LIST keyword in the APPCCMD
CONTROL=OPRCNTL, QUALIFY=RESTORE macroinstruction. The application
program can specify LU-mode table information, LU-mode table and session
information, or no information. The application program also provides the area
where the RESTORE control block is built, and the RPLAREA field points to that
area. The length is set in the AREALEN field in the RPL.

Note: If the application program can have a network-qualified name, the length of
the AREALEN field must be great enough to include the SRENETID field, which is
8 bytes in length. If NQNAMES=YES is specified, VTAM supplies the SRENETID.
Therefore, provide space for it.

This control block points to the DEFINE/DISPLAY control block (ISTSLD). The
layout of the control block is shown in Table 29 on page 173. For a detailed layout,
refer to the ISTSLD and ISTSREST DSECTs in the z/OS Communications Server:
SNA Programmer's LU 6.2 Reference.

172 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 29. Layout of the RESTORE control block (ISTSREST)

Byte (Hex) Bits DSECT Name Indicates

0–7 — SRENAME Name of the logical unit (LU name)

8–F — SREMODE Name of the mode for the logical
unit (LU mode)

10–13 — SRENXTAD Next RESTORE structure address (0 if
not present)

14–17 — SRESLDAD SLD structure address

18–1B — SRESESAD Address of first SRESESS (0 if not
present)

1C–1D — SREMFLGS Mode level flags

1C 0 SREMDRS Whether the mode has been restored

1E–1F — SRESESCT The number of SRESESS structures

20–27 — SRENETID Network ID of the logical unit

The offsets for the data being retrieved for the first session are shown in Table 30.
This structure is repeated for each session that is restored. If more than one mode
is processed, a RESTORE control block for each mode follows the first one. See
Appendix D, “Example of retrieving information for a mode and any restored
sessions,” on page 383 for an example program for retrieving information from the
RESTORE control block.

Table 30. Layout of the session information for restored sessions pending recovery
(SRESESS)

Byte (Hex) Bits DSECT Name Indicates

0–3 — SRESNXTA Pointer to next session structure (0 if
not present)

4–6 — SRESFLGS Session-level flags

4 0 SREPCONV Whether the conversation is pending
deallocation for persistent LU-LU
sessions

4 1 SRESPNDA Whether the session is pending
deactivation for persistent LU-LU
sessions

7 — SRESIDL Length of the session instance
identifier

8–F — SRESESID Session instance identifier

Descriptions of the fields in the control block follow:
v SRENAME specifies the name of the logical unit (LU name).
v SREMODE specifies the mode of the logical unit (LU-mode).
v SRENXTAD specifies the address of the RESTORE structure for the next

LU-mode. (Zero if none is present.)
v SRESLDAD specifies the address of the SLD structure for this LU-mode.
v SRESESAD specifies the address of the first SRESESS for this LU-mode. (Zero if

none is present.)
v SREMFLGS specifies the mode level flags.
v SREMDRS specifies whether the mode has been restored.

Chapter 6. Managing sessions 173

– B'0' (NO) specifies that the mode has not been restored.
– B'1' (YES) specifies that the mode has been restored.

v SRESESCT specifies the number of SRESESS structures for this mode.
v SRENETID specifies the network ID of the logical unit.
v SRESNXTA points to the next session structure information for this mode. (Zero

if none is present.)
v SRESFLGS specifies the session-level flags.
v SREPCONV specifies whether the conversation is pending for deallocation for

persistent LU-LU sessions.
– B'0' (NO) specifies that the conversation is not pending for deallocation of

persistent LU-LU sessions.
– B'1' (YES) specifies that the conversation is pending for deallocation of

persistent LU-LU sessions.
v SRESPNDA specifies whether the session is pending deactivation for persistent

LU-LU sessions.
– B'0' (NO) specifies that the session is not pending deactivation for persistent

LU-LU sessions.
– B'1' (YES) specifies that the session is pending deactivation for persistent

LU-LU sessions.
v SRESIDL specifies the length of the session instance identifier.
v SRESESID specifies the session instance identifier.

174 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Chapter 7. Allocating a conversation

About this chapter

Application programs start conversations with a partner transaction program by
building an FMH-5 and then using the APPCCMD CONTROL=ALLOC
macroinstruction. This macroinstruction assigns a half-duplex or
full-duplex-capable session to the conversation and specifies whether the
conversation requested is full-duplex or half-duplex.

If the session is full-duplex capable and the conversation is full-duplex, the
transaction program initiating the conversation is initially placed in
SEND/RECEIVE state and the FMH-5 is sent to the partner LU immediately. The
partner transaction program receiving the FMH-5 is also placed in
SEND/RECEIVE state when it receives the FMH-5.

For half-duplex conversations, the transaction program initiating the conversation
is initially placed in SEND state and the FMH-5 is buffered to send to the partner
LU at a later time if the underlying session is half-duplex. If the underlying session
is full-duplex, the FMH-5 is sent immediately. When the partner transaction
program issues the APPCCMD CONTROL=RCVFMH5 macroinstruction, it is
placed in RECEIVE state and receives the FMH-5.

Optionally, the application can issue an APPCCMD CONTROL=PREALLOC
macroinstruction to reserve a session for a conversation without sending the
FMH-5. This allows the application to obtain information about the conversation
and the session it will use before issuing the APPCCMD CONTROL=SENDFMH5
macroinstruction and completing conversation allocation.

In general, the discussion of conversation allocation can be split between
transaction programs allocating the conversation and transaction programs
receiving the FMH-5. In both cases, however, you must understand the format of
the FMH-5 and understand when the FMH-5 is sent to the partner LU.

Initiating a conversation

Depending on the session limits in effect and the type of allocation required,
application programs may need to issue an APPCCMD CONTROL=OPRCNTL,
QUALIFY=CNOS macroinstruction to ensure that a session is available for the
conversation. If the session limits between the two LUs are 0, or no CNOS
exchange has been processed on the requested mode name, a CNOS exchange
must be performed to initialize or raise the session limits before the conversation
can be allocated.

If an allocate request specifies QUALIFY=IMMED, a free contention-winner session
must be available. If a session is not available, the application program must raise
the local contention-winner session limit, if possible, before the allocation request
can succeed. For more information on setting and negotiating session limits, see
Chapter 6, “Managing sessions,” on page 99.

If the application program is not tracking session limits on its own, it can use the
APPCCMD CONTROL=OPRCNTL, QUALIFY=DISPLAY macroinstruction to check

© Copyright IBM Corp. 2000, 2013 175

on the session limits. If session limits have not been initialized, the DISPLAY
request fails with a return code indicating that the partner LU name or the
requested mode name could not be found.

If the application program attempts to allocate a conversation before session limits
are initialized or when they are equal to 0, a return code of
ALLOCATION_FAILURE_NO_RETRY is returned. The application program must
correct the session limits before trying the allocation again.

As session limits are initialized or changed, new sessions might be started. This
will result in the application's LOGON and SCIP exits being scheduled, if they are
present.

After the session limits are established, an application program initiates a
conversation by:
v Building an FMH-5
v Issuing the APPCCMD CONTROL=ALLOC macroinstruction (or the APPCCMD

CONTROL=PREALLOC macroinstruction followed by the APPCCMD
CONTROL=SENDFMH5 macroinstruction).

Building an FMH-5

The FMH-5 is a control block defined by LU 6.2 architecture. It contains control
information used by LUs when establishing a conversation. It is sent from an LU
to a partner LU as part of the process of establishing a conversation.

To build the FMH-5, the application program:
v Obtains storage for the FMH-5, either at assembly time or dynamically.
v Initializes the fields using the ISTFM5 DSECT and the DSECTs contained within

the ISTFM5 DSECT.

The application program builds the FMH-5 in its storage and initializes it. When
the application program specifies a conversation allocation macroinstruction, the
RPL for the request contains a pointer to the FMH-5. For conversations allocated
on full-duplex-capable sessions, the VTAM program copies the control block and
sends it to the partner LU immediately; otherwise, VTAM copies the control block
and buffers it until enough data is accumulated to send to the partner LU or until
the application flushes the SEND buffer. The partner LU then examines the control
block as part of the process of establishing its end of the conversation.

The FMH-5 specifies the name of the transaction program with which the
application program is to have a conversation. For example, if the partner LU has
a subroutine to store data in a database, the local application program might
specify a transaction program name of DATA_BASE_MANAGER. The partner LU
could then check the transaction program name when it receives the FMH-5 and
schedule the subroutine. The exact manner in which the transaction program name
is mapped to a processing thread in an application program is determined by the
application program.

The FMH-5 also provides other information pertaining to the conversation, as well
as optional program initialization parameters (PIP) data. PIP data is any
information the application program sends to the transaction program. The FMH-5
includes:
v An indication of whether optional PIP data is included with the FMH-5

176 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

v Whether the conversation is basic or mapped
v Whether a token is used to protect a password
v Whether DCE security services are supported for the conversation
v Synchronization level of the conversation
v Whether the conversation is full-duplex or half-duplex
v Optional security information
v Optional information identifying the transaction being carried out

The layout of an FMH-5 and a description of each field is provided in “FMH-5
fields.”

If you are using dynamic storage allocation, a useful technique is to create
templates of the FMH-5 and the subfields of the FMH-5 and copy them onto the
storage that is obtained dynamically as needed.

Additional FMH-5 DSECTs

The IBM-supplied DSECT ISTFM5 enables you to refer to the fields in the FMH-5
symbolically. ISTFM5 also contains several other DSECTs that map storage in
optional subfields that can be part of the FMH-5. (For an assembler listing of the
ISTFM5 DSECT, refer to z/OS Communications Server: SNA Programmer's LU 6.2
Reference.)

The additional FMH-5 DSECTs and the subfields they map are:

FM5ASI
Access security subfields. Each of these subfields, in turn, is mapped by
the DSECT FM5ACCSE.

FM5LUOW1
Logical unit of work identifier field.

FM5LUOW2
Actual logical unit of work field.

FM5CVCOR
Conversation correlator.

FM5ACCSE
Individual access security subfields.

FM5PIPFM
PIP format.

FM5PIPSM
Actual PIP subfield.

FMH-5 fields

The maximum length of an FMH-5 is 255 bytes; the minimum length is decimal 11.

The fields of the FMH-5 are explained in the rest of this section. For an example of
an FMH-5, see “Example of an FMH-5” on page 181.

Byte Meaning

0 Length of the FMH-5 (including this length byte, but not including any
GDS data).

1 FMH type. It should be set to X'05'.

Chapter 7. Allocating a conversation 177

2–3 ATTACH command code of X'02FF'.

4 A flag byte. Several of the bits in this byte are reserved and should be set
to 0. The application program can set the following bits:
v Bit 0 is the already-verified indicator. It is set when the user identifier

access security subfield has been verified on a previous FMH-5.
v Bit 1 indicates that the LU is already in the signed-on list.
v Bit 2 indicates that the LU is to be added to the signed-on list.
v Bit 3 indicates that a token may be used in place of the password in the

access security subfield.
v Bit 4 indicates whether PIP data is present in the FMH-5.
v Bit 5 indicates whether an authentication token (DCE security) GDS is

present. If this bit is set to B'1', then bits 0, 1, 2, and 3 in byte 4 must all
be 0.

5 Length, in binary, of the fixed length parameters field of the FMH-5. This
field is 3 bytes long, so code this byte as X'03'.

6 Type of conversation. Code X'D0' for a basic half-duplex conversation or
X'D1' for a mapped half-duplex conversation. Code X'D2' for a basic
full-duplex conversation or X'D3' for a mapped full-duplex conversation.
(VTAM does not offer support for mapped conversations. VTAM's support
is for basic conversations. If the application program needs to use mapped
conversations, it must include code to implement them. Refer to the SNA
Transaction Programmer's Reference Manual for LU Type 6.2 for information
on mapped conversations.

7 Reserved. Set to X'00'.

8 Flags for fixed length parameters. The first 2 bits indicate the requested
synchronization level of the conversation. The other bits are reserved and
should be set to 0. The possible combinations of synchronization levels
supported by VTAM are:
v X'00'—a synchronization level of none . Application programs cannot use

confirmation requests and responses on such a conversation. The
application program must enforce this restriction.

v X'40'—a synchronization level of confirm. Application programs can use
confirmation requests and responses but not sync point requests and
responses.

v X'80'—a synchronization level of syncpt. Application programs can use
both confirmation and sync point requests and responses on this
conversation.

Note: The value set in this field must be consistent with the sync-point
level negotiated between the two LUs. The negotiated sync-point level is
usually CONFIRM, unless both LUs support sync point. When the first
session between the two LUs is established, the sync-point level
(SYNCLVL) is negotiated. The APPCCMD CONTROL=OPRCNTL,
QUALIFY=DISPLAY macroinstruction displays the SYNCLVL.

9 The length of the transaction program name (a hexadecimal value).

10–n The transaction program name, up to 64 bytes long. (The LUs that are
communicating determine the format.)

n+1 Length in binary of access security information. Code X'00' if no subfields
are present, but subsequent fields follow.

178 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

n+2–m
Access security information. See “Access security subfields.”

m+1 Length in binary of the logical unit of work (LUW) identifier field. The
LUW field cannot be used to support the sync point option set, but
application programs can use it for accounting purposes. Code X'00' if no
LUW is present, but subsequent fields follow.

m+2–k
The optional LUW field. See “LUW field.”

k+1 Length of conversation correlator of sender. Code X'00' if the correlator is
not present, but subsequent fields follow.

k+2–w Conversation correlator of sender. The conversation correlator is used to
further qualify the LUW. Do not include it if the LUW is not present. (The
description is specific to the application program.)

The following information describes the placement of the fields for GDS data.

w+1–y Optional PIP data. See “PIP data field” on page 180.

y+1–z Optional authentication token data (X'12F6') GDS variable. See “DCE
security (authentication token) GDS field” on page 180.

Access security subfields:

The application program can include optional access security subfields. If security
subfields are included:
v If a user ID field is present, a password field must be present, or the

already-verified indicator (byte 4, bit 0) or the persistent verification signed-on
indicator (byte 4, bit 1) must be set.

v If a profile subfield is present, a user identifier subfield also must be present.
v If a password subfield is present, a user identifier subfield also must be present.

The layout of an access security subfield follows:

Byte Meaning

0 Length in binary of the rest of the subfield. The value does not include this
length byte.

1 The subfield type. The following values are allowed:

X'00' Profile

X'01' Password

X'02' User identifier

2–i Data, such as the actual password or identifier.

LUW field:

The LUW field allows the application program to identify each conversation for
accounting and sync point purposes. The layout of the LUW field follows:

Byte Meaning

0 Length of the LUW field (not including this length byte)

1 Length of the network-qualified LU network name

2–n Network-qualified LU network name

Chapter 7. Allocating a conversation 179

n+1–n+6
LUW instance number

n+7–n+8
LUW sequence number

PIP data field:

The optional PIP data can be anything that the application program includes as
parameter data when setting up the conversation. The layout of the PIP variable
follows:

Byte Meaning

0–1 Length in binary of the PIP variable, including the length bytes

2–3 General data stream (GDS) identifier (X'12F5')

4–n Zero or more PIP subfields, each of which has the following format:

Byte Meaning

0–1 Length in binary of the subfield, including the length bytes

2–3 GDS ID (X'12E2')

4–m PIP subfield data

DCE security (authentication token) GDS field:

The optional authentication token data (X'12F6') GDS variable is used to convey
authentication tokens on a conversation before user data. The layout of the
authentication token is as follows:

Byte Meaning

0–1 Length (p+1), in binary, of authentication token data GDS variable,
including this length field

2–3 GDS ID: X'12F6'

4–5 Header Length: length of authentication header. Valid values are 0 to n-5.

6–n SNA specific header

6 Header byte bit 0 has the following meaning:

B'0' Token exchanges are to continue using the conversation's
session.

B'1' Additional token exchanges for this conversation are to be
performed using the distributed authentication service TP.
If on, the associated FMH5 must contain a valid
conversation correlator.

7 Length of security mechanism object identifier. Valid values are 0
to 32.

8—m BER encoded form of the security mechanism's object identifier.
Only required in initial flow from Attach sender. If omitted,
associated length contains 0.

The rest of the SNA specific header is reserved.

n+1–n+2
Length of the generic security services (GSS) API authentication token.
Valid values are 0 – 24 576. A length of 0 is referred to as a null token.

180 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

n+3–p A string of bytes containing the GSS-API authentication token.

Checking errors in the FMH-5

VTAM performs relatively little error checking on the FMH-5. More checks are
performed when VTAM receives an FMH-5 for an application program than when
an application program gives an FMH-5 to VTAM for processing. In both cases,
VTAM checks the length of the FMH-5 by summing up the totals of the length
fields of the various subfields and comparing the result to the overall length field
for the FMH-5. For FMH-5s supplied as part of conversation allocation, VTAM
checks that:
v The application program is not requesting a conversation with a control operator

transaction program (specified by a transaction program name of X'06F1').
v The application program is not requesting a full-duplex conversation when

full-duplex is not supported.
v The sync point capability specified is supported by the session.
v Security subfields, if present, are accepted by the partner LU.

For FMH-5s received from another LU, VTAM also checks that:
v RECONNECT support is not specified in the synchronization field.
v Valid characters are used in the network name in the logical unit of work field.
v The application program is not requesting a full-duplex conversation when

full-duplex is not supported.
v Security subfields, if present, are accepted by the application program.
v Only one of each type of access security subfield is present.
v An unrecognizable security subfield is not present.

The application program must check for many of the potential errors. The
application program ensures that:
v If a user identifier field is present, either a password field is present or the

already-verified indicator or the persistent verification signed-on indicator is set.
v If a profile subfield is present, a user identifier subfield is also present.
v Any other security information in the FMH-5 that is not checked by VTAM is

accurate.
v If specified, security indicators are in architecturally valid combinations.
v The transaction name is not null (length of 0).
v The transaction name does not specify an SNA service transaction program

unless the conversation is authorized.
v The conversation type (basic or mapped) is correct.
v No attempt is made to allocate a conversation with a mode name of

SNASVCMG unless the transaction programs have control operator status.

Example of an FMH-5

As an example, suppose that an FMH-5 header needs to be built for a transaction
program named TP1. This FMH-5 includes access security subfields specifying an
identifier of PROG1, a password of SAMPLPW, and appended PIP data of TEST.
The conversation type is basic and the synchronization level is confirm. There is no
LUW or conversation correlator.

In EBCDIC, TP1, PROG1, SAMPLPW, and TEST have the following values:

Chapter 7. Allocating a conversation 181

TP1 X'E3D7F1'

PROG1
X'D7D9D6C7F1'

SAMPLPW
X'E2C1D4D7D3D7E6'

TEST X'E3C5E2E3'

Therefore, the access security subfield information is a hex string of:
100801E2C1D4D7D3D7E60602D7D9D6C7F1

The PIP parameter is a hex string of:
000C12F5000812E2E3C5E2E3

The length of the entire FMH-5, including the access information, but not including
the PIP data, is 32 bytes (X'20'). The entire FMH-5, including appended PIP data, is
a hex string of:
200502FF 0803D000 4003E3D7 F1100801 E2C1D4D7 D3D7E606
02D7D9D6 C7F10000 000C12F5 000812E2 E3C5E2E3

Figure 25 shows the final FMH-5 broken down into its various fields. The FMH-5
length field does not include the PIP data, but byte 4 must be set to X'08' to
indicate that the PIP data is there.

Issuing the CONTROL=ALLOC macroinstruction

After the FMH-5 is built, the application program issues the APPCCMD
CONTROL=ALLOC macroinstruction to place the FMH-5 in the SEND buffer
destined for the partner LU. For conversations allocated on full-duplex-capable
sessions, the FMH-5 is not buffered, but sent immediately. For conversations
established on half-duplex sessions, the FMH-5 is not sent through the network
until the application program issues an APPCCMD macroinstruction that flushes
the SEND buffer, or until the application program sends enough additional data to
cause VTAM to flush the buffer. The application program uses the AREA
parameter on the macroinstruction to point to the FMH-5. The RECLEN parameter
specifies the length of the FMH-5.

TP TP TP TP

TP

LU
6.2

LU
6.2

LU
6.2

LU
6.2

SINGLE SESSION PARALLEL SESSIONS

SESSION

CONVERSATION

Figure 25. Sample FMH-5 divided into its component fields

182 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

As an alternative, application programs can issue the APPCCMD
CONTROL=PREALLOC macroinstruction, which reserves a session for a
conversation without sending the FMH-5. For more information about
preallocating a conversation, see “Reserving a session for a conversation” on page
189.

Application programs have several choices of what to specify on the APPCCMD
CONTROL=ALLOC macroinstruction. These choices are shown in Table 31.

Table 31. Types of conversation allocation

Allocation Type Description

QUALIFY=ALLOCD Attempts to start a session for the conversation if one is not
available. If a session cannot be established, the session request is
queued until a session is available.

QUALIFY=CONVGRP Can complete successfully if the session specified by the
conversation group identifier is available. If the session is not
available, the request is queued until it is available.

QUALIFY=CONWIN Can complete successfully only after a contention-winner session
has been allocated for use by the newly created conversation. If no
contention-winner session is currently available, the APPCCMD is
queued for later completion.

QUALIFY=IMMED Can complete successfully only if a contention-winner session is
available immediately for use.

QUALIFY=WHENFREE Can complete successfully only if a session is available or pending
or one can be activated. This request is never queued waiting for a
conversation to complete and free a session.

For an explanation of the types of conversation allocation, see “Types of
conversation allocation” on page 72. For details on the syntax and operands for the
different forms of the CONTROL=ALLOC macroinstruction, refer to the
descriptions in the z/OS Communications Server: SNA Programmer's LU 6.2
Reference.

For optimal performance in allocating a session for a conversation, design the
application program so that a contention-winner session is always available.

Buffering requirements

For conversations allocated on full-duplex-capable sessions, the FMH-5 is not
buffered when the APPCCMD CONTROL=ALLOC macroinstruction completes,
but sent immediately to the partner LU. For conversations allocated on half-duplex
sessions, VTAM stores the FMH-5 in the SEND buffer rather than sending it to the
partner LU immediately. The application program can issue an APPCCMD
CONTROL=SEND, QUALIFY=FLUSH macroinstruction that flushes the SEND
buffer if the partner LU needs to receive the FMH-5 promptly. For details on
flushing the send buffer, see “Flushing the buffer” on page 208.

Because the conversation allocation does not complete until the FMH-5 is received
by the partner LU, many conversation allocation errors cannot be reported on the
APPCCMD CONTROL=ALLOC macroinstruction. The errors that are reported are
those involving the session used by the conversation.

For example, if no sessions are available to satisfy an APPCCMD
CONTROL=ALLOC, QUALIFY=IMMED macroinstruction, an error would be
reported to the application program when the macroinstruction completed. Errors
involving the conversation, however, are not reported until a subsequent

Chapter 7. Allocating a conversation 183

APPCCMD macroinstruction completes. These errors include invalid transaction
program names, invalid PIP data, conversation type mismatches, and security
errors. Consequently, the application program must be prepared to deal with
allocation errors after the APPCCMD CONTROL=ALLOC completes successfully.

Note: The FMH-5 is always buffer traced at the user level if buffer trace is active
for the application program.

Example of allocating a conversation

Suppose that an application program with an ACB name of APPLA is to establish
a conversation with a partner LU known as APPLB. The conversation should use
the EXAMPLE mode, and connect to a transaction program at APPLB known as
INQUIRY_MANAGER. APPLA also includes PIP data on the allocation request of
“INQUIRY=BALANCE CUSTOMER=899902”. The APPCCMD is issued
synchronously, and the returned conversation identifier is stored by APPLA in the
data area referenced by the CONVERID label. (Assume that the other fields in the
FMH-5 used in this example were previously initialized properly and that a CNOS
request has been successfully negotiated between the two LUs.)

LA 10,FMH5STOR * GET FMH-5 ADDRESS
USING ISTFM5,10 * ESTABLISH ADDRESSABILITY
MVI FM5LNTPN,X’0F’ * SET TRANSACTION PROGRAM NAME LENGTH
MVC FM5TPNAM(15),=C’INQUIRY_MANAGER’ * SET TP NAME
OI FM5FLAG2,FM5PIPPR * SET BIT TO INDICATE PIP PRESENT
MVC FM5TPNAM+15(3),=X’000000’ * SET REST OF FMH5 TO ZEROS
MVI FM5LENTH,X’1C’ * SET LENGTH OF FMH5 WITHOUT PIP DATA
LA 9,28(,10) * SET ADDRESS OF START OF PIP DATA
USING FM5PIPFM,9 * ESTABLISH ADDRESSABILITY
LA 8,32(,10) * SET ADDRESS OF PIP DATA SUBFIELD
USING FM5PIPSM,8 * ESTABLISH ADDRESSABILITY
MVC FM5PIPLN,=X’0027’ * SET LENGTH OF PIP SUBFIELDS AND DATA
MVC FM5PIPGD,=X’12F5’ * SET PIP GDS ID IN FMH-5
MVC FM5PIPSL,=X’0023’ * SET LENGTH OF PIP DATA SUBFIELD
MVC FM5PIPSG,=X’12E2’ * SET SUBFIELD ID IN FMH-5
MVC FM5PIPSD(31),=C’INQUIRY=BALANCE CUSTOMER=899902’ * DATA
DROP 8,9 * DROP PIP DSECT REGISTERS

*
* FMH-5 AND PIP ARE SET. NOW FOR THE APPCCMD.
*

APPCCMD CONTROL=ALLOC, X
QUALIFY=ALLOCD, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
LUNAME=APPLB, X
LOGMODE=EXAMPLE, X
OPTCD=SYN, X
AREA=(10), X
RECLEN=67

*
LTR 15,15 * CHECK GENERAL RETURN CODE IN 15
BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE
LA 8,RPLAX * GET RPL EXTENSION ADDRESS
USING ISTRPL6X,8 * ESTABLISH ADDRESSABILITY
MVC CONVERID,RPL6CNVD * STORE THE CONVERSATION ID

•
•
•

CONVERID DS XL4 * RETURNED CONVERSATION ID
FMH5STOR DS XL255 * FMH-5 AND PIP STORAGE

184 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

RPLA RPL AM=VTAM * RPL STORAGE
RPLAX ISTRPL6 * RPL EXTENSION STORAGE
APPLA ACB AM=VTAM,MACRF=LOGON,APPLID=APPLNAME * ACB STORAGE

Responding to an FMH-5

An application program participates in a conversation initiated by another
transaction program by issuing APPCCMD CONTROL=RCVFMH5 to receive the
FMH-5 that was sent.

Application programs must always issue APPCCMD CONTROL=RCVFMH5 when
notified of the arrival of an FMH-5. They cannot reject a conversation request by
refusing to receive the FMH-5.

If an application program cannot support a conversation when notified of the
arrival of the FMH-5, it can wait to issue APPCCMD CONTROL=RCVFMH5 until
it can do so, or it can issue the macroinstruction and then use one of the abnormal
conversation termination macroinstructions to immediately end the conversation.
(See “Checking the received FMH-5” on page 187 for more details on ending the
conversation.)

The RCVFMH5 macroinstruction specifies the following items:
v A buffer in the application program's storage where VTAM can store the FMH-5
v The length of the buffer area
v The continuation modes for receiving normal and expedited information

(For details on the syntax and operands for the macroinstruction, refer to the z/OS
Communications Server: SNA Programmer's LU 6.2 Reference.)

If several FMH-5s are waiting to be received, and those FMH-5s can be received,
they are processed in a first-in, first-out manner. When persistent sessions are used,
the application program might be unable, temporarily, to receive FMH-5s.

Application programs are made aware of an FMH-5 to be processed from the
following sources:
v Feedback from the APPCCMD macroinstruction, which returns two parameters

(FMH5RCV and FMH5LEN) that indicate there is an FMH-5 waiting to be
received. FMH5LEN indicates the length of the FMH-5. The RPL fields are set as
long as an FMH-5 is waiting to be received. See “Keywords and returned
parameters” on page 87 for a complete list of the macroinstructions on which
these parameters are returned.

v The ATTN exit, which is driven when an FMH-5 is received. The ATTN exit
normally is driven only once for each FMH-5. With persistent LU-LU sessions, it
might be driven once for each FMH-5 for each application instance.

If the ATTN exit is present, both methods are available to the application program.

As an alternative to these types of notification, the application can bypass ATTN
exit processing by issuing an RCVFMH5 request that is queued by VTAM before
the FMH-5 is received. See “Queuing the RCVFMH5 macroinstruction” on page
189 for more information. Application programs can also maintain an internal
timer and periodically issues APPCCMD CONTROL=RCVFMH5,
QUALIFY=NULL. In this case, the application program must deal with nonzero
return codes when no FMH-5s are available to receive.

Chapter 7. Allocating a conversation 185

Restrictions on types of notification

If you are using feedback from the APPCCMD macroinstruction, remember that at
times this notification is not available. If the application program is not
participating in a conversation, or is participating in a conversation but has no
APPCCMD macroinstructions outstanding, the application program cannot be
informed of the receipt of an FMH-5 through the feedback fields in the RPL.

If you are using the ATTN exit, be aware that the information on the length of the
FMH-5, shown in the RPL extension, might not reflect the length of the next
FMH-5 to be received. When set by VTAM, the RPL extension FMH5LEN field
contains the length of the longest FMH-5, if FMH-5s are queued. When an ATTN
exit is driven, the length of the FMH-5 for which the ATTN exit is driven is found
in the same RPL extension feedback field (the exit's parameter list points to a
read-only RPL). If a queue of FMH-5s has formed, this will not be the next one to
be received. Any problems with the length can be avoided by reserving 255 bytes
for any FMH-5 that needs to be received, because an FMH-5 cannot exceed that
length. When the application program receives the FMH-5, the RPL's RECLEN
field contains the length of the FMH-5.

If you are using the ATTN exit, remember that it is driven only once for each
FMH-5. With persistent LU-LU sessions, it might be driven once for each FMH-5
for each application instance. If the application program lacks the resources to start
a conversation at that time, the exit can note in any way convenient for the
application program that an FMH-5 needs to be received. The mainline program
can receive the FMH-5 at a later time.

Example of receiving an FMH-5

This section provides an example for receiving an FMH-5. Figure 26 on page 187
shows an application program, APPLA, that has its ATTN exit driven for the
receipt of an FMH-5. The application program must issue RCVFMH5 to accept the
FMH-5. The application program must save the LU name of the conversation
partner, the mode being used by the conversation, and the returned conversation
identifier. This information is saved in the storage areas LUNAME, MODE, and
CONVID.

186 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Receiving PIP and DCE data

To receive PIP or DCE data that accompanies the FMH-5, the application program
must either specify QUALIFY=DATQUE on the RCVFMH5 or issue a separate
APPCCMD CONTROL=RECEIVE. GDS data included with the FMH-5 is not
received by an APPCCMD CONTROL=RCVFMH5, QUALIFY=NULL|QUEUE.
(VTAM treats PIP and DCE data as a separate logical record.)

Receiving the GDS data is no different than receiving any other logical record.
Once the GDS data is received, the application program must extract the data from
the GDS variable's subfields. (See “Logical records versus buffers” on page 247 for
information on receiving logical records.)

Checking the received FMH-5

The application program must validate the received FMH-5. For details on the
format of the FMH-5, see “Building an FMH-5” on page 176.

CLC 12(4,1),=C’FMH5’ * WAS EXIT DRIVEN FOR FMH-5?
BE FMH5IN * GO TO FMH5 CODE IF SO

•
•
•

FMH5IN DS 0H
•
•
•

*
APPCCMD CONTROL=RCVFMH5, X

RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
OPTCD=SYN, X
CONMODE=LLCA, X
CONXMOD=CA, X
AREA=FMH5INST, X
AREALEN=255

*
LTR 15,15 * CHECK GENERAL RETURN CODE IN 15
BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE
LA 9,RPLAX * GET RPL EXTENSION ADDRESS
USING ISTRPL6X,9 * ESTABLISH ADDRESSABILITY
MVC LUNAME,RPL6LU * SAVE PARTNER LU NAME
MVC MODE,RPL6MODE * SAVE MODE NAME
MVC CONVID,RPL6CNVD * STORE THE CONVERSATION ID

•
•
•

MODE DS XL8 * MODE NAME
LUNAME DS XL8 * PARTNER LU NAME
CONVID DS XL4 * RETURNED CONVERSATION ID
FMH5INST DS XL255 * RECEIVED FMH-5
RPLA RPL AM=VTAM * RPL STORAGE
RPLAX ISTRPL6 * RPL EXTENSION STORAGE
APPLA ACB AM=VTAM,MACRF=LOGON,APPLID=APPLNAME * ACB STORAGE

Figure 26. Example of receiving an FMH-5

Chapter 7. Allocating a conversation 187

If an error is detected in the FMH-5, the application program must issue an
APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDUSER, or an APPCCMD
CONTROL=REJECT, QUALIFY=CONV macroinstruction. The application program
must specify in the SENSE field of the RPL extension one of the valid sense codes
shown in the following list. The specified sense code is sent to the partner LU in
an FMH-7 (error description). The possible sense codes applicable to allocation
errors and their meanings follow:

Code Meaning

X'080F6051'
Some type of security violation has occurred. The FMH-5 might have
specified a transaction program name that the partner LU cannot have a
conversation with, or information in an access security subfield is not
valid.

X'084B6031'
Transaction program not available, but retry allowed. The FMH-5 specifies
a transaction program that the receiver is unable to start. Either the
transaction program is not authorized to execute or the resources to
execute it are not immediately available. The condition is temporary. The
FMH-5 sender is responsible for trying again.

X'084C0000'
Long-term insufficient resources. The FMH-5 specifies a transaction
program that the receiver is unable to start. The sender should not try
again immediately.

X'1008600B'
Unrecognized FM header command code. The partner LU received an FM
header command code that it does not recognize.

X'10086021'
Transaction program name not recognized. The FMH-5 specifies a
transaction program name that the receiver does not recognize.

X'10086031'
PIP not allowed. The FMH-5 specifies that PIP data is present, but the
receiver does not support PIP data for the specified transaction program.

X'10086032'
PIP not specified correctly. The FMH-5 specifies a transaction program
name that requires PIP data and either the FMH-5 specifies that PIP data is
not present or the number of PIP subfields present does not agree with the
number required for the program.

X'10086034'
Conversation type mismatch. The FMH-5 specifies a conversation type that
the receiver does not support for the specified transaction program.

X'10086041'
Synchronization level not supported. The FMH-5 specifies a
synchronization level that the receiver does not support for the specified
transaction program.

X'10086042'
Reconnection not supported. The FMH-5 specifies reconnection support but
the receiver does not support reconnection for the specified transaction
program.

188 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Queuing the RCVFMH5 macroinstruction

The QUALIFY=QUEUE|DATAQUE option on the APPCCMD
CONTROL=RCVFMH5 macroinstruction allows the application to bypass
ATTN(FMH-5) exit processing when VTAM receives an FMH-5. If the QUEUE
option is specified, VTAM moves the FMH-5 immediately to the application's
buffer and bypasses ATTN(FMH-5) exit processing.

Receiving data along with the FMH-5

Conversation allocation requests can contain data in addition to the FMH-5. If the
application receives the FMH-5 with QUALIFY=NULL or QUALIFY=QUEUE, the
application's buffer is not readily available to accept data. Instead, VTAM moves
the data to a data space to free I/O buffers. This requires the application to issue a
CONTROL=RECEIVE to accept the data after receiving the FMH-5. Applications
can reduce both macroinstruction processing and receive pathlength by issuing an
APPCCMD CONTROL=RCVFMH5, QUALIFY=DATAQUE before VTAM receives
the partner's allocation request. VTAM queues the request if no FMH-5 are
outstanding. When an FMH-5 is received by VTAM, VTAM moves the FMH-5
immediately to the application's buffer and bypasses ATTN(FMH-5) exit
processing. Any data that accompanies the FMH-5 is transferred to the application.
VTAM examines the setting of the application's FILL parameter to determine how
to handle the data. The remainder of the macroinstruction is processed similar to a
receive request.

Reserving a session for a conversation

An application program can obtain information about a conversation before
initiating the conversation by issuing the APPCCMD CONTROL=PREALLOC
macroinstruction. This puts the conversation in PENDING_ALLOCATE state.
VTAM returns a conversation identifier (CONVID) and related information for the
pending conversation.

VTAM may also return information in the VTAM-APPCCMD vector list, which can
be requested by the application by specifying a vector list area (VTRINA) and the
length of that area (VTRINL) on an APPCCMD macroinstruction. Applications
should examine the VTAM-APPCCMD vector list when using any of the following
functions:

Password Substitution
Applications that implement LU 6.2 option set 223 for password
substitution must examine the following vectors:
v Local-nonce vector (ISTAPC13)
v Partner's-nonce vector (ISTAPC14)
v Send-FMH_5-sequence-number vector (ISTAPC15)
v Receive-FMH_5-sequence-number vector (ISTAPC16)
v Partner-application-capabilities vector (ISTAPC1A)

Extended Security Sense Codes
Applications that implement LU 6.2 option set 225 should examine the
partner-application-capabilities vector (ISTAPC1A) to determine whether
the partner can interpret the extended security sense codes.

Chapter 7. Allocating a conversation 189

DCE Security
Applications that implement LU 6.2 option sets 230 and 231 should
examine the partner's-DCE-capability vector (ISTAPC12).

High Performance Data Transfer (HPDT)
Applications using the HPDT interface should examine the
session-information vector (ISTAPC19).

The application can also obtain other information about the conversation from
VTAM-APPCCMD vector list. See“Vector lists used during APPCCMD processing”
on page 30 for more information.

To establish a conversation reserved by the APPCCMD CONTROL=PREALLOC
macroinstruction, the application issues the APPCCMD CONTROL=SENDFMH5
macroinstruction specifying the CONVID of the pending conversation. This places
the FMH-5 in the SEND buffer destined for the partner LU. For conversations
whose preallocated sessions are full-duplex-capable, the FMH-5 is not buffered, but
sent immediately. For conversations whose preallocated sessions are
half-duplex-capable, the FMH-5 is not sent until one of the following conditions
occurs:
v The application program issues an APPCCMD macroinstruction that flushes the

SEND buffer.
v The application program sends enough additional data to cause VTAM to flush

the buffer.

The application program uses the AREA parameter on the macroinstruction to
point to the FMH-5. The RECLEN parameter specifies the length of the FMH-5.

On the APPCCMD CONTROL=PREALLOC macroinstruction, applications can
specify any of the QUALIFY values that are available for the APPCCMD
CONTROL=ALLOC macroinstruction. See Table 31 on page 183 for more
information about these QUALIFY values.

To deallocate a conversation reserved by the APPCCMD CONTROL=PREALLOC
macroinstruction, use one of the following macroinstructions:
v APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDPROG
v APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDSERV
v APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDTIME
v APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDUSER
v APPCCMD CONTROL=DEALLOCQ

Description of the conversation identifier

When a conversation is successfully allocated, VTAM assigns a unique
conversation identifier (CONVID) to it. This identifier is returned to the application
program in the RPL6CNVD field of the RPL extension on completion of the
APPCCMD CONTROL=ALLOC and APPCCMD CONTROL=RCVFMH5
macroinstructions.

The application program uses the conversation identifier to specify which
conversation it will use when it issues conversation-based macroinstructions such
as APPCCMD CONTROL=SEND or APPCCMD CONTROL=RECEIVE. For a
complete list of the APPCCMDs that can specify a conversation identifier, see
“Keywords and returned parameters” on page 87.

190 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Description of the session instance identifier

When an APPCCMD CONTROL=ALLOC, CONTROL=PREALLOC, or
CONTROL=RCVFMH5 completes successfully, VTAM places a session identifier in
the SESSID field of the RPL extension (RPL6SSID in the ISTRPL6X DSECT). This
session identifier uniquely identifies the session being used by the conversation.
The PLU is responsible for generating the SESSID. When VTAM generates this
SESSID, it is derived from the procedure-correlation identifier (PCID).

The session identifier may be the same as the session ID displayed by the
DISPLAY NET,SESSIONS VTAM operator command. This case is true if the bind
request contains a session instance identifier structure subfield with a format byte
equal to X'01' and the corresponding BIND response contains a session instance
identifier structure subfield with a format byte equal to X'02'. If the retired format
bytes (X'00' in the BIND request, X'00' or X'F0' in the BIND response) are present in
the session instance identifier subfield, then the session identifier will not be the
same as that displayed by the D NET,SESSIONS VTAM operator command.

The identifier ranges from 2 to 8 bytes in length. The length of the session
identifier is returned in SESSIDL (RPL6SIDL in the DSECT).

An APPCCMD CONTROL=RCVFMH5 macroinstruction can complete successfully
without having a session identifier returned (SESSIDL=0). This is the case when
the use of an associated session for a pending conversation is complete, and the
session has been released for use by another conversation.

Session activation

In addition to automatically activating sessions as the result of a CNOS request,
VTAM can activate sessions as the result of an allocation request if no free sessions
are available. In such cases, when the number of active contention-winner sessions
for an application program is less than its minimum number of contention-winner
sessions, VTAM activates a contention-winner session. If the number of active
contention-winner sessions for an application program equals or exceeds its
minimum number of contention-winner sessions, but the overall session limit has
not been reached, VTAM can activate either a contention-winner or
contention-loser session.

Type of session activated

The type of session that VTAM activates in response to the allocation request
depends on the following conditions:
v If the number of active sessions is less than the new overall session limit, and

the sum of the new minimum number of contention-winner sessions for both the
source side and target side is less than the new session limit, both LUs can
activate additional contention-winner sessions on a first-come-first-serve basis up
to the new session limit. These sessions can be activated only in response to
allocation requests.
In this case, the difference between the overall session limit and the sum of the
contention-winner sessions can be thought of as a pool of potential
contention-winner sessions that either LU can use.

v If the number of active contention-winner sessions for either LU equals the
overall session limit minus the minimum number of contention-winner sessions
for its partner, and the number of active sessions is less than the overall session

Chapter 7. Allocating a conversation 191

limit, the LU can activate additional contention-loser sessions up to the new
session limit. These sessions can be activated only in response to allocation
requests.
In this case, any pool of potential contention-winner sessions that might have
existed has been used. The only available session resources are from the pool of
potential contention-winner sessions guaranteed to the partner LU.
Consequently, VTAM can activate only a contention-loser session.

Number of sessions activated

The AUTOSES value, which is specified either on the APPL definition statement or
with the APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE macroinstruction,
plays an important role in determining the number of sessions activated as the
result of a CNOS macroinstruction. As stated in the rules for session activation, the
AUTOSES value places a ceiling on the number of sessions that are automatically
activated using a given mode name. It has no impact on the actual limits, and new
sessions beyond the AUTOSES number can be activated in response to allocation
requests. (See “VTAM's role in session activation and deactivation” on page 145 for
information on activating sessions.)

Sync point capability

During session activation, the BIND for the requested session is also negotiated for
sync point capability. If both LUs have SYNCLVL=SYNCPT coded on the APPL
definition statement, all sessions are bound as sync point sessions. These sessions
support both protected and unprotected conversations. (The SLDSYNCH field in
the DEFINE/DISPLAY control block is set to B'10'.)

If one or both of the LUs have SYNCLVL=CONFIRM coded on the APPL
definition statement or if no synchronization level is specified, all the sessions
between the two LUs are bound as CONFIRM level sessions. Protected
conversations are not allowed on these sessions (the SLDSYNCH field in the
DEFINE/DISPLAY control block is set to B'01').

Full-duplex session capability

The full-duplex capability of sessions between two LUs is determined during
BIND negotiation. If both applications specify PARMS=(FDX=YES) on the OPEN
for the ACB, then all sessions will be full-duplex capable. Otherwise, all sessions
will be half-duplex capable. If the BIND exchange results in a full-duplex-capable
session, transaction programs are able to send data in an expedited manner,
bypassing normal paced protocols. Sessions that are negotiated to a
full-duplex-capable level support sending and receiving expedited data whether
the conversations are full-duplex or half-duplex. If the BIND exchange does not
result in a full-duplex-capable session, sending and receiving expedited data is not
supported.

Synchronizing end points after session activation failure

In certain circumstances, VTAM attempts to recover from an LU failure by
automatically issuing a CNOS to resynchronize session limits. If a VTAM
negotiates a CNOS request successfully, the negotiated information is saved. If the
partner experiences a power failure or other event and terminates all sessions and
also loses its session limits, VTAM automatically reissues an internal CNOS request

192 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

on a subsequent allocation request. (The partner would have to initiate a CNOS
request before it could issue an allocation request.) For example, if VTAM cannot
activate a session in response to the allocation request, VTAM fails the allocation
request, unless it receives one of the following sense codes:
v X'08050000'
v X'08050001'
v X'0835'nnnn, where bytes 2 and 3 contain an offset pointing to a mode name in

the user data field and that mode name is not SNASVCMG or CPSVCMG

When VTAM receives any one of these sense codes, VTAM attempts to renegotiate
the session limits using an internal CNOS request and issuing the session
activation request again. The internal CNOS request uses the values currently in
the LU-mode table. These values would have been negotiated successfully on a
previous CNOS request.

Chapter 7. Allocating a conversation 193

194 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Chapter 8. Deallocating a conversation

About this chapter

The deallocation process ends a conversation. Deallocation occurs under two
circumstances:
v Normal conversation deallocation
v Deallocation due to errors on the conversation (abnormal deallocation)

Normal conversation deallocation differs for full-duplex and half-duplex
conversations. Full-duplex conversations require both transaction programs to issue
a deallocate to complete normal conversation deallocation. Half-duplex
conversations can be normally deallocated by either transaction program as long as
it is in SEND state. The process for abnormal conversation deallocation also differs
according to the type of conversation. The processes for each type of conversation
deallocation are explained in this chapter.

Deallocating a half-duplex conversation

Normal and abnormal deallocation processes are discussed in this section.

Deallocating a half-duplex conversation normally

Half-duplex conversations are normally deallocated by the transaction program in
SEND or PENDING_SEND state. The deallocation can be unconditional or
conditional. It can also include a request to send data or transmit buffered data to
the partner LU.

Normal conversation deallocation occurs when the side of the conversation in a
sending state issues an APPCCMD CONTROL=DEALLOC macroinstruction. The
partner application program is informed of the deallocation request through
feedback on an APPCCMD macroinstruction (probably an APPCCMD
CONTROL=RECEIVE macroinstruction).

The application program in a receiving state can be informed of the deallocation by
way of a bit (DEALLOCATE) in the What-Received field of the RPL extension on
an APPCCMD CONTROL=RECEIVE macroinstruction. It also can be informed of
the deallocation if it attempts to issue an APPCCMD CONTROL=SEND,
QUALIFY=ERROR macroinstruction. If it attempts to issue an APPCCMD
CONTROL=SEND, QUALIFY=ERROR macroinstruction, it receives an error return
code indicating the partner has deallocated the conversation.

In any of the varieties of the CONTROL=DEALLOC macroinstruction, any
buffered data that has not yet been sent to the partner LU is transmitted through
the network. The various forms of this macroinstruction involve two major choices:
v Whether to send more data
v Whether to send a confirmation request

If the application program will do neither, it should use the QUALIFY=FLUSH
form of the macroinstruction. The QUALIFY=DATAFLU form sends additional

© Copyright IBM Corp. 2000, 2013 195

data and deallocates the conversation. The QUALIFY=CONFIRM form sends a
confirmation request and deallocates the conversation. The QUALIFY=DATACON
form sends both data and a confirmation request in addition to deallocating the
conversation. These choices are shown in Table 32.

Table 32. Macroinstructions for normal deallocation of half-duplex conversations

Sends Data Confirm Macroinstruction

Yes Yes DEALLOC/DATACON

No Yes DEALLOC/CONFIRM

Yes No DEALLOC/DATAFLU

No No DEALLOC/FLUSH

Sending information

Most of the decisions involved in sending information with a deallocation
macroinstruction are the same as for sending information with a CONTROL=SEND
macroinstruction. For general information on sending information, see Chapter 9,
“Sending information,” on page 207.

Because the conversation is terminated if the macroinstruction completes
successfully, the data sent must complete a logical record. The VTAM program
checks for the end of the record and fails the macroinstruction if the data does not
complete a logical record.

Sending confirmation requests

Requests for confirmation are valid only for half-duplex conversations. Requests
for confirmation on full-duplex conversations result in a parameter check.

The choice of whether to send a confirmation request determines whether the
deallocation request is conditional or unconditional.

When a confirmation request is sent, the conversation is not deallocated until a
positive response is received. If the partner application program sends notification
of an error in response to the confirmation request, the conversation is not
deallocated.

Conditional deallocation request:

A deallocation request that includes a confirmation request is conditional. As is the
case with a confirmation request on an APPCCMD CONTROL=SEND
macroinstruction, a negative response is reported as an error code on the
macroinstruction.

Unconditional deallocation request:

If a deallocation is unconditional (specified with QUALIFY=FLUSH or
QUALIFY=DATAFLU), the application program in RECEIVE state cannot stop the
deallocation. The receiving application program cannot supply feedback
information. If it does send error data, the data is lost. Error data unrelated to the
deallocation request can also be lost. As an example, assume that an application
program issues the following macroinstructions:
v APPCCMD CONTROL=ALLOC, QUALIFY=IMMED
v APPCCMD CONTROL=DEALLOC, QUALIFY=DATAFLU

196 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

For half-duplex sessions, VTAM buffers the FMH-5 created as a result of the
allocation, and nothing is sent to the partner LU until after the application program
has ended the conversation. If the partner detects an error in the FMH-5, it has no
way to report it to the application program that initiated the conversation, unless it
starts another conversation. (The conversation is deallocated before the application
program can determine whether the partner received data.) For half-duplex
conversations on full-duplex-capable sessions, the FMH-5 is not buffered as a result
of the allocation, but is sent immediately to the conversation partner.

If the potential loss of error information is unacceptable, the application must use a
conditional deallocation request that includes a confirmation request.

When the application program requests conditional deallocation, it must wait for a
confirmation response. The partner can reject the deallocation request.

The partner can respond negatively to the confirmation request, indicating an error,
and also deallocate the conversation using one of the abnormal termination
macroinstructions. This would be reported to the application program that is
attempting to deallocate the conversation normally as one of the
DEALLOCATE_ABEND return codes.

When the partner responds negatively to a confirmation request, it can send error
data to the application program to be placed in the system log. The LOGRCV field
in the RPL extension is set to YES to indicate this to the application program.
When the LOGRCV field in the RPL extension is set to YES, the application
program must issue APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC to
receive the error log data. If the data does not arrive, or has the wrong format, the
application program must issue APPCCMD CONTROL=REJECT to both terminate
the conversation and end the session. The application program includes a sense
code on the macroinstruction to describe the exact nature of the error. Refer to the
SNA Transaction Programmer's Reference Manual for LU Type 6.2 for a list of possible
sense codes.

If the partner LU responds negatively to the confirmation request, VTAM puts the
application program in RECEIVE state. The application program must wait for the
partner LU to deallocate the conversation or attempt to enter SEND state before it
can again try to deallocate the conversation.

Example of normal half-duplex conversation deallocation

Suppose that an application program known as APPLA is deallocating a
conversation. The conversation is known by a conversation identifier saved in the
storage area CONVERID. APPLA conditionally deallocates the conversation.

L 9,CONVERID * LOAD SAVED CONVERSATION ID

*
APPCCMD CONTROL=DEALLOC, X

QUALIFY=CONFIRM, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
CONVID=(9), X
OPTCD=SYN

*
LTR 15,15 * CHECK GENERAL RETURN CODE IN 15
BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE

*

Chapter 8. Deallocating a conversation 197

* GOOD RETURN CODES MEAN THAT THE CONFIRMATION REQUEST WAS
* POSITIVE AND THE CONVERSATION HAS BEEN DEALLOCATED. NOTE THAT
* THE LOGMODE AND LUNAME WERE NOT NEEDED FOR DEALLOCATION — JUST
* THE CONVERSATION ID. IF THE RETURN CODES WERE NONZERO, THE
* CONVERSATION IS STILL ACTIVE UNLESS THE CONVERSATION PARTNER
* ABNORMALLY DEALLOCATED THE CONVERSATION FROM ITS END. APPLA
* AT THAT POINT MUST CHECK THE RCPRI AND RCSEC CODES TO FURTHER
* DETERMINE THE STATUS OF THE CONVERSATION AND POSSIBLE CAUSES FOR
* THE NEGATIVE RESPONSE. APPLA WOULD ALSO CHECK THE RPL6RTUN BYTE
* IN THE RPL EXTENSION TO SEE IF THE RPL6RLOG BIT HAS BEEN SET. IF
* SET, ERROR LOG DATA WOULD NEED TO BE RECEIVED.
*

•
•
•

CONVERID DS XL4 * CONVERSATION ID
RPLA RPL AM=VTAM * RPL STORAGE
RPLAX ISTRPL6 * RPL EXTENSION STORAGE
APPLA ACB AM=VTAM,MACRF=LOGON,APPLID=APPLNAME * ACB STORAGE

Reacting to a Half-duplex conversation deallocation

In cases where the conversation is unconditionally deallocated, the receiving
application program can do little more than recognize that its partner has
deallocated the conversation. Receiving application programs are informed by the
deallocate indicator (RPL6WDAL) in the What-Received field in the RPL extension.
In such cases, the deallocate bit is set on, and the confirm bit is set off. The
application program does not have to report errors to the partner because the
conversation is gone. The application program can attempt to initiate a new
conversation with the former partner and attempt to communicate the unreported
error.

If a confirmation request is included with the deallocation request (RPL6WCFM is
set on), the receiving application program has much more flexibility. The
conversation is not deallocated unless the application program responds to the
confirmation request positively. An application program uses the APPCCMD
CONTROL=SEND, QUALIFY=CONFRMD macroinstruction to respond positively.
It can issue the APPCCMD CONTROL=SEND, QUALIFY=ERROR
macroinstruction or one of the abnormal termination macroinstructions to respond
negatively. If it uses APPCCMD CONTROL=SEND, QUALIFY=ERROR, it is placed
in SEND state. An abnormal termination macroinstruction ends the conversation.

On both the APPCCMD CONTROL=SEND, QUALIFY=ERROR macroinstruction
and the various forms of APPCCMD CONTROL=DEALLOC|DEALLOCQ that
abnormally terminate the conversation, the application program can specify error
log data on the macroinstruction. The error data is pointed to by the AREA field of
the RPL. The length of the error data is indicated by the RECLEN field. If RECLEN
has a value of 0, the application program has not provided any error data. Error
data is in the form of a GDS error log variable. For information on the layout of
the error log variables, see “Error log variables” on page 324.

Example of receiving a normal Half-duplex conversation deallocation:

In the following example, an application program known as APPLA is receiving
data over a conversation identified by the identifier stored in the CONVERID
storage area. APPLA issues a RECEIVE and is returned information indicating that
the partner has conditionally deallocated the conversation. For the purposes of this
example, APPLA always responds positively to the confirmation request if a flag
byte referred to by the STATUS label is set to zeros.

198 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

L 9,CONVERID * LOAD SAVED CONVERSATION ID
*

APPCCMD CONTROL=RECEIVE, X
QUALIFY=SPEC, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
CONVID=(9), X
OPTCD=SYN, X
AREA=RECAREA, X
AREALEN=255, X
FILL=LL, X
CONMODE=CS

*
LTR 15,15 * CHECK GENERAL RETURN CODE IN 15
BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE
LA 9,RPLAX * LOAD RPL EXTENSION ADDRESS
USING ISTRPL6X,9 * ESTABLISH ADDRESSABILITY
MVC SAVEMASK,RPL6RCV1 * SAVE WHAT-RECEIVED MASK
BAL 14,DATACHK * CHECK DATA, PERHAPS SET STATUS BYTE
TM SAVEMASK,RPL6WCFM * CONFIRMATION REQUEST INCLUDED?
BNO DEALCHCK * IF NOT, CHECK DEALLOCATION INDICATOR
CLI STATUS,X’00’ * IF CONFIRMATION REQUEST, STATUS OK?
BNE NEGRESP * IF NOT ISSUE NEGATIVE RESPONSE

*
* STATUS BYTE WAS OK, SO RESPOND POSITIVELY TO CONFIRMATION REQUEST.
*

APPCCMD CONTROL=SEND, X
QUALIFY=CONFRMD, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
CONVID=CONVERID, X
CONMODE=CS, X
OPTCD=SYN

*
LTR 15,15 * CHECK GENERAL RETURN CODE IN 15
BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE

*
* AT THIS POINT THE CONFIRMATION RESPONSE HAS BEEN MADE AND THE
* RETURN CODES FROM IT WERE GOOD. NOW CHECK FOR DEALLOCATION.
*
DEALCHCK TM SAVEMASK,RPL6WDAL * DEALLOCATION INDICATOR SET?

BNO SENDCHCK * IF NOT, GO TO NEXT INDICATOR CHECK
*
* AT THIS POINT, APPLA KNOWS IF THE CONVERSATION HAS BEEN DEALLOCATED.
*

•
•
•

CONVERID DS XL4 * CONVERSATION ID
SAVEMASK DS XL1 * STORAGE TO SAVE WHAT-RECEIVED MASK
STATUS DC X’00’ * RECEIVED DATA OK FLAG
RECAREA DS XL255 * RECEIVE STORAGE AREA
RPLA RPL AM=VTAM * RPL STORAGE
RPLAX ISTRPL6 * RPL EXTENSION STORAGE
APPLA ACB AM=VTAM,MACRF=LOGON,APPLID=APPLNAME * ACB STORAGE

Deallocating a Half-duplex conversation abnormally

To deallocate a conversation because of an error, application programs can use any
of the following macroinstructions:

Chapter 8. Deallocating a conversation 199

v APPCCMD CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDPROG
v APPCCMD CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDSERV
v APPCCMD CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDTIME
v APPCCMD CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDUSER
v APPCCMD CONTROL=REJECT

For details on the syntax and operands for these macroinstructions, refer to the
z/OS Communications Server: SNA Programmer's LU 6.2 Reference.

The APPCCMD CONTROL=DEALLOC|DEALLOCQ macroinstructions
abnormally end a conversation without ending the session. The APPCCMD
CONTROL=DEALLOQ macroinstruction queues a deallocation request if the
conversation is in the RECEIVE state and has not yet received data. When the data
is received, VTAM deallocates the conversation. The REJECT macroinstructions end
both the conversation and the session.

Using CONTROL=DEALLOC and CONTROL=DEALLOCQ

The application initiates the abnormal deallocation by issuing either the
APPCCMD CONTROL=DEALLOC or the APPCCMD CONTROL=DEALLOCQ
macroinstructions.

The APPCCMD CONTROL=DEALLOC macroinstruction should be used when it
is not desirable to wait for the arrival of information from the partner before
deallocating the conversation. VTAM waits for information from the partner before
sending a negative response when the conversation is in receive state and
information has not been received from the partner to which it can respond. In this
case, the APPCCMD CONTROL=DEALLOC is returned to the application program
with error return codes. The application program can reissue the macroinstruction
or issue APPCCMD CONTROL=REJECT, QUALIFY=CONV to abnormally end the
conversation and session.

The APPCCMD CONTROL=DEALLOCQ macroinstruction should be used when it
is not desirable to reject the macroinstruction for this situation, but it is desirable to
wait for the arrival of information. APPCCMD CONTROL=DEALLOCQ can result
in deadlock situations if some condition, such as a failed partner LU, prevents
VTAM from receiving additional information. A user who codes the APPCCMD
CONTROL=DEALLOCQ macroinstruction on existing application programs must
verify that the program logic can tolerate this possible hang situation.

The processing of these macroinstructions causes the LU's send buffer to be
flushed and an FMH-7 and any error log data to be sent to the partner LU.

The APPCCMD CONTROL=DEALLOC and APPCCMD CONTROL=DEALLOCQ
macroinstructions include four types:
v QUALIFY=ABNDPROG
v QUALIFY=ABNDSERV
v QUALIFY=ABNDTIME
v QUALIFY=ABNDUSER

Each of these types is described in the following section.

ABNDPROG
Specifies that an error makes it impossible to continue meaningful
communication over the conversation. It is issued for errors detected by

200 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

the processing threads in the application program that correspond to
transaction programs. An example of this type of error could be the receipt
of incorrect data on a CONTROL=RECEIVE macroinstruction. This type of
error causes a sense code of X'08640000' to be generated in the FMH-7 used
by VTAM in processing the error. (See “Sense codes for FMH-7” on page
324 for a list of FMH-7 sense codes.)

ABNDSERV
Specifies that an LU services component has detected an error. This type of
error occurs when the application program has implemented an LU 6.2
function in addition to that provided by VTAM. For example, an
application program might implement mapped conversations. Errors
relating to the application's implementation would be service errors. If the
errors were serious enough to deallocate the conversation, the application
program would issue this QUALIFY variation. This type of error causes a
sense code of X'08640001' to be generated in the FMH-7 used by VTAM in
processing the error. (See “Sense codes for FMH-7” on page 324 for a list of
FMH-7 sense codes.)

ABNDTIME
Specifies that the application program has not received expected
information within an application-determined length of time. This type of
error causes a sense code of X'08640002' to be generated in the FMH-7 used
by VTAM in processing the error. (See “Sense codes for FMH-7” on page
324 for a list of FMH-7 sense codes.) ABNDTIME can be used by the
application program to handle errors originating on its side of the
conversation or when it fails to receive information from a partner LU. Its
primary intent is to handle timing errors on the local side of a
conversation. For example, if an application program has been waiting for
one of its transaction programs to send data, and the wait exceeds the time
limit, it would use this type of deallocation to end the conversation.

ABNDUSER
Specifies that the application program is ending the conversation and
provides VTAM with a user-specified sense code. The sense code must be
valid for an FMH-7. The application program must ensure that it is. An
example of the type of error this is used for would be the receipt of an
FMH-5 with errors. (See “Sense codes for FMH-7” on page 324 for a list of
FMH-7 sense codes.)

Using CONTROL=REJECT

APPCCMD CONTROL=REJECT is used when a severe error indicates that data
will not flow properly on the session. For example, an application program is
informed through the LOGRCV field that the application program is to receive
error log data. If the application program fails to receive the data, an APPCCMD
CONTROL=REJECT macroinstruction is issued. (For details on the syntax and
operands for the macroinstruction, refer to z/OS Communications Server: SNA
Programmer's LU 6.2 Reference.)

When application programs issue the APPCCMD CONTROL=REJECT
macroinstruction, they must specify an UNBIND sense code describing the nature
of the error.

Chapter 8. Deallocating a conversation 201

Deallocating a full-duplex conversation

Due to the nature of full-duplex conversations, the processes for deallocating the
conversation differs from the deallocation process for half-duplex conversations.
Normal and abnormal conversation deallocation processes are discussed in this
section.

Deallocating a full-duplex conversation normally

Both transaction programs must issue an APPCCMD CONTROL=DEALLOC to
normally deallocate the conversation. This ensures that data in transit in both
directions is delivered before ending the conversation. Normal conversation
deallocation can be initiated by either transaction program in SEND/RECEIVE
state. The deallocation request can also send additional information to be
transmitted to the partner.

Normal conversation deallocation begins when a transaction program issues an
APPCCMD CONTROL=DEALLOC, QUALIFY=FLUSH|DATAFLU
macroinstruction. The conversation then enters RECEIVE-ONLY state. The
transaction program can no longer send information on this conversation. The
transaction program can, however, continue to receive information until an
indication of a deallocate issued by the partner is received, at which point its
conversation state is changed to FDX_RESET. The partner transaction program
enters SEND_ONLY state upon receipt of the deallocate indication and completes
sending its data. It then issues a deallocate, changing its conversation state to
FDX_RESET.

Sending information

The transaction program initiating a normal deallocation of a full-duplex
conversation enters RECEIVE_ONLY state. Therefore, it can no longer send
information.

The transaction program receiving the deallocation request enters SEND_ONLY
state. This transaction program can continue to send information until it decides to
end the conversation by issuing an APPCCMD CONTROL=DEALLOC,
QUALIFY=FLUSH|DATAFLU macroinstruction.

Most of the decisions involved in sending information with a deallocation
macroinstruction are the same as for sending information with a CONTROL=SEND
macroinstruction. For general information on sending information, see Chapter 9,
“Sending information,” on page 207.

Because sending of information is no longer allowed if the DEALLOC
macroinstruction completes successfully, the data sent must complete a logical
record. VTAM checks for the end of the record and fails the macroinstruction if the
data does not complete a logical record.

Reacting to a full-duplex conversation deallocation

Application programs are informed by the deallocate indicator (RPL6WDAL) in the
What-Received field of an APPCCMD CONTROL=RECEIVE macroinstruction that
the partner application has begun deallocation of the conversation. The
conversation is then placed in SEND_ONLY state. The application program can
continue to send information. When all information has been sent, the application

202 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

program issues an APPCCMD CONTROL=DEALLOC,
QUALIFY=FLUSH|DATAFLU. This ends the full-duplex conversation and the
conversation enters FDX_RESET state.

Deallocating a full-duplex conversation abnormally

Conversations are abnormally deallocated when an error is encountered.
Application programs can use any of the following macroinstructions for
deallocating a full-duplex conversation abnormally:
v APPCCMD CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDPROG
v APPCCMD CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDSERV
v APPCCMD CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDTIME
v APPCCMD CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDUSER
v APPCCMD CONTROL=REJECT

The APPCCMD CONTROL=DEALLOC|DEALLOCQ macroinstructions
abnormally end a conversation without ending the session. The APPCCMD
CONTROL=REJECT macroinstructions end both the conversation and the session.

Using CONTROL=DEALLOC and CONTROL=DEALLOCQ

The application program initiates the abnormal deallocation by issuing one of the
APPCCMD CONTROL=DEALLOC|DEALLOCQ macroinstructions. Processing of
these macroinstructions causes the send buffer to be flushed and an FMH-7 and
any error log data to be sent to the partner. The conversation is ended and enters
FDX_RESET state.

Note: An FMH-7 and any error log data are not sent to the partner when the
conversation is in RECEIVE-ONLY state.

There are four types of the APPCCMD CONTROL=DEALLOC and the APPCCMD
CONTROL=DEALLOCQ macroinstructions that can be used to abnormally
deallocate a full-duplex conversation:
v QUALIFY=ABNDPROG
v QUALIFY=ABNDSERV
v QUALIFY=ABNDTIME
v QUALIFY=ABNDUSER

Each of these types is described in the following section.

ABNDPROG
Specifies that an error makes it impossible to continue meaningful
communication over the conversation. It is issued for errors detected by
the processing threads in the application program that correspond to
transaction programs. An example of this type of error could be the receipt
of incorrect data on a CONTROL=RECEIVE macroinstruction. This type of
error causes a sense code of X'08640000' to be generated in the FMH-7 used
by VTAM in processing the error. (See “Sense codes for FMH-7” on page
324 for a list of FMH-7 sense codes.)

ABNDSERV
Specifies that an LU services component has detected an error. This type of
error occurs when the application program has implemented an LU 6.2
function in addition to that provided by VTAM. For example, an
application program might implement mapped conversations. Errors

Chapter 8. Deallocating a conversation 203

relating to the application's implementation would be service errors. If the
errors were serious enough to deallocate the conversation, the application
program would issue this QUALIFY variation. This type of error causes a
sense code of X'08640001' to be generated in the FMH-7 used by VTAM in
processing the error. (See “Sense codes for FMH-7” on page 324 for a list of
FMH-7 sense codes.)

ABNDTIME
Specifies that the application program has not received expected
information within an application-determined length of time. This type of
error causes a sense code of X'08640002' to be generated in the FMH-7 used
by VTAM in processing the error. (See “Sense codes for FMH-7” on page
324 for a list of FMH-7 sense codes.) ABNDTIME can be used by the
application program to handle errors originating on its side of the
conversation or when it fails to receive information from a partner LU. Its
primary intent is to handle timing errors on the local side of a
conversation. For example, if an application program has been waiting for
one of its transaction programs to send data, and the wait exceeds the time
limit, it would use this type of deallocation to end the conversation.

ABNDUSER
Specifies that the application program is ending the conversation and
provides VTAM with a user-specified sense code. The sense code must be
valid for an FMH-7. The application program must ensure that it is valid.
An example of the type of error this is used for would be the receipt of an
FMH-5 with errors. (See “Sense codes for FMH-7” on page 324 for a list of
FMH-7 sense codes.)

Refer to z/OS Communications Server: SNA Programmer's LU 6.2 Reference for
details on the syntax and operands for these macroinstructions.

Restrictions on abnormally deallocating conversations

Conversations can be abnormally terminated by either partner. The
macroinstructions used to abnormally end the conversation can be issued while
other APPCCMD macroinstructions are outstanding on the conversation, in which
case the outstanding macroinstruction is canceled and the conversation terminated.
Cases do exist where the CONTROL=DEALLOC or CONTROL=DEALLOCQ
macroinstructions cannot be issued while another APPCCMD macroinstruction is
outstanding on a conversation. In addition, the abnormal termination
macroinstructions cannot be used to cancel a macroinstruction that does not specify
a conversation resource, such as the APPCCMD CONTROL=OPRCNTL
macroinstructions. The macroinstructions that cannot be canceled by one of the
abnormal termination APPCCMD CONTROL=DEALLOC or
CONTROL=DEALLOCQ macroinstructions are:
v APPCCMD CONTROL=SEND, QUALIFY=CONFIRM (or any other APPCCMD

that is waiting for a confirmation response or error log data)
v APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC (that has not received any

data from the partner LU to send a negative response to)
v APPCCMD CONTROL=RECEIVE, QUALIFY=ANY (that has not been matched

to a conversation)
v APPCCMD CONTROL=RCVFMH5
v APPCCMD CONTROL=RESETRCV
v APPCCMD CONTROL=OPRCNTL
v APPCCMD CONTROL=REJECT, QUALIFY=CONV

204 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

v APPCCMD CONTROL=REJECT, QUALIFY=SESSION
v One of the other abnormal termination CONTROL=DEALLOC macroinstructions

The application program can wait for these macroinstructions to complete, or it can
issue APPCCMD CONTROL=REJECT, QUALIFY=CONV to cancel an outstanding
macroinstruction on a conversation. The only conversation-related macroinstruction
that APPCCMD CONTROL=REJECT, QUALIFY=CONV cannot cancel is another
APPCCMD CONTROL=REJECT, QUALIFY=CONV macroinstruction.

The abnormal termination APPCCMD CONTROL=DEALLOC|DEALLOCQ
macroinstructions are always unconditional. The conversation terminates after their
completion. If the application program needs to supply error log data on the
macroinstruction, it must supply the complete error log variable. It cannot use any
subsequent macroinstructions to finish sending the data. (See “Error log variables”
on page 324 for a description of the error log variable.) The partner can only
receive error log data. As soon as it finishes receiving the data (if supplied), the
conversation is finished.

When an application program issues an abnormal termination APPCCMD
CONTROL=DEALLOC|DEALLOCQ macroinstruction, data purging or truncation
can occur. Data truncation occurs when the application program is in a sending
state and issues the macroinstruction before providing the remainder of a logical
record. Data purging occurs when the application program issues the
macroinstruction in a receiving state before receiving all the information sent by
the partner. Any data buffered by VTAM and waiting for a RECEIVE
macroinstruction is discarded. For more information on purging, see “Data purging
and truncating” on page 322.

Deallocating a pending conversation

There may be situations (such as a timeout) in which the application wants to
abnormally terminate a conversation before the APPCCMD CONTROL=ALLOC or
APPCCMD CONTROL=RCVFMH5, QUALIFY=DATAQUE macroinstruction has
completed. Normally, the CONVID is returned in the RPL6CNVD when the
CONTROL=ALLOC macroinstruction completes. However, if the macroinstruction
has not completed, this information is apparently not available.

It is suggested that the application ensure that the RPL6CNVD is set to zeros
before issuing the APPCCMD CONTROL=ALLOC or APPCCMD
CONTROL=RCVFMH5, QUALIFY=DATAQUE macroinstruction. Early in the
process of conversation allocation, VTAM specifies the RPL6CNVD with the
assigned CONVID. Therefore, if the application wants to deallocate the
conversation before allocation has completed, the application can check the
RPL6CNVD for a nonzero value. If the RPL6CNVD contains a nonzero value, the
application can use this information in the APPCCMD CONTROL=DEALLOC
macroinstruction to successfully deallocate the pending conversation.

Use one of the following macroinstructions to deallocate a conversation in
PENDING_ALLOCATE state:
v APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDPROG
v APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDSERV
v APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDTIME
v APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDUSER
v APPCCMD CONTROL=DEALLOCQ

Chapter 8. Deallocating a conversation 205

For the APPCCMD CONTROL=RCVFMH5, QUALIFY=DATAQUE
macroinstruction, the application can issue an abnormal termination request only
after the FMH-5 has been received and VTAM updates RPL6CNVD.

For more information on the APPCCMD CONTROL=DEALLOC, refer to z/OS
Communications Server: SNA Programmer's LU 6.2 Reference.

Rejecting a conversation pending deallocation for persistent sessions

After the failure of a VTAM application program that has enabled persistence,
VTAM attempts to deactivate any active conversations. If deallocation of a
conversation does not complete, for whatever reason, the conversation remains in a
state of pending deallocation for persistent LU-LU sessions until it is brought
down for another reason or until the session is deactivated. If the application
program tries to use the conversation, VTAM sets a return code that indicates that
the conversation identifier is not valid.

If session information is requested on the APPCCMD CONTROL=OPRCNTL,
QUALIFY=RESTORE macroinstruction (LIST=ALL), the RESTORE structure
indicates whether the session is pending deactivation for persistent LU-LU session
support (SRESPNDA) or whether the conversation is pending deallocation for
persistent LU-LU session support (SREPCONV). However, only the session
identifier (SESSID) is passed back in the RESTORE structure. (See “Retrieving
information for a mode and sessions to be restored” on page 172 for more
information.)

After the mode is restored, the application program can issue APPCCMD
CONTROL=REJECT, QUALIFY=SESSION for such a session to bring down the
session and any existing conversation.

206 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Chapter 9. Sending information

About this chapter

Application programs send normal and expedited information over conversations
with the SEND, SENDRCV, PREPRCV, DEALLOC, DEALLOCQ and SENDEXPD
varieties of the APPCCMD macroinstruction, according to the full-duplex or
half-duplex capabilities of a session. Application programs exchange both data and
conversation-related control information, such as confirmation requests and
responses.

The VTAM program imposes restrictions on when an application program can
send data or control information over a conversation, but it also handles many of
the tasks involved in managing the flow of data handled by the application
program for non-LU 6.2 sessions.

Both half-duplex and full-duplex conversations allocated to sessions negotiated to
full-duplex capability have the ability to send and receive data in an expedited
manner, bypassing normal, paced protocols. Expedited data is sent using
APPCCMD CONTROL=SENDEXPD, QUALIFY=DATA macroinstruction.

There are some important concepts the application programmer must understand
in order to send and receive information effectively and efficiently. The application
programmer must fully understand the differences between half-duplex-capable
sessions and full-duplex-capable sessions. The application programmer also needs to
understand the capabilities of half-duplex conversations and full-duplex conversations.
To review these concepts, see “Full-duplex and half-duplex protocols” on page 8.

This chapter contains information about VTAM's normal send services and
interface. Better send performance is available to applications that use the interface
for high performance data transfer (HPDT). For information about HPDT, see
Chapter 11, “Sending and receiving data using high performance data transfer,” on
page 255. Before reading that chapter, however, the reader should be familiar with
the information presented in this chapter.

Sending information on half-duplex conversations

This section explains the process and APPCCMDs involved in sending information
on half-duplex conversations. For details on sending information on full-duplex
conversations, see “Sending information on full-duplex conversations” on page
218.

Background of the SEND buffer

Systems Network Architecture transmits normal data through the network in a
chain of request units. Before these units are transmitted, the partners agree to the
maximum size of each of the elements. Because there is some fixed amount of
work to handle each unit, regardless of its size, network efficiency can be
improved if each unit contains the maximum amount of data.

The LU 6.2 architecture provides for a component in each implementation that:

© Copyright IBM Corp. 2000, 2013 207

v Accumulates data from the application
v Places the data in a SEND buffer behind any unsent data that remains from a

previous operation
v Removes and prepares for transmission a full request unit size worth of data

from the SEND buffer if the amount of data in the SEND buffer exceeds 2 the
maximum request unit size

v Passes this request unit to another component for actual transmission

When a SEND macroinstruction completes, the amount of data that remains in the
SEND buffer is less than or equal to a maximum unit size. A subsequent SEND
macroinstruction from the local application will repeat this operation.

Certain macroinstructions cause all of the data in the SEND buffer to be
transmitted. This can be either under the explicit control of the application by the
use of a flush type of SEND macroinstruction or it may be implicit in that the flush
is automatically performed by VTAM. For example, VTAM automatically flushes
the SEND buffer, for half-duplex conversations, as part of the operation for the
transition of the local transaction program from SEND to RECEIVE state. This
automatic flushing ensures that it is in SEND state; it also has all the data that was
transmitted by the local transaction program.

Use of the SEND buffer

The SEND buffer is used only to accumulate normal data.

Issuing an APPCCMD CONTROL=SEND macroinstruction to send data does not
automatically cause data to flow through the network. Instead, VTAM stores the
data in a buffer in VTAM storage until enough is sent to exceed the maximum
SEND RU size that was specified in the session parameters used to establish the
conversation's underlying session.

The SEND buffer has nothing to do with logical record size. If the buffer fills up
before a logical record is completely stored in it, VTAM sends what is in the buffer
and stores the remainder of the logical record in the buffer. VTAM maintains the
record's integrity throughout the process.

In addition to logical records, VTAM stores function management headers that it
uses for conversation control. FMH-7 headers created by the APPCCMD
CONTROL=SEND, QUALIFY=ERROR macroinstruction are kept in the SEND
buffer until enough data is accumulated from subsequent APPCCMD
macroinstructions to exceed the maximum RU size, or the application program
issues an APPCCMD forcing VTAM to transmit the contents of the buffer. For
conversations allocated on half-duplex sessions, VTAM buffers the FMH-5 header
pointed to by the APPCCMD CONTROL=ALLOC macroinstruction.

Flushing the buffer

Requesting VTAM to transmit buffered data is called flushing the SEND buffer.
Many of the APPCCMD macroinstructions instruct VTAM to flush the SEND
buffer. All macroinstructions with a QUALIFY value of FLUSH, DATAFLU,
CONFIRM, or DATACON flush the buffer.

2. The reason the amount of data must exceed the maximum unit size is also for efficiency. If the next macroinstruction causes the
flow of normal control information, then that information may be included in the header of the maximum sized unit that was
held in reserve. This design precludes the flow of a unit that contains only control information.

208 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

The APPCCMD CONTROL=SEND, QUALIFY=ERROR macroinstruction and the
abnormal termination DEALLOC and DEALLOCQ APPCCMD macroinstructions
also flush the buffer, but only if the local conversation is in a sending state.

The only macroinstructions that send normal information but do not flush the
SEND buffer are:
v APPCCMD CONTROL=SEND, QUALIFY=CONFRMD
v APPCCMD CONTROL=SEND, QUALIFY=DATA (except when

OPTCD=XBUFLST)
v APPCCMD CONTROL=SEND, QUALIFY=ERROR (except when issued from

SEND state)

The buffering of data allows the application program to issue a macroinstruction or
several macroinstructions before its partner receives anything. Consequently, the
partner frequently is unable to detect errors or give other feedback immediately
after an APPCCMD macroinstruction is used to send information. The application
program can flush the buffer or use confirmation requests to ensure that its partner
receives data quickly.

As an example, an application program might allocate a conversation, send data,
and deallocate a conversation before its partner receives the FMH-5 signaling that
the conversation is pending. This situation can adversely affect error reporting.
Because VTAM has deallocated the conversation for the application program, error
information cannot be reported back to the originating application program. In
general, anytime a conversation uses the APPCCMD CONTROL=DEALLOC,
QUALIFY=FLUSH macroinstruction to flush the buffer and end the conversation,
error information can be lost. Consequently, application programs should use
confirmation requests before deallocating the conversation if the potential loss of
error information is unacceptable.

Example of flushing the buffer

In this example, an application program known as APPLA must flush the buffer.
The conversation is identified by a conversation identifier stored in CONVERID.
The application program first sends a portion of a logical record before flushing
the buffer. This example assumes that the initial send does not cause the buffer to
be flushed as a consequence of the maximum RU size being exceeded.
*
* FIRST PUT SOME DATA TO FLUSH IN THE BUFFER.
*

MVC MSGBUFF(2),=X’0018’ * INITIALIZE LOGICAL RECORD HEADER
MVC MSGBUFF+2(22),=C’THIS IS A TEST MESSAGE’ * MOVE IN DATA
LA 10,X’18’ * PUT MESSAGE LENGTH IN REGISTER

*
APPCCMD CONTROL=SEND, X

QUALIFY=DATA, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
CONVID=CONVERID, X
AREA=MSGBUFF, X
RECLEN=(10), X
OPTCD=SYN

*
LTR 15,15 * CHECK GENERAL RETURN CODE IN 15
BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE

*

Chapter 9. Sending information 209

* RETURN CODES WERE GOOD. DATA IS IN THE BUFFER. NOW FLUSH IT.
*

APPCCMD CONTROL=SEND, X
QUALIFY=FLUSH, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
CONVID=CONVERID, X
OPTCD=SYN

*
LTR 15,15 * CHECK GENERAL RETURN CODE IN 15
BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE

*
* RETURN CODES WERE GOOD, THE BUFFER HAS BEEN FLUSHED.
*

•
•
•

CONVERID DS XL4 * CONVERSATION ID
MSGBUFF DS XL255 * STORAGE FOR DATA TO SEND
RPLA RPL AM=VTAM * RPL STORAGE
RPLAX ISTRPL6 * RPL EXTENSION STORAGE
APPLA ACB AM=VTAM,MACRF=LOGON,APPLID=APPLNAME * ACB STORAGE

In this example, two macroinstructions were used (one to send the data to the
buffer and one to flush the buffer). The two could have been combined into one
macroinstruction:

APPCCMD CONTROL=SEND, X
QUALIFY=DATAFLU, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
AREA=MSGBUFF, X
RECLEN=(10), X
CONVID=CONVERID, X
OPTCD=SYN

If the application program was to deallocate the conversation or change to
RECEIVE state, the application program could have specified either APPCCMD
CONTROL=DEALLOC|DEALLOCQ or APPCCMD CONTROL=PREPRCV instead
of APPCCMD CONTROL=SEND.

Roles of sender and receiver

Application programs and their partners on half-duplex conversations regularly
exchange the roles of sender and receiver according to rules enforced by VTAM.
On half-duplex conversations, only one partner can send information while the
other partner is receiving (except in certain error situations). When an application
program is finished sending data, it can surrender its prerogative as the sender to
allow its partner to send information. This type of protocol is referred to as
half-duplex flip-flop protocol.

For the most part, the sender determines when its partner LU can send logical
record data. The sending application program must surrender its prerogative to
send data by notifying VTAM that it is ready to receive. This places the local
conversation in RECEIVE state. VTAM then notifies the receiving side that it can
now send. The receiving application program receives this notification as part of
the parameters returned on an APPCCMD CONTROL=RECEIVE macroinstruction.
The receiver's side of the conversation is then placed in SEND state.

210 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

In most cases, an application program must be acknowledged by VTAM as the
sender before transmitting normal information, such as logical record data. The
following APPCCMD macroinstructions can be issued only from a conversation in
SEND state:
v APPCCMD CONTROL=SEND, QUALIFY=CONFIRM
v APPCCMD CONTROL=SEND, QUALIFY=DATA
v APPCCMD CONTROL=SEND, QUALIFY=DATACON
v APPCCMD CONTROL=SEND, QUALIFY=DATAFLU
v APPCCMD CONTROL=SEND, QUALIFY=FLUSH
v APPCCMD CONTROL=DEALLOC, QUALIFY=CONFIRM
v APPCCMD CONTROL=DEALLOC, QUALIFY=DATACON
v APPCCMD CONTROL=DEALLOC, QUALIFY=DATAFLU
v APPCCMD CONTROL=DEALLOC, QUALIFY=FLUSH
v All APPCCMD CONTROL=PREPRCV macroinstructions

Attempts to issue these macroinstructions without being in SEND state result in an
error.

Application programs receiving information need not concern themselves with
placing the conversation in SEND state to report an error or send some control
information, such as a request for permission to send or a confirmation reply. A
receiving application program can issue the following macroinstructions when the
local conversation is not in SEND state:
v APPCCMD CONTROL=SEND, QUALIFY=CONFRMD
v APPCCMD CONTROL=SEND, QUALIFY=ERROR
v APPCCMD CONTROL=SEND, QUALIFY=RQSEND

When an APPCCMD CONTROL=SEND, QUALIFY=ERROR macroinstruction is
issued while in a receiving state, the conversation is placed in SEND state. This
situation is an exception to the rule that the sending side of the conversation
determines when the partner LU can send data. The partner application's
conversation state is changed to RECEIVE when notification of the error is
reported on an APPCCMD macroinstruction.

For more information on how an application changes the conversation from SEND
state to RECEIVE state, see “Entering RECEIVE state” on page 237.

Entering SEND state

Application programs that successfully allocate a conversation are automatically
designated the sender and enter SEND state. Assuming normal completion of the
RCVFMH5, the conversation partner becomes the receiver and enters RECEIVE
state. The receiving side can either request to send information, or wait until the
partner relinquishes the role.

In general, the conversation is in SEND state after the successful completion of:
v An APPCCMD CONTROL=ALLOC macroinstruction
v An APPCCMD CONTROL=SENDFM5 macroinstruction
v An APPCCMD CONTROL=RECEIVE macroinstruction, and the confirm

indicator in the what-received field is off and the send indicator in the
what-received field is on

Chapter 9. Sending information 211

v An APPCCMD CONTROL=SEND, QUALIFY=CONFRMD macroinstruction after
an APPCCMD CONTROL=RECEIVE macroinstruction in which both the
confirm and send indicators in the what-received field were set on

v An APPCCMD CONTROL=SEND, QUALIFY=ERROR macroinstruction
v One of the APPCCMD CONTROL=SEND macroinstructions used to send

information

The receiving side can request permission to send by issuing the APPCCMD
CONTROL=SEND, QUALIFY=RQSEND macroinstruction. If the conversation
partner accepts the request, it surrenders its right to send by preparing to receive
information or receiving information. (In the case of VTAM application programs,
this would mean issuing either the APPCCMD CONTROL=PREPRCV
macroinstruction or the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC
macroinstruction.)

Example of entering SEND state:

In this example, an application program known as APPLA is receiving data and
needs to place the conversation in SEND state normally (not because of an error
condition). To do so, it uses the RQSEND type of APPCCMD. The conversation
identifier is contained in register 8.
*
* FIRST ASK FOR PERMISSION TO SEND.
*

APPCCMD CONTROL=SEND, X
QUALIFY=RQSEND, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
CONVID=(8), X
OPTCD=SYN

*
LTR 15,15 * CHECK GENERAL RETURN CODE IN 15
BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE

*
* RETURN CODES WERE GOOD, BUT APPLA STAYS IN RECEIVE STATE UNTIL
* BEING INFORMED ON A RECEIVE MACRO.
*

APPCCMD CONTROL=RECEIVE, X
QUALIFY=SPEC, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
CONVID=(8), X
AREA=RECAREA, X
AREALEN=255, X
FILL=LL, X
OPTCD=SYN

*
LTR 15,15 * CHECK GENERAL RETURN CODE IN 15
BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE

*
* RETURN CODES WERE GOOD, NOW CHECK WHAT-RECEIVED INDICATOR FOR SEND.
*

LA 9,RPLAX * LOAD RPL EXTENSION ADDRESS
USING ISTRPL6X,9 * ESTABLISH ADDRESSABILITY
TM RPL6RCV1,RPL6WSND * CHECK SEND INDICATOR

*

212 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

* AT THIS POINT, IF THE INDICATOR BIT HAS BEEN SET APPLA KNOWS IT IS
* IN SEND STATE. IT MUST STILL HANDLE ANY DATA THAT WAS RECEIVED ON
* THE MACRO.
*

•
•
•

RECAREA DS XL255 * RECEIVE BUFFER
RPLA RPL AM=VTAM * RPL STORAGE
RPLAX ISTRPL6 * RPL EXTENSION STORAGE
APPLA ACB AM=VTAM,MACRF=LOGON,APPLID=APPLNAME * ACB STORAGE

Sending normal information

Normal information includes normal data and normal indications. Normal
information can be transmitted by the application program, and includes normal
data such as logical records. Application programs cannot actually send normal
indications. Normal indications are the result of macroinstructions or the result of
information initiated by VTAM or intervening network components. See
“Comparing normal information to expedited information” on page 73 for more
information about normal and expedited information.

The following sections describe sending logical record data and indications as
normal information.

Sending logical record data

Logical record data is usually of interest only to the transaction programs. It could,
for example, consist of a bank balance inquiry and reply.

Logical record data is sent and the SEND buffer is flushed with the following
APPCCMD macroinstructions:
v APPCCMD CONTROL=SEND, QUALIFY=DATACON
v APPCCMD CONTROL=SEND, QUALIFY=DATAFLU
v APPCCMD CONTROL=SENDRCV, QUALIFY=DATAFLU
v APPCCMD CONTROL=DEALLOC, QUALIFY=DATACON
v APPCCMD CONTROL=DEALLOC, QUALIFY=DATAFLU
v APPCCMD CONTROL=PREPRCV, QUALIFY=DATACON
v APPCCMD CONTROL=PREPRCV, QUALIFY=DATAFLU

The SEND buffer is also flushed with the following APPCCMD macroinstructions:
v APPCCMD CONTROL=SEND, QUALIFY=FLUSH
v APPCCMD CONTROL=DEALLOC, QUALIFY=CONFIRM
v APPCCMD CONTROL=DEALLOC, QUALIFY=FLUSH
v APPCCMD CONTROL=PREPRCV, QUALIFY=CONFIRM
v APPCCMD CONTROL=PREPRCV, QUALIFY=FLUSH

The DATAFLU and DATACON macroinstructions provide new data and,
additionally, flush the SEND buffer. The DATACON macroinstruction also sends a
confirmation request. The FLUSH macroinstruction does not provide new data to
VTAM but causes VTAM to send buffered data to the partner LU.

Chapter 9. Sending information 213

When sending data, the application program sets the AREA field of the RPL to
point to the conversation data and the RECLEN field to the length of the data
being sent. (See “Buffer list requirements” on page 221 for details on using buffer
lists to send data.)

Example of sending logical records:

In this example, an application program known as APPLA sends two logical
records using two macroinstructions. On the first macroinstruction, an entire
logical record is sent, followed by the beginning of another. On the second
macroinstruction, the rest of the logical record is sent. In addition, APPLA, at the
same time, deallocates the conversation. The conversation identifier is stored in
CONVERID.
*
* PUT FIRST LOGICAL RECORD AND PART OF SECOND IN THE SEND BUFFER
* MAINTAINED FOR THE CONVERSATION. PUT ONLY 28 BYTES IN WITH THE
* CONTROL=SEND MACRO (COMPLETE 1ST RECORD AND FOUR BYTES OF
* THE SECOND RECORD). START BY BUILDING RECORDS IN CONTIGUOUS STORAGE.
*

MVC MSGBUFF(2),=X’0018’ * INITIALIZE 1ST HEADER
MVC MSGBUFF+2(22),=C’THIS IS THE 1ST RECORD’ * MOVE DATA
MVC MSGBUFF+24(2),=X’0019’ * 2ND HEADER
MVC MSGBUFF+26(23),=C’THIS IS THE LAST RECORD’ * MOVE DATA
LA 10,MSGBUFF * LOAD ADDRESS OF BUFFER AREA

*
APPCCMD CONTROL=SEND, X

QUALIFY=DATA, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
CONVID=CONVERID, X
AREA=(10), X
RECLEN=28, X
OPTCD=SYN

*
LTR 15,15 * CHECK GENERAL RETURN CODE IN 15
BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE

*
* RETURN CODES WERE GOOD. NOW FINISH SENDING SECOND RECORD AND
* IN ADDITION DEALLOCATE CONVERSATION.
*

LA 10,MSGBUFF+28 * GET START OF REMAINING RECORD
*

APPCCMD CONTROL=DEALLOC, X
QUALIFY=DATAFLU, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
CONVID=CONVERID, X
AREA=(10), X
RECLEN=21, X
OPTCD=SYN

*
LTR 15,15 * CHECK GENERAL RETURN CODE IN 15
BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE

*
* RETURN CODES WERE GOOD, THE DATA HAS BEEN SENT AND THE CONVERSATION
* DEALLOCATED.
*

•

214 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

•
•

CONVERID DS XL4 * CONVERSATION ID
MSGBUFF DS XL255 * STORAGE FOR DATA TO SEND
RPLA RPL AM=VTAM * RPL STORAGE
RPLAX ISTRPL6 * RPL EXTENSION STORAGE
APPLA ACB AM=VTAM,MACRF=LOGON,APPLID=APPLNAME * ACB STORAGE

Getting better send and receive performance:

Applications that perform frequent send and receive operations within a given
conversation can combine these requests with the APPCCMD
CONTROL=SENDRCV, QUALIFY=DATAFLU macroinstruction. Use of this
macroinstruction reduces the send and receive pathlength and provides better
performance for data transfers. For more information about this macroinstruction,
refer to z/OS Communications Server: SNA Programmer's LU 6.2 Reference.

Sending confirmation requests

Application programs use confirmation requests and responses to synchronize
processing with their conversation partners. Application programs send a
confirmation request by specifying either QUALIFY=CONFIRM or
QUALIFY=DATACON in the RPL. The list shows the APPCCMD
macroinstructions that generate a confirmation request:
v APPCCMD CONTROL=DEALLOC, QUALIFY=CONFIRM
v APPCCMD CONTROL=DEALLOC, QUALIFY=DATACON
v APPCCMD CONTROL=PREPRCV, QUALIFY=CONFIRM
v APPCCMD CONTROL=PREPRCV, QUALIFY=DATACON
v APPCCMD CONTROL=SEND, QUALIFY=CONFIRM
v APPCCMD CONTROL=SEND, QUALIFY=DATACON

If the CONFIRM bit is set in the What-Received field in an APPCCMD
CONTROL=RECEIVE macroinstruction, the application program must respond to
the confirmation request before it can issue any other APPCCMD
macroinstructions. Application programs should check for the CONFIRM setting
before attempting any action based on the setting of the SEND or DEALLOCATE
bits.

The application program can use confirmation requests for a variety of reasons. It
can issue the macroinstruction after an allocation request to determine whether the
allocation was successful before sending data, or it can issue the confirmation
request as an acknowledgment of data sent to a conversation partner. Confirmation
requests also cause VTAM to flush the SEND buffer.

The application program must ensure that a confirmation request is not issued on
a conversation that was allocated with a synchronization level of “none.” (The
synchronization level is determined when the conversation is allocated by a field
in the FMH-5.) If such a request is issued, a nonzero return code is received.

The application program does not have to supply any data to VTAM for a
confirmation request. (On a QUALIFY=DATACON macroinstruction, however, the
application program is sending data as well as a confirmation request, so data
must be supplied.)

When the application program issues an APPCCMD macroinstruction that specifies
a confirmation request, VTAM does not complete the macroinstruction until a

Chapter 9. Sending information 215

response to the confirmation request is received from the partner application. The
partner application can send a positive response to the confirmation request by
issuing the APPCCMD CONTROL=SEND, QUALIFY=CONFRMD
macroinstruction, which causes the application program's macroinstruction to
complete with an RCPRI, RCSEC confirmation of OK. The partner application can
send a negative response to the confirmation request by issuing APPCCMD
CONTROL=SEND, QUALIFY=ERROR or one of the abnormal termination
macroinstructions. VTAM interprets the FMH-7 received from the partner LU and
completes the application program's macroinstruction with the appropriate RCPRI,
RCSEC return codes.

If the application program receives a negative reply through a return code of
USER_ERROR_CODE_RECEIVED__NEGATIVE_ RESPONSE (an RCPRI and
RCSEC combination of X'005C' and X'0000', respectively), it is not immediately
obvious whether the negative response was reported through the APPCCMD
CONTROL=SEND, QUALIFY=ERROR macroinstruction or a DEALLOC
macroinstruction. The application program must be able to determine this from the
sense code returned in the SENSE field of the RPL. Alternatively, if the LOGRCV
field indicates that error log data is being sent to the application program, the
application program can receive the data. The APPCCMD CONTROL=RECEIVE
macroinstruction that receives the error log data completes with a return code
indicating the conversation has been deallocated, if the negative confirmation
request was generated as part of a deallocation request.

The APPCCMD CONTROL=PREPRCV macroinstructions are somewhat different
than the other macroinstructions. The application program can specify that the
macroinstruction cannot complete execution until it has received data from the
partner LU, instead of a positive response to the confirmation request. This is done
by specifying LOCKS=LONG in the RPL.

The application program can be assured that data or control information is
available to complete an APPCCMD CONTROL=RECEIVE,
QUALIFY=SPEC|ISPEC macroinstruction when a LOCKS=LONG PREPRCV
request completes. This allows the application program to avoid tying up buffer
space waiting for an APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC to
complete, because this request cannot complete until something is available to
receive on the conversation.

Example of a confirmation request:

In this example, an application program known as APPLA requests a confirmation
from a partner on a conversation whose identifier is in register 8. No data is
included on the request.
*

APPCCMD CONTROL=SEND, X
QUALIFY=CONFIRM, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
CONVID=(8), X
OPTCD=SYN

*
LTR 15,15 * CHECK GENERAL RETURN CODE IN 15
BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE

*
* RETURN CODES WERE ZERO. THE CONFIRMATION RESPONSE WAS POSITIVE.

216 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

*
•
•
•

RPLA RPL AM=VTAM * RPL STORAGE
RPLAX ISTRPL6 * RPL EXTENSION STORAGE
APPLA ACB AM=VTAM,MACRF=LOGON,APPLID=APPLNAME * ACB STORAGE

Sending expedited information

Expedited data can be sent by an application program in any conversation state
except PENDING_ALLOCATE, PENDING_DEALLOCATE or
END_CONVERSATION. A request-to-send, which is expedited information, can be
issued by an application program in any conversation state except:
v PENDING_DEALLOCATE
v PENDING_END_CONVERSATION_LOG
v PENDING_ALLOCATE
v END_CONVERSATION
v PENDING_RECEIVE_LOG

See “Comparing normal information to expedited information” on page 73 for
more information about normal and expedited information.

The APPCCMD CONTROL=SENDEXPD, QUALIFY=DATA macroinstruction is
used to send expedited data to a partner application over a conversation allocated
on a full-duplex-capable session. The amount of expedited data specified by the
application should be in the range of 1 - 86 bytes.

The APPCCMD CONTROL=SENDEXPD, QUALIFY=DATA macroinstruction
causes expedited data to be sent to the partner. This macroinstruction is posted
complete immediately without waiting for a response from the partner LU. If the
macroinstruction is issued and the response to a previous SENDEXPD request has
not been received, a nonzero return code is returned to the application. The
response from the partner LU is not sent until the expedited data has been
received by the partner application.

For more information, refer to z/OS Communications Server: SNA Programmer's
LU 6.2 Reference.

The APPCCMD CONTROL=SEND, QUALIFY=RQSEND macroinstruction causes a
request-to-send indicator to be sent to the partner. This macroinstruction is posted
complete after a response has been received from the partner LU. If the
macroinstruction is issued and the response to a previously issued APPCCMD
CONTROL=SENDEXPD request has not been received, a nonzero return code is
returned to the application. For more information, refer to z/OS Communications
Server: SNA Programmer's LU 6.2 Reference.

When sending expedited data, ensure that the partner transaction program
supports the receipt of expedited data. In some circumstances, the APPCCMD
CONTROL=SENDEXPD, QUALIFY=DATA macroinstruction completes successfully
even when expedited data does not reach the partner. This can occur when a
half-duplex transaction program has allocated a conversation on a full-duplex
session and the partner transaction program does not support the receipt of
expedited data.

Chapter 9. Sending information 217

For example, assume there are two existing half-duplex transaction programs. If
the LUs upon which the transaction programs operate are upgraded to support
full-duplex, then the sessions between the half-duplex transaction programs may
begin to have full-duplex capability. Now assume one of the transaction programs
is upgraded to exploit the sending of expedited data, which is allowed on a
half-duplex conversation on a full-duplex session. If the other transaction program
is not upgraded at the same time, a problem can occur.

The problem occurs when the upgraded transaction program sends expedited data
to the partner. The first time the macroinstruction completes successfully, however,
the downlevel partner will never receive the expedited data.

If the upgraded transaction program sends more expedited data to the partner,
then that macroinstruction completes with an RCPRI, RCSEC of X'00A0', X'0005',
REQUEST_NOT_ALLOWED—
RSP_TO_PREVIOUS_SENDEXP_REQUEST_NOT_RECEIVED.

Sending information on full-duplex conversations

This section explains the process and APPCCMD macroinstructions involved in
sending information on full-duplex conversations. For details on half-duplex
conversations, see “Sending information on half-duplex conversations” on page
207.

Application programs can send information from the following states:
v SEND/RECEIVE
v SEND_ONLY
v PENDING_SEND/RECEIVE_LOG

Each of these states is described in the following sections.

The APPCCMD CONTROL=SENDRCV, QUALIFY=DATAFLU macroinstruction is
not allowed on full-duplex conversations.

Because sending information involves the use of buffers, a discussion of buffers is
included.

Use of the SEND buffer

The SEND buffer is used to accumulate only normal, not expedited, data.

Issuing an APPCCMD CONTROL=SEND macroinstruction to send data does not
automatically cause data to flow through the network. Instead, VTAM stores the
data in a buffer in VTAM storage until enough is sent to exceed the maximum
SEND RU size that was specified in the session parameters used to establish the
conversation's underlying session.

The SEND buffer has nothing to do with logical record size. If the buffer fills up
before a logical record is completely stored in it, VTAM sends what is in the buffer
and stores the remainder of the logical record in the buffer. VTAM maintains the
record's integrity throughout the process.

FMH-5 headers pointed to by the APPCCMD CONTROL=ALLOC and APPCCMD
CONTROL=SENDFM5 macroinstructions and FMH-7 headers created by the

218 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

APPCCMD CONTROL=SEND, QUALIFY=ERROR macroinstruction are sent
immediately to the partner transaction program.

Flushing the buffer

Requesting VTAM to transmit buffered data is called flushing the SEND buffer.
Many of the APPCCMD macroinstructions instruct VTAM to flush the SEND
buffer. All macroinstructions with a QUALIFY value of FLUSH or DATAFLU flush
the buffer.

The APPCCMD CONTROL=SEND, QUALIFY=ERROR macroinstruction and the
abnormal termination DEALLOC and DEALLOCQ APPCCMD macroinstructions
also flush the buffer. The APPCCMD CONTROL=SEND, QUALIFY=ERROR
macroinstruction flushes the buffer and sends the FMH-7 on full-duplex
conversations.

The only macroinstruction that sends normal information but does not flush the
SEND buffer is the APPCCMD CONTROL=SEND, QUALIFY=DATA
macroinstruction.

The buffering of data allows the application program to issue a macroinstruction or
several macroinstructions before its partner receives anything. Consequently, the
conversation partner frequently is unable to detect errors or give other feedback
immediately after an APPCCMD macroinstruction is used to send information. The
application program can flush the buffer to ensure that the partner receives the
information in a timely manner.

Roles of sender and receiver

On full-duplex conversations, both partners can be in SEND/RECEIVE state and
send and receive information concurrently. Unlike half-duplex conversations, no
conversation partner has to request a change in state to send or receive
information. Both conversations partners have the ability to send and receive
information.

An exception is when a conversation partner normally deallocates a conversation.
The conversation partner deallocating the conversation enters RECEIVE_ONLY
state after initiating the deallocation, and the partner receiving the deallocation
request enters SEND_ONLY state. At this point, the partner in RECEIVE_ONLY
state can only receive information and the partner in SEND_ONLY state can only
send information.

Entering SEND/RECEIVE state

Full-duplex conversations allow for both partners to send and receive information
concurrently. The transaction program initiating the full-duplex conversation enters
SEND/RECEIVE state after successful allocation. The partner transaction program
receives the FMH-5 and enters SEND/RECEIVE state also. Either side of a
full-duplex conversation in SEND/RECEIVE state can send information.

In general, the conversation is in SEND/RECEIVE state after successful completion
of:
v An APPCCMD CONTROL=ALLOC macroinstruction
v An APPCCMD CONTROL=RCVFMH5 macroinstruction
v An APPCCMD CONTROL=SENDFM5 macroinstruction

Chapter 9. Sending information 219

v An APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC macroinstruction
and the log data indicator in the What-Received field is on, the data or
data-complete indicator in the What-Received field is on, and the deallocate
indicator in the What-Received field is off

Entering SEND_ONLY state

The conversation enters SEND_ONLY state when an APPCCMD
CONTROL=RECEIVE macroinstruction completes with the deallocate indicator in
the What-Received field on. This indicates that the partner application has issued
an APPCCMD CONTROL=DEALLOC, QUALIFY=FLUSH|DATAFLU. In this state,
the application can continue to send information until ready to deallocate the
conversation.

In general, the conversation is in SEND_ONLY state after successful completion of
an APPCCMD CONTROL=RECEIVE macroinstruction and the deallocate indicator
in the What-Received field is on.

Entering PENDING_SEND/RECEIVE_LOG state

The local conversation enters PENDING_SEND/RECEIVE_LOG state after
receiving notification that the partner application has issued an APPCCMD
CONTROL=SEND, QUALIFY=ERROR macroinstruction. In general, the
conversation is in PENDING_SEND/RECEIVE_LOG state after the completion of
an APPCCMD CONTROL=RECEIVE macroinstruction whose RCPRI value
indicates a nonterminating error and whose LOGRCV field indicates log data
follows.

Sending normal information

Normal information includes normal data and normal indications. Normal
information can be transmitted by the application program, and includes normal
data such as logical records. Application programs cannot actually send normal
indications. Normal indications are the result of macroinstructions or the result of
information initiated by VTAM or intervening network components. See
“Comparing normal information to expedited information” on page 73 for more
information about normal and expedited information.

The following sections describe sending logical record data and indications as
normal information.

Sending logical record data

Logical record data is usually of interest only to transaction programs. It could, for
example, consist of a bank balance inquiry and reply.

Logical record data is sent with the following macroinstructions:
v APPCCMD CONTROL=SEND, QUALIFY=DATA
v APPCCMD CONTROL=SEND, QUALIFY=DATAFLU
v APPCCMD CONTROL=DEALLOC, QUALIFY=DATAFLU

The send buffer is always flushed with the following macroinstructions:
v APPCCMD CONTROL=SEND, QUALIFY=DATAFLU|FLUSH
v APPCCMD CONTROL=DEALLOC, QUALIFY=DATAFLU
v APPCCMD CONTROL=DEALLOC, QUALIFY=FLUSH

220 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

The APPCCMD CONTROL=SEND, QUALIFY=DATA macroinstruction provides
new data. DATAFLU and FLUSH cause VTAM to send buffered data to the partner
LU.

When sending logical record data, the application program sets the AREA field of
the RPL to point to the conversation information and the RECLEN field to the
length of data being sent. See “Buffer list requirements” for details on using buffer
lists to send data.

Sending expedited information

Expedited information can be sent by an application program in any conversation
state except FDX_RESET and PENDING_ALLOCATE.

The APPCCMD CONTROL=SENDEXPD, QUALIFY=DATA macroinstruction is
used to send expedited data to a partner LU. The amount of expedited data
specified by the application should be in the range of 1 - 86 bytes.

This macroinstruction is posted complete immediately without waiting for a
response from a partner LU. This response is not sent by the partner until the
expedited data has been received by the partner application.

For more information, refer to z/OS Communications Server: SNA Programmer's
LU 6.2 Reference.

Buffer list requirements

VTAM enables application programs to chain together data from discontiguous
storage locations and send it as one piece of data. This is done by setting the
OPTCD field in the RPL to include BUFFLST or XBUFLST, or by coding
OPTCD=BUFFLST or OPTCD=XBUFLST on the SEND macroinstruction. The
XBUFLST option specifies an extended buffer list. See Chapter 11, “Sending and
receiving data using high performance data transfer,” on page 255 for more
information.

When the BUFFLST option is used, the AREA field in the RPL no longer points to
the data to be sent. Instead, it points to an area of storage containing a buffer list.
The list is made up of 16-byte entries, aligned on doubleword boundaries, which
contain pointers to the actual data to be sent and the length of each data item.
Entries in the list, which is in contiguous storage, are processed sequentially.

The first 8 bytes of each entry are reserved and should be set to 0. The next 4 bytes
contain the pointer to the data and the last 4 bytes give the length of the data.

The buffer list option has no effect on the receiving side of the conversation. The
use of the buffer list option is transparent to the receiving side.

Example of using a buffer list

Take as an example an application program sending the 27-byte character string:
0027THIS IS A BUFFLST EXAMPLE

Chapter 9. Sending information 221

Suppose the string was actually stored in four separate storage areas referenced as
LENGTH, BEGIN, MIDDLE, and END and that the storage areas contained,
respectively:
0027 THIS IS A BUFFLST EXAMPLE

The length of the data in LENGTH is 2 bytes, the length of the data in BEGIN is 15
bytes, MIDDLE is 7 bytes, and END is 3 bytes. Sending this string using the
BUFFLST option requires a buffer list of four entries—one for each of the storage
areas. The AREA field of the RPL points to a 64-byte area of storage containing the
entries and the RECLEN field of the RPL has a value of 64. The buffer list would
be:

Bytes 0–15
Buffer list entry for LENGTH

Bytes 16–31
Buffer list entry for BEGIN

Bytes 32–47
Buffer list entry for MIDDLE

Bytes 48–63
Buffer list entry for END

Table 33 shows what the entries would contain.

Table 33. Sample buffer list contents

Entry Bytes Contents

Entry for LENGTH 0–7 Reserved

8–11 Address of LENGTH area

12–15 X'0000002'

Entry for BEGIN 16–23 Reserved

24–27 Address of BEGIN area

28–31 X'000000F'

Entry for MIDDLE 32–39 Reserved

40–43 Address of MIDDLE area

44–47 X'00000007'

Entry for END 48–55 Reserved

56–59 Address of END area

60–63 X'00000003'

The following code enables an application program known as APPLA to build and
send the buffer list. The conversation identifier is in register 8. This example uses
the DSECT ISTBLENT, which maps buffer list entries. For a description of
ISTBLENT, refer to z/OS Communications Server: SNA Programming.
MVC LENGTH(2),=X’001B’ * MOVE LENGTH INTO LENGTH FIELD

MVC BEGIN(15),=C’THIS IS A BUFFL’ * MOVE DATA INTO BEGIN
MVC MIDDLE(7),=C’ST EXAM’ * MOVE DATA INTO MIDDLE
MVC END(3),=C’PLE’ * MODE DATA INTO END
LA 10,LISTSTOR * GET BUFFER LIST ADDRESS
USING ISTBLENT,10 * ESTABLISH ADDRESSABILITY
LA 7,X’0’ * SET COUNTER TO 1ST TIME

LOOP MVC BLENT(8),=X’0000000000000000’ * ZERO OUT RESERVED HEADER
ZERO CL 7,=X’00000000’ * ZEROTH TIME THROUGH?

222 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

BH FIRST * GO TO 1ST ENTRY IF NOT
LA 9,LENGTH * GET BEGIN ADDRESS
ST 9,BLEAREA * STORE IN LIST ENTRY
MVC BLERLEN,=X’00000002’ * MOVE IN AREA LENGTH
B MOVEPTR * MOVE PTR TO SECOND ENTRY

FIRST CL 7,=X’00000001’ * FIRST TIME THROUGH?
BH SECOND * GO TO NEXT ENTRY IF NOT
LA 9,BEGIN * GET BEGIN ADDRESS
ST 9,BLEAREA * STORE IN LIST ENTRY
MVC BLERLEN,=X’0000000F’ * MOVE IN AREA LENGTH
B MOVEPTR * MOVE PTR TO SECOND ENTRY

SECOND CL 7,=X’00000002’ * SECOND TIME THROUGH?
BH THIRD * GO TO LAST ENTRY IF NOT
LA 9,MIDDLE * GET MIDDLE ADDRESS
ST 9,BLEAREA * STORE IN LIST ENTRY
MVC BLERLEN,=X’00000007’ * MOVE IN AREA LENGTH
B MOVEPTR * MOVE PTR TO LAST ENTRY

THIRD LA 9,END * GET END ADDRESS
ST 9,BLEAREA * STORE IN LIST ENTRY
MVC BLERLEN,=X’00000003’ * MOVE IN AREA LENGTH
B SENDMAC * DROP OUT OF LOOP

MOVEPTR LA 10,16(10) * MOVE TO NEXT ENTRY
AH 7,=X’0001’ * INCREMENT COUNT
B LOOP * HANDLE NEXT ENTRY

*
SENDMAC APPCCMD CONTROL=SEND, X

QUALIFY=DATAFLU, X
RPL=RPLA, X
ACB=APPLA, X
CONVID=(8), X
AREA=LISTSTOR, X
RECLEN=64, X
OPTCD=(SYN,BUFFLST)

*
LTR 15,15 * CHECK GENERAL RETURN CODE IN 15
BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE

*
* RETURN CODES WERE GOOD. THE BUFFER LIST HAS BEEN SENT.
*

•
•
•

LENGTH DS XL255 * STORAGE FOR LENGTH FIELD
BEGIN DS XL255 * STORAGE FOR DATA
MIDDLE DS XL255 * STORAGE FOR DATA
END DS XL255 * STORAGE FOR DATA
LISTSTOR DS XL255 * STORAGE FOR BUFFER LIST
RPLA RPL AM=VTAM * RPL STORAGE
APPLA ACB AM=VTAM,MACRF=LOGON,APPLID=APPLNAME * ACB STORAGE

BUFFLST differences for LU 6.2

The use of the BUFFLST option for LU 6.2 functions is somewhat different than for
non-APPCCMD SEND macroinstructions. Application programs cannot supply a
request header (RH) to be associated with the data. VTAM creates the RH using
information in the RPL fields. In addition, application programs cannot use the
LMPEO function in VTAM to control the splitting or segmenting of data within or
across SNA request units. VTAM determines where RU boundaries fall within the
data and when a current RU ends and a new RU begins. Application programs
can, however, control data within RUs in an indirect way by using the APPCCMD

Chapter 9. Sending information 223

CONTROL=SEND, QUALIFY=FLUSH macroinstruction to force VTAM to send
data out. This is, however, independent of whether the application program uses
the BUFFLST function.

Handling storage shortages

An APPCCMD that sends data can fail because of a temporary storage shortage
while VTAM is attempting to send the data. This is indicated by a return code of
X'98' in the RCPRI. The unsuccessful return code does not mean that no data was
sent. Some of the data supplied by the application program might have been
processed before the shortage occurred.

When this error is reported, VTAM reports to the application program how much
data, if any, was processed. It does so in two RPL extension fields—RPL6STBF and
RPL6STDS. RPL6STBF points to the application-supplied area that is being
processed. If no buffer list is being used on the send, it corresponds to the value
supplied by the application program in the AREA field of the RPL. If a buffer list
is being used, it points to the actual buffer being processed. Consequently, the
application program must be able to take this address and examine its buffer list to
determine how many entries have been processed. The RPL6STDS field gives the
displacement into the buffer of the data that has been processed. If RPL6STDS is 0,
no data has been processed in the buffer.

The application program can issue another send request to process the remaining
data.

Send requests not using a buffer list

For send requests not using a buffer list (NBUFFLST), the proper address for the
AREA field can be computed by adding RPL6STBF and RPL6STDS. The new
RECLEN value can be determined by subtracting RPL6STDS from the RECLEN
value.

RECLEN
Indicates the total size of the buffer.

RPLAREA
Indicates the starting point of the buffer.

RPL6STBF
Indicates the starting point of the data that was being sent.

RPL6STDS
Indicates the point at which the storage shortage occurred and, therefore,
the starting point for the continuation of the send.

Use the following sequence:
1. RPLAREA = RPL6STBF + RPL6STDS
2. RECLEN = RECLEN - RPL6STDS

Send requests using a buffer list

If a buffer list (BUFFLST) is being used, the application program must modify the
APPCCMD AREA field to point to the entry that was being processed at the time

224 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

of the shortage. That entry might need to be modified so that the address field
points to RPL6STBF plus RPL6STDS, with the length field in the entry modified to
reflect the amount of data remaining.

RPLAREA
Indicates the beginning of the buffer list.

RECLEN
Indicates the size of the buffer list.

RPL6STBF
Indicates the address of the current buffer.

RPL6STDS
Indicates the displacement into the current buffer.

To continue processing the data:
1. Point RPLAREA to the entry that contains the current buffer address.

Save “old” RPLAREA value
Find buffer list entry where (BLEAREA = RPL6STBF)
RPLAREA = address of found buffer list entry

2. Decrement RECLEN by the number of entries preceding the entry containing
the current buffer address.
RPLRLEN = RPLRLEN - (RPLAREA - saved
“old” RPLAREA value)

3. Update the “new” first entry in the updated buffer list so that the pointer to
the buffer is equal to the current pointer plus RPL6STDS.
BLEAREA = BLEAREA + RPL6STDS

4. Update the length field in the first buffer list entry so that the length is equal to
the current length minus RPL6STDS.
BLERLEN = BLERLEN - RPL6STDS

Use the APPCCMD CONTROL=SEND, QUALIFY=DATA macroinstruction with
the AREA and RECLEN fields updated appropriately.

If the APPCCMD was one of the APPCCMD CONTROL=DEALLOC
macroinstructions for abnormal terminations, use the APPCCMD
CONTROL=DEALLOC, QUALIFY=DATAFLU macroinstruction with the RPL
fields updated. Or deallocate the conversation with one of the abnormal
deallocation macroinstructions or the APPCCMD CONTROL=REJECT,
QUALIFY=CONV macroinstruction.

Note: A logical record length error can result if the application program issues an
APPCCMD other than the macroinstructions suggested.

Chapter 9. Sending information 225

226 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Chapter 10. Receiving information

About this chapter

This chapter discusses the tasks an application program must perform and the
conversation states necessary to receive information on a conversation over the
VTAM API. Replying to a confirmation request is also included for half-duplex
conversations, because even though they actually involve sending information,
confirmation replies always come from the receiving side of a conversation.

This chapter contains information about VTAM's normal receive services and
interface. Better receive performance is available to applications that use the
interface for high performance data transfer (HPDT). For information about HPDT,
see Chapter 11, “Sending and receiving data using high performance data transfer,”
on page 255. Before reading that chapter, however, the reader should be familiar
with the information presented in this chapter.

Four APPCCMD macroinstruction variations can be used to receive normal
information:
v APPCCMD CONTROL=RECEIVE, QUALIFY=ANY
v APPCCMD CONTROL=RECEIVE, QUALIFY=IANY
v APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC
v APPCCMD CONTROL=RECEIVE, QUALIFY=ISPEC

Four APPCCMD macroinstruction variations can be used to receive expedited
information:
v APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC
v APPCCMD CONTROL=RCVEXPD, QUALIFY=ISPEC
v APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY
v APPCCMD CONTROL=RCVEXPD, QUALIFY=IANY

Each of these macroinstructions is described in the following sections.

Determining what is received

Application programs can receive several types of information. For a description of
the types of information that can be exchanged, see “Comparing data to
indications” on page 74.

To determine what is received by your application program, check the
What-Received field in the RPL extension. This field describes the type of
information received by the application program. The What-Received field in the
RPL extension is referenced by the labels RPL6RCV1 and RPL6RCV2 in the
ISTRPL6X DSECT. (For the complete layout of the ISTRPL6X DSECT, refer to z/OS
Communications Server: SNA Programmer's LU 6.2 Reference.)

Note: The What-Received field is applicable only to the APPCCMD
CONTROL=RECEIVE macroinstruction.

© Copyright IBM Corp. 2000, 2013 227

What-received field

The What-Received field should be examined only when the RCPRI field of the
RPL extension indicates a return code of 0 on an APPCCMD
CONTROL=RECEIVE. Otherwise, the What-Received field has no meaning.

VTAM maintains information and passes this information to the application
program in the sequence in which it is received. VTAM passes to the application
program any indicators for events only when the application must react or take
action as noted by the indicator. For example, if the DEALLOCATE indicator is
received along with other data, VTAM sets the DEALLOCATE indicator in the
What-Received field only after passing all data to the application program. Some
indicators are mutually exclusive, such as DATA, DATA_COMPLETE, and
DATA_INCOMPLETE.

The 2-byte WHATRCV field has the format shown in Table 34 (bit 0 is the most
significant bit; it is the bit indicated by a value of X'8000').

Table 34. Description of bits in WHATRCV field
RPL6RCV1 RPL6RCV2
Bit Meaning Bit Meaning
0 DATA 0 PARTIAL_PS_HEADER
1 DATA_COMPLETE 1–7 Reserved
2 DATA_INCOMPLETE
3 SEND
4 CONFIRM
5 DEALLOCATE
6 LOG_DATA
7 PS_HEADER

The meanings of the bits are as follows:

DATA Indicates that the application program received data independent of the
data's logical record format. This value is returned to the application
program only if the application program issued an APPCCMD
CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC, FILL=BUFF, or if the
application program issued APPCCMD CONTROL=RECEIVE,
QUALIFY=ANY|IANY and specified CONMODE=BUFFCA on a prior
APPCCMD.

DATA_COMPLETE
Indicates that the application program received a complete logical record,
or the last remaining portion of a record. This value is returned to the
application program only if the application program issued APPCCMD
CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC, FILL=LL, or the
application program issued APPCCMD CONTROL=RECEIVE,
QUALIFY=ANY|IANY and specified CONMODE=LLCA on a prior
APPCCMD.

DATA_INCOMPLETE
Indicates that the application program received less than a complete logical
record. This situation occurs when the AREALEN value specified in the
RPL is less than the length of the logical record, or when the
macroinstruction completes before the entire logical record arrives. The
application program issues one or more APPCCMD CONTROL=RECEIVE
macroinstructions to receive the remainder of the data. This value is
returned to the application program only if the application program issued

228 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC, FILL=LL, or if
the application program issued APPCCMD CONTROL=RECEIVE,
QUALIFY=ANY|IANY and specified CONMODE=LLCA on a prior
APPCCMD.

SEND Indicates that the application program received an indication that the
partner application has entered RECEIVE state, placing the local
application program in SEND state. This situation never occurs on a
full-duplex conversation.

CONFIRM
Indicates that the application program received information specifying that
the partner LU has sent a confirmation request. The application program
responds positively by issuing APPCCMD CONTROL=SEND,
QUALIFY=CONFRMD. The application program can respond negatively
by issuing APPCCMD CONTROL=SEND, QUALIFY=ERROR. This
situation never occurs on a full-duplex conversation.

DEALLOCATE
Indicates that the conversation partner has deallocated the conversation. If
the CONFIRM field in the what-received field is also set on, the partner
transaction program has requested a conditional deallocation of the
half-duplex conversation, contingent upon the local application's reply;
otherwise, the partner has unconditionally deallocated the conversation.

LOG_DATA
Indicates that the application program is receiving error log data from the
conversation partner.

PS_HEADER
Indicates that the application program on a half-duplex conversation
issued a receive and the receive data buffer is larger than the PS header
length plus 2. PS headers consist of 2 bytes, which contain a constant value
of X'0001', followed by a 1-byte field that contains the PS header length,
followed by data. This situation never occurs on a full-duplex
conversation. This bit is used only for sync point conversations.

PARTIAL_PS_HEADER
Indicates that the application program on a half-duplex-capable
conversation received a data buffer smaller than the PS header length plus
2. This situation never occurs on a full-duplex conversation. This bit is
used only for sync point conversations.

The CONFIRM, SEND, and DEALLOCATE indicators all indicate state changes.
The application program must be able to properly process all valid combinations of
these indicators. (For a list of valid combinations, see Table 35 on page 230.) The
application program should check all of these bits after a RECEIVE. If sync point is
supported, the application program should also check for the PS_HEADER and
PARTIAL_PS_HEADER. If the application program had the FILL field in the RPL
set to BUFF, only the DATA indicator needs to be checked. If FILL specified LL,
either DATA_COMPLETE or DATA_INCOMPLETE can be set.

What-received indicators

Table 35 on page 230 shows the combinations of WHATRCV information that can
be passed to the application program on one APPCCMD CONTROL=RECEIVE
macroinstruction. The table also shows the valid conversation types for each
combination.

Chapter 10. Receiving information 229

Table 35. Valid combinations of what-received indicators

Returned Information
Valid Conversation
Type Meaning

DATA only Full-duplex and
Half-duplex

This value is returned when the application program is receiving
data in terms of buffers instead of logical records. It indicates that
data has been received. More data might remain in the logical
record.

DATA and PS_HEADER Half-duplex These values are returned when the application program is
receiving data in terms of buffers instead of logical records. It
indicates that data and a complete PS header have been received.
(The received data buffer is larger than or equal to any data
preceding the PS header in the normal data queue plus the PS
header.) The PS header is the last data in the buffer. The buffer
might not be filled upon completion.

PS_HEADER Half-duplex This value indicates that a complete PS header has been received.
(The received data buffer is larger than or equal to the PS header.)
The PS header is the only data in the buffer. The buffer might not
be filled upon completion.

DATA and
PARTIAL_PS_HEADER

Half-duplex These values are returned when the application program is
receiving data in terms of buffers instead of logical records. It
indicates that data and a portion of a PS header have been
received. More data remains to be received to complete the PS
header.

PARTIAL_PS_HEADER Half-duplex This value indicates that a portion of a PS header has been
received. More data remains to be received to complete the PS
header.

DATA_COMPLETE only Full-duplex and
Half-duplex

This value is returned when the application program is receiving
data in terms of logical records, and it finishes receiving a logical
record.

DATA_INCOMPLETE
only

Full-duplex and
Half-duplex

This value is returned when the application program is receiving
data in terms of logical records, and a portion of a logical record
is received. More data remains to be received to complete the
logical record.

SEND only Half-duplex This value indicates that the partner LU has entered RECEIVE
state, placing the local application program in SEND state. The
local application program can now send conversation data.

SEND and PS_HEADER Half-duplex These values indicate that the partner LU has entered RECEIVE
state, placing the local application program in SEND state. The
local application program can now send conversation data. A
complete PS header has also been received by the application
program.

CONFIRM only Half-duplex This value indicates that the application program has received a
confirmation request. The application program can respond
positively to the confirmation request or report an error.

DEALLOCATE only Full-duplex and
Half-duplex

This value indicates that the partner LU has unconditionally
deallocated the conversation.

DEALLOCATE and
PS_HEADER

Half-duplex These values indicate that the application has received a complete
PS header and indicates that the partner LU has unconditionally
deallocated the conversation.

DATA_INCOMPLETE
and LOG_DATA

Full-duplex and
Half-duplex

These values are returned when the application program is
receiving data in terms of logical records, and a portion of an
error log variable is received. More log data remains to be
received to complete the error log variable, which is also a logical
record.

230 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 35. Valid combinations of what-received indicators (continued)

Returned Information
Valid Conversation
Type Meaning

CONFIRM and SEND Half-duplex These values indicate the partner LU will enter RECEIVE state
after receiving a positive reply to a confirmation request. The
application program can respond positively to the confirmation
request or report an error.

CONFIRM and
DEALLOCATE

Half-duplex These values indicate that the partner LU will unconditionally
deallocate the conversation after receiving a positive reply to a
confirmation request. The application program is to respond either
positively or negatively to the confirmation request.

DATA and SEND Half-duplex These values indicate that the application program is receiving
data in terms of buffers rather than logical records, and has
received data along with an indication that the partner LU has
entered RECEIVE state. The received data should complete a
logical record.

DATA, SEND, and
PS_HEADER

Half-duplex These values indicate that the application program is receiving
data in terms of buffers rather than logical records, and an
indication that the partner LU has entered RECEIVE state. The
received data should complete a logical record, and the PS header
is the last data in the buffer. The buffer might not be filled upon
completion.

DATA and CONFIRM Half-duplex These values indicate that the application program is receiving
data in terms of buffers rather than logical records, and has
received data along with a confirmation request. The data must
complete a logical record. The application program is to respond
to the confirmation request, either positively or negatively.

DATA, CONFIRM, and
PS_HEADER

Half-duplex These values indicate that the application program is receiving
data in terms of buffers rather than logical records, and a
confirmation request. The data must complete a logical record,
and the PS header is the last data in the buffer. The application
program is to respond to the confirmation request, either
positively or negatively.

CONFIRM and
PS_HEADER

Half-duplex These values indicate that the application program is receiving a
complete PS header and a confirmation request. The PS header is
the only data in the buffer. The application program is to respond
to the confirmation request, either positively or negatively.

DATA and
DEALLOCATE

Full-duplex and
Half-duplex

These values indicate that the application program is receiving
data in terms of buffers rather than logical records, and has
received data along with an indication that the partner LU has
unconditionally deallocated the conversation.

DATA, DEALLOCATE,
and PS_HEADER

Half-duplex These values indicate that the application program is receiving
data in terms of buffers rather than logical records, has received a
complete PS header, and an indication that the partner LU has
unconditionally deallocated the conversation. The PS header is the
last data in the buffer. The buffer might not be filled upon
completion.

DEALLOCATE and
PS_HEADER

Half-duplex These values indicate that the application program has received a
complete PS header and an indication that the partner LU has
unconditionally deallocated the conversation. The PS header is the
only data in the buffer. The buffer might not be filled upon
completion.

Chapter 10. Receiving information 231

Table 35. Valid combinations of what-received indicators (continued)

Returned Information
Valid Conversation
Type Meaning

DATA, CONFIRM, and
SEND

Half-duplex These values indicate that the application program is receiving
data in terms of buffers rather than logical records. Indicates that
the partner LU will enter RECEIVE state after receiving a positive
reply to a confirmation request. The application program can
respond positively to the confirmation request, or report an error.

DATA, CONFIRM, SEND,
and PS_HEADER

Half-duplex These values indicate that the application program is receiving
data in terms of buffers rather than logical records, and has
received a complete PS header, a confirmation request, and an
indicator that the partner LU will enter RECEIVE state after
receiving a positive reply to a confirmation request. The
application program can respond positively to the confirmation
request, or report an error. The PS header is the only data in the
buffer. The buffer might not be filled upon completion.

CONFIRM, SEND, and
PS_HEADER

Half-duplex These values indicate that the application program has received a
complete PS header a confirmation request, and an indicator that
the partner LU will enter RECEIVE state after receiving a positive
reply to a confirmation request. The application program can
respond positively to the confirmation request, or report an error.
The PS header is the only data in the buffer. The buffer might not
be filled upon completion.

DATA, CONFIRM, and
DEALLOCATE

Half-duplex These values indicate that the application program is receiving
data in terms of buffers rather than logical records. The
application program has received data, along with a confirmation
request and an indicator that the partner LU is seeking to
deallocate the conversation. The application program is to respond
to the confirmation request.

DATA, CONFIRM,
DEALLOCATE, and
PS_HEADER

Half-duplex These values indicate that the application program is receiving
data in terms of buffers rather than logical records. The
application program has received data and a complete PS header.
(The received data buffer is larger than or equal to any data
preceding the PS header in the normal data queue plus the PS
header.) The PS header is the last data in the buffer. The buffer
might not be filled upon completion. The application program has
also received a confirmation request and an indication that the
partner LU will unconditionally deallocate the conversation after
receiving a positive reply to the confirmation request. The
application program is to respond to the confirmation request.

CONFIRM,
DEALLOCATE, and
PS_HEADER

Half-duplex These values indicate that the application program is receiving a
complete PS header. (The received data buffer is larger than or
equal to the PS header.) The PS header is the only data in the
buffer. The buffer might not be filled upon completion. The
application program has also received a confirmation request and
an indication that the partner LU will unconditionally deallocate
the conversation after receiving a positive reply to the
confirmation request. The application program is to respond to the
confirmation request.

DATA and LOG_DATA Full-duplex and
Half-duplex

These values indicate that the application program is receiving
data in terms of buffers rather than logical records. The
application program is receiving only error log data.

232 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 35. Valid combinations of what-received indicators (continued)

Returned Information
Valid Conversation
Type Meaning

DATA, LOG_DATA, and
CONFIRM

Half-duplex These values indicate that the application program is receiving
data in terms of buffers rather than logical records. The
application program has received data, an indication that the data
received is error log data, and a confirmation request. The data
must complete the error log variable. The application program is
to respond to the confirmation request.

DATA, CONFIRM, SEND,
and LOG_DATA

Half-duplex These values indicate that the application program is receiving
data in terms of buffers rather than logical records. They indicate
that the application program has received data, a confirmation
request, an indicator that the partner LU is seeking to enter
RECEIVE state, and an indicator that the received data was error
log data. The application program is to respond to the
confirmation request.

DATA, CONFIRM,
DEALLOCATE, and
LOG_DATA

Half-duplex These values indicate that the application program is receiving
data in terms of buffers rather than logical records. The
application program has received data, a confirmation request, an
indicator that the partner LU is seeking to deallocate the
conversation, and an indicator that the received data was error log
data. The application program is to respond to the confirmation
request.

DATA, SEND, and
LOG_DATA

Half-duplex These values indicate that the application program is receiving
data in terms of buffers rather than logical records, and has
received data, an indication that the partner LU has entered SEND
state, and an indication that the received data was error log data.
The received data should complete an error log variable.

DATA, DEALLOCATE,
and LOG_DATA

Full-duplex and
Half-duplex

These values indicate that the application program is receiving
data in terms of buffers rather than logical records, and has
received data, an indication that the partner LU has
unconditionally deallocated the conversation, and an indication
that the received data was error log data.

DATA_COMPLETE and
SEND

Half-duplex These values indicate that the application program is receiving
data in terms of logical records. The application program has
received all of a logical record and the partner LU has entered
RECEIVE state.

DATA_COMPLETE and
CONFIRM

Half-duplex These values indicate that the application program is receiving
data in terms of logical records. The application program has
received a complete logical record, along with a confirmation
request. The application program is to respond to the confirmation
request.

DATA_COMPLETE and
DEALLOCATE

Full-duplex and
Half-duplex

These values indicate that the application program is receiving
data in terms of logical records. It has finished receiving a logical
record and has been notified that the partner LU has
unconditionally deallocated the conversation.

DATA_COMPLETE,
CONFIRM, and SEND

Half-duplex These values indicate that the application program is receiving
data in terms of logical records. It has finished receiving a logical
record, and has received a confirmation request and an indicator
that the partner LU wishes to enter RECEIVE state. The
application program is to respond to the confirmation request.

Chapter 10. Receiving information 233

Table 35. Valid combinations of what-received indicators (continued)

Returned Information
Valid Conversation
Type Meaning

DATA_COMPLETE,
CONFIRM, and
DEALLOCATE

Half-duplex These values indicate that the application program is receiving
data in terms of logical records. It has finished receiving a logical
record, and has received a confirmation request along with an
indicator that the partner LU will unconditionally deallocate the
conversation. The application program is to respond to the
confirmation request.

DATA_COMPLETE and
LOG_DATA

Full-duplex and
Half-duplex

These values indicate that the application program is receiving
data in terms of logical records. The application program has
finished receiving a logical record, along with an indication that
the received data was error log data.

DATA_COMPLETE,
LOG_DATA, and
CONFIRM

Half-duplex These values indicate that the application program is receiving
data in terms of logical records. The application program has
finished receiving a logical record, an indication that the data
received was error log data, and a confirmation request. The data
must complete the error log variable. The application program is
to respond to the confirmation request.

DATA_COMPLETE,
CONFIRM, SEND, and
LOG_DATA

Half-duplex These values indicate that the application program is receiving
data in terms of logical records. They indicate that the application
program has finished receiving a logical record, a confirmation
request, an indicator that the partner LU is seeking to enter
RECEIVE state, and an indicator that the received data was error
log data. The application program is to respond to the
confirmation request.

DATA_COMPLETE,
CONFIRM,
DEALLOCATE, and
LOG_DATA

Half-duplex These values indicate that the application program is receiving
data in terms of logical records. The application program has
finished receiving a logical record, a confirmation request, an
indicator that the partner LU is seeking to deallocate the
conversation, and an indicator that the received data was error log
data. The application program is to respond to the confirmation
request.

DATA_COMPLETE,
SEND, and LOG_DATA

Half-duplex This set of values indicates that the application program is
receiving data in terms of logical records, and has finished
receiving a logical record, an indication that the partner LU has
entered SEND state, and an indication that the received data was
error log data. The received data should complete an error log
variable.

DATA_COMPLETE,
DEALLOCATE, and
LOG_DATA

Full-duplex and
Half-duplex

These values indicate that the application program is receiving
data in terms of logical records, and has finished receiving a
logical record, an indication that the partner LU has
unconditionally deallocated the conversation, and an indication
that the received data was error log data.

For an APPCCMD CONTROL=RECEIVE specifying FILL=BUFF, VTAM normally
waits for enough data to fill the application's buffer as specified by the contents of
the AREA and AREALEN parameters. However, VTAM may complete the
macroinstruction with less data when any of the following conditions occurs:
v A CONFIRM indication is in the What-Received field. The partner transaction

program expects the local transaction to issue either positive or negative
confirmation of the received data.

v A SEND indication is in the What-Received field. The partner transaction
program expects the local transaction to send data, possibly a reply to the data
just received request.

234 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

v A DEALLOC indication is in the What-Received field. The partner transaction
program has initiated deallocation of the conversation.

v For full duplex conversations only, if the partner transaction program issues a
flush type of send, an APPCCMD CONTROL=RECEIVE specifying FILL=BUFF
completes with the flushed data.

v An FMH7 arrives in VTAM.

Note: This will also result in a nonzero RCPRI, RCSEC return code.
v A conversation failure occurs.

Note: This will also result in a nonzero RCPRI, RCSEC return code.
v Log data has arrived. This is done to isolate any prior data from the log data in

the application's buffer. This specific situation is reported by VTAM by setting
on the LOGRCV (RPL6RLOG) indicator in the RPL extension on the prior
APPCCMD that reported the FMH-7.

When the log data itself is being received by using an APPCCMD
CONTROL=RECEIVE specifying FILL=BUFF, the What-Received field indicates
DATA as well as LOG_DATA (as opposed to LOGRCV(RPL6RLOG), which is not
in the What-Received field).

Another way to view the above information is that VTAM will always insure that
when APPCCMD CONTROL=RECEIVE FILL=BUFF completes, the contents of the
application's buffer will contain one of the following items:
v Nothing
v Normal application data
v Normal application data followed by all or part of a PS Header
v All or part of a PS Header

Note: No other data will follow a PS Header in the application's buffer.
v All or part of LOG_DATA

Note: No other data will follow or precede the LOG_DATA in the application's
buffer.

Regarding the What-Received field, also note that:
v The DATA indication in the What-Received field indicates that the receive

macroinstruction specified FILL=BUFF.
v The DATA_COMPLETE and DATA_INCOMPLETE indications in the

What-Received field indicate that the receive macroinstruction specified
FILL=LL.

v The DATA indication together with the LOG_DATA in the What-Received field
indicates that the receive macroinstruction specified FILL=BUFF.

v The DATA_INCOMPLETE or DATA_COMPLETE indications together with the
LOG_DATA in the What-Received field indicate that the receive
macroinstruction specified FILL=LL.

v The PS Header and PARTIAL_PS Header in the What-Received field does not
indicate whether the receive macroinstruction specified FILL=BUFF or LL.

Chapter 10. Receiving information 235

Checking the what-received field

In this example, an application program known as APPLA is receiving data on a
conversation whose identifier is in register 8. The application program will check
each possibility even though some indicators cannot be set at the same time, such
as DATA and DATA_COMPLETE. (This was done for simplicity, because the only
negative consequences here of checking indicators that cannot be set are a few
unnecessary instructions.)
*

APPCCMD CONTROL=RECEIVE, X
QUALIFY=SPEC, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
CONVID=(8), X
AREA=RECAREA, X
AREALEN=255, X
FILL=LL, X
OPTCD=SYN

*
LTR 15,15 * CHECK GENERAL RETURN CODE IN 15
BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE

*
* RETURN CODES WERE GOOD, NOW CHECK WHAT-RECEIVED INDICATORS.
* THE WHAT-RECEIVED MASK IS SAVED IN CASE ANY OF THE BAL SUBROUTINES
* NEED TO USE THE RPL EXTENSION FOR AN APPCCMD.
*

LA 9,RPLAX * LOAD RPL EXTENSION ADDRESS
USING ISTRPL6X,9 * ESTABLISH ADDRESSABILITY
MVC MASK1,RPL6RCV1 * SAVE WHAT-RECEIVED MASK
MVC MASK2,RPL6RCV2 * SAVE WHAT-RECEIVED MASK
TM MASK1,RPL6WCFM * CHECK CONFIRM INDICATOR
BAL 14,CFMCODE * GO AND HANDLE CONFIRMATION REQUEST
TM MASK1,RPL6WDAL * CHECK DEALLOCATION INDICATOR
BAL 14,DEALCODE * GO AND HANDLE DEALLOCATION
TM MASK1,RPL6WSND * CHECK SEND INDICATOR
BAL 14,SENDCODE * GO AND HANDLE BEING IN SEND STATE
TM MASK1,RPL6WDAT * CHECK DATA INDICATOR
BAL 14,DATACODE * GO AND HANDLE RECEIVED DATA
TM MASK1,RPL6WDAC * CHECK DATA COMPLETE INDICATOR
BAL 14,DATCCODE * GO AND HANDLE RECEIVED DATA
TM MASK1,RPL6WDAI * CHECK DATA INCOMPLETE INDICATOR
BAL 14,DATICODE * GO AND HANDLE RECEIVED DATA
TM MASK1,RPL6WPSH * CHECK PS HEADER INDICATOR
BAL 14,PSHFCODE * GO AND HANDLE RECEIVED DATA
TM MASK2,RPL6WPSI * CHECK PARTIAL PS HEADER INDICATOR
BAL 14,PSHPCODE * GO AND HANDLE RECEIVED DATA

•
•
•

MASK1 DS XL1 * SAVE AREA FOR WHAT-RECEIVED
MASK2 DS XL1
RECAREA DS XL255 * RECEIVE BUFFER
RPLA RPL AM=VTAM * RPL STORAGE
RPLAX ISTRPL6 * RPL EXTENSION STORAGE
APPLA ACB AM=VTAM,MACRF=LOGON,APPLID=APPLNAME * ACB STORAGE

Receiving information on half-duplex conversations

On half-duplex conversations, the conversation partner must be in RECEIVE state
or enter RECEIVE state to receive information.

236 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Roles of sender and receiver

Application programs and their conversation partners on half-duplex conversations
regularly exchange the role of sender according to rules enforced by VTAM. When
an application program is finished sending data, it can surrender its prerogative as
the sender to allow its partner to send data. This type of protocol is referred to as
half-duplex flip-flop protocol.

If the transaction program is in SEND state and wants to enter RECEIVE state, it
must surrender its prerogative to send data by notifying VTAM that it is ready to
receive. VTAM then notifies the partner that it can send data. A receiving
application program receives this notification as part of the parameters returned on
an APPCCMD CONTROL=RECEIVE macroinstruction.

Only the partner transaction program in SEND state can send information, but the
transaction program in RECEIVE conversation state can send error indications,
reply to confirmation requests, or request to become the sender. (For details on
conversation states, see Appendix A, “Conversation states,” on page 335.)

Entering RECEIVE state

VTAM allows only one side of a half-duplex conversation to receive information at
any given time. When an application program receives information, the
conversation must be in RECEIVE state. The conversation partner can receive error
indications, confirmation responses, or requests from its partner to become the
receiver.

The local transaction program enters SEND state after a successful allocation
request is completed. The partner transaction program receives the FMH-5 and its
side of the conversation enters RECEIVE state. After the conversation is started, the
transaction program in SEND state can put the conversation in RECEIVE state
when it is ready to receive data by issuing one of the following macroinstructions:
v APPCCMD CONTROL=PREPRCV
v APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC

In general, the transaction program that has a conversation in SEND state can
place the conversation in RECEIVE state at any time. The partner transaction
program must examine the What-Received field or the CONSTATE field
(RPL6CCST) on its RECEIVE requests to determine if the sending transaction
program has placed this side of the conversation in RECEIVE state.

An exception exists to the rule that the sending transaction program determines
when it places the conversation in RECEIVE state. If a receiving application
program detects an error, it can issue an APPCCMD CONTROL=SEND,
QUALIFY=ERROR macroinstruction. The original sending transaction program
receives a return code indicating that an error was reported and that the
application has been placed in RECEIVE state.

A special consideration exists when the application program wants to enter
RECEIVE state and the application program is in SEND state or PEND_SEND
state. Because the application is finishing its role as the sender, it must complete
any logical records it has started to send. If the latest logical record being sent is
not finished, the macroinstruction completes unsuccessfully with an error code of
LOGICAL_RECORD_BOUNDARY_ERROR. The conversation remains in SEND
state, at which time the application program has three choices:

Chapter 10. Receiving information 237

v Send more data to complete the logical record.
v Use the APPCCMD CONTROL=SEND, QUALIFY=ERROR macroinstruction to

indicate that an error occurred.
v Use one of the abnormal termination APPCCMD

CONTROL=DEALLOC|DEALLOCQ macroinstructions or the APPCCMD
CONTROL=REJECT macroinstruction to end the conversation.

The APPCCMD CONTROL=PREPRCV macroinstruction combines the functions of
sending new data and a confirmation request. For example, if an application
program is to finish sending a logical record, get confirmation, and begin receiving,
it could issue an APPCCMD CONTROL=PREPRCV, QUALIFY=DATACON
macroinstruction. The application program cannot request confirmation if it places
the conversation in RECEIVE state using the APPCCMD CONTROL=RECEIVE
macroinstruction.

For a general discussion of sending data, see Chapter 9, “Sending information,” on
page 207.

Receiving normal information

The following macroinstructions can be used to receive information through
normal, paced protocols:
v APPCCMD CONTROL=RECEIVE, QUALIFY=ANY
v APPCCMD CONTROL=RECEIVE, QUALIFY=IANY
v APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC
v APPCCMD CONTROL=RECEIVE, QUALIFY=ISPEC

Using APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC

The APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC macroinstructions
receive normal information from a specific conversation. When this
macroinstruction is issued, a conversation identifier must be specified, and only
incoming information for that conversation can be received.

The QUALIFY=SPEC macroinstruction causes VTAM to copy the data from the
conversation specified by the CONVID parameter to the area specified by the
AREA parameter. The conversation can be in continue-any or continue-specific
mode. The AREALEN parameter specifies the length of the data area. If no data is
ready to be received on the conversation, VTAM queues the macroinstruction until
the data arrives.

The QUALIFY=ISPEC macroinstruction receives normal information that is
immediately available from a specified conversation. The conversation can be in
continue-any or continue-specific mode. When this macroinstruction is issued,
VTAM copies all normal information that is immediately available into the
supplied data area or control block specified by the AREA parameter. VTAM does
not wait for additional information before completing this macroinstruction. VTAM
issues an RCPRI, RCSEC combination of X'0000', X'0008',
NO_INFORMATION_IMMEDIATELY_AVAILABLE.

If the application program is managing several independent conversations
simultaneously, these macroinstructions would have to be issued for each
conversation in order to receive information for that conversation.

238 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Using APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY

The APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY macroinstructions
receive normal information that is available from any conversation that is in
continue-any mode. The macroinstruction completes with the first conversation
that is in continue-any mode and receives that data.

When data is ready to be received on a continue-any mode conversation, VTAM
copies the data into the data area that is specified on the AREA parameter and
completes the macroinstruction. The conversation identifier for the conversation
used to complete the macroinstruction is placed in the CONVID field.

The QUALIFY=IANY macroinstruction receives normal information that is
immediately available from any conversation that is in continue-any mode. VTAM
does not wait for other data before completing this macroinstruction. If there are
no conversations in continue-any mode with normal information available, the
macroinstruction is completed with an RCPRI, RCSEC combination of X'0000',
X'0008', NO_INFORMATION_IMMEDIATELY_AVAILABLE.

When these macroinstructions are issued, VTAM copies data that is available into
the supplied data area or control block that is specified by the AREA parameter.
VTAM also returns the identification of the conversation that satisfied the
macroinstruction in the CONVID parameter.

The APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY macroinstructions
allow an application program to monitor several conversations simultaneously
with a single macroinstruction.

Typically, an application program uses conversations in continue-any mode to
determine which of several conversations has received a transaction to process.
However, the application program does not process the transaction while the
conversation remains in continue-any mode because the macroinstruction might
receive data on another conversation in the middle of a transaction, or the data
may become out of order.

To avoid this problem, an application program can change the conversation from
continue-any mode when data is received for that conversation. This ensures that
the application program can process an entire transaction at one time. The
application program specifies a continuation mode of continue specific on the
macroinstruction. When data on a continue-any conversation is met by the
QUALIFY=ANY|IANY macroinstruction, the conversation's identifier is returned
to the application program in RPL6CNVD, and the conversation is put into
continue-specific mode. The application program can then issue APPCCMD
CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC to finish processing the transaction.

Responding to confirmation requests

Confirmation requests are allowed on half-duplex conversations. Full-duplex
conversations do not support confirmation requests.

When receiving information on a conversation, application programs must be
prepared to respond to confirmation requests from the partner transaction
program. Only the receiving end of a conversation can receive a confirmation
request.

Chapter 10. Receiving information 239

The receipt of a confirmation request is indicated by the setting of the CONFIRM
bit in the What-Received field of the RPL extension. If the bit is set on, the
application program must respond to the confirmation request before issuing any
other APPCCMD macroinstructions on this conversation. The application program
can simultaneously receive data and other indicators in addition to the
confirmation request. This data does not change the application program's need to
respond to the confirmation request.

Positive response

The APPCCMD CONTROL=SEND, QUALIFY=CONFRMD macroinstruction is the
only way to respond positively to a confirmation request. This macroinstruction is
one of the few SEND macroinstructions that can be issued when the local
conversation state is not SEND. (For details on the syntax and operands for the
macroinstruction, see Table 9 on page 83.) Application programs can respond
negatively to a confirmation request by reporting an error.

Negative response

The application program has a number of choices for responding negatively to a
confirmation request. If the error condition that caused the negative response is not
severe enough to end the conversation, the application program uses APPCCMD
CONTROL=SEND, QUALIFY=ERROR. If the error is severe enough to terminate
the conversation, the application program uses one of the abnormal deallocation
macroinstructions:
v APPCCMD CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDPROG
v APPCCMD CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDSERV
v APPCCMD CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDTIME
v APPCCMD CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDUSER

In addition, if the error is severe enough to terminate the session, the application
program can issue APPCCMD CONTROL=REJECT. (For details on the syntax and
operands for these macroinstructions, refer to their individual descriptions in z/OS
Communications Server: SNA Programmer's LU 6.2 Reference.)

Example of confirmation responses

In this example, an application program known as APPLA is receiving data over a
conversation identified by the ID stored in the CONVERID storage area. APPLA
issues a RECEIVE and branches to a subroutine that handles the received data. The
subroutine sets a flag byte referenced by the STATUS label to indicate errors.
APPLA always responds positively to the confirmation request if the flag byte is
set to 0.

L 9,CONVERID * LOAD SAVED CONVERSATION ID
*

APPCCMD CONTROL=RECEIVE, X
QUALIFY=SPEC, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
CONVID=(9), X
OPTCD=SYN, X
AREA=RECAREA, X
AREALEN=255, X
FILL=LL, X
CONMODE=CS

*
LTR 15,15 * CHECK GENERAL RETURN CODE IN 15

240 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE
MVC SAVEMASK,RPL6RCV1 * SAVE WHAT-RECEIVED MASK
BAL 14,CHKREC * CHECK RECEIVED DATA
TM SAVEMASK,RPL6WCFM * CONFIRMATION REQUEST INCLUDED?
BNO DEALCHCK * IF NOT, CHECK DEALLOCATION INDICATOR
CLI STATUS,X’00’ * IS STATUS OK?
BNE NEGRESP * IF NOT ISSUE NEGATIVE RESPONSE

*
* STATUS BYTE WAS OK, SO RESPOND POSITIVELY TO CONFIRMATION REQUEST.
*

APPCCMD CONTROL=SEND, X
QUALIFY=CONFRMD, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
CONVID=CONVERID, X
CONMODE=CS, X
OPTCD=SYN

*
LTR 15,15 * CHECK GENERAL RETURN CODE IN 15
BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE

*
* AT THIS POINT THE CONFIRMATION RESPONSE HAS BEEN MADE AND THE
* RETURN CODES FROM IT WERE GOOD.
*
*

•
•
•

NEGRESP APPCCMD CONTROL=SEND, X
QUALIFY=ERROR, X
TYPE=PROGRAM, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
CONVID=CONVERID, X
RECLEN=0, X
OPTCD=SYN

*
LTR 15,15 * CHECK GENERAL RETURN CODE IN 15
BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE

*
* AT THIS POINT THE NEGATIVE CONFIRMATION RESPONSE HAS BEEN MADE AND
* THE RETURN CODES FROM IT WERE GOOD.
*

•
•
•

CONVERID DS XL4 * CONVERSATION ID
STATUS DC X’00’ * RECEIVED DATA OK FLAG
SAVEMASK DS XL1 * SAVE SPACE FOR WHAT-RECEIVED MASK
RECAREA DS XL255 * RECEIVE STORAGE AREA
RPLA RPL AM=VTAM * RPL STORAGE
RPLAX ISTRPL6 * RPL EXTENSION STORAGE
APPLA ACB AM=VTAM,MACRF=LOGON,APPLID=APPLNAME * ACB STORAGE

Chapter 10. Receiving information 241

Receiving expedited information

When a partner sends a request to send indication, for example, by using an
APPCCMD CONTROL=SEND, CONTROL=RQSEND macroinstruction, the
indication may be reported to the local application in one of two ways:
v On the completion of any APPCCMD macroinstruction that allows the SIGRCV

(RPL6RSIG) and SIGDATA (RPL6SGNL) indications
v Only on the completion of expedited macroinstructions APPCCMD

CONTROL=SENDEXPD and APPCCMD CONTROL=RCVEXPD

The application determines the ways of receiving the request to send information
when the conversation begins. By specifying RTSRTRN=BOTH on the APPCCMD
CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5, both ways are enabled.
By specifying RTSRTRN=EXPD on the APPCCMD CONTROL=ALLOC or
APPCCMD CONTROL=RCVFMH5, the request to send indication may be received
only on an expedited macroinstruction, that is, either APPCCMD
CONTROL=SENDEXPD or APPCCMD CONTROL=RCVEXPD.

Note: An APPCCMD CONTROL=RCVEXPD macroinstruction completes
successfully if the only expedited information available is a request to send
indication.

The APPCCMD CONTROL=RCVEXPD macroinstruction will always receive
expedited data sent from the conversation partner, for example, by using the
APPCCMD CONTROL=SENDEXPD macroinstruction.

Expedited information can be received by a transaction program in any
conversation state except the following information:
v PENDING_DEALLOCATE
v PENDING_ALLOCATE
v END_CONVERSATION

The following macroinstructions can be used to receive expedited information:
v APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY
v APPCCMD CONTROL=RCVEXPD, QUALIFY=IANY
v APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC
v APPCCMD CONTROL=RCVEXPD, QUALIFY=ISPEC

Using APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC|ISPEC

The APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC|ISPEC receives
expedited information from a specified conversation. The QUALIFY=SPEC
macroinstruction causes the transaction program to wait for expedited information
to arrive to satisfy the macroinstruction request. If expedited information is
immediately available, the application receives it without waiting.

The QUALIFY=ISPEC macroinstruction does not wait for expedited information to
arrive to satisfy the macroinstruction request. If expedited information is not
available, an RCPRI, RCSEC combination of X'0000', X'0008',
NO_IMMEDIATELY_AVAILABLE_INFORMATION is returned to the application.

242 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

If the length of the area specified by the application is not sufficient to receive all
the expedited data available, an RCPRI, RCSEC combination of X'002C', X'0008',
PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT, is returned to the
application.

Using APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY|IANY

The APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY|IANY macroinstructions
receive expedited information that is available from any conversation whose
expedited information mode is continue-any.

The QUALIFY=ANY macroinstruction waits for expedited information to arrive on
a conversation in continue-any mode to satisfy the macroinstruction request. If
expedited data is available, then the application must receive the entire amount of
expedited data available.

The QUALIFY=IANY macroinstruction does not wait for expedited information to
arrive on a conversation to satisfy the macroinstruction request, but immediately
receives any expedited information available. If expedited information is not
available on any conversation in continue-any mode, an RCPRI, RCSEC
combination of (X'0000',X'0008') NO_IMMEDIATELY_AVAILABLE_INFORMATION
is returned to the application.

If the length of the area specified by the application is not sufficient to receive all
the expedited data available, an RCPRI, RCSEC combination of X'002C', X'0008',
PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT, is returned to the
application.

Receiving information on full-duplex conversations

On full-duplex conversations, there are five valid conversation states for receiving
information:
v SEND/RECEIVE
v RECEIVE-ONLY
v PENDING_SEND/RECEIVE_LOG
v PENDING_RECEIVE-ONLY_LOG
v PENDING_RESET_LOG

Each of these states are described in the following sections.

Roles of sender and receiver

For full-duplex conversations, both conversations partners can send and receive
information simultaneously. The partners do not have to exchange roles as sender
and receiver to send or receive information.

Entering SEND/RECEIVE state

The transaction program initiating the full-duplex conversation sends an allocate
request to the partner transaction program. The local conversation then enters
SEND/RECEIVE state. The partner receives the FMH-5 and also enters
SEND/RECEIVE state. Either side of a full-duplex conversation in
SEND/RECEIVE state can receive information.

Chapter 10. Receiving information 243

If the partner transaction program does not support full-duplex, the session
capability is negotiated to half-duplex. A conversation can still be allocated, but
only a half-duplex conversation is allowed on a half-duplex session.

Entering RECEIVE_ONLY state

A transaction program enters RECEIVE_ONLY state when it initiates normal
conversation deallocation by issuing an APPCCMD CONTROL=DEALLOC,
QUALIFY=FLUSH|DATAFLU. In this state the transaction program can continue
to receive information until the partner transaction program completes normal
conversation deallocation.

Entering PENDING_SEND/RECEIVE_LOG state

The transaction program enters PENDING_SEND/RECEIVE_LOG state when error
log data must be received before normal receiving of information can continue.
This can occur when the partner has issued an APPCCMD CONTROL=SEND,
QUALIFY=ERROR and supplied error log data. The conversation state was
SEND/RECEIVE before the error condition was detected.

Entering PENDING_RECEIVE-ONLY_LOG state

The transaction program enters PENDING_RECEIVE-ONLY_LOG state when error
log data must be received before normal receiving of information can continue.
This can occur when the partner has issued an APPCCMD CONTROL=SEND,
QUALIFY=ERROR and supplied error log data. The conversation state was
RECEIVE-ONLY before the error condition was detected.

Entering PENDING_RESET_LOG state

The local conversation enters PENDING_RESET_LOG state when error log data
must be received before the conversation is ended. This can occur when the
partner has issued an abnormal deallocation request and supplied error log data.

Receiving normal information

The following macroinstructions can be used to receive information through
normal, paced protocols:
v APPCCMD CONTROL=RECEIVE, QUALIFY=ANY
v APPCCMD CONTROL=RECEIVE, QUALIFY=IANY
v APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC
v APPCCMD CONTROL=RECEIVE, QUALIFY=ISPEC

Using APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC

The APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC macroinstructions
receive normal information from a specific conversation. When this
macroinstruction is issued, a conversation identifier must be specified, and
incoming information from only the specified conversation can be received.

The QUALIFY=SPEC version causes VTAM to copy the data from the conversation
specified by the CONVID parameter to the area specified by the AREA parameter.
The conversation can be in continue-any or continue-specific mode. The AREALEN
parameter specifies the length of the data area. If no data is ready to be received
on the conversation, VTAM queues the macroinstruction until the data arrives.

244 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

The QUALIFY=ISPEC version receives normal information that is immediately
available from a specified conversation. The conversation can be in continue-any or
continue-specific mode. When the QUALIFY=ISPEC macroinstruction is issued,
VTAM copies all normal information that is immediately available into the
supplied data area or control block specified by the AREA parameter. VTAM does
not wait for additional information before returning a response to this
macroinstruction. If normal information is not available, VTAM completes the
macroinstruction with an RCPRI, RCSEC combination of X'0000', X'0008',
NO_INFORMATION_IMMEDIATELY_AVAILABLE.

If the application program is managing several independent conversations
simultaneously, these macroinstructions would have to be issued for each
conversation in order to receive information from that conversation.

Using APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY

The APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY macroinstructions
receive normal information that is available from any conversation that is in
continue-any mode.

When data is ready to be received on a continue-any mode conversation, VTAM
copies the data into the data area that is specified on the AREA parameter and if
QUALIFY=IANY is specified, completes the macroinstruction. If QUALIFY=ANY is
specified, VTAM may wait for additional information to be received before
completing the macroinstruction. The conversation identifier for the conversation
used to complete the macroinstruction is placed in the CONVID field.

The QUALIFY=IANY version receives normal information that is immediately
available from a conversation that is in continue-any mode. VTAM does not wait
for additional information before completing this macroinstruction. If there are no
conversations in continue-any mode with information available, VTAM issues an
RCPRI, RCSEC combination of X'0000', X'0008',
NO_INFORMATION_IMMEDIATELY_AVAILABLE.

The APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY macroinstructions
allow an application program to monitor several conversations simultaneously
with a single macroinstruction.

Typically, an application program uses conversations in continue-any mode to
determine which of several conversations has received a transaction to process.
However, the application program does not process the transaction while the
conversation remains in continue-any mode because the macroinstruction might
receive data on another conversation in the middle of a transaction and data may
get out of order.

To avoid this problem, an application program can change the conversation from
continue-any mode when data is received from that conversation. This ensures that
the application program can process an entire transaction at one time. The
application program specifies a continuation mode of continue specific on the
macroinstruction. When data on a continue-any conversation is met by the
QUALIFY=ANY|IANY macroinstruction which also specified CONMODE=CS, the
conversation is put into continue-specific mode. The application program can then
issue APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC to finish
processing the transaction.

Chapter 10. Receiving information 245

Receiving expedited data

Expedited data can be received by a transaction program in any conversation state
except FDX_RESET.

The following macroinstructions can be used to receive expedited information:
v APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY
v APPCCMD CONTROL=RCVEXPD, QUALIFY=IANY
v APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC
v APPCCMD CONTROL=RCVEXPD, QUALIFY=ISPEC

Using APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC|ISPEC

The APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC|ISPEC macroinstruction
receives expedited information from a specified conversation.

The QUALIFY=SPEC macroinstruction may wait for expedited information to
arrive to satisfy the macroinstruction request. If expedited information is
immediately available, the application receives it without waiting.

The QUALIFY=ISPEC macroinstruction does not wait for expedited information to
arrive to satisfy the macroinstruction request. If expedited data is not available, an
RCPRI, RCSEC combination of X'0000', X'0008'
NO_IMMEDIATELY_AVAILABLE_INFORMATION is returned to the application.

If the length of the area specified by the application is not sufficient to receive all
the expedited data available, an RCPRI, RCSEC combination of X'002C', X'0008',
PARAMETER_ERROR_SUPPLIED_LENGTH_INSUFFICIENT is returned to the
application.

Using APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY|IANY

The APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY|IANY macroinstructions
receive expedited information that is available from any conversation whose
expedited information mode is continue-any.

The QUALIFY=ANY macroinstruction can wait for expedited information to arrive
on a conversation in continue-any mode to satisfy the macroinstruction request.
The application must receive the entire amount of expedited data available.

The QUALIFY=IANY macroinstruction does not wait for expedited information to
arrive on a conversation to satisfy the macroinstruction request. If there are no
conversations in continue-any mode with expedited information available, the
macroinstruction is completed with an RCPRI, RCSEC of X'0000', X'0008',
NO_IMMEDIATELY_AVAILABLE_INFORMATION.

If the length of the area specified by the application is not sufficient to receive all
the expedited data available, an RCPRI, RCSEC combination of X'002C', X'0008'
PARAMETER_ERROR_SUPPLIED_LENGTH_INSUFFICIENT is returned to the
application.

246 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Specifying how information is received

Application programs can control how certain information is received and
processed by specifying parameters on the APPCCMD CONTROL=RECEIVE
macroinstruction. Application programs can specify the following options:

FILL Determines whether the application program receives information in terms
of logical records or in terms of defined buffer boundaries. This option is
described in “Logical records versus buffers.”

CONMODE
Specifies whether normal information is received in terms of buffers or
logical record format, and whether a specific-type or any-type
macroinstruction is required to receive the information. You may also
specify whether the mode remains unchanged upon completion of the
macroinstruction. This option is described in “Continuation modes for
receiving normal information” on page 249.

CONXMOD
Specifies the mode for receiving expedited information. The mode can be
specified so that expedited information can be received by either a specific
or any-type macroinstruction, only a specific-type macroinstruction, or you
may specify that the mode remain unchanged upon completion of the
macroinstruction. This option in described in “Continuation modes for
receiving expedited information” on page 252.

Logical records versus buffers

Application programs can control whether VTAM respects logical record
boundaries when fulfilling a RECEIVE macroinstruction. This is done by means of
the FILL keyword operand on the APPCCMD CONTROL=RECEIVE,
QUALIFY=SPEC and QUALIFY=ISPEC macroinstructions. For the APPCCMD
CONTROL=RECEIVE, QUALIFY=ANY and QUALIFY=IANY macroinstructions,
the choice is determined on an earlier macroinstruction by means of the
CONMODE parameter. (This is discussed in “Continuation modes for receiving
normal information” on page 249.)

The FILL keyword specifies whether the application program is to receive data in
terms of the logical-record format of the data. This keyword, which corresponds to
the FILL=LL|BUFFER parameter described in LU 6.2 architecture, is labeled
RPL6FILL in the RPL extension.

The following values are valid for this parameter:

FILL=BUFF
Specifies that the application program is to receive data independently of
its logical-record format, up to the length specified by the AREALEN field
of the RPL. This corresponds to FILL=BUFFER on the
RECEIVE_AND_WAIT verb described in LU 6.2 architecture. Note that for
APPCCMD CONTROL=RECEIVE, QUALIFY=ISPEC, the data received
may be less than the length specified on AREALEN.

FILL=LL
Specifies that the application program is to receive one logical record, or
whatever portion of the logical record is available, up to the length
specified by the AREALEN field of the RPL. This corresponds to FILL=LL
on the RECEIVE_AND_WAIT verb described in LU 6.2 architecture. Note

Chapter 10. Receiving information 247

that for APPCCMD CONTROL=RECEIVE, QUALIFY=ISPEC, the data
received may be less than the length specified by the AREALEN field and
not complete a logical record.

By specifying FILL=LL on the APPCCMD CONTROL=RECEIVE macroinstruction,
the application program can receive a logical record even if the total amount of
data is less than the AREALEN specified on the RPL for the RECEIVE. If
FILL=BUFF is specified, the macroinstruction is usually not completed until
enough data is received to fill the application's entire buffer. In such cases, it is
entirely up to the application program to detect the boundaries of logical records.
When FILL=LL is specified, data in excess of a logical record is stored by VTAM
and is available to use in fulfilling the next RECEIVE. Table 36 illustrates the use of
FILL and its impact on how much data is received.

Table 36. Examples of the FILL parameter

Example Macroinstruction Results

A 120-byte logical record arrives for
the application program, and VTAM
receives it. The application program
has a 100-byte buffer.

APPCCMD CONTROL=RECEIVE,
QUALIFY=SPEC, AREA=buffer
address, AREALEN=100, FILL=LL

The application program receives the
full 100 bytes that its buffer holds.
VTAM continues to store the
remaining 20 bytes of the logical
record. The DATA_INCOMPLETE
indicator is set on in the
What-Received field in the RPL
extension.

APPCCMD CONTROL=RECEIVE,
QUALIFY=SPEC, AREA=buffer
address, AREALEN=100, FILL=BUFF

One hundred bytes are put in the
application's RECEIVE buffer, and
VTAM continues to store the
remainder. The DATA indicator in the
What-Received field is set on.

APPCCMD CONTROL=RECEIVE
QUALIFY=ISPEC AREA=buffer
address, AREALEN=100, FILL=LL

The application program receives the
full 100 bytes that its buffer holds.
VTAM continues to store the
remaining 20 bytes of the logical
record. The DATA_INCOMPLETE
indicator is set on in the
What-Received field in the RPL
extension.

APPCCMD CONTROL=RECEIVE,
QUALIFY=ISPEC, AREA=buffer
address, AREALEN=100, FILL=BUFF

One hundred bytes are put in the
application's RECEIVE buffer, and
VTAM continues to store the
remainder. The DATA indicator in the
What-Received field is set on.

The program issues RECEIVE after
the 20 remaining bytes from the first
example have been stored by VTAM,
and no other data has been received
by VTAM for the application
program.

APPCCMD CONTROL=RECEIVE,
QUALIFY=SPEC, AREA=buffer
address, AREALEN=100, FILL=LL

The 20 bytes are received by the
application program, and the
DATA_COMPLETE indicator is
turned on in the What-Received field
of the RPL extension. RECLEN holds
a value of X'14'.

APPCCMD CONTROL=RECEIVE,
QUALIFY=SPEC, AREA=buffer
address, AREALEN=100, FILL=BUFF

The macroinstruction does not receive
the 20 bytes of data yet, unless this is
the last logical record the partner
application program is sending prior
to a confirmation request, deallocation
request, or attempt to enter RECEIVE
state. VTAM normally waits until
another 80 bytes of data arrive to
complete the RECEIVE. When the
macroinstruction does complete, the
DATA bit in the What-Received field
will be set on.

APPCCMD CONTROL=RECEIVE
QUALIFY=ISPEC AREA=buffer
address, AREALEN=100, FILL=LL

248 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 36. Examples of the FILL parameter (continued)

Example Macroinstruction Results

The 20 bytes are received by the
application program, and the
DATA_COMPLETE indicator is
turned on in the What-Received field
of the RPL extension. RECLEN holds
a value of X'14'.

APPCCMD CONTROL=RECEIVE,
QUALIFY=ISPEC, AREA=buffer
address, AREALEN=100, FILL=BUFF

The 20 bytes are received by the
application program, and the DATA
indicator is turned on in the
What-Received field of the RPL
extension. RECLEN holds a value of
X'14'.

VTAM receives 100 bytes for the
application program—the first 50
finishing a logical record and the next
50 making up a complete logical
record. The application program has
specified a buffer of 100 bytes.

APPCCMD CONTROL=RECEIVE,
QUALIFY=SPEC, AREA=buffer
address, AREALEN=100, FILL=LL

The application program receives the
first 50 bytes and the other 50
continue to be stored by VTAM. The
DATA_COMPLETE indicator bit is set
on.

APPCCMD CONTROL=RECEIVE,
QUALIFY=SPEC, AREA=buffer
address, AREALEN=100, FILL=BUFF

The application program receives the
entire 100 bytes. The DATA indicator
bit is set on.

APPCCMD CONTROL=RECEIVE
QUALIFY=ISPEC AREA=buffer
address, AREALEN=100, FILL=LL

The application program receives the
first 50 bytes and the other 50
continue to be stored by VTAM. The
DATA_COMPLETE indicator bit is set
on.

APPCCMD CONTROL=RECEIVE,
QUALIFY=ISPEC, AREA=buffer
address, AREALEN=100, FILL=BUFF

The application program receives the
entire 100 bytes. The DATA indicator
bit is set on.

Continuation modes for receiving normal information

At any given time, a conversation can be in one of three continuation modes:
v Buffer-continue-any
v Continue-specific
v Logical-record-continue-any

Each of these modes can be specified on any APPCCMD that allows the
CONMODE parameter.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode.
It indicates that normal information may be received by either APPCCMD
CONTROL=RECEIVE, SPEC|ISPEC or APPCCMD CONTROL=RECEIVE,
QUALIFY=ANY|IANY and that the application program is to receive data
independently of the logical-record format of the data.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It
indicates that only APPCCMD CONTROL=RECEIVE,
QUALIFY=SPEC|ISPEC can be used to receive normal information on this
conversation. When the application issues APPCCMD
CONTROL=RECEIVE, QUALIFY=SPEC or APPCCMD
CONTROL=RECEIVE, QUALIFY=ISPEC, it must indicate whether the data
is to be received in terms of the logical record format of the data or
independently of the logical record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-
any mode. It indicates that normal information may be received by either
APPCCMD CONTROL=RECEIVE, SPEC|ISPEC or APPCCMD

Chapter 10. Receiving information 249

CONTROL=RECEIVE, QUALIFY=ANY|IANY and that the application
program is to receive information in terms of the logical-record format of
the data.

CONMODE=SAME
Specifies that the continuation mode of the conversation is to remain
unchanged.

The continuation mode of a conversation can be set on the CONMODE parameter
(RPL6CMOD) of several macroinstructions. See “Keywords and returned
parameters” on page 87 to determine which macroinstructions support this
parameter. The APPCCMD CONTROL=RESETRCV macroinstruction can also be
used to change the continuation mode of a conversation. For more information
about this macroinstruction, refer to z/OS Communications Server: SNA
Programmer's LU 6.2 Reference.

Example of using any-mode RECEIVEs

In this example, an application program known as APPLA is receiving data with
an any-mode RECEIVE. After it receives the data, it moves the data into a buffer
contained in a control block used by the application program to represent a
conversation. (The control block is one in a chain of conversation blocks. The
application program uses the returned conversation identifier to find the proper
block.) The application program then issues another any-mode RECEIVE.
*

APPCCMD CONTROL=RECEIVE, X
QUALIFY=ANY, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
AREA=RECAREA, X
AREALEN=255, X
CONMODE=CS, X
OPTCD=SYN

*
LTR 15,15 * CHECK GENERAL RETURN CODE IN 15
BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE

*
* RETURN CODES WERE GOOD. FIND THE CONVERSATION BLOCK AND MOVE DATA.
*

LA 10,RPLA * LOAD RPL ADDRESS
USING IFGRPL,10 * ESTABLISH ADDRESSABILITY
LA 9,RPLAX * LOAD RPL EXTENSION ADDRESS
USING ISTRPL6X,9 * ESTABLISH ADDRESSABILITY
L 8,BLKCHAIN * GET START OF BLOCK CHAIN
USING BLKMAP,8 * ESTABLISH ADDRESSABILITY

SEARCHLP LTR 8,8 * IF CHAIN ZERO, BLOCK NOT FOUND
BZ ERROR * HANDLE ERROR IF SO
CLC RPL6CNVD,BLKCNVD * RIGHT CONVERSATION BLOCK?
BE STOREBUF * IF SO, TRANSFER DATA
L 8,BLKNEXT * GET NEXT IN CHAIN
B SEARCHLP * GO AND CHECK NEW POINTER VALUE

STOREBUF MVC BLKBUF(255),RECAREA * MOVE DATA FROM RECEIVE BUFFER
MVC BLKBUFLN,RPLRLEN * STORE LENGTH OF RECEIVED DATA

•
•
•

BLKCHAIN DS A * POINTER TO CHAIN OF BLOCKS
RECAREA DS XL255 * RECEIVE BUFFER
RPLA RPL AM=VTAM * RPL STORAGE
RPLAX ISTRPL6 * RPL EXTENSION STORAGE

250 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

APPLA ACB AM=VTAM,MACRF=LOGON,APPLID=APPLNAME * ACB STORAGE
•
•
•

BLKMAP DSECT
BLKCNVD DS XL4 * CONVERSATION ID
BLKNEXT DS A * NEXT IN CHAIN
BLKBUFLN DS XL4 * LENGTH OF DATA IN BUFFER
BLKBUF DS XL255 * CONVERSATION BUFFER

Once the application program has finished receiving data on the conversation, the
conversation can be returned to continue-any state by using the CONMODE
operand or by using the RESETRCV macroinstruction.

This example could be coded as follows:
*
RECLOOP APPCCMD CONTROL=RECEIVE, X

QUALIFY=SPEC, X
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
CONVID=(8), X
AREA=RECAREA, X
AREALEN=255, X
FILL=LL, X
CONMODE=CS, X
OPTCD=SYN

*

LTR 15,15 * CHECK GENERAL RETURN CODE IN 15
BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZ BADCOND * HANDLE NONZERO RETURN CODE

*

* RETURN CODES WERE GOOD, CHECK WHAT-RECEIVED INDICATOR.
*

LA 9,RPLAX * LOAD RPL EXTENSION ADDRESS
USING ISTRPL6X,9 * ESTABLISH ADDRESSABILITY
BAL 14,PROCDATA * BRANCH TO HANDLE RECEIVED DATA
TM RPL6RCV1,RPL6WDAC * CHECK DATA COMPLETE INDICATOR
BNO RECLOOP * IF DATA LEFT, DO ANOTHER RECEIVE

*

* DATA ALL RECEIVED. RESET CONTINUATION MODE
*

APPCCMD CONTROL=RESETRCV,
RPL=RPLA, X
AAREA=RPLAX, X
ACB=APPLA, X
CONVID=(8), X
CONMODE=BUFFCA, X
OPTCD=SYN

*

LTR 15,15 * CHECK GENERAL RETURN CODE IN 15
BNZ BADGENRC * HANDLE NONZERO RETURN CODE
LTR 0,0 * CHECK CONDITIONAL COMPLETION
BNZBAD COND * HANDLE NONZERO RETURN CODE

*
* RETURN CODES WERE GOOD, CONTINUATION MODE RESET.
*

•

Chapter 10. Receiving information 251

•
•

RECAREA DS XL255 * RECEIVE BUFFER
RPLA RPL AM=VTAM * RPL STORAGE
RPLAX ISTRPL6 * RPL EXTENSION STORAGE
APPLA ACB AM=VTAM,MACRF=LOGON,APPLID=APPLNAME * ACB STORAGE

Continuation modes for receiving expedited information

The CONXMOD parameter specifies the mode for receiving expedited information
upon completion of the APPCCMD issued. The continuation mode for receiving
expedited information can be set on the CONXMOD parameter of several
macroinstructions. See “Keywords and returned parameters” on page 87 to
determine which macroinstructions support this parameter. The APPCCMD
CONTROL=RESETRCV macroinstruction can also be used to change the
continuation mode of a conversation. For more information about this
macroinstruction, refer to z/OS Communications Server: SNA Programmer's LU
6.2 Reference.

The following values are valid for this parameter:

CONXMOD=CA
This specifies that the mode for expedited information is to be put in such
a state that expedited information can be received by either a specific type
or an any-type macroinstruction, for example, APPCCMD
CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC, or APPCCMD
CONTROL=RCVEXPD, QUALIFY=ANY or IANY.

CONXMOD=CS
This specifies that the mode for expedited information is to be put in such
a state that expedited information may be received by a only specific type
macroinstruction, for example, APPCCMD CONTROL=RCVEXPD,
QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
This specifies that the conversation mode for expedited information is to
remain unchanged at the completion of this macroinstruction.

Error handling

A general discussion of error reporting is found in Chapter 14, “Handling errors,”
on page 313. Some error-handling considerations are particularly pertinent to
receiving data.

When an application program receiving data over a conversation reports an error
through an APPCCMD macroinstruction, it no longer receives data but is put in
SEND state. Data remaining to be received is purged.

The purged information includes:
v Confirmation requests
v Conditional deallocation notices
v Conversation data

In addition, return codes on a macroinstruction that cause data to be purged are
affected. Allocation error return codes, abnormal deallocation return codes, and
program error and LU services error return codes are reported as a
DEALLOCATE_NORMAL return code.

252 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Purging does not occur when a negative response is reported to a confirmation
request. If a confirmation request is received, all data sent up to that point has
been received as well.

Chapter 10. Receiving information 253

254 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Chapter 11. Sending and receiving data using high
performance data transfer

About this chapter

High performance data transfer (HPDT) optimizes the performance of large
message transfers (sending and receiving operations) for VTAM LU 6.2
applications. No application change is required to obtain HPDT services. When an
LU 6.2 application issues an APPCCMD send or receive request, HPDT services are
invoked automatically if the session is bound over a connection that supports
channel I/O operations using buffers in the communications storage manager
(CSM). These connections are explained in the z/OS Communications Server: SNA
Network Implementation Guide. HPDT services are also available for data
transfers between two LU 6.2 applications that reside on the same host. HPDT
increases total system throughput by reducing the requirements on system
resources (CPU, memory bus, effective pathlength, and cache) and thereby
increasing the total number of streams that can be supported by a CPU with given
MIPS (one million instructions per second) capacity, memory bus bandwidth, and
configuration limits.

This chapter describes an HPDT interface that applications can use for obtaining
performance benefits even greater than when HPDT services are available for
normal APPCCMD send and receive requests. The HPDT interface includes an API
for using CSM (IVTCSM macroinstruction) and an extension to the APPCCMD
macroinstruction (OPTCD=XBUFLST). Optimal performance is achieved by using
the HPDT interface to eliminate the data copy at the APPCCMD interface.

The role of CSM and the IVTCSM macroinstruction

CSM provides a means for authorized host applications to share data with other
CSM users without having to copy the data. (A CSM user can be any
system-authorized application program or product.) CSM is also used by VTAM on
behalf of any VTAM LU 6.2 application, authorized or not, to transfer data
between CSM buffers and the multipath channel with fewer data moves.
Applications can create buffer pools in CSM and load data in buffers, which are
represented by buffer tokens. Ownership of these buffers can be changed to allow
other CSM users to assume responsibility for storage return to CSM. This allows
an application and VTAM to exchange ownership of a single piece of commonly
addressable storage so that there is no need to move the data at the APPCCMD
API. VTAM uses the same CSM storage area for channel I/O. CSM storage is
either data space or extended common service area (ECSA) storage.

CSM provides an API (IVTCSM) that enables applications to request CSM services,
such as registering to use a pool of buffers, getting or freeing a number of buffers
from a pool, or changing the ownership of a buffer. For more information about
the CSM requests available to the application, refer to z/OS Communications
Server: CSM Guide.

For more complete information about CSM, refer to z/OS Communications Server:
CSM Guide.

© Copyright IBM Corp. 2000, 2013 255

Applications that use the HPDT interface

Because performance improvements are targeted at sending and receiving large
data objects, applications that typically require high-speed data transfer are most
suited to use HPDT. For example, in a host file server environment, certain
applications may serve a smaller number of users concurrently storing and
retrieving data than in a traditional online transaction processing environment. For
each access, bulk data transfer is required. This is especially true for multimedia
servers where vast amounts of bits must be transmitted for each minute of video
stream. HPDT was designed to optimize performance for applications requiring
efficient, high-speed transfer of large amounts of data. Specific characteristics about
applications determine the ideal situations for using HPDT. The following items
are some examples of operations in which the HPDT interface is ideal:
v Host file server
v Transmitting multimedia, video, or images
v Backing up and recovering large databases
v Retrieving archived data

Overall, applications that perform frequent transfer of small messages are not
highly suited for using the HPDT interface.

Using the APPCCMD macroinstruction for HPDT requests

The application program sends or receives data in CSM buffers by issuing an
APPCCMD send or receive macroinstruction with OPTCD=XBUFLST specified.
The XBUFLST option indicates that the application is sending or receiving data
using an extended buffer list. The extended buffer list points to data that resides in
CSM buffers. See “Macroinstructions used by HPDT applications” on page 257 for
information about macroinstructions that send or receive data using HPDT.

The APPCCMD side of the HPDT interface also includes vectors that applications
can use to determine whether a particular session supports HPDT services or to
inform VTAM about how the application intends to receive HPDT data. See
“Verifying the session's capabilities” on page 259 and “Passing HPDT receive
requirements to VTAM” on page 269 for more information about vector lists
available to applications that use the HPDT interfaces.

The use of HPDT services on one end of a conversation is transparent to the
partner LU. If an application specifies XBUFLST when the HPDT service is not
available, VTAM executes the request using normal APPCCMD services.

Designing programs to use HPDT

This section describes considerations for writing new, or modifying existing,
application programs to implement HPDT. The following concepts and tasks are
described:
v “Macroinstructions used by HPDT applications” on page 257
v “Application authorization” on page 258
v “Application responsibilities for using HPDT” on page 258
v “How support for HPDT is communicated between the application and VTAM”

on page 259
v “Using the extended buffer list (XBUFLST)” on page 260

256 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Design considerations for HPDT applications

Each HPDT send or receive request is processed independently. An application is,
therefore, free to mix HPDT and non-HPDT requests. Valid request combinations
include, but are not limited to, the following items:
v HPDT send with no HPDT receive
v HPDT receive with no HPDT send
v Both HPDT send and receive
v HPDT send and non-HPDT send
v HPDT receive and non-HPDT receive

The capability of mixing types of send and receive requests allows application
programmers to make decisions on the use of HPDT based on the length of the
data being sent or the anticipated length of the data being received. Also, an
application that typically moves large packets in one direction can be written to
implement HPDT only for the direction of the large packet flow and use the
normal data path for the direction of the smaller flow.

When mixing HPDT requests with non-HPDT requests, be aware that after the first
HPDT send has been issued on a conversation, logical record checking is not
performed for all send operations for the duration of that conversation.

HPDT services are not available when VTAM cryptography or VTAM compression
are used on any send or receive request. HPDT also requires that the session route
is capable of performing data transfers directly to or from CSM buffers. Refer to
z/OS Communications Server: SNA Network Implementation Guide for a
description of these route characteristics. The application can inspect the session
information vector to determine whether HPDT services are available for a session.

Macroinstructions used by HPDT applications

Applications request HPDT services by specifying OPTCD=XBUFLST on the
following macroinstructions.
v For sending data

– APPCCMD CONTROL=SEND,QUALIFY=DATA|DATACON|DATAFLU
– APPCCMD CONTROL=DEALLOC,QUALIFY=DATACON|DATAFLU
– APPCCMD CONTROL=PREPRCV,QUALIFY=DATACON|DATAFLU
– APPCCMD CONTROL=SENDRCV,QUALIFY=DATAFLU

v For receiving data

– APPCCMD CONTROL=RECEIVE,QUALIFY=SPEC|ISPEC
– APPCCMD CONTROL=RECEIVE,QUALIFY=ANY|IANY

The XBUFLST keyword specifies an extended buffer list that points to data
residing in CSM storage. See “Using the extended buffer list (XBUFLST)” on page
260 for more information.

Applications using HPDT must also access CSM services using the IVTCSM
macroinstruction. The following types of requests are available to the application:
v Register (REQUEST=CREATE_POOL) or deregister (REQUEST=DELETE_POOL)

to use a storage pool of buffers residing in ECSA or in a data space
v Get buffers of a pool (REQUEST=GET_BUFFER)

Chapter 11. Sending and receiving data using high performance data transfer 257

v Return buffers to a storage pool (REQUEST=FREE_BUFFER)
v Transfer ownership of buffers of a pool (REQUEST=CHANGE_OWNER)
v Copy data between buffers of any type (REQUEST=COPY_DATA)
v Create a logical image of a buffer (REQUEST=ASSIGN_BUFFER)
v Change the pageable state of a buffer (REQUEST=FIX_BUFFER and

REQUEST=PAGE_BUFFER)
v Provide the address of CSM resource statistics information

(REQUEST=RESOURCE_STATS)
v Provide the address of information required to dump CSM data space

(REQUEST=DUMP_INFO)

For a complete description of all CSM macroinstructions, refer to z/OS
Communications Server: CSM Guide. “Application responsibilities for using
HPDT” contains general guidelines for authorized applications using CSM.

Application authorization

An application must be authorized to use the following interfaces for HPDT
services:

APPCCMD with OPTCD=XBUFLST
Like all other APPCCMD requests, HPDT requests under SRB control are
always considered authorized. Requests under a TCB, however, must
specify BRANCH=YES. VTAM prevents a TCB mode requester that has not
identified itself as authorized from using HPDT services.

IVTCSM macroinstructions
All IVTCSM requests must be from an authorized application program.

For more information about authorization, refer to z/OS Communications Server:
SNA Programming.

Application responsibilities for using HPDT

As system-authorized applications, all HPDT users are expected to be written so
that they handle CSM storage in a responsible manner. Therefore, the application
design should adhere to the following guidelines for requesting CSM services:
v Data in CSM storage should be modified only by the original requester of the

buffers. The original requester is considered to be the application that obtained
the storage using the IVTCSM REQUEST=GET_BUFFER macroinstruction. All
other applications are considered to be borrowers of the buffers and must treat
the data as read-only. There are possible exceptions to this rule. See “Data
delivery considerations” on page 274 for more details.

v All programs directly referencing CSM storage must do so in the proper storage
key. All CSM storage is allocated in key 6.
The IVTCSM REQUEST=COPY_DATA macroinstruction allows data to be
copied into or out of CSM storage. The authorized invoker can be in any key.
Use of this service may reduce the impact to the application due to storage key
mismatches when CSM storage must be accessed.

v An application must not reference or use CSM storage after invoking an
APPCCMD send operation except under circumstances explained in “Send
macroinstruction completion considerations” on page 264.

258 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

v For receive processing, unless an application is passing the storage to another
process, the application is obligated to return CSM storage received over the
APPCCMD API after it has completed processing the data.

v Applications using HPDT have additional responsibilities for handling
confidential text in CSM storage. See “Confidential text considerations” on page
280 for more information.

v Applications must ensure that residual data in unused data areas (which MPC
may send as pad characters to maintain IDAW boundary alignment) is cleared
prior to transmission. See “MPC pad character considerations” on page 279 for
more information.

v In general, applications should use data space instead of ECSA to ensure that
more ECSA virtual storage is available to HPDT applications on the host. ECSA
should be used only if there are special application requirements.

v For send requests, applications should use the storage type indicated by the
session-information vector. See “Verifying the session's capabilities” for more
information.

v The application using the HPDT interface should document its use of CSM so
that the installation can tune its use of CSM storage. This information should be
available in application installation documentation so that necessary changes to
the limits can be made prior to application installation. CSM storage limits and
buffer pool related values are defined in the CSM parmlib member, IVTPRM00,
as described in z/OS Communications Server: New Function Summary.

How support for HPDT is communicated between the
application and VTAM

Support for HPDT is exchanged between an application and VTAM when the
application opens its ACB.

VTAM informs an application about its level of support for HPDT on the
LU-6.2-support-function-list vector, which is located in the access-method-support
vector list. The application must examine this vector list to determine if the VTAM
with which it has opened its ACB supports HPDT. For more information about
using vectors and vector lists, see “Access-method-support vector list” on page 28.

Determining VTAM's support for HPDT can also be performed at assembly time
by referencing the &ISTGA56 variable on the ISTGAPPC macroinstruction. Refer to
z/OS Communications Server: SNA Programmer's LU 6.2 Reference for more
information.

Applications inform VTAM about their intent to use the HPDT interface on the
application-capabilities vector. For more information about this vector, see “Vector
lists supplying information to VTAM” on page 26.

Verifying the session's capabilities

VTAM performs normal send and receive processing when an HPDT request
(OPTCD=XBUFLST) is received for a session when HPDT services are not
available. Under these circumstances, an application program can be written to
invoke normal send or receive requests and avoid the steps required to invoke
CSM. The application should check the session-information vector in the
VTAM-APPCCMD vector list. This vector contains information about the session

Chapter 11. Sending and receiving data using high performance data transfer 259

that the application can use to optimize performance for sending and receiving
operations. The following fields in the session-information vector can be examined
by the application:

APC19NOF
If this bit setting is on, the route used by the session does not support
HPDT services. The application should either not use the HPDT interface
or use a CSM data space that is marked eligible to be pagefreed by CSM
(BLXEN_PAGEELIG flag is set).

If this bit setting is off, the application should examine the other indicators
to make a determination as to what type of CSM storage should be used.

APC19SMB
If this bit setting is on, the session route uses a small maximum RU size
and the performance gain for using HPDT is negligible. The application
should either not use the HPDT interface or request 4 KB CSM buffers for
application data.

APC19PGP
If this bit setting is on, the session is using a connection that does not
require fixed buffers. No additional performance can be gained by using
CSM fixed storage. The application should use storage marked eligible to
be paged.

APC19FXP
If this bit setting is on, maximum performance benefits are realized by
providing the data to VTAM in CSM fixed storage.

APC19RUO
This field indicates the maximum outbound RU size.

APC19RUI
This field indicates the maximum inbound RU size.

Using the extended buffer list (XBUFLST)

To send data using the HPDT interface, an application passes CSM storage to
VTAM on an APPCCMD macroinstruction using the extended buffer list
(XBUFLST). Likewise, VTAM uses the extended buffer list to pass data to an
application that receives data using the HPDT interface. The HPDT interface
supports all CSM storage pools, including 64-bit backed.

The extended buffer list enables application programs to use multiple CSM buffers
and send them as one piece of data. This type of send is requested by the
application by specifying OPTCD=XBUFLST on the APPCCMD request. The use of
the XBUFLST option is transparent to the conversation partner. When the
XBUFLST option is used, the AREA field points to an area of storage containing
the extended buffer list. The list is made up of 48-byte entries that contain pointers
to buffers in CSM.

The format of each extended buffer list entry is as follows.

260 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

TP2TP1
LU6.2A LU6.2B

Conversation

SessionHost 1 Host 2

Byte (hex)
Contents

00 0

01 Indicates the buffer source.

X'80' ECSA

X'40' Data space

02 Indicates the state of the buffers.

X'80' Fixed

X'40' Pageable

X'20' Eligible to be page freed

03 0

04 - 0F
CSM token.

10 - 13 CSM data space ALET.

14 - 17 Address of data.

18 - 1B
Length of data.

1C - 1F
Length of data accepted by VTAM for a send request; the application must
ensure that this field is set to 0 before issuing an HPDT send request.

20 VTAM and application flags. Bit 1 indicates whether VTAM has accepted
ownership of the CSM buffer for a send request.

21 - 2F
0

The extended buffer list entry is mapped by the ISTBLXEN DSECT. For a complete
layout, refer to z/OS Communications Server: SNA Programmer's LU 6.2
Reference.

Sending data using HPDT

This section explains how applications can be written to send data using the HPDT
interface. The instructions in this section should be performed by an application
after it has determined HPDT support as explained in “How support for HPDT is
communicated between the application and VTAM” on page 259 and “Verifying
the session's capabilities” on page 259. Some of these steps use the IVTCSM

Chapter 11. Sending and receiving data using high performance data transfer 261

macroinstruction. For more information about the IVTCSM macroinstruction, refer
to z/OS Communications Server: CSM Guide.

SEND processing using the HPDT interface

The following process explains how an application uses the HPDT interface to
send data as shown in Figure 27 on page 263.
1. The application registers itself as a user of a CSM pool of a specific size and

type by issuing the IVTCSM REQUEST=CREATE_POOL macroinstruction.
2. The application obtains buffers from where the data will be sent using the

IVTCSM REQUEST=GET_BUFFER macroinstruction. The BUFLIST parameter is
used to indicate the address where CSM will build a list of buffer entries. Each
buffer entry is mapped by the IVTBUFL DSECT, which is 28 bytes long.

3. The application loads the data into the buffers. Using the CSM buffer list
entries, the application builds an extended buffer list (48 bytes long). Each
extended buffer list entry is mapped by the ISTBLXEN DSECT.

4. The application invokes VTAM to send the data by specifying
OPTCD=XBUFLST on one of the following APPCCMD macroinstructions:
v APPCCMD CONTROL=SEND,QUALIFY=DATA|DATACON|DATAFLU
v APPCCMD CONTROL=DEALLOC,QUALIFY=DATACON|DATAFLU
v APPCCMD CONTROL=PREPRCV,QUALIFY=DATACON|DATAFLU
v APPCCMD CONTROL=SENDRCV,QUALIFY=DATAFLU

5. VTAM accepts data in CSM buffers from the application. VTAM issues the
IVTCSM REQUEST=CHANGE_OWNER macroinstruction to accept
responsibility for returning the buffers.

6. After the send is posted, the application examines the RPLXSRV field in the
RPL to determine if VTAM accepted all of the buffers supplied by the
application. The application is responsible for freeing any buffers that are not
accepted by VTAM.

7. VTAM performs the DLC I/O directly from the application-supplied CSM
buffers.

8. After VTAM has completed the transmission of the data, VTAM returns all
storage to CSM. If the application has not previously requested the return of
the buffers, CSM returns the storage directly to the CSM storage pools where
they are available for reuse by other CSM requesters. If the application has
previously requested the return of the buffers (using the FREERTN parameter
on the GET_BUFFER request), CSM returns the storage to the application by
scheduling an application exit routine.

9. The application removes its registration as a user of the buffer pool at
application termination using the IVTCSM REQUEST=DELETE_POOL
macroinstruction.

262 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Note that CSM data must not be accessed by the application after the APPCCMD
API is crossed until either:
v The application's buffer return exit is scheduled with CSM buffers.

This exit is specified when the CSM macroinstruction is issued to allocate CSM
storage (IVTCSM REQUEST=GET_BUFFER). For more information, refer to
z/OS Communications Server: CSM Guide

v Certain error conditions result in the send being unsuccessful.
In these error cases, VTAM may not have accepted responsibility for the CSM
storage. For these situations, the application must not handle the CSM storage
until the APPCCMD function is completed.

Creating and sending multiple pieces of data in one CSM buffer

Applications using the HPDT interface must supply a buffer list that uniquely
identifies each CSM buffer entry passed in the buffer list. If an application uses one
CSM buffer to hold multiple pieces of data to be sent using separate buffer list
entries, the application must use the IVTCSM REQUEST=ASSIGN_BUFFER
macroinstruction to acquire a token to uniquely identify the buffer for each entry
in the buffer list. The data address and length of data passed in each buffer list
entry with the unique buffer token would represent the manner in which the
application oriented the data in the buffer. VTAM frees each piece of data using
the unique token provided.

For example, the IVTCSM REQUEST=ASSIGN_BUFFER macroinstruction could be
used to create multiple images of a buffer in which small pieces of data that relate

Application Processing

Call CSM to create buffer pool
IVTCSM REQUEST=CREATE_POOL

IVTCSM REQUEST=CHANGE_OWNER

IVTCSM REQUEST=FREE_BUFFER

IVTCSM REQUEST=DELETE_POOL

IVTCSM REQUEST=GET_BUFFER

(OPTCD=BUFLST)

Call CSM to get buffer

Put data in buffer and build extended
buffer list (ISTBLXEN)

Issue APPCCMD to send data

Process APPCCMD
completion

Post send complete

Write to subchannel using CSM
buffer

Call CSM to return buffer

Call CSM to delete buffer pool

Change buffer ownership to VTAM

VTAM Processing

1

2

3

4

5

6

9

8

7

Figure 27. SEND processing using CSM buffers

Chapter 11. Sending and receiving data using high performance data transfer 263

to larger discontiguous buffers, such as headers, are packed. The VTAM buffer list
would be used to structure the ordering of the small pieces with the larger
discontiguous buffers.

How VTAM processes an HPDT send request

Because HPDT is targeted for use by large packet applications that are moving
large amounts of data, VTAM's processing of HPDT send requests differ from the
processing of normal APPCCMD send requests. The following describes these
differences.
v All HPDT send requests require that the data is flushed. If an

APPCCMD CONTROL=SEND, QUALIFY=DATA macroinstruction is issued
with OPTCD=XBUFLST specified, the data is flushed.

v Logical record length checking for HPDT send requests is bypassed. For normal
send processing, VTAM performs logical record checking. Because the users of
HPDT are authorized, they are expected to be correctly written and to have
provided the data correctly. Bypassing logical record length checking saves
pathlength for HPDT applications.

Note: Logical record checking is turned off for the duration of a conversation
for all sends, including non-HPDT sends, once the first HPDT send is issued.

Send macroinstruction completion considerations

This section explains possible outcomes of an HPDT send request and the
associated rules for storage handling after CSM storage has been given to VTAM.
See “Handling of temporary storage shortages during send” on page 266 for
information regarding changes to the handling of temporary storage shortages
during a send operation. The application examines RPLXSRV in the RPL to
determine if the HPDT send request was successful.

Completion of a successful send

If the application does not request that the CSM storage be returned to its buffer
return exit routine, the application must not access the CSM storage after the send
macroinstruction has been accepted. VTAM returns the storage to the buffer pool
after the send process is complete.

If the application requests that the CSM storage be returned (by using the
FREERTN parameter on the GET_BUFFER request), the application must not access
the CSM storage until the exit is given control. The scheduling and subsequent
execution of this exit is asynchronous to the completion of the APPCCMD
macroinstruction. The storage may be marked as eligible to be pagefreed by CSM
upon return to the application's buffer return exit routine. Eligible to be pagefreed
is a status maintained by CSM. The actual system state of a buffer with this status
can be either fixed or pageable. The application is responsible for using CSM
services to ensure the buffer is fixed if subsequent use of the storage requires that
the buffer be fixed.

Prior to normal application termination, the application should wait for all buffers
to be returned to the exit. For abnormal termination, CSM ensures that all CSM
storage is returned to CSM.

Refer to z/OS Communications Server: CSM Guide for a discussion of the buffer
return exit routine and the CSM method of managing real storage.

264 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Completion of an unsuccessful send

Certain macroinstruction error completions occur prior to VTAM actually accepting
the CSM storage or the send request. For these cases, the CSM storage is still
considered owned by the application. VTAM does not invoke CSM to return the
buffers. The application's buffer return exit routine, if specified, is not scheduled.
The application is responsible for the eventual return of the storage to CSM using
the IVTCSM REQUEST=FREE_BUFFER macroinstruction.

If VTAM indicates that it has accepted any of the CSM storage, that CSM storage is
considered owned by VTAM. In this case, the handling of the CSM storage is the
same as the case where the send is successful. VTAM eventually invokes CSM to
return the buffers. The application's buffer return exit routine, if specified, is
scheduled.

VTAM indicates whether it has accepted a CSM buffer so that the application can
determine whether it is responsible for freeing the buffer. The application is
responsible for checking these indicators. This indication is provided by two
different methods, depending on the nature of the failure:
v If the error is in the category where only a register return code is provided to

the application, the application is responsible for returning the CSM buffers.
Typically, this type of error is returned when an RPL is not considered valid for
setting status. For example, VTAM may find the RPL to already be in use.
These errors, with accompanying return codes, are:
– Logic error due to not valid RPL

General Return Code=4
Recovery Action Return Code=X'18'

– Logic error due to not valid RPL extension
General Return Code=4
Recovery Action Return Code=X'1C'

– Logic error due to RPL in wrong state
General Return Code=4
Recovery Action Return Code=X'20'

For more information on these errors, see Chapter 14, “Handling errors,” on
page 313.

v If an RPL is available to VTAM, VTAM sets the RPLXSRV flag if all of the
buffers are accepted from the application. If this flag is not set, it is possible that
some of the buffers have been accepted and further analysis of each buffer list
entry is required.

Each buffer list entry contains a flag, BLXEN_OWNACC, which indicates whether
the buffer in the list has been accepted by VTAM. If the buffer is not accepted, it is
possible that VTAM has accepted part of the data. A count field in each list entry,
BLXEN_RLENA, can be used by the application to determine whether the buffer in
the list has been partially or completely accepted, or completely unaccepted.
VTAM sets the count field as data is accepted. The application is responsible for
ensuring that the initial value of the count field is 0. If the count field is equal to
the application-supplied length field, VTAM has accepted all of the data. If the two
fields are not equal, the application is responsible for freeing the CSM storage. The
value for BLXEN_RLENA, when added to the start of the storage area, provides
the address of the data area that the application can validly access. Any data prior
to the address could be in use in a channel program and should not be accessed.

Chapter 11. Sending and receiving data using high performance data transfer 265

The following list describes the application's responsibilities for freeing storage
depending on how much data in the buffer list entry is accepted.
v None of the data in the buffer list entry is accepted (BLXEN_OWNACC = B'0'

& BLXEN_RLENA = 0)

The application is responsible for freeing the CSM storage. All of the storage is
available for reuse.

v All of the data in the buffer list entry is accepted (BLXEN_OWNACC = B'1')

VTAM is responsible for freeing the CSM storage. None of the storage can be
reused by the application until its buffer return exit routine, if specified, is
executed.

v Part of the data in the buffer list entry is accepted (BLXEN_OWNACC = B'0'
& BLXEN_RLEN ¬= BLXEN_RLENA)

The application is responsible for freeing the CSM storage using the original
CSM token. VTAM is also responsible for freeing the portion of the CSM storage
it has accepted. VTAM represents the accepted storage with the CSM tokens it
obtained using IVTCSM REQUEST=ASSIGN_BUFFER. Only the storage not
accepted by VTAM can be reused by the application. This reusable storage
address is calculated by adding the accepted count, BLXEN_RLENA, to the
original storage address. There is no way to reuse the portion of the CSM
storage accepted by VTAM without using the IVTCSM
REQUEST=FREE_BUFFER macroinstruction. If the application is using a buffer
return exit routine, it is not scheduled until all CSM tokens associated with the
storage are freed, including the original token, using the IVTCSM
REQUEST=FREE_BUFFER macroinstruction. If a CSM buffer is partially
accepted by VTAM and partially owned by the application, there are at least two
CSM tokens associated with the CSM storage. Each token must be returned to
CSM regardless of which address space is the CSM owner before the buffer
return exit routine is scheduled and the entire buffer is available for reuse. If a
CSM buffer return exit is not specified, the entire CSM buffer can never be
recovered by the application under the original token because issuance of the
IVTCSM REQUEST=FREE_BUFFER returns the storage directly to the CSM pool
rather than to the application.

Note: In the previous discussion, there are conditions where the storage is
considered reusable. This includes alterations of contents only when the sending
application is the originator of the storage. All applications except the original
requester must treat any CSM storage as read-only. See “Application responsibilities
for using HPDT” on page 258 for more information.

Storage not accepted by VTAM could potentially be marked eligible to be pagefreed
by CSM upon send completion. Eligible to be pagefreed is a status maintained by
CSM. The actual system state of a buffer with this status can be either fixed or
pageable. The application should examine ISTBLXEN to determine the pageable
state of the buffers returned by CSM. If the BLXEN_PAGEELIG flag is set on, then
the storage is marked as eligible to be pagefreed by CSM. The application is
responsible for fixing the buffers (IVTCSM REQUEST=FIX_BUFFER
macroinstruction) if subsequent use of the storage requires fixed buffers.

Handling of temporary storage shortages during send

After an HPDT send request has been issued, VTAM can run out of required
VTAM internal storage (RCPRI = X'0098') during the processing of the application's
extended buffer list. If the application is to restart the send to transmit any data
that was not successfully sent, the application must first determine where in the

266 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

data stream that the previous send was stopped. There are two methods available
to the application to send the remaining data.
v The first method uses the accepted count field, BLXEN_RLENA, that is located

in each list entry and described in “Completion of an unsuccessful send” on
page 265. This method is usable regardless of the reason for the send failure. The
application must adjust the value of the AREA parameter to the first entry that
was not completely processed. The total length value specified for the RECLEN
parameter must be reduced accordingly. The address in the buffer list entry must
be adjusted to the sum of the original AREA value plus the accepted count
value, BLXEN_RLENA. The length in the buffer list entry must be reduced
accordingly. The accepted count field in the buffer list entry must be cleared.

v The second method uses the RPL6STBF and RPL6STDS indications in the RPL
extension. This method, described in “Handling storage shortages” on page 224,
can be used only in the case of temporary storage shortages.

TPEND exit considerations when sends are pending

The TPEND exit can be driven with several different return codes. For applications
using HPDT, there may be CSM cleanup activity required after the TPEND exit is
driven because pending RPL requests can be canceled before being completed but
after some data has been transferred. At this point, some or all of the data may not
have been transferred to VTAM. Any such data is still the responsibility of the
application and should be freed by the application. In general, the RPL and
associated buffer list for all such canceled requests must be examined for
non-transferred storage. Depending on the reason for scheduling of the TPEND
exit, the application has varying required actions:
v Return Code 0

A HALT command without CANCEL or QUICK was issued. In this case, all
outstanding RPL requests are completed normally. There are no unique
considerations for this return code.

v Return Code 4
A HALT NET, QUICK or VARY NET, INACT command for the application was
issued. In this case, any pending RPL requests are completed with an error
return. It is possible that all storage in the application buffer list was not
accepted by VTAM before the pending request was canceled. Therefore, the
application is responsible for freeing storage referenced by such RPLs as
described in “Completion of an unsuccessful send” on page 265.

v Return Code 8
A HALT NET, CANCEL command was issued or VTAM abnormally terminated.
In this case, any pending RPL requests are not completed. It is possible that all
storage in the application buffer list was not accepted by VTAM before
processing on the pending request was canceled. Therefore, the application is
responsible for freeing storage referenced by such RPLs as described in
“Completion of an unsuccessful send” on page 265. After the application issues
CLOSE ACB from the application mainline, the application should locate any
incomplete RPLs for cleanup. Note that after CLOSE ACB completion, all VTAM
activity has already been quiesced with respect to processes that may be
manipulating these RPLs. Therefore, the contents of RPLs and associated buffer
lists are stable and can be safely examined.
It is possible that the RPLXSRV flag may not be set when all data is actually
serviced. This condition could occur if the request is terminated before the CRPL
is copied back into the RPL. In this case, the application checks all of the buffer
list entries for the BLXEN_OWNACC flag to determine if cleanup action is
required.

Chapter 11. Sending and receiving data using high performance data transfer 267

v Return Code 12
This situation occurs when an application is enabled for persistent sessions. This
return code occurs when an alternate application issues OPEN ACB to take over
sessions owned by this application.
In this case, any pending RPL requests are completed with an error return. It is
possible that all storage in the application buffer list was not accepted by VTAM
before the pending request was canceled. Therefore, the application is
responsible for freeing storage referenced by such RPLs as described in
“Completion of an unsuccessful send” on page 265.

Receiving data using HPDT

This section explains how applications can be written to receive data using the
HPDT interface. Applications request an HPDT receive by issuing the APPCCMD
CONTROL=RECEIVE macroinstruction specifying OPTCD=XBUFLST and freeing
the buffers after processing the data. The following APPCCMD macroinstructions
can be used to receive data using the HPDT interface:
v APPCCMD CONTROL=RECEIVE,QUALIFY=SPEC|ISPEC
v APPCCMD CONTROL=RECEIVE,QUALIFY=ANY|IANY

Applications using the HPDT interface to receive data are also responsible for
performing the following actions:
v Informing VTAM of the application's intent to use the HPDT interface.

See “How support for HPDT is communicated between the application and
VTAM” on page 259 for more information.

v Specifying storage type to be used for inbound data on the XBUFLST-receive
vector.

v Specifying receive completion criteria and amount of data to be received.

When XBUFLST is specified on a receive request, the application provides a
storage area pointed to by the AREA input parameter. The length of the area is
specified by the AREALEN parameter. VTAM builds the receive buffer list in this
storage area. The buffer list points to addresses of data that reside in CSM buffers.
The RECLEN value in the RPL that is returned after the APPCCMD completes
indicates the length of this buffer list that VTAM builds. The data in each CSM
buffer received is described in each buffer list entry. The length of the data
received is the sum of the data in all buffer list entries.

RECEIVE processing using HPDT

This section summarizes the process for receiving normal application data using
HPDT (see Figure 28 on page 269).
1. The application builds an XBUFLST-receive vector as described in “Passing

HPDT receive requirements to VTAM” on page 269.
2. The application issues an APPCCMD CONTROL=RECEIVE. The AREA

parameter specifies an area for VTAM to build a buffer list that points to data
in CSM storage.

3. After data is read from subchannel to CSM storage, VTAM transfers ownership
of buffers to the application and builds the extended buffer list in the
application's area.

4. When the receive is posted complete, the application examines the extended
buffer list in the address indicated by the AREA parameter. Each buffer list

268 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

entry contains information used to address the data. The buffer list entries are
mapped as shown in “Using the extended buffer list (XBUFLST)” on page 260.

5. The application returns all storage to CSM after the application has finished
processing the data. See “Receive macroinstruction completion considerations”
on page 270 for complete information about the applications options.

Passing HPDT receive requirements to VTAM

The XBUFLST-receive vector provides information to VTAM about the area in
which the application will receive CSM data. It is supplied to VTAM when the
APPCCMD CONTROL=RECEIVE macroinstruction is issued with the
VTROUTA=address and VTROUTL=length parameters specified. The
XBUFLST-receive vector includes the following fields:

Storage Type (APC82SFL)
The application can indicate its preference for the type of CSM storage that
should be used for inbound data. The application must specify at least one
of these storage types.

APC82ECS X'80'
Indicates that buffers in ECSA should be used for inbound data.

APC82CDS X'40'
Indicates that buffers in a data space should be used for inbound
data.

A mismatch between the storage type specified on the XBUFLST-receive
vector and the storage type used for channel I/O (specified by the
STORAGE parameter in the TRL major node) results in a data move. For
best receive performance, the application should set both storage type flags
on to indicate that either storage type is acceptable.

Buffer Length (APC82XBL)
This field specifies how much data VTAM should accumulate before
completing a receive when the receive is operating in FILL=BUFF mode.
When operating in FILL=LL mode, the buffer length parameter is ignored.

Application Processing

Build XBUFLST-receive vector

IVTCSM REQUEST=CHANGE_OWNER

IVTCSM REQUEST=FREE_BUFFER

APPCCMD (RECEIVE)
Receive data

Change buffer ownership to
application and put CSM
buffer information into application's
buffer list

Process data in CSM
buffers

Call CSM to return buffer

Post receive complete

VTAM Processing

1

2

3

4

5

Figure 28. RECEIVE processing using CSM buffers

Chapter 11. Sending and receiving data using high performance data transfer 269

The receive completion criteria uses this buffer length value the same as it
would a real buffer length when in FILL=BUFF mode and XBUFLST is not
specified.

When either QUALIFY=ANY or QUALIFY=IANY is specified, the FILL
parameter is not specified. Data is received in the current mode of the
receiving conversation, which is determined by either the CONMODE
parameter of the previous APPCCMD macroinstruction processed or by the
APPCCMD CONTROL=RESETRCV. If FILL=BUFF mode is in effect and if
XBUFLST is specified, a buffer length value must be specified. For more
information about conversations in FILL=BUFF mode, see “Continuation
modes for receiving normal information” on page 249.

For more information about how to use the buffer length parameter, see
“Controlling the amount of data received” on page 271.

Maximum Data (APC82MXD)
This is an optional field that specifies the maximum amount of data to be
received. VTAM determines the amount of data to pass to the application
based on one of the following settings, depending on the setting that is
reached first:
v One logical record, when FILL=LL
v The size of the application's buffer area
v The maximum data value

If maximum data is not specified, VTAM provides as much data as
possible to the application.

This value must be specified as a fullword (maximum data value or binary
0's).

CSM Task Association TCB (APC82TSK)
This is an optional parameter that specifies the TCB to be used by VTAM
for performing CSM task association for storage being passed to the
application by way of the current APPCCMD. If this parameter is not
specified, the storage is associated only with the application's address
space. Applications executing in cross-memory mode should use this
parameter to indicate the ACB task so that VTAM can associate the CSM
buffers to the appropriate task.

This value must be specified as a fullword (TCB address or binary zeros).

Receive macroinstruction completion considerations

The use of the HPDT interface does not alter the point in the VTAM receive
process where the APPCCMD is considered complete. However, the use of CSM
storage for application data requires some special actions and considerations that
are explained in this section.

Considerations for the successful completion of a receive

If the application requires that the CSM storage be pagefixed, the application must
check the BLXEN_TYPE flag in the buffer list entry, ISTBLXEN. If the buffer is
pageable, the application can use the IVTCSM REQUEST=FIX_BUFFER
macroinstruction to ensure that the storage is pagefixed.

270 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

If the CSM storage received is from a data space, the application can gain
addressability to the storage by using the ALET that is returned in the buffer list.
The application can use the IVTCSM REQUEST=COPY_DATA macroinstruction if
it needs to copy the data.

If the application wishes to perform I/O directly from the data space storage, it
must build the I/O structures in accordance with the ESAME mode of the
machine. When the machine is in ESAME mode, 64-bit I/O structures must be
used. When the machine is not in ESAME mode, 31-bit I/O structures must be
used.

After processing the data, the application has the following options:
v Return the storage to CSM using the IVTCSM REQUEST=FREE_BUFFER

macroinstruction.

Note: If a logical image of a buffer has been created on an ASSIGN_BUFFER
request, the buffer may not be immediately returned to the pool. CSM
determines when all users sharing a CSM buffer have called CSM to return the
storage. CSM maintains a use count and when all users, including the original
requester, have returned the storage, the buffer is actually returned to the pool.
CSM performs this function without explicit application involvement.

v Use the received data area as the storage area for a subsequent APPCCMD send
operation.
In this case, CSM storage return responsibilities are transferred to a different
process. The data must not be altered because the received data area is
considered a read-only copy. The original requester of the CSM storage may
have a CSM free routine outstanding and is entitled to the return of the storage
with the data unaltered.

Controlling the amount of data received:

The buffer length parameter (APC82XBL) in the XBUFLST-receive vector specifies
how much data VTAM should accumulate before completing a receive when the
receive is operating in FILL=BUFF mode. When operating in FILL=LL mode, the
buffer length parameter is ignored. It is possible for a FILL=BUFF mode receive to
complete with less data than the APC82XBL value and data remaining enqueued
for the conversation.

The receive completion criteria uses the buffer length indicated in the
XBUFLST-receive vector the same as it would on the AREALEN parameter when
in FILL=BUFF mode and XBUFLST is not specified. That criteria is one of the
following items:
v VTAM has internally accumulated the buffer length amount of data.
v A PS Header is received.
v A non-data indication is received as follows:

– A SEND indication is received.
– A CONFIRM indication is received.
– A DEALLOCATE indication is received.
– An ERROR has been detected.

Once the above receive completion criteria is met, the amount of data received
could vary as follows:
v The data amount received is greater than or equal to the buffer length value.

Chapter 11. Sending and receiving data using high performance data transfer 271

This situation occurs if the application-supplied buffer list area is large enough
to reference the entire amount of data.

v The data amount received is less than the buffer length value.
This situation occurs if:
– The application buffer list is not large enough to reference the entire amount

of data.
In this case the buffer list area is filled.

– VTAM encountered a resource constraint that prevented it from delivering all
of the data.
In this case the buffer list area may or may not be filled.

– One of the non-data events that is indicated in the WHATRCV field occurred.
In this case the buffer list area may or may not be filled. The WHATRCV field
will be appropriately set.

If the application received less than buffer length, it must check the WHATRCV
field for a non-data event. If a non-data event is not indicated, that means that
more data is being held by VTAM. The application then should issue a new receive
for the remainder of the data. A non-data event could have occurred, but it will
not be indicated in the WHATRCV field until all enqueued data is received. If the
application wants to immediately receive any data remainder, the buffer length
parameter used on the subsequent receive should be reduced to reflect the
difference of the previous buffer length value and the previous amount received.
This ensures that the posting criteria is met in the event that a non-data event has
not occurred. Note that the APPCCMD TESTSTAT macro can be used to determine
the data amount enqueued for the conversation.

Considerations for the unsuccessful completion of a receive

In general, the application should check for the presence of data received. VTAM
could have already built some buffer list entries prior to completing an APPCCMD
due to an error. This situation should occur only for severe errors where no further
communications on the conversation are possible. After the CSM information is
placed in the application buffer list, VTAM has passed responsibility for that
storage to the application. In this situation, the application is responsible for
freeing this storage using CSM services. Any processing of the data prior to storage
release can be done based on application requirements. The application can
determine the length of the buffer list built by examining the RECLEN parameter
in the RPL.

The application should check to see if the error occurred because no CSM storage
could be obtained. In this case, no data is passed to the application. This status is
indicated by the RCPRI,RCSEC value of X'0070',X'0000',
TEMPORARY_STORAGE_SHORTAGE_ OR_RESOURCE_SHORTAGE. If that
status is present, the application could take one of the following actions:
v Reissue the APPCCMD several times as a temporary retry recovery action.
v Issue a non-HPDT receive so that the data can be copied into application private

storage.
v Explicitly deallocate the conversation using APPCCMD services.

TPEND exit considerations when receives are pending

The TPEND exit can be driven with several different return codes. For applications
using HPDT there may be CSM cleanup activity required after the TPEND exit is
driven because pending RPL requests can be canceled before operation completion,

272 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

but after some data has been transferred to the application. Depending on the
reason for the TPEND exit drive, the application has varying required actions.
v Return Code 0

A HALT command without CANCEL or QUICK was issued. In this case, all
outstanding RPL requests are completed normally. There are no unique
considerations for this return code.

v Return Code 4
A HALT NET, QUICK or VARY NET, INACT command for the application was
issued. In this case, any pending RPL requests are completed with an error
return. It is possible that the application buffer list was completed with data
before the pending request was canceled. Note that responsibility for the CSM
storage is also passed to the application. Therefore, the application is responsible
for freeing storage referenced by such RPLs. Even though the RPL completed
with an error, the RECLEN= parameter should be examined for a nonzero value
in order to determine if any storage was passed to the application prior to RPL
request cancellation. Any storage found should be freed.

v Return Code 8
A HALT NET, CANCEL command was issued or VTAM abnormally terminated.
In this case, any pending RPL requests are not completed. It is possible that the
application buffer list was completed with data before processing on the
pending request was canceled. The responsibility for any CSM storage
referenced by the buffer list was passed to the application. Therefore, the
application is responsible for freeing storage referenced by such RPLs. After the
application issues CLOSE ACB from the application mainline as is normal
procedure after TPEND return code 8, the application should locate any
incomplete RPLs. Even though the RPLs completed with an error, the RECLEN
parameter should be examined for a nonzero value in order to determine if any
storage was passed to the application prior to RPL request cancellation. Any
storage found by such a search should be freed. Note that after CLOSE ACB
completion, all VTAM activity has been quiesced with respect to processes that
may be manipulating these RPLs. Therefore, the contents of RPLs and associated
buffer lists are stable and can be safely examined.

Note: For non-HPDT receives, RECLEN would not be set because VTAM
updates the RECLEN value on an internal copy of the RPL rather than the
application's RPL. RECLEN is updated only at request completion time. For
HPDT receive requests, RECLEN is kept current in the application's RPL.

v Return Code 12
This situation occurs when an application is enabled for persistent sessions. This
return code occurs when an alternate application issues Open ACB in order to
take over sessions owned by this application.
In this case, any pending RPL requests are completed with an error return. It is
possible that the application buffer list was completed with data before the
pending request was canceled. Note that responsibility for the CSM storage is
also passed to the application. Therefore, the application is responsible for
freeing storage referenced by such RPLs. Even though the RPL completed with
an error, the RECLEN= parameter should be examined for a nonzero value in
order to determine if any storage was passed to the application prior to RPL
request cancellation. Any storage found should be freed.

Chapter 11. Sending and receiving data using high performance data transfer 273

Data delivery considerations

As VTAM specifies the application supplied buffer list, VTAM passes responsibility
to the application for ownership of the storage. This ownership responsibility
entails either ultimately freeing the storage or passing the storage (along with
ownership) to another process. If the original requester of the storage specified a
free routine at storage allocation time, that original requester is entitled to the
return of storage without modification. Therefore, the receiving application should
consider this storage as read-only storage, and should not modify the contents.
Note that the storage allocation source is unknown to the receiver. Therefore, the
application cannot safely make assumptions as to whether a storage return is to be
performed, and consequently whether the read-only requirement exists.

It is possible that applications, if written as a cooperative set of processes, could
determine that it is acceptable to modify the data if the original application does
not require the original data returned unmodified. The caution here is that
applications written in this manner must be able to guarantee that the original
requester of the storage is one of the cooperative applications. If it is possible that
the originating conversation partner can be on another node, VTAM is the
requester of the storage. In this case the cooperative set of applications cannot meet
the guarantee that the allocator of the storage be one of the cooperative
applications.

Storage passed to the application on an HPDT receive could be copied by VTAM.
Data that is not copied is most likely in the same storage as it was when VTAM
first obtained the data. Therefore, the contiguous size of storage is based on how
the data was obtained by VTAM. If the source was a same-host application, the
contiguous size is based on the smaller of sending application buffer size and
MAXRU size for the session. If the source was a DLC, the size of each contiguous
piece could be based on the amount received from the network based on any
number of segmentation schemes. Different arrival rates of the data segments can
very likely result in the various segments being received into different CSM
buffers. Data can be segmented into different sizes based on these factors.
Regardless of the source, VTAM passes the data to the application in as large a
contiguous piece as possible without moving the data.

If the storage passed to the application is copied, VTAM obtains a new CSM buffer
in order to copy the data. The size of the CSM storage may vary.

If CSM storage is constrained when VTAM attempts to obtain new storage, it is
possible that a request for CSM storage could be made that cannot be satisfied. In
this case, a return indication is passed by way of the RPL (RCPRI,RCSEC of
X'0070',X'0000') to indicate that CSM storage was unavailable. If this situation
occurs, the application can take several possible actions.
v Reissue the APPCCMD several times as a temporary retry recovery action.
v Issue a non-HPDT receive so that the data can be copied into application private

storage.
v Explicitly deallocate the conversation using APPCCMD services.

Note VTAM gives this return indication only if no storage can be obtained. If some
amount of storage can be obtained, this storage is passed to the application with
no error return code. This treatment allows VTAM to continue to move data
through the system, even when constraint conditions exist. For FILL=LL
processing, this method results in a partial LL being received. For FILL=BUFF

274 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

processing, this method could result in an amount of data being passed to
application that is less than the receive buffer size 3.

Using the SENDRCV macroinstruction for HPDT

The APPCCMD CONTROL=SENDRCV macroinstruction allows both a send and a
receive on a single API request. Use of CONTROL=SENDRCV reduces the path
length on half-duplex conversations that experience frequent changes in the
direction of data flow. This function is supported for applications using both HPDT
and non-HPDT interfaces. This section describes considerations for using
CONTROL=SENDRCV for HPDT requests.

The HPDT interface can be used only for the sending function of the APPCCMD
CONTROL=SENDRCV macroinstruction. The application can send data directly
from CSM storage using the XBUFLST option. However, data received is always
copied into application storage.

When the application specifies OPTCD=XBUFLST on the CONTROL=SENDRCV
request, all entries in the buffer list except the last specify the address and length
of data to be sent. The data to be sent resides in CSM buffers. VTAM does not
track logical records supplied by the application. Like OPTCD=BUFFLST, the last
entry specifies the address and length of an area in which data is to be received.
When this macroinstruction completes, another field in this last entry contains the
number of bytes placed in this receive buffer by VTAM. This receive buffer is not a
CSM buffer.

Figure 29 on page 276 shows the difference between the normal buffer list and the
extended buffer list used on an APPCCMD CONTROL=SENDRCV
macroinstruction.

3. Because the application specifies a buffer list rather than an actual receive buffer, the receive buffer size is specified by the
application by way of parameter.

Chapter 11. Sending and receiving data using high performance data transfer 275

START

Set up RPL basing

Initialize RESTPTR
from RPLAREA

Set up ISTSREST
basing

Set ISTSLD basing
from pointer

Examine and process
ISTSREST and ISTSLD

Initialize SESSPTR
from pointer

Set up SRESESS
basing

Examine and process
SRESESS

Update SESSPTR to
next SRESESS if any

Update RESTPTR to
next ISTSREST if any

FINISH

RESTPTR
= 0

SESSPTR
= 0

Yes

Yes

No

No

pointer to restore
structure (ISTSREST).

restore structure.

session limits data
structure.

pointer to current
session information
structure (SRESESS).

session information
structure.

RESTPTR

ISTSREST

ISTSLD

SESSPTR

SRESESS

Figure 29. Comparison of BUFFLST and XBUFLST entries associated With APPCCMD
CONTROL = SENDRCV (part 1 of 2)

276 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Note that the receive portion of the extended buffer list is the same as entries in
the buffer list built by the BUFFLST parameter. There can be multiple send
XBUFLST entries. There is one receive BUFFLST entry.

The send buffers are mapped by the ISTBLXEN DSECT and the receive buffer is
mapped by the ISTBLENT DSECT. The layout of these DSECTs is shown in the
z/OS Communications Server: SNA Programmer's LU 6.2 Reference.

For more information about this macroinstruction, refer to z/OS Communications
Server: SNA Programmer's LU 6.2 Reference.

APPCCMD application requirements to ensure CSM storage recovery

This section describes the responsibilities of applications using the HPDT interface
in order to ensure CSM storage recovery during error or abnormal termination.
The basic support provided by CSM for the recovery of storage after abnormal
terminations is described in z/OS Communications Server: CSM Guide. A brief
summary of the types of recovery termination manager (RTM) support provided
by CSM is as follows:
v Memory termination
v Jobstep task termination if not a started task (for example, batch)
v Optional task level termination

– Abnormal termination only
– Specified on IVTCSM requests that support the TASKID parameter

Partner LU1 Partner LU2

Mode A
(4,1,2)

Mode B
(3,2,1)

Mode C
(2,1,0)

Local LU

Mode A
(2,1,1)

Mode B
(3,1,2)

BIND reponse (erd1, rd2)

FMH-12 (erd2)

BIND (rd1)
LU BLU A

Figure 30. Comparison of BUFFLST and XBUFLST entries associated with APPCCMD
CONTROL = SENDRCV (part 2 of 2)

Chapter 11. Sending and receiving data using high performance data transfer 277

General APPCCMD storage ownership requirement

All storage provided by the application on the APPCCMD request must be
associated with the ACB task or a task higher in the TCB hierarchy. This includes
CSM buffers as well as private area storage that is mapped by the RPL and
XBUFLST.

For applications running in cross-memory mode, prior to issuing an HPDT request,
the application's primary address space must ensure that CSM storage is associated
with the primary ASID and task of the ACB. For an HPDT send, the application
can use CSM services to change ownership of the buffers to the ACB task. For an
HPDT receive, the application should pass the ACB task identifier to VTAM on the
APC82TSK field in the XBUFLST-receive vector so VTAM can perform the
ownership change (VTAM uses the ASID of the primary address).

Application responsibilities when the RPL is posted complete
with an error

In the case where the RPL is actually posted, the application is responsible for
determining which storage units are still the responsibility of the application. The
application must process the XBUFLST to locate any storage for which VTAM did
not accept ownership (for a send request), or that was already transferred to the
application (for a receive request). Details of this process are described in “Send
macroinstruction completion considerations” on page 264 and “Receive
macroinstruction completion considerations” on page 270.

Application responsibilities when the RPL is not posted
complete

There are several cases where the RPL is not posted complete after the APPCCMD
is issued. These cases and the associated application responsibilities are:
v TPEND return code 8 (VTAM abnormal termination or a HALT NET, CANCEL

command)
The application must locate all pending RPLs and then must process XBUFLST
to locate any storage for which VTAM did not accept ownership (for a send
request) or which was already transferred to application (for a receive request).
Details of this process are described in “TPEND exit considerations when sends
are pending” on page 267 and “TPEND exit considerations when receives are
pending” on page 272.

v Application executing in initiator-attached task that terminates
CSM memory termination or job step task RTM locates and releases any CSM
owned by the terminating application.

v Subtask of initiator-attached task abends
If the application requires unprocessed CSM storage in pending RPLs to be
automatically freed, the application must task associate the CSM as follows:
– For TCB mode RPL requests on a send macroinstruction, use CSM Services to

ensure that CSM is associated with the ACB task.
– For TCB mode RPL requests on a receive macroinstruction, specify to VTAM

the application task that is the ACB task so that VTAM can ensure that CSM
is associated with that task.

– For SRB mode RPL requests, associate CSM storage to the same TCB that the
SRB is associated with.

278 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

If the application does not require unprocessed CSM storage in pending RPLs to
be automatically freed, task association is not used. RPLs could be active until
the abending task has completed task termination. The application must wait for
the RPL request to quiesce. Therefore, the application must locate and process
incomplete RPLs at the attaching task level after task term completes.

Cross-memory considerations when the RPL is not posted
complete

This section documents special responsibilities for the application running in
cross-memory mode.
v An application executing in its home address space, or HASN, terminates and a

request is pending under its primary ASID.
VTAM drives LOSTERM exit with RPL. The application is responsible for doing
incomplete RPL processing of CSM.

v If the application is executing in the initiator-attached task and that task
terminates, CSM memory termination or jobstep TCB RTM locates and releases
any CSM owned by the terminating application.

v Subtask of initiator-attached task in Primary ASID abends.
If the application requires unprocessed CSM storage in pending RPLs to be
automatically freed, the application must task associate the CSM as follows:
– For TCB mode RPL requests on a send macroinstruction, use CSM services to

ensure that CSM is associated with the ACB task.
– For TCB mode RPL requests on a receive macroinstruction, specify to VTAM

the application task that is the ACB task so that VTAM can ensure that CSM
is associated with that task.

– For SRB mode RPL requests, associate CSM storage to the same TCB that the
SRB is associated with.

If the application does not require unprocessed CSM storage in pending RPLs to
be automatically freed, task association is not used. RPLs could be active until
the abending task has completed task termination. The application must wait for
the RPL request to quiesce. Therefore, the application must locate and process
incomplete RPLs at the attaching task level after task term completes.

MPC pad character considerations

MPC sends pad bytes in order to maintain 2KB IDAW alignment. The pad bytes
are the bytes in CSM storage that are surrounding the session data that is being
transmitted to the partner LU. Although the pad bytes are not sent to the end
point destination, the pad bytes are transmitted potentially over an unsecured
channel resource. Therefore, steps must be taken in order to ensure that any
residual data in the CSM storage from the previous use of the CSM storage area
are not transmitted over a potentially unsecured channel facility.

Both the application and VTAM share the responsibility for ensuring that residual
data is not sent as MPC pad characters. In this discussion, the term data image
creator denotes the software entity that originally allocated the CSM storage and
placed data into the storage. The data image creator is responsible for ensuring
that MPC pad characters are cleared. If an application is the data image creator
and is sending data using the XBUFLST option, the application is responsible for
clearing certain residual data in CSM storage as follows:

Chapter 11. Sending and receiving data using high performance data transfer 279

v For any data passed in a CSM buffer on an APPCCMD that does not end on a
2K boundary, the area after the data up to the next 2K boundary must be cleared
(unless the data is known to be non-sensitive).

v If the data start is not 2K boundary-aligned, any residual data between the
previous 2KB boundary and the data start must be cleared (unless the data is
known to be nonsensitive).

An application resending data from CSM storage that was previously received on
an APPCCMD macroinstruction should not clear residual data because it is not the
data image creator. In this case, the application should copy any 2K portion of data
that does not start or end on a 2K boundary, clearing pad areas as previously
described.

Note: While data sent using the HPDT interface can be aligned on any storage
address boundary, data aligned starting on a 2 KB boundary and sent in 2 KB
increments minimizes the transmission of MPC pad characters, and therefore
increases effective throughput on the channel.

Confidential text considerations

Confidential text refers to the following information:
v Unencrypted data that is ultimately encrypted by VTAM prior to transmission.
v Data carried on a session that an application has indicated should be considered

confidential on the CONFTXT=YES parameter of the APPCCMD
CONTROL=OPRCNTL,QUALIFY=ACTSESS macroinstruction.

On APPCCMD requests that do not use the HPDT interface, confidential text is
treated specially by VTAM as follows:
v Confidential text data is not traced in the VTAM buffer trace.
v Any storage that VTAM allocates to hold confidential text is cleared after use

during storage deallocation.

With HPDT, confidential text can reside in CSM storage, which can be allocated
and deallocated by the application. The general rules for determining where the
responsibility lies to clear CSM storage are as follows:
v If VTAM both allocates and deallocates CSM storage, VTAM ensures that the

storage is cleared.
v If the application either allocates or deallocates the CSM storage, the application

is responsible for clearing the storage as described in “Application data clear
responsibilities.”

Application data clear responsibilities

It is the responsibility of the application to determine if data is in the class that
should be cleared when freed. Knowledge of the confidential text and encryption
options in effect for a session is available to applications by examining the
RPLTCRYP and RPL6CFTX fields in the RPL. To clear CSM storage, the application
specifies the CLEAR parameter on an IVTCSM request.
v For an HPDT send operation, the application specifies the CLEAR parameter

when it obtains the buffers on the IVTCSM REQUEST=GET_BUFFER
macroinstruction.

280 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

v For an HPDT receive operation, the application specifies the CLEAR parameter
when it frees the buffers on the IVTCSM REQUEST=FREE_BUFFER
macroinstruction.

The storage is not cleared until it is returned to the pool.

Chapter 11. Sending and receiving data using high performance data transfer 281

282 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Chapter 12. Using exit routines

About this chapter

This chapter discusses the use of exit routines for LU 6.2 application programs. The
complete description of the attention (ATTN) exit routine is found here, as are LU
6.2 considerations for exits that are not specific to LU 6.2.

The complete description of the exits not specific to LU 6.2, and the use of RPL
exits, is found in z/OS Communications Server: SNA Programming. A description
of how exit routines work under authorized path and a description of the
differences between an exit routine running under a task control block (TCB) and a
service request block (SRB) can also be found in z/OS Communications Server:
SNA Programming.

LU 6.2 application programs use exit routines the same way that other application
programs use them. The application program can supply VTAM with a list of
special-purpose exit routines (EXLST exit routines) that are scheduled by the
VTAM program to handle external events, such as the receipt of a session-initiation
request. In addition, application programs can supply the address of an exit
routine in the RPL, which VTAM schedules when the requested RPL operation
completes. In all of these cases, VTAM interrupts the mainline program to allow
the exit routine to execute.

As part of its LU 6.2 support, VTAM handles many external events that EXLST
routines handle for other LU types or for application-implemented LU 6.2s.
Consequently, not all EXLST exit routines are meaningful for VTAM LU 6.2
support. In addition, the scope of other EXLST exit routines is much more narrow.
As far as LU 6.2 support is concerned, for example, VTAM schedules the SCIP exit
routine on receipt only of a BIND request. All other session control requests for
supported LU 6.2 sessions are handled by VTAM. The EXLST exit routines that
VTAM schedules for its LU 6.2 application programs are:
v ATTN
v LERAD
v LOGON
v LOSTERM
v RELREQ
v SCIP
v SYNAD
v TPEND

The use of all these routines is optional. However, use of the ATTN, LERAD,
SYNAD, and TPEND exit routines is strongly recommended. The other exit
routines need to be used for LU 6.2 application programs only if the application
program requires the function provided by the exit routines. Only the ATTN exit
routine is unique to LU 6.2 application programs. Only the effect of exit routines
on LU 6.2 application programs is discussed here. Requirements for the ATTN exit
are the same as for any other EXLST exit in regards to authorized path and
processing under a TCB or SRB.

© Copyright IBM Corp. 2000, 2013 283

Using the ATTN exit

The ATTN exit is the only EXLST exit routine unique to LU 6.2 sessions. The ATTN
exit routine enables the application program to handle LU 6.2 events such as
receiving notification of VTAM's negotiation of a CNOS request from a partner LU
or from an operator-issued CNOS command. VTAM schedules the ATTN exit
routine when any of the following events occurs:
v VTAM receives an FMH-5 for the application program.
v VTAM processes a CNOS request for the application program.
v The last LU 6.2 session, or all LU 6.2 sessions, with another LU using a given

mode name group is lost.

When the application program receives control, it can determine which event has
occurred by examining word 4 of the parameter list pointed to by register 1. The
word contains a 4-byte string (FMH5, CNOS, or LOSS) describing the event.

Most of the information passed to the exit routine is contained in a read-only RPL
and RPL extension residing in VTAM storage. The application program cannot
write to this storage, but it can examine the fields in the control blocks. The
address of the RPL is word 5 of the parameter list in register 1. Any other control
blocks pointed to by fields in the RPL or RPL extension, such as a session limits
control block, should also be treated as read-only.

Parameter list

Table 37 shows the register contents upon entry to the ATTN exit routine.

Table 37. ATTN exit: register contents upon entry

Register Contents

0, 2—13 Unpredictable

1 Address of parameter list

v Word 1: address of the ACB for the application program

v Words 2,3: reserved

v Word 4: name of the event for which the exit routine is being driven

v Word 5: address of read-only RPL

v Word 6: reserved

v Word 7: address of the network-identifier parameter list

14 VTAM address branched to when ATTN exit routine completes processing

15 Address of ATTN exit routine

Note: Register 13 does not contain the caller's save area. When the exit routine receives
control, no save area is in register 13. If a user wants to issue a macroinstruction from an
exit routine, a save area must be provided in register 13.

VTAM provides a network identifier parameter list to the exit routine. Word 7 of
the exit parameter list points to this list.

Table 38 on page 285 shows the contents of the list when passed to the ATTN exit
routine.

284 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 38. Contents of the network identifier parameter list at the ATTN exit

Bytes Length Contents

0

Bit 0=0

Bit 0=1

Bit 1=0

Bit 1=1

Bits 2—6

Bit 7

Flags

VTAM application program is primary LU.

VTAM application program is secondary LU.

Primary LU is contention winner.

Secondary LU is contention winner.

Reserved.

Reserved.

1—7 7 Reserved

8—15 8 FMH-5 and LOSS: Network identifier of the primary
LU (padded with blanks, if necessary)

CNOS: Network identifier of the application program

16—23 8 FMH-5 or LOSS: LU network name of the primary LU
(padded with blanks, if necessary)

CNOS: LU network name of application program

24—31 8 FMH-5 or LOSS: Network identifier of the secondary
LU (padded with blanks, if necessary)

CNOS: Network identifier of the partner LU

32—39 8 FMH-5 or LOSS: LU network name of the secondary
LU (padded with blanks, if necessary)

CNOS: LU network name of the partner LU

FMH-5 function

VTAM schedules the ATTN exit routine and sets “FMH5” in word 4 of the
parameter list upon receiving an FMH-5 for the application program.

The application program must issue APPCCMD CONTROL=RCVFMH5 to receive
the FMH-5. It need not do so in the exit routine, but at some point the application
program must receive the FMH-5. More information on receiving the FMH-5 is
found in “Responding to an FMH-5” on page 185.

The read-only copy of the RPL contains the length of the FMH-5 (RPL6MH5L) that
has been received, the partner LU's name (RPL6LU), and the mode name
(RPL6MODE) used to support the session. It also contains an indication of the
security acceptance level (RPL6SECL) that is supported and whether the partner
LU accepts FMH-5s with security subfields.

For more information about the parameter list that is pointed to in register 1 of the
ATTN exit and for an explanation of entry procedures, refer to z/OS
Communications Server: SNA Programming.

The application program can rely on ATTN alone or in conjunction with the RPL
extension feedback field FMH5RCV (RPL6FMH5 in the ISTRPL6X DSECT) to
receive notification of the receipt of an FMH-5. The application program issues
APPCCMD CONTROL=RCVFMH5 to receive an FMH-5. In addition, the
application program can maintain an internal timer and periodically issue
APPCCMD CONTROL=RCVFMH5.

Chapter 12. Using exit routines 285

The ATTN exit routine has some advantages over the RPL extension field for
FMH-5 notification. At times, the application program might have no conversations
in progress, or it might have no APPCCMD macroinstructions outstanding. In
those cases, FMH5RCV cannot notify the application program of the receipt of the
FMH-5. If an ATTN exit is not provided, the application program should
periodically issue APPCCMD CONTROL=RCVFMH5 to ensure that no FMH-5s are
waiting.

The ATTN exit routine normally is driven only once for each FMH-5. With
persistent LU-LU sessions it might be driven once for each FMH-5 for each
application instance. If the application program lacks resources to start a
conversation at that time, the application program can rely on RPL feedback to
indicate an FMH-5 remains to be received, or maintain its own record that an
FMH-5 is outstanding.

An additional difference in the two forms of notification is the reported length of
the FMH-5 to be received. The length reported in the RPL extension in the ATTN
exit will be the length of the FMH-5 for which the exit was driven. If a queue of
FMH-5s has formed, this will not be the next one to be received. The length
reported in the RPL extension feedback will be the length of the next FMH-5 to be
received.

One way to avoid any problems with length is to reserve 255 bytes of storage for
the FMH-5. This accommodates any possible FMH-5. The application program can
check the RECLEN field of the RPL when the RCVFMH5 request completes to
determine the actual size of the FMH-5 that was received.

CNOS function

VTAM schedules the ATTN exit routine with “CNOS” in word 4 of the parameter
list when a CNOS request is received for the application program and is processed
by VTAM. In other words, a negotiation occurs. A negotiation cannot take place for
a single session. However, an ATTN(LOSS) exit can be returned for a single session
that is deactivated.

The RPLAREA field in the read-only RPL points to a CNOS session limits data
structure that contains the new session limits and the application program's
security acceptance level. The application program can use the ISTSLCNS DSECT
to map the storage. For details on the CNOS session limits data structure, see
Table 17 on page 118.

For more information about the parameter list that is pointed to in register 1 of the
ATTN exit and for an explanation of entry procedures, refer to z/OS
Communications Server: SNA Programming.

The read-only RPL and RPL extension also contain the following fields:

RPL6LU
LU name of the partner LU

RPL6MODE
Mode name for which the session limits apply

RPLRLEN
Length of the session limits data structure

286 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

RPL6VAIA
Address of an area containing APPCCMD vector list information if any is
available

When the VTAM operator issues a MODIFY CNOS command, the ATTN(CNOS)
exit is used to notify both application programs in a parallel session environment.
The ATTN(CNOS) exit also is used to notify only the local application program in
a single session environment. When the VTAM operator issues a MODIFY
DEFINE, the ATTN(CNOS) exit is used to notify the specified application program.
The application program can use this information to manage CNOS requirements
more effectively.

This exit will also be scheduled when VTAM issues an internal MODIFY CNOS
(see “Synchronizing end points after session activation failure” on page 192 for
more information).

Vectors provided for the ATTN(CNOS)

When VTAM schedules the ATTN(CNOS), VTAM may provide information about
the session in the application's VTAM-APPCCMD vector list if the application has
provided the address (VTRINA) and length (VTRINL) of a vector list area for the
session. The following vectors may be available for the application to examine on
the ATTN(CNOS) exit:
v Partner's DCE capabilities vector (X'12')
v Name change vector (X'18')
v Partner's application capabilities vector (X'1A')

For more information about vectors in the VTAM-APPCCMD vector list, see
“Vector lists used during APPCCMD processing” on page 30.

LOSS function

VTAM schedules the ATTN exit with LOSS in word 4 of the parameter list to
inform the application program that a session has been deactivated. The
ATTN(LOSS) exit is driven every time a session is deactivated or only when the
last session of a mode name group is deactivated, depending on the ATNLOSS
parameter on the application program's APPL definition statement.
v If ATNLOSS=LAST, VTAM schedules the ATTN(LOSS) exit only when the last

session on a mode name group is deactivated. This is the default.
v If ATNLOSS=ALL, VTAM schedules the ATTN(LOSS) exit every time a session

is deactivated.

However, if the application program is a communications network management
application (indicated by AUTH=CNM on the APPL definition statement), VTAM
schedules the ATTN(LOSS) exit every time a session is deactivated.

The exit is scheduled even if sessions are deactivated in an orderly fashion. The
exit routine is scheduled, for example, when sessions are deactivated as a result of
setting the session limits to 0. The exit is scheduled only when currently active
sessions are deactivated. Session activation failures do not cause the exit to be
scheduled, with two exceptions. VTAM schedules the exit if the session activation
fails:
v If the LU is single-session capable and has AUTOSES coded on its APPL

definition statement.
v To report an RPL6LAST value of B'11'

Chapter 12. Using exit routines 287

When the exit routine is entered, the read-only copy of the RPL and RPL extension
contains the LU name (RPL6LU) of the partner and the mode name (RPL6MODE)
of the session. Table 39 provides a list of the types of information provided by
VTAM and the RPL6X field that contains the information.

Table 39. Information provided in the RPL6X field

Information Provided RPL6X Field

Session ID RPL6SSID

Session ID length RPL6SIDL

Session completion sense code RPL6SNSI

Session deactivation reason code RPL6DERC

Session deactivation type RPL6DETP

Whether the deactivated session is:

v Just another session — B'00'

v The last session to this LU for this particular modename — B'01'

v The last session to this LU for all non-control modenames
(SNASVCMG, CPSVCMG, and CPSVRMGR are control modes)
— B'10'

v The last session to this LU for all modenames — B'11'

RPL6LAST

To perform the safest application termination, complete the following steps:
1. Issue an APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE

macroinstruction to set session limits to 0. This macroinstruction prevents a
CNOS from a partner LU from starting a session successfully.

2. Issue an APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS to set session
limits to 0 for all non-control mode modenames (for example, SLCALL=X'10').

3. When RPL6LAST indicates that all non-control mode sessions have ended,
issue an APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS to set
SNASVCMG session limits to 0.

4. When RPL6LAST indicates that all sessions have ended, use the CLOSE
macroinstruction to close the ACB.

An orderly session deactivation is indicated by:
v A sense code of 0
v A reason code of 0 (normal)
v A deactivation type of either X'01' or X'02'

Other combinations of these parameters indicate an abnormal deactivation of the
session. For example, an APPCCMD CONTROL=REJECT, QUALIFY=SESSION
macroinstruction can be issued to deactivate a session with either X'0F' or X'FE '.
For a description of this macroinstruction, refer to z/OS Communications Server:
SNA Programmer's LU 6.2 Reference.

For detailed information on deactivation types, refer to the information about
UNBIND in SNA Formats.

Table 40 on page 289 shows the RPL extension fields that are returned for the
ATTN exit. Chapter 5, “Coding the APPCCMD macroinstruction,” on page 81 has
information about RPL and RPL extension fields and their DSECT labels, as well as
information about APPCCMD keywords.

288 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 40. Fields returned in the RPL6X for the ATTN exit

RPL6X Fields ATTN Exit (FMH5)
ATTN Exit

(CNOS)
ATTN Exit

(LOSS)

RPL6CBID X X X

RPL6RPL X X X

RPL6MH5L X

RPL6RMH5 X

RPL6LU X X X

RPL6MODE X X X

RPL6CLSA X

RPL6AVFA X

RPL6PV X

RPL6SSID X

RPL6SIDL X

RPL6SNSI X

RPL6DETP X

RPL6DERC X

RPL6LAST X

Using other EXLST exit routines

Although the ATTN exit routine is the chief exit routine for LU 6.2 functions, other
EXLST exit routines can also be useful to the application program. The LERAD,
SYNAD, and TPEND exit routines, in particular, are highly recommended for
handling error situations that arise. Because VTAM handles many errors for the
application program, the scope of the LERAD and SYNAD exit routines,
particularly SYNAD, is much narrower for LU 6.2 support.

EXLST is a declarative macroinstruction. The following example shows how this
macroinstruction defines the exit routines to be used:
EXLST1 EXLST AM=VTAM,LOGON=LOGON1,SYNAD=SYNAD1,LERAD=LERAD1, *

TPEND=TPEND1,ATTN=ATTN1,SCIP=SCIP1

The LU 6.2 requirements for EXLST exit routines other than the ATTN exit are
discussed here. For a full discussion of the EXLST macroinstruction and these exit
routines, refer to z/OS Communications Server: SNA Programming.

SYNAD

This exit routine is scheduled by VTAM only for environment errors, such as
VTAM being inactive or the application program closing its ACB. These situations
are marked by a general return code of X'4' and a recovery action return code of
X'10'. In such situations, the FDB2 field in the RPL contains a specific error return
code that provides further information on the error. Several return codes have been
defined for LU 6.2 support. Refer to z/OS Communications Server: SNA
Programming for other FDB2 return codes.

Chapter 12. Using exit routines 289

LERAD

For non-LU 6.2 sessions, VTAM schedules the LERAD exit routine for errors
causing a recovery action return code of X'14' or X'18'. VTAM schedules the
LERAD for these return codes, and, in addition, defines several unique recovery
action return codes for LU 6.2 support. For cases of a recovery action return code
of X'14', the FDB2 field contains specific error return codes, some of which are also
unique to LU 6.2 sessions.

The recovery action return codes applicable to LU 6.2 support are:

X'14' Indicates a general logic error. In the case of LU 6.2 support, the exit is
scheduled when an application program attempts to issue a
non-APPCCMD macroinstruction for an LU 6.2 session and that
macroinstruction is not allowed on an LU 6.2 session. Most of these
macroinstructions are the instructions used to establish sessions, such as
OPNDST.

X'18' Indicates that VTAM cannot complete the request because the RPL address
specified on the APPCCMD macroinstruction does not point to a valid RPL
or an APPCCMD was issued asynchronously and no exit routine was
provided. This return code also applies to non-LU 6.2 macroinstructions.

X'1C' Indicates that the RPL extension is not a valid data area.

X'20' Indicates that APPCCMD CONTROL=CHECK was issued specifying an
inactive RPL, or another APPCCMD macroinstruction was issued
specifying an already active RPL.

X'24' Indicates that APPCCMD CONTROL=CHECK was issued against an RPL
that contained a non-APPCCMD request type, or indicates that a
non-APPCCMD CHECK macroinstruction was issued against an RPL that
contained an APPCCMD request type.

TPEND

The TPEND exit routine is entered for one of the following reasons:
v The VTAM operator issues a HALT command.
v VTAM is halting itself in an orderly fashion because of an internal problem.
v VTAM is being abnormally terminated.
v The operator issues a VARY NET,INACT command for the application program.
v A VTAM application program with persistence enabled is being taken over.

The reason is indicated by a reason code that is passed in the exit routine
parameter list. If a nonzero code is returned to an application with outstanding
HPDT requests, the application may be responsible for freeing some or all of its
CSM buffers. See “TPEND exit considerations when sends are pending” on page
267 for more information.

Reason Code
Meaning

0 A HALT command without the QUICK or CANCEL operand is indicated
by reason code 0. In this case, the application program can continue
communication on existing conversations, but the application program
should end those communications in an orderly fashion as soon as it can.
No new conversations or sessions can be established.

290 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

LU 6.2 application programs should end all conversations and then use
APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstructions to
set all session limits with all partner LUs to 0. (A CNOS issued for limits
other than 0 is rejected.) Draining of allocation requests should not be
allowed. If draining is currently in effect, turn the DRAINL bit off in the
session limits data structure specified on the CNOS request. The
application program can issue the CNOS request in the TPEND exit
routine. To do so, the application program must have some way of
obtaining the LU names of its partner LUs.

Setting the session limits to 0 also drives the ATTN exit routine when
sessions are deactivated as a result of the CNOS. The application program
should wait for notification of the termination of its last session through
the ATTN exit routine and then issue a CLOSE macroinstruction. The
ATTN exit routine does not interrupt the TPEND exit routine. It cannot
receive control until the TPEND finishes.

The CLOSE macroinstruction cannot be issued from either the TPEND or
ATTN exit routine. The application program must be designed so that the
mainline program issues the CLOSE. The exit routines must have a way to
set a flag or to post an ECB that tells the mainline program to close the
ACB. This might require the ATTN exit routine to know that VTAM is
shutting down. It might be necessary for the TPEND exit routine to take
some action that the ATTN exit routine can check to determine the
circumstances under which it was scheduled.

4 Reason code 4 indicates that a HALT NET,QUICK command was issued or
that an operator issued a VARY NET,INACT command for the application
program. (Refer to z/OS Communications Server: SNA Operation for
details on these operator commands.) In this case, pending RPL-based
operations are canceled. The application program must not wait for the
pending APPCCMDs to be completed or try to terminate conversations on
an orderly basis. The TPEND should return to the mainline program where
a CLOSE can be issued. A halt with a reason code of 4 still allows VTAM
to continue dispatching exit routines for the application program, such as
SYNAD. The TPEND should, therefore, set a flag or post an ECB to
indicate to other exit routines that a shutdown is in progress.

8 When TPEND is scheduled with a reason code of 8, indicating a HALT
CANCEL or abnormal VTAM termination, the exit should immediately
pass control back to VTAM. When VTAM returns control to the mainline
program, CLOSE should be issued. No other exit routines are scheduled,
so TPEND only needs to set an indicator that the mainline program can
recognize telling it to do a CLOSE.

12 Reason code 12 indicates that an application program has issued an OPEN
ACB for the same ACB that the original application program has opened.
The code is generated when an alternate application program takes over
because the original application program must issue a CLOSE ACB, and
the original application has enabled persistence.

For more information on the conditions in effect when VTAM is shutting down,
refer to z/OS Communications Server: SNA Programming.

LOGON

The LOGON exit routine, if present, is scheduled when a CINIT is received from
the SSCP. The CINIT might be the result of a prior APPCCMD CONTROL=ALLOC

Chapter 12. Using exit routines 291

issued by the local application program, or it might be a session initiation request
from a partner LU. The CINIT could also result from VTAM's automatic activation
of sessions as a result of session limits being raised. One exception exists to the
LOGON exit being scheduled for LU 6.2 sessions. It is not scheduled for control
operator sessions that VTAM might activate.

When the LOGON exit is driven, register 1 contains the address of a parameter
list. Word 5 of the parameter list contains the address of a read-only RPL. The
RPLAREA field of the read-only RPL contains the address of a read-only copy of
the CINIT. The RPLAAREA field points to the beginning of the control vector
within that CINIT (not the RPL extension). If bytes 14 and 15 of the BIND image in
the CINIT are X'0602', the CINIT represents an LU 6.2 session. If the RPLVACS bit
is set on in the read-only RPL, the CINIT represents a VTAM-initiated session. For
more information on the LOGON exit, refer to z/OS Communications Server: SNA
Programming.

The application program can examine the CINIT and determine whether to accept
or reject the session. To accept the CINIT and establish the session, the application
program should issue APPCCMD CONTROL=OPRCNTL, QUALIFY=ACTSESS.

Attention: If both the local and the partner LU are the same LU, then the
LOGON exit routine must be exited before the APPCCMD CONTROL=OPRCNTL,
QUALIFY=ACTSESS is issued. Otherwise, the session will hang.

To reject the session, the application program must issue APPCCMD
CONTROL=OPRCNTL, QUALIFY=DACTSESS. If the session is not
VTAM-initiated, the application program can change the session parameters to
non-LU 6.2 and accept the session with a non-LU 6.2 record API macroinstruction.

The application program uses the SETLOGON macroinstruction to regulate when
the LOGON exit routine is scheduled. The SETLOGON macroinstruction functions
exactly as described in z/OS Communications Server: SNA Programming.

In order to take advantage of VTAM's verification reduction function, application
programs equipped with a LOGON exit routine must be able to tolerate different
session information to be passed to the exit for a particular session request. For
these applications, VTAM can perform verification reduction if the application
informs VTAM that the exit routine can be driven more than once per session
request. To indicate multiple LOGON support, applications build a vector list with
the application-capabilities vector and reference the vector list on the OPEN ACB
macroinstruction. For more information about the applications-capabilities vector,
see “Vector lists supplying information to VTAM” on page 26.

Refer to z/OS Communications Server: SNA Network Implementation Guide for
more information about verification reduction.

Application programs without a LOGON exit routine

LU 6.2 capable application programs that omit the LOGON exit routine have the
PLU session establishment function performed by VTAM. VTAM's APPC support
accepts the following three types of session establishment requests on behalf of the
application program:
v CINITs that are the result of a prior APPCCMD CONTROL=ALLOC issued by

the local application program
v CINITs that result from VTAM's automatic activation of sessions as the result of

a CNOS request

292 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

v CINITs that contain an LU type of 6.2

No session establishment requests are accepted by VTAM's APPC support other
than those listed above.

Note: VTAM accepts non-LU 6.2 session establishment requests, but they remain
queued until you issue a non-LU 6.2 macroinstruction to process the request. Refer
to z/OS Communications Server: SNA Programming for the appropriate
macroinstructions.

The application program must issue SETLOGON OPTCD=START to allow VTAM
to establish sessions. The function provided by SETLOGON is still needed even
though the application program has no LOGON exit routine.

The set of session parameters used by VTAM in building the BIND are those
contained in the CINIT along with overrides of certain parameters. See “BIND
image and response” on page 149 for more information on what values are used
by VTAM.

SCIP

The SCIP exit routine, if present, is scheduled when a BIND is received. If the
BIND is for an LU 6.2 session, the application program must use the APPCCMD
CONTROL=OPRCNTL macroinstruction to respond to the session request.
Specifying QUALIFY=ACTSESS responds positively to the session request.
Specifying QUALIFY=DACTSESS rejects the session request.

When the SCIP exit is driven, register 1 contains the address of a parameter list.
Word 4 and word 5 of the parameter list have specific uses for LU 6.2 application
programs.

Word 4 of the parameter list contains the address of the session parameters of the
BIND in a format that can be examined by using the ISTDBIND DSECT.

Word 5 of the parameter list contains the address of a read-only RPL. The
RPLAREA field of the read-only RPL contains the address of a read-only copy of
the BIND. To examine the BIND request unit as VTAM received it, use the
RPLAREA field to access the read-only copy of the BIND.

The RPLAAREA field of the read-only RPL points to the beginning of the control
vectors within the BIND area (no RPL extension is provided).

The application program also can determine whether the BIND is an LU 6.2 BIND
by testing the RPLVACS bit in the read-only RPL. If the bit is set on, the
application program should use the APPCCMD macroinstruction to respond to the
session request. For more information on the SCIP exit, refer to z/OS
Communications Server: SNA Programming.

After a session is established as a VTAM-controlled LU 6.2 session, the SCIP exit
routine is not scheduled again for the session. The session control requests CLEAR,
RQR, STSN, and SDT are not allowed on an LU 6.2 session.

The application program uses the SETLOGON macroinstruction to regulate when
the SCIP exit routine is scheduled. The SETLOGON macroinstruction functions
exactly as described in z/OS Communications Server: SNA Programming.

Chapter 12. Using exit routines 293

Application programs without a SCIP exit routine

LU 6.2-capable application programs that omit the SCIP exit routine have the SLU
session establishment function performed by VTAM. VTAM's APPC support
accepts only those BINDs on behalf of the application program that specify an LU
type of 6.2. VTAM's APPC support does not accept BINDs for LU types other than
6.2.

Note: VTAM accepts non-LU 6.2 BIND requests, but they remain queued until you
issue a non-LU 6.2 macroinstruction to process the request. Refer to z/OS
Communications Server: SNA Programming for the appropriate macroinstructions.

The application program must issue SETLOGON OPTCD=START to allow VTAM
to establish sessions. The function provided by SETLOGON is still needed even
though the application program has no SCIP exit routine.

The set of session parameters used by VTAM in building the BIND response are
those contained in the BIND along with overrides of certain parameters. See
“BIND image and response” on page 149 for more information on what values are
used by VTAM.

LOSTERM exit routine

VTAM can schedule a LOSTERM exit routine when a session with an application
program is terminated or potentially disrupted, or when a conditional terminate
request for a session is received. Alternatively, for some of these conditions, an
SCIP exit routine is scheduled with UNBIND, or an NSEXIT exit routine is
scheduled with CLEANUP. The application program might deactivate the session
as described in “Draining and session deactivation responsibility” on page 125. (If
the application program deactivates the session, the LU with which the application
program is, or was, in session might be unavailable for a session with any other
application program. This occurs if the LU is at its session limit as a result of this
session.)

If a session outage occurs, VTAM posts any outstanding requests associated with
the affected session with an appropriate return code. If there are no outstanding
requests, whenever the program makes the next request, it is posted with an
appropriate return code.

A LOSTERM exit routine is especially recommended for an application program
that does not issue specific-mode communication requests for its sessions, but is
driven instead by input arriving as the result of APPCCMD CONTROL=RECEIVE
macroinstructions issued in any-mode. Use of the exit routine is also recommended
for an application program when there is the possibility that the LU can fill
VTAM's buffers (obtained from application program storage) faster than the
application program is emptying them with APPCCMD CONTROL=RECEIVE
macroinstructions.

For complete information about the LOSTERM exit, refer to z/OS Communications
Server: SNA Programming.

294 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Chapter 13. VTAM's LU 6.2 security options

About this chapter

VTAM implements LU 6.2 security option sets for session-level security and data
encryption. VTAM also offers pass-through support for conversation-level security
for application programs that implement the conversation-level security option
sets. For a complete description of the LU 6.2 security option sets, see “VTAM and
security option sets” on page 43.

VTAM's session-level verification, conversation-level security, and data encryption
services are functionally independent. An LU 6.2 application program can use any
combination of these services.

Security management product requirements

VTAM relies on an external security management product equivalent to RACF® 1.9
or later to manage the LU-LU pair profiles, which contain the LU-LU pair session
key, and to provide encryption services.

If security management functions are to be used, the following conditions must be
true before an application issues OPEN ACB to identify itself to VTAM:
v The security management product must be installed and active.
v The resource class APPCLU must be active. The APPCLU class is used by RACF

to verify the identity of partner logical units during VTAM session
establishment.

If either of the above conditions is not met, the OPEN ACB fails with an
ACBERFLAG value of X'72', indicating a security error. Security profiles are
normally created using the application's network name, defining partner LUs,
session security requirements, and conversations with those partners. A generic
resource application can have a security profile defined with its generic resource
name. If profiles are defined for both names, only the profile for the application
network name is used.

For more information concerning functions provided by the external security
management product and the interface between the external security management
product and VTAM, refer to z/OS Security Server RACROUTE Macro Reference.

Defining profiles for LU-LU session pairs in RACF

Before activating sessions using session-level verification between LUs, define
LU-LU session pair profiles in RACF. These profiles are used by RACF to
determine which type 6.2 LUs can establish sessions with each other. Application
programs with VERIFY=OPTIONAL session keys do not have to be defined in the
profiles. For more information, see “Defining the degree of level 1 session-level
verification” on page 299.

LU-LU session pairs are defined to RACF by the RDEFINE command in the
APPLU resource class. The format of the LU-LU session pair profiles differs

© Copyright IBM Corp. 2000, 2013 295

depending on whether the application uses network-qualified names, as
determined by the value of the NQNAMES specification on the ACB.
v If NQNAMES=NO, then the LU-LU profiles must be defined to RACF using the

following format: local_netid.local_lu.remote_lu

v If NQNAMES=YES, then the LU-LU profiles must be defined to RACF using the
following format: local_netid.local_lu.remote_netid.remote_lu

For more information about how to define LU-LU session pair profiles, refer to
z/OS Security Server RACF Security Administrator's Guide.

Session-level verification

Session-level verification enables an LU to verify its partner's identity every time a
session between the LU-LU pair is established. When using session-level security,
each LU must have access to a session key that has been previously defined for the
LU-LU pair by the network security administrator in an external security
management product. Two protocols are available:
v Level 1 (also referred to as basic)
v Level 2 (also referred to as enhanced)

Session activation using level 1 session-level verification

When activating a session using Level 1 session-level verification, VTAM verifies
the partner's identity by passing data in user data structured subfields on the
BIND or BIND response that has been encrypted with the LU-LU pair session key.
VTAM application programs are not responsible for any of the processing for
session-level verification.

296 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

1 VTAM 1 generates a random data field, rd1, and attaches it to the BIND in the
random data structured subfield.

2 VTAM 2 receives the BIND and uses an installed security management product
to encrypt rd1 using the LU-LU pair session key. The encrypted random data, erd1,
is attached to the BIND response in the encrypted random data structured subfield
of the BIND response. VTAM also generates a second random data field, rd2, and
attaches it to the BIND response in the random data structured subfield.

The session is put into pending FMH-12 state from VTAM 2's point of view, and
cannot receive any data until an FMH-12 has been received.

3 VTAM 1 receives the BIND response and uses a security management product to
encrypt rd1. If the encryption result does not match erd1, the session activation is
failed and a security violation is logged in the external security management
product.

If the encryption result matches erd1, the SLU has verified its identity to the PLU
and the session activation continues.

4 VTAM 1 encrypts rd2 and the encrypted random data, erd2, is sent to the SLU in
an FMH-12. VTAM 1 also logs the successful session activation in the external
security management product.

5 VTAM 2 receives the FMH-12 and encrypts rd2. If the encryption result does not
match the erd2 received on the FMH-12, VTAM deactivates the session, and a
security violation is logged. If the encryption result matches erd2, the PLU has
verified its identity to the SLU. The session is placed in active state, and the
successful session activation is logged.

Session activation using level 2 session-level verification

When activating a session using Level 2 session-level verification, VTAM verifies
the partner's identity by passing data on the BIND or BIND response that has been
encrypted with the LU-LU pair session key. VTAM application programs are not
responsible for any of the processing for session-level verification.

BIND reponse (erd1, rd2)

FMH-12 (erd2)

BIND (rd1)
LU BLU A

Figure 31. Information exchanged between LUs during session activation

Chapter 13. VTAM's LU 6.2 security options 297

1 VTAM 1 generates a random data field, rd1, and attaches it to the BIND in the
random data structured subfield.

2 VTAM 2 receives the BIND, generates a random data field, rd2, and uses an
installed security management product to encrypt the following items into one
field:

rd1 Received in the BIND

rd2 Generated

slu Fully qualified SLU name placed on the BIND response

The encrypted data (rd1, rd2, and slu) is shown here as one unit: (encr (rd1, rd2,
slu)). This encrypted data is attached to the BIND response in the encrypted
random data structured subfield of the BIND response. VTAM 2 also generates a
second random data field, rd2, and attaches it to the BIND response in the random
data structured subfield.

The session is put into pending FMH-12 state from VTAM 2's point of view and
cannot receive any data until an FMH-12 has been received.

3 VTAM 1 receives the BIND response and uses a security management product to
encrypt rd1, rd2, and slu. If the encryption result does not match the encrypted
data (encr(rd1, rd2, slu)) received on the BIND response, the session activation is
failed, and a security violation is logged in the external security management
product.

If the encryption result matches (encr(rd1, rd2, slu)), the SLU has verified its
identity to the PLU, and the session activation continues.

4 VTAM 1 encrypts rd1 along with rd2, and this encrypted data, (encr(rd1 and
rd2), is sent to the SLU in an FMH-12. VTAM 1 also logs the successful session
activation in the external security management product.

5 VTAM 2 receives the FMH-12 and encrypts rd1 along with rd2. If the encryption
result does not match the encrypted data (encr(rd1 and rd2) received in the
FMH-12, VTAM 2 deactivates the session, and a security violation is logged. If the
encryption result matches (encr(rd1 and rd2), the PLU has verified its identity to
the SLU. The session is placed in active state, and the successful session activation
is logged.

Enabling session-level security

Application programs are not responsible for any of the processing needed to
implement session-level verification. However, application programs must be

BIND (rd1)
LU BLU A

BIND reponse (encr (rd1, rd2, slu), rd2)

FMH-12 (encr (rd1, rd2))

Figure 32. Information exchanged between LUs during session activation

298 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

defined to use session-level verification and an external security management
product must be available to provide the security related services.

Defining the degree of level 1 session-level verification

Session-level verification is specified differently for LU-LU and CP-CP sessions:

LU-LU sessions
Code the VERIFY parameter on the APPL definition statement.

CP-CP sessions
Code the VERIFYCP start option.

Coding the APPL definition statement:

The VERIFY parameter on the application program's APPL definition statement
indicates the degree of Level 1 session-level verification it requires.

The valid values on the VERIFY parameter are:

NONE
The application program does not support session-level verification.
Sessions with this LU will not be activated using session-level verification.

OPTIONAL
If a session key is defined in the LU-pair profile, all sessions between the
LU-LU pair must be activated using session level verification. If no session
key is defined in the LU-LU pair profile, sessions between the LU-LU pair
are not activated using session-level verification.

REQUIRED
All sessions with this LU must be activated using session level verification.

Session-level LU-LU verification byte:

After the application program has issued OPEN ACB, the application program can
determine the VERIFY value on its APPL definition statement by examining the
session-level verification byte in the LU 6.2 APPL definition vector in the
resource-information vector list.

For more information on the resource-information vector list, refer to z/OS
Communications Server: SNA Programming.

Coding the VERIFYCP start option:

For CP-CP sessions, you can indicate the degree of Level 1 session-level
verification with the VERIFYCP start option. The valid values are:
v NONE
v OPTIONAL
v REQUIRED

For descriptions of these values, refer to z/OS Communications Server: SNA
Resource Definition Reference.

Defining the degree of level 2 session-level verification

Level 2 session-level verification is specified differently for LU-LU and CP-CP
sessions:

Chapter 13. VTAM's LU 6.2 security options 299

LU-LU sessions
Code the SECLVL parameter on the APPL definition statement.

CP-CP sessions
Code the SECLVLCP start option.

Coding the APPL definition statement:

The SECLVL parameter on the application program's APPL definition statement
indicates the degree of Level 2 session-level verification to be used if session-level
verification is active.

Some products allow only Level 1 session-level security and some products allow
Level 1 or Level 2 session-level security.

Products that allow both levels fall into two classes:
1. Free choice of Level 1 or Level 2 (VTAM is in this class).
2. Restricted choice. Once Level 2 is used for a particular partner, only Level 2 can

be used to that partner from then on.

Level 1 is useful in a VTAM that can be backed out to an earlier level of VTAM
that can only use Level 1 session-level security. This will prevent the class 2
products (restricted choice) from locking out subsequent sessions to the earlier
release of VTAM.

SECLVL=ADAPT is useful in a VTAM that will communicate with either of the
following items:
v VTAMs that can use only Level 1 session-level security
v Class 2 products

Level 2 is useful when all the communicating products are capable of Level 2
session-level security to insure that an attempt at penetration, using the weaker
Level 1 protocols, will be prevented.

The valid values on the SECLVL parameter are:

LEVEL1
VTAM uses the Level 1 version of the session-level protocol. If the partner
LU does not support the Level 1 version, VTAM rejects the session with a
sense code of X'080F0002', which indicates a session-level verification
protocol mismatch. If you specify LEVEL1, VTAM will not use the Level 2
version of the session-level protocol.

ADAPT
The application program accepts either the Level 2 or Level 1 version of
the session-level verification protocol, depending on the level supported by
the partner LU. VTAM attempts to use the Level 2 version but allows the
use of the Level 1 version if the partner LU does not support the Level 2
version.

LEVEL2
VTAM uses only the Level 2 version of the session-level protocol. If the
partner LU does not support the Level 2 version, VTAM rejects the session
with a sense code of X'080F0002', which indicates a session-level
verification protocol mismatch.

300 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

For LU 6.2 sessions to use Level 2 session verification, each application program
must be running under VTAM or under another product that supports Level 2
session verification.

For each LU 6.2 application program, decide between the following alternatives:
v Allow LU 6.2 sessions with partner LUs, only if they support Level 2 session

verification.
v Allow LU 6.2 sessions with partner LUs, regardless of whether they support

Level 2 session verification.

If you choose the first alternative, you specify the SECLVL=LEVEL2 operand,
which means that Level 2 session verification is used between LU 6.2 application
programs that support Level 2 verification, and sessions are not allowed with
partner LUs that do not support Level 2 verification.

If you choose the second alternative, you specify the SECLVL=ADAPT operand,
which means that Level 2 session verification is used between LU 6.2 application
programs that support Level 2 verification, and the earlier level of session
verification is used when the partner LU does not support Level 2 verification.

If communicating with a Class 2 product and this level of VTAM can be backed
out and replaced by a VTAM that does not support Level 2, then Level 1 must be
specified.

Coding the SECLVLCP start option:

For CP-CP sessions, you can indicate the degree of Level 2 session-level
verification with the SECLVLCP start option. The valid values are:
v LEVEL1
v ADAPT
v LEVEL2

For descriptions of these values, refer to z/OS Communications Server: SNA
Resource Definition Reference.

Informing the application program of verified sessions

Although the application program plays no direct role in activating the session, it
might need to determine whether a session has been activated using session-level
verification.

On completion of the APPCCMD CONTROL=ALLOC and APPCCMD
CONTROL=RCVFMH5 macroinstructions, VTAM sets the SLS field (RPL6SLS) in
the RPL6 to indicate whether or not the session allocated to the conversation has
been activated using session-level verification.

Session activation failures

Session activations can fail due to a variety of session-level verification related
reasons. For example, the two LUs may have incompatible VERIFY parameters
coded on their APPL statements, the LUs may have different session keys defined
in their LU-LU pair profiles, or a session key might be changed in the middle of a
session activation.

Chapter 13. VTAM's LU 6.2 security options 301

When a session activation fails due to a session-level verification error, VTAM
deactivates the session using a sense code of X'080F6051' on either an UNBIND or
a negative BIND response, as needed.

VTAM also creates an SMF Type 80 record in the external security management
product, which causes the security product to issue messages to the network
security administrator. (For more information on the security product, see the
Resource Access Control Facility (RACF) Security Administrator's Quick Reference.)
VTAM sets the following reason codes in this log record:

Hex Code
Description

00 Partner LU successfully verified.

01 Partner LU not verified (but session activated).

02 Session key expiration warning.

03 The security manager locked the profile.

04 The profile contains a session key that is not valid.

05 Partner LU rejected the session due to a security related error.

06 Local LU was defined with VERIFY=REQUIRED session-level LU-LU
verification, but no session key exists for the local LU; or no random data
field was in the BIND; or the partner LU is the PLU requesting the session
but is not using session-level LU-LU verification.

07 Session-level LU-LU verification data for the session between the local LU
and the partner LU matched the data for an outstanding session activation.

08 Local LU was defined with optional verification, and a session key was
defined for the profile, indicating that session-level LU-LU verification is
necessary. Partner LU requested a session without verification.

09 Local LU was defined with optional verification, and no session key was
defined for the profile, indicating that session-level LU-LU verification
should not be used. Partner LU requested a session with verification.

0A Protocol violation.

0B Profile was changed during session activation.

0C Session key for the profile expired.

0D Local LU was defined to use only the Level 2 protocol (SECLVL=LEVEL2
is specified on the APPL definition statement). Partner LU does not
support the Level 2 protocol.

VTAM also issues message IST1213I when a session activation fails due to
session-level verification errors. For a description of this message, refer to z/OS
Communications Server: SNA Messages.

VTAM's support for session-level verification

An application program can determine the installed VTAM's support for
session-level security when the application program is assembled and again after
the application program has issued OPEN ACB.

To determine VTAM's support for session-level verification when the application
program is assembled, the application program can reference the variable

302 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

&ISTGA07, which is created by the ISTGAPPC macroinstruction. For more
information, refer to z/OS Communications Server: SNA Programmer's LU 6.2
Reference.

After the application program has started and completed issuing OPEN ACB, the
function-list vector of the access-method-support vector can be checked to
determine the installed VTAM's level of support for session-level verification. For
information about the access-method-support vector list, see “Access-method-
support vector list” on page 28.

Conversation-level security

Typically, conversations are associated with an end user or a single transaction
being performed by an end user. The conversation-level security option sets allow
the application program to verify the identity of the end user. By contrast,
session-level verification is used to verify the identity of the partner LU.

Verifying end users using conversation-level security

When an application program allocates a conversation to satisfy a request from an
end user, it builds an FMH-5 to represent the conversation and then issues an
APPCCMD CONTROL=ALLOC macroinstruction. The FMH-5 can contain
information about the end user, which VTAM passes to the partner application
program. It is the application program's responsibility to coordinate the usage of
this information. VTAM checks the FMH-5 only to verify that the FMH-5 conforms
to the architected format.

The conversation-level security related fields in the FMH-5 are:
v Security access subfields (mapped by FM5ACCSE DSECT; refer to z/OS

Communications Server: SNA Programmer's LU 6.2 Reference):
– User ID
– Password
– Profile

v Already verified indicator (FM5UIDAV)
v Persistent-verification indicators:

– Sign-On indicator (FM5PV2)
– Signed-On indicator (FM5PV1)

For a complete description of the format of the FMH-5 and the valid combinations
of these fields, see “FMH-5 fields” on page 177.

Security acceptance levels

An application program's security acceptance level indicates which combinations of
conversation-level security fields it accepts on FMH-5s it receives from partner
LUs.

The security levels are established when the first session between an application
program and a partner LU is established. This session can be the first between the
application program and an LU after the application program is started, or it can
be the first new session started after all active sessions with the partner LU have
been terminated. For example, the application program can specify security
information on a CNOS request only if the request initializes session limits, either

Chapter 13. VTAM's LU 6.2 security options 303

for the first time or after session limits have been reset to 0 and after active
sessions have been terminated. VTAM ignores the security acceptance information
included on a CNOS request when sessions exist with the partner LU.

The security acceptance level applies to all modes with a given partner LU. For
example, if the first CNOS with a partner LU involved a mode name of
EXAMPLE1, the security information established with that CNOS would apply to
all other modes with that partner LU, not just EXAMPLE1. The security level
acceptance indicator cannot be changed until all session limits with a given partner
LU have been set to 0 and all active sessions have been terminated.

An LU can support different levels of conversation-level security with each partner
LU. For example, LUA might indicate to LUB that it supports the already-verified
level of security and then indicate to LUC that it supports only the conversation
level of security.

The partner LUs do not have to accept the same level of security. LUA might
accept the already-verified level of security on conversation requests from LUB.
LUB might accept only the security access subfields of security on conversation
requests.

VTAM's level of support

VTAM provides five levels of support for security access subfields and indicators:

NONE
Security access subfields are not allowed on the FMH-5. This is the lowest
level of security and is the default value.

CONV
Security access subfields are allowed on the FMH-5. If a user ID is
supplied on the FMH-5, a password subfield must also be supplied.

ALREADYV
Security access subfields are allowed on the FMH-5. If a user ID is
supplied, either a password subfield must be supplied, or the
already-verified indicator must be set.

PERSISTV
Specifies that this application program supports security access subfields,
like CONV, and accepts persistent-verification indicators in the FMH-5s
that it receives from partner LUs. If the sign-on bit is set, user and
password subfields are required. If the signed-on bit is set, the password
subfield should not be specified.

AVPV Specifies that this application program supports security access subfields,
such as CONV, and accepts the already-verified indicator and the
persistent-verification indicators in the FMH-5s that it receives from
partner LUs. If the sign-on bit is set, user and password subfields are
required. If the signed-on bit is set, the password subfield should not be
specified.

Already-verified support

The already-verified indicators are used when a conversation request is being
passed from one application program to another. The LU that receives the FMH-5
can use the user ID and password to validate the conversation request. If the

304 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

conversation request is valid, the LU can remove the password field from the
FMH-5 and pass the conversation request to another LU. This communication is
shown in Figure 33.

1. LUA requests a conversation with LUB.
2. LUB uses the user ID and password to validate the conversation request.
3. As a result of the conversation request from LUA, LUB requests a related

conversation with LUC. Because LUB has already verified the user ID, the
FMH-5 sent to LUC contains the user ID and the already-verified indicator.

Persistent-verification support

Persistent verification enables two LUs to verify the initial conversation on a
session and to assume that future conversations are verified for the duration of the
session or until the user ID is signed off. This communication is shown in
Figure 34 on page 306.

BIND (rd1)
LU BLU A

BIND reponse (encr (rd1, rd2, slu), rd2)

FMH-12 (encr (rd1, rd2))

Figure 33. Example of already-verified support processing

Chapter 13. VTAM's LU 6.2 security options 305

1. LUA requests a conversation with LUB. The FMH-5 includes a user ID, a
password, and an indication that the user ID is signing on to LUB.
When the current transaction completes, the conversation is deallocated
normally.

2. At a later time, LUA requests another conversation with LUB for the same user
ID. This time, the FMH-5 contains the user ID and the already-signed-on
indicator.

The application's maximum security acceptance level

The application program can determine the partner's support for security subfields
and indicators. It must also specify to VTAM its level of support for the subfields.
The following list shows three methods for specifying support.
v Alternate BIND

After the application program's optional LOGON or SCIP exit is driven, it must
issue APPCCMD CONTROL=OPRCNTL, QUALIFY=ACTSESS to activate the
session. The application program can specify an alternate BIND using the AREA
field. Three bits on the alternate BIND indicate the application program's
security acceptance level. The bit settings for each security level are shown in
Table 41.

Table 41. Application program's security acceptance level, alternate BIND

Security Level BIND Bits

BINCLSS BINAVFS BINPV

NONE 0 0 0

CONV 1 0 0

ALREADYV 1 1 0

PERSISTV 1 0 1

AVPV 1 1 1

Note: When an APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS
macroinstruction causes a session to be established on the SNASVCMG mode,
VTAM intercepts the LOGON exit, and the application program cannot specify
an alternate BIND. For those CNOS requests that do not invoke negotiation,
such as a CNOS with a partner that VTAM knows to be single-session capable,
the application program can specify security acceptance information on the

Host 1

VTAM APPL
LU6.2B
(6, 2, 4)

VTAM APPL
LU6.2A
(6, 4, 2)

Host 2LU 6.2 A
Contention-Winner
Sessions

LU 6.2 B
Contention-Winner
Sessions

Figure 34. Example of persistent-verification support processing

306 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

initial session. In all cases, the SCIP exit is driven for the initial session so the
application program can supply an alternate BIND response for a
CNOS-initiated session.

v CNOS Session Limits Structure
The application program can also specify the security acceptance level by setting
3 bits on the CNOS session limits structure (ISTSLCNS) when it issues
APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS. Table 42 shows the bit
settings for each security level.

Table 42. Application program's security acceptance level, CNOS

Security Level CNOS Bits

SLCLCONV SLCLAVFA SLCLPV

NONE 0 0 0

CONV 1 0 0

ALREADYV 1 1 0

PERSISTV 1 0 1

AVPV 1 1 1

v SECACPT Operand on the APPL Definition Statement
If the security acceptance level information is not supplied on either the CNOS
session limits structure or an alternate BIND, the SECACPT operand on the
application program's APPL definition statement is used.
For information on how to code the SECACPT operand, refer to z/OS
Communications Server: SNA Resource Definition Reference.

Note: If a security management product equivalent to RACF 1.9.1 or greater is
installed, it can limit the application's maximum security acceptance level. For a
complete description of how the security management product can override this
setting, refer to z/OS Security Server RACROUTE Macro Reference.

Partner application's maximum security acceptance level

Before using such security features, the application program must know what
security level its potential conversation partners can support. VTAM determines
the partner's level of support for security when the first session with a partner LU
is established. VTAM returns this information to the application program in the
RPL extension. This information is returned when an APPCCMD
CONTROL=ALLOC or APPCCMD CONTROL=OPRCNTL, QUALIFY=DISPLAY
macroinstruction completes and activates the first session between the two LUs.
Three bits in the RPL extension indicate the partner LU's security acceptance level.
The bit settings are shown in Table 43.

Table 43. Partner LU's security acceptance level

Security Level RPL6X Bits

RPL6CLSA RPL6AVFA RPL6PV

NONE 0 0 0

CONV 1 0 0

ALREADYV 1 1 0

PERSISTV 1 0 1

AVPV 1 1 1

Chapter 13. VTAM's LU 6.2 security options 307

To determine the partner LU's support for conversation-level security, the
application program issues APPCCMD CONTROL=OPRCNTL,
QUALIFY=DISPLAY and examines 3 bits in the returned session limits display
(ISTSLD) structure. The bit settings for each security level are shown in Table 44.

Table 44. Partner LU's support for conversation-level security

Security Level ISTSLD Bits

SLDPCLSA SLDPAVFA SLDPPV

NONE 0 0 0

CONV 1 0 0

ALREADYV 1 1 0

PERSISTV 1 0 1

AVPV 1 1 1

Note: The application program can issue APPCCMD CONTROL=OPRCNTL,
QUALIFY=DISPLAY before the first session with the partner LU is activated and
before the partner LU's support for conversation-level security is determined. In
this case, the bits in the session limits display structure are not valid. Therefore,
when the application program issues APPCCMD CONTROL=OPRCNTL,
QUALIFY=DISPLAY, it first must check a bit in the session limits display structure,
SLDCSLV, to determine whether the bits that indicate the partner's security
acceptance level are valid.

Specifying a conversation's security level

When requesting a conversation, the application program is responsible for
building an FMH-5 and including the security related subfields in it.

VTAM ensures that the security level in the FMH-5 is not higher than the partner
LU's maximum security acceptance level. If the FMH-5 uses a conversation-security
level higher than what the partner LU accepts, VTAM attempts to downgrade the
FMH-5 to the appropriate security level for the partner LU.

For example, if an application program builds an FMH-5 with the
persistent-verification indicators set, but the partner application accepts only
conversation-security levels up to already verified, VTAM resets the
persistent-verification indicators.

VTAM also examines the FMH-5 and attempts to optimize the security level. For
example, an application program could build an FMH-5 that has the user ID and
password security access subfields and has the already-verified indicator set. If the
partner application supports the ALREADYV level of conversation-level security,
VTAM removes the password subfield from the FMH-5 before sending it to the
partner LU. If the partner LU supports only the CONV level, the already-verified
indicator is reset before the FMH-5 is sent to the partner LU.

Data encryption

VTAM implements LU 6.2 option sets to encrypt and decrypt data before it is sent
and after it is received on LU 6.2 sessions.

308 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Levels of data encryption

VTAM offers three levels of data encryption:

NONE
Data encryption is not requested.

Note: VTAM may be capable of providing encryption even though it is not
requested.

SELECTIVE
Data encryption is available. The application indicates which data it wants
to have encrypted.

REQUIRED
All data on the session must be encrypted.

Determining a session's data encryption level

The data encryption level is negotiated in the BIND and BIND response for each
session. The session's data encryption level is determined by the ENCR parameter
on the LUs' APPL definition statements, the ENCR parameter on the logmode table
entry, and the MODIFY ENCR operator command.

For more information about coding the ENCR parameter, refer to z/OS
Communications Server: SNA Resource Definition Reference. For more information
about the MODIFY ENCR command, refer to z/OS Communications Server: SNA
Operation. For additional information about session level cryptography, refer to
z/OS Communications Server: SNA Programming.

The partner LU can negotiate the data encryption to a higher level, but it cannot
negotiate it to a lower level. On completion of either an APPCCMD
CONTROL=ALLOC, or APPCCMD CONTROL=RCVFMH5 macro, the RPL6CRYP
field of the RPL6 will indicate the data encryption level of the session allocated to
the conversation.

Table 45 on page 310 shows the selection process that VTAM uses to establish the
session level of cryptography, based on the values coded for the primary LU, the
secondary LU, and the logon mode table entry.

Note: The cryptographic requirements specified on the VTAM APPL definition
statement or VTAM operator MODIFY ENCR command for an LU and the logon
mode table entry are compared. The higher of the cryptographic levels is used.

Chapter 13. VTAM's LU 6.2 security options 309

Table 45. Level of cryptography for LU 6.2 cryptographic sessions

Primary LU, from
VTAM Definition or
VTAM Operator
Command (See Note)

Secondary LU, from
VTAM Definition or
VTAM Operator
Command (See Note)

Logon Mode
Table Entry

Level of Cryptography
Used for Session

Required Required Required
Selective
None

A required session is established.

Selective Required
Selective
None

None,
but capable of
cryptography

Required
Selective
None

None, and not
capable of
cryptography

Required
Selective
None

The request for session establishment
fails.

Selective Required Required
Selective
None

A required session is established.

Selective Required A required session is established.

Selective
None

A selective session is established.

None, but capable
of cryptography

Required A required session is established.

Selective
None

A selective session is established.

None, and not
capable of
cryptography

Required
Selective
None

The request for session establishment
fails.

310 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 45. Level of cryptography for LU 6.2 cryptographic sessions (continued)

Primary LU, from
VTAM Definition or
VTAM Operator
Command (See Note)

Secondary LU, from
VTAM Definition or
VTAM Operator
Command (See Note)

Logon Mode
Table Entry

Level of Cryptography
Used for Session

Conditional Required Required
Selective
None

A required session is established.

Selective Required
Selective
None

None,
but capable of
cryptography

Required
Selective
None

None, and not
capable of
cryptography

Required
Selective

The request for session establishment
fails.

None A session is established without
encryption.

Optional or
no specification

Required Required
Selective
None

A required session is established.

Selective Required A required session is established.

Selective
None

A selective session is established.

None,
but capable of
cryptography

Required A required session is established.

Selective A selective session is established.

None A session is established without
encryption.

None, and not
capable of
cryptography

Required
Selective

The request for session establishment
fails.

None A session is established without
encryption.

Chapter 13. VTAM's LU 6.2 security options 311

Selective data encryption

The application program specifies whether data is encrypted by using the keyword
CRYPT=YES or CRYPT=NO on the APPCCMD macroinstruction. YES means to
encrypt the data before it is sent. This keyword applies to the following
macroinstructions:
v APPCCMD CONTROL=DEALLOC, QUALIFY=DATACON (HDX only)
v APPCCMD CONTROL=DEALLOC, QUALIFY=DATAFLU
v APPCCMD CONTROL=PREPRCV, QUALIFY=DATACON (HDX only)
v APPCCMD CONTROL=PREPRCV, QUALIFY=DATAFLU (HDX only)
v APPCCMD CONTROL=SEND, QUALIFY=DATA
v APPCCMD CONTROL=SEND, QUALIFY=DATACON (HDX only)
v APPCCMD CONTROL=SEND, QUALIFY=DATAFLU

If a session is not using selective or required cryptography and CRYPT=YES is
specified in any of the preceding macroinstructions, VTAM issues the return code
RCPRI=002C, RCSEC=0028, which means that cryptography is not allowed.

Note: If any of the data in the SEND buffer is to be sent encrypted (as indicated
by the application program on the SEND, PREPRCV, or DEALLOC
macroinstruction), all data in the RU is encrypted. (The buffer size is determined
by the user's maximum RU setting.)

312 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Chapter 14. Handling errors

About this chapter

This chapter discusses how to analyze feedback from the VTAM program for
errors and special conditions associated with the APPCCMD macroinstruction. For
a general discussion of error-handling for RPL-based macroinstructions and for
information on OPEN/CLOSE errors, errors in manipulative macroinstructions, or
software error analysis that is operating system dependent, refer to z/OS
Communications Server: SNA Programming.

General sequence of error checking

As with any RPL-based VTAM macroinstruction, error information for the
APPCCMD macroinstruction can be returned in two stages if the macroinstruction
was issued asynchronously. In such cases, VTAM can pass back information when
the request is accepted and when it is completed. (Refer to z/OS Communications
Server: SNA Programming for complete details. Table 46 on page 315 and Table 47
on page 316 illustrate feedback completion information available at the two stages
for the APPCCMD macroinstruction.) The completion codes are not set in the RPL
or the RPL extension until the APPCCMD macroinstruction request completes. If
the macroinstruction was issued synchronously, only completion information is
returned.

For an asynchronous request that was accepted initially (register 15 equals 0 at the
next instruction after the macroinstruction that was issued), the completion codes
are available after the completion exit is scheduled or the completion ECB is
posted. (You can issue the APPCCMD CONTROL=CHECK macroinstruction to
make the RPL and RPL extension available for reuse by another macroinstruction
request.) For a synchronous request or for an asynchronous request that was not
accepted initially, the completion codes are available when the application program
gets control at the next instruction following the macroinstruction request.

Register 15 contains the RTNCD value and register 0 contains the FDB2 value
following the completion of the macroinstruction for synchronous APPCCMD
requests or completion of the APPCCMD CONTROL=CHECK macroinstruction for
asynchronous APPCCMD requests. However, a SYNAD or LERAD user exit
routine can change register 15.

SYNAD and LERAD exit routines are not given control for APPCCMD
macroinstruction errors except for a few errors indicated by a general return code
higher than 0. For more information on these errors, see “SYNAD” on page 289
and “LERAD” on page 290.

The starting points for checking feedback from an APPCCMD macroinstruction are
registers 15 and 0. VTAM cannot always set the feedback fields in the RPL and
RPL extension for certain errors, but the registers always contain valid feedback
codes.

Register 15 contains the general return code from VTAM. Only a few values are
defined for the general return code, and it gives a quick indication of whether the
macroinstruction was successful. Register 0 contains either a conditional

© Copyright IBM Corp. 2000, 2013 313

completion return code or recovery action return code. In the case of errors, it
provides more detail on the cause of the error.

If both register 15 and register 0 are 0, the APPCCMD has completed (or been
accepted) without error. If register 15 is 0 but register 0 contains X'0000000B', the
request completed conditionally. This may not indicate an error. The application
program must check the RCPRI (RPLRCPR) and RCSEC (RPLRCSC) fields in the
RPL extension to determine whether an error occurred.

An RCPRI value of 0 indicates that no error occurred. The RCSEC field contains a
nonzero value that contains information about the processing of the
macroinstruction. For example, a successful CNOS request can complete without
error, but be negotiated by the partner LU. In such cases, RCSEC is set to X'0002' to
indicate that negotiation took place.

A nonzero value for RCPRI indicates abnormal completion of an APPCCMD
macroinstruction. The RCPRI and RCSEC fields contain the information needed to
determine the error.

The preceding guidelines all assumed a 0 general return code in register 15.
Because VTAM support of LU 6.2 is designed to intercept many errors and present
them to the application program in an orderly fashion, this will be the case for
most APPCCMD errors. The normal situation would be a register 15, register 0
combination of X'00000000', X'0000000B' (general return code 0, conditional
completion return code X'B'), with the RCPRI and RCSEC fields in the RPL
extension containing return codes that define the error.

Errors that cause a general return code higher than 0 (usually X'4') indicate a logic
error in the application program. They are most likely to occur during program
development. These errors include:
v Incorrectly setting an RPL or RPL address or using an asynchronous

macroinstruction without an exit
v Incorrectly setting an RPL extension or RPL extension address
v Attempting to use an RPL or RPL extension marked as active
v Using a non-APPCCMD CHECK macroinstruction to complete an APPCCMD

macroinstruction or using an APPCCMD CONTROL=CHECK macroinstruction
to complete a non-APPCCMD VTAM macroinstruction

For more information on these errors, see “LERAD” on page 290.

Note: Error conditions usually are reported to the application program as
completion information for a macroinstruction after the macroinstruction
completes. However, the application program might not be made aware of some
error conditions until after the next command processes. (The exception to this
situation would be if the error condition caused the session to end.) An operator
display command indicates that the conversation is present until the application
program is notified that the conversation failed, even though the conversation
might have been deallocated.

Table 46 on page 315 and Table 47 on page 316 indicate when RPL and RPL
extension fields are set by VTAM. (Refer to z/OS Communications Server: SNA
Programming for complete details.)

314 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 46. Completion conditions available at acceptance stage of asynchronous requests

Completion
Condition

Registers at Entry to
LERAD/SYNAD

Registers at Exit from
LERAD/SYNAD

Registers at NSI
(LERAD/SYNAD not
Available or not
Applicable)

RPL Feedback Fields
Set

Request accepted

General return code=0

Recovery action
return code=0

N/A N/A
R15=0

R0=0

RTNCD=0

FDB2=0

RCPRI not set

RCSEC not set

Conditional
Completion

General return code=0

Conditional
Completion
code=X'0B'

N/A N/A N/A RTNCD=0

FDB2=X'0B'

RCPRI set

RCSEC set

Request not accepted
due to environment
error

General return code=4

Recovery action
return code=X'10'

SYNAD entered

R15=SYNAD exit
address

R0=X'10'

R15 and R0 set by
SYNAD R15=4

R0=X'10'

RTNCD=X'10'

FDB2=specific error
return code

RCPRI not set

RCSEC not set

General logic error

General return code=4

Recovery action
return code=X'14'

LERAD entered

R15=LERAD exit
address

R0=X'14'

R15 and R0 set by
LERAD R15=4

R0=X'14'

RTNCD=X'14'

FDB2=specific error
return code

RCPRI not set

RCSEC not set

Logic error due to
invalid RPL

General return code=4

Recovery action
return code=X'18'

LERAD entered

R15=LERAD exit
address

R0=X'18'

R15 and R0 set by
LERAD R15=4

R0=X'18'

RTNCD not set

FDB2 not set

RCPRI not set

RCSEC not set

Logic error due to
invalid RPL extension

General return code=4

Recovery action
return code=X'1C'

LERAD entered

R15=LERAD exit
address

R0=X'1C'

R15 and R0 set by
LERAD R15=4

R0=X'1C'

RTNCD not set

FDB2 not set

RCPRI not set

RCSEC not set

Chapter 14. Handling errors 315

Table 46. Completion conditions available at acceptance stage of asynchronous requests (continued)

Completion
Condition

Registers at Entry to
LERAD/SYNAD

Registers at Exit from
LERAD/SYNAD

Registers at NSI
(LERAD/SYNAD not
Available or not
Applicable)

RPL Feedback Fields
Set

Logic error due to
RPL in wrong state

General return code=4

Recovery action
return code=X'20'

LERAD entered

R15=LERAD exit
address

R0=X'20'

R15 and R0 set by
LERAD R15=4

R0=X'20'

RTNCD not set

FDB2 not set

RCPRI not set

RCSEC not set

Request not accepted
because ACB is not
open

General return
code=32

No recovery action
return code

LERAD/SYNAD not
entered

LERAD/SYNAD not
entered

Reg 15=32

Reg 0=Request code
(see description of
RPL's REQ field)

RPL not set

Table 47. Completion conditions for synchronous requests or CHECK of asynchronous requests

Completion
Condition

Registers at Entry to
LERAD/SYNAD

Registers at Exit from
LERAD/SYNAD

Registers at NSI
(LERAD/SYNAD not
Available or not
Applicable)

RPL Feedback Fields
Set

Normal completion
(no special conditions)

General return code=0

Recovery action
return code=0

N/A N/A
R15=0

R0=0

RTNCD=0

FDB2=0

RCPRI=0

RCSEC=0

Normal completion
(with special
conditions)

General return code=0

Recovery action
return code=X'B'

N/A N/A
R15=0

R0=X'B'

RTNCD=0

FDB2=X'B'

RCPRI=0

RCSEC=nonzero
return code

Abnormal completion
due to APPCCMD
error

General return code =
0

Recovery action
return code = X'B'

N/A N/A
R15=0

R0=X'B'

RTNCD=0

FDB2=X'B'

RCPRI=nonzero
return code

RCSEC=nonzero
return code

316 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 47. Completion conditions for synchronous requests or CHECK of asynchronous requests (continued)

Completion
Condition

Registers at Entry to
LERAD/SYNAD

Registers at Exit from
LERAD/SYNAD

Registers at NSI
(LERAD/SYNAD not
Available or not
Applicable)

RPL Feedback Fields
Set

Abnormal completion
due to environment
error

General return code=4

Recovery action
return code=X'10'

SYNAD entered

R15=SYNAD exit
address

R0=X'10'

R15 and R0 set by
SYNAD R15=4

R0=X'10'

RTNCD=X'10'

FDB2=specific error
return code

RCPRI not set

RCSEC not set

General logic error

General return code=4

Recovery action
return code=X'14'

LERAD entered

R15=LERAD exit
address

R0=X'14'

R15 and R0 set by
LERAD R15=4

R0=X'14'

RTNCD=X'14'

FDB2=specific error
return code

RCPRI not set

RCSEC not set

Logic error due to
invalid RPL

General return code=4

Recovery action
return code=X'18'

LERAD entered

R15=LERAD exit
address

R0=X'18'

R15 and R0 set by
LERAD R15=4

R0=X'18'

RTNCD not set

FDB2 not set

RCPRI not set

RCSEC not set

Logic error due to
invalid RPL extension

General return code=4

Recovery action
return code=X'1C'

LERAD entered

R15=LERAD exit
address

R0=X'1C'

R15 and R0 set by
LERAD R15=4

R0=X'1C'

RTNCD not set

FDB2 not set

RCPRI not set

RCSEC not set

Logic error due to
RPL in wrong state

General return code=4

Recovery action
return code=X'20'

LERAD entered

R15=LERAD exit
address

R0=X'20'

R15 and R0 set by
LERAD R15=4

R0=X'20'

RTNCD not set

FDB2 not set

RCPRI not set

RCSEC not set

Request not accepted
because ACB is not
open

General return
code=32

No recovery action
return code

LERAD/SYNAD not
entered

LERAD/SYNAD not
entered

Reg 15=32

Reg 0=Request code
(see description of
RPL's REQ field)

RPL not set

Chapter 14. Handling errors 317

Using exit routines to handle errors

The application program can supply VTAM with special-purpose exit routines to
handle error situations. These are the LERAD and SYNAD exit routines. In
addition, the application program can supply VTAM with a TPEND exit routine
that is called when VTAM is forced to close down.

The LERAD or SYNAD exit (usually the LERAD) is scheduled by VTAM when an
APPCCMD has a general return code higher than 0. VTAM interrupts whatever
part of the application program is executing when the error is discovered
(including another exit routine) and schedules the exit. The exit is responsible for
setting register 15 and register 0 before the application program again receives
control.

The LERAD and SYNAD exits might be called after the application program has
already processed an error. Much of the error feedback information in the RPL is
available when the RPL is checked prior to being cleared and marked as inactive.
For example, if an APPCCMD request specifies an RPL exit, error feedback
information is available to the RPL exit. Even if the exit takes recovery action, the
LERAD or SYNAD is still scheduled for error situations and is driven after the
RPL exit completes and the APPCCMD is considered complete.

If no LERAD or SYNAD exit routine is provided, register 15 and register 0 are set
to the general return code and recovery action return code, respectively. If LERAD
or SYNAD is entered, register 0 contains the recovery action return code.

For more information on these exits, refer to z/OS Communications Server: SNA
Programming and Chapter 12, “Using exit routines,” on page 283 in this book.

Evaluating RCPRI, RCSEC return codes

Most of the error feedback for APPCCMD macroinstructions is found in the RPL
extension fields RCPRI and RCSEC. The principal cause of the error is described in
RCPRI, with RCSEC further qualifying the description.

Many of the RCPRI,RCSEC combinations indicate whether the error is the result of
a temporary condition or a more serious problem. Some combinations indicate
whether the macroinstruction should be issued again. (To determine these
combinations, refer to z/OS Communications Server: SNA Programmer's LU 6.2
Reference.) The return codes also indicate if data was lost when sending or
receiving data.

Error return codes can report changes in the state of the conversation. For example,
an error return code on an APPCCMD CONTROL=SEND macroinstruction can
mean that side of the conversation has been placed in RECEIVE state. The
application program can determine the conversation state by examining the
RPL6CCST field at the completion of most APPCCMD macroinstructions. If the
application program is maintaining conversation states, it should update the
conversation state in such cases.

Each possible variation of the APPCCMD macroinstruction is listed in the z/OS
Communications Server: SNA Programmer's LU 6.2 Reference with a complete list
of possible return codes for that macroinstruction. You should use that list as a
starting point for deciding which return codes your application program should
process.

318 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Error return codes might not be caused by the macroinstruction on which they are
returned. Allocation errors, for example, are frequently reported on APPCCMD
macroinstructions issued after APPCCMD CONTROL=ALLOC. An application
program could issue APPCCMD CONTROL=ALLOC and several APPCCMD
CONTROL=SEND macroinstructions before any data is actually sent through the
network. When designing your application program, you should keep in mind that
errors reported by the partner LU might not necessarily pertain to the
macroinstruction with the nonzero return code. Errors such as parameter errors or
state errors are detected by VTAM when the macroinstruction is issued and will
pertain to the macroinstruction with the nonzero return code.

Response to errors

The APPCCMD macroinstruction gives the application program three major
alternatives when it discovers an error. The application program can do one of the
following actions:
v Report it to the conversation partner
v Deallocate the conversation
v Deallocate the conversation and end the session supporting the conversation

The last of these is meant to be used only when a protocol error is discovered,
indicating serious problems with the exchange of data over the session.

These three alternatives correspond to the following macroinstructions:
v APPCCMD CONTROL=SEND, QUALIFY=ERROR
v The four abnormal deallocation varieties of APPCCMD

CONTROL=DEALLOC|DEALLOCQ
v APPCCMD CONTROL=REJECT

APPCCMD CONTROL=DEALLOC|DEALLOCQ and APPCCMD
CONTROL=SEND, QUALIFY=ERROR have additional keywords to further define
the type of error to which the application program is responding. This additional
level of detail helps create more understandable return codes to pass to the partner
LU.

The APPCCMD CONTROL=SEND variations are:
v APPCCMD CONTROL=SEND, QUALIFY=ERROR,TYPE=PROGRAM
v APPCCMD CONTROL=SEND, QUALIFY=ERROR,TYPE=SERVICE
v APPCCMD CONTROL=SEND, QUALIFY=ERROR,TYPE=USER

The APPCCMD CONTROL=DEALLOC variations are:
v APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDPROG
v APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDSERV
v APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDTIME
v APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDUSER

The APPCCMD CONTROL=DEALLOCQ variations are:
v APPCCMD CONTROL=DEALLOCQ, QUALIFY=ABNDPROG
v APPCCMD CONTROL=DEALLOCQ, QUALIFY=ABNDSERV
v APPCCMD CONTROL=DEALLOCQ, QUALIFY=ABNDTIME
v APPCCMD CONTROL=DEALLOCQ, QUALIFY=ABNDUSER

Chapter 14. Handling errors 319

Choice of response

Whether an application program reports an error or performs a more drastic
action, such as deallocating a conversation or ending the session, depends on the
severity of the error and the ability of the logic within the application program to
recover from the error. A few rules govern which step the application program
should take. However, the most drastic step (ending the conversation and
terminating the session) should be used only if the error seems to be caused by a
violation of the architecture's protocols.

For most errors, if the application program cannot recover from the error on the
conversation, only the conversation should be ended. Sometimes APPCCMD
CONTROL=DEALLOC|DEALLOCQ cannot be issued (possibly because another
APPCCMD macroinstruction is outstanding), and in these cases the application
program must use the APPCCMD CONTROL=REJECT, QUALIFY=CONV
macroinstruction. (For more information on ending a conversation, see Chapter 8,
“Deallocating a conversation,” on page 195.)

When an application program reports an error on a half-duplex conversation with
APPCCMD CONTROL=SEND, QUALIFY=ERROR, it is placed in SEND state,
regardless of the state of the conversation up to that point. It can send additional
data regarding the error or do anything else that the application program can do in
SEND state. VTAM creates an FMH-7 as a result of this macroinstruction and
stores it in the SEND buffer. The application program can use a macroinstruction
with the FLUSH capability to force VTAM to send the error notification to the
partner. For full-duplex conversations, the FMH-7 is not buffered, but sent
immediately to the conversation partner.

Error types

Three of the error types—PROGRAM, SERVICE, and USER— are common to both
APPCCMD CONTROL=SEND, QUALIFY=ERROR and the abnormal deallocation
macroinstructions. (These errors are indicated on deallocation macroinstructions by
the QUALIFY values of ABNDPROG, ABNDSERV, and ABNDUSER.) The
PROGRAM and SERVICE types are defined in LU 6.2 architecture. The USER type
is provided to give you more flexibility in reporting the cause of errors.

The distinction between PROGRAM and SERVICE errors is based on transaction
programs. PROGRAM errors are reported to a transaction program. SERVICE
errors are reported to a part of the application program that is implementing a
component of the LU 6.2. Because the application program can implement LU 6.2
options in addition to transaction programs, VTAM reports both types of errors to
the application program. The application program must screen service errors from
the processing threads in the application program that are analogous to transaction
programs.

The application program might not need to report SERVICE errors unless it is
implementing LU 6.2 options, such as mapped conversations. As an example,
suppose an application program expects data (representing a date) from another
application program in a format of mm/dd/yy, but instead receives the date in a
dd/mm/yy format. If the conversation on which the data flowed is a basic
conversation (the conversation level provided by VTAM), the error probably was
caused by the processing thread in the partner LU using the conversation. (That
processing thread is analogous to a transaction program). The application program
used the conversation correctly, and VTAM transferred the data without error, but

320 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

a misunderstanding occurred between the two LUs regarding the data to send and
receive. To report this type of error, the application program could issue an
APPCCMD SEND, QUALIFY=ERROR, TYPE=PROGRAM macroinstruction.

Suppose instead that the conversation type was a mapped conversation and that
the application program discovers a problem with the format of the data it is
receiving. Because the LU portion of the application determines how to format
data for a mapped conversation, the error is probably in the mapping component
of the partner LU. In such a case, the application program detecting the error
would issue an APPCCMD CONTROL=SEND, QUALIFY=ERROR,
TYPE=SERVICE macroinstruction, indicating that the error was caused by
something within the LU itself.

For both the PROGRAM and SERVICE errors, the reporting application program
specifies the type of error, and can optionally include error log data in the form of
a formatted GDS variable.

Timer errors

The APPCCMD CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDTIME
macroinstruction can be used to deallocate a conversation when the application
program has not received information during the application-specified amount of
time.

The primary use is for an LU to detect timing errors on its side of the
conversation. For example, if an LU in a sending state does not obtain any data to
send from a transaction program within a specified time frame, it could use this
type of deallocation.

Several restrictions apply to the use of this type of deallocation to detect timing
errors while in RECEIVE state or awaiting a confirmation reply. The abnormal
deallocation APPCCMD CONTROL=DEALLOC|DEALLOCQ macroinstructions
cannot be used while the application program is waiting for a confirmation reply.
In such cases, the application program must use APPCCMD CONTROL=REJECT
to terminate the conversation. An example of a situation in which the ABNDTIME
macroinstruction could be used would be if an application program had been
sending data to a partner LU and realized that the partner LU had not issued an
APPCCMD CONTROL=SEND, QUALIFY=RQSEND macroinstruction within a
specified time frame.

Sense codes

In some cases, the application program might need to include sense information on
the FMH-7 header or UNBIND RU that VTAM creates as a result of the
APPCCMD macroinstruction. This might be particularly true when the LU
validates LU 6.2 protocols, as in the case of option sets that it is implementing or
data in an FMH-5 header. VTAM provides the USER error type so that the
application program can specify an appropriate sense code. When providing error
data explicitly, use APPCCMD CONTROL=SEND, QUALIFY=ERROR, TYPE=USER
or APPCCMD CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDUSER. In
each of these cases, the sense data is coded on the SENSE parameter.

If the application program provides a USER error type, it must supply an
appropriate sense code for the error. (For a list of these sense codes, see “VTAM
sense codes” on page 324.) The receiver uses the content of the sense code to
determine the response or actions of the sender.

Chapter 14. Handling errors 321

Consider the results desired before specifying the sense code. Otherwise, improper
processing of the macroinstruction might result.

Situations that the application program might be able to detect are indicated by the
sense codes for:
v REQUEST REJECT (category byte X'08')
v REQUEST ERROR (category byte X'10')

The LU 6.2 application program probably should not use sense codes that indicate
situations that it might not be able to detect. These situations are indicated by the
sense codes for:
v STATE ERROR (category byte X'20')
v PATH ERROR (category byte X'80')
v RH USAGE ERROR (category byte X'40')

The sense codes that an application program is most likely to use are those that
deal with:
v Security violations
v Insufficient resources
v Error logging
v Errors in FMH headers (because the application program validates the FMH-5)

However, your application program might have unique needs that make other
sense codes feasible. Consult the LU 6.2 architecture manuals for a complete list of
sense codes.

Data purging and truncating

When an application program reports an error, the data that is waiting to be
received or sent over the network can be lost. When a PROGRAM or SERVICE
error is reported with APPCCMD CONTROL=SEND, QUALIFY=ERROR, a return
code indicates whether any data has been lost. The abnormal APPCCMD
CONTROL=DEALLOC|DEALLOCQ macroinstructions and APPCCMD
CONTROL=SEND, QUALIFY=ERROR,TYPE=USER macroinstructions do not
create a return code that indicates whether data purging or truncating has taken
place, although it might have happened.

Note: Purging does not occur when an APPCCMD CONTROL=SEND,
QUALIFY=ERROR macroinstruction is issued on a full-duplex conversation.

Purging error codes

If the application program is receiving data on a half-duplex conversation when it
issues APPCCMD CONTROL=SEND, QUALIFY=ERROR to report a PROGRAM or
SERVICE error, return codes of PROGRAM_ERROR_PURGING (X'0034' in RCPRI)
or SERVICE_ERROR_PURGING (X'0040' in RCPRI) are reported to the partner. The
PURGING return codes are reported to the former sender before any other error
data is sent.

Whenever purging is reported, the sending LU should assume that all data sent
because the last positive confirmation response has been lost. Receipt of a positive
confirmation response indicates that data has been sent by the local transaction
program and received by the partner without error.

322 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Application programs also use APPCCMD CONTROL=SEND, QUALIFY=ERROR
to respond negatively to a confirmation request on a half-duplex conversation. In
such cases, the partner LU receives one of the return codes indicating purging.

When an application program issues APPCCMD CONTROL=SEND,
QUALIFY=ERROR on a half-duplex conversation in RECEIVE state, information
other than conversation data might be lost. Table 48 shows the return codes VTAM
may fail to report to the application program in this circumstance.

Table 48. Unreported return codes

Error Message RCPRI Code

ALLOCATION_ERROR X'0004'

DEALLOCATE_ABEND_PROGRAM X'0014'

DEALLOCATE_ABEND_SERVICE X'0018'

DEALLOCATE_ABEND_TIMER X'001C'

PROGRAM_ERROR_TRUNCATING X'0038'

PROGRAM_ERROR_NO_TRUNC X'0030'

PROGRAM_ERROR_PURGING X'0034'

SERVICE_ERROR_TRUNCATING X'0044'

SERVICE_ERROR_NO_TRUNC X'003C'

SERVICE_ERROR_PURGING X'0040'

When an allocation error or abnormal deallocation indication is lost, VTAM passes
back a return code of DEALLOCATE_NORMAL (X'0080' in RCPRI) on the
APPCCMD CONTROL=SEND, QUALIFY=ERROR macroinstruction. When
program and service error indications are lost, VTAM passes back a return code of
OK (X'0000' in RCPRI). The application program receives no indication that the
partner reported an error.

When an application program issues an abnormal termination macroinstruction,
either APPCCMD CONTROL=DEALLOC|DEALLOCQ or APPCCMD
CONTROL=REJECT, the partner LU receives no indication of whether data has
been purged. Because the application program is responding to a rather severe
error, however, the LU can assume that purging or truncating has occurred.

Truncating error codes

Application programs can issue APPCCMD CONTROL=SEND, QUALIFY=ERROR
when either sending or receiving data on half-duplex conversations. Application
programs can issue this macroinstruction only when allowed to send data on
full-duplex conversations. If an application program is sending data, and a
complete logical record has not been sent, a return code of
PROGRAM_ERROR_TRUNCATING (X'0038' in RCPRI) or
SERVICE_ERROR_TRUNCATING (X'0044' in RCPRI) is reported to the partner LU.
The partner LU will not receive the remainder of the record being sent. Reporting
this error is the orderly way for an application program to stop sending a logical
record.

If a complete logical record has been sent, return codes of
PROGRAM_ERROR_NO_TRUNC (X'0030' in RCPRI) or
SERVICE_ERROR_NO_TRUNC (X'003C'in RCPRI) are reported to the partner.

Chapter 14. Handling errors 323

Error log variables

When an application program reports an error, it can specify a data area containing
error information to send to the partner LU. This data area should contain a
formatted error log general data stream (GDS) variable as defined by SNA
architecture. VTAM does no error checking, however, to ensure that it does. VTAM
treats the error log variable as a normal logical record.

The ability to specify data when reporting an error enables application programs to
implement the LU 6.2 option of logging error data in a system log. Because the
application program records the data, it receives the error log data. The LU 6.2
architecture does not intend for this data to be passed to a transaction program.

The LOGRCV indicator in the RPL extension is set on when an error is reported to
indicate that error log data follows. The application program should check this
field when error return codes are received to determine whether such data will
follow. Application programs receiving error log data must issue APPCCMD
CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC to receive the data. The APPCCMD
CONTROL=RECEIVE, QUALIFY=ANY|IANY cannot be used to receive log data.

When an application program is informed that error log data is to follow, it must
issue the RECEIVE macroinstruction even if the conversation is being terminated
with a deallocation macroinstruction. Errors in receiving this data should be
reported as protocol errors and the session terminated with APPCCMD
CONTROL=REJECT.

The description of the fields is:

Bytes Meaning

0–1 Length, in binary, of error log variable, including this length field.

2–3 General data stream ID: X'12E1'.

4–5 Length, in binary, of product set identifier subvector, including this length
field.

6–m Product set ID subvector. It need not be present. If it is not present, its
length field is set to X'02'.

m+1 Length, in binary, of message text, including this length field.

m+3 Message text. The LUs that are involved define this.

VTAM sense codes

VTAM puts sense codes in the FMH-7 and UNBIND requests that it generates
when it discovers an error or that it generates in response to an application
program that reports an error.

Sense codes for FMH-7

The application program can set the sense data sent by VTAM in an FMH-7
through the SENSE field on the APPCCMD CONTROL=SEND, QUALIFY=ERROR,
TYPE=USER, or APPCCMD CONTROL=DEALLOC|DEALLOCQ,
QUALIFY=ABNDUSER macroinstruction. For the other types of error reporting,
VTAM sets the sense data. For more information on FMH-7s, refer to SNA
Transaction Programmer's Reference Manual for LU Type 6.2.

324 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

For a complete listing of all sense codes, including sense codes for FMH-7, refer to
z/OS Communications Server: IP and SNA Codes. VTAM can set the following
sense data for FMH-7:

Code Meaning

X'080Fnnnn'
End user not authorized. The end user making the request does not have
access to the requested resource.

Bytes 2 and 3 can contain sense-code-specific information.

X'080F6051'
Access security violation. VTAM or the application program detects a
security protocol violation.

X'084Bnnnn'
Requested resources not available. Resources named in the request, and
required to honor it, are not currently available. It is not known when the
resources are to be available.

Bytes 2 and 3 contain the following sense-code-specific information.

X'084B6031'
Transaction program not available—retry allowed. The FMH-5 ATTACH
command specifies a transaction program that the receiver is unable to
start. Either the program is not authorized to run or the resources to run it
are not available at this time. The condition is temporary. The sender
determines when and if to try the operation again.

X'084Cnnnn'
Permanent insufficient resource. The receiver cannot act on the request
because resources required to honor the request are permanently
unavailable. The sender should not try again immediately because the
situation is not transient.

Bytes 2 and 3 can contain sense-code-specific information.

X'084C0000'
Transaction program not available—no retry. The FMH-5 ATTACH
command specifies a transaction program that the receiver is unable to
start. The sender should not try again immediately.

X'0864nnnn'
Function terminated abnormally. The conversation was terminated
abnormally. Other terminations can occur after repeated reexecution; the
request sender must detect such a loop.

Bytes 2 and 3 can contain sense-code-specific information.

Note: Sense codes in the X'0864nnnn' range should not be used with
APPCCMD CONTROL=SEND, QUALIFY=ERROR, TYPE=USER unless
followed by an APPCCMD CONTROL=DEALLOC, QUALIFY=FLUSH
macroinstruction. These codes indicate to the receiver that deallocation is
occurring.

X'08640000'
Premature conversation termination. The conversation terminates
abnormally; for example, the transaction program might issue a
DEALLOCATE_ABEND verb, or the application program might terminate
(normally or abnormally) without explicitly terminating the conversation.

Chapter 14. Handling errors 325

X'08640001'
System logic error, no retry. A system logic error is detected. No retry of
the conversation should be attempted.

X'08640002'
Excessive elapsed time, no retry. Excessive time elapses while the
conversation waits for a required action or event. For example, a
transaction program fails to issue a conversation-related protocol boundary
verb. No retry of the conversation should be attempted.

X'08640003'
Allocation error. This code is used in a negative response to an allocation
request on a full-duplex conversation. The sense code indicating the
specific allocation error will be carried on the subsequent FMH-7.

X'0889nnnn'
Transaction program error. The transaction program has detected an error.

Bytes 2 and 3 can contain sense-code-specific information.

X'08890000'
Program error, no data truncation. The transaction program that is sending
data detects an error but does not truncate a logical record.

Program error, purging. The transaction program that is receiving data
detects an error. All remaining information, if any, that the receiving
program has not received and that the sending program sent before being
notified of the error is discarded. This is applicable only to half-duplex
conversations.

Note: This code is not valid for an APPCCMD
CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDUSER issued for a
full-duplex conversation.

X'08890001'
Program error, data truncation. The transaction program that is sending
data detects an error and truncates the logical record that it is sending.

Note: This code is not valid for an APPCCMD
CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDUSER issued for a
full-duplex conversation.

X'08890100'
Service transaction program error, no data truncation. The service
transaction program that is sending data detects an error and does not
truncate a logical record.

Service transaction program error, purging. The service transaction
program that is receiving data detects an error. All remaining information,
if any, that the receiving service transaction program has not yet received
and that the sending service transaction program has sent before being
notified of the error is discarded. This is applicable only to half-duplex
conversations.

Note: This code is not valid for an APPCCMD
CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDUSER issued for a
full-duplex conversation.

326 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

X'08890101'
Service transaction program error, data truncation. The service transaction
program that is sending data detects an error and truncates the logical
record that it is sending.

Note: This code is not valid for an APPCCMD
CONTROL=DEALLOC|DEALLOCQ, QUALIFY=ABNDUSER issued for a
full-duplex conversation.

X'1008nnnn'
Not valid FM header. The receiver cannot understand or translate the FM
header, or the receiver expects an FM header and one is not present.

Bytes 2 and 3 can contain sense-code-specific information.

X'1008600B'
Unrecognized FM header command code. The partner LU receives an FM
header command code that it does not recognize.

X'10086021'
Transaction program name not recognized. The FMH-5 ATTACH command
specifies a transaction program name that the receiver does not recognize.

X'10086031'
PIP not allowed. The FMH-5 ATTACH command specifies that program
initialization parameter (PIP) data is present but the receiver does not
support PIP data for the specified transaction program.

X'10086032'
PIP not specified correctly. The FMH-5 ATTACH command specifies a
transaction program name that requires program initialization parameter
(PIP) data and either the FMH-5 specifies that PIP data is not present or
the number of PIP subfields present does not agree with the number
required for the program.

X'10086034'
Conversation type mismatch. The FMH-5 ATTACH command specifies a
conversation type that the receiver does not support for the specified
transaction program.

X'10086041'
Synchronization level not supported. The FMH-5 ATTACH command
specifies a synchronization level that the receiver does not support for the
specified transaction program.

X'10086042'
Reconnection not supported. The FMH-5 ATTACH command specifies
reconnection support, but the receiver does not support reconnection for
the specified transaction program.

X'10086043'
Unable to reconnect transaction program, no retry. The FMH-5
RECONNECT command specifies the conversation correlator of a
transaction program to which the receiver cannot reconnect.

X'10086044'
Unable to reconnect transaction program, retry allowed. The FMH-5
RECONNECT command specifies the conversation correlator of a
transaction program to which the receiver cannot reconnect. The condition
is temporary.

Chapter 14. Handling errors 327

Sense codes for UNBIND

The following sense data can be sent by VTAM in the UNBIND RU:

Code Meaning

X'080Fnnnn'
End user not authorized. The requesting end user does not have access to
the requested resource.

Bytes 2 and 3 can contain sense-code-specific information.

X'080F0002'
Session-Level LU-LU Verification Protocol Mismatch. An LU that supports
only the enhanced LU-LU verification protocol received a BIND or BIND
response that specified the basic LU-LU verification protocol.

X'080F6051'
Access security violation. VTAM or the application program detects a
security protocol violation.

X'0812nnnn'
Insufficient resource. The receiver cannot act on the request because of a
temporary lack of resources.

Bytes 2 and 3 can contain sense-code-specific information.

X'08120000'
No specific code applies.

X'0812001E'
A session has failed because depletion of pooled buffer storage has
exceeded a critical threshold resulting from that session's monopolizing
usage.

X'08130000'
Bracket bid reject, no RTR forthcoming. The BID (or BB) is received while
the contention winner is in the in-bracket state or the between-brackets
state, and the contention winner denies permission. No RTR is to be sent.

X'08140000'
Bracket bid reject, RTR forthcoming. The BID (or BB) is received while the
contention winner is in the in-bracket state or the between-brackets state,
and the contention winner denies permission. RTR is sent.

X'08190000'
RTR not required. The receiver of READY TO RECEIVE has nothing to
send.

X'081Cnnnn'
Request not executable. The requested function cannot be executed because
of a permanent error condition in the receiver.

Bytes 2 and 3 can contain sense-code-specific information.

X'081C0000'
No specific code applies.

X'08460000'
ERP message forthcoming. The received request is rejected for a reason
that is to be specified in a forthcoming request.

X'08880010'
Name conflict. The partner LU returned a name in the user data field of its

328 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

RSP(BIND) that differs from the name it returned in the user data field of
its RSP(BIND) for a previous BIND. Either the partner changed its name or
name changes in the network have caused delivery of the latest BIND to a
different partner.

X'08880011'
Name conflict. The partner receiving a BIND carrying one specific target
SLU name returned a name in the user data field of its RSP(BIND) that is
the same as it returned in response to a previous BIND carrying a different
target SLU name.

X'08880012'
Name conflict. A session initiation request is received from the partner LU
containing a LUNAME found in an internal table, but with a different
network qualifier.

X'1001nnnn'
RU data error. Data in the request RU is not acceptable to the receiving
component. For example:
v A character code is not in the set that is supported.
v A formatted data field is not acceptable to presentation services.
v A value specified in the length field (LL) of a structured field is not

valid.
v A required name in the request is omitted.

Bytes 2 and 3 can contain sense-code-specific information.

X'10010000'
No specific code applies.

X'10010003'
An isolated pacing message is received that is not valid.

X'10020000'
RU length error. The request RU is too long or too short.

X'10030000'
Function not supported. The function requested is not supported. The
function might have been specified by a formatted request code, a field in
an RU, or a control character.

X'10030004'
Function not supported. A SIGNAL RU (indicating REQUEST_TO_SEND)
was received on a full-duplex conversation, or an EXPD RU was received
on a session that does not support full-duplex protocols. The session is
unbound.

X'10050000'
Parameter error. A parameter that modifies a control function is not valid
or is outside the range that the receiver allows.

An EXPD RU was received with a format or length that was not valid. The
session is unbound.

X'10070000'
Category not supported:
v DFC, SC, NC, or FMD request is received by a half-session not

supporting any requests in that category.
v An NS request byte 0 is not set to a defined value.
v Byte 1 is not set to an NS category that the receiver supports.

Chapter 14. Handling errors 329

X'1008nnnn'
Not valid FM header. The receiver cannot understand or translate the FM
header, or the receiver expects an FM header and one is not present.

Bytes 2 and 3 can contain sense-code-specific information.

X'1008200E'
Not valid concatenation indicator. The concatenation indicator is on but
concatenation is not allowed.

X'1008201D'
FM header and associated data mismatch. The FM header indicates that:
v Associated data does or does not follow (such as FMH-7 followed by log

data or FMH-5 followed by program initialization parameters), but this
indication is in error.

v A previously received RU implies that an FM header follows, but none
is received.

X'10084001'
Not valid FM header type. The type of the FM header is other than 5, 7, or
12.

X'10086000'
FM header length not correct. The value in the FM header length field
differs from the sum of the lengths of the subfields of the FM header.

X'10086005'
Access security information length field not correct. The value in the access
security information length field differs from the sum of the lengths of the
access security information subfields.

X'10086009'
Not valid parameter length. The field that specifies the length of
fixed-length parameters has a not valid setting.

X'10086011'
Not valid logical unit of work:
v The LUW length field (in a compare-states GDS variable or an FMH-5) is

incorrect.
v The LUW is not valid.
v An LUWID is not present but is required by the setting of the

synchronization level field.

X'10086040'
Not valid ATTACH parameter. A parameter in the FMH-5 ATTACH
command conflicts with the statement of LU capability that was previously
in the BIND negotiation.

X'20010000'
Sequence number. The sequence number received on the normal-flow
request is not one greater than the last sequence number.

X'20020000'
Chaining. An error exists in the sequence of the chain indicator settings
(BCI, ECI), such as first, middle, first.

X'20030000'
Bracket. An error results because the sender fails to enforce the bracket
rules for the session. (This error does not apply to contention or race
conditions.)

330 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

X'20040000'
Direction error. An error that results because a normal-flow request is
received, and the half-duplex flip-flop state is not received.

Data was received from a partner LU on a full-duplex conversation that is
in SEND_ONLY state. The session is unbound.

X'20080000'
No begin bracket. An FMD request that specifies BBI=BB is received after
the receiver has received a BRACKET INITIATION STOPPED request.

X'200A0000'
Immediate request mode error. A request violates the immediate request
mode protocol.

X'200B0000'
Queued response error. A request violates a queued response protocol,
such as QRI=¬QR, when an outstanding request has QRI=QR.

X'200E0000'
Response correlation error. A response is received that does not correlate to
a previous request.

A response for an EXPD RU was received, but an expedited request is not
outstanding. This session is unbound.

X'200F0000'
Response protocol error. A violation occurs in the response protocol, such
as the generation of +RSP to an RQE chain.

An EXPD RU was received, but no response has been sent to a previously
received EXPD request. The session is unbound.

X'20110000'
Pacing error. A half-session receives a normal-flow request after the pacing
count is reduced to 0 and before a pacing response is sent.

X'20120000'
Not valid sense code received. A negative response is received that
contains an SNA-defined sense code that cannot be used for the request
that is sent.

X'2013nnnn'
Decompression protocol error: A request containing compressed data was
received in error.

Bytes 2 and 3 can contain sense-code-specific information.

X'40030000'
BB not allowed. The begin bracket indicator (BBI) is specified incorrectly,
such as BBI=BB with BCI=¬BC.

X'40040000'
CEB or EB not allowed. The conditional end bracket indicator (CEBI) or
end bracket indicator (EBI) is specified incorrectly.

X'40070000'
Definite response not allowed. A definite response is requested and is not
permitted.

A Confirm request was received on a full-duplex conversation. The session
is unbound.

Chapter 14. Handling errors 331

X'40080000'
Pacing not supported. The pacing indicator is set on a request, but the
receiving half-session or boundary function half-session does not support
pacing for this session.

X'40090000'
CD not allowed. The change direction indicator (CDI) is specified
incorrectly, such as CDI=CD with EBI=EB.

X'400B0000'
Chaining not supported. The chaining indicators (BCI and ECI) are
specified incorrectly, such as chaining bits indicated other than (BC,EC),
but multiple-request chains are not supported for the session or for the
category specified in the request header.

A full-duplex conversation received a request carrying a CD indicator with
ECI specified.

X'400C0000'
Brackets not supported. The bracket indicators (BBI, CEBI, and EBI) are
specified incorrectly. For example, a bracket indicator is set (BBI=BB,
CEBI=CEB, or EBI=EB), but brackets are not used for the session.

X'400F0000'
Incorrect use of format indicator. The format indicator (FI) is specified
incorrectly. For example, FI is set with BCI=¬BC, or FI is not set on a DFC
request.

X'40100000'
Alternate code not supported. The code selection indicator (CSI) is set but
is not supported for the session.

X'40110000'
Incorrect specification of RU category. The RU category indicator is
specified incorrectly. For example, an expedited-flow request or response is
specified with RU category indicator=FMD.

X'40120000'
Incorrect specification of request code. The request code on a response does
not match the request code on its corresponding request.

A received expedited flow response was not a SIGNAL or EXPD RU. The
session is unbound.

X'40130000'
Incorrect specification of SDI, RTI. The sense data included indicator (SDI)
and the response type indicator (RTI) are not specified properly on a
response. The proper value pairs are (SDI=SD, RTI=negative) and
(SDI=¬SD, RTI=positive).

X'40140000'
Incorrect use of DR1I, DR2I, ERI. The definite response 1 indicator (DR1I),
definite response 2 indicator (DR2I), and exception response indicator (ERI)
are specified incorrectly. For example, a SIGNAL request is not specified
with DR1I=DR1, DR2I=¬DR2, and ERI=¬ER.

X'40150000'
Incorrect use of QRI. The queued response indicator (QRI) is specified
incorrectly. For example, QRI=QR is specified on an expedited-flow
request.

332 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

X'40160000'
Incorrect use of EDI. The enciphered data indicator (EDI) is specified
incorrectly. For example, EDI=ED is specified on a DFC request.

X'40170000'
Incorrect use of PDI. The padded data indicator (PDI) is specified
incorrectly. For example, PDI=PD is specified on a DFC request.

X'40180000'
Incorrect setting of QRI with loser's BB. The winner of a half-session
receives a BB chain that requests use of a session (by means of
LUSTAT(X'0006')), but the QRI is specified incorrectly; that is, QRI=¬QR.

X'40190000'
Incorrect indicators with last-in-chain request. A last-in-chain request
specifies RH settings that are incompatible, such as RQE*, CEBI=¬CEB, and
CDI=¬CD.

X'40210000'
QRI setting in response different from that in request. The QRI setting in
the response differs from the QRI setting in the corresponding request.

X'8005nnnn'
No session. No half-session is active in the receiving end node for the
indicated origination-destination pair, or no boundary function session
connector is active for the origination-destination pair in a node providing
the boundary function. A session activation request is needed.

Bytes 2 and 3 can contain sense-code-specific information.

X'80050000'
No specific code applies.

Chapter 14. Handling errors 333

334 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Appendix A. Conversation states

As part of its implementation of the LU 6.2 architecture, VTAM maintains a finite
state machine for each conversation. This mechanism enables VTAM to regulate
when an application may issue certain macroinstructions during a conversation.
This appendix lists the possible states for a conversation, and includes a chart
showing the relation of the states to one another, and when transitions from one
state to the next occur.

States of conversations

The state of the conversation determines the type of APPCCMD, as denoted by the
CONTROL and QUALIFY fields, that an application may issue. As the application
issues APPCCMD macroinstructions, the state of the conversation changes. The
change is a result of the function of the APPCCMD macroinstruction, a result of a
verb issued by the remote transaction program, or a result of network errors.

The conversation state is defined in terms of the local application's view of the
conversation. The states of other conversations allocated to the program can be
different. For example, one conversation can be in RECEIVE state and another in
SEND state, concurrently.

The conversation can be either a half-duplex conversation or a full-duplex
conversation. Each of these two conversation types has its own set of possible
states, with differing rules to allow transition from one state to another.

Descriptions of the possible conversation states for half-duplex conversations are
located in “Half-duplex conversation states.” Possible conversation states for
full-duplex conversations are described in “Full-duplex conversation states” on
page 337.

Half-duplex conversation states

The following half-duplex conversation states are defined:
v RESET is the initial state in which the application program can allocate a

conversation. There are no state transitions to the RESET state.
v SEND is the state in which the application program can send data, request

confirmation, or request sync point.
v RECEIVE is the state in which the application program can receive information

from the remote transaction program.
v CONFIRM is the state in which the application program can reply to a

confirmation request and includes the actual states of RECEIVE_CONFIRM,
RECEIVE_CONFIRM_SEND, and RECEIVE_CONFIRM_DEALLOCATE.

v PEND_END_CONV_LOG is the state in which the application program can
receive error log data that immediately precedes the end of the conversation.
(Error log data can also be received by the application program when the
conversation is in RECEIVE state, but in that case the log data does not
immediately precede the end of the conversation.) The
PEND_END_CONV_LOG state is entered only when a conversation has ended
and there is error log data to be received by the application.

© Copyright IBM Corp. 2000, 2013 335

v PEND_RCV_LOG is the state in which the application program can receive
error log data that does not immediately precede the end of the conversation.

v PEND_SEND is the state in which the conversation is placed when data and a
change-direction indicator are both returned on an APPCCMD
CONTROL=RECEIVE macroinstruction. This state is transient, but you can
display it with MODIFY DISPLAY. Look at the CD indicator to determine
whether a response was sent. If the conversation is in PEND_SEND state, only
an FMH-7 is sent.

v PENDING_ALLOCATE is the state in which the conversation is placed when
the application issues the APPCCMD CONTROL=PREALLOC macroinstruction.
The conversation remains in PENDING_ALLOCATE until the application issues
the APPCCMD CONTROL=SENDFMH5 macroinstruction.

v END_CONV is the state in which the conversation is placed when the
conversation is being deallocated. This state is transient. Although you might be
able to see it by using MODIFY DISPLAY, once it completes the conversation ID
is returned to the conversation pool for reuse.

v PEND_DEALL is the state in which the conversation is placed when the
application issues the APPCCMD CONTROL=DEALLOC,
QUALIFY=CONFIRM|DATACON macroinstruction. If the partner LU sends a
positive reply, the conversation is placed in END_CONV state. If the partner LU
sends a negative reply, the conversation is placed in RECEIVE state.

Note: SYNC_POINT, SYNC_POINT_SEND, SYNC_POINT_DEALLOCATE,
DEFER_RECEIVE, DEFER_DEALLOCATE, DEALLOCATE, and
BACKOUT_REQUIRED are not maintained by VTAM LU 6.2.

The state of the conversation determines the APPCCMD that the application is
allowed to issue. Table 49 correlates the APPCCMD and its CONTROL and
QUALIFY settings to the half-duplex conversation states. For each APPCCMD and
state, a “yes,” “no,” or “n/a” is indicated.

yes The application program is allowed to issue the APPCCMD when the
conversation is in that state.

no The application program cannot issue the APPCCMD when the
conversation is in that state. An APPCCMD issued for a conversation in a
disallowed state completes with a return code indicating STATE_ERROR.

n/a The state is not applicable either because it cannot exist at the time the
APPCCMD is issued or because it is not relevant to the APPCCMD.

Table 49. Correlation of basic conversation macroinstructions to half-duplex conversation states
APPCCMD CONTROL=
,QUALIFY=

RESET SEND RECEIVE CONFIRM PEND END
CONV LOG

PEND RCV
LOG

PEND
SEND

PEND
ALLOC

DEALLOC, ABNDnnnn n/a yes yes yes yes yes yes yes

DEALLOC, CONFIRM n/a yes no no no no yes no

DEALLOC, DATACON n/a yes no no no no yes no

DEALLOC, DATAFLU n/a yes no no no no yes no

DEALLOC, FLUSH n/a yes no no no no yes no

DEALLOCQ, ABNDnnnn n/a yes yes yes yes yes yes yes

PREPRCV n/a yes no no no no yes no

RCVEXPD, ANY 4 n/a yes yes yes yes yes yes no

RCVEXPD, IANY 4 n/a yes yes yes yes yes yes no

RCVEXPD, ISPEC n/a yes yes yes yes yes yes no

RCVEXPD, SPEC n/a yes yes yes yes yes yes no

RECEIVE, ANY 5 n/a n/a yes n/a n/a n/a n/a no

336 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 49. Correlation of basic conversation macroinstructions to half-duplex conversation states (continued)
APPCCMD CONTROL=
,QUALIFY=

RESET SEND RECEIVE CONFIRM PEND END
CONV LOG

PEND RCV
LOG

PEND
SEND

PEND
ALLOC

RECEIVE, IANY 5 n/a n/a yes n/a n/a n/a n/a no

RECEIVE, ISPEC n/a no yes no yes yes no no

RECEIVE, SPEC n/a yes yes no yes yes yes no

REJECT, CONV n/a yes yes yes yes yes yes yes

RESETRCV n/a yes yes yes yes yes yes no

SEND, CONFIRM n/a yes no no no no yes no

SEND, CONFRMD n/a no no yes no no no no

SEND, DATA n/a yes no no no no yes no

SEND, DATACON n/a yes no no no no yes no

SEND, DATAFLU n/a yes no no no no yes no

SEND, ERROR n/a yes yes yes no yes yes no

SEND, FLUSH n/a yes no no no no yes no

SEND, RQSEND n/a yes yes yes 6 no no no no

SENDEXPD, DATA 7 n/a yes yes yes yes yes yes no

SENDFMH5 n/a n/a no no no no no yes

APPCCMD CONTROL=RCVFMH5, APPCCMD CONTROL=PREALLOC, and
CONTROL=ALLOC cannot be issued against a specific conversation and therefore
are not included in Table 49 on page 336. APPCCMD CONTROL=CHECK is also
not included because it cannot cause a state error to occur. It causes the application
program to synchronously wait until a previously-issued asynchronous APPCCMD
completes. Because APPCCMD CONTROL=CHECK is issued against a prior
APPCCMD, any state errors that occur would have been detected when the prior
macroinstruction was issued. APPCCMD CONTROL=TESTSTAT is not included
because it cannot cause a state error to occur. Its processing does not alter the
conversation.

Full-duplex conversation states

The following full-duplex conversation states are defined:
v RESET is the initial state in which the application program can allocate a

conversation and the ending state to which it returns when the conversation has
ended.

v FDX RESET is the state in which the conversation is placed when the
conversation is being deallocated. This is an intermediate state that is
transparent to the application.

v SEND/RECEIVE is the state in which the application program can send and
receive data simultaneously. This state is the normal state for a full-duplex

4. The APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY|IANY cannot be issued against a specific conversation. This
macroinstruction is shown in the table to illustrate the fact that when the application program issues the APPCCMD
CONTROL=RCVEXPD, QUALIFY=ANY|IANY, a conversation in continue-any expedited data mode will apply to the
APPCCMD in any active state.

5. APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY cannot be issued against a specific conversation. This macroinstruction
is shown in this table to illustrate the fact that when the application program issues the APPCCMD CONTROL=RECEIVE,
QUALIFY=ANY, a conversation in continue-any normal data mode has to be in RECEIVE state in order to apply the APPCCMD.

6. APPCCMD CONTROL=SEND, QUALIFY=RQSEND cannot be issued in CONFIRM state if the received confirmation request
accompanied a request for termination of the conversation.

7. The APPCCMD CONTROL=SENDEXPD, QUALIFY=DATA can be issued only against a half-duplex conversation if its underlying
session supports full-duplex and expedited data protocols.

Appendix A. Conversation states 337

conversation, entered initially when the allocation request is issued or when an
Attach (FMH-5) is received from a remote transaction program.

v SEND_ONLY is the state in which the application program can send
information to the remote transaction program but cannot issue any further
receive requests. This state is entered when an application program in
SEND/RECEIVE state receives a normal deallocation request from the remote
transaction program.

v RECEIVE_ONLY is the state in which the application program can receive
information from the remote transaction program, but cannot issue any further
send queue requests. This state is entered when an application in
SEND/RECEIVE state issues a deallocation request.

v PENDING_SEND/RECEIVE_LOG is the state in which the application program
can receive error log data that does not immediately precede the end of the
conversation. Normal sending of data may continue, but a specific receive must
be issued to receive the log data before normal receive operation can be
resumed. This state is entered when an application in SEND/RECEIVE state
receives an error response accompanied by error log data.

v PENDING_RECEIVE-ONLY_LOG is the state in which the applicator program
can receive error log data that does not immediately precede the end of the
conversation. A specific receive must be issued to receive the log data before
normal receive operation can be resumed. This state is entered when an
application in RECEIVE_ONLY state receives an error response accompanied by
error log data.

v PENDING_RESET_LOG is the state in which the application program can
receive error log data that immediately precedes the end of the conversation.
This state is entered only when a conversation has ended and there is error log
data to be received by the application.

v PENDING_ALLOCATE is the state in which the conversation is placed when
the application issues the APPCCMD CONTROL=PREALLOC macroinstruction.
The conversation remains in PENDING_ALLOCATE until the application issues
the APPCCMD CONTROL=SENDFMH5 macroinstruction.

The state of the local conversation determines the APPCCMDs that the application
is allowed to issue. Several APPCCMD CONTROL and QUALIFY value
combinations that are allowed for half-duplex conversations are not valid if they
are issued against a full-duplex conversation. Table 50 on page 339 correlates the
APPCCMD and its CONTROL and QUALIFY values to the conversation states for
full-duplex conversations. For each APPCCMD and conversation state, a "yes,"
"no," "inv," or "n/a" is indicated:

yes The application program is allowed to issue the APPCCMD when the
conversation is in that state.

no The application program cannot issue the APPCCMD when the local
conversation is in that state. An APPCCMD issued for a conversation in a
disallowed state completes with a return code indicating STATE_ERROR.

inv The application may not issue this APPCCMD on a full-duplex
conversation.

n/a The state is not applicable because it cannot exist at the time the
APPCCMD is issued or because it is not relevant to the APPCCMD.

338 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 50. Correlation of basic conversation macroinstructions to full-duplex conversation states
APPCCMD
CONTROL=
,QUALIFY=

RESET FDX RESET SEND/
RECEIVE

SEND
ONLY

RECEIVE
ONLY

PEND
SND/RCV
LOG

PEND RCV
ONLY LOG

PEND
RESET
LOG

PEND
ALLOC

DEALLOC, ABNDnnnn n/a n/a yes yes yes yes yes yes yes

DEALLOC, CONFIRM inv inv inv inv inv inv inv inv no

DEALLOC, DATACON inv inv inv inv inv inv inv inv no

DEALLOC, DATAFLU n/a n/a yes yes no yes no no no

DEALLOC, FLUSH n/a n/a yes yes no yes no no no

DEALLOCQ,
ABNDnnnn

n/a yes yes yes yes yes yes no yes

PREPRCV inv inv inv inv inv inv inv inv no

RCVEXPD, ANY 8 n/a n/a yes yes yes yes yes yes no

RCVEXPD, IANY 8 n/a n/a yes yes yes yes yes yes no

RCVEXPD, ISPEC n/a n/a yes yes yes yes yes yes no

RCVEXPD, SPEC n/a n/a yes yes yes yes yes yes no

RECEIVE, ANY 9 n/a n/a yes n/a yes n/a n/a n/a no

RECEIVE, IANY 9 n/a n/a yes n/a yes n/a n/a n/a no

RECEIVE, ISPEC n/a n/a yes no yes yes yes yes no

RECEIVE, SPEC n/a n/a yes no yes yes yes yes no

REJECT, CONV n/a n/a yes yes yes yes yes yes yes

RESETRCV n/a n/a yes yes yes yes yes yes no

SEND, CONFIRM inv inv inv inv inv inv inv inv no

SEND, CONFRMD inv inv inv inv inv inv inv inv no

SEND, DATA n/a n/a yes yes no yes no no no

SEND, DATACON inv inv inv inv inv inv inv inv no

SEND, DATAFLU n/a n/a yes yes no yes no no no

SEND, ERROR n/a n/a yes yes no yes no no no

SEND, FLUSH n/a n/a yes yes no yes no no no

SEND, RQSEND inv inv inv inv inv inv inv inv no

SENDEXPD, DATA 10 n/a n/a yes yes yes yes yes yes no

SENDFMH5 n/a n/a no no no no no no yes

APPCCMD CONTROL=RCVFMH5, CONTROL=PREALLOC, and
CONTROL=ALLOC cannot be issued against a specific conversation and therefore
are not included in Table 49 on page 336. APPCCMD CONTROL=CHECK is also
not included because it cannot cause a state error to occur. It causes the application
program to synchronously wait until a previously-issued asynchronous APPCCMD
completes. Because APPCCMD CONTROL=CHECK is issued against a prior
APPCCMD, any state errors that occur would have been detected when the prior
macroinstruction was issued. APPCCMD CONTROL=TESTSTAT is not included
because it cannot cause a state error to occur. Its processing does not alter the
conversation.

8. The APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY|IANY cannot be issued against a specific conversation. This
macroinstruction is shown in the table to illustrate the fact that when the application program issues the APPCCMD
CONTROL=RCVEXPD, QUALIFY=ANY|IANY, a conversation in continue-any expedited data mode will apply to the
APPCCMD in any active state.

9. APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY cannot be issued against a specific conversation. This macroinstruction
is shown in this table to illustrate the fact that when the application program issues the APPCCMD CONTROL=RECEIVE,
QUALIFY=ANY, a conversation in continue-any normal data mode has to be in RECEIVE state in order to apply the APPCCMD.

10. The APPCCMD CONTROL=SENDEXPD, QUALIFY=DATA can be issued only against a half-duplex conversation if its
underlying session supports full-duplex and expedited data protocols.

Appendix A. Conversation states 339

State matrix

A conversation enters a particular state when the application program issues an
APPCCMD macroinstruction that causes a state transition, or when the application
program receives an RCPRI, RCSEC combination or a WHATRCV value that
indicates a state transition. The specific state transitions can be found under the
heading “State Changes” for each APPCCMD macroinstruction description in the
z/OS Communications Server: SNA Programmer's LU 6.2 Reference. State changes
as a result of RCPRI, RCSEC return codes can also be found in that manual. (Also
see Figure 35 and Figure 36 on page 342 for half-duplex and full-duplex finite-state
machines (FSM) that illustrate the possible conversation state transitions.)

Note:

1. The initial state of the FSM is reset.

FSM_CONVERSATION_HDX

Inputs

RC
VD

CO
NF

RM
SE

ND

RE
SE

T

SE
ND

RC
V

RC
VD

CO
NF

RM

RC
VD

CO
NF

RM
DE

AL
L

PE
ND

DE
AL

L
PE

ND
EN

D
CO

NV
LO

G

EN
D

CO
NV

PE
ND

SE
ND

PE
ND

RC
V

LO
G

0 1 2 3 4 5 6 7 8 9 10

1

2

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

-

-

2

-

-

>

-

-

2

>

/

/

/

/

2

2

2

10

8

8

7

8

7

7

8

8

6

8

8

/

/

/

/

/

>

>

>

>

1

-

>

-

-

-

-

1

3

4

5

-

-

-

10

8

8

7

8

7

7

8

>

>

8

8

/

/

9

/

/

>

>

>

>

1

-

2

-

-

>

>

/

/

/

/

/

/

/

/

/

/

/

8

7

/

/

>

>

8

8

/

/

/

/

/

>

>

>

>

1

-

1

-

-

>

>

/

/

/

/

/

/

/

/

/

/

/

8

7

/

/

>

>

8

8

/

/

/

/

/

>

>

>

>

1

-

8

-

-

>

>

/

/

/

/

/

/

/

/

/

/

/

8

7

/

/

>

>

8

8

/

/

/

/

/

/

/

/

/

/

>

/

>

>

/

/

/

/

/

/

2

2

2

10

8

8

7

8

7

7

8

/

/

/

8

8

/

/

/

/

>

>

>

>

>

>

>

-

-

-

-

/

/

/

/

/

/

/

/

/

/

/

8

-

/

/

>

>

8

8

/

8

/

/

/

>

>

>

>

>

>

>

>

>

>

>

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

>

>

>

>

/

/

/

/

/

1

1

1

2

1

1

>

-

-

2

>

/

/

/

/

2

2

2

/

8

/

7

8

7

7

8

8

6

8

8

/

/

/

/

/

1

>

>

>

1

>

>

-

-

>

>

/

/

/

/

/

/

/

/

8

8

7

8

7

/

/

>

>

8

8

/

2

/

S, ALLOC

R, FMH-5

S, SEND, DATA

S, SEND, FLUSH|DATAFLU

S, SEND, CONFIRM|DATACON

S, PREPRCV

S, SEND, ERROR

S, SEND, RQSEND

S, SEND, CONFRMD

S, SENDEXPD, DATA

S, RCVEXPD

S, RECEIVE

S, RECEIVE, IMMED

R, SEND_INDICATOR

R, CONFIRM_INDICATOR

R, CONFIRM_SEND_INDICATOR

R, CONFIRM_DEAL_INDICATOR

R, PROGRAM_ERROR_RC

R, SERVICE_ERROR_RC

R, USER_ERROR_CODE_RC

R, SEND_ERROR_LOG_RC

R, DEALLOCATE_NORMAL_RC

R, DEALLOCATE_ABEND_RC

R, DEALL_ABEND_RC_LOG

R, RESOURCE_FAILURE_RC

R, RESOURCE_FAILURE_RC_LOG

R, ALLOC_ERROR_RC_LOG

R, ALLOC_ERROR_RC

S, DEALLOC, FLUSH|DATAFLU

S, DEALLOC, CONFIRM|DATACON

S, DEALLOC, ABND

S, REJECT, CONV

R, DEALLOCATED_IND

R, END_OF_LOG_IND

R, RECEIVE_DATA_&_SEND_IND

Figure 35. Half-duplex conversation state transitions

340 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

2. PEND_DEALL is a transient state. The application program can display these
states using the APPCCMD CONTROL=TESTSTAT macroinstruction.

3. The action code specified at each intersection of this FSM matrix can be one of
four values.
v A number indicates the next state that the FSM assumes if the matrix

intersection is addressed.
v A dash (–) indicates that no state change is to occur.
v A greater-than sign (>) indicates an error condition (and causes a return code

indicating STATE_ERROR to be returned to the application program).
v A slash (/) indicates a “cannot-occur” situation, for example, that this matrix

intersection cannot be selected because of previous checks that will appear in
supporting code.

4. An “S” in the inputs column indicates that the input is a result of an
APPCCMD macroinstruction “sent” by the application program to VTAM. The
inputs associated with an “S” are the values for control and qualify fields on
the APPCCMD macroinstruction. An “R” indicates that the input is being
“received” by VTAM from the partner LU.

For more information, refer to the individual descriptions of these
macroinstructions in the z/OS Communications Server: SNA Programmer's LU 6.2
Reference. Note, however, that the FSM does not attempt to reflect any information
concerning the issuance of an APPCCMD macroinstruction in this situation.

Appendix A. Conversation states 341

Note:

1. The initial state of the FSM is reset.
2. The action code specified at each intersection of this FSM matrix can be one of

four values.
v A number indicates the next state that the FSM assumes if the matrix

intersection is addressed. The state numbers for FSM_CONVERSATION_FDX
are shown as hexadecimal values.

v A dash (–) indicates that no state change is to occur.
v A greater-than sign (>) indicates an error condition (and causes a return code

indicating STATE_ERROR to be returned to the application program).
v A slash (/) indicates a “cannot-occur” situation, for example, that this matrix

intersection cannot be selected because of previous checks that will appear in
supporting code.

3. An “S” in the inputs column indicates that the input is a result of an
APPCCMD macroinstruction “sent” by the application program to VTAM. The
inputs associated with an “S” are the values for control and qualify fields on

Inputs

FS M _C O N VE R S AT IO N _F D X

0 80 81 82 83 84 85 86

R
E

S
E

T
FD

X
R

E
S

E
T

S
E

N
D

/R
E

C
E

IV
E

S
E

N
D

-O
N

LY
R

E
C

E
IV

E
-O

N
LY

P
E

N
D

S
N

D
/R

C
V

LO
G

P
E

N
D

R
C

V-
O

N
LY

LO
G

P
E

N
D

R
E

S
E

T
LO

G

S, ALLOC
R , FM H- 5

S, SEND, DATA
S, SEND, FLUSH|DATAFLU
S, SENDEXPD, DATA

S, SEND, ERROR
S, RCVEXPD
S, RECEIVE, SPEC
S, RECEIVE, ISPEC

R, PROGRAM_ERROR_RC
R, SERVICE_ERROR_RC
R, USER_ERROR_CODE_RC
R , S E N D_E R R OR _RC _LO G

R, DEALLOCATE_NORMAL_RC
R, ERROR_INDICATION_RC
R, DEALLOCATE_ABEND_RC
R , D E A L L O C _A B N D _R C _L O G
R, RESOURCE_FAILURE_RC
R, RESOURCE_FAIL_RC_LOG
R , ALLOC_ERROR_RC
R , A L L O C _E R R O R _R C _L O G

S, DEALLOC, FLUSH|DATAFLU
S, DEALLOC, ABND
S, REJECT, CONV

R , E N D _O F _L O G _I N D

81
81

/
/
/

/
/
/
/

/
/
/
/

/
/
/
/
/
/
/
/

/
/
/

/

/
/

/
/
/

/
/
/
/

/
/
/
/

/
/
/
/
/
/
/
/

/
/
/

/

/
/

-
-
-

-
-
-
-

-
-
-
8 4

82
-
8 0
8 6
8 0
8 6
8 0
8 6

8 3
8 0
8 0

/

/
/

-
-
-

-
-
>
>

/
/
/
/

/
8 0
/
/
/
/
/
/

8 0
8 0
8 0

/

/
/

>
>
-

>
-
-
-

-
-
-
8 5

8 0
/
8 0
8 6
8 0
8 6
8 0
8 6

>
8 0
8 0

/

/
/

-
-
-

-
-
-
-

-
-
-
-

82
-
8 0
8 6
8 0
8 6
8 0
8 6

8 5
8 0
8 0

81

/
/

>
>
-

>
-
-
-

-
-
-
-

8 0
/
8 0
8 6
8 0
8 6
8 0
8 6

>
8 0
8 0

8 3

/
/

>
>
-

>
-
-
-

/
/
/
/

/
/
/
/
/
/
/
/

>
8 0
8 0

8 0

Figure 36. Full-duplex conversation state transitions

342 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

the APPCCMD macroinstruction. An “R” indicates that the input is being
“received” by VTAM from the partner LU.

4. The ERROR_INDICATION_RC can be returned to the application on an
APPCCMD CONTROL=SEND or an APPCCMD CONTROL=DEALLOC,
QUALIFY=FLUSH|DATAFLU macroinstruction. The other inputs received by
the application can be returned only on an APPCCMD CONTROL=RECEIVE
macroinstruction.

For more information, refer to the individual descriptions of these
macroinstructions in the z/OS Communications Server: SNA Programmer's LU 6.2
Reference. Note, however, that the FSM does not attempt to reflect any information
concerning the issuance of an APPCCMD macroinstruction in this situation.

Appendix A. Conversation states 343

344 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Appendix B. APPCCMD macroinstruction overview

The following tables are a cross reference between specific APPCCMDs and the
following items:
v Macroinstruction session and conversation information
v Information from the application to VTAM
v Information from VTAM to the application

Session and conversation information

Table 51 provides the following information regarding APPCCMD
macroinstructions and the following session and conversation information:
1. Initiates a session, if required, and if current limits allow
2. Allowed on any half-duplex conversation
3. Allowed on a half-duplex conversation established on a full-duplex-capable

session
4. Allowed on a full-duplex conversation

Table 51. Session / conversation information

1= Initiates session, if required and if session limits allow

2= Allowed on any HDX conversation

3= Allowed on an HDX conversation - established on an FDX
session

4= Allowed on an FDX conversation

1 2 3 4

ALLOC.

ALLOCD Y Y Y Y

CONVGRP N Y Y Y

CONWIN Y Y Y Y

IMMED N Y Y Y

WHENFREE Y Y Y Y

CHECK n/a n/a n/a n/a

DEALLOC.

ABNDPROG n/a Y Y Y

ABNDSERV n/a Y Y Y

ABNDTIME n/a Y Y Y

ABNDUSER n/a Y Y Y

CONFIRM n/a Y Y N

DATACON n/a Y Y N

DATAFLU n/a Y Y Y

FLUSH n/a Y Y Y

DEALLOCQ.

ABNDPROG n/a Y Y Y

© Copyright IBM Corp. 2000, 2013 345

Table 51. Session / conversation information (continued)

1= Initiates session, if required and if session limits allow

2= Allowed on any HDX conversation

3= Allowed on an HDX conversation - established on an FDX
session

4= Allowed on an FDX conversation

1 2 3 4

ABNDSERV n/a Y Y Y

ABNDTIME n/a Y Y Y

ABNDUSER n/a Y Y Y

OPRCNTL.

ACTSESS N n/a n/a n/a

CNOS Y n/a n/a n/a

DACTSESS N n/a n/a n/a

DEFINE N n/a n/a n/a

DISPLAY N n/a n/a n/a

RESTORE N n/a n/a n/a

PREALLOC.

ALLOCD Y Y Y Y

CONVGRP N Y Y Y

CONWIN Y Y Y Y

IMMED N Y Y Y

WHENFREE Y Y Y Y

PREPRCV.

CONFIRM n/a Y Y N

DATACON n/a Y Y N

DATAFLU n/a Y Y N

FLUSH n/a Y Y N

RCVEXPD.

ANY n/a Y Y Y

IANY n/a Y Y Y

ISPEC n/a Y Y Y

SPEC n/a Y Y Y

RCVFMH5.

DATAQUE n/a Y Y Y

NULL n/a Y Y Y

QUEUE n/a Y Y Y

RECEIVE.

ANY n/a Y Y Y

IANY n/a Y Y Y

ISPEC n/a Y Y Y

SPEC n/a Y Y Y

REJECT.

346 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 51. Session / conversation information (continued)

1= Initiates session, if required and if session limits allow

2= Allowed on any HDX conversation

3= Allowed on an HDX conversation - established on an FDX
session

4= Allowed on an FDX conversation

1 2 3 4

CONV n/a Y Y Y

CONVGRP n/a Y Y Y

SESSION n/a n/a n/a n/a

RESETRCV.

NULL n/a Y Y Y

SEND.

CONFIRM n/a Y Y N

CONFRMD n/a Y Y N

DATA n/a Y Y Y

DATACON n/a Y Y N

DATAFLU n/a Y Y Y

ERROR n/a Y Y Y

FLUSH n/a Y Y Y

RQSEND n/a Y Y N

SENDEXPD.

DATA n/a N Y Y

SENDFMH5.

NULL n/a Y Y Y

SENDRCV.

DATAFLU n/a Y Y N

SETSESS.

RESUME n/a Y Y N

SUSPEND n/a Y Y N

SYNCBEG n/a Y Y N

SYNCEND n/a Y Y N

TESTSTAT.

ALL n/a Y Y Y

IALL n/a Y Y Y

ISPEC n/a Y Y Y

SPEC n/a Y Y Y

Appendix B. APPCCMD macroinstruction overview 347

Information from the application to VTAM

Table 52 provides the following information regarding APPCCMD
macroinstructions and the flow of information from the application to VTAM:
1. Transfers normal data from the application to VTAM
2. Flushes (empties) SEND buffer (normal data) into the network
3. Possibly causes information to be sent into the network
4. Transfers expedited data from the application to VTAM
5. Causes a SEND indication to be sent to the partner
6. Causes a DEALLOC indication to be sent to the partner
7. Causes a CONFIRM indication to be sent to the partner
8. Causes a CONFIRMD indication to be sent to the partner
9. Causes an ERROR indication to be sent to the partner

Table 52. Flow from local application to VTAM

1= Transfers normal data from
application to VTAM

2= Flushes SEND buffer (normal data)
into network

3= Possibly causes information to be
sent into the network

4= Transfers expedited data from
application to VTAM

5= Causes a SEND indication to be sent
to the partner

6= Causes a DEALLOC indication to be
sent to the partner

7= Causes a CONFIRM indication to be
sent to the partner

8= Causes a CONFIRMD indication to
be sent to the partner

9= Causes an ERROR indication to be
sent to the partner

1 2 3 4 5 6 7 8 9

ALLOC (N|Y means - N for HDX sessions, Y for FDX sessions)

ALLOCD Y N|Y N|Y N N N N N N

CONVGRP Y N|Y N|Y N N N N N N

CONWIN Y N|Y N|Y N N N N N N

IMMED Y N|Y N|Y N N N N N N

WHENFREE Y N|Y N|Y N N N N N N

CHECK n/a n/a n/a n/a n/a n/a n/a n/a n/a

DEALLOC.

ABNDPROG Y Y Y N N Y N N Y

ABNDSERV Y Y Y N N Y N N Y

ABNDTIME Y Y Y N N Y N N Y

ABNDUSER Y Y Y N N Y N N Y

348 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 52. Flow from local application to VTAM (continued)

1= Transfers normal data from
application to VTAM

2= Flushes SEND buffer (normal data)
into network

3= Possibly causes information to be
sent into the network

4= Transfers expedited data from
application to VTAM

5= Causes a SEND indication to be sent
to the partner

6= Causes a DEALLOC indication to be
sent to the partner

7= Causes a CONFIRM indication to be
sent to the partner

8= Causes a CONFIRMD indication to
be sent to the partner

9= Causes an ERROR indication to be
sent to the partner

1 2 3 4 5 6 7 8 9

CONFIRM N Y Y N N Y Y N N

DATACON Y Y Y N N Y Y N N

DATAFLU Y Y Y N N Y N N N

FLUSH N Y Y N N Y N N N

DEALLOCQ.

ABNDPROG Y Y Y N N Y N N Y

ABNDSERV Y Y Y N N Y N N Y

ABNDTIME Y Y Y N N Y N N Y

ABNDUSER Y Y Y N N Y N N Y

OPRCNTL.

ACTSESS Y N/a Y N N/a N/a N/a N/a N/a

CNOS Y N/a Y N N/a N/a N/a N/a N/a

DACTSESS N N/a Y N N/a N/a N/a N/a N/a

DEFINE Y N/a N N N/a N/a N/a N/a N/a

DISPLAY N N/a N N N/a N/a N/a N/a N/a

RESTORE N N/a N N N/a N/a N/a N/a N/a

PREALLOC (N|Y means - N for HDX sessions, Y for FDX sessions)

ALLOCD N N N N N N N N N

CONVGRP N N N N N N N N N

CONWIN N N N N N N N N N

IMMED N N N N N N N N N

WHENFREE N N N N N N N N N

PREPRCV.

CONFIRM N Y Y N Y N Y N N

DATACON Y Y Y N Y N Y N N

Appendix B. APPCCMD macroinstruction overview 349

Table 52. Flow from local application to VTAM (continued)

1= Transfers normal data from
application to VTAM

2= Flushes SEND buffer (normal data)
into network

3= Possibly causes information to be
sent into the network

4= Transfers expedited data from
application to VTAM

5= Causes a SEND indication to be sent
to the partner

6= Causes a DEALLOC indication to be
sent to the partner

7= Causes a CONFIRM indication to be
sent to the partner

8= Causes a CONFIRMD indication to
be sent to the partner

9= Causes an ERROR indication to be
sent to the partner

1 2 3 4 5 6 7 8 9

DATAFLU Y Y Y N Y N N N N

FLUSH N Y Y N Y N N N N

RCVEXPD.

ANY N N Y N N N N N N

IANY N N Y N N N N N N

ISPEC N N Y N N N N N N

SPEC N N Y N N N N N N

RCVFMH5.

DATAQUE N N N N N N N N N

NULL N N N N N N N N N

QUEUE N N N N N N N N N

RECEIVE.

ANY N N N N N N N N N

IANY N N N N N N N N N

ISPEC N N N N N N N N N

SPEC N Y Y N Y N N N N

REJECT.

CONV N N N N N N N N Y

CONVGRP N N N N N N N N Y

SESSION N N N N N N N N Y

RESETRCV.

NULL N N N N N N N N N

SEND.

CONFIRM N Y Y N N N Y N N

CONFRMD N N Y N N N N Y N

350 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 52. Flow from local application to VTAM (continued)

1= Transfers normal data from
application to VTAM

2= Flushes SEND buffer (normal data)
into network

3= Possibly causes information to be
sent into the network

4= Transfers expedited data from
application to VTAM

5= Causes a SEND indication to be sent
to the partner

6= Causes a DEALLOC indication to be
sent to the partner

7= Causes a CONFIRM indication to be
sent to the partner

8= Causes a CONFIRMD indication to
be sent to the partner

9= Causes an ERROR indication to be
sent to the partner

1 2 3 4 5 6 7 8 9

DATA Y N Y N N N N N N

DATACON Y Y Y N N N Y N N

DATAFLU Y Y Y N N N N N N

ERROR Y Y Y N N N N N Y

FLUSH N Y Y N N N N N N

RQSEND N N Y N N N N N N

SENDEXPD.

DATA N N Y Y N N N N N

SENDFMH5.

NULL Y N|Y N|Y N N N N N N

SENDRCV.

DATAFLU Y Y Y N Y N N N N

SETSESS.

RESUME N N N N N N N N N

SUSPEND N N N N N N N N N

SYNCBEG N N N N N N N N N

SYNCEND N N N N N N N N N

TESTSTAT.

ALL N N N N N N N N N

IALL N N N N N N N N N

ISPEC N N N N N N N N N

SPEC N N N N N N N N N

Appendix B. APPCCMD macroinstruction overview 351

Information flow from VTAM to the application

Table 53 provides the following information regarding the flow of information from
VTAM to the application:
1. Transfers normal data from VTAM to the application
2. Transfers expedited data from VTAM to the application
3. Receives SEND indication from the partner
4. Receives DEALLOC indication from the partner
5. Receives CONFIRM indication from the partner
6. Receives CONFIRMD indication from the partner
7. Receives ERROR indication from the partner
8. Receives SIGRCV and SIGDATA (RTSRTRN=BOTH specified)
9. Receives SIGRCV and SIGDATA (RTSRTRN=EXPD specified)

Table 53. Flow from VTAM to local application

1= Transfers normal data from VTAM
to application

2= Transfers expedited data from
VTAM to application

3= Receives SEND indication from the
partner

4= Receives DEALLOC indication from
the partner

5= Receives CONFIRM indication from
the partner

6= Receives CONFIRMD indication
from the partner

7= Receives ERROR indication from the
partner

8= Receives SIGRCV and SIGDATA
(RTSRTRN=BOTH)

9= Receives SIGRCV and SIGDATA
(RTSRTRN=EXPD)

1 2 3 4 5 6 7 8 9

ALLOC.

ALLOCD N N N N N N N N N

CONVGRP N N N N N N N N N

CONWIN N N N N N N N N N

IMMED N N N N N N N N N

WHENFREE N N N N N N N N N

CHECK n/a n/a n/a n/a n/a n/a n/a n/a n/a

DEALLOC.

ABNDPROG N N N N N N N N N

ABNDSERV N N N N N N N N N

ABNDTIME N N N N N N N N N

ABNDUSER N N N N N N N N N

352 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 53. Flow from VTAM to local application (continued)

1= Transfers normal data from VTAM
to application

2= Transfers expedited data from
VTAM to application

3= Receives SEND indication from the
partner

4= Receives DEALLOC indication from
the partner

5= Receives CONFIRM indication from
the partner

6= Receives CONFIRMD indication
from the partner

7= Receives ERROR indication from the
partner

8= Receives SIGRCV and SIGDATA
(RTSRTRN=BOTH)

9= Receives SIGRCV and SIGDATA
(RTSRTRN=EXPD)

1 2 3 4 5 6 7 8 9

CONFIRM N N N N N Y Y Y N

DATACON N N N N N Y Y Y N

DATAFLU N N N N N N Y Y N

FLUSH N N N N N N Y N N

DEALLOCQ.

ABNDPROG N N N N N N N N N

ABNDSERV N N N N N N N N N

ABNDTIME N N N N N N N N N

ABNDUSER N N N N N N N N N

OPRCNTL.

ACTSESS N N N/a N/a N/a N/a N/a N/a N/a

CNOS Y N N/a N/a N/a N/a N/a N/a N/a

DACTSESS N N N/a N/a N/a N/a N/a N/a N/a

DEFINE N N N/a N/a N/a N/a N/a N/a N/a

DISPLAY Y N N/a N/a N/a N/a N/a N/a N/a

RESTORE Y N N/a N/a N/a N/a N/a N/a N/a

PREALLOC.

ALLOCD N N N N N N N N N

CONVGRP N N N N N N N N N

CONWIN N N N N N N N N N

IMMED N N N N N N N N N

WHENFREE N N N N N N N N N

PREPRCV.

CONFIRM N N N N N Y Y N N

DATACON N N N N N Y Y Y N

Appendix B. APPCCMD macroinstruction overview 353

Table 53. Flow from VTAM to local application (continued)

1= Transfers normal data from VTAM
to application

2= Transfers expedited data from
VTAM to application

3= Receives SEND indication from the
partner

4= Receives DEALLOC indication from
the partner

5= Receives CONFIRM indication from
the partner

6= Receives CONFIRMD indication
from the partner

7= Receives ERROR indication from the
partner

8= Receives SIGRCV and SIGDATA
(RTSRTRN=BOTH)

9= Receives SIGRCV and SIGDATA
(RTSRTRN=EXPD)

1 2 3 4 5 6 7 8 9

DATAFLU N N N N N N Y Y N

FLUSH N N N N N N N N N

RCVEXPD.

ANY N Y N N N N N Y Y

IANY N Y N N N N N Y Y

ISPEC N Y N N N N N Y Y

SPEC N Y N N N N N Y Y

RCVFMH5.

DATAQUE Y N N N N N Y N N

NULL Y N N N N N Y N N

QUEUE Y N N N N N Y N N

RECEIVE.

ANY Y N Y Y Y N Y Y N

IANY Y N Y Y Y N Y Y N

ISPEC Y N Y Y Y N Y Y N

SPEC Y N Y Y Y N Y Y N

REJECT.

CONV N N N N N N N N N

CONVGRP N N N N N N N N N

SESSION N N N N N N N N N

RESETRCV.

NULL N N N N N N N N N

SEND.

CONFIRM N N N N N Y Y Y N

CONFRMD N N N N N N N N N

354 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Table 53. Flow from VTAM to local application (continued)

1= Transfers normal data from VTAM
to application

2= Transfers expedited data from
VTAM to application

3= Receives SEND indication from the
partner

4= Receives DEALLOC indication from
the partner

5= Receives CONFIRM indication from
the partner

6= Receives CONFIRMD indication
from the partner

7= Receives ERROR indication from the
partner

8= Receives SIGRCV and SIGDATA
(RTSRTRN=BOTH)

9= Receives SIGRCV and SIGDATA
(RTSRTRN=EXPD)

1 2 3 4 5 6 7 8 9

DATA N N N N N N Y Y N

DATACON N N N N N Y Y Y N

DATAFLU N N N N N N Y Y N

ERROR N N N Y N N Y Y N

FLUSH N N N N N N Y N N

RQSEND N N N N N N N N N

SENDEXPD.

DATA N N N N N N N Y Y

SENDFMH5.

NULL N N N N N N N N N

SENDRCV.

DATAFLU Y N Y Y Y N Y Y N

SETSESS.

RESUME N N N N N N N N N

SUSPEND N N N N N N N N N

SYNCBEG N N N N N N N N N

SYNCEND N N N N N N N N N

TESTSTAT (I mean availability indicated in Status Data Structure but not altered by this macroinstruction)

ALL I I I I I I I I I

IALL I I I I I I I I I

ISPEC I I I I I I I I I

SPEC I I I I I I I I I

Appendix B. APPCCMD macroinstruction overview 355

356 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Appendix C. Example of a sample LU 6.2 application program

This appendix contains the source code of a sample LU 6.2 application program
and a console log created from the execution of the sample program.

The source code is designed to generate two sample programs capable of using
VTAM LU 6.2 macroinstruction for communication. The program presented here is
designed for a z/OS operating system. The sample uses the WTO macroinstruction
as a trace mechanism to identify various code points being executed.

A console log of the two applications running is displayed after the source code.
The console log shows the activity each sample program performs in order to
establish conversations, communicate data over the conversations, and terminate
two conversations.

In order to better isolate the processing being performed by the two applications,
information regarding one application is on the left side of the console log and
information regarding the other application is on the right side of the console log.
The console log represents the whole run time integrated vertically.

The interaction between the two programs demonstrates an application program:
v Identifying itself to VTAM
v Negotiating session limits
v Processing the ATTN exit routine
v Allocating and deallocating a conversation
v Sending and receiving logical records
v Changing conversation states

Sample VTAM LU 6.2 application program
**
*** ***
*** INTRODUCTION: This sample application is provided to give ***
*** potential VTAM LU 6.2 application writers a simple ***
*** example of the major processes needed to facilitate LU 6.2 ***
*** conversations. ***
*** ***
*** One of the main objectives of this sample is to show ***
*** the logic of a successful conversation. However ***
*** keeping the sample simple and easy to follow was made ***
*** possible by omitting many error paths that can occur ***
*** during a conversation. For instance a TPEND exit, which ***
*** notifies an application of VTAM services ending, was ***
*** not provided. Testing to insure a macro instruction ***
*** was accepted successfully and recovery routines to address ***
*** completion errors were not provided. Much of a user ***
*** written application deals with error conditions as opposed ***
*** to successful communication. ***
*** ***
*** Note that the application assumes no processing ***
*** contentions when it allocates storage for ***
*** containing conversation related information. ***
*** ***
*** Much of the logic which complicates the transaction ***
*** program processing has been replaced by a WTOR to the ***
*** console operator to dictate the next communication ***

© Copyright IBM Corp. 2000, 2013 357

*** action a transaction program should take. ***
*** ***
*** BASIC STRUCTURE of the SAMPLE: The MAIN code will deal ***
*** with managing the ACB and upon request issue the ***
*** necessary macroinstructions to start a conversation. The ***
*** rest of the routines will be executed from the completion ***
*** RPL exit of a previous macro instruction or from the ***
*** ACB ATTN exit. All exits are executed unauthorized in ***
*** order to allow WTO/WTOR macroinstruction to work ***
*** successfully. Most of the VTAM macroinstructions are ***
*** issued OPTCD=ASY and EXIT=address. This allows the ***
*** application to take advantage of the processing tasks ***
*** created by VTAM for RPL completions. This simplifies ***
*** the application from doing ATTACHes for the transaction ***
*** programs but still achieves an asynchronous like ***
*** operation. ***
*** ***

*** OTHER DEFINITION NEEDED: ***
*** ***
*** The following are the APPL definitions that would support ***
*** the two applications that can be generated by this sample ***
*** code. Even though the SRBEXIT=NO is defaulted, it is ***
*** still shown here, to highlight that the ACB exits are ***
*** executed unauthorized: ***
*** ***
*** col 72 ***
*** | ***
*** V ***
*** VBUILD TYPE=APPL ***
*** ACBVICKY APPL APPC=YES,SRBEXIT=NO, X ***
*** DSESLIM=2,DMINWNL=1,DMINWNR=1 ***
*** ACBGARY APPL APPC=YES,SRBEXIT=NO, X ***
*** DSESLIM=2,DMINWNL=1,DMINWNR=1 ***
*** ***
*** ***
*** The following is the MODEENT macro that was added to ***
*** logon mode table (ISTINCLM). This entry was patterned ***
*** after the SNASVCMG entry which is shipped with the VTAM ***
*** default logmode table. In this example, the max RU ***
*** size was changed to 512 bytes. ***
*** ***
*** ***
*** SNASVCMG MODEENT LOGMODE=SNASVCMG,FMPROF=X’13’,TSPROF=X’07’, X ***
*** PRIPROT=X’B0’,SECPROT=X’B0’,COMPROT=X’D0B1’, X ***
*** RUSIZES=X’8585’,ENCR=B’0000’,TYPE=0, X ***
*** PSERVIC=X’060200000000000000000300’ ***
*** LU62CONV MODEENT LOGMODE=LU62CONV,FMPROF=X’13’,TSPROF=X’07’, X ***
*** PRIPROT=X’B0’,SECPROT=X’B0’,COMPROT=X’D0B1’, X ***
*** RUSIZES=X’8686’,ENCR=B’0000’,TYPE=0, X ***
*** PSERVIC=X’060200000000000000000300’ ***
*** ***
**

EJECT

**
*** ASSEMBLER NOTES: The following assembler variable (&SIDE) is ***
*** used to include appropriate instructions for building one of ***
*** two VTAM LU 6.2 sample applications. This assembler variable ***
*** can be set to "LEFT " or "RIGHT". The result of each value ***
*** will generate the following information: ***
*** ***
*** &SIDE SETC ’LEFT ’ ==> will generate a CSECT name of ***
*** APPCAPPL, OPEN an ACB with an APPLID value of "ACBVICKY" ***
*** and pre-allocate storage to contain conversation-related ***
*** information. Names, JEFFERY and KIMBERLY, have been ***
*** assigned to each pre-allocated storage. ***
*** ***

358 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

*** &SIDE SETC ’RIGHT’ ==> will generate a CSECT name of ***
*** APPCAPPR, OPEN an ACB with an APPLID value of "ACBGARY" ***
*** and pre-allocate storage to contain conversation-related ***
*** information. Names, JAIME and TIMOTHY, have been ***
*** assigned to each pre-allocated storage. ***
*** ***
*** Assembler H was used to assemble this source which allows ***
*** symbols to be used before they are defined. If Assembler F ***
*** is used, the DSECTs will need to be moved ahead of the code ***
*** that references the symbols defined in the DSECTs. ***
**

SPACE 3
LCLC &SIDE

&SIDE SETC ’LEFT ’
* &SIDE SETC ’RIGHT’

SPACE 3
AIF (’&SIDE’ EQ ’LEFT ’).LCSECT

APPCAPPR CSECT
AGO .ECSECT

.LCSECT ANOP
APPCAPPL CSECT
.ECSECT ANOP

SPACE 3
**
* *
* Register EQUATES *
* *
**
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

EJECT

**
* *
* Initialization Section - Perform standard linkage convention *
* and establish addressability for the program and RPL and *
* RPL extension. *
* *
* Registers on entry: *
* R13 address of an 18 word save area *
* R14 return address *
* R15 entry address of this program *
**

SPACE 3
MAIN EQU *

STM R14,R12,12(R13) Save registers
LR R12,R15 Establish base for MAIN routine
AIF (’&SIDE’ EQ ’LEFT ’).LUSING
USING APPCAPPR,R12
AGO .EUSING

.LUSING ANOP

Appendix C. Example of a sample LU 6.2 application program 359

USING APPCAPPL,R12
.EUSING ANOP

CNOP 0,4 Fullword boundary
BAL R1,*+76 Branch around save area
DC 18F’0’ Save area for macroinstruction
ST R1,8(0,R13) Chain
ST R13,4(0,R1) save area
LR R13,R1 Set register 13 to save area
LA R9,MAINRPL Establish addressability
USING IFGRPL,R9 to MAIN routine RPL
LA R8,MAINRPL6 Establish addressability
USING ISTRPL6X,R8 to MAIN routine RPL Extension
SPACE 3

**
* *
* Issue OPEN macroinstruction to identify this program to VTAM. *
* The OPEN macroinstruction references a VTAM ACB with a label *
* of ACB. The ACB is VTAM’s representation of the LU. All VTAM *
* macros used will reference this ACB. *
* *
**

SPACE 3
WTO ’ISSUING OPEN ACB MACRO REQUEST’,ROUTCDE=(1)
XR R15,R15 Initialize register 15 = 0
OPEN ACB
LTR R15,R15 Test OPEN
BZ OPENOK Branch if successful
WTO ’OPEN ACB MACRO REQUEST FAILED ’,ROUTCDE=(1)
B MAINRETN Branch to MAIN return
SPACE 3

**
* *
* Issue SETLOGON macroinstruction to enable VTAM to start *
* accepting LU 6.2 session-initiation request on behalf of the *
* application program. The RPL operand of this and other *
* macroinstructions specifies the request parameter list (RPL) *
* that is used to send and receive information about the *
* macroinstruction to and from VTAM. *
* *
**

SPACE 3

OPENOK EQU *
WTO ’ISSUING SETLOGON MACRO REQUEST’,ROUTCDE=(1)
SETLOGON RPL=MAINRPL,OPTCD=START
CLI RPLRTNCD,USFAOK RTNCD = X’00’ ?
BNE SETLOGFL branch if no
CLI RPLFDB2,USFAOOK FDB2 = X’00’
BE LOOP branch if yes

SETLOGFL EQU *
WTO ’SETLOGON MACRO REQUEST FAILED ’,ROUTCDE=(1)
B MAINRETN
EJECT

**
* *
* In any application a user would write, there will be some *
* stimulus which will initiate a transaction program. That *
* stimulus will be simulated with a reply from the following *
* WTOR macro request. A reply of "START" will drive code to *
* start a conversation. A reply of "CLOSE" will drive code to *
* terminate this application. *
* *
**

SPACE 3
LOOP EQU *

360 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

MVC REPLY,=CL8’ ’ Initialize reply storage
XC MAINECB,MAINECB Initialize WTOR ECB
WTOR ’Enter START to start a transaction or CLOSE to close thX

e ACB’,REPLY,8,MAINECB,ROUTCDE=(1)
WAIT ECB=MAINECB Wait for reply
CLC REPLY,=CL8’CLOSE’ Operator reply close?
BE MAINEND Branch yes
CLC REPLY,=CL8’START ’ Operator wants to start a

* conversation?
BE STARTUP Branch yes
WTO ’OPERATOR REPLY IS INVALID ’,ROUTCDE=(1)
B LOOP
EJECT

**
* *
* In LU 6.2 architecture before a conversation can be started *
* the LUs must first have established some rules and limits *
* for the sessions that will be used by the transaction programs. *
* Therefore this program determines if these rules and limits *
* have been established, and if not, issues the appropriate *
* macroinstructions to cause this process to happen. This sample *
* application will be concerned with LU 6.2 sessions established *
* using the LOGMODE named "LU62CONV". *
* The APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS is the *
* macroinstruction used to cause the process for establishing *
* these rules and limits. *
* *
**

SPACE 3
STARTUP EQU *

CLI LUSTATE,LUCNOSD As a CNOS set establishing
* session limits > 0 been
* processed?

BE DOALLOC Branch yes (bypass CNOS)
MVC RPL6LU,LUNAME Set RPL extension LU name
MVC RPL6MODE,LOGMODE Set RPL extension LOGMODE
WTO ’ISSUING CONTROL=OPRCNTL,QUALIFY=CNOS MACRO REQUEST’,ROUX

TCDE=(1)
APPCCMD CONTROL=OPRCNTL,QUALIFY=CNOS, X

RPL=MAINRPL,AAREA=MAINRPL6, X
AREA=0,RECLEN=0, X
OPTCD=SYN

SPACE 3
**
* *
* Verify macroinstruction completed successfully. If it did not, *
* provide notification of its failure. *
* *
**

CLI RPLRTNCD,USFAOK RTNCD = X’00’ ?
BNE CNOSFL branch no
CLI RPLFDB2,USF6APPC FDB2 = X’0B’ ?
BNE CNOSFL Branch no
CLC RPL6RCPR,=AL2(USF6OK) RCPRI = X’00’?
BNE CNOSFL branch no
MVI LUSTATE,LUCNOSD set LU state to CNOSed
B DOALLOC branch to do the allocate

CNOSFL EQU *
SPACE 3

**
* *
* To simplify this sample we will assume an unsuccessful CNOS *
* implies the partner LU is not available. *
* *
**

Appendix C. Example of a sample LU 6.2 application program 361

WTO ’CONTROL=OPRCNTL,QUALIFY=CNOS MACRO REQUEST FAILED’,ROUTX
CDE=(1)

B LOOP
EJECT

**
* *
* Once a successful CNOS has been achieved, then the start *
* transaction process can be performed. This sample program *
* will first find an available conversation entry in the local *
* conversation table, which will be used to maintain knowledge *
* of the conversation. The conversation entry will consist of *
* the storage needed to issue VTAM macroinstruction for the *
* conversation. *
* *
* The APPCCMD CONTROL=ALLOC macroinstruction will be issued to *
* initiate a conversation. The AREA field will point to an *
* FMH-5 which is used to identify the transaction processing *
* this conversation applies. *
* *
* Most of the macroinstruction this sample program issues will *
* complete asynchronously with an exit which VTAM will invoke *
* when the request has finished. *
* *
* This sample will also utilize the USERFLD of the RPL6 to *
* pass the address of the conversation entry to the RPL exit *
* specified on the request. *
* *
* NOTE: This sample program will assume that two conversations *
* will "NOT" be started at the same time. This implies that the *
* ATTN FMH-5 exit and this procedure will not overlap during *
* execution. *
* *
**

SPACE 3
DOALLOC EQU *

LA R6,2(0,0) R6 assigned to 2 (#entries)
L R10,=A(CONVTBL) R10 address of conversation

* table (1st entry)
USING CONVTBLD,R10 Establish addressability

* of conversation entry
TSTOPEN EQU *

CLI CONVSTAT,CONVOPEN Entry available ?
BE GOTONE Branch yes
LA R10,CONVLEN(0,R10) Address next entry
BCT R6,TSTOPEN Branch to TESTOPEN if we

* haven’t reached end of table.
SPACE 1
WTO ’ALL CONVERSATION ENTRIES IN USE’,ROUTCDE=(1)
B LOOP return to mainline prompt
SPACE 3

GOTONE EQU * Have conversation entry

MVI CONVSTAT,CONVACT Make entry as allocated
MVC CONVRPL,MODLRPL Initialize RPL
MVC CONVRPL6,MODLRPL6 Initialize RPL6
LA R1,CONVRPL6 Establish RPL6 basing
MVC RPL6LU-ISTRPL6X(L’RPL6LU,R1),LUNAME Set LUNAME

* field in RPL6
MVC RPL6MODE-ISTRPL6X(L’RPL6MODE,R1),LOGMODE Set LOGMODE

* field in RPL6
MVC CONVAREA(L’MODLFMH5),MODLFMH5 Initialize AREA with

* a valid FMH-5
SPACE 1
WTO ’ISSUING CONTROL=ALLOC,QUALIFY=ALLOCD MACRO REQUEST’,ROUX

TCDE=(1)
SPACE 1
APPCCMD CONTROL=ALLOC,QUALIFY=ALLOCD, X

362 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

RPL=CONVRPL,AAREA=CONVRPL6, X
AREA=CONVAREA,RECLEN=L’MODLFMH5, X
OPTCD=ASY,EXIT=AEXT,USERFLD=(R10)

SPACE 1
LTR R15,R15 ALLOC request accepted OK?
BZ LOOP Branch if yes
SPACE 1
WTO ’CONTROL=ALLOC,QUALIFY=ALLOCD MACRO REQUEST FAILED’,ROUTX

CDE=(1)
SPACE 1
B LOOP Go back to WTOR prompt
EJECT

**
* *
* This termination routine is making the assumption that all *
* conversations have completed successfully. Therefore the work *
* remaining is to CNOS the LOGMODE mode LU62CONV session limits *
* to zero and then CNOS the SNASVCMG limits to zero. Once the *
* the CNOSes have completed the ACB will be CLOSED and then the *
* application will return to the system. *
* *
**

SPACE 3
MAINEND EQU *

CLI LUSTATE,LUCNOSD Have session limits been set?
BNE DOCLOSE branch if not
MVC RPL6LU,LUNAME Set RPL extension LU name
MVC RPL6MODE,LOGMODE Set RPL extension LOGMODE
XC MAINAREA,MAINAREA initializing the AREA to zero

* will produce a CNOS structure
* with session limits set to zero

LA R1,MAINAREA Address AREA storage
SPACE 1
WTO ’RESETTING SESSION LIMITS FOR LU62CONV MODE ’,ROUX

TCDE=(1)
SPACE 1
APPCCMD CONTROL=OPRCNTL,QUALIFY=CNOS, X

ACB=ACB,RPL=MAINRPL,AAREA=MAINRPL6, X
AREA=MAINAREA,RECLEN=SLCLEN, X
OPTCD=SYN

SPACE 1
MVC RPL6MODE,=CL8’SNASVCMG’ Set to CNOS the SNASVCMG mode
SPACE 1
WTO ’RESETTING SESSION LIMITS FOR SNASVCMG MODE ’,ROUX

TCDE=(1)
SPACE 1
APPCCMD CONTROL=OPRCNTL,QUALIFY=CNOS, X

ACB=ACB,RPL=MAINRPL,AAREA=MAINRPL6, X
OPTCD=SYN

SPACE 3
DOCLOSE EQU *

WTO ’ISSUING CLOSE ACB MACRO REQUEST ’,ROUTCDE=(1)
CLOSE ACB Close ACB
SPACE 3

**
* Registers on exit: *
* R0-R14 values that were set upon entry *
* R15 set to zero *
**

SPACE 3
MAINRETN DS 0H

L R13,4(0,R13) Reload register 13
LM R14,R12,12(R13) Reload the remaining registers
XR R15,R15 Set return register to 0
BR R14 Return to system dispatcher
DROP R8,R9,R10,R12
EJECT

Appendix C. Example of a sample LU 6.2 application program 363

**
* *
* MAIN routine data area *
* *
**

SPACE 3
REPLY DC CL8’ ’ WTOR REPLY area
MAINECB DC F’0’ WTOR ECB

SPACE 3
MAINRPL RPL AM=VTAM,ACB=ACB MAIN task RPL
MAINRPL6 ISTRPL6 MAIN task RPL6
MAINAREA DC XL(SLCLEN)’00’ MAIN task AREA

SPACE 3
DS 0F

MODLRPL RPL AM=VTAM,ACB=ACB Model RPL
MODLRPL6 ISTRPL6 CONMODE=CS,FILL=LL,LOGMODE=LU62CONV Model RPL6
MODLFMH5 DC XL21’150502FF0003D0000008C140D7C5D9E2D6D5000000’ Model
* FMH-5

SPACE 3
ACB ACB AM=VTAM, X

EXLST=EXLST, X
APPLID=APPLID

EXLST EXLST AM=VTAM, X
ATTN=ATTNEXIT

APPLID DC AL1(8)
AIF (’&SIDE’ EQ ’LEFT ’).LAPPLID
DC CL8’ACBGARY ’
AGO .EAPPLID

.LAPPLID ANOP
DC CL8’ACBVICKY’

.EAPPLID ANOP
LTORG
EJECT

**
* *
* ATTN EXIT Routine *
* *
* The ATTN Exit is driven by VTAM to notify the application when *
* certain events have happened. The exit’s address is supplied in *
* EXLST control block, which is pointed to by the ACB that was *
* OPENed. The three events that are reported are 1) the reception *
* of an FMH-5, 2) the processing of a CNOS transaction, and 3) the *
* unbind of the last LU 6.2 session of a mode group. *
* *
* VTAM enters the ATTN exit with a read-only RPL, which points to *
* a read-only RPL extension. The RPL extension contains the name *
* of the partner LU and logon mode. *
* *
* Of the three events, this sample application will be interested in *
* FMH-5 arrivals and CNOS processing. FMH-5 arrivals will cause *
* this exit to issue a RCVFMH5 APPCCMD macroinstruction. *
* For CNOS events this exit will note if session limits are being *
* initialized or reset. *
* *
* ON ENTRY: *
* R1 - address of a 6 word parameter list as documented in *
* in the LU 6.2 programming manual *
* R14 - Return address when processing is finished *
* R15 - Address of this ATTN exit. *
* *
**

SPACE 3
ATTNEXIT DS 0H

USING ATTNEXIT,R15 Temporary base for this routine
CNOP 0,4 Fullword alignment
BAL R13,*+76 branch around save area
DC 18F’0’ Set up save area chain

364 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

STM R14,R12,12(R13) Store current registers
LR R12,R15 Establish normal base register
DROP R15 for this
USING ATTNEXIT,R12 ATTN exit
CNOP 0,4 Fullword alignment
BAL R15,*+76 branch around save area
DC 18F’0’ Save area for called routines

* and macro requests
ST R15,8(0,R13) chain save areas
ST R13,4(0,R15) together
LR R13,R15 set R13 to second savearea
LR R11,R1 preserve parameter address
SPACE 3
WTO ’ENTERING ATTN ACB EXIT ROUTINE ’,ROUTCDE=(1)
SPACE 3
L R9,16(R11) Load address of read only RPL
USING IFGRPL,R9 establish base register
L R8,RPLAAREA Load address of read only RPL6
USING ISTRPL6X,R8 establish base register
CLC RPL6LU,LUNAME Verify partner LU name
BE LUOK Branch if OK
EX 0,* 0C3 Definition error with

* partner LU

LUOK EQU *
CLC RPL6MODE,LOGMODE Is LOGMODE = LU62CONV
BE MODEOK Branch if yes
CLC RPL6MODE,=CL8’SNASVCMG’ Is this SNASVCMG LOGMODE
BE MODEOK Branch if yes
EX 0,* 0C3 - Definition erro with

* partner LU
MODEOK EQU *

CLC 12(4,R11),=CL4’CNOS’ Is this a CNOS event?
BE ATTNCNOS branch if yes to CNOS process
CLC 12(4,R11),=CL4’FMH5’ Is this an FMH-5 reception ?
BE ATTNFMH5 branch if yes to FMH-5 process
CLC 12(4,R11),=CL4’LOSS’ Is this an UNBIND session

* event?
BE ATTNLOSS branch if yes to LOSS process
EJECT

**
* *
* CNOS Processing Routine *
* *
* For ATTN exit driven for CNOS, the read RPL also provides a *
* pointer to a read-only session limits data structure (ISTSLCNS). *
* The session limits structure contains the negotiated session *
* limits between the two LUs. *
**

SPACE 3
ATTNCNOS EQU *

WTO ’ATTN EXIT DRIVEN FOR CNOS ’,ROUTCDE=(1)
SPACE 3
L R7,RPLAREA Establish addressability to
USING ISTSLCNS,R7 CNOS structure
CLC SLCSESSL,=H’0’ Is the a Reset Session limits?
BE RESET branch if yes
MVI LUSTATE,LUCNOSD Else this request is setting

* limits which this sample
* program will just make note
* session limits have been CNOSed

B ATTNRETN Branch to return processing
RESET EQU *

MVI LUSTATE,LUNCNOS Make note that session limits
* have been reset and that no
* limits are established.

Appendix C. Example of a sample LU 6.2 application program 365

B ATTNRETN Branch to return processing
DROP R7 remove basing to CNOS

* structure
EJECT

**
* *
* FMH-5 Processing Routine *
* *
* VTAM schedules the ATTN exit with an FMH-5 event that indicates *
* the partner has allocated a conversation with this LU. *
* *
* The main propose of this process is to find an open conversation *
* entry and issue a RCVFMH5 macroinstruction to receive the FMH-5 *
* and complete the conversation’s initialization on this side. *
* This macroinstruction will be issued asynchronously with an *
* exit to be driven when the request has completed. *
* This sample will assume the FMH-5 can be contained within the *
* the area supplied in the conversation entry. *
* *
* This sample will also utilize the USERFLD of the RPL6 for *
* passing the address of the conversation entry to the RPL exit *
* specified on the request. *
* *
* *
**

SPACE 3
ATTNFMH5 EQU *

WTO ’ATTN EXIT DRIVEN FOR FMH5 RECEIVED ’,ROUTCDE=(1)
SPACE 3
LA R6,2(0,0) R6 assigned to 2 (#entries)
L R10,=A(CONVTBL) R10 address of conversation

* table (1st entry)
USING CONVTBLD,R10 Establish addressability

* of conversation entry
TESTOPEN EQU *

CLI CONVSTAT,CONVOPEN Entry available ?
BE RCVFMH5 Branch yes
LA R10,CONVLEN(0,R10) Address next entry
BCT R6,TESTOPEN Branch to TESTOPEN if we

* haven’t reached end of table.
EX 0,* Definition error or partner

* LU. Cannot accept this
* conversation request.

SPACE 3
RCVFMH5 EQU *

MVI CONVSTAT,CONVACT Set conversation as active
L R1,=A(MODLRPL) Initialize
MVC CONVRPL,0(R1) RPL
L R1,=A(MODLRPL6) Initialize
MVC CONVRPL6,0(R1) RPL6
SPACE 3
WTO ’ISSUING CONTROL=RCVFMH5 MACRO REQUEST ’,ROUX

TCDE=(1)
SPACE 3
APPCCMD RPL=CONVRPL,AAREA=CONVRPL6, X

CONTROL=RCVFMH5,AREA=CONVAREA,AREALEN=L’CONVAREA, X
OPTCD=ASY,EXIT=R5EXT,USERFLD=(R10)

B ATTNRETN Branch to EXIT return
EJECT

**
* *
* LOSS Processing Routine *
* *
**

SPACE 3
ATTNLOSS EQU *

366 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

WTO ’ATTN EXIT DRIVEN FOR LOSS SESSION ’,ROUTCDE=(1)
B ATTNRETN
EJECT

**
* *
* ATTN return processing *
* *
**

SPACE 3
ATTNRETN EQU *

WTO ’EXITING ATTN ACB EXIT ROUTINE ’,ROUTCDE=(1)
L R13,4(0,R13) Load address of first savearea
LM R14,R12,12(R13) Load original registers
BR R14 Branch back to VTAM
SPACE 3
DROP R8,R9,R10,R12 remove basing for passed

* structure
LTORG
EJECT

**
* *
* Partner LU information *
* *
**

SPACE 3
LUENTRY DS 0D

AIF (’&SIDE’ EQ ’LEFT ’).LPARTNR
LUNAME DC CL8’ACBVICKY’ Partner LU Name

AGO .EPARTNR
.LPARTNR ANOP
LUNAME DC CL8’ACBGARY ’ Partner LU Name
.EPARTNR ANOP
LUSTATE DC XL1’00’
LUNCNOS EQU X’00’ Session limits not established
LUCNOSD EQU X’80’ Session limits established

DC XL7’00’
LOGMODE DC CL8’LU62CONV’ LOGMODE name

EJECT

**
* *
* RCVFMH5 RPL Exit Routine *
* *
* This routine is given control by VTAM when the RCVFMH5 *
* macroinstruction has completed. When the macroinstruction *
* completes successfully, VTAM will return the conversation *
* ID in the RPL extension. Because the RPL extension is *
* dedicated to this conversation, further manipulation of *
* the conversation ID will not be required. The ID will *
* automatically be set for the next macroinstruction issued *
* for this conversation. *
* *
* ON ENTRY: *
* R1 - address of the RPL used in the macroinstruction *
* R14 - Return address when processing is finished *
* R15 - Address of this RPL exit *
* *
* *
**
R5EXT EQU *

LR R12,R15 Establish normal
USING R5EXT,R12 addressability for routine
SPACE 1
LR R9,R1 Establish base reg for RPL
USING IFGRPL,R9 RPL
SPACE 3
WTO ’ENTERING RCVFMH5 RPL EXIT ROUTINE ’,ROUTCDE=(1)
SPACE 3

Appendix C. Example of a sample LU 6.2 application program 367

L R8,RPLAAREA Load address of read only RPL6
USING ISTRPL6X,R8 set basing
L R10,RPL6USR Establish addressability to
USING CONVTBLD,R10 conversation entry
LA R13,CONVSA Use the conversation storage
STM R14,R12,12(R13) to save the registers
LA R15,CONVCA establish another save area

* for subsequent calls or
* macro requests.

ST R15,8(0,R13) Normal save area
ST R13,4(0,R15) Save area
LR R13,R15 chaining
SPACE 3
APPCCMD RPL=CONVRPL, X

CONTROL=CHECK
SPACE 3

**
* *
* Verify macroinstruction completed successfully. If it did not, *
* provide notification of its failure. *
* *
**

CLI RPLRTNCD,USFAOK RTNCD = X’00’ ?
BNE RCV5FL branch no
CLI RPLFDB2,USFAOOK FDB2 = X’00’ ?
BE DORCV Branch yes

RCV5FL EQU *
WTO ’CONTROL=RCVFMH5 failed’,ROUTCDE=(1)
B R5XTRETN
SPACE 3

**
* *
* At this point we know the conversation is in receive state and *
* therefore a RECEIVE macroinstruction will need to be issued. *
* *
**
DORCV EQU *

L R12,=A(RREQ) Branch to RECEIVE request
* processing

BR R12 Branch to routine
SPACE 3

R5XTRETN EQU *
WTO ’EXITING RCVFMH5 RPL EXIT ROUTINE ’,ROUTCDE=(1)
L R13,4(0,R13) Reload return
LM R14,R12,12(R13) register
BR R14 Branch back to VTAM
DROP R8,R9,R10,R12 Drop control block addressing
EJECT

**
* *
* ALLOC RPL Exit Routine *
* *
* This routine is given control by VTAM when the ALLOC *
* macroinstruction has completed. Because the RPL extension *
* is dedicated to this conversation, further manipulation of *
* the conversation ID will not be required. The ID will *
* automatically be set for the next macroinstruction issued *
* for this conversation. *
* *
* ON ENTRY: *
* R1 - address of the RPL used in the macroinstruction *
* R14 - Return address when processing is finished *
* R15 - Address of this RPL exit *
* *
* *
**

368 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

AEXT EQU *
LR R12,R15 Establish normal
USING AEXT,R12 addressability for routine
SPACE 1
LR R9,R1 Establish base reg for RPL
USING IFGRPL,R9 RPL
SPACE 3
WTO ’ENTERING ALLOC RPL EXIT ROUTINE ’,ROUTCDE=(1)
SPACE 3
L R8,RPLAAREA Load address of read only RPL6
USING ISTRPL6X,R8 set basing
L R10,RPL6USR Establish addressability to
USING CONVTBLD,R10 conversation entry
LA R13,CONVSA Use the conversation storage
STM R14,R12,12(R13) to save the registers
LA R15,CONVCA establish another save area

* for subsequent calls or
* macro requests.

ST R15,8(0,R13) Normal save area
ST R13,4(0,R15) Save area
LR R13,R15 chaining
SPACE 3
APPCCMD RPL=CONVRPL, X

CONTROL=CHECK
SPACE 3

**
* *
* Verify macroinstruction completed successfully. If it did not, *
* provide notification of its failure. *
* *
**

CLI RPLRTNCD,USFAOK RTNCD = X’00’ ?
BNE ALLCFL branch no
CLI RPLFDB2,USFAOOK FDB2 = X’00’ ?
BE DOSEND Branch yes

ALLCFL EQU *
WTO ’CONTROL=ALLOC failed’,ROUTCDE=(1)
B AEXTRETN
SPACE 3

**
* *
* At this point we know the conversation is in send state and *
* therefore a SEND macroinstruction will need to be issued. *
* *
**

SPACE 3
DOSEND EQU *

L R12,=A(SREQ) Load address of SEND request
* routine

BR R12 Branch to it
SPACE 3

AEXTRETN EQU *
WTO ’EXITING ALLOC RPL EXIT ROUTINE ’,ROUTCDE=(1)
L R13,4(0,R13)
LM R14,R12,12(R13)
BR R14
DROP R8,R9,R10,R12 Drop control block addressing
EJECT

**
* *
* SEND Request Routine *
* *
* When designing an LU 6.2 application, the user is free to utilize *
* many features of the LU 6.2 protocol to facilitate a transaction. *
* For our sample program we will *
* have three options which will be dictated by the console operator *
* through a WTOR macroinstruction. The operator can reply with *

Appendix C. Example of a sample LU 6.2 application program 369

* the following strings of data: *
* *
* DEALLOCATE - which will cause this application to issue a *
* DEALLOC CONFIRM macroinstruction *
* blanks - which will cause this application to issue a *
* PREPRCV CONFIRM macroinstruction. This will *
* eventually put the conversation into receive *
* state. *
* any other string - which will cause this application to *
* take that string and add a length field *
* to the beginning and issue a SEND DATA *
* macroinstruction *
* *
* *
* ON ENTRY: *
* R10 = Conversation entry *
* R12 = Address of this routine *
* R13 = address of normal save area chain *
**
SREQ EQU *

USING SREQ,R12 Establish basing for routine
USING CONVTBLD,R10 Establish basing for

* conversation entry
WTO ’ENTERING SEND REQUEST ROUTINE ’,ROUTCDE=(1)
SPACE 3
MVC CONVWTOR(MODLWTRL),MODLWTOR
MVC CONVWTOR+12(L’CONVNAME),CONVNAME
MVC CONVTXT,BLANKS Initialize reply area
XC CONVWECB,CONVWECB Initialize ECB
WTOR ,CONVTXT,L’CONVTXT,CONVWECB,MF=(E,CONVWTOR)
WAIT ECB=CONVWECB
CLC CONVTXT(L’DEALLOC),DEALLOC
BE DODALLOC
CLC CONVTXT,BLANKS Blanks specified?
BE SNDCFM
MVC CONVLL,=AL2(L’CONVAREA)
SPACE 3
WTO ’ISSUING CONTROL=SEND QUALIFY=DATA MACRO REQUEST ’,ROUX

TCDE=(1)
SPACE 3
APPCCMD RPL=CONVRPL,AAREA=CONVRPL6, X

CONTROL=SEND,QUALIFY=DATA, X
AREA=CONVAREA,RECLEN=L’CONVAREA, X
OPTCD=ASY,EXIT=SEXT

B SREQRETN
SPACE 3

SNDCFM EQU *
WTO ’ISSUING CONTROL=SEND QUALIFY=CONFIRM MACRO REQUEST’,ROUX

TCDE=(1)
APPCCMD RPL=CONVRPL,AAREA=CONVRPL6, X

CONTROL=PREPRCV,QUALIFY=CONFIRM, X
OPTCD=ASY,EXIT=SEXT

B SREQRETN
SPACE 3

DODALLOC EQU *
WTO ’ISSUING CONTROL=DEALLOC QUALIFY=CONFIRM MACRO REQUEST’,X

ROUTCDE=(1)
APPCCMD RPL=CONVRPL,AAREA=CONVRPL6, X

CONTROL=DEALLOC,QUALIFY=CONFIRM, X
OPTCD=ASY,EXIT=SEXT

SREQRETN EQU *
WTO ’EXITING SEND REQUEST ROUTINE ’,ROUTCDE=(1)
L R13,4(0,R13)
LM R14,R12,12(R13)
BR R14
DROP R10,R12 Drop control block addressing

DEALLOC DC CL10’DEALLOCATE’

370 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

BLANKS DC CL(CONVALEN)’ ’
MODLWTOR WTOR ’convname - ENTER message, DEALLOCATE, or blanks to receX

ive ’,,L’CONVTXT,,MF=L
MODLWTRL EQU *-MODLWTOR

EJECT

**
* *
* RECEIVE Request Routine *
* *
* This sample program has chosen to receive data in logical records. *
* The FILL=LL is specified to inform VTAM to complete this APPCCMD *
* CONTROL=RECEIVE macroinstruction one logical record at a time. *
* The QUALIFY=SPEC operand indicates this macroinstruction applies *
* to a single conversation that is identified in the CONVID field in *
* the RPL extension. Remember this field was set by VTAM on the *
* completion of the macro instruction used to establish this *
* conversation. This sample program is written not to disturb the *
* field once VTAM sets it. *
* *
* The AREA operand references storage in the conversation entry *
* where VTAM can place the logical record. *
* *
* The APPCCMD CONTROL=RECEIVE will be issued asynchronously with an *
* exit to be driven by VTAM when the receive operation is complete. *
* The exit address is supplied in the EXIT= operand. *
* *
* ON ENTRY: *
* R10 = Conversation entry *
* R12 = Address of this routine *
* R13 = address of normal save area chain *
**
RREQ EQU *

USING RREQ,R12
WTO ’ENTERING RECEIVE REQUEST ROUTINE ’,ROUTCDE=(1)
USING CONVTBLD,R10
WTO ’ISSUING CONTROL=RECEIVE QUALIFY=SPEC MACRO REQUEST ’,X

ROUTCDE=(1)
MVI CONVAREA,C’ ’
MVC CONVAREA+1(L’CONVAREA-1),CONVAREA
APPCCMD RPL=CONVRPL,AAREA=CONVRPL6, X

CONTROL=RECEIVE,QUALIFY=SPEC,FILL=LL, X
AREA=CONVAREA,AREALEN=L’CONVAREA, X
EXIT=REXT

RREQRETN EQU *
WTO ’EXITING RECEIVE REQUEST ROUTINE ’,ROUTCDE=(1)
L R13,4(0,R13)
LM R14,R12,12(R13)
BR R14
DROP R10,R12
EJECT

**
* *
* RECEIVE RPL Exit Routine *
* *
* VTAM drives this RPL exit routine when the operation for the *
* APPCCMD CONTROL=RECEIVE macroinstruction is complete. Based on *
* how elaborate or simple the user chooses to make his transaction *
* dictates what the application needs to do next. This sample *
* will insure the receive is successful and then assume it is *
* completed only with DATA-COMPLETE or CONFIRM or both. *
* The process of DATA-COMPLETE will be to display the data received *
* to the operator. If CONFIRM is specified, then an APPCCMD *
* CONTROL=SEND,QUALIFY=CONFRMD macroinstruction is issued to *
* acknowledge the data was successfully processed. *
* If CONFIRM is not received, then this routine will branch to the *
* RECEIVE request routine to build an APPCCMD CONTROL=RECEIVE *

Appendix C. Example of a sample LU 6.2 application program 371

* macroinstruction. *
* *
* ON ENTRY: *
* R1 - address of the RPL used in the macroinstruction *
* R14 - Return address when processing is finished *
* R15 - Address of this RPL exit *
* *
* *
**
REXT EQU *

LR R12,R15 Establish normal
USING REXT,R12 addressability for routine
SPACE 1
LR R9,R1 Establish base reg for RPL
USING IFGRPL,R9 RPL
SPACE 3
WTO ’ENTERING RECEIVE RPL EXIT ROUTINE ’,ROUTCDE=(1)
SPACE 3
L R8,RPLAAREA Load address of read only RPL6
USING ISTRPL6X,R8 set basing
L R10,RPL6USR Establish addressability to
USING CONVTBLD,R10 conversation entry
LA R13,CONVSA Use the conversation storage
STM R14,R12,12(R13) to save the registers
LA R15,CONVCA establish another save area

* for subsequent calls or
* macro requests.

ST R15,8(0,R13) Normal save area
ST R13,4(0,R15) Save area
LR R13,R15 chaining
SPACE 3
APPCCMD RPL=CONVRPL, X

CONTROL=CHECK
SPACE 3

**
* *
* Verify macroinstruction completed successfully. If it did not, *
* provide notification of its failure. *
* *
**

CLI RPLRTNCD,USFAOK RTNCD = X’00’ ?
BNE RCVFL branch no
CLI RPLFDB2,USFAOOK FDB2 = X’00’ ?
BE WHATRCV Branch yes

RCVFL EQU *
WTO ’CONTROL=RECEIVE FAILED’,ROUTCDE=(1)
B REXTRETN
SPACE 3

**
* *
* If data has been received, then display the data to the console *
* operator via WTO macroinstruction. *
* *
**

SPACE 3
WHATRCV EQU *

TM RPL6RCV1,RPL6WDAC DATA-COMPLETE
BZ TSTCONF
MVC CONVWTO(MODLWTOL),MODLWTO
MVC CONVWTO+4(L’CONVNAME),CONVNAME
MVC CONVWTO+15(L’CONVTXT),CONVTXT
WTO ,,MF=(E,CONVWTO)
SPACE 3

**
* *
* If the CONFIRM indicator has been set, then issue an APPCCMD *
* CONTROL=SEND,QUALIFY=CONFRMD macroinstruction to acknowledge *

372 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

* the data has been processed. *
**

SPACE 3
TSTCONF EQU *

TM RPL6RCV1,RPL6WCFM CONFIRM
BZ RCVTST
WTO ’ISSUING CONTROL=SEND QUALIFY=CONFRMD MACRO REQUEST ’,X

ROUTCDE=(1)
APPCCMD RPL=CONVRPL,AAREA=CONVRPL6, X

CONTROL=SEND,QUALIFY=CONFRMD, X
EXIT=SEXT

SPACE 3
**
* *
* If the conversation state is in receive state, then branch to the *
* RECEIVE request issuing routine. Else assume the conversation *
* has ended. *
**

SPACE 3
RCVTST EQU *

CLI RPL6CCST,RPL6RECV
BNE REXTRETN
L R12,=A(RREQ)
BR R12
SPACE 3

REXTRETN EQU *
WTO ’EXITING RECEIVE RPL EXIT ROUTINE ’,ROUTCDE=(1)
L R13,4(0,R13)
LM R14,R12,12(R13)
BR R14
DROP R8,R9,R10,R12

MODLWTO WTO ’convname - 12345678901234567890123456789012345678901234X
567890 ’,ROUTCDE=(1),MF=L

MODLWTOL EQU *-MODLWTO
EJECT

**
* *
* SEND RPL Exit Routine *
* *
* VTAM drives this RPL exit routine when the operation for the *
* APPCCMD CONTROL=SEND, CONTROL=PREPRCV, or CONTROL=DEALLOC *
* macroinstruction has completed. *
* This exit will use the conversation state to dictate what needs to *
* be done next. This sample will assume only three conditions can *
* exist at the completion of the macroinstruction that caused this *
* exit to be driven. The conversation can be in SEND, RECEIVE, or *
* DEALLOCATED states. *
* *
* ON ENTRY: *
* R1 - address of the RPL used in the macroinstruction *
* R14 - Return address when processing is finished *
* R15 - Address of this RPL exit *
* *
* *
**

SPACE 3
SEXT EQU *

LR R12,R15 Establish normal
USING SEXT,R12 addressability for routine
SPACE 1
LR R9,R1 Establish base reg for RPL
USING IFGRPL,R9 RPL
SPACE 3
WTO ’ENTERING SEND RPL EXIT ROUTINE ’,ROUTCDE=(1)
SPACE 3
L R8,RPLAAREA Load address of read only RPL6

Appendix C. Example of a sample LU 6.2 application program 373

USING ISTRPL6X,R8 set basing
L R10,RPL6USR Establish addressability to
USING CONVTBLD,R10 conversation entry
LA R13,CONVSA Use the conversation storage
STM R14,R12,12(R13) to save the registers
LA R15,CONVCA establish another save area

* for subsequent calls or
* macro requests.

ST R15,8(0,R13) Normal save area
ST R13,4(0,R15) Save area
LR R13,R15 chaining
SPACE 3
APPCCMD RPL=CONVRPL, X

CONTROL=CHECK
SPACE 3

* *
* Verify macroinstruction completed successfully. If it did not, *
* provide notification of its failure. *
* *
**

CLI RPLRTNCD,USFAOK RTNCD = X’00’ ?
BNE SENDFL branch no
CLI RPLFDB2,USFAOOK FDB2 = X’00’ ?
BE SENDTST Branch yes

SENDFL EQU *
WTO ’APPCCMD request FAILED’,ROUTCDE=(1)
B SEXTRETN
SPACE 3

**
* *
* Determine the conversation state and branch to the appropriate *
* process. *
* *
**

SPACE 3
SENDTST EQU *

CLI RPL6CCST,RPL6ENDC Has the conversation ended?
BE RESETCNV branch yes to conversation

* end process.
CLI RPL6CCST,RPL6SND Are we in send state ?
BNE GO2RCV branch no - assume receive

* state.
L R12,=A(SREQ) Load address of SEND request

* routine.
BR R12 branch to routine

GO2RCV EQU *
L R12,=A(RREQ) Load address of RECEIVE request

* routine
BR R12 branch to routine
SPACE 3

**
* Because the conversation has ended, we will reset *
* the conversation entry as open, indicating entry available *
* for the next conversation. *
**

SPACE 1
RESETCNV EQU *

MVI CONVSTAT,CONVOPEN Mark entry as available
SPACE 3

SEXTRETN EQU *
WTO ’EXITING SEND RPL EXIT ROUTINE ’,ROUTCDE=(1)
L R13,4(0,R13) reload
LM R14,R12,12(R13) registers

374 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

BR R14 branch to VTAM
DROP R8,R9,R10,R12
LTORG
EJECT

**
* *
* Conversation table *
* *
**
CONVTBL DS 0D

AIF (’&SIDE’ EQ ’LEFT ’).LCONV
JAIME DC (CONVLEN)XL1’00’

ORG JAIME
DC CL8’JAIME ’
ORG

TIMOTHY DC (CONVLEN)XL1’00’
ORG TIMOTHY
DC CL8’TIMOTHY ’
ORG
AGO .ECONV

.LCONV ANOP
JEFFERY DC (CONVLEN)XL1’00’

ORG JEFFERY
DC CL8’JEFFERY ’
ORG

KIMBERLY DC (CONVLEN)XL1’00’
ORG KIMBERLY
DC CL8’KIMBERLY’
ORG

.ECONV ANOP
EJECT

**
* *
* Conversation Entry Layout *
* *
**
CONVTBLD DSECT
CONVNAME DS CL8 Transaction program, name of me
CONVSTAT DS XL1
CONVOPEN EQU X’00’ Conversation entry open
CONVACT EQU X’80’ Conversation active

DS XL7 Unused
CONVSA DS 18F Save area for RPL exits
CONVCA DS 18F Save area for CALL routines
CONVRPL DS XL112 RPL
CONVRPL6 DS XL112 RPL6
CONVWECB DS F
CONVAREA DS 0XL52 AREA
CONVLL DS XL2
CONVTXT DS XL50
CONVALEN EQU L’CONVAREA

DS 0F
CONVWTO WTO ’ X

’,ROUTCDE=(1),MF=L
CONVWTOR WTOR ’ X

’,CONVTXT,L’CONVTXT,CONVWECB,MF=L
DS 0D

CONVLEN EQU *-CONVTBLD
EJECT
IFGRPL AM=VTAM
EJECT
ISTFM5
EJECT
ISTSLCNS

Appendix C. Example of a sample LU 6.2 application program 375

SLCLEN EQU SLCEND-ISTSLCNS
ISTUSFBC
IFGACB AM=VTAM
END

Console log

JOB 2 IEF403I VTAM - STARTED - TIME = 11.54.19
v net,act,id=appcappl
JOB 2 IST097I NOCVA VARY ACCEPTED
JOB 2 IST093I ACCEA APPCAPPL ACTIVE, NODE TYPE = APPL SEGMENT
s appcappl
JOB 6 IEF403I APPCAPPL - STARTED - TIME = 12.49.41
JOB 6 ISSUING OPEN ACB MACRO REQUEST
JOB 6 ISSUING SETLOGON MACRO REQUEST
JOB 6 *02 Enter START to start a transaction or CLOSE to close the ACB

s appcappr
JOB 7 IEF403I APPCAPPR - STARTED - TIME = 12.49.47
JOB 7 ISSUING OPEN ACB MACRO REQUEST
JOB 7 ISSUING SETLOGON MACRO REQUEST
JOB 7 *03 Enter START to start a transaction or CLOSE to close the ACB

r 02,START
IEE600I REPLY TO 02 IS: START

JOB 6 ISSUING CONTROL=OPRCNTL,QUALIFY=CNOS MACRO REQUEST
JOB 7 ENTERING ATTN ACB EXIT ROUTINE
JOB 7 ATTN EXIT DRIVEN FOR CNOS
JOB 7 EXITING ATTN ACB EXIT ROUTINE

JOB 6 ISSUING CONTROL=ALLOC,QUALIFY=ALLOCD MACRO REQUEST
JOB 6 *04 Enter START to start a transaction or CLOSE to close the ACB
JOB 6 ENTERING ALLOC RPL EXIT ROUTINE
JOB 6 ENTERING SEND REQUEST ROUTINE
JOB 6 *05 JEFFERY - ENTER message, DEALLOCATE, or blanks to receive
r 05,Hello Jaime this is Jeffery

IEE600I REPLY TO 05 IS: HELLO JAIME THIS IS JEFFERY
JOB 6 ISSUING CONTROL=SEND QUALIFY=DATA MACRO REQUEST
JOB 6 EXITING SEND REQUEST ROUTINE
JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 ENTERING SEND REQUEST ROUTINE
JOB 6 *06 JEFFERY - ENTER message, DEALLOCATE, or blanks to receive
r 06,

IEE600I REPLY TO 06 IS:
JOB 6 ISSUING CONTROL=SEND QUALIFY=CONFIRM MACRO REQUEST
JOB 6 EXITING SEND REQUEST ROUTINE

JOB 7 ENTERING ATTN ACB EXIT ROUTINE
JOB 7 ATTN EXIT DRIVEN FOR FMH-5 RECEIVED
JOB 7 ISSUING CONTROL=RCVFMH5 MACRO REQUEST
JOB 7 EXITING ATTN ACB EXIT ROUTINE
JOB 7 ENTERING RCVFMH5 RPL EXIT ROUTINE
JOB 7 ENTERING RECEIVE REQUEST ROUTINE
JOB 7 ISSUING CONTROL=RECEIVE QUALIFY=SPEC MACRO REQUEST
JOB 7 EXITING RECEIVE REQUEST ROUTINE
JOB 7 ENTERING RECEIVE RPL EXIT ROUTINE
JOB 7 JAIME - HELLO JAIME THIS IS JEFFERY
JOB 7 ISSUING CONTROL=SEND QUALIFY=CONFRMD MACRO REQUEST

JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 ENTERING RECEIVE REQUEST ROUTINE
JOB 6 ISSUING CONTROL=RECEIVE QUALIFY=SPEC MACRO REQUEST
JOB 6 EXITING RECEIVE REQUEST ROUTINE

JOB 7 EXITING RECEIVE RPL EXIT ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 ENTERING SEND REQUEST ROUTINE
JOB 7 *07 JAIME - ENTER message, DEALLOCATE, or blanks to receive
r 07,Hi Jeff.
IEE600I REPLY TO 07 IS: HI JEFF.
JOB 7 ISSUING CONTROL=SEND QUALIFY=DATA MACRO REQUEST
JOB 7 EXITING SEND REQUEST ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 ENTERING SEND REQUEST ROUTINE
JOB 7 *08 JAIME - ENTER message, DEALLOCATE, or blanks to receive
r 8,
IEE600I REPLY TO 08 IS:
JOB 7 ISSUING CONTROL=SEND QUALIFY=CONFIRM MACRO REQUEST

Figure 37. Console log part 1 of 7

376 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

JOB 6 ENTERING RECEIVE RPL EXIT ROUTINE
JOB 6 JEFFERY - HI JEFF.
JOB 6 ISSUING CONTROL=SEND QUALIFY=CONFRMD MACRO REQUEST
JOB 6 EXITING RECEIVE RPL EXIT ROUTINE
JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 ENTERING SEND REQUEST ROUTINE
JOB 6 *09 JEFFERY - ENTER message, DEALLOCATE, or blanks to receive

JOB 7 EXITING SEND REQUEST ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 ENTERING RECEIVE REQUEST ROUTINE
JOB 7 ISSUING CONTROL=RECEIVE QUALIFY=SPEC MACRO REQUEST
JOB 7 EXITING RECEIVE REQUEST ROUTINE

r 09,We won the soccer game today!!
IEE600I REPLY TO 09 IS: WE WON THE SOCCER GAME TODAY!!

JOB 6 ISSUING CONTROL=SEND QUALIFY=DATA MACRO REQUEST
JOB 6 EXITING SEND REQUEST ROUTINE
JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 ENTERING SEND REQUEST ROUTINE
JOB 6 *10 JEFFERY - ENTER message, DEALLOCATE, or blanks to receive
r 10,

IEE600I REPLY TO 10 IS:
JOB 6 ISSUING CONTROL=SEND QUALIFY=CONFIRM MACRO REQUEST
JOB 6 EXITING SEND REQUEST ROUTINE

JOB 7 ENTERING RECEIVE RPL EXIT ROUTINE
JOB 7 JAIME - WE WON THE SOCCER GAME TODAY!!
JOB 7 ISSUING CONTROL=SEND QUALIFY=CONFRMD MACRO REQUEST

JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 ENTERING RECEIVE REQUEST ROUTINE
JOB 6 ISSUING CONTROL=RECEIVE QUALIFY=SPEC MACRO REQUEST
JOB 6 EXITING RECEIVE REQUEST ROUTINE

JOB 7 EXITING RECEIVE RPL EXIT ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 ENTERING SEND REQUEST ROUTINE
JOB 7 *11 JAIME - ENTER message, DEALLOCATE, or blanks to receive
r 11,Thats great!!
IEE600I REPLY TO 11 IS: THATS GREAT!!
JOB 7 ISSUING CONTROL=SEND QUALIFY=DATA MACRO REQUEST
JOB 7 EXITING SEND REQUEST ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 ENTERING SEND REQUEST ROUTINE
JOB 7 *12 JAIME - ENTER message, DEALLOCATE, or blanks to receive
r 12,
IEE600I REPLY TO 12 IS:
JOB 7 ISSUING CONTROL=SEND QUALIFY=CONFIRM MACRO REQUEST

JOB 6 ENTERING RECEIVE RPL EXIT ROUTINE
JOB 6 JEFFERY - THATS GREAT!!
JOB 6 ISSUING CONTROL=SEND QUALIFY=CONFRMD MACRO REQUEST
JOB 6 EXITING RECEIVE RPL EXIT ROUTINE
JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 ENTERING SEND REQUEST ROUTINE
JOB 6 *13 JEFFERY - ENTER message, DEALLOCATE, or blanks to receive

JOB 7 EXITING SEND REQUEST ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 ENTERING RECEIVE REQUEST ROUTINE
JOB 7 ISSUING CONTROL=RECEIVE QUALIFY=SPEC MACRO REQUEST
JOB 7 EXITING RECEIVE REQUEST ROUTINE

Figure 38. Console log part 2 of 7

Appendix C. Example of a sample LU 6.2 application program 377

r 13,However Kimberly lost her basketball game
IEE600I REPLY TO 13 IS: HOWEVER KIMBERLY LOST HER BASKETBALL GAME

JOB 6 ISSUING CONTROL=SEND QUALIFY=DATA MACRO REQUEST
JOB 6 EXITING SEND REQUEST ROUTINE
JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 ENTERING SEND REQUEST ROUTINE
JOB 6 *14 JEFFERY - ENTER message, DEALLOCATE, or blanks to receive
r 14,

IEE600I REPLY TO 14 IS:
JOB 6 ISSUING CONTROL=SEND QUALIFY=CONFIRM MACRO REQUEST
JOB 6 EXITING SEND REQUEST ROUTINE

JOB 7 ENTERING RECEIVE RPL EXIT ROUTINE
JOB 7 JAIME - HOWEVER KIMBERLY LOST HER BASKETBALL GAME
JOB 7 ISSUING CONTROL=SEND QUALIFY=CONFRMD MACRO REQUEST

JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 ENTERING RECEIVE REQUEST ROUTINE
JOB 6 ISSUING CONTROL=RECEIVE QUALIFY=SPEC MACRO REQUEST
JOB 6 EXITING RECEIVE REQUEST ROUTINE

JOB 7 EXITING RECEIVE RPL EXIT ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 ENTERING SEND REQUEST ROUTINE
JOB 7 *15 JAIME - ENTER message, DEALLOCATE, or blanks to receive
r 15,I'll have Timothy call her on the second line
IEE600I REPLY TO 15 IS: I'LL HAVE TIMOTHY CALL HER ON THE SECOND LI
JOB 7 ISSUING CONTROL=SEND QUALIFY=DATA MACRO REQUEST
JOB 7 EXITING SEND REQUEST ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 ENTERING SEND REQUEST ROUTINE
JOB 7 *16 JAIME - ENTER message, DEALLOCATE, or blanks to receive
r 16,to cheer her up
IEE600I REPLY TO 16 IS: TO CHEER HER UP
JOB 7 ISSUING CONTROL=SEND QUALIFY=DATA MACRO REQUEST
JOB 7 EXITING SEND REQUEST ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 ENTERING SEND REQUEST ROUTINE
JOB 7 *17 JAIME - ENTER message, DEALLOCATE, or blanks to receive
r 3,START
IEE600I REPLY TO 03 IS: START
r 17,
IEE600I REPLY TO 17 IS:
JOB 7 ISSUING CONTROL=SEND QUALIFY=CONFIRM MACRO REQUEST

JOB 6 ENTERING RECEIVE RPL EXIT ROUTINE
JOB 6 JEFFERY - I'LL HAVE TIMOTHY CALL HER ON THE SECOND LINE
JOB 6 ENTERING RECEIVE REQUEST ROUTINE
JOB 6 ISSUING CONTROL=RECEIVE QUALIFY=SPEC MACRO REQUEST
JOB 6 EXITING RECEIVE REQUEST ROUTINE
JOB 6 ENTERING RECEIVE RPL EXIT ROUTINE
JOB 6 JEFFERY - TO CHEER HER UP
JOB 6 ISSUING CONTROL=SEND QUALIFY=CONFRMD MACRO REQUEST
JOB 6 EXITING RECEIVE RPL EXIT ROUTINE
JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 ENTERING SEND REQUEST ROUTINE
JOB 6 *18 JEFFERY - ENTER message, DEALLOCATE, or blanks to receive

Figure 39. Console log part 3 of 7

378 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

JOB 7 EXITING SEND REQUEST ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 ENTERING RECEIVE REQUEST ROUTINE
JOB 7 ISSUING CONTROL=RECEIVE QUALIFY=SPEC MACRO REQUEST
JOB 7 EXITING RECEIVE REQUEST ROUTINE
JOB 7 ISSUING CONTROL=ALLOC,QUALIFY=ALLOCD MACRO REQUEST
JOB 7 ENTERING ALLOC RPL EXIT ROUTINE
JOB 7 ENTERING SEND REQUEST ROUTINE
JOB 7 *19 TIMOTHY - ENTER message, DEALLOCATE, or blanks to receive
r 19,Hello Kimberly this is Timothy
IEE600I REPLY TO 19 IS: HELLO KIMBERLY THIS IS TIMOTHY
JOB 7 ISSUING CONTROL=SEND QUALIFY=DATA MACRO REQUEST
JOB 7 EXITING SEND REQUEST ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 ENTERING SEND REQUEST ROUTINE
JOB 7 *20 TIMOTHY - ENTER message, DEALLOCATE, or blanks to receive
r 20,
IEE600I REPLY TO 20 IS:
JOB 7 ISSUING CONTROL=SEND QUALIFY=CONFIRM MACRO REQUEST
JOB 7 EXITING SEND REQUEST ROUTINE
JOB 7 *21 Enter START to start a transaction or CLOSE to close the ACB

r 18,That would be a good idea.
IEE600I REPLY TO 18 IS: THAT WOULD BE A GOOD IDEA.

JOB 6 ISSUING CONTROL=SEND QUALIFY=DATA MACRO REQUEST
JOB 6 EXITING SEND REQUEST ROUTINE
JOB 6 ENTERING ATTN ACB EXIT ROUTINE
JOB 6 ATTN EXIT DRIVEN FOR FMH-5 RECEIVED
JOB 6 ISSUING CONTROL=RCVFMH5 MACRO REQUEST
JOB 6 EXITING ATTN ACB EXIT ROUTINE
JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 ENTERING SEND REQUEST ROUTINE
JOB 6 *22 JEFFERY - ENTER message, DEALLOCATE, or blanks to receive
r 22,

IEE600I REPLY TO 22 IS:
JOB 6 ISSUING CONTROL=SEND QUALIFY=CONFIRM MACRO REQUEST
JOB 6 EXITING SEND REQUEST ROUTINE
JOB 6 ENTERING RCVFMH5 RPL EXIT ROUTINE
JOB 6 ENTERING RECEIVE REQUEST ROUTINE
JOB 6 ISSUING CONTROL=RECEIVE QUALIFY=SPEC MACRO REQUEST
JOB 6 EXITING RECEIVE REQUEST ROUTINE
JOB 6 ENTERING RECEIVE RPL EXIT ROUTINE
JOB 6 KIMBERLY - HELLO KIMBERLY THIS IS TIMOTHY
JOB 6 ISSUING CONTROL=SEND QUALIFY=CONFRMD MACRO REQUEST
JOB 6 EXITING RECEIVE RPL EXIT ROUTINE
JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 ENTERING SEND REQUEST ROUTINE
JOB 6 *23 KIMBERLY - ENTER message, DEALLOCATE, or blanks to receive

JOB 7 ENTERING RECEIVE RPL EXIT ROUTINE
JOB 7 JAIME - THAT WOULD BE A GOOD IDEA.
JOB 7 ISSUING CONTROL=SEND QUALIFY=CONFRMD MACRO REQUEST
JOB 7 EXITING RECEIVE RPL EXIT ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 ENTERING RECEIVE REQUEST ROUTINE
JOB 7 ISSUING CONTROL=RECEIVE QUALIFY=SPEC MACRO REQUEST
JOB 7 EXITING RECEIVE REQUEST ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 ENTERING SEND REQUEST ROUTINE
JOB 7 *24 JAIME - ENTER message, DEALLOCATE, or blanks to receive

Figure 40. Console log part 4 of 7

Appendix C. Example of a sample LU 6.2 application program 379

r 23,Hi Timothy, we lost our basketball game..
IEE600I REPLY TO 23 IS: HI TIMOTHY, WE LOST OUR BASKETBALL GAME..

JOB 6 ISSUING CONTROL=SEND QUALIFY=DATA MACRO REQUEST
JOB 6 EXITING SEND REQUEST ROUTINE
JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 ENTERING RECEIVE REQUEST ROUTINE
JOB 6 ISSUING CONTROL=RECEIVE QUALIFY=SPEC MACRO REQUEST
JOB 6 EXITING RECEIVE REQUEST ROUTINE
JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 ENTERING SEND REQUEST ROUTINE
JOB 6 *25 KIMBERLY - ENTER message, DEALLOCATE, or blanks to receive

r 24,I've got to go now
IEE600I REPLY TO 24 IS: I'VE GOT TO GO NOW
JOB 7 ISSUING CONTROL=SEND QUALIFY=DATA MACRO REQUEST
JOB 7 EXITING SEND REQUEST ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 ENTERING SEND REQUEST ROUTINE
JOB 7 *26 JAIME - ENTER message, DEALLOCATE, or blanks to receive
r 26,good bye!!
IEE600I REPLY TO 26 IS: GOOD BYE!!
JOB 7 ISSUING CONTROL=SEND QUALIFY=DATA MACRO REQUEST
JOB 7 EXITING SEND REQUEST ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 ENTERING SEND REQUEST ROUTINE
JOB 7 *27 JAIME - ENTER message, DEALLOCATE, or blanks to receive
r 27,DEALLOCATE
IEE600I REPLY TO 27 IS: DEALLOCATE
JOB 7 ISSUING CONTROL=DEALLOC QUALIFY=CONFIRM MACRO REQUEST
JOB 7 EXITING SEND REQUEST ROUTINE
r 25,
IEE600I REPLY TO 25 IS:

JOB 6 ISSUING CONTROL=SEND QUALIFY=CONFIRM MACRO REQUEST
JOB 6 EXITING SEND REQUEST ROUTINE
JOB 6 ENTERING RECEIVE RPL EXIT ROUTINE
JOB 6 JEFFERY - I'VE GOT TO GO NOW
JOB 6 ENTERING RECEIVE REQUEST ROUTINE
JOB 6 ISSUING CONTROL=RECEIVE QUALIFY=SPEC MACRO REQUEST
JOB 6 EXITING RECEIVE REQUEST ROUTINE
JOB 6 ENTERING RECEIVE RPL EXIT ROUTINE
JOB 6 JEFFERY - GOOD BYE!!
JOB 6 ISSUING CONTROL=SEND QUALIFY=CONFRMD MACRO REQUEST
JOB 6 EXITING RECEIVE RPL EXIT ROUTINE
JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 EXITING SEND RPL EXIT ROUTINE

Figure 41. Console Log Part 5 of 7

380 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

JOB 7 ENTERING RECEIVE RPL EXIT ROUTINE
JOB 7 TIMOTHY - HI TIMOTHY, WE LOST OUR BASKETBALL GAME..
JOB 7 ISSUING CONTROL=SEND QUALIFY=CONFRMD MACRO REQUEST

JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 ENTERING RECEIVE REQUEST ROUTINE
JOB 6 ISSUING CONTROL=RECEIVE QUALIFY=SPEC MACRO REQUEST
JOB 6 EXITING RECEIVE REQUEST ROUTINE

JOB 7 EXITING RECEIVE RPL EXIT ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 EXITING SEND RPL EXIT ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 ENTERING SEND REQUEST ROUTINE
JOB 7 *28 TIMOTHY - ENTER message, DEALLOCATE, or blanks to receive
r 28,Maybe Bruce can help your team.
IEE600I REPLY TO 28 IS: MAYBE BRUCE CAN HELP YOUR TEAM.
JOB 7 ISSUING CONTROL=SEND QUALIFY=DATA MACRO REQUEST
JOB 7 EXITING SEND REQUEST ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 ENTERING SEND REQUEST ROUTINE
JOB 7 *29 TIMOTHY - ENTER message, DEALLOCATE, or blanks to receive
r 29,
IEE600I REPLY TO 29 IS:
JOB 7 ISSUING CONTROL=SEND QUALIFY=CONFIRM MACRO REQUEST

JOB 6 ENTERING RECEIVE RPL EXIT ROUTINE
JOB 6 KIMBERLY - MAYBE BRUCE CAN HELP YOUR TEAM.
JOB 6 ISSUING CONTROL=SEND QUALIFY=CONFRMD MACRO REQUEST
JOB 6 EXITING RECEIVE RPL EXIT ROUTINE
JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 ENTERING SEND REQUEST ROUTINE
JOB 6 *30 KIMBERLY - ENTER message, DEALLOCATE, or blanks to receive

JOB 7 EXITING SEND REQUEST ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 ENTERING RECEIVE REQUEST ROUTINE
JOB 7 ISSUING CONTROL=RECEIVE QUALIFY=SPEC MACRO REQUEST
JOB 7 EXITING RECEIVE REQUEST ROUTINE

r 30,Maybe..
IEE600I REPLY TO 30 IS: MAYBE..

JOB 6 ISSUING CONTROL=SEND QUALIFY=DATA MACRO REQUEST
JOB 6 EXITING SEND REQUEST ROUTINE
JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 ENTERING SEND REQUEST ROUTINE
JOB 6 *31 KIMBERLY - ENTER message, DEALLOCATE, or blanks to receive
r 31,thanks for calling

IEE600I REPLY TO 31 IS: THANKS FOR CALLING
JOB 6 ISSUING CONTROL=SEND QUALIFY=DATA MACRO REQUEST
JOB 6 EXITING SEND REQUEST ROUTINE
JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 ENTERING SEND REQUEST ROUTINE
JOB 6 *32 KIMBERLY - ENTER message, DEALLOCATE, or blanks to receive
r 32,good bye

IEE600I REPLY TO 32 IS: GOOD BYE
JOB 6 ISSUING CONTROL=SEND QUALIFY=DATA MACRO REQUEST
JOB 6 EXITING SEND REQUEST ROUTINE
JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 ENTERING SEND REQUEST ROUTINE
JOB 6 *33 KIMBERLY - ENTER message, DEALLOCATE, or blanks to receive
r 33,DEALLOCATE

IEE600I REPLY TO 33 IS: DEALLOCATE
JOB 6 ISSUING CONTROL=DEALLOC QUALIFY=CONFIRM MACRO REQUEST
JOB 6 EXITING SEND REQUEST ROUTINE

Figure 42. Console Log part 6 of 7

Appendix C. Example of a sample LU 6.2 application program 381

JOB 7 ENTERING RECEIVE RPL EXIT ROUTINE
JOB 7 TIMOTHY - MAYBE..
JOB 7 ENTERING RECEIVE REQUEST ROUTINE
JOB 7 ISSUING CONTROL=RECEIVE QUALIFY=SPEC MACRO REQUEST
JOB 7 EXITING RECEIVE REQUEST ROUTINE
JOB 7 ENTERING RECEIVE RPL EXIT ROUTINE
JOB 7 TIMOTHY - THANKS FOR CALLING
JOB 7 ENTERING RECEIVE REQUEST ROUTINE
JOB 7 ISSUING CONTROL=RECEIVE QUALIFY=SPEC MACRO REQUEST
JOB 7 EXITING RECEIVE REQUEST ROUTINE
JOB 7 ENTERING RECEIVE RPL EXIT ROUTINE
JOB 7 TIMOTHY - GOOD BYE
JOB 7 ISSUING CONTROL=SEND QUALIFY=CONFRMD MACRO REQUEST

JOB 6 ENTERING SEND RPL EXIT ROUTINE
JOB 6 EXITING SEND RPL EXIT ROUTINE

JOB 7 EXITING RECEIVE RPL EXIT ROUTINE
JOB 7 ENTERING SEND RPL EXIT ROUTINE
JOB 7 EXITING SEND RPL EXIT ROUTINE
r 21,CLOSE
IEE600I REPLY TO 21 IS: CLOSE
JOB 7 RESETTING SESSION LIMITS FOR LU62CONV MODE

JOB 6 ENTERING ATTN ACB EXIT ROUTINE
JOB 6 ATTN EXIT DRIVEN FOR CNOS
JOB 6 EXITING ATTN ACB EXIT ROUTINE
JOB 6 ENTERING ATTN ACB EXIT ROUTINE
JOB 6 ATTN EXIT DRIVEN FOR LOSS SESSION
JOB 6 EXITING ATTN ACB EXIT ROUTINE

JOB 7 ENTERING ATTN ACB EXIT ROUTINE
JOB 7 ATTN EXIT DRIVEN FOR LOSS SESSION
JOB 7 EXITING ATTN ACB EXIT ROUTINE
JOB 7 RESETTING SESSION LIMITS FOR SNASVCMG MODE

JOB 6 ENTERING ATTN ACB EXIT ROUTINE
JOB 6 ATTN EXIT DRIVEN FOR LOSS SESSION
JOB 6 EXITING ATTN ACB EXIT ROUTINE

JOB 7 ENTERING ATTN ACB EXIT ROUTINE
JOB 7 ATTN EXIT DRIVEN FOR LOSS SESSION
JOB 7 EXITING ATTN ACB EXIT ROUTINE
JOB 7 ISSUING CLOSE ACB MACRO REQUEST
JOB 7 IEF142I APPCAPPR APPCAPPR APPCAPPR STEP WAS EXECUTED-

COND CODE 0000
JOB 7 IEF404I APPCAPPR - ENDED - TIME = 13.02.48

r 4,CLOSE

IEE600I REPLY TO 4 IS: CLOSE
JOB 6 ISSUING CLOSE ACB MACRO REQUEST
JOB 6 IEF142I APPCAPPL APPCAPPL APPCAPPL STEP WAS EXECUTED - COND CODE 0000
JOB 6 IEF404I APPCAPPL - ENDED - TIME = 13.03.15

Figure 43. Console log part 7 of 7

382 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Appendix D. Example of retrieving information for a mode and
any restored sessions

The example in this appendix shows how to examine or process information
returned by the APPCCMD CONTROL=OPRCNTL, QUALIFY=RESTORE
macroinstruction. VTAM returns this information to the user in the data area
provided for it.

The user can retrieve LU-mode table information (NOSESS), LU-mode table and
session information (ALL), or no information (NONE). The application program
specifies the type of information returned using the LIST keyword in the
APPCCMD CONTROL=OPRCNTL, QUALIFY=RESTORE macroinstruction. Use of
the LU name and logon mode parameters also affects the modes restored. For
more information on restoring a mode, see “Restoring modes and any associated
persistent LU-LU sessions” on page 60. For more information about the RESTORE
APPCCMD, refer to z/OS Communications Server: SNA Programmer's LU 6.2
Reference. See “Retrieving information for a mode and sessions to be restored” on
page 172 for a description of the RESTORE control block. Information is returned
for each mode and session that is restored, if requested.

The data area can contain information for more than one LU-mode, as determined
by the scope of the request and the size of the data area. The RESTORE structure
(ISTSREST) for each LU-mode entry contains the following pointers:
v SRESLDAD points to the session limits data structure (ISTSLD) for that

LU-mode.
v SRESESAD points to the session information structure (SRESESS) for the first

session being restored for that LU-mode, if any.
v SRENXTAD points to the ISTSREST for the next LU-mode to be restored, if any.

Each session information structure points to the information for the next session
being restored for that LU-mode, if any (SRESNXTA). Figure 44 on page 384
shows an example of how this structure might look when LIST=ALL is specified.

© Copyright IBM Corp. 2000, 2013 383

LU-mode 1 has two sessions associated with it, which are restored. LU-mode 2 has

no sessions associated with it, and LU-mode 3 has at least one session associated
with it. Only one session associated with LU-mode 3 has been restored. LU-mode 3
might have more sessions that need to be restored. If it does, the mode restored
flag (SREMDRS) is set OFF.

If the data area does not have enough space to hold the information that is
requested, any remaining sessions and modes are not restored until the application
program issues another APPCCMD CONTROL=OPRCNTL, QUALIFY=RESTORE
macroinstruction. If LIST=NOSESS is specified, the session information is not
returned. If LIST=NONE is specified, no information is returned.

CO
NV

SE
CP

AR
EA

AV
FA

C
G

ID
CO

NS
TA

TE
C

O
N

VI
D

C
R

YP
TL

VL
(M

VS
)

EX
PD

LE
N

EX
PD

RC
V

FD
B2

FM
H

5L
EN

FM
H5

RC
V

LO
GM

OD
E

LO
G

RC
V

LU
NA

M
E

N
E

TI
D

PR
SI

ST
VP

(M
VS

)

R
C

PR
I

RC
SE

C
RE

CL
EN

RT
NC

D
SE

NS
E

S
E

S
S

ID
S

E
S

S
ID

L
SI

G
D

AT
A

SI
G

R
C

V
SL

S
ST

SH
BF

ST
SH

DS
US

ER
FL

D
W

HA
TR

CV

RCVFMH5
RECEIVE

REJECT

RESETRCV
SEND

SENDEXPD

SETSESS

TESTSTAT

ALLOCD
CONVGRP
CONWIN
IMMED
WHENFREE

ABNDPROG
ABNDSERV
ABNDTIME
ABNDUSER
CONFIRM
DATACON
DATAFLU
FLUSH

ABNDSERV
ABNDPROG
ABNDTIME
ABNDUSER

ACTSESS
CNOS
DACTSESS
DEFINE
DISPLAY
RESTORE

CONFIRM
DATACON
DATAFLU
FLUSH

ANY
IANY
ISPEC
SPEC

ANY
IANY
ISPEC
SPEC

CONV
CONVGRP
SESSION

CONFIRM
CONFRMD
DATA
DATACON
DATAFLU
ERROR
FLUSH
RQSEND

DATA

RESUME
SUSPEND
SYNCBEG
SYNCEND

ALL
IALL
ISPEC
SPEC

ALLOC

DEALLOC

DEALLOCQ

OPRCNTL

PREPRCV

RCVEXPD

Figure 44. Information for three LU-modes

384 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Logic for retrieving restore information

Figure 45 on page 386 shows the logic for the code in the example program. This
flowchart shows an example of how a routine might be written. It uses arbitrary
names for things other than the DSECTs. This flowchart also shows how to set up
basing for the ISTSREST, ISTSLD, and SRESESS DSECTs. You can use this logic to
examine or process the information for each LU-mode contained in the RESTORE
control block.

Appendix D. Example of retrieving information for a mode and any restored sessions 385

START

Set up RPL basing

Initialize RESTPTR
from RPLAREA

Set up ISTSREST
basing

Set ISTSLD basing
from pointer

Examine and process
ISTSREST and ISTSLD

Initialize SESSPTR
from pointer

Set up SRESESS
basing

Examine and process
SRESESS

Update SESSPTR to
next SRESESS if any

Update RESTPTR to
next ISTSREST if any

FINISH

RESTPTR
= 0

SESSPTR
= 0

Yes

Yes

No

No

pointer to restore
structure (ISTSREST).

restore structure.

session limits data
structure.

pointer to current
session information
structure (SRESESS).

session information
structure.

RESTPTR

ISTSREST

ISTSLD

SESSPTR

SRESESS

Figure 45. Logic for retrieving RESTORE information

386 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Example program for retrieving restore information

The following example program shows how data can be retrieved when the
application program has used either the ALL or NOSESS value for the LIST
keyword in the APPCCMD CONTROL=OPRCNTL, QUALIFY=RESTORE
macroinstruction.

*
* FUNCTION => THIS EXAMPLE SETS UP AND BASES THE NECESSARY DSECTS, IN
* AN APPROPRIATE LOOPING SCHEME, SO THAT THE RESTORE
* INFORMATION IN THE USER’S AREA CAN BE EXAMINED AND/OR
* PROCESSED.
*
* ENTRY POINT => START
*
* ASSUMPTION => THE USER ALREADY HAS THE ADDRESS OF ISTRPL, IT IS THE
* SAME ISTRPL USED IN THE APPCCMD CONTROL=OPRCNTL,QUALIFY=
* RESTORE FUNCTION CALL.
*
* THIS CODE ASSUMES THAT THIS FUNCTION HAS BEEN CALLED
* AND THE ADDRESS OF ISTRPL IS IN THE PTRRPL REGISTER
*
* REGS USED => SEE THE DESCRIPTIONS BELOW - CONSTANTS AND EQUATES
* 6 = SLDPTR
* 7 = PTRRPL
* 8 = SESSPTR
* 9 = RESTPTR

ISTREADS START 0

USING ISTREADS,15
USING IFGRPL,PTRRPL SET UP BASING OF THE RPL FROM

* PTRRPL (THE SAME RPL USED IN THE
* APPCCMD CONTROL=OPRCNTL,QUALIFY=
* RESTORE)
*

L RESTPTR,RPLAREA SET RESTPTR TO USER AREA START
*
*

B CHKSREST CHECK ADDRESS OF RESTORE STRUCTURE
* BEFORE ATTEMPTING TO PROCESS IT
*
SREST EQU * RESTORE DATA STRUCTURE (ISTSREST
* ROUTINE
*
*

USING ISTSREST,RESTPTR SET UP BASING FOR THE RESTORE
* DATA STRUCTURE
*

L SLDPTR,SRESLDAD OBTAIN SESSION LIMITS DATA
* STRUCTURE (ISTSLD) ADDRESS
*

USING ISTSLD,SLDPTR SET UP BASING FOR THE SESSION
* LIMITS DATA STRUCTURE
* .
* . { Insert logic to process Restore Data Structure
* . and the Session Limits Data Structure.)
* .
* .
*

L SESSPTR,SRESESAD OBTAIN NEXT SESSION STRUCTURE
*
*
*

B CHKSESS CHECK SESSPTR ADDRESS BEFORE
* ATTEMPTING TO PROCESS STRUCTURE

Appendix D. Example of retrieving information for a mode and any restored sessions 387

*
SESS EQU * SESSION INFORMATION STRUCTURE
* ROUTINE
*

USING SRESESS,SESSPTR SET UP BASING FOR THE SESSION
* INFORMATION STRUCTURE
* .
* .
* . { Insert logic to process Session Information Structure }
* .
* .
* .
*
*

L SESSPTR,SRESNXTA GET NEXT SESSION INFORMATION
* STRUCTURE ADDRESS
*
CHKSESS EQU * CHECK SESSION STRUCTURE ADDRESS
*

LTR SESSPTR,SESSPTR HAVE ALL SESSION INFORMATION
* STRUCTURES BEEN PROCESSED?
*

BNZ SESS NO, PROCESS THE NEXT SESSION
* INFORMATION STRUCTURE
*
* L RESTPTR,SRENXTAD GET NEXT RESTORE STRUCTURE
* ADDRESS
*
CHKSREST EQU * CHECK RESTORE STRUCTURE ADDRESS
*

LTR RESTPTR,RESTPTR HAVE ALL RESTORE STRUCTURES
* BEEN PROCESSED?
*

BNZ SREST NO, PROCESS THE NEXT LU,MODE
* RESTORE DATA STRUCTURE
FINISHED EQU *

* MAINLINE PROGRAM CONSTANTS AND EQUATES

* ORDER BIT OF AN ADDRESS
*
SLDPTR EQU 6 SESSION LIMITS DATA STRUCTURE
* (ISTSLD) BASE POINTER
*
PTRRPL EQU 7 ISTRPL BASE POINTER
*
*
SESSPTR EQU 8 SESSION INFORMATION STRUCTURE
* (SRESESS) BASE POINTER
*
RESTPTR EQU 9 RESTORE DATA STRUCTURE (ISTSREST)
* BASE POINTER

LTORG
EJECT
IFGRPL AM=VTAM
EJECT
ISTSREST
EJECT
ISTSLD
END

388 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Appendix E. Architectural specifications

This appendix lists documents that provide architectural specifications for the SNA
Protocol.

The APPN Implementers' Workshop (AIW) architecture documentation includes
the following architectural specifications for SNA APPN and HPR:
v APPN Architecture Reference (SG30-3422-04)
v APPN Branch Extender Architecture Reference Version 1.1
v APPN Dependent LU Requester Architecture Reference Version 1.5
v APPN Extended Border Node Architecture Reference Version 1.0
v APPN High Performance Routing Architecture Reference Version 4.0
v SNA Formats (GA27-3136-20)
v SNA Technical Overview (GC30-3073-04)

For more information, see the AIW documentation page at http://www.ibm.com/
support/docview.wss?rs=852&uid=swg27017843.

The following RFC also contains SNA architectural specifications:
v RFC 2353 APPN/HPR in IP Networks APPN Implementers' Workshop Closed Pages

Document

RFCs can be obtained from:

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

Many RFCs are available online. Hardcopies of all RFCs are available from the
NIC, either individually or by subscription. Online copies are available using FTP
from the NIC at http://www.rfc-editor.org/rfc.html.

Use FTP to download the files, using the following format:
RFC:RFC-INDEX.TXT
RFC:RFCnnnn.TXT
RFC:RFCnnnn.PS

where:
v nnnn is the RFC number.
v TXT is the text format.
v PS is the postscript format.

You can also request RFCs through electronic mail, from the automated NIC mail
server, by sending a message to service@nic.ddn.mil with a subject line of
RFC nnnn for text versions or a subject line of RFC nnnn.PS for PostScript versions.
To request a copy of the RFC index, send a message with a subject line of
RFC INDEX.

For more information, contact nic@nic.ddn.mil.

© Copyright IBM Corp. 2000, 2013 389

http://www.ibm.com/support/docview.wss?rs=852&uid=swg27017843
http://www.ibm.com/support/docview.wss?rs=852&uid=swg27017843
http://www.rfc-editor.org/rfc.html

390 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Appendix F. Accessibility

Publications for this product are offered in Adobe Portable Document Format
(PDF) and should be compliant with accessibility standards. If you experience
difficulties when using PDF files, you can view the information through the z/OS
Internet Library website or the z/OS Information Center. If you continue to
experience problems, send an email to mhvrcfs@us.ibm.com or write to:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. See z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer or Library
Server versions of z/OS books in the Internet library at www.ibm.com/systems/z/
os/zos/bkserv/.

One exception is command syntax that is published in railroad track format, which
is accessible using screen readers with the Information Center, as described in
“Dotted decimal syntax diagrams.”

Dotted decimal syntax diagrams

Syntax diagrams are provided in dotted decimal format for users accessing the
Information Center using a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always

© Copyright IBM Corp. 2000, 2013 391

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

present together (or always absent together), they can appear on the same line,
because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should see separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v A question mark (?) means an optional syntax element. A dotted decimal

number followed by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax elements, are
optional. If there is only one syntax element with a dotted decimal number, the ?
symbol is displayed on the same line as the syntax element, (for example 5?
NOTIFY). If there is more than one syntax element with a dotted decimal
number, the ? symbol is displayed on a line by itself, followed by the syntax
elements that are optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and
5 UPDATE, you know that syntax elements NOTIFY and UPDATE are optional;
that is, you can choose one or none of them. The ? symbol is equivalent to a
bypass line in a railroad diagram.

v An exclamation mark (!) means a default syntax element. A dotted decimal
number followed by the ! symbol and a syntax element indicate that the syntax
element is the default option for all syntax elements that share the same dotted

392 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

decimal number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines 2?
FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option
for the FILE keyword. In this example, if you include the FILE keyword but do
not specify an option, default option KEEP will be applied. A default option also
applies to the next higher dotted decimal number. In this example, if the FILE
keyword is omitted, default FILE(KEEP) is used. However, if you hear the lines
2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option KEEP applies
only to the next higher dotted decimal number, 2.1 (which does not have an
associated keyword), and does not apply to 2? FILE. Nothing is used if the
keyword FILE is omitted.

v An asterisk (*) means a syntax element that can be repeated 0 or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be
repeated. For example, if you hear the line 5.1* data area, you know that you
can include one data area, more than one data area, or no data area. If you hear
the lines 3*, 3 HOST, and 3 STATE, you know that you can include HOST,
STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix F. Accessibility 393

394 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Notices

This information was developed for products and services offered in the USA.

IBM may not offer all of the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that
IBM product, program, or service may be used. Any functionally equivalent
product, program, or service that does not infringe any IBM intellectual property
right may be used instead. However, it is the user's responsibility to evaluate and
verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 2000, 2013 395

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O. Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations might not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrates programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or distributing

396 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_.

IBM is required to include the following statements in order to distribute portions
of this document and the software described herein to which contributions have
been made by The University of California. Portions herein © Copyright 1979,
1980, 1983, 1986, Regents of the University of California. Reproduced by
permission. Portions herein were developed at the Electrical Engineering and
Computer Sciences Department at the Berkeley campus of the University of
California under the auspices of the Regents of the University of California.

Portions of this publication relating to RPC are Copyright © Sun Microsystems,
Inc., 1988, 1989.

Some portions of this publication relating to X Window System** are Copyright ©
1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and the
Massachusetts Institute Of Technology, Cambridge, Massachusetts.

Some portions of this publication relating to X Window System are Copyright ©
1986, 1987, 1988 by Hewlett-Packard Corporation.

Permission to use, copy, modify, and distribute the M.I.T., Digital Equipment
Corporation, and Hewlett-Packard Corporation portions of this software and its
documentation for any purpose without fee is hereby granted, provided that the
above copyright notice appears in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the
names of M.I.T., Digital, and Hewlett-Packard not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T., Digital, and Hewlett-Packard make no representation about the
suitability of this software for any purpose. It is provided "as is" without express
or implied warranty.

Copyright © 1983, 1995-1997 Eric P. Allman

Copyright © 1988, 1993 The Regents of the University of California.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgment:

Notices 397

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This software program contains code, and/or derivatives or modifications of code
originating from the software program "Popper." Popper is Copyright ©1989-1991
The Regents of the University of California. Popper was created by Austin Shelton,
Information Systems and Technology, University of California, Berkeley.

Permission from the Regents of the University of California to use, copy, modify,
and distribute the "Popper" software contained herein for any purpose, without
fee, and without a written agreement is hereby granted, provided that the above
copyright notice and this paragraph and the following two paragraphs appear in
all copies. HOWEVER, ADDITIONAL PERMISSIONS MAY BE NECESSARY
FROM OTHER PERSONS OR ENTITIES, TO USE DERIVATIVES OR
MODIFICATIONS OF POPPER.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THE
POPPER SOFTWARE, OR ITS DERIVATIVES OR MODIFICATIONS, AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE POPPER SOFTWARE PROVIDED HEREUNDER IS ON AN "AS
IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

Copyright © 1983 The Regents of the University of California.

Redistribution and use in source and binary forms are permitted provided that the
above copyright notice and this paragraph are duplicated in all such forms and
that any documentation, advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed by the
University of California, Berkeley. The name of the University may not be used to
endorse or promote products derived from this software without specific prior

398 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

written permission. THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Copyright © 1991, 1993 The Regents of the University of California.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgment:
This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright © 1990 by the Massachusetts Institute of Technology

Export of this software from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or
organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation,
and that the name of M.I.T. not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. Furthermore
if you modify this software you must label your software as modified software and
not distribute it in such a fashion that it might be confused with the original M.I.T.
software. M.I.T. makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied warranty.

Copyright © 1998 by the FundsXpress, INC.

Notices 399

Export of this software from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or
organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation,
and that the name of FundsXpress not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior
permission. FundsXpress makes no representations about the suitability of this
software for any purpose. It is provided "as is" without express or implied
warranty.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE
CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscape's SSL.

This library is free for commercial and non-commercial use as long as the
following conditions are adhered to. The following conditions apply to all code
found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the
SSL code. The SSL documentation included with this distribution is covered by the
same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are
not to be removed. If this package is used in a product, Eric Young should be
given attribution as the author of the parts of the library used. This can be in the
form of a textual message at program startup or in documentation (online or
textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the copyright notice, this list of

conditions and the following disclaimer.

400 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgment: "This product includes cryptographic
software written by Eric Young (eay@cryptsoft.com)". The word 'cryptographic'
can be left out if the routines from the library being used are not cryptographic
related.

4. If you include any Windows specific code (or a derivative thereof) from the
apps directory (application code) you must include acknowledgment:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

The license and distribution terms for any publicly available version or derivative
of this code cannot be changed. i.e. this code cannot simply be copied and put
under another distribution license [including the GNU Public License.]

This product includes cryptographic software written by Eric Young.

Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE
CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 2004 IBM Corporation and its licensors, including Sendmail, Inc., and
the Regents of the University of California.

Copyright © 1999,2000,2001 Compaq Computer Corporation

Copyright © 1999,2000,2001 Hewlett-Packard Company

Notices 401

Copyright © 1999,2000,2001 IBM Corporation

Copyright © 1999,2000,2001 Hummingbird Communications Ltd.

Copyright © 1999,2000,2001 Silicon Graphics, Inc.

Copyright © 1999,2000,2001 Sun Microsystems, Inc.

Copyright © 1999,2000,2001 The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, provided that the
above copyright notice(s) and this permission notice appear in all copies of the
Software and that both the above copyright notice(s) and this permission notice
appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used
in advertising or otherwise to promote the sale, use or other dealings in this
Software without prior written authorization of the copyright holder.

X Window System is a trademark of The Open Group.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

You can obtain softcopy from the z/OS Collection (SK3T-4269), which contains
BookManager and PDF formats.

Minimum supported hardware

The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: http://www-01.ibm.com/

software/support/systemsz/lifecycle/
v For information about currently-supported IBM hardware, contact your IBM

representative.

402 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

http://www-01.ibm.com/software/support/systemsz/lifecycle/
http://www-01.ibm.com/software/support/systemsz/lifecycle/

Programming interface information

This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of z/OS Communications Server.

Policy for unsupported hardware

Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted
for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United
States and other countries.

Java™ and all Java-based trademarks are trademarks or registered trademarks of
Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Adobe and PostScript are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Notices 403

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

404 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Bibliography

This bibliography contains descriptions of the documents in the z/OS
Communications Server library.

z/OS Communications Server documentation is available in the following forms:
v Online at the z/OS Internet Library web page at www.ibm.com/systems/z/os/

zos/bkserv/
v In softcopy on CD-ROM collections. See “Softcopy information” on page xvii.

z/OS Communications Server library updates

An index to z/OS Communications Server book updates is at http://
www.ibm.com/support/docview.wss?uid=swg21178966. Updates to documents are
also available on RETAIN® and in information APARs (info APARs). Go to
http://www.ibm.com/software/network/commserver/zos/support to view
information APARs. In addition, Info APARs for z/OS documents are in z/OS and
z/OS.e DOC APAR and PTF ++HOLD Documentation, which can be found at
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ZDOCAPAR.

z/OS Communications Server information

z/OS Communications Server product information is grouped by task in the
following tables.

Planning

Title Number Description

z/OS Communications Server:
New Function Summary

GC27-3664 This document is intended to help you plan for new IP or
SNA function, whether you are migrating from a previous
version or installing z/OS for the first time. It summarizes
what is new in the release and identifies the suggested and
required modifications needed to use the enhanced functions.

z/OS Communications Server:
IPv6 Network and Application
Design Guide

SC27-3663 This document is a high-level introduction to IPv6. It
describes concepts of z/OS Communications Server's support
of IPv6, coexistence with IPv4, and migration issues.

Resource definition, configuration, and tuning

Title Number Description

z/OS Communications Server:
IP Configuration Guide

SC27-3650 This document describes the major concepts involved in
understanding and configuring an IP network. Familiarity
with the z/OS operating system, IP protocols, z/OS UNIX
System Services, and IBM Time Sharing Option (TSO) is
recommended. Use this document with the z/OS
Communications Server: IP Configuration Reference.

© Copyright IBM Corp. 2000, 2013 405

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/support/docview.wss?uid=swg21178966
http://www.ibm.com/support/docview.wss?uid=swg21178966
http://www.ibm.com/software/network/commserver/zos/support
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ZDOCAPAR

Title Number Description

z/OS Communications Server:
IP Configuration Reference

SC27-3651 This document presents information for people who want to
administer and maintain IP. Use this document with the z/OS
Communications Server: IP Configuration Guide. The
information in this document includes:

v TCP/IP configuration data sets

v Configuration statements

v Translation tables

v Protocol number and port assignments

z/OS Communications Server:
SNA Network Implementation
Guide

SC27-3672 This document presents the major concepts involved in
implementing an SNA network. Use this document with the
z/OS Communications Server: SNA Resource Definition
Reference.

z/OS Communications Server:
SNA Resource Definition
Reference

SC27-3675 This document describes each SNA definition statement, start
option, and macroinstruction for user tables. It also describes
NCP definition statements that affect SNA. Use this document
with the z/OS Communications Server: SNA Network
Implementation Guide.

z/OS Communications Server:
SNA Resource Definition
Samples

SC27-3676 This document contains sample definitions to help you
implement SNA functions in your networks, and includes
sample major node definitions.

z/OS Communications Server:
IP Network Print Facility

SC27-3658 This document is for systems programmers and network
administrators who need to prepare their network to route
SNA, JES2, or JES3 printer output to remote printers using
TCP/IP Services.

Operation

Title Number Description

z/OS Communications Server:
IP User's Guide and Commands

SC27-3662 This document describes how to use TCP/IP applications. It
contains requests with which a user can log on to a remote
host using Telnet, transfer data sets using FTP, send and
receive electronic mail, print on remote printers, and
authenticate network users.

z/OS Communications Server:
IP System Administrator's
Commands

SC27-3661 This document describes the functions and commands helpful
in configuring or monitoring your system. It contains system
administrator's commands, such as TSO NETSTAT, PING,
TRACERTE and their UNIX counterparts. It also includes TSO
and MVS commands commonly used during the IP
configuration process.

z/OS Communications Server:
SNA Operation

SC27-3673 This document serves as a reference for programmers and
operators requiring detailed information about specific
operator commands.

z/OS Communications Server:
Quick Reference

SC27-3665 This document contains essential information about SNA and
IP commands.

406 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Customization

Title Number Description

z/OS Communications Server:
SNA Customization

SC27-3666 This document enables you to customize SNA, and includes
the following information:

v Communication network management (CNM) routing table

v Logon-interpret routine requirements

v Logon manager installation-wide exit routine for the CLU
search exit

v TSO/SNA installation-wide exit routines

v SNA installation-wide exit routines

Writing application programs

Title Number Description

z/OS Communications Server:
IP Sockets Application
Programming Interface Guide
and Reference

SC27-3660 This document describes the syntax and semantics of program
source code necessary to write your own application
programming interface (API) into TCP/IP. You can use this
interface as the communication base for writing your own
client or server application. You can also use this document to
adapt your existing applications to communicate with each
other using sockets over TCP/IP.

z/OS Communications Server:
IP CICS Sockets Guide

SC27-3649 This document is for programmers who want to set up, write
application programs for, and diagnose problems with the
socket interface for CICS® using z/OS TCP/IP.

z/OS Communications Server:
IP IMS Sockets Guide

SC27-3653 This document is for programmers who want application
programs that use the IMS™ TCP/IP application development
services provided by the TCP/IP Services of IBM.

z/OS Communications Server:
IP Programmer's Guide and
Reference

SC27-3659 This document describes the syntax and semantics of a set of
high-level application functions that you can use to program
your own applications in a TCP/IP environment. These
functions provide support for application facilities, such as
user authentication, distributed databases, distributed
processing, network management, and device sharing.
Familiarity with the z/OS operating system, TCP/IP protocols,
and IBM Time Sharing Option (TSO) is recommended.

z/OS Communications Server:
SNA Programming

SC27-3674 This document describes how to use SNA macroinstructions to
send data to and receive data from (1) a terminal in either the
same or a different domain, or (2) another application program
in either the same or a different domain.

z/OS Communications Server:
SNA Programmer's LU 6.2
Guide

SC27-3669 This document describes how to use the SNA LU 6.2
application programming interface for host application
programs. This document applies to programs that use only
LU 6.2 sessions or that use LU 6.2 sessions along with other
session types. (Only LU 6.2 sessions are covered in this
document.)

z/OS Communications Server:
SNA Programmer's LU 6.2
Reference

SC27-3670 This document provides reference material for the SNA LU 6.2
programming interface for host application programs.

z/OS Communications Server:
CSM Guide

SC27-3647 This document describes how applications use the
communications storage manager.

Bibliography 407

Title Number Description

z/OS Communications Server:
CMIP Services and Topology
Agent Guide

SC27-3646 This document describes the Common Management
Information Protocol (CMIP) programming interface for
application programmers to use in coding CMIP application
programs. The document provides guide and reference
information about CMIP services and the SNA topology agent.

Diagnosis

Title Number Description

z/OS Communications Server:
IP Diagnosis Guide

GC27-3652 This document explains how to diagnose TCP/IP problems
and how to determine whether a specific problem is in the
TCP/IP product code. It explains how to gather information
for and describe problems to the IBM Software Support
Center.

z/OS Communications Server:
ACF/TAP Trace Analysis
Handbook

GC27-3645 This document explains how to gather the trace data that is
collected and stored in the host processor. It also explains how
to use the Advanced Communications Function/Trace
Analysis Program (ACF/TAP) service aid to produce reports
for analyzing the trace data information.

z/OS Communications Server:
SNA Diagnosis Vol 1,
Techniques and Procedures and
z/OS Communications Server:
SNA Diagnosis Vol 2, FFST
Dumps and the VIT

GC27-3667

GC27-3668

These documents help you identify an SNA problem, classify
it, and collect information about it before you call the IBM
Support Center. The information collected includes traces,
dumps, and other problem documentation.

z/OS Communications Server:
SNA Data Areas Volume 1 and
z/OS Communications Server:
SNA Data Areas Volume 2

GC31-6852

GC31-6853

These documents describe SNA data areas and can be used to
read an SNA dump. They are intended for IBM programming
service representatives and customer personnel who are
diagnosing problems with SNA.

Messages and codes

Title Number Description

z/OS Communications Server:
SNA Messages

SC27-3671 This document describes the ELM, IKT, IST, IUT, IVT, and USS
messages. Other information in this document includes:

v Command and RU types in SNA messages

v Node and ID types in SNA messages

v Supplemental message-related information

z/OS Communications Server:
IP Messages Volume 1 (EZA)

SC27-3654 This volume contains TCP/IP messages beginning with EZA.

z/OS Communications Server:
IP Messages Volume 2 (EZB,
EZD)

SC27-3655 This volume contains TCP/IP messages beginning with EZB or
EZD.

z/OS Communications Server:
IP Messages Volume 3 (EZY)

SC27-3656 This volume contains TCP/IP messages beginning with EZY.

z/OS Communications Server:
IP Messages Volume 4 (EZZ,
SNM)

SC27-3657 This volume contains TCP/IP messages beginning with EZZ
and SNM.

z/OS Communications Server:
IP and SNA Codes

SC27-3648 This document describes codes and other information that
appear in z/OS Communications Server messages.

408 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D580/CCONTENTS?SHELF=ez2zo111&DN=GC31-6852-03&DT=20080606133328
http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D580/CCONTENTS?SHELF=ez2zo111&DN=GC31-6852-03&DT=20080606133328
http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D680/CCONTENTS?SHELF=ez2zo111&DN=GC31-6853-03&DT=20080606142122
http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D680/CCONTENTS?SHELF=ez2zo111&DN=GC31-6853-03&DT=20080606142122

Index

A
AAREA keyword

as pointer to RPL extension 17
abnormal conversation deallocation

canceling outstanding macroinstructions 204
data purging and truncation 205
including error log data 198
LU Services errors (ABNDSERV) 201, 203
restrictions on canceling macroinstructions 204
specifying sense codes 321
timing errors (ABNDTIME) 201, 204
transaction program errors (ABNDPROG) 200, 203
types of deallocation 200, 203
user-defined errors (ABNDUSER) 201, 204

ACB (access method control block)
CLOSE process 16
contents 16
LU 6.2 requirements prior to CLOSE 290
OPEN process 16, 59

ACB macroinstruction 19
ACB-based macroinstructions 15
acceptance level, security 303
accepting a session

example of 149
relationship to LOGON and SCIP exits 147
specifying alternate session parameters 148
use of the RPLVACS bit 292

access method control block (ACB)
CLOSE process 16
contents 16
LU 6.2 requirements prior to CLOSE 290
OPEN process 16, 59

access security fields
ID 179
password 179
profile 179

access-method-support vector list
description 28
format 27
relationship to OPEN process 27

accessibility 391
accounting information 179
accounting option set 47
ACTIVATE_SESSION verb option set 48
activating a session

application's role in 65
automatic activation 145
AUTOSES parameter 192
CNOS requirements 145
LOGON and SCIP exits 291
relationship to

LU-mode table 140
session limits 145

session parameters 147
SETLOGON requirements 59
SNASVCMG session 64, 65
use of ACTSESS and DACTSESS 147
use of the RPLVACS bit 292
when sessions are activated 191

ACTSESS qualify value
relationship to LOGON and SCIP exits 147

ACTSESS qualify value (continued)
specifying alternative session parameters 148
use of the RPLVACS bit 292

adding entries to LU-mode table
LU entries 113
mode entries 113
relationship to CNOS requests 113
VTAM's role in 63

address space restrictions 35
ALLOCATE verb 37
allocating a conversation

associating user data with conversation 57
buffering of the FMH-5 183
building an FMH-5 176
example of 184
notification of errors 183
performance considerations 183
queuing of allocation requests 183
receiving an FMH-5 185
receiving PIP data 187
sense codes for FMH-7 188
session assignment algorithm

immediate requests 183
requests for contention-winner sessions 183
requests that can be queued 183

types of allocation
allocation request for specific session 72
allocation request, conditional, without wait 72
immediate requests 72
requests for contention-winner session 72
requests that can be queued 72

validity checking of FMH-5 181
allocation requests, honoring queued

DDRAINL 134
DRAINL 122
DRAINR 122
overview 125
preventive draining 126
relationship to CNOS 141
relationship to DEFINE 134
setting session limits to zero 141
SLCDRAL 122
SLCDRAP 122
SLDDDRAL 134
SLDDRAL 135
SLDDRAP 135
source side 141
target side 141
terminating 127

ALLOCD qualify value
description 72
relationship to IMMED value 183
relationship to session establishment 183
session assignment algorithm 183

ALRDYVL
CNOS control block 121
DEFINE/DISPLAY control block 133

ALRDYVP, DEFINE/DISPLAY control block 133
already-verified indicator

in FMH-5 field 178
with user ID field 181

© Copyright IBM Corp. 2000, 2013 409

ALREADYV, security acceptance level 304
any-mode RECEIVEs

differences with RECEIVE,OPTCD=ANY
macroinstruction 21

example of 250
keeping RECEIVEs outstanding 249
relationship to continued-specific mode 249
returned CONVID value 75
types of continuation modes 249

API (application program interface)
changes for LU 6.2 13
definition 11
unchanged features 13
use of 11

APPC=YES parameter 14
APPCCMD macroinstruction

general use 81
operand specification table 96
relationship to conversation state 335
use of CONTROL and QUALIFY keyword 81

APPCCMD-vector-area-length vector 29
APPL definition statement

automatic session activation parameter 192
determining coded values 29
LU 6.2 requirements 14
security parameters 54
session limit parameters 54

application program
definition 11
recovering a 62
relationship to ACB 16
requirements for LU 6.2 services 11
startup processing 59
use of sync point services 78
within recovery environment 169

application program interface (API)
changes for LU 6.2 13
definition 11
unchanged features 13
use of 11

application-ACB vector list 26
application-ACB-name vector 29
application-capabilities vector 26
application-implemented option sets

accounting 47
conversations at the same LU 46
data mapping 47
error data logging 48
FMH data 47
get attributes 46
get conversation type 46
mapped conversation LU services component 48
receive persistent verification 46
receive PIP data 47
send persistent verification 46
send PIP data 47
sync point services 46

application-implemented verbs
BACKOUT 40
GET_ATTRIBUTES 39
GET_TP_PROPERTIES 39
GET_TYPE 40
mapped conversation 41
SYNCPT 41

application-network-name vector 29
application-to-VTAM-vector-keys vector 29

AREA keyword,
as pointer to

BIND image 148
buffer list 214
data 214
FMH-5 182, 190

asynchronous completion condition 314
asynchronous conversation requests 81
asynchronous processing

acceptance and completion stages 313
APPCCMDs for multiple conversations 81
APPCCMDs for single conversation 81
ECBs 33
error feedback 314
RPL exits 33
use of APPCCMD CONTROL=CHECK 81
use of OPTCD=ASY 81

ATTN exit
as EXLST exit routine 33
CNOS function 286
description 33
FMH-5 function 285
LOSS function 287
parameter list 284
with session deactivation 287

attributes
CONVERSATION_CORRELATOR 39
CONVERSATION_GROUP_ID 39
CONVERSATION_STATE 39
LUW_IDENTIFIER 40
MODE_NAME 39
OWN_NETWORK_QUALIFIED_LU_NAME 40
OWN_TP_INSTANCE 40
OWN_TP_NAME 40
PARTNER_LU_NAME 39
PARTNER_NETWORK_QUALIFIED_LU_NAME 39
PROTECTED_LUW_IDENTIFIER 40
SECURITY_PROFILE 40
SECURITY_USER_ID 40
SYNCH_LEVEL 39

authentication, DCE
definition 47
flag in the FMH-5 178
GDS field in the FMH-5 180

authorized path 35
automatic session activation 145
AUTOSES definition parameter

role in CNOS negotiation 192
role in session activation 192

AUTOSES, DEFINE/DISPLAY control block 133
AUTOSET, DEFINE/DISPLAY control block 133
AVPV, security acceptance level 304

B
BACKOUT verb 40
basic conversation option sets

unsupported
post on receipt with test for posting 48
post on receipt with wait 46
receive immediate 42
test for request to send received 43

VTAM-implemented
conversations at the same LU 46
flush the LU's send buffer 42
immediate allocation of a session 43
long locks 43

410 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

basic conversation option sets (continued)
VTAM-implemented (continued)

PREPARE_TO_RECEIVE verb 42
queued allocation for when session free 43
queued allocation of contention-winner session 43

basic conversation verbs
cross-reference to macroinstruction 48
definition 5
supported

ALLOCATE 37
CONFIRM 37
CONFIRMED 37
DEALLOCATE (except TYPE=LOCAL) 37
FLUSH 37
PREPARE_TO_RECEIVE 37
RECEIVE_AND_WAIT 38
REQUEST_TO_SEND 38
SEND_DATA 38
SEND_ERROR 38

supported as pass-through
BACKOUT 40
GET_ATTRIBUTES 39
GET_TP_PROPERTIES 39
GET_TYPE 40
mapped conversation 41
SYNCPT 41

unsupported
DEALLOCATE (TYPE=LOCAL) 41
POST_ON_RECEIPT 41
PREPARE_FOR_SYNCPT 41
RECEIVE_IMMEDIATE 38
RECONNECT 41
SET_SYNCPT_OPTIONS 41
TEST 42
WAIT 42

becoming receiving LU
becoming the receiving LU 237
including data on PREPRCV 237
logical record considerations 237
use of LOCKS=LONG 216
using PREPRCVs 237
using RECEIVE to switch states 237

becoming sender
general rules 211

BIND image
defining 111
fields application can set 149
relationship to

ACTSESS 148
LOGON and SCIP exits 148
mode name 63

responses application can set 157
BIND negotiation

for sync point capability 192
boundary, protocol 4
BUFFCA continuation mode 249
buffer continue-any continuation mode 249
buffer list considerations

BUFFLST example 221
BUFFLST OPTCD value 221
LU 6.2-unique considerations 223
overview 208, 218
storage shortage considerations 224

buffer, SEND
description 8
flushing

description 208, 219

buffer, SEND (continued)
flushing (continued)

example of 209
general use 208, 218
use during conversation allocation 183

buffering by LU
general description 208, 218
of allocation request 183
of data 208, 218
of error notification 208, 218

building an FMH-5 176

C
CANCEL halt 290
canceling APPCCMD macroinstructions

macroinstructions that can be canceled 204
restrictions 204
used with abnormal deallocation macroinstructions 204
used with REJECT macroinstructions 204

CHANGE macroinstruction 19
change number of sessions (CNOS)

application's role 102
description 22
draining allocation requests 125
example of request 108
GDS variable 171
impact on LU-mode table 113, 140
negotiation example 109
negotiation values 103

changing defined values 117
DDRAINL 117
defining 116
DMINWNL 117
DMINWNR 117
DRESPL 117
DSESLIM 117
example of changing defined values 139

overview 99
recovery environment 169
requests for undefined mode names 112
retrieving information, pending session 172
session activation 145, 147
session deactivation 146, 147
session deactivation responsibility 126, 127
session limits control block

ALRDYVL 121
CONVSECL 121
DDRAINL 121
DEFINE 121
DMINWNL 121
DMINWNR 121
DRAINL 122
DRAINR 122
DRESPL 122
DSESLIM 122
MINWINL 123
MINWINR 123
NBRMODE 123
PRSISTVL 124
RESP 124
SESSLIM 124
SLCALL 123
SLCDDRAL 121
SLCDEFND 121
SLCDMCWL 121
SLCDMCWP 121

Index 411

change number of sessions (CNOS) (continued)
session limits control block (continued)

SLCDRAL 122
SLCDRAP 122
SLCDRSPL 122
SLCDSESL 122
SLCLAVFA 121
SLCLCONV 121
SLCLPV 124
SLCMCWL 123
SLCPRSPL 124
SLCSESSL 124
SLCSSLU 125
SNGSESLU 125

session limits negotiation 63, 99
single-session partners 143
SNASVCMG mode processing 145
source side of requests 103
target side of requests 104
with independent LU, warning 145

CHANGE_SESSION_LIMIT 38
CHANGE_SESSION_LIMIT verb option set 45
changing continuation modes

use of CONMODE parameter 249
changing session parameters 148, 292
CHECK macroinstruction 19
checklist for inquiry transaction 35
choosing CONTROL and QUALIFY values 83
CLOSE macroinstruction 20, 291
closing a mode 102
closing ACB 16
CLSDST macroinstruction 20
CNM (Communications Network Management)

applications 287
CNOS (change number of sessions)

application's role 102
description 22
draining allocation requests 125
example of request 108
GDS variable 171
impact on LU-mode table 113, 140
negotiation example 109
negotiation values 103

changing defined values 117
DDRAINL 117
defining 116
DMINWNL 117
DMINWNR 117
DRESPL 117
DSESLIM 117
example of changing defined values 139

overview 99
recovery environment 169
requests for undefined mode names 112
retrieving information, pending session 172
session activation 145, 147
session deactivation 146, 147
session deactivation responsibility 126, 127
session limits control block

ALRDYVL 121
CONVSECL 121
DDRAINL 121
DEFINE 121
DMINWNL 121
DMINWNR 121
DRAINL 122
DRAINR 122

CNOS (change number of sessions) (continued)
session limits control block (continued)

DRESPL 122
DSESLIM 122
MINWINL 123
MINWINR 123
NBRMODE 123
PRSISTVL 124
RESP 124
SESSLIM 124
SLCALL 123
SLCDDRAL 121
SLCDEFND 121
SLCDMCWL 121
SLCDMCWP 121
SLCDRAL 122
SLCDRAP 122
SLCDRSPL 122
SLCDSESL 122
SLCLAVFA 121
SLCLCONV 121
SLCLPV 124
SLCMCWL 123
SLCPRSPL 124
SLCSESSL 124
SLCSSLU 125
SNGSESLU 125

session limits negotiation 63, 99
single-session partners 143
SNASVCMG mode processing 145
source side of requests 103
target side of requests 104
with independent LU, warning 145

CNOS limits, setting 118
Communications Network Management (CNM)

applications 287
Communications Server for z/OS, online information xix
communications storage manager (CSM) 255
completion condition, accepting asynchronous requests 314
component-identification vector 28
conditional deallocation 196
CONFIRM verb 37
CONFIRM what-received value 229
confirmation request

combined with deallocation requests 196
example of 216
responding negatively 240
responding positively 240
response, example of 240
sending 215
state considerations 240

CONFIRMED verb 37
contention

definition 10
establishing number of sessions 10
relationship to session limits 101
resolution 10
with parallel-session capable 10

contention loser 10
contention winner

allocation performance advantages 73
definition 10
establishing number of sessions 10
relationship to definition parameters 117
source side of CNOS request 103
target side of CNOS request 117

contention-winner automatic activation limit option set 46

412 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

continuation modes 249
continue-specific mode

definition of 75
use of 249

control block
ACB 16
building 18
CNOS session limits

field description 121
restrictions on CONTROL=OPRCNTL 118
table of 118

DEFINE/DISPLAY session limits
field description 133, 138
table of 133

definition 15
FMH-5 176
initializing 15
RESTORE

field description 173
table of 173

RPL 16
unique LU 6.2 17

CONTROL keyword
table of descriptions 82

control operator option sets
supported

CHANGE_SESSION_LIMIT verb 45
contention winner automatic activation limit 46
DRAIN_TARGET(NO) parameter 45
locally known LU names 45
LU-definition verb 45
maximum RU size bounds 45
MIN_CONTENTION_WINNERS_TARGET

parameter 45
RESPONSIBLE(TARGET) parameter 45
session-level mandatory cryptography 45
session-level selective cryptography 46
single-session reinitiation 45
uninterpreted LU names (inbound only) 45

unsupported
ACTIVATE_SESSION verb 48
DEACTIVATE_SESSION verb 48
FORCE parameter 48
LU-LU session limit 48

control operator verbs 5, 44
supported

CHANGE_SESSION_LIMIT 38
DEACTIVATE_CONVERSATION_GROUP 38
INITIALIZE_SESSION_LIMIT 38
RESET_SESSION_LIMIT 38

unsupported
DELETE 42
PROCESS_SIGNOFF 42
SIGNOFF 42

CONV, security acceptance level 304
conversation

allocation 175
establishing 7
identifiers 23
overview 6, 35
relationship to session 23
security 77
states 23, 67
synchronization level of 178
synchronous nature of 67
VTAM services for 23

conversation allocation
APPCCMD CONTROL=ALLOC macroinstruction

use of macroinstruction 182
associating user data with conversation 57
buffering of the FMH-5 183
building an FMH-5 176
example of 184
notification of errors 183
performance considerations 183
receiving an FMH-5 185
receiving PIP data 187
sense codes for FMH-7 188
session assignment algorithm

immediate requests 183
requests for contention-winner sessions 183
requests that can be queued 183

types of allocation
conditional request, without wait 72
immediate requests 72
request for a specific session 72
request for contention-winner session 72
requests that can be queued 72

validity checking of FMH-5 181
conversation data

length prefix 213
maximum length 213
receiving records 247
relationship to

error log data 324
mapped conversations 77
PIP data 187

conversation data, receiving
any and specific modes 249
confirmation requests 239
continuation modes

BUFFCA 249
CONMODE operand 249
CS 249
LLCA 249

entering RECEIVE state 237
error log data 324
logical records 247
PIP data 187
purging 252
reporting errors 240
requesting to send data 212
use of the FILL parameter

BUFF 247
LL 247

what-received indicators
CONFIRM 229
DATA 228
DATA_COMPLETE 228
DATA_INCOMPLETE 228
DEALLOCATE 229
LOG_DATA 229
PARTIAL_PS_HEADER 229
PS_HEADER 229
SEND 229

conversation data, sending
buffer list (OPTCD=BUFFLST) considerations, used with

general information 221
sending data 213

buffering of data 208, 218
choosing control and qualify values 207
confirmation requests 215
confirmation responses 215

Index 413

conversation data, sending (continued)
conversation data 213
entering SEND state

description 211
example of 212

logical records 213
requests to send 74
storage shortages 224
table of APPCCMD macroinstructions used 207
what is sent 213
when data can be sent 211

conversation deallocation
associated what-received indicators 229
conditional and unconditional deallocation 196
example of 197
following a failure with persistence enabled 206
loss of error information 196
notification

example of 198
use of 198

reporting errors 319
sending data with deallocation request 196
use of confirmation requests 196

conversation errors
buffering consideration 208, 218
error log data 324
exit routine 318
purging and truncating 322
return code 313
sense code 321
state change 211
type of error 320
use of REJECT 320
use of SEND, QUALIFY=ERROR macroinstruction 320

conversation identifier
format of 190
general use 23
similarity to CID 23

conversation queues. 69
conversation security

acceptance level for FMH-5 subfields
ALREADYV 304
AVPV 304
CONV 304
determining partner acceptance level 307
NONE 304
PERSISTV 304
specifying application's acceptance level 306

already-verified support 304
FMH-5 subfields

password 179
profile 179
user ID 179

options 77
persistent-verification support 305
relationship to ACTSESS 306
relationship to CNOS 307
specified at time of first session 303
specifying acceptance information 128

conversation states
description 23
listed 335
restrictions on macroinstructions 67
use by VTAM 67

conversation status 68
conversation verbs, basic

cross-reference to macroinstruction 48

conversation verbs, basic (continued)
definition 5
supported

ALLOCATE 37
CONFIRM 37
CONFIRMED 37
DEALLOCATE (except TYPE=LOCAL) 37
FLUSH 37
PREPARE_TO_RECEIVE 37
RECEIVE_AND_WAIT 38
REQUEST_TO_SEND 38
SEND_DATA 38
SEND_ERROR 38

supported as pass-through
BACKOUT 40
GET_ATTRIBUTES 39
GET_TP_PROPERTIES 39
GET_TYPE 40
mapped conversation 41
SYNCPT 41

unsupported
DEALLOCATE (TYPE=LOCAL) 41
POST_ON_RECEIPT 41
PREPARE_FOR_SYNCPT 41
RECEIVE_IMMEDIATE 38
RECONNECT 41
SET_SYNCPT_OPTIONS 41
TEST 42
WAIT 42

CONVERSATION_CORRELATOR attribute 39
CONVERSATION_GROUP_ID attribute 39
CONVERSATION_STATE attribute 39
conversation-level security 303
conversations at the same LU option set 46, 107
CONVGRP qualify value

description 72
CONVID

definition 75
general use 23
identifier, format of 190
similarity to CID 23

CONVSECL, CNOS control block 121
CONVSECL, DEFINE/DISPLAY control block 134
CONVSECP, DEFINE/DISPLAY control block 134
CONVSECV, DEFINE/DISPLAY control block 134
CONWIN qualify value

description 72
relationship to session establishment 183
session assignment algorithm 183

CPSVCMG mode 10, 63
cryptography, level of 309
CS continuation mode 249
CSM (communications storage manager) 255

D
DACTSESS qualify value

LOGON and SCIP exits 147
use of RPLVACS bit 292

data encryption
SELECTIVE 312

data mapping option set 47
data purging

associated return codes 322
lost return codes 323
relationship to confirmation requests 252

414 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

data truncation
associated return codes 323

DATA what-received value 228
DATA_COMPLETE what-received value 228
DATA_INCOMPLETE what-received value 228
data, log

in what-received field 229
data, receiving

any and specific modes 249
confirmation requests 239
continuation modes

BUFFCA 249
CONMODE operand 249
CS 249
LLCA 249

entering RECEIVE state 237
error log data 324
logical records 247
overview 227
PIP data 187
purging 252
reporting errors 240
requesting to send data 212
use of the FILL parameter

BUFF 247
LL 247

using HPDT 268
what-received indicators

CONFIRM 229
DATA 228
DATA_COMPLETE 228
DATA_INCOMPLETE 228
DEALLOCATE 229
LOG_DATA 229
PARTIAL_PS_HEADER 229
PS_HEADER 229
SEND 229

data, sending
buffer list (OPTCD=BUFFLST) considerations 221
buffering of data 208, 218
choosing control and qualify values 207
confirmation requests 215
confirmation responses 215
conversation data 213
entering SEND state

description 211
example of 212

error information 74
flushing the buffer, used with 208, 219
logical records 213
requests to send 74
storage shortages 224
table of APPCCMD macroinstructions 207
using HPDT 261
what is sent 213
when data can be sent 211

DCE authentication
definition 47
flag in the FMH-5 178
GDS field in the FMH-5 180

DCE security (authentication token) GDS field 180
DCE vector, local application's capability 27
DDRAINL

CNOS control block 121
DEFINE/DISPLAY control block 134
negotiation value 117

DEACTIVATE_CONVERSATION_GROUP verb 38

DEACTIVATE_SESSION verb option set 48
deactivating sessions

application's role in 99, 147
ATTN exit considerations 287
automatic deactivation 146
relationship to CNOS 146
relationship to DACTSESS 148

DEALLOCATE (except TYPE=LOCAL) verb 37
DEALLOCATE what-received value 229
deallocating a conversation

associated what-received indicators 229
conditional and unconditional deallocation 196
example of 197
following a failure with persistence enabled 206
loss of error information 196
notification

example of 198
use of 198

reporting errors 319
sending data with deallocation request 196
use of confirmation requests 196

deallocating conversations
including error data 205
types of errors 320
use of abnormal deallocation macroinstructions 199
use of REJECT 204
use of sense codes 321

deallocation notification 198
deallocation, abnormal

canceling outstanding macroinstructions 204
data purging and truncation 205
including error log data 198
LU Services errors (ABNDSERV) 201, 203
restrictions on canceling macroinstructions 204
specifying sense codes 321
timing errors (ABNDTIME) 201, 204
transaction program errors (ABNDPROG) 200, 203
types of deallocation 200, 203
user-defined errors (ABNDUSER) 201, 204

declarative instructions 15
DEFINE qualify value

control block
table of 133
use of 129

general use 129
DEFINE, CNOS control block 121
DEFINE/DISPLAY session limits control block

ALRDYVL 133
ALRDYVP 133
AUTOSES 133
AUTOSET 133
DDRAINL 117
DELETE 134
DMINWNL 135
DMINWNR 135
DRAINL 135
DRAINR 135
DRESPL 135
DSESLIM 136
FREECNT 136
MINWINL 136
MINWINR 137
PRSISTVL 137
PRSISTVP 137
QALLOC 137
SESSCAP 137
SESSCNT 138

Index 415

DEFINE/DISPLAY session limits control block (continued)
SESSLIM 138
SLDAUTO 133
SLDAUTOS 133
SLDCLSV 134
SLDDELET 134
SLDDMCWL 135
SLDDMCWP 135
SLDDRAL 134, 135
SLDDRAP 135
SLDDRSPL 135
SLDDSESL 136
SLDFREEC 136
SLDLAVFA 133
SLDLCLSA 134
SLDMCWL 136
SLDMCWP 137
SLDPAVFA 133
SLDPCLSA 134
SLDPPV 137
SLDPV 137
SLDQALLC 137
SLDSCAP 137
SLDSESSC 138
SLDSESSL 138
SLDSYNC 138
SLDWINLC 138
SLDWINPC 138
SYNC 138
table of 133
use of 129
WINLCNT 138
WINRCNT 138

defining an LU 6
automatic session activation parameter 192
determining coded values 29
LU 6.2 requirements 14
security parameters 54
session limit parameters 54

defining LU-mode table values 116
defining mode name 63
defining negotiation values 116, 129
definition statement parameters, CNOS

DDRAINL 117
DMINWNL 117
DMINWNR 117
DRESPL 117
DSESLIM 117
established with DEFINE 116
impact on CNOS 117
included on definition statement 116
queried with DISPLAY 140

DELETE 42
DELETE, DEFINE/DISPLAY control block 134
deleting LU-mode table entries 113, 142
design considerations for LU 6.2

allocation choices 72
any-mode RECEIVEs 75
conversation states 67
FMH-5 notification 73
LU-mode table 63
mode names 63
option sets 77
restoring a mode 60
return codes 58
RPL extension user field 57
session initiation and termination 65

design considerations for LU 6.2 (continued)
SETLOGON macroinstruction 59
single-session partners 64
synchronous nature of conversation 67

determining session capability
relationship to CNOS 143
relationship to SNASVCMG 143
SESSCAP bit 137
SNGSESLU bit 125
VTAM actions 143

disability 391
DISASSOC_NAME entry in LU-mode table 114
DISPLAY qualify value

control block
table of 133
use of 129

general use 129
use in querying session capability 143

displaying LU-mode data 143
displaying session limits 129
DMINWNL

CNOS control block 121
DEFINE/DISPLAY control block 135
negotiation value 117

DMINWNR
CNOS control block 121
DEFINE/DISPLAY control block 135
negotiation value 117

DNS, online information xx
DRAIN_TARGET(NO) parameter option set 45
draining.

DDRAINL 134
DRAINL 122
DRAINR 122
overview 125
preventive draining 126
relationship to CNOS 141
relationship to DEFINE 134
setting session limits to zero 141
SLCDRAL 122
SLCDRAP 122
SLDDDRAL 134
SLDDRAL 135
SLDDRAP 135
source side 141
target side 141
terminating 127

DRAINL,
CNOS control block 122
DEFINE/DISPLAY control block 135

DRAINR
CNOS control block 122
DEFINE/DISPLAY control block 135

DRESPL
CNOS control block 122
DEFINE/DISPLAY control block 135
negotiation value 117

DSECT labels 94
DSECT macroinstruction

mapping non-LU 6.2 control block storage 19
DSESLIM

CNOS control block 122
DEFINE/DISPLAY control block 136
negotiation value 117

416 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

E
encrypting data

SELECTIVE 309
encryption, levels of 309

NONE 309
REQUIRED 309
SELECTIVE 309

end user 1
entering RECEIVE state

becoming the receiving LU 237
including data on PREPRCV 237
logical record considerations 237
use of LOCKS=LONG 216
using PREPRCVs 237
using RECEIVE to switch states 237

entering SEND state
example of 212
general rules 211

error handling
completion condition 314, 316
data purging and truncating 322
error log data 324
evaluating feedback information 58
responding to error 320
role of exit routine 318
role of return code 313
sense code consideration 321
terminating conversation 320
terminating session 319
timer error 321
type of error 320
using sync point service 78

error log data 324
error log variable 324
evaluating RCPRI,RCSEC codes 318
example of an application program 357
EXECRPL macroinstruction 20
exit routine

definition 33
EXLST exit

ATTN 284
definition 33
function of 283
LERAD 34, 290
LOGON 34, 291
NSEXIT 14
RELREQ 34
SCIP 34, 293
SYNAD 34, 289
TPEND 34, 290

not applicable to LU 6.2 34
optional 283
RPL exit

description 33
function of 283

special-purpose 34
using 283

exit routine and error checking 318
EXLST macroinstruction 20
extended buffer list 260
Extended Recovery Facility, application program within 169
extended security sense codes

definition 47

F
feedback information

design considerations 58
FDB2 81
FMH-5 indicator 185
from CNOS request 105
indicating retriable conditions 58
RCPRI 81
RCSEC 81
register contents 313
RTNCD 81
what-received indicators 228, 229

FILL keyword
differences between BUFF and LL 247
examples of use 248
relationship to continuation modes 247

finite state machine (FSM)
definition 23
design considerations 67
restrictions on macroinstructions 67
state matrix 340
use by VTAM 67

flush the LU's send buffer option set 42
FLUSH verb 37
flushing the send buffer

as a consequence of confirmation requests 215
relationship to max RU size 208, 218
using the FLUSH qualify value 208, 219

FM5ACCSE DSECT 177
FM5ASI DSECT 177
FM5CVCOR DSECT 177
FM5LUO2 DSECT 177
FM5LUOW1 DSECT 177
FM5PIPFM DSECT 177
FM5PIPSM DSECT 177
FMH data option set 47
FMH header sense codes 188
FMH-5

access security subfields 179
application error checks 181
buffering by LU 183
example 181
fields 177
figure of 177
format 176
maximum length 177
notification

design consideration 73
restriction 186
types of 185

queuing the RCVFMH5 request 185, 189
receiving, example of 186

FMH-7
buffering by LU 208, 218
use by VTAM 324

FMH-7 sense codes
allocation error 326
authorization 325
function abort 325
insufficient resource 325
invalid FM header 327
resource 325
transaction program error 326
use of 324

FMH5RCV RPL field
general use 185
limitations 185

Index 417

FORCE parameter option set 48
forcing session termination 319
FQNAME, DEFINE/DISPLAY control block 136
FQNLEN, DEFINE/DISPLAY control block 136
FREECNT, DEFINE/DISPLAY control block 136
FSM (finite state machine)

definition 23
design considerations 67
restrictions on macroinstructions 67
state matrix 340
use by VTAM 67

function-list vector 28

G
GDS variable

CNOS 171
GENCB macroinstruction 20
general return code 313
generic resource, LU 6.2 application 169
get attributes option set 46
get conversation type option set 46
GET_ATTRIBUTES verb 39
GET_TP_PROPERTIES verb 39
GET_TYPE verb 40
global variables 24

H
HALT commands 290
high performance data transfer (HPDT)

APPCCMD request 256
application design considerations 256
CONTROL=SENDRCV macroinstruction 275
interface 255
receiving data 268
sending data 261
service 255

host-subarea-PU-network-address vector 29
host-subarea-PU-network-name vector 29
HPDT (high performance data transfer)

APPCCMD request 256
application design considerations 256
CONTROL=SENDRCV macroinstruction 275
interface 255
receiving data 268
sending data 261
service 255

I
IBM Software Support Center, contacting xvi
identifier, conversation

format of 190
general use 23
similarity to CID 23

IFGRPL DSECT label, table of 94
IMMED qualify value

description 72
session assignment algorithm 183

immediate allocation of a session option set 43
immediate conversation allocation 183
implementing an LU 6.2 11
indicator, already-verified

in FMH-5 field 178
with user ID field 181

Information APARs xvii
INITIALIZE_SESSION_LIMIT 38
initializing the LU-mode table 54
initiating conversation allocation 183
INQUIRE macroinstruction 20
inquiry transaction checklist 35
inquiry transaction, sequencing 35
Internet, finding z/OS information online xix
INTRPRET macroinstruction 20
ISTRPL6X DSECT labels, table of 94
IVTCSM macroinstruction 255, 257

K
keyboard 391
keyword specifications 95
keyword table, valid 87

L
length prefix 213
LERAD exit routine 34, 290
license, patent, and copyright information 395
limited resource support 156, 164
LL 247
LLCA 249
local-application's-DCE-capability vector 27
local-nonce vector 31
locally known LU names 45
LOG_DATA what-received value 229
LOG-DATA

in what-received field 229
logging of data in system log option set 48
logic errors 314
logical record

considerations for sending data 213
continue-any 249
definition 7
example of sending 214
length prefix 213
maximum length 213
receiving records 247
relationship to error log data 324
relationship to mapped conversations 77
relationship to PIP data 187

logical unit (LU)
definition 1
entries in LU-mode table 52
protocol boundary 4
session capability 8
session types 3
types 3

logical unit of work (LUW) field
appended to FMH-5 179, 183

LOGON exit
applications without exit 292
changing session parameters 147
general information 291
not driven for control operator session 147
relationship to ACTSESS and DACTSESS 147
special-purpose use 34
use of RPLVACS bit 292

logon mode table
description 63
relationship to mode name group 9

long locks function 216

418 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

long locks option set 43
LU (logical unit)

definition 1
entries in LU-mode table 52
protocol boundary 4
session capability 8
session types 3
types 3

LU 6
allocation choices 72
any-mode RECEIVEs 75
conversation states 67
FMH-5 notification 73
LU-mode table 63
mode names 63
option sets 77
restoring a mode 60
return codes 58
RPL extension user field 57
session initiation and termination 65
SETLOGON macroinstruction 59
single-session partners 64
synchronous nature of conversation 67

LU 6.2
application 11
architecture 37
changes to API 13
concepts 4
implementation 11
option set 42, 48
peer 4
requirements for service 11
services

sync point 78
VTAM API versus LU 6.2 13

session 15
unique control block 17
vector list 24
verb 37

LU 6.2 APPL definition vector
format 29

LU 6.2 application
APPC=YES 11
APPL definition 11, 14
functioning as non-LU 6.2 session type 11
overriding ownership 170
restrictions on session establishment 13
terminating affinity between LU and generic resource 170

LU 6.2-application-definition vector 29
LU 6.2-support-function-list vector 28
LU name on BIND 165
LU parameter verbs option set 45
LU-LU session limit option set 48
LU-LU verification byte, session-level 299
LU-mode table

adding entries 113
application's use of 63
definition 10, 51
deleting entries 113, 142
initializing 54
LU name entry types 113
querying information in table 140
relationship to

CNOS processing 140
logon mode table 63
LU 6.2 architecture 51
session activation 140

LU-mode table (continued)
session limit negotiation values 116

LU=OWN conversations 46, 107
LUW (logical unit of work) field

appended to FMH-5 179, 183
LUW_IDENTIFIER attribute 40

M
macroinstruction

non-APPCCMD
listed 22, 33
required 18

to build and manipulate non-LU 6.2 control blocks 18
mainframe

education xvii
management of SNA request units 13
manipulative instructions 15
mapped conversation LU services component option set 48,

77
mapped conversation verbs 41
maximum RU size

option set 45
relationship to flushing of buffer 208, 218
relationship to session parameters 208, 218

maximum security acceptance level
the application's 306
the partner application's 307

maximum-subarea vector 30
MIN_CONWINNERS_TARGET parameter option set 45
minimum number of contention-winner session

source side 117
target side 117

MINWINL
CNOS control block 123
DEFINE/DISPLAY control block 136

MINWINR
CNOS control block 123
DEFINE/DISPLAY control block 137

MODCB macroinstruction 20
mode

closing 141
new, starting 62, 63
pending recovery 383
restoring 60
retained

restoring and processing information about 383
mode name

definition 9, 63
deleting from LU-mode table 113
entry in LU-mode table 53
limiting number of sessions 10
relationship to

CNOS requests 103
logon mode table 9, 63
session parameters 63

restoring a mode 62
role in LU 6.2 architecture 9
SNASVCMG limitations 64

mode name group 9
MODE structure 51
MODE_NAME attribute 39
modifying session parameters 148
multi-thread processing

acceptance and completion stages 313
APPCCMDs for multiple conversations 81
APPCCMDs for single conversation 81

Index 419

multi-thread processing (continued)
description 67
ECBs 33
error feedback 314
RPL exits 33
use of APPCCMD CONTROL=CHECK

macroinstruction 81
use of OPTCD=ASY 81

multiple address space restrictions 35
multiple LOGON support 292

N
name learned during session activation 165
name mismatch detection 166
name-change vector 31
NBRMODE, CNOS control block 123
negative confirmation response 240
negotiated values, receiving 118
negotiation values

DDRAINL 117
DMINWNL 117
DMINWNR 117
DRESPL 117
DSESLIM 117
established with DEFINE 116
impact on CNOS 117
included on definition statement 116
queried with DISPLAY 140

negotiation, CNOS 103
network identifier

parameter list 285
network-name vector 30
network-qualified LU name 165
NIB

control block 14
macroinstruction 20

non-APPCCMD macroinstructions 18
NONE, security acceptance level 304
nonsupported basic conversation verbs 41
NSEXIT exit routine 14

O
OPEN macroinstruction 20
opening ACB 16, 59
operating system environment 35
OPNDST macroinstruction 21
OPNSEC macroinstruction 21
OPRCNTL control value 99
option set

application-implemented sets
accounting 47
authentication, using GSS-API mechanism 47
conversations at the same LU 46
data mapping 47
error data logging 48
extended security sense codes 47
FMH data 47
get attributes 46
get conversation type 46
mapped conversation LU services component 48
optimization using GSS_continue_deferred 47
password substitution 47
receive persistent verification 46
receive PIP data 47

option set (continued)
application-implemented sets (continued)

send persistent verification 46
send PIP data 47
sync point services 46

definition 42
design consideration for LU 6.2 77
role in LU 6.2 architecture 42
supported security sets

profile pass-through 44
profile verification and authorization 44
program-supplied profile 44
program-supplied user ID and password 44
session-level LU-LU verification 44
user ID authorization 44
user ID verification 44

unsupported sets
ACTIVATE_SESSION verb 48
DEACTIVATE_SESSION verb 48
FORCE parameter 48
LU-LU session limit 48
post on receipt with test for posting 48
post on receipt with wait 46
receive immediate 42
test for request to send received 43

VTAM-implemented basic conversation sets
flush the LU's send buffer 42
immediate allocation of a session 43
long locks 43
PREPARE_TO_RECEIVE verb 42
queued allocation for when session free 43
queued allocation of contention-winner session 43

VTAM-implemented control operator sets
CHANGE_SESSION_LIMIT verb 45
contention-winner automatic activation limit 46
DRAIN_TARGET(NO) parameter 45
locally known LU names 45
LU-definition verbs 45
maximum RU size bounds 45
MIN_CONTENTION_WINNERS_TARGET

parameter 45
RESPONSIBLE(TARGET) parameter 45
session-level mandatory cryptography 45
single-session reinitiation 45
uninterpreted LU names (inbound only) 45

optional exit routines 283
OWN_NETWORK_QUALIFIED_LU_NAME attribute 40
OWN_TP_INSTANCE attribute 40
OWN_TP_NAME attribute 40

P
parallel session

description 8
determining session capability 143
relationship to mode name 9
VTAM assumptions about session capability 143

parallel-session capable 8
parameter-to-DSECT mapping 93
parameters, session

defining 111
fields application can set 149
relationship to

ACTSESS 148
LOGON and SCIP exits 148
mode name 63

responses application can set 157

420 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

partial presentation services (PS) header
in what-received field 229

partial PS header
in what-received field 229

PARTIAL_PS_HEADER what-received value 229
partner fully qualified LU name 165
partner LU name. 165
PARTNER_LU_NAME attribute 39
PARTNER_NETWORK_QUALIFIED_LU_NAME attribute 39
partner-application-capabilities vector 31
PARTNER-LU structure 51
partner's-DCE-capability vector 32
partner's-nonce vector 32
pass-through option sets

accounting 47
data mapping 47
error data logging 48
FMH data 47
get attributes 46
get conversation type 46
mapped conversation LU services component 48
receive PIP data 47
send PIP data 47
sync point services 46

pass-through verb functions
BACKOUT 40
GET_ATTRIBUTES 39
GET_TP_PROPERTIES 39
GET_TYPE 40
mapped conversation 41
SYNCPT 41

password substitution
definition 47
flag in the FMH-5 178

PCID (procedure-correlation identifier) 191
PCID vector. 32
peer-to-peer connectivity 4
performance-monitor vector 30
persistent LU-LU sessions 60
PERSISTV, security acceptance level 304
physical errors 289
PIP (program initialization parameters) data

appended to FMH-5 180
format 180
receiving 187
subfields 180

positive confirmation response 240
post on receipt with test for posting option set 48
post on receipt with wait option set 46
POST_ON_RECEIPT verb 41
preallocating a conversation 189
PREPARE_FOR_SYNCPT 41
PREPARE_TO_RECEIVE verb 37
PREPARE_TO_RECEIVE verb option set 42
preparing to receive data

becoming the receiving LU 237
including data on PREPRCV 237
logical record considerations 237
use of LOCKS=LONG 216
using PREPRCVs 237
using RECEIVE to switch states 237

PREPRCV control value 237
prerequisite information xvii
presentation services (PS) header

in what-received field 229
presentation services usage field 112, 150
prioritizing input 249

procedure-correlation identifier 32
procedure-correlation identifier (PCID) 191
PROCESS_SIGNOFF 42
profile pass-through option set 44
profile verification and authorization option set 44
program errors

buffering consideration 208, 218
error log data 324
exit routine 318
purging and truncating 322
sense code 321
state change 211
type of error 320
use of REJECT 320
use of SEND, QUALIFY=ERROR macroinstruction 320

program initialization parameters (PIP) data
appended to FMH-5 180
format 180
receiving 187
subfields 180

program supplied user ID and password option set 44
program-supplied profile option set 44
PROTECTED_LUW_IDENTIFIER attribute 40
protocol boundary 4
protocol error 319
PRSISTVL

CNOS control block 124
DEFINE/DISPLAY control block 137

PS (presentation services) header
in what-received field 229

PS_HEADER what-received value 229
PSERVIC

usage field 150
PSERVIC operand 112
purging

associated return codes 322
lost return codes 323
relationship to confirmation requests 252

Q
QALLOC, DEFINE/DISPLAY control block 137
QUALIFY keyword

CONFIRM value
SEND CONTROL value 215

DATA value 207
DATACON value

SEND CONTROL value 207
DATAFLU value

SEND CONTROL value 207
FLUSH value

SEND CONTROL value 207
table of descriptions 83

querying LU-mode table values 140
querying the conversation status 68
queued allocation for when session free 43
queued allocation of contention-winner session option set 43
queued allocation requests, honoring

DDRAINL 134
DRAINL 122
DRAINR 122
overview 125
preventive draining 126
relationship to CNOS 141
relationship to DEFINE 134
setting session limits to zero 141
SLCDRAL 122

Index 421

queued allocation requests, honoring (continued)
SLCDRAP 122
SLDDDRAL 134
SLDDRAL 135
SLDDRAP 135
source side 141
target side 141
terminating 127

queued conversation allocation 183
queues for storing APPCCMD macroinstructions 69
queuing the RCVFMH5 request 185, 189
QUICK halt 290

R
RACF security management product 295
RCPRI

general use 318
role in session limit negotiation 104

RCSEC
general use 318
role in session limit negotiation 104

RCVCMD macroinstruction 21
RCVD_NAME entry in LU-mode table 113
RECEIVE control value 227
receive immediate option set 42
receive persistent verification option set 46
receive PIP data option set 47
RECEIVE state, entering

becoming the receiving LU 237
including data on PREPRCV 237
logical record considerations 237
use of LOCKS=LONG 216
using PREPRCVs 237
using RECEIVE to switch states 237

RECEIVE_AND_WAIT verb 38
RECEIVE_IMMEDIATE verb 38
receive-any mode

differences with RECEIVE, OPTCD=ANY
macroinstruction 21

keeping RECEIVEs outstanding 249
relationship to continue-specific mode 249
returned CONVID value 75
types of continuation modes 249

receive-FMH_5–sequence-number vector 32
receive-specific mode

CS continuation mode 249
logical record considerations 249
relationship to any-mode 249

receiving an FMH-5 185
receiving data

any and specific modes 249
confirmation requests 239
continuation modes

BUFFCA 249
CONMODE operand 249
CS 249
LLCA 249

entering RECEIVE state 237
error log data 324
logical records 247
overview 227
PIP data 187
purging 252
reporting errors 240
requesting to send data 212

receiving data (continued)
use of the FILL parameter

BUFF 247
LL 247

using HPDT 268
what-received indicators

CONFIRM 229
DATA 228
DATA_COMPLETE 228
DATA_INCOMPLETE 228
DEALLOCATE 229
LOG_DATA 229
PARTIAL_PS_HEADER 229
PS_HEADER 229
SEND 229

receiving error log data
data format 324
protocol errors 324

receiving LU 210, 237
receiving negotiated values 118
receiving PIP data 187
RECONNECT verb 41
record, logical

considerations for sending data 213
continue-any 249
definition 7
example of sending 214
length prefix 213
maximum length 213
receiving records 247
relationship to error log data 324
relationship to mapped conversations 77
relationship to PIP data 187

recovering modes and sessions 62
recovery action return codes 314
register 0 314
register 15 313
register usage

save area 35, 284
usage 34

rejecting session requests 147
release-level vector 29
RELREQ exit 34
reporting errors

buffering considerations 208, 218
error log data 324
exit routines 318
purging and truncating 322
return codes 313
sense codes 321
state changes 211
types of errors 320
use of REJECT 320
use of SEND, QUALIFY=ERROR macroinstruction 320

REQSESS macroinstruction 21
request parameter list (RPL)

control block
description and use 16

keyword operands valid for APPCCMD
macroinstructions 17

macroinstruction 21
REQUEST_TO_SEND verb 38
requesting to send data 212
required non-APPCCMD macroinstructions 18
reserving a session for a conversation 189
RESET_SESSION_LIMIT 38
RESETSR macroinstruction 21

422 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

resource-information vector list
description 29
format 27
relationship to OPEN process 27

RESP, CNOS control block 124
responding negatively to session requests

LOGON and SCIP exits 147
use of RPLVACS bit 292

responding positively to session requests
example of 149
relationship to LOGON and SCIP exits 147
specifying alternate session parameters 148
use of the RPLVACS bit 292

RESPONSIBLE(TARGET) parameter option set 45
RESTORE control block

SREFLGS 174
SREMDRS 173
SREMFLGS 173
SREMODE 173
SRENAME 173
SRENETID 174
SRENXTAD 173
SREPCONV 174
SRESESAD 173
SRESESCT 174
SRESESID 174
SRESIDL 174
SRESLDAD 173
SRESNXTA 174
SRESPNDA 174

restoring modes and sessions 60
restrictions on use, USERVAR 169
retained modes

restoring and processing information about 383
retriable error conditions 58
return codes

conditional completion indication 314
design considerations 58
general use 318
relationship to registers 313
retriable indications 318

returned information
design considerations 58
FDB2 81
FMH-5 indicator 185
from CNOS request 105
indicating retriable conditions 58
RCPRI 81
RCSEC 81
register contents 313
RTNCD 81
what-received indicators 228

returned parameter table 90
RFC (request for comments)

accessing online xix
roles of sender and receiver 211
RPL (request parameter list)

control block
description and use 16

keyword operands valid for APPCCMD
macroinstructions 17

macroinstruction 21
RPL extension

created by ISTRPL6 macroinstruction 17
mapping fields 17
pointed to by AAREA field 17
referred to by ISTRPL6X DSECT 17

RPL extension fields
AVFA 94
CD 94
CGID 94
CONFTXT 94
CONMODE 94
CONSTATE 94
CONTROL 94
CONVID 94
CONVSECP 94
CONXMOD 94
CRYPTRPL 94
DEACTYP 94
EXPDLEN 94
EXPDRCV 94
FILL 94
FMH5LEN 95
FMH5RCV 95
LAST 95
LIST 95
LOCKS 95
LOGMODE 95
LOGRCV 95
LUNAME 95
NETID 95
PRSISTVP 95
QUALIFY 95
RCPRI 95
RCSEC 95
RPL6AVFA 94
RPL6CCST 94
RPL6CD 94
RPL6CFTX 94
RPL6CGID 94
RPL6CLSA 94
RPL6CMOD 94
RPL6CNVD 94
RPL6CRYP 94
RPL6CXMD 94
RPL6DETP 94
RPL6EXDL 94
RPL6EXDR 94
RPL6FILL 94
RPL6FMH5 95
RPL6LAST 95
RPL6LIST 95
RPL6LOCK 95
RPL6LU 95
RPL6MH5L 95
RPL6MODE 95
RPL6NET 95
RPL6PV 95
RPL6QUAL 95
RPL6RCPR 95
RPL6RCSC 95
RPL6REQ 94
RPL6RLOG 95
RPL6RSIG 95
RPL6RTSX 95
RPL6SGNL 95
RPL6SIDL 95
RPL6SLS 95
RPL6SNSI 95
RPL6SNSO 95
RPL6SSID 95
RPL6STBF 95
RPL6STDS 95

Index 423

RPL extension fields (continued)
RPL6TYPE 95
RPL6USR 95
RPL6WHAT 95
RTSRTRN 95
SENSE 95
SESSID 95
SESSIDL 95
SIGDATA 95
SIGRCV 95
SLS 95
STSHBF 95
STSHDS 95
table of 94
TYPE 95
USERFLD 95
WHATRCV 95, 228

RPL extension user field 57
RPL fields

AAREA 94
AAREALN 94
ACB 94
AFFN 95
AREA 94
AREALEN 94
ARG 94
BRANCH 94
CRYPT 94
ECB 94
EXIT 94
FDB2 94
OPTCD 94
RECLEN 94
RPL6AFFN 95
RPLAAREA 94
RPLAARLN 94
RPLAREA 94
RPLBUFL 94
RPLDACB 94
RPLECB 94
RPLEXTDS 94
RPLFDB2 94
RPLOPT1 94
RPLOPT6 94
RPLRLEN 94
RPLRTNCD 94
RPLTCRYP 94
RPLVACS bit 292
RTNCD 94
table of 94

RPL notification of FMH5 186, 285
RPL-based macroinstructions 15

S
SCIP exit

applications without exit 294
relationship to ACTSESS and DACTSESS 147
use of 293

security
acceptance level for FMH-5 subfields

ALREADYV 304
AVPV 304
CONV 304
determining partner acceptance level 307
NONE 304
PERSISTV 304

security (continued)
acceptance level for FMH-5 subfields (continued)

specifying application's acceptance level 306
already-verified support 304
FMH-5 subfields

password 179
profile 179
user ID 179

options 77
persistent-verification support 305
relationship to ACTSESS 306
relationship to CNOS 307
specified at time of first session 303
specifying acceptance information 128

security acceptance level, maximum
the application's 306
the partner application's 307

security acceptance levels 303
security and VTAM option sets

profile pass-through 44
profile verification and authorization 44
program-supplied profile 44
program-supplied user ID and password 44
session-level LU-LU verification 44
user ID authorization 44
user ID verification 44

security fields
ID 179
password 179
profile 179

security management product, RACF. 295
security options, LU 6.2 295
SECURITY_PROFILE attribute 40
SECURITY_USER_ID attribute 40
SEND buffer

description 8
flushing

description 208, 219
example of 209

general use 208, 218
use during conversation allocation 183

SEND control value 207
SEND macroinstruction 22
send persistent verification option set 46
send PIP data option set 47
SEND what-received value 229
SEND_DATA verb 38
SEND_ERROR verb 38
send-FMH_5–sequence-number vector 32
SENDCMD macroinstruction 22
sending data

buffer list (OPTCD=BUFFLST) considerations 221
buffering of data 208, 218
choosing control and qualify values 207
confirmation requests 215
confirmation responses 215
conversation data 213
entering SEND state

description 211
example of 212

error information 74
flushing the buffer, used with 208, 219
logical records 213
requests to send 74
storage shortages 224
table of APPCCMD macroinstructions 207
using HPDT 261

424 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

sending data (continued)
what is sent 213
when data can be sent 211

sending LU 211
SENDRCV request 275
sense code

FMH-7 codes
allocation error 326
authorization 325
function abort 325
insufficient resource 325
invalid FM header 327
resources 325
restrictions 325
transaction program error 326

UNBIND codes
alternate code not supported 332
authorization 328
BB not allowed 331
bracket 330
bracket bid reject—no RTR forthcoming 328
bracket bid reject—RTR forthcoming 328
brackets not supported 332
category not supported 329
CD not allowed 332
CEB or EB not allowed 331
chaining 330
chaining not supported 332
definite response not allowed 331
direction 331
ERP message forthcoming 328
function not supported 329
immediate request mode error 331
incorrect indicators with last-in-chain request 333
incorrect setting of QRI with user's BB 333
incorrect specification of (SDI, RTI) 332
incorrect specification of request code 332
incorrect specification of RU category 332
incorrect use of (DR1I, DR2I, ERI) 332
incorrect use of EDI 333
incorrect use of format indicator 332
incorrect use of PDI 333
incorrect use of QRI 332
insufficient resource 328
invalid FM header 330
invalid sense code received 331
no begin bracket 331
no session 333
pacing error 331
pacing not supported 332
parameter error 329
QRI setting in response different from that in

request 333
queued response error 331
request not executable 328
response correlation error 331
response protocol error 331
RTR not required 328
RU data error 329
RU length error 329
sequence number 330
session failure—depleted buffer pool storage 328

using 324
service errors 320
SESSCAP, DEFINE/DISPLAY control block 137
SESSCNT, DEFINE/DISPLAY control block 138

SESSID
identifier, format of 191

session
6.2 type 3
activation 145
CNOS 145
deactivation 146
definition 3
modes 9
parameters 63
recovering a 62
restoring a 60
role in SNA 3
types 3
unique handling by LU 6.2 13

session activation
application's role in 65
automatic activation 145
AUTOSES parameter 192
CNOS requirements 145
LOGON and SCIP exits 291
relationship to

LU-mode table 140
session limits 145

session parameters 147
SETLOGON requirements 59
SNASVCMG session 64, 65
use of ACTSESS and DACTSESS 147
use of the RPLVACS bit 292
when sessions are activated 191

session activation failures
allocation request 192
session-level verification 301

session capability, determining
relationship to CNOS 143
relationship to SNASVCMG 143
SESSCAP bit 137
SNGSESLU bit 125
VTAM actions 143

session control requests 15
session deactivation

application's role in 99, 147
ATTN exit considerations 287
automatic deactivation 146
relationship to CNOS 146
relationship to DACTSESS 148

session deactivation responsibility 15
session identifier 191
session limit

application's role in controlling 99, 147
control block 118
deactivation responsibility 125
definition 10, 100
displaying 129
draining 125
negotiation value

changing defined values 117
defining 116
example of changing defined values 139
listed 117

negotiation, definition 99
of zero 141
overall limits 101
restrictions

single-session partners 143
SNASVCMG mode 144

single-session partners 143

Index 425

session limit (continued)
SNASVCMG mode 144
source contention winners 101
target contention winners 101

session limits, changing
control block

ALRDYVL 121
CONVSECL 121
DDRAINL 121
DEFINE 121
DMINWNL 121
DMINWNR 121
DRAINL 122
DRAINR 122
DRESPL 122
DSESLIM 122
MINWINL 123
MINWINR 123
NBRMODE 123
PRSISTVL 124
RESP 124
SESSLIM 124
SLCALL 123
SLCDDRAL 121
SLCDEFND 121
SLCDMCWL 121
SLCDMCWP 121
SLCDRAL 122
SLCDRAP 122
SLCDRSPL 122
SLCDSESL 122
SLCLAVFA 121
SLCLCONV 121
SLCLPV 124
SLCMCWL 123
SLCMCWR 123
SLCPRSPL 124
SLCSESSL 124
SLCSSLU 125
SNGSESLU 125

draining allocation requests 125
impact on LU-mode table 113
negotiation 63, 99
negotiation example 109
negotiation values 117

DDRAINL 117
DMINWNL 117
DMINWNR 117
DRESPL 117
DSESLIM 117

session activation 145
session deactivation 146
session deactivation responsibility 126
single-session partners 143
SNASVCMG mode processing 144
source side of requests 103
target side of requests 104

session parameter fields 150
session parameters.

defining 111
fields application can set 149
relationship to

ACTSESS 148
LOGON and SCIP exits 148
mode name 63

responses application can set 157

session requests, accepting
example of 149
relationship to LOGON and SCIP exits 147
specifying alternate session parameters 148
use of the RPLVACS bit 292

session requests, rejecting
LOGON and SCIP exits 147
use of the RPLVACS bit 292

session-information vector 32, 259
session-level LU-LU verification byte 299
session-level LU-LU verification option set 44
session-level mandatory cryptography option set 45
session-level security

enabling 298
SECLVL= parameter

ADAPT 300
LEVEL1 300
LEVEL2 300

security management product requirements 295
VERIFY= parameter

NONE 299
OPTIONAL 299
REQUIRED 299

session-level selective cryptography option set 46
session-level verification

basic 296
enhanced 297
protocol level 300
protocols 296
security level 299
VTAM's support for 302

SESSIONC macroinstruction 22
SESSLIM

CNOS control block 124
DEFINE/DISPLAY control block 138

SET_SYNCPT_OPTIONS 41
SETLOGON and session initiation 59
SETLOGON macroinstruction

description 18
summary 22
use of 59

setting CNOS limits 118
shortcut keys 391
SHOWCB macroinstruction 22
SIGNOFF 42
SIMLOGON macroinstruction 22
single session, description 8
single-session capable 8
single-session partner

CNOS 143
limitations 64
session limits 143

single-session partners, identifying
relationship to CNOS 143
relationship to SNASVCMG 143
SESSCAP bit 137
SNGSESLU bit 125
VTAM actions 143, 307

single-session reinitiation option set 45
SLCALL, CNOS control block 123
SLCDDRAL, CNOS control block 121
SLCDEFND, CNOS control block 121
SLCDMCWL, CNOS control block 121
SLCDMCWP, CNOS control block 121
SLCDRAL, CNOS control block 122
SLCDRAP, CNOS control block 122
SLCDRSPL, CNOS control block 122

426 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

SLCDSESL, CNOS control block 122
SLCLAVFA, CNOS control block 121
SLCLCONV, CNOS control block 121
SLCLPV, CNOS control block 124
SLCMCWL, CNOS control block 123
SLCMCWP, CNOS control block 123
SLCPRSPL, CNOS control block 124
SLCSESSL, CNOS control block 124
SLCSSLU, CNOS control block 125
SLDAUTO, DEFINE/DISPLAY control block 133
SLDAUTOS, DEFINE/DISPLAY control block 133
SLDCLSV, DEFINE/DISPLAY control block 134
SLDDELET, DEFINE/DISPLAY control block 134
SLDDMCWL, DEFINE/DISPLAY control block 135
SLDDMCWP, DEFINE/DISPLAY control block 135
SLDDRAL, DEFINE/DISPLAY control block 134, 135
SLDDRAP, DEFINE/DISPLAY control block 135
SLDDRSPL, DEFINE/DISPLAY control block 135
SLDDSESL, DEFINE/DISPLAY control block 136
SLDFQNAM, DEFINE/DISPLAY control block 136
SLDFQNLN, DEFINE/DISPLAY control block 136
SLDFREEC, DEFINE/DISPLAY control block 136
SLDLAVFA, DEFINE/DISPLAY control block 133
SLDLCLSA, DEFINE/DISPLAY control block 134
SLDLPV, DEFINE/DISPLAY control block 137
SLDMCWL, DEFINE/DISPLAY control block 136
SLDMCWP, DEFINE/DISPLAY control block 137
SLDPAVFA, DEFINE/DISPLAY control block 133
SLDPPV, DEFINE/DISPLAY control block 137
SLDQALLC, DEFINE/DISPLAY control block 137
SLDSCAP, DEFINE/DISPLAY control block 137
SLDSESSC, DEFINE/DISPLAY control block 138
SLDSESSL, DEFINE/DISPLAY control block 138
SLDSYNC, DEFINE/DISPLAY control block 138
SLDWINLC, DEFINE/DISPLAY control block 138
SLDWINPC, DEFINE/DISPLAY control block 138
SNA protocol specifications 389
SNASVCMG mode name group

CNOS limitations 145
control operator function 64
impact on conversation initiation 65
limitations 64
session

conversation limitation and control 65
limits 144

starting a new mode after a failure with persistence
enabled 62, 63

SNGSESLU, CNOS control block 125
softcopy information xvii
source LU 103
source side

CNOS processing
draining considerations 141
negotiation indicator return codes 105
negotiation processing 103
setting session limits to zero 141
use of session limits control block 103

definition 103
specific-mode RECEIVEs

CS continuation mode 249
logical record considerations 249
relationship to any-mode 249

SREMDRS, RESTORE control block 173
SREMFLGS, RESTORE control block 173
SREMODE, RESTORE control block 173
SRENAME, RESTORE control block 173
SRENETID, RESTORE control block 174

SRENXTAD, RESTORE control block 173
SREPCONV, RESTORE control block 174
SRESESAD, RESTORE control block 173
SRESESCT, RESTORE control block 174
SRESESID, RESTORE control block 174
SRESFLGS, RESTORE control block 174
SRESIDL, RESTORE control block 174
SRESLDAD, RESTORE control block 173
SRESNXTA, RESTORE control block 174
SRESPNDA, RESTORE control block 174
SSCP-name vector 30
starting a new mode after a failure with persistence

enabled 62, 63
startup processing, application programs 59
state change matrix 340
storage

performing I/O 270
shortages, sending data 224

SUPPLIED_NAME entry in LU-mode table 113
supported as pass-through, verbs

BACKOUT 40
GET_ATTRIBUTES 39
GET_TP_PROPERTIES 39
GET_TYPE 40
mapped conversation 41
SYNCPT 41

supported basic conversation verbs
ALLOCATE 37
CONFIRM 37
CONFIRMED 37
DEALLOCATE (except TYPE=LOCAL) 37
FLUSH 37
PREPARE_TO_RECEIVE 37
RECEIVE_AND_WAIT 38
REQUEST_TO_SEND 38
SEND_DATA 38
SEND_ERROR 38

supported control operator verbs 44
CHANGE_SESSION_LIMIT 38
DEACTIVATE_CONVERSATION_GROUP 38
INITIALIZE_SESSION_LIMIT 38
RESET_SESSION_LIMIT 38

supported option sets
supported security sets

profile pass-through 44
profile verification and authorization 44
program-supplied profile 44
program-supplied user ID and password 44
session-level LU-LU verification 44
user ID authorization 44
user ID verification 44

VTAM-implemented control operator sets
CHANGE_SESSION_LIMIT verb 45
contention winner automatic activation limit 46
DRAIN_TARGET(NO) parameter 45
locally known LU names 45
LU-definition verb 45
maximum RU size bounds 45
MIN_CONTENTION_WINNERS_TARGET

parameter 45
RESPONSIBLE(TARGET) parameter 45
session-level mandatory cryptography 45
session-level selective cryptography 46
single-session reinitiation 45
uninterpreted LU names (inbound only) 45

VTAM-implemented conversation sets
flush the LU's send buffer 42

Index 427

supported option sets (continued)
VTAM-implemented conversation sets (continued)

immediate allocation of a session 43
long locks 43
PREPARE_TO_RECEIVE verb 42
queued allocation for when session free 43
queued allocation of contention-winner session 43

SYNAD exit routine 34, 289
sync level 178
SYNC, DEFINE/DISPLAY control block 138
synchronization point services

definition 78
option set 46
VTAM support of 78

synchronous
completion condition 316
conversation requests 67
nature of conversations 67
processing 67

SYNCPT verb 41

T
target LU 104
target side 104

CNOS processing
draining considerations 141
example 109
role of ATTN exit 286
session limit negotiation rules 117
use of negotiation values 117
zero limit CNOS 141

definition 103
TCP/IP

online information xix
Technotes xvii
terminating session

protocol errors 320
use of REJECT 320
use of sense codes 321

TERMSESS macroinstruction 22
test for request to send received option set 43
TEST verb 42
TESTCB macroinstruction 22
TESTSTAT macroinstruction. 68
timing errors 321
TPEND exit routine 34, 290
trademark information 403
transaction processing 66

overview 35
transaction program

definition 5
implementation 6
receiving data 8
relationship to VTAM application 5

transaction program errors 320
transaction, inquiry, sequencing 35
truncating

associated return codes 323

U
UNBIND sense codes

alternate code not supported 332
authorization 328
BB not allowed 331

UNBIND sense codes (continued)
bracket 330
bracket bid reject—no RTR forthcoming 328
bracket bid reject—RTR forthcoming 328
brackets not supported 332
category not supported 329
CD not allowed 332
CEB or EB not allowed 331
chaining 330
chaining not supported 332
definite response not allowed 331
direction 331
ERP message forthcoming 328
function not supported 329
immediate request mode error 331
incorrect indicators with last-in-chain request 333
incorrect setting of QRI with loser's BB 333
incorrect specification of (SDI, RTI) 332
incorrect specification of request code 332
incorrect specification of RU category 332
incorrect use of (DR1I, DR2I, ERI) 332
incorrect use of EDI 333
incorrect use of format indicator 332
incorrect use of PDI 333
incorrect use of QRI 332
insufficient resource 328
invalid FM header 330
invalid sense code received 331
no begin bracket 331
no session 333
pacing error 331
pacing not supported 332
parameter error 329
QRI setting in response different from that in request 333
queued response error 331
request not executable 328
response correlation error 331
response protocol error 331
RTR not required 328
RU data error 329
RU length error 329
sequence number 330
session failure—depleted buffer pool storage 328
use of 328

unchanged features of API 13
unconditional deallocation 196
unformatted user data 165
uninterpreted LU names (inbound only) option set 45
unsupported basic conversation verb

DEALLOCATE(TYPE=LOCAL) 41
POST_ON_RECEIPT 41
PREPARE_FOR_SYNCPT 41
RECEIVE_IMMEDIATE 38
RECONNECT 41
SET_SYNCPT_OPTIONS 41
TEST 42
WAIT 42

unsupported control operator verbs
DELETE 42
PROCESS_SIGNOFF 42
SIGNOFF 42

unsupported option sets
basic conversation

post on receipt with test for posting 48
post on receipt with wait 46
receive immediate 42
test for request to send received 43

428 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

unsupported option sets (continued)
control operator

ACTIVATE_SESSION verb 48
DEACTIVATE_SESSION verb 48
FORCE parameter 48
LU-LU session limit 48

UNUSABLE_NAME entry in LU-mode table 113
user data structure subfields 165
user exit routine

definition 33
EXLST exit

ATTN 284
definition 33
function of 283
LERAD 34, 290
LOGON 34, 291
NSEXIT 14
RELREQ 34
SCIP 34, 293
SYNAD 34, 289
TPEND 34, 290

not applicable to LU 6.2 34
optional 283
RPL exit

description 33
function of 283

special-purpose 34
using 283

user field in RPL extension 57
user ID authorization option set 44
user ID verification option set 44
user-reported errors 321
USERVAR, restrictions on use 169
using exit routines 283
using the VTAM API 11

V
valid keyword table 87
values, negotiation, defining 129
VARIANT_NAME entry in LU-mode table 113
vector list

access-method-support 27
APPCCMD-VTAM 30
application-ACB 26
description 24, 33
relationship to APPCCMD macroinstruction 30
relationship to OPEN process 26
resource-information 27

verb to macroinstruction cross-reference table 48
verbs, basic conversation

cross-reference to macroinstruction 48
definition 5
supported

ALLOCATE 37
CONFIRM 37
CONFIRMED 37
DEALLOCATE (except TYPE=LOCAL) 37
FLUSH 37
PREPARE_TO_RECEIVE 37
RECEIVE_AND_WAIT 38
REQUEST_TO_SEND 38
SEND_DATA 38
SEND_ERROR 38

supported as pass-through
BACKOUT 40
GET_ATTRIBUTES 39

verbs, basic conversation (continued)
supported as pass-through (continued)

GET_TP_PROPERTIES 39
GET_TYPE 40
mapped conversation 41
SYNCPT 41

unsupported
DEALLOCATE (TYPE=LOCAL) 41
POST_ON_RECEIPT 41
PREPARE_FOR_SYNCPT 41
RECEIVE_IMMEDIATE 38
RECONNECT 41
SET_SYNCPT_OPTIONS 41
TEST 42
WAIT 42

verbs, control operator
supported

CHANGE_SESSION_LIMIT 38
DEACTIVATE_CONVERSATION_GROUP 38
INITIALIZE_SESSION_LIMIT 38
RESET_SESSION_LIMIT 38

unsupported
DELETE 42
PROCESS_SIGNOFF 42
SIGNOFF 42

verified sessions, informing application of 301
VTAM and security option sets

profile pass-through 44
profile verification and authorization 44
program-supplied profile 44
program-supplied user ID and password 44
session-level LU-LU verification 44
user ID authorization 44
user ID verification 44

VTAM API (VTAM application program interface)
changes for LU 6.2 13
definition 11
unchanged features 13
use of 11

VTAM LU 6
APPC=YES 11
APPL definition 11, 14
definition 11
functioning as non-LU 6.2 session type 11
overriding ownership 170
recovering a 62
relationship to ACB 16
requirements for LU 6.2 services 11
restrictions on session establishment 13
startup processing 59
terminating affinity between LU and generic resource 170
use of sync point services 78
within recovery environment 169

VTAM macroinstruction language 15
VTAM services for conversations 23
VTAM-APPCCMD vector list 189
VTAM-to-APPL-required-information vector 32
VTAM, online information xix
VTAM's support for conversation-level security

ALREADYV 304
AVPV 304
CONV 304
NONE 304
PERSISTV 304

Index 429

W
WAIT verb 42
what-received indicator combinations, table of 230
what-received RPL extension field

example of checking 236
meaning of 228

WHATRCV 95, 228
when data can be sent 211
WHENFREE qualify value

description 72
WINLCNT, DEFINE/DISPLAY control block 138
winner, contention

allocation performance advantages 73
definition 10
establishing number of sessions 10
relationship to definition parameters 117
source side of CNOS request 103
target side of CNOS request 117

WINRCNT, DEFINE/DISPLAY control block 138

X
XBUFLST option 256, 257
XBUFLST-receive vector 31, 269
XRF, application program within 169

Z
z/OS Basic Skills Information Center xvii
z/OS, documentation library listing 405
zero session limits 141

430 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

Communicating your comments to IBM

If you especially like or dislike anything about this document, use one of the
methods listed below to send your comments to IBM. Whichever method you
choose, make sure you send your name, address, and telephone number if you
would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject
matter, or completeness of this document. However, the comments you send
should pertain to only the information in this manual and the way in which the
information is presented. To request additional publications, or to ask questions or
make comments about the functions of IBM products or systems, you should talk
to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Send your comments to us in any of the following ways:
v To send comments by FAX, use this number: 1+919-254-1258
v To send comments electronically, use this address:

– comsvrcf@us.ibm.com
v To send comments by post, use this address:

International Business Machines Corporation
Attn: z/OS Communications Server Information Development
P.O. Box 12195, 3039 Cornwallis Road
Department AKCA, Building 501
Research Triangle Park, North Carolina 27709-2195

Make sure to include the following information in your note:
v Title and publication number of this document
v Page number or topic to which your comment applies

© Copyright IBM Corp. 2000, 2013 431

mailto:comsvrcf@us.ibm.com

432 z/OS V2R1.0 Communications Server: SNA Programmer's LU 6.2 Guide

����

Product Number: 5650-ZOS

Printed in USA

SC27-3669-00

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	Typographic conventions used in this document
	How this document is organized
	How to use this document
	Determining whether a publication is current
	How to contact IBM service

	Conventions and terminology that are used in this document
	Prerequisite and related information

	Summary of changes
	Chapter 1. Understanding VTAM LU 6.2 application programs
	About this chapter
	Advantages of LU 6.2 application programs
	The role of LU 6.2 in SNA networks
	Logical units
	Session types

	Important LU 6.2 concepts
	Peer-to-peer protocol
	LU protocol boundary
	Transaction programs
	Conversations
	Conversation states
	Logical records and buffers
	Full-duplex and half-duplex protocols
	Full-duplex protocols
	Half-duplex protocols

	Single and parallel sessions
	Mode name groups
	Session contention
	Session limits

	VTAM-supported LU 6.2 application programs
	Responsibilities for implementing LU 6.2

	Chapter 2. LU 6.2 and the VTAM API
	About this chapter
	Standard features of the API
	Unique LU 6.2 features of the API
	VTAM as session manager
	VTAM macroinstruction language
	Control blocks and mappings
	Common control blocks and mappings
	Access method control block
	RPL control block and APPC extension
	BIND request unit (RU) mapping

	LU 6.2 control blocks and mappings

	Common macroinstructions
	Macroinstructions required for requesting LU 6.2 services
	Macroinstructions for building non-LU 6.2 control blocks
	Non-APPCCMD VTAM macroinstructions

	Session limits and CNOS commands
	VTAM conversations
	Conversation states
	LU 6.2 global variables
	Vector lists
	Vector lists used during OPEN processing
	Vector lists supplying information to VTAM
	Vector lists supplying information to the application

	Vector lists used during APPCCMD processing
	Vectors supplied by the application
	Vectors returned to the application

	Application exit routines
	RPL-specified exit routines
	Exit-list (EXLST) exit routines

	Register usage
	Operating system environment
	Overview of LU 6.2 transaction processing

	Chapter 3. How VTAM implements LU 6.2 architecture
	About this chapter
	LU 6.2 verbs
	Verbs that VTAM implements
	Conversation verbs
	Control operator verbs

	Pass-through verbs (application program implements)
	Mapped conversation verbs (application program implements)
	Verbs not supported by VTAM
	Conversation verbs
	Control operator verbs

	LU 6.2 option sets
	Option sets that VTAM implements
	VTAM and security option sets
	Session-level security option sets
	Conversation-level security option sets
	Control operator option sets

	Option sets that the application program implements
	Option sets that VTAM does not offer
	Unsupported conversation option sets
	Unsupported control operator option sets

	LU 6.2 verb cross reference
	VTAM LU-mode table
	Data structures
	Architectural base
	VTAM's representation of data structures

	Blank mode names
	Table entries
	Initializing the LU-mode table

	Chapter 4. Designing programs to use LU 6.2 services
	About this chapter
	Request of LU 6.2 services
	RPL extension user field
	Evaluating feedback information
	Registers
	Return codes

	Startup processing for LU 6.2 application programs
	Opening an ACB
	Issuing a SETLOGON macroinstruction
	Restoring modes and any associated persistent LU-LU sessions
	Establishing persistence
	Managing the recovery
	Opening the ACB during recovery
	States of recovery
	Activity during a failure
	Restoring resources
	Restoring a mode

	Negotiating session limits
	VTAM's LU-mode table
	Defining logon mode names
	Single-session partners
	SNASVCMG mode name group
	Session initiation and termination
	Application termination

	LU 6.2 transaction processing
	Understanding conversations
	Synchronous nature of conversations
	Maintaining conversation states
	Querying the current status of a conversation

	Conversation queues for macroinstruction processing
	Queues for half-duplex conversations
	Queues for full-duplex conversations

	Allocating a conversation and receiving the allocate
	Types of conversation allocation
	Notification of conversation requests

	Comparing normal information to expedited information
	Comparing data to indications

	Determining conversation status
	Sending and receiving normal information
	Receiving input without specifying a conversation
	Receiving next available data
	Receiving data immediately available

	Sending and receiving expedited information
	Sending expedited data
	Receiving expedited data

	Deallocating the conversation

	Implementing LU 6.2 option sets
	Mapped conversations
	Security procedures
	Synchronization point services
	VTAM support for sync point services

	Program initialization parameters (PIP) data

	Chapter 5. Coding the APPCCMD macroinstruction
	About this chapter
	Use of the APPCCMD macroinstruction
	Use of the CONTROL keyword
	Use of the QUALIFY keyword
	Keywords and returned parameters
	Parameter-to-DSECT mapping
	Keyword specifications

	Chapter 6. Managing sessions
	About this chapter
	Negotiating session limits
	How session limits are used
	Types of sessions
	Number and representation of sessions

	Application's role in session limit negotiation
	Initiating session limit negotiation

	VTAM's role in session negotiation
	VTAM's role in session limit negotiation when PLU=SLU
	Example of a CNOS request
	Example of CNOS negotiation

	Logon mode table versus LU-mode table
	Logon mode table
	LU-mode table
	Adding to the LU-mode table
	LU entries in the LU-mode table
	Retrieving information from the LU-mode table

	Specifying values for session limit negotiation
	Defined negotiation limits
	How defined negotiation limits are set

	Parameters on the APPL definition statement

	Building a CNOS session limits control block
	Layout of the CNOS session limits control block
	Draining and session deactivation responsibility
	Draining
	Session deactivation

	Security acceptance information
	Security level definition
	Security manager product
	Security indicators and subfields

	Defining negotiation limits and displaying session limits
	Initializing and pointing to the control block
	When to Initialize the DEFINE/DISPLAY control block fields
	When to supply a 68-byte area for the control block
	When to supply a 40-byte area for the control block

	Limitations of the display function
	Layout of the DEFINE/DISPLAY control block
	Example of setting the DEFINE/DISPLAY control block
	Displaying LU-mode data
	Example of displaying LU-mode data

	Setting session limits to 0
	Closing a mode
	Closing a SNASVCMG mode
	Deleting mode entries

	Additional session limit considerations
	Parallel session support
	How VTAM receives indicators
	How an application program interrogates VTAM

	Session limits for single-session-capable partners
	Session limits for SNASVCMG mode name

	Activating and deactivating sessions
	VTAM's role in session activation and deactivation
	When VTAM activates sessions
	When VTAM deactivates sessions
	Deactivation of sessions with parallel-session-capable partners

	Application program's role in session activation and deactivation
	Determining session type after LOGON exit
	Determining session type after SCIP exit
	How to provide different session parameters

	Example of accepting a session
	BIND image and response
	User data structured subfields
	LU 6.2 names used for session activation
	LU 6.2 in an extended recovery facility (XRF) environment
	LU 6.2 applications as generic resources

	CNOS general data stream (GDS) variable

	Retrieving information for a mode and sessions to be restored

	Chapter 7. Allocating a conversation
	About this chapter
	Initiating a conversation
	Building an FMH-5
	Additional FMH-5 DSECTs
	FMH-5 fields
	Checking errors in the FMH-5
	Example of an FMH-5

	Issuing the CONTROL=ALLOC macroinstruction
	Buffering requirements
	Example of allocating a conversation

	Responding to an FMH-5
	Restrictions on types of notification
	Example of receiving an FMH-5
	Receiving PIP and DCE data
	Checking the received FMH-5
	Queuing the RCVFMH5 macroinstruction
	Receiving data along with the FMH-5

	Reserving a session for a conversation
	Description of the conversation identifier
	Description of the session instance identifier
	Session activation
	Type of session activated
	Number of sessions activated
	Sync point capability
	Full-duplex session capability
	Synchronizing end points after session activation failure

	Chapter 8. Deallocating a conversation
	About this chapter
	Deallocating a half-duplex conversation
	Deallocating a half-duplex conversation normally
	Sending information
	Sending confirmation requests
	Example of normal half-duplex conversation deallocation
	Reacting to a Half-duplex conversation deallocation

	Deallocating a Half-duplex conversation abnormally
	Using CONTROL=DEALLOC and CONTROL=DEALLOCQ
	Using CONTROL=REJECT

	Deallocating a full-duplex conversation
	Deallocating a full-duplex conversation normally
	Sending information
	Reacting to a full-duplex conversation deallocation

	Deallocating a full-duplex conversation abnormally
	Using CONTROL=DEALLOC and CONTROL=DEALLOCQ

	Restrictions on abnormally deallocating conversations
	Deallocating a pending conversation
	Rejecting a conversation pending deallocation for persistent sessions

	Chapter 9. Sending information
	About this chapter
	Sending information on half-duplex conversations
	Background of the SEND buffer
	Use of the SEND buffer
	Flushing the buffer
	Example of flushing the buffer

	Roles of sender and receiver
	Entering SEND state

	Sending normal information
	Sending logical record data
	Sending confirmation requests

	Sending expedited information

	Sending information on full-duplex conversations
	Use of the SEND buffer
	Flushing the buffer

	Roles of sender and receiver
	Entering SEND/RECEIVE state
	Entering SEND_ONLY state
	Entering PENDING_SEND/RECEIVE_LOG state

	Sending normal information
	Sending logical record data

	Sending expedited information

	Buffer list requirements
	Example of using a buffer list
	BUFFLST differences for LU 6.2

	Handling storage shortages
	Send requests not using a buffer list
	Send requests using a buffer list

	Chapter 10. Receiving information
	About this chapter
	Determining what is received
	What-received field
	What-received indicators
	Checking the what-received field

	Receiving information on half-duplex conversations
	Roles of sender and receiver
	Entering RECEIVE state

	Receiving normal information
	Using APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC
	Using APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY

	Responding to confirmation requests
	Positive response
	Negative response
	Example of confirmation responses

	Receiving expedited information
	Using APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC|ISPEC
	Using APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY|IANY

	Receiving information on full-duplex conversations
	Roles of sender and receiver
	Entering SEND/RECEIVE state
	Entering RECEIVE_ONLY state
	Entering PENDING_SEND/RECEIVE_LOG state
	Entering PENDING_RECEIVE-ONLY_LOG state
	Entering PENDING_RESET_LOG state

	Receiving normal information
	Using APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC
	Using APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY

	Receiving expedited data
	Using APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC|ISPEC
	Using APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY|IANY

	Specifying how information is received
	Logical records versus buffers
	Continuation modes for receiving normal information
	Example of using any-mode RECEIVEs

	Continuation modes for receiving expedited information

	Error handling

	Chapter 11. Sending and receiving data using high performance data transfer
	About this chapter
	The role of CSM and the IVTCSM macroinstruction
	Applications that use the HPDT interface
	Using the APPCCMD macroinstruction for HPDT requests
	Designing programs to use HPDT
	Design considerations for HPDT applications
	Macroinstructions used by HPDT applications
	Application authorization
	Application responsibilities for using HPDT
	How support for HPDT is communicated between the application and VTAM
	Verifying the session's capabilities
	Using the extended buffer list (XBUFLST)

	Sending data using HPDT
	SEND processing using the HPDT interface
	Creating and sending multiple pieces of data in one CSM buffer

	How VTAM processes an HPDT send request
	Send macroinstruction completion considerations
	Completion of a successful send
	Completion of an unsuccessful send
	Handling of temporary storage shortages during send
	TPEND exit considerations when sends are pending

	Receiving data using HPDT
	RECEIVE processing using HPDT
	Passing HPDT receive requirements to VTAM
	Receive macroinstruction completion considerations
	Considerations for the successful completion of a receive
	Considerations for the unsuccessful completion of a receive
	TPEND exit considerations when receives are pending

	Data delivery considerations

	Using the SENDRCV macroinstruction for HPDT
	APPCCMD application requirements to ensure CSM storage recovery
	General APPCCMD storage ownership requirement
	Application responsibilities when the RPL is posted complete with an error
	Application responsibilities when the RPL is not posted complete
	Cross-memory considerations when the RPL is not posted complete

	MPC pad character considerations
	Confidential text considerations
	Application data clear responsibilities

	Chapter 12. Using exit routines
	About this chapter
	Using the ATTN exit
	Parameter list
	FMH-5 function
	CNOS function
	Vectors provided for the ATTN(CNOS)

	LOSS function

	Using other EXLST exit routines
	SYNAD
	LERAD
	TPEND
	LOGON
	Application programs without a LOGON exit routine

	SCIP
	Application programs without a SCIP exit routine

	LOSTERM exit routine

	Chapter 13. VTAM's LU 6.2 security options
	About this chapter
	Security management product requirements
	Defining profiles for LU-LU session pairs in RACF

	Session-level verification
	Session activation using level 1 session-level verification
	Session activation using level 2 session-level verification
	Enabling session-level security
	Defining the degree of level 1 session-level verification
	Defining the degree of level 2 session-level verification

	Informing the application program of verified sessions
	Session activation failures
	VTAM's support for session-level verification

	Conversation-level security
	Verifying end users using conversation-level security
	Security acceptance levels
	VTAM's level of support
	Already-verified support
	Persistent-verification support

	The application's maximum security acceptance level
	Partner application's maximum security acceptance level
	Specifying a conversation's security level

	Data encryption
	Levels of data encryption
	Determining a session's data encryption level
	Selective data encryption

	Chapter 14. Handling errors
	About this chapter
	General sequence of error checking
	Using exit routines to handle errors
	Evaluating RCPRI, RCSEC return codes
	Response to errors
	Choice of response
	Error types
	Timer errors
	Sense codes

	Data purging and truncating
	Purging error codes
	Truncating error codes

	Error log variables
	VTAM sense codes
	Sense codes for FMH-7
	Sense codes for UNBIND

	Appendix A. Conversation states
	States of conversations
	Half-duplex conversation states
	Full-duplex conversation states
	State matrix

	Appendix B. APPCCMD macroinstruction overview
	Session and conversation information
	Information from the application to VTAM
	Information flow from VTAM to the application

	Appendix C. Example of a sample LU 6.2 application program
	Sample VTAM LU 6.2 application program
	Console log

	Appendix D. Example of retrieving information for a mode and any restored sessions
	Logic for retrieving restore information
	Example program for retrieving restore information

	Appendix E. Architectural specifications
	Appendix F. Accessibility
	Notices
	Programming interface information
	Policy for unsupported hardware
	Trademarks

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Communicating your comments to IBM

